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Abstract

We study response behavior in surveys and show how the explanatory power of self-
reports can be improved. First, we develop a choice model of survey response behav-
ior under the assumption that the respondent has imperfect self-knowledge about her
individual characteristics. In panel data, the model predicts that the variance in re-
sponses for different characteristics increases in self-knowledge and that the variance
for a given characteristic over time is non-monotonic in self-knowledge. Importantly,
the ratio of these variances identifies an individual’s level of self-knowledge, i.e., the
latter can be inferred from observed response patterns. Second, we develop a consis-
tent and unbiased estimator for self-knowledge based on the model. Third, we run
an experiment to test the model’s main predictions in a context where the researcher
knows the true underlying characteristics. The data confirm the model’s predictions
as well as the estimator’s validity. Finally, we turn to a large panel data set, es-
timate individual levels of self-knowledge, and show that accounting for differences
in self-knowledge significantly increases the explanatory power of estimates. Using
a median split in self-knowledge and regressing risky behaviors on self-reported risk
attitudes, we find that the R2 can be multiple times larger for above- than below-
median subjects. Similarly, gender gaps in risk attitudes are considerably larger
when restricting samples to subjects with high self-knowledge. These examples il-
lustrate how using the estimator may improve inference from survey data.
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1 Introduction

Survey evidence is a major source of knowledge in the social sciences, including economics.
With an increasing interest in measuring cognitive and non-cognitive skills—such as eco-
nomic preferences, beliefs, attitudes, and values—survey evidence is gaining increasing
relevance in economics (Heckman, Stixrud, and Urzua, 2006; Almlund et al., 2011; Falk
et al., 2018). This paper provides a method to improve the explanatory power of subjec-
tive survey data. The method is derived from a simple model of survey response behavior
that allows identifying more or less informative respondents based only on patterns of
their response behavior. Hence, this paper makes two main contributions. It offers a
framework on how to model and understand survey response behavior in general, and it
derives a method how to empirically identify more or less reliable answers, which in turn
helps to improve the explanatory power of survey measures.

As a first step, we derive a simple choice model of survey response behavior. The model
takes seriously the idea that when being asked to report an individual characteristic such
as a preference, belief, or some non-cognitive skill, a respondent has to make herself the
object of her own self-assessment and makes a choice. We assume that there exists a
true type (level of each characteristic), but that the respondent is not perfectly aware of
her true type. This variation in “self-knowledge” reflects the fact that individuals differ
in their capacity to retrieve or memorize relevant information about themselves, engage
more or less in reflecting who they are, or it may simply reflect a lack of life experience in
the domain of interest. Limited self-knowledge is modeled as an imperfect signal that the
respondent receives about her true type. The informativeness of the signal varies between
respondents. We further assume that the respondent wants to minimize the squared
distance between her true type and her report, i.e., the interests of the respondent and the
researcher are aligned. Conditional on the informativeness of the signal, a Bayesian agent’s
optimal report is a weighted sum of the population mean of the respective characteristic
and her signal. The more informative the signal, the greater the weight placed on the
signal relative to the population mean. We analyze the expected variance of respondents’
answering behavior conditional on the informativeness of the signal, both over time and
between characteristics. We find that the variance between characteristics increases in the
informativeness of the signal, which mirrors the fact that the more confident a respondent
is about her answer, the more she deviates in expectation from the population mean.
In contrast to the variance between characteristics, the within variance—the variance of
responses for a given characteristic over time—is non-monotonic in the signal precision.
The intuition is that response behavior is consistent over time if a person knows herself
either very well or not at all. This result cautions against the use of simple consistency to
measure the accuracy of signals and reports. Importantly, we show that the ratio of the
variance between characteristics and the variance over time (for given characteristics) is
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equal to the informativeness of the signal. This is one of our key results. It implies that
we can use observed variances to estimate individual differences in self-knowledge or the
accuracy of respective reports.

We provide several extensions of the model and discuss their implications for expected
response behavior. Our first extension relaxes the assumption of exogenous signals and
explores the consequences of endogenous precision. We derive conditions for the choice
of signal precision and discuss implications for how survey quality responds to incen-
tives. Second, we relax the assumption that respondents are perfectly aware of the signal
strength, i.e., how well they know themselves. Instead, we allow for subjective levels
of self-knowledge that are higher or lower than actual self-knowledge. While subjective
beliefs about self-knowledge affect expected responses, we show that they do not impede
the identification of differences in self-knowledge, simply because they cancel out. Third,
we allow for individual-specific scale use, i.e., a tendency to report either rather extreme
or moderate answers, respectively. Again, we show that scale use affects responses but
that the identification of self-knowledge remains unchanged. Finally, we relax the as-
sumption that respondents want to report their type truthfully. Instead, we allow for
response biases arising from motives such as social desirability or image effects. We study
the implications of such motives and show that respondents act as if they are prone to
subjective scale use.

In the second part of the paper, we take the theoretical result—that signal precision
about one’s type can be inferred from the ratio of between- and within-variance—to the
data. We first show that self-knowledge can be estimated using a closed-form estimator
before discussing results from a laboratory experiment designed to test the main pre-
dictions of the model. Subsequently, we analyze representative panel data to show how
accounting for signal precision affects empirical results and explained variance.

To derive an estimator of signal precision or self-knowledge from panel data, we es-
sentially consider the ratio between two sample variances, namely the between-variance
(i.e., the variance of responses between items) and the within-variance (i.e., the variance
for a given item over time). These are the sample analogs to our theoretically-derived
variances. We study the asymptotic properties of the estimator and formally show its
consistency. Using simulations, we illustrate the performance of the estimator for realistic
sample sizes. We study various combinations of sample size, the number of survey items,
and waves (periods). The estimator performs quite well. For example, for 100 respon-
dents, 15 items, and three waves, the rank correlation between the estimated and the true
level of self-knowledge is 0.75.

To empirically test the main predictions of the model, it is crucial to observe re-
sponses and compare them with respondents’ true types. However, this is difficult—if not
impossible—with typical survey data. Therefore, we ran a laboratory experiment that
creates a panel data set with types that are imperfectly known to subjects but perfectly
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known to the researcher. In particular, subjects in the experiment were paid to accurately
report the sizes of 60 male figures shown to them on separate computer screens. This setup
allows us to observe subjects’ reports and compare them with the true types. Results from
the experiment confirm the main predictions derived from the model. First, subjects’ re-
ports are biased towards the mean, i.e., small sizes are on average overestimated, and large
sizes are, on average, underestimated. Second, subjects who are estimated to be more re-
liable (using the variances of their reports) actually provide more accurate reports. Based
on the estimator of self-knowledge, we split the sample and regress reports on true types.
We find that the regression coefficient for the above-median sample is about 2.5 times
as large as the respective coefficient for below-median subjects and that the explanatory
power in terms of R2 is about five times as large. Third, we use the experiment to create
random variation in signal precision. For this purpose, we randomized subjects into one
of two treatments: a Long treatment in which they saw the figures for 7.5 seconds each,
and a Short treatment in which each figure was presented only for 0.5 seconds. We show
that we can apply our empirical estimator to predict subjects’ treatment status, i.e., we
are able to predict whether subjects were assigned to the treatment condition with either
high or low signal precision, respectively.

Finally, we apply our estimator to a large representative panel data set (German Socio-
economic Panel, SOEP). We provide several examples to illustrate how the suggested
estimates of self-knowledge can help to increase the explanatory power of regressions based
on self-reports. In particular, we use a fifteen-item Big Five personality inventory from
multiple waves of the SOEP to estimate self-knowledge. Using these estimates, we form
two sub-samples: one with above- and one with below-median values of estimated self-
knowledge, respectively. As an illustrative example, we chose the context of risk attitudes,
which has received a lot of attention in the literature. We study both determinants and
consequences of risk attitudes, measured on an eleven-point Likert scale. To illustrate, we
find that the gender effect on the general willingness to take risks is substantially higher
for the above-median sample than for the below-median sample. Moreover, the difference
in R2 between the two sub-samples amounts to 45%. Likewise, when we regress the
likelihood of receiving performance pay as part of one’s compensation on the willingness
to take risks, the explained variance (R2) is 381% higher in the above-median sample
compared with the below-median sample.

Our paper is related to different strands of literature. As we take the informational
constraints of the agent seriously and study their choice implications, we relate to the
work on rational inattention (Sims, 1998, 2003; Matějka and McKay, 2015; Caplin and
Dean, 2015; Caplin et al., 2020). This literature focuses on flexible information acquisition
and studies what type of information is acquired in a single-agent setting. Our goal is
different, and we analyze how to identify agents who are well informed in a situation with
many agents who share a common prior. Our framework enables analyzing the provision
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of incentives in surveys as studied, e.g., in Prelec (2004) and Cvitanić et al. (2017) as
well as how contextual effects such as social desirability affect survey responses (see,
e.g., Bénabou et al., 2020; Chen et al., 2020). The notion of limited self-knowledge and
its economic consequences for the labor market has been studied in Falk, Huffman, and
Sunde (2006a, 2006b). The model is also related to work on preferences for consistency, as
modeled and tested in Falk and Zimmermann (2017) and applied to survey methodology
in Falk and Zimmermann (2013).

Moreover, the paper contributes to the literature on measurement error in surveys
(for an overview, see Bound, Brown, and Mathiowetz, 2001). For the case of classical
measurement error—i.e., deviations in answers that are independent of the respective
true value—, instrumental variables techniques are capable of removing bias. Recently,
Gillen, Snowberg, and Yariv (2019) have suggested measuring duplicate instances of con-
trol variables to use them as mutual instruments. Hyslop and Imbens (2001) consider a
model that is related to ours where an agent observes a Normal signal and reports his best
estimate of an underlying variable of interest. They analyze the effect of the resulting
non-classical measurement error on regression coefficients but do not consider remedies.
The focus of our paper is to estimate the precision of the agent’s signal, which allows
placing higher weight on subjects with better self-knowledge.

Drerup, Enke, and Gaudecker (2017) estimate a structural model of stock market
participation that identifies individuals for whom relevant preferences and beliefs have
increased explanatory power. Alternative approaches to deal with measurement error in
subjective survey data use structural estimation techniques to recover underlying prim-
itives and choice models, finding that accounting for measurement error yields greater
predictive power (Kimball, Sahm, and Shapiro, 2008; Beauchamp, Cesarini, and Johan-
nesson, 2017).1 Despite not referring to survey measures, a related contribution comes
from Beauchamp et al. (2019), who analyze how accounting for the “compromise effect”—
whereby subjects tend to give answers close to the center of the provided scale—, can
improve estimates for risk preference.

The remainder of the paper proceeds as follows. Section 2 develops the model with
its basic framework and extensions. Building upon its insights, Section 3 introduces the
estimator, shows its consistency, and explores its performance in finite samples. Section 4
presents the stylized laboratory experiment. In Section 5, we apply the estimator to
a large and representative panel and explore its implications for improving estimates.
Finally, Section 6 concludes.

1From a psychological perspective, processes underlying response behavior have been studied under the
label of cognitive aspects of survey methodology (see Sudman, Bradburn, and Schwarz, 1996; Bradburn,
Sudman, and Wansink, 2004; Schwarz, 2007). Broadly, our paper is also related to classical test theory
and item response theory (see, e.g., Edwards, 2009; Kyllonen and Zu, 2016; Bolsinova, Boeck, and
Tijmstra, 2017).
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2 Model

In this section, we first introduce a simple framework to model the answering process in
surveys, based on limited self-knowledge (Section 2.1). Second, we derive how patterns
of the answering behavior reveal the informational content of responses, providing the
intuition for how we later estimate self-knowledge (Section 2.2). Finally, we present vari-
ous extensions of the baseline model to study further important aspects of the answering
process and show the robustness of our identification approach (Section 2.3).

2.1 Framework

Introspection and Self-knowledge. The context in which we are interested is a simple
survey situation. A researcher asks a respondent (or agent) a question about a specific
characteristic, e.g., some preference, personality trait, or belief.2 The agent’s true type is
denoted by θ, and we assume that it is normally distributed in the population with mean
θ̄ and variance σ2.

When asked about her type θ, the respondent does not perfectly know herself but
instead engages in a process of introspection. The outcome of this process is an informative
but noisy signal x about her true type. The signal is normally distributed with mean equal
to the agent’s type θ and variance σ2/τ. The parameter τ > 0 hence indicates the precision
of the signal relative to the variance in the population. The higher the value of τ , the more
precise the signal that an individual receives about herself. We refer to τ as self-knowledge.

Response Behavior. After reflecting on her true type θ, the respondent reports her
answer. We assume that she seeks to provide a response r that is as precise as possible, i.e.,
interests of the researcher and respondent are perfectly aligned.3 Formally, the respondent
uses her signal x to provide a response r that minimizes the expected quadratic distance
to her unknown true type, i.e.,

uθ(r) = − (r − θ)2 . (1)

Hence, she reports her best guess of her type r = E[θ |x]. The respondent’s prior equals
the distribution of types in the population with mean θ̄. Substituting for the expected
value of her posterior belief about her type, we obtain by Bayes’ Rule that

r =
θ̄ + τ x

1 + τ
. (2)

2For example, the researcher may ask the respondent to state her willingness to take risks, her level
of agreeableness or conscientiousness, or her belief about her internal or external locus of control.

3For many interview situations, we think that this is a valid assumption. However, there are contexts
in which respondents may want to strategically signal a specific type that is actually different from their
believed true type for reputational or “social desirability” reasons. For a discussion, see Section 2.3.4.
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Intuitively, the higher her self-knowledge τ , the more precise the respondent’s signal, and
the more weight that she puts on her signal relative to the population mean θ̄. In the
limit, if she knows nothing about herself, her best estimate is to report the mean of her
prior, whereas if she knows herself perfectly, she disregards the prior completely.

This concludes our basic framework. The model defines a mapping from true types
to distributions over observable responses, taking into account the notion of limited self-
knowledge. In the next subsection, we study how response patterns can be used to identify
differences in self-knowledge.

2.2 Response Patterns

We now explore the implications of limited self-knowledge for response patterns. We are
particularly interested in the variances in reports, both conditionally and unconditionally,
on an agent’s type. These variances will allow us to identify differences in self-knowledge.

Expected Report. It follows from Equation 2 that the expected report conditional on
the true type θ equals

E[r | θ] =
θ̄ + τ θ

1 + τ
. (3)

For low values of self-knowledge τ , the expected report is close to the population mean
θ̄, irrespective of the true type θ. For large values of τ , the expected report converges to
the true type θ.

Between-variance. Consider now the variance of the expected report conditional on
an agent’s type. In the context of panel data, one can think of this theoretical quantity as
an approximation of the variance in average reports concerning different characteristics.
Following this interpretation (as variance between different characteristics), we refer to it
as the between-variance. It is given by

σ2
between ≡ var[E[r | θ]] = var

[
θ̄ + τ θ

1 + τ

]
=

(
τ

1 + τ

)2

var[θ] =

(
τ

1 + τ

)2

σ2 .

(4)

The between-variance is strictly increasing in self-knowledge τ . This reflects the fact that
agents with high levels of self-knowledge put relatively little weight on their prior. Instead,
they provide reports that tend to deviate from the population mean.

Within-variance. Now suppose that the researcher observes the respondent responding
multiple times to questions about the same characteristic. We call the resulting variation
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in answers the within-variance of the agent’s reports, i.e., the variance conditional on her
type. It is given by

σ2
within ≡ var[r | θ] = var

[
θ̄ + τ x

1 + τ

∣∣∣∣ θ]
=

(
τ

1 + τ

)2

var[x | θ] =
τ

(1 + τ)2 σ
2 .

(5)

The relationship between self-knowledge τ and the within-variance is non-monotonic. For
very low levels of τ , the variance is low, simply because the respondent refers to her
prior. As τ increases, the variance increases as more weight is placed on the noisy signal.
However, as τ further increases, the variance decreases because the signal about the true
type becomes increasingly precise. From a researcher’s perspective, this pattern implies
that consistent responses—i.e., similar responses to the same characteristics over time—
do not necessarily indicate high levels of self-knowledge, i.e., precision. In fact, the most
consistent responses come from respondents, who either do not know themselves at all or
who know themselves perfectly.

0 1 2 3 4 5
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Note: Variances σ2
between and σ2

within as functions of τ (values on the left axis). The dotted line shows
the ration of the two variances, which is equal to τ (values on the right axis).

Figure 1: Theoretical variances

Figure 1 illustrates the relationship between the two variances and self-knowledge.
It plots the between-variance (long dashes) and the within-variance (short dashes) as
functions of self-knowledge τ . As τ goes to zero, both variances converge to zero. This
means that the respondent provides the same answer (equal to the prior) to any question.
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As τ increases, the respondent places higher weight on her signal, which increases both the
within- and between-variance. At τ = 1, i.e., when the signal x is exactly as informative
as the respondent’s prior knowledge about the population, the within-variance reaches its
maximum and is equal to the between-variance. Beyond this point, the between-variance
further increases and ultimately converges to the variance of true types in the population,
σ2. At the same time, the within-variance strictly decreases and converges to zero, because
a respondent with perfect self-knowledge will always provide exactly the same report for
a given characteristic.

The discussion reveals that both the between- and within-variance contain information
about the respondent’s level of self-knowledge τ . While a large between-variance is always
“good news,” indicating high levels of τ , a low within-variance can reflect either high or
low levels of τ , respectively. However, considering both variances jointly perfectly reveals
the level of self-knowledge. In fact, the ratio of the between- and within-variance equals
the degree of self-knowledge:

σ2
between

σ2
within

=

(
τ

1+τ

)2
σ2

τ
(1+τ)2

σ2
= τ . (6)

The respective relationship is also shown in Figure 1 where for each level of τ , the thin
solid line plots the ratio of the two variances.

Our paper builds on this fundamental insight. We show that the relationship between
the variance and self-knowledge is robust to various extensions of the model, construct a
finite sample estimator based on this relationship, and show that this estimator indeed
predicts the informativeness of subjects’ responses both in lab and field data.

2.3 Extensions

In this subsection, we study four extensions of the basic framework. The purpose of
this exercise is twofold. The first aim is to show that the framework enables integrating
additional important aspects of the survey response process in a meaningful way. In par-
ticular, we consider the role of costly introspection, deviations in subjective self-knowledge
from actual self-knowledge, subjective scale use, and social desirability issues. Second, we
show that for the extensions studied, the result that τ can be inferred as the ratio of the
between- and within-variance is robust.

2.3.1 Endogenous Precision

Our first extension considers endogenous precision. So far, we have modeled the process of
introspection as receiving an exogenous signal with a fixed relative precision τ . However,
the cognitive process of introspection requires mental effort, and a respondent has to decide
how much effort to invest. For example, the agent chooses how long and intensively she
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engages in recollecting past behaviors to extract her type and how carefully she evaluates
and maps information into a response. We assume that the precision of the signal x is
no longer fixed at a given level of σ2/τ. Instead, τ is chosen by the agent at a cost τ/a for
some ability a ∈ R+. The utility function (corresponding to Equation 1) equals

uθ(r, τ) = −m (r − θ)2 − τ

a
. (7)

Here, m ∈ R+ measures the motivation of the respondent to provide an accurate answer,
and it can be thought of as either extrinsic or intrinsic motivation.4 Assume that ma >

σ−2, as otherwise incentives are too weak to motivate any effort and a precision of zero is
optimal.

Lemma 1. The respondent’s optimal precision is given by τ ∗ =
√
maσ − 1.

The chosen signal precision τ ∗ is increasing in both incentives m and ability a, i.e.,
higher incentives or ability generate more precise signals.

In the presence of endogenous effort, subjects giving high- vs. low-quality answers can
be distinguished by the exact same response patterns as for the case with exogenous self-
knowledge. However, the interpretation changes, as differences may now reflect differences
in motivation m or ability a. In fact, the model predicts that the higher the incentives,
the more reliable and informative the responses. This is exactly the rationale for paying
subjects in economic experiments (Smith, 1976; Camerer and Hogarth, 1999) and similar
attempts to incentivize survey responses as, e.g., Prelec’s Bayesian Truth Serum (Prelec,
2004). In addition, differences may reflect motivational dispositions (e.g., mood, fatigue,
boredom) or fundamental differences in “introspection ability” a, such as cognitive skills,
memory, and recollection capabilities.

2.3.2 Subjective Self-knowledge

The basic framework introduced in Section 2.1 assumes that the respondent knows the
relative precision τ of her signal x. In other words, she perfectly knows how well she
knows herself and weighs her signals accordingly. However, a large body of evidence has
shown that individuals often misperceive their own knowledge and skills (Camerer and
Lovallo, 1999; Malmendier and Tate, 2005). Applied to our context, respondents may be
over-confident and place too much weight on their signal x, or they are under-confident
and place too much weight on the prior, respectively. In either case, this will result in a
wedge between the optimal and the actual response, again complicating inference about
respondents’ true types.

To model potential biases in perceived self-knowledge, we introduce subjective self-
knowledge τ̃ . A respondent has correct beliefs about her self-knowledge if τ̃ = τ , she is

4The former could reflect, e.g., monetary or social approval incentives, while the latter may capture
motives such as a desire to respond truthfully and accurately or simply an interest in (promoting) research.
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under-confident if τ̃ < τ , and she is over-confident if τ̃ > τ , respectively. We assume that
the agent is naive and when determining her survey response, she applies relative weight
according to her subjective self-knowledge τ̃ . Equation 2 changes as follows:

r =
θ̄ + τ̃ x

1 + τ̃

Corresponding to Equation 4, the between-variance becomes

σ2
between =

(
τ̃

1 + τ̃

)2

σ2 .

Hence, the variability in answers between different items reflects the respondent’s subjec-
tive self-knowledge but is independent of self-knowledge itself. Intuitively, as the between-
variance is based only on the expected response, which is independent of the true precision
of the agent’s signal τ , the variance is also independent of the true precision of the agent’s
signal.

This is different for the within-variance, corresponding to Equation 5.

σ2
within =

(
τ̃

1 + τ̃

)2
σ2

τ
.

The latter depends on both subjective self-knowledge as well as actual self-knowledge.
Intuitively, the within-variance of responses is affected by the respondent’s subjective self-
knowledge τ̃ through the weight that she places on her signal, and by her self-knowledge
τ through the variance of the signal.5

Importantly, the result from Equation 6 about the ratio of the two variances still holds.

σ2
between

σ2
within

=

(
τ̃

1+τ̃

)2
σ2(

τ̃
1+τ̃

)2 σ2

τ

= τ

Hence, while deviations from correct beliefs about the precision of one’s signals affect
expected response behavior in general, inference about τ remains feasible.

2.3.3 Subjective Scale Use

Empirical research typically assumes that individuals who want to express the same level
of agreement or disagreement with respect to a particular survey item will respond in
the exact same way. For example, two respondents intending to express the exact same
willingness to take risks on a Likert scale would be expected to choose the exact same
answer category. However, if response scales are subjectively interpreted, responses may
differ. The mapping from an intended response to some scale may depend on individual-

5Observe that only for τ̃ →∞, the model predicts classical measurement error.

10



specific notions of how to express a given level of agreement or disagreement. We suggest
a simple way how to model this kind of subjective scale use and show that it affects
responses in general but not the estimate of τ that we proposed in Equation (6).

In particular, assume that an agent has arrived at her intended report and now needs
to map it to an actual report r on an answering scale. This mapping may be individual-
specific in the sense that some agents may use more “extreme” answers while others use
more “moderate” answers to express the same information. For a given intended response
r, therefore, two agents may come up with different actual responses. We assume that
the agent’s response is scaled away from some point c ∈ R, e.g., the center of the scale,
by a factor φ ∈ R. The report and its expected value (corresponding to Equation 3) are
then given by

r = (1− φ) c+ φ

(
θ̄ + τ x

1 + τ

)
, E[r | θ] = (1− φ) c+ φ

(
θ̄ + τ θ

1 + τ

)
.

Therefore, depending on φ, actual responses may be pushed towards the center or the
boundaries of the scale, rendering the interpretation of responses more difficult. This holds
in particular if φ is systematically correlated with underlying types (such as preferences)
or group characteristics under study (such as gender or socioeconomic status).

The between-variance (corresponding to Equation 4) becomes

σ2
between ≡ var[E[R | θ]] = var

[
(1− φ) c+ φ

θ̄ + τ θ

1 + τ

]
= φ2

(
τ

1 + τ

)2

var(θ) = φ2

(
τ

1 + τ

)2

σ2

,

and the within-variance (corresponding to Equation 5) becomes

σ2
within ≡ var[r | θ] = var

[
(1− φ) c+ φ

θ̄ + τ x

1 + τ

∣∣∣∣ θ]
= φ2

(
τ

1 + τ

)2

var[x | θ] = φ2 τ

(1 + τ)2 σ
2 .

.

We see that both variances increase quadratically in the scale use parameter φ. How-
ever, for the ratio of the two, the effect of scale use cancels out, and it still holds that the
ratio equals τ .

σ2
between

σ2
within

=
φ2
(

τ
1+τ

)2
σ2

φ2 τ
(1+τ)2

σ2
= τ

2.3.4 Social Desirability Effects

In some situations, respondents might not want to truthfully report their type but rather
provide an answer that is deemed socially desirable. These contexts are likely to arise if the
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interview situation is not anonymous (audience effects) and/or if items are image relevant.
For example, it is plausible that respondents feel more comfortable reporting that they
are an honest person rather than a dishonest person. Such concerns can be integrated
into our framework by adding a desirable answer d ∈ R. Respondents’ objective now is
to minimize the weighted sum of the squared distances to their type and the desirable
answer, respectively. The utility function is thus

uθ,d(r) = −ψ (r − θ)2 − (1− ψ) (r − d)2

where ψ ∈ [0, 1] measures the intensity of the preference to report d. The optimal report
of a respondent equals the weighted sum of the best guess of her type θ and the desirable
answer

r = ψ

(
θ̄ + τx

1 + τ

)
+ (1− ψ) d .

The respondent thus acts as if subject to subjective scale use, as introduced in Sec-
tion 2.3.3. The main difference between subjective scale use and desirability arises in the
context of multiple agents and characteristics: while the scale use parameters (φ, c) are
naturally agent-specific, the desirability parameters (ψ, d) are naturally specific to the
characteristic.

3 Estimator

In this section, we derive an estimator for an individual’s level of self-knowledge that is
based on the insights of Section 2. We consider a panel data set comprising I > 1 agents
and T > 1 waves. In each wave t, each agent i answers an identical set of K > 1 questions
about distinct time-invariant characteristics, traits, or beliefs. We denote by θik the value
of the kth characteristic for agent i and assume that characteristics are independently
normally distributed in the population with a mean θ̄ and variance σ2. In contemplating
the answer to question k in wave t, agent i generates a signal xikt that she uses to form
her answer rikt. The signal xikt is normally distributed with a mean θi and variance σ2

i /τi,
independent of all other signals, such that the optimal response is given by

rikt =
θ̄ + τi xikt

1 + τi
.

Given the K × T answers observed for each agent i, the objective of a researcher is to
estimate agents’ levels of self-knowledge τi. In Section 2, we have shown that τ equals
the variance among expected answers to different questions (between-variance) divided
by the theoretical variance among answers to the same questions (within-variance). To
construct an estimator τ̂i, we use the sample variance between average answers for different
characteristics as an approximation of the between-variance and the average variance of
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answers for a given characteristic as an approximation of the within-variance. Denote
agent i’s average answer for question k by r̄ik = 1

T

∑T
t=1 rikt and her average answer over

all questions by r̄i = 1
K

∑K
k=1 r̄ik. Our estimator τ̂i for the self-knowledge of agent i is

given by

τ̂i =
1

K−1

∑K
k=1 (r̄ik − r̄i)2

1
K(T−1)−2

∑K
k=1

∑T
t=1 (rikt − r̄ik)2

− 1

T
. (8)

The enumerator in the first part of the expression captures the variation between the
average answers of an agent for different characteristics, while the denominator expresses
the average variation in answers within characteristics. Since the expected value of the
ratio of two random variables is not the same as the ratio of their respective individual
expected values, the denominator is adjusted by a constant factor relative to the unbiased
estimator of the within-variance6 and a correction term of 1/T is subtracted from the
ratio. These two adjustments are necessary to ensure that the estimator is unbiased.

Theorem 1 establishes that τ̂i is a consistent, unbiased estimator of self-knowledge τi
and describes its properties.

Theorem 1. For every K,T that satisfy K(T − 1) > 4.

1. The estimator τ̂i satisfies

τ̂i =

(
τi +

1

T

)
K(T − 1)− 2

K(T − 1)
Fi −

1

T
(9)

for some random variable Fi that is F distributed with K − 1, K(T − 1) degrees of
freedom for every fixed vector of parameters τi, σ, θ̄.

2. τ̂i is an unbiased estimator for τi, i.e., E[τ̂i | τi] = τi.

3. The standard error of the estimator τ̂i is given by

√
E[(τ̂i − τi)2 | τi] =

(
τi +

1

T

)√
2((K − 1) +K(T − 1)− 2)

(K − 1)(K(T − 1)− 4)
. (10)

4. τ̂i is a consistent estimator and converges to τi at the rate 1/
√
K in the number of

attributes and for all K > 4 it satisfies the following upper bound independent of the
number of repeated observations T :

√
E[(τ̂i − τi)2 | τi] ≤

2τi + 1√
K − 4

The proof of Theorem 1 is provided in Appendix A. Part 4 of Theorem 1 shows
that additional questions are more valuable than additional waves for retrieving precise

6An unbiased estimator of the within-variance is given by 1
K(T−1)

∑K
k=1

∑T
t=1 (rikt − r̄ik)

2.
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estimates. This is the case because, intuitively, having additional questions adds to the
precision of estimating both the between as well as the (average) within-variance, whereas
additional waves only improve the precision of the estimated within-variance. Therefore,
as K goes to infinity, the estimator converges to the true value even for just two waves,
while the precision of the estimator is always limited for a finite number of questions.

Remark 1. As we show in the proof of Theorem 1 in Appendix A, the properties of the
estimator derived extend unchanged to the model with endogenous effort, subjective self-
knowledge, and subjective scale use. We state the properties here without these extensions
for the ease of exposition.

Numerical Illustration of the Estimator. Next, we illustrate our model and the
behavior of the estimator using numerical simulations. For all illustrations, agents’ levels
of self-knowledge τi are drawn from the uniform distribution between 0.1 and 5, and we
abstract from subjective scale use and subjective self-knowledge. The true average value
of characteristics θ̄ is set to 5 and the true population variance σ2 equals 1.

(a) Within-variance (b) Between-variance (c) Estimated τ

Note: Kernel-density estimates, where lighter shading corresponds to a higher estimated density.7 Each
panel is based on the same 100,000 simulations, each with I =1,000 hypothetical individuals, for whom
reports about K = 50 characteristics are observed T = 3 times.

Figure 2: Simulations

Figure 2 displays the joint distribution of the true level of self-knowledge τi, the sample
within-variance, the sample between-variance, and estimated self-knowledge τ̂i. For the
within-variance, we observe the expected non-monotonic, hump-shaped relationship with
the true level of self-knowledge (Figure 2a). The estimates for the between-variance
increase in the true level of self-knowledge, but heavily “fan out” for higher levels of
true self-knowledge (Figure 2b). Our proposed estimator for self-knowledge is strongly
concentrated around the 45-degree line and thus highly informative about agents’ true
levels of self-knowledge (Figure 2c).

In Table 1, we illustrate how the estimator performs for various sample sizes. We con-
sider 100 or 10,000 agents, 15 or 50 characteristics, and 3 or 10 waves, respectively, and
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Table 1: Accuracy of estimates for different sample sizes

(1) (2) (3) (4) (5)

I (respondents) 100 10,000 100 100 100
K (characteristics) 15 15 50 15 50
T (waves) 3 3 3 10 10

Correlation 0.673 0.667 0.871 0.762 0.911
Rank corr. 0.751 0.757 0.899 0.822 0.929
Median split 79.0% 79.3% 88.1% 82.9% 90.4%

report the average value of three measures for the quality of our estimates: Pearson’s cor-
relation and Spearman’s rank correlation between estimated and true self-knowledge and
the proportion of simulated agents correctly assigned to having a level of self-knowledge
above or below its median value based on estimated self-knowledge. If our estimator had
no informational value at all, we would expect a correlation and rank correlation of zero
and 50% of correctly-assigned agents in the median split.

The values of the correlation and the rank correlation coefficients of 0.673 and 0.751
shown in Column 1 for I = 100, K = 15, T = 3 suggest that the estimator is already
informative about self-knowledge for modest sample sizes. This is confirmed by 79.0%
of hypothetical agents being assigned to the correct half of the sample in terms of self-
knowledge. In Column 2, the number of hypothetical agents is increased to 10,000. This
has virtually no effect on the quality of predictions, reflecting the fact that our estimator
does not use population information. However, as can be seen from Column 3, estimates
strongly benefit from a larger number of characteristics (in line with Part 4 of Theorem 1).
Relative to these increases, the increased power stemming from a higher number of answers
per characteristic in Column 4 (ten instead of three) is rather small but still noticeable
(in line with Part 4 of Theorem 1, which shows that the standard error does not vanish in
T ). Column 5 combines the number of characteristics from Column 3 with the number of
waves from Column 4, reaching the best performance with correlation coefficients above
0.9 and a median split result of 90.4%. Summarizing, we find that the estimator performs
reasonably well with a modest number of fifteen characteristics and three waves, and its
performance can be increased in particular by a larger number of characteristics.

4 Experimental Evidence

This section presents experimental evidence to provide an empirical test of the model’s
main predictions. The idea of the experiment is to create a choice environment where
the researcher observes subjects’ reports (allowing to estimate τ) while at the same time
knowing the true state θ. Accordingly, we can study whether our estimator is successful

7Gaussian kernel; bandwidth selection according to Silverman’s rule.
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in identifying subjects whose reports are relatively more informative than those of others.
In addition, we exogenously vary the quality of the signal subjects receive about true
types. In particular, we run two treatments with either high or low signal quality and
test whether our estimator of τ̂ is capable of predicting subjects’ treatment status, i.e.,
whether a subject received high- or low-quality signals. These tests are difficult with
non-experimental data unless true states are known to the researcher and the precision of
signals can be exogenously varied.

4.1 Design of Experiment

To create a choice environment with known types θ and an exogenous variation in knowl-
edge τ , the experiment exposed subjects to a simple repeated and incentivized estimation
task. The setup mimics a panel data set where respondents are repeatedly asked to
respond to a set of different questions.

Types. The requirement that the researcher knows true types, implies that we cannot
work with individual characteristics such as personality traits, preferences or IQ, simply
because these cannot be known with certainty. To implement types known to the re-
searcher (θi), we therefore presented subjects a series of abstract figures. In particular,
subjects saw a total of 60 screens, each showing a stylized male figure of varying size (see
Figure 3). On each screen, the figure was randomly located at one of four different parts
of the screen, i.e., at either the upper left, the upper right, the lower left or the lower
right part of the screen, respectively. The sizes of the figures were drawn from a normal
distribution that closely matches the actual height distribution of men in Germany (based
on data from the Socio-economic Panel, SOEP). In particular, sizes were matched into
eleven size categories (in meters) with likelihoods as shown in Table 2.

Table 2: Choice categories

0 1 2 3 4 5 6 7 8 9 10

<1.56 1.56–
1.60

1.61–
1.65

1.66–
1.70

1.71–
1.75

1.76–
1.80

1.81–
1.85

1.86–
1.90

1.91–
1.95

1.96–
2.00 >2.00

0.1% 0.8% 3.8% 11.1% 21.1% 26.1% 21.1% 11.1% 3.8% 0.8% 0.1%

Note: top row: categories; middle row: sizes (in meters); bottom row: respective likelihoods.

For example, Category 3 represents male persons of sizes between 1.66 and 1.70 meters
occurring with a likelihood of 11.1%. Subjects received a handout showing this distribu-
tion and the corresponding figures underneath (see Instructions in the Appendix).

Subjects were informed that a total of 15 distinct sizes were independently drawn
from the eleven categories and shown four times. Specifically, subjects were told that
they would see four blocks each comprising these 15 distinct sizes. Within each block, the
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order and location of the male figures were random. This procedure hence implements
a panel structure, i.e., for every subject i, we observe a total of 60 reports for K = 15

characteristics in T = 4 periods.
To facilitate the estimation task and vary the presentation style of the screens, next

to a figure subjects also saw a “reference category,” i.e., either an elephant or a cat (see
Figure 3). Subjects were informed that—unlike for the male figures—the size of the two
animals was always exactly the same. The height of the elephant was 3.40 meters and
the cat 0.40 meters, respectively. Conditional on the randomly-determined location of the
male figures, the location and type of the reference category (elephant or cat) were also
randomly drawn for each screen.

(a) Example 1 (b) Example 2
Note: Two examples of signals that were shown to subjects. The panel on the left shows a male figure with
a height of 1.63m along with the elephant, which is 3.40m tall. The male figure on the right corresponds
to 1.93m and the cat has a height of 40cm. Animal pictograms by Hannah Storey.

Figure 3: Example screens

Payoff Function. Subjects had an incentive to estimate the shown size of the male
figure as precisely as possible. The payoff function, π, implements a quadratic loss function
and is exactly the same as in the model (see Equation 1) with

π(r) = − (r − θ)2 ,

where θ indicates the true type (size of the male figure) and r a subject’s report. For
payment, one of the 60 screens was randomly selected. For the selected screen and respec-
tive report, subjects received e10 minus the product of e0.10 and the squared difference
between the true type and the report. For example, if a subject in fact saw a male figure
of size Category 1 (1.56 meters – 1.60 meters) and estimated a size according to Category
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8 (1.91 meters – 1.95 meters), the subject received e 10− (1−8)2×e 0.10 = e 5.10. Note
that we chose an endowment of e10 to rule out losses even if the difference between true
and estimated type was maximal.

Signal Precision and Treatments. To exogenously vary the precision τ of the signal,
we ran two treatments that only differed in terms of how long subjects saw each of the
60 screens. In treatment Long, subjects saw each screen for 7.5 seconds, in contrast to
treatment Short, where they saw each screen only for 0.5 seconds. Within a lab session,
treatments were randomly assigned. Each subject participated in one treatment condition
only.

Procedural Details. 199 subjects—mostly undergraduate university students from all
majors—took part in the experiment, 101 subjects in the treatment Long and 98 in
the treatment Short. We used z-Tree as the experimental software (Fischbacher, 2007).
Subjects were recruited using the software hroot (Bock, Baetge, and Nicklisch, 2014).
At the beginning of an experimental session, participants received detailed information
about the rules and the structure of the experiment. In all treatments, the experiment
only started after all participants had correctly answered several control questions. The
experiments were run at the BonnEconLab in May 2019. For participation, subjects
received a show-up fee of e5.

4.2 Hypotheses and Results

Our experimental data are well suited for testing several hypotheses derived from our
model:

Hypothesis 1. Average reports are linear in the true type and biased towards the average
of the true types, which in the experiment is a value of five.

The first hypothesis follows from an optimal report being the weighted sum of the popu-
lation average θ̄ and the received signal x (see Equation 2). It can only be tested because,
in our experiment, we know the true type. Graphically, we would expect average reports
for different true types to lie on a straight line that is rotated clockwise around the point
(5, 5), i.e., we would expect upward bias for small true values, no bias for average true
values, and downward bias for large true values.

Hypothesis 1 only uses the assumption that knowledge τ is finite for any subject. Hy-
potheses 2–4 exploit individual-specific information about τ , either in terms of treatment
differences (Long vs. Short) or using the estimator introduced in Section 3.

Hypothesis 2. Estimates τ̂ should be larger in the Long treatment than in the Short
treatment.
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An implication of Hypothesis 2 is that the estimates for τ should have reasonable power
for predicting subjects’ treatment status. Thus, we expect that we can blindfold ourselves
regarding the treatment status and be able to tell only from the patterns in answers the
treatment to which a given subject was assigned.

Regardless of which approach is used to make inferences about τ (treatment status or
estimator), the following further hypothesis should hold.

Hypothesis 3. The lower a given subject’s τ , the stronger the reports’ bias towards the
average value of the characteristic, i.e., five.

This hypothesis is a refinement of Hypothesis 1. It states that when estimating figure
sizes, subjects realize and take into account their individual-specific level of τ , which may
reflect ability or treatment status.

Hypothesis 4. The higher the level of τ in a given population, the stronger the predictive
power of reports for true types.

Hypothesis 4 is our main hypothesis. It states that using reports of subjects who have a
high empirical estimate of τ̂ yields higher explanatory power of estimates in comparison
to using either all subjects or subjects with low levels of τ̂ .

Figure 4a provides a visual test of Hypothesis 1. It plots true types against observed
reports, pooled for both treatments. Gray bubbles represent average reports for given true
types, with their sizes reflecting the respective number of observations (which is largely
determined by the sampling distribution). Relative to the dotted 45-degree line, the fitted
ordinary least squares (OLS) line is rotated clockwise around the point (5, 5). Its slope
of 0.279 is significantly smaller than 1, i.e., answers are biased towards the sample mean
(see Column 1 of Table 3 below for details).
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(b) Estimates of τ by treatment

Figure 4: Results from the experiment

To test the further hypotheses, we apply the estimator from Equation 8 to our ex-
perimental data. Recall that each given size that a subject saw was shown four times.
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Therefore, we treat the respective four answers given by a subject as referring to the same
characteristic. Hence, we observe K = 15 characteristics and T = 4 waves.8 Figure 4b
shows the distribution of τ̂ , separately for the Short and the Long treatment (gray and
transparent, respectively).

In support of Hypothesis 2, estimates of τ are higher for subjects in the Long treatment
than for those in the Short treatment (p < 0.001, Mann–Whitney U test). Conversely, this
implies that our estimator predicts subjects’ treatment status. A simple probit regression
of an indicator variable for the Long treatment on our estimates for τ yields a significant
positive coefficient value (average treatment effect = 0.37; p < 0.001, two-sided).

For the tests of Hypotheses 3 and 4, we turn to Table 3. Column 1 corresponds to

Table 3: Relationship between true types and reports

Dependent variable: Report

Subjects all by treatment by τ̂

Short Long low high

(1) (2) (3) (4) (5)

True type 0.279∗∗∗ 0.190∗∗∗ 0.366∗∗∗ 0.162∗∗∗ 0.404∗∗∗

(0.0167) (0.0169) (0.0260) (0.0138) (0.0250)

Constant 3.565∗∗∗ 3.973∗∗∗ 3.177∗∗∗ 4.100∗∗∗ 3.012∗∗∗

(0.0799) (0.0859) (0.122) (0.0741) (0.116)

Observations 11940 5880 6060 5640 5640
Clusters 199 98 101 94 94
R2 0.134 0.0793 0.189 0.0491 0.243

∆R2 139%, p < 0.001 394%, p < 0.001

Note: Table reports OLS estimates. The sample underlying Columns 4 and 5 excludes eleven subjects
for whom there exists no variation in answers and, therefore, no estimates for τ are available. Tests for
the significance of differences in R2 are each based on 10,000 simulations randomly assigning relevant
subjects to counterfactual groups of corresponding sizes. Standard errors clustered at the subject level
in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

the fitted line shown in Figure 4a and regresses reports on true types for the full sample.
Columns 2 and 3 replicate Column 1 separately for the two treatments, Short and Long.
In comparison with the pooled sample, slopes are less steep for the Short and steeper for
the Long treatment, respectively. The three possible pairwise differences in slopes (full
sample, Long and Short treatment) are all statistically significant (p < 0.001). This is in
line with a successful treatment manipulation of τ and with Hypothesis 3. In Columns 4
and 5, we split the sample by τ̂ . As predicted, for subjects with above-median values of
τ , the estimation coefficient between report and true type is larger than for below-median
subjects (Column 4) and the whole sample (Column 1). Again, the three possible pairwise

8We use the information that, e.g., signals 3, 18, 33, and 48 referred to the same underlying type, but
we do not use any information about what that type was.
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differences are statistically significant (p < 0.001).9

To test Hypothesis 4, which states that the predictive power of estimating true types
should increase in a population’s level of τ , we compare the respective values of R2 for the
full sample (Column 1) and all sub-samples (Columns 2–5), respectively. The data confirm
our hypothesis: relative to the Short treatment, the value of R2 in the Long treatment is
more than doubled (compare Columns 2 and 3; p < 0.001).10 For the two sub-samples
based on the estimator τ̂ , the effects are even larger (compare Columns 4 and 5): the R2

for the above-median sample is about five times as large as the respective R2 for the below-
median subjects (p < 0.001). In addition to supporting our hypothesis, these comparisons
show that the estimator τ̂ is more informative than knowledge about a subject’s treatment
status. This is remarkable given that our estimator only uses the pattern of subjects’
responses. We conclude this section with a discussion about two further analyses (i)
using individual-level data and (ii) using survey items on self-knowledge.

Individual-level Data. Recall that each subject in the experiment made 60 estimation
decisions. This means that we can run regressions of these 60 reports on the respective
true states separately for each individual. The resulting individual-specific value of R2

is informative about how well a subject is able to discriminate between different true
states, and it is therefore informative about τ . Moreover, the individual slope parameter
reveals how much weight is assigned to signals, and thus it is informative about the level
of subjective self-knowledge τ̃ . Several observations can be made. First, the individual
regression levels of R2 and the respective slope parameters are strongly positively related,
with a rank correlation of 0.83 (p < 0.001, two-sided, N = 188).11 This positive correlation
supports the central assumption of the model that agents place more weight on their signal
(measured in terms of higher regression slopes), the higher their level of self-knowledge
(measured in terms of higher values of R2). Second, using the individual values of R2

allows us to provide a further test of the validity of our estimator from Section 3, which
does not use information about true types. In fact, we find that the values of R2 are
strongly correlated with the individual values of τ̂ . The rank correlation is 0.83 (p < 0.001,
two-sided, N = 188). In light of our model, this relationship can be analyzed even more
thoroughly. The R2 can be transformed into an “objective” measure of τ according to the

9Note that the differences between sub-samples in Columns 4 and 5 are more pronounced than those
between Columns 2 and 3: the coefficient in the low-τ sub-sample (Column 4) is smaller than the one for
the Short treatment in Column 2 (p = 0.060) and the high-τ coefficient in Column 5 is larger than the
Long treatment coefficient in Column 3 (p = 0.045).

10To calculate p-values, we replicated the respective analyses 10,000 times but with respondents being
allocated to the two sub-groups at random. Each of the counterfactual analyses resulted in an absolute
difference between the values of R2 for the two artificially-created groups. The respective p-value is the
share of these absolute differences that were larger than the one observed for the actual sample-split
according to the estimates τ̂ . The procedure was applied for Table 3, as well as for Tables 5, 6, and 13.

11As in Table 3, the eleven subjects for whom there exists no variation in answers (all of them always
chose the answer “5”) have to be excluded.
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formula τ = R2/ (1−R2). The Pearson correlation between this objective measure τ and
our estimate τ̂ is 0.98 (p < 0.001, two-sided, N = 188). This relationship is not mechanic
since the identification of the two measures rests on entirely different properties of the
data: the objective measure uses true states, while our estimator only uses information
about which of the states are identical across the four waves.

Survey Items on Self-knowledge. We have argued that accounting for differences
in (self-)knowledge can help to improve estimates, and we have suggested an estimator
based on patterns of behavior. An alternative to using this estimator is to simply ask
respondents directly how accurate or reliable they think that their responses are. The use
of such survey items is widespread and common practice. At the end of the experiment, we
asked two such items and can compare their discriminatory power relative to our estimate
τ̂ . In particular, we asked subjects “how difficult” they thought the estimation task had
been and “how reliable” they thought their answers were. Both questions were asked
on a seven-point Likert scale. Reassuringly, responses to these two items are strongly
negatively correlated (r = −0.59; p < 0.001, two-sided, N = 199). To obtain a single
measure, we take the first principal component of these two items. The rank correlation
between this measure of “self-reported precision” and our estimate of knowledge τ̂ is only
0.05 and statistically insignificant (p = 0.45, N = 188). However, the rank correlation
between self-reported precision and the individual-level values of R2 is only 0.08 (p = 0.29,
N = 188), i.e., very small and, in particular, much smaller than the respective correlation
between R2 and τ̂ (p = 0.83). These results suggest that—in contrast to our estimator—,
the survey items of self-reported precision contain little information.

5 Applications

In this section, we apply our estimator to data from the German Socio-economic Panel
(SOEP), a large, representative panel data set. The main objective is to show that by
using estimates of self-knowledge, τ̂ , we can increase the explanatory power of regressions
that are based on self-reports. In particular, we estimate τ using answers to the Big Five
personality inventory from multiple waves and split the sample by the median level of τ̂ ,
exactly as it was done in Section 4 for the data from the experiment (see Table 3). We
illustrate differences in explanatory power (R2) between the resulting sub-samples in the
context of risk preferences, using self-reported measures of individual willingness to take
risks. Following recent work on consequences and determinants of risk preferences, we use
the preference measures to explain economic outcomes (with risk measures on the right-
hand side) and explore determinants such as gender (with risk measures on the left-hand
side).
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5.1 Data and Measures

Our measure of self-knowledge is constructed using the fifteen-item Big Five inventory
that was included in the 2005, 2009, 2013, and 2017 waves of the SOEP (Gerlitz and
Schupp, 2005). The respective questions are particularly suitable for our purposes since
they are meant and designed to cover independent traits that are stable over time (see,
e.g., Cobb-Clark and Schurer, 2012). We use the maximum number of waves available for
a given respondent, i.e., two waves for 47.4%, three waves for 22.1%, and four waves for
30.4% of the respondents (N = 21,135). The estimator introduced in Section 3 assumes
that expected values of types are identical across characteristics and that characteristics
are independent. Empirically, however, average answers may differ for different charac-
teristics. To estimate self-knowledge, we therefore suggest subtracting population means
as follows:12

1. For each question, we calculate the average response over all waves. Then, for
each individual response, we subtract the respective average to retrieve demeaned
responses.

2. We apply the estimator from Equation 8 to the demeaned responses.

Figure 5 shows the distribution of τ̂ for the SOEP population. Apparently, there
is substantial heterogeneity in these estimates, suggesting substantial variation in latent
self-knowledge. The median value is 0.67, and for about 63% of respondents the estimate
τ̂ is smaller than one.

The main focus of this section is to show how the empirical relationships between
non-cognitive skills and economic outcomes are attenuated due to limited self-knowledge.
However, the concept of self-knowledge might also be interpreted as an individual trait,
i.e., an interesting object in itself: high or low self-knowledge can be thought of as an
integral part of one’s personality, reflecting individual differences in life experience, cogni-
tive skills, or parental influence. Before turning to the main analyses, we therefore briefly
discuss potential determinants of τ , treating it as an individual trait.

In Table 4, we present results from regressions of estimated self-knowledge τ̂ on a set
of plausibly exogenous determinants, in particular gender and age, as well as education.
As shown in Column 1, self-knowledge is not significantly correlated with gender. With
respect to age, Column 2 reveals a hump-shaped relationship with self-knowledge. De-
scriptively, the latter increases over the life cycle, peaking at an age of about 40 before
it mildly declines. However, effect sizes and values of R2 are fairly small. Given that
self-knowledge might reflect differences in cognitive skills, we also consider an effect of
education (see Column 3). The correlation is significant and indicates that one more

12In Appendix B.1, we show that this slightly modified estimator is consistent and its properties are
virtually identical to those of the one introduced in Equation 8. In Appendix B.2, we also show that the
estimator is informative if the characteristics used to estimate τ are correlated.
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Note: Distribution of τ̂ in the German SOEP. Estimates that are larger than ten (60 out of 21,135) are
omitted.

Figure 5: Distribution of τ̂ in the SOEP

year of education is on average associated with an increase of about 0.07 in the level of
self-knowledge. In Column 4, we regress self-knowledge simultaneously on all determi-
nants. Education seems to dominate, as becomes apparent when comparing the values
of R2 between columns. However, even the combined R2 of 0.038 is fairly low, suggest-
ing that the estimates of self-knowledge contain much information above and beyond
socio-demographic characteristics.

If self-knowledge is a trait, it might be intergenerationally transmitted, similar to,
e.g., risk aversion, trust, patience, and social preferences (Dohmen et al., 2012; Kosse
and Pfeiffer, 2012; Alan et al., 2017; Kosse et al., 2020). Such transmission could come
from various sources, e.g., imitation, exposure to similar social environments, or genetic
dispositions. Using SOEP household panel data, we can match 3,569 respondents to
their mothers and 2,960 respondents to their fathers, respectively. Figure 6 shows the
relationship between the estimated levels of self-knowledge for parents and their children.
Each survey respondent is assigned to the respective decile in the distribution of τ̂ in
the full sample. The figure depicts the average deciles for children conditional on the
respective parental deciles, separately for mothers (left panel) and fathers (right panel).
Parents’ and children’s estimated levels of self-knowledge are positively correlated. The
rank correlation coefficients of children’s estimates of τ̂ with those of their parents are
0.17 (p < 0.001) for mothers and 0.16 for fathers (p < 0.001).13

13Differences in slopes or intercepts for fathers and mothers are not statistically significant.
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Table 4: Correlations with τ

Dependent variable: τ̂

(1) (2) (3) (4)

Female -0.00372 0.0249
(0.0149) (0.0162)

Age (in ’11) 0.0104∗∗∗ 0.00524
(0.00235) (0.00291)

Age2 (in ’11) -0.000135∗∗∗ -0.0000750∗∗

(0.0000223) (0.0000272)

Edu. years (in ’11) 0.0722∗∗∗ 0.0698∗∗∗

(0.00313) (0.00317)

Constant 0.975∗∗∗ 0.838∗∗∗ 0.0774∗ 0.0464
(0.0109) (0.0577) (0.0382) (0.0808)

Observations 20923 20923 16151 16151
R2 0.000 0.005 0.036 0.038

Note: Table reports OLS estimates. Individuals for whom τ̂ lies above the 99th percentile are excluded.
Age as well as years of education refer to the year 2011. Heteroskedasticity-robust standard errors in
parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Note: Graphs plot average percentiles to which children’s τ̂ belong for the deciles of τ̂ for mothers (left)
and father (right). Deciles refer to the full sample, i.e., thresholds are the same for parents and for their
children. Shaded areas around the regressions lines represent 95% confidence intervals.

Figure 6: Intergenerational transmission of self-knowledge
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5.2 Predicting Outcomes

To illustrate how we can increase the explanatory power of non-cognitive skills by account-
ing for individual estimates of τ̂ , we study the effect of risk attitudes on various economic
outcomes. Similar to the analysis in Table 3, in Table 5 we split the respective samples
of SOEP respondents into two groups: individuals with either low self-knowledge (below
the median value of τ̂) or high self-knowledge (above the median level of τ̂). This way, we
refrain from imposing any functional form assumptions about how self-knowledge affects
the estimates. To give coefficients a natural interpretation, self-reported risk attitudes
are standardized within the given (sub-)sample.14 In light of the model and the exper-
imental results, we would expect to see larger explanatory power for the above-median
sample than for the below-median sample, reflected in larger values of R2 in the respective
columns. Table 5 presents the empirical results for three different economic outcomes,
related to risk attitudes: receiving performance related pay, holding stocks, and smoking.
These outcomes were selected based on prior research, arguing that they should—and
actually are—related to risk attitudes (Dohmen and Falk, 2011; Dohmen et al., 2011).
The measures that we use to elicit risk attitudes are items that ask about willingness
to take risks in specific domains on eleven-point Likert scales. In particular, the items
refer to willingness to take risks concerning one’s career, financial matters, and health,
respectively.

Columns 1–3 show results from OLS regressions without further controls, and Columns
4–6 replicate the analyses controlling for a set of socio-demographic characteristics, in-
cluding age, gender, body height, parental education, log wealth, log debts, and log gross
household income. Columns 1 and 4 consider the full sample and confirm a positive and
significant relationship between risk attitudes and the respective outcomes. Our main
interest is the comparison of Columns 2 and 3 and Columns 4 and 5, where we show
results for individuals with estimated levels of self-knowledge below or above the median,
respectively. In all instances, the values of R2 are higher for individuals with high self-
knowledge than for individuals with low self-knowledge or the full sample, respectively.
This holds both with and without controls included in the regressions (in the regressions
with controls, we refer to the partial R2).15 In most cases, the explanatory power among
high self-knowledge respondents is multiple times larger than among the ones with low
self-knowledge, ranging from a 74% increase (smoking, without controls) up to an in-
crease of 404% (performance pay, with controls). These differences are also statistically
significant, as shown by the respective p-values displayed in Table 5 (for the construction
of p-values, see Footnote 10). We note that these results hold for a non-cognitive skill
(risk attitudes) that is different and mostly unrelated to the set of traits that we used to

14The qualitatively identical results with non-standardized risk attitudes are reported in Table 10 in
Appendix C.1

15In Appendix B.3, we discuss differences in the estimated coefficients for the respective sub-samples.
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Table 5: Predictive power of domain-specific attitudes towards risk

Without controls Including controls

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Dependent variable: Investing in stocks

Risk attitude 0.113∗∗∗ 0.0900∗∗∗ 0.132∗∗∗ 0.0919∗∗∗ 0.0716∗∗∗ 0.111∗∗∗

(0.00397) (0.00573) (0.00538) (0.00426) (0.00606) (0.00595)
(Partial) R2 0.0566 0.0361 0.0774 0.0396 0.0238 0.0574
Observations 15202 7601 7601 12081 6041 6040

∆R2 115%, p < 0.001 142%, p < 0.001

Dependent variable: Performance pay

Risk attitude 0.0384∗∗∗ 0.0225∗∗ 0.0513∗∗∗ 0.0299∗∗∗ 0.0179∗ 0.0408∗∗∗

(0.00516) (0.00705) (0.00748) (0.00568) (0.00775) (0.00829)
(Partial) R2 0.00918 0.00326 0.0158 0.00559 0.00202 0.0102
Observations 5612 2806 2806 4509 2255 2254

∆R2 386%, p < 0.01 404%, p = 0.05

Dependent variable: Smoking

Risk attitude 0.0452∗∗∗ 0.0398∗∗∗ 0.0526∗∗∗ 0.0298∗∗∗ 0.0197∗∗∗ 0.0403∗∗∗

(0.00351) (0.00492) (0.00503) (0.00395) (0.00551) (0.00567)
(Partial) R2 0.0119 0.00924 0.0161 0.00517 0.00231 0.00924
Observations 15146 7573 7573 12122 6061 6061

∆R2 74%, p = 0.06 300%, p = 0.01

Note: Table reports OLS estimates. The variable risk attitude in each of the panels refers to the respective
domain-specific question asked in the SOEP, standardized within the given (sub-)sample. The contexts
are financial matters for investing in stocks, career for performance pay, and health for smoking. The
controls used in Columns 4–6 are gender, age, body height, parental education, log wealth, log debts,
and log gross household income. All data are from 2009, except for information on body height and
smoking, which due to a lack of availability, are from 2010. The model for performance pay includes
only respondents up to the age of 66 who are working full-time and who are not self-employed. Tests
for the significance of differences in R2 are each based on 10,000 simulations randomly assigning relevant
subjects to counter-factual groups of corresponding sizes. Heteroskedasticity-robust standard errors in
parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

estimate τ̂ (the Big Five). This suggests that self-knowledge does, in fact, carry over to
different facets of one’s personality.

5.3 Determinants of Preferences

An active literature seeks to uncover the individual determinants of preferences and per-
sonality (e.g., Sutter and Kocher, 2007; Croson and Gneezy, 2009; Falk et al., 2018).
Understanding how, e.g., age and gender affect preferences is not only interesting in itself.
It is also relevant for gaining a better understanding of group-specific outcomes, such as
gender differences with respect to sorting into competitive environments and occupational
choice, to give just one example (see, e.g., Niederle and Vesterlund, 2007; Croson and
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Gneezy, 2009; Dohmen and Falk, 2011; Buser, Niederle, and Oosterbeek, 2014). Here, we
use gender and height effects on domain-specific risk attitudes to illustrate that account-
ing for differences in self-knowledge, exogenous determinants of preferences may actually
have higher explanatory power and yield larger effect sizes than typically assumed. Again,
the measures of risk attitudes are standardized within sub-samples.16

Table 6 reports the effects of gender and body height on six measures of risk attitudes,
all measured on an eleven-point Likert scale in the 2009 wave of the SOEP. The measures
comprise the so-called general risk question, asking about willingness to take risks “in
general,” as well as five domain-specific risk questions, referring to risk taking in the
domains of car driving, financial matters, sports/leisure, career, as well as health.

Replicating previous findings,17 women tend to be less willing to take risks than men
(see Column 1), and taller people tend to be more willing to take risks than smaller
individuals (Column 4). Our interest here is to compare samples with high vs. low levels
of self-knowledge, i.e., the comparison of Columns 2 and 3 as well as 5 and 6. For all
twelve possible comparisons (six risk domains, two determinants), we consistently find
that explanatory power as measured in terms of R2 is larger among high-τ individuals
than among low-τ individuals. These differences are often quite substantial and range from
19% (effect of height on career) up to 108% (gender effect on health). They are also mostly
statistically significant, as indicated by the respective p-values (for the construction of p-
values, see Footnote 10). These findings suggest that individuals with relatively high levels
of self-knowledge do, in fact, contribute more to our understanding of the determinants
of non-cognitive skills than their low-τ̂ counterparts.

A closer inspection of estimated coefficients in Columns 2, 3, 5, and 6 further shows
that the size of coefficients is always larger for the above-median sample than for the
below-median sample. These differences are often significant. Increased effect sizes are
at odds with classical measurement error but in line with the predictions of our model.
They also mimic the results from our stylized experiment in Section 4, where we saw a
steeper slope between reports and true states for high-τ relative to low-τ subjects (see
Table 3, Columns 4 and 5).

A potential concern regarding the above interpretation is selection. The latter would
imply that the observed patterns reflect that the true explanatory power, as well as
true coefficients, are actually larger among respondents with high self-knowledge. While,
in principle, we cannot rule out such an interpretation with non-experimental data, we
believe that it is unlikely in the present case for several reasons. First, recall from Table 4
that the effects of socio-demographic characteristics on τ̂ were rather small. Second, if we
account for selection using inverse probability weighting, the results remain very similar.
This is shown in Table 12 in Appendix C.2, where we report regression results that

16For qualitatively identical results with non-standardized risk attitudes, see Table 11 in Appendix C.1
17See in particular Dohmen et al. (2011) but also Croson and Gneezy (2009) and Falk et al. (2018).
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replicate the above results based on weights that restore representatives. This suggests
that the effects observed for subjects with high self-knowledge bring us closer to accurate
measurement, suggesting that both the “true” explanatory power and the size of the
coefficients are at least as high for the entire sample as those reported for the above-
median respondents.

We conclude this section with a brief discussion on the effects of gender and height on
the Big Five personality traits. Table 13 in the Appendix is constructed analogously to
Table 6 but analyzes the Big Five rather than risk attitudes. It shows that both effects—
higher explanatory power and larger effect sizes for high-τ relative to low-τ individuals—
are also observed for the Big Five inventory. As an example, take conscientiousness, which
is considered one of the most important personality traits for explaining educational and
labor market outcomes (Judge et al., 1999; Hogan and Holland, 2003; Almlund et al.,
2011) as well as health and mortality (see, e.g., Bogg and Roberts, 2004; Hill et al., 2011).
The comparison of Columns 2 and 3 shows that the gender effect is more than three times
as large for the high-τ compared with the low-τ individuals and that the difference in
R2 amounts to almost 1300%. All effects shown in Table 13 remain qualitatively similar
when we account for inverse probability weighting, as shown in Table 14.
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Table 6: Differences in risk attitudes

Gender Height

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Risk domain: general

Coefficient -0.374∗∗∗ -0.344∗∗∗ -0.404∗∗∗ 0.0220∗∗∗ 0.0202∗∗∗ 0.0235∗∗∗
(0.0153) (0.0217) (0.0215) (0.000866) (0.00121) (0.00125)

R2 0.0348 0.0295 0.0406 0.0425 0.0346 0.0502
Observations 16633 8317 8316 15103 7552 7551

∆R2 38%, p = 0.04 45%, p = 0.02

Risk domain: car driving

Coefficient -0.403∗∗∗ -0.375∗∗∗ -0.433∗∗∗ 0.0248∗∗∗ 0.0232∗∗∗ 0.0260∗∗∗
(0.0156) (0.0222) (0.0220) (0.000893) (0.00125) (0.00128)

R2 0.0407 0.0352 0.0468 0.0534 0.0456 0.0602
Observations 15742 7871 7871 14314 7157 7157

∆R2 33%, p = 0.07 32%, p = 0.05

Risk domain: financial matters

Coefficient -0.376∗∗∗ -0.332∗∗∗ -0.420∗∗∗ 0.0190∗∗∗ 0.0163∗∗∗ 0.0212∗∗∗
(0.0154) (0.0219) (0.0218) (0.000896) (0.00125) (0.00129)

R2 0.0352 0.0275 0.0440 0.0316 0.0225 0.0407
Observations 16523 8262 8261 15011 7506 7505

∆R2 60%, p < 0.01 81%, p < 0.01

Risk domain: sports/leisure

Coefficient -0.323∗∗∗ -0.299∗∗∗ -0.349∗∗∗ 0.0231∗∗∗ 0.0206∗∗∗ 0.0250∗∗∗
(0.0155) (0.0220) (0.0219) (0.000875) (0.00124) (0.00125)

R2 0.0261 0.0224 0.0303 0.0470 0.0361 0.0563
Observations 16344 8172 8172 14848 7424 7424

∆R2 36%, p = 0.11 56%, p < 0.01

Risk domain: career

Coefficient -0.275∗∗∗ -0.259∗∗∗ -0.291∗∗∗ 0.0215∗∗∗ 0.0206∗∗∗ 0.0219∗∗∗
(0.0164) (0.0233) (0.0232) (0.000912) (0.00127) (0.00131)

R2 0.0189 0.0167 0.0212 0.0410 0.0363 0.0434
Observations 14618 7309 7309 13251 6626 6625

∆R2 27%, p = 0.32 19%, p = 0.31

Risk domain: health

Coefficient -0.310∗∗∗ -0.254∗∗∗ -0.366∗∗∗ 0.0173∗∗∗ 0.0145∗∗∗ 0.0195∗∗∗
(0.0154) (0.0218) (0.0217) (0.000868) (0.00123) (0.00123)

R2 0.0240 0.0161 0.0335 0.0263 0.0179 0.0345
Observations 16625 8313 8312 15096 7548 7548

∆R2 108%, p < 0.001 93%, p < 0.01

Note: Table reports OLS estimates. Tests for the significance of differences in R2 are each based on
10,000 simulations randomly assigning relevant subjects to counterfactual groups of corresponding sizes.
Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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6 Conclusion

In this paper, we have suggested a theoretical framework of survey response behavior. We
assume that respondents try to provide accurate answers but lack perfect self-knowledge.
In addition, survey responses may be affected in terms of subjective scale use preferences,
inaccurate beliefs about one’s self-knowledge, differences in the endogenous precision of
reports as well as image or social desirability effects. The framework is kept deliberately
simple but could be extended to allow for a richer and more realistic analysis of survey re-
sponse behavior. For example, we assume that the outcome of inspecting one’s individual
characteristics is simply an (exogenous) signal about one’s type. It would be interesting
to explore cognitive (and emotional) processes involved in this introspection process in
more detail, such as the role of limited memory and retrieval, how individuals select rep-
resentative choice contexts to evaluate their characteristics, or how social comparison or
life experience affect introspection. The framework also allows for integrating the role and
meaning of response times, which could hold strong practical importance. For example,
many binary choice experiments in neuroscience and psychology find that accuracy de-
creases with response time, in the sense that slower decisions are less likely to be correct
(Swensson, 1972; Luce et al., 1986; Ratcliff and McKoon, 2008).18 An interesting question
is how one can integrate response times into our approach to facilitate the identification
of precise responses.

We note that while we have interpreted the model in terms of survey response behavior,
it can be applied to any elicitation method where subjects make a decision, in particular
lab and field experiments. For instance, in typical choice experiments to elicit risk or
time preferences, the same issues that we discuss in the context of survey responses also
arise. In fact, a main difference is the provision of incentives in experiments, which may
increase the accuracy of responses (see Section 2.3.1) but do not solve issues of lack of
self-knowledge, scale use, or social desirability.

A better understanding of the survey response process may also inform the “optimal”
design of research. Conditional on survey respondents’ behavior, we can ask the question
of how surveys or other elicitation methods should be designed to extract a maximum
of information. Such a design perspective would consider research as a principal-agent
relationship where agents participate in surveys, experiments, or related research contexts
that are designed by researchers who optimize research paradigms conditional on agents’
behaviors. Such an approach could be used to investigate how to design survey items
and response scales, when and how incentives should be given, or how to design specific
modules meant to correct for expected biases.

A key insight of the model is that we can extract individual differences in self-
18Fudenberg, Strack, and Strzalecki (2018) provide a theoretical analysis of the relationship between

response times and the accuracy of binary decisions in the drift-diffusion model.
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knowledge based on response patterns, in particular using the ratio of the variance be-
tween characteristics and the variance for a given characteristic over time. Building on
this finding, we suggest a consistent and unbiased estimator of self-knowledge, discuss its
properties, and apply it to experimental data as well as a panel data set. We show that
the estimator reliably identifies individual differences in self-knowledge in the laboratory
context where we know true states. Splitting the lab sample in high vs. low self-knowledge
individuals, we further show that reports are much closer to true states for the former
than for the latter part of the sample. Repeating the same exercise using a representative
panel data set and risk attitudes as an example for non-cognitive skills, we show that for
subjects with a high level of self-knowledge, the explained variance is significantly higher
than for individuals with low levels of self-knowledge. This holds for regressions where risk
attitudes are on either the left- or the right-hand side of the regression equation. These
applications illustrate the potential of distinguishing between respondents with high vs.
low self-knowledge for improving survey evidence. They suggest further econometric im-
plications for the study of measurement error and how to integrate self-knowledge into
regression frameworks.
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Appendix A Proofs

Proof of Lemma 1. Following the result from Equation 2, the optimal intended report
for any given level of precision and signal is given by

r =
θ̄ + τ x

1 + τ
.

Plugging into Equation 7 yields that the utility of the agent given the optimal response
above equals

u(r, τ) = − m

(1 + τ)2

[
θ̄ − θ + τ (x− θ)

]2 − τ

a

and, consequently the agent choose her precision τ to maximize,

E[u(r, τ)] = − m

(1 + τ)2

(
E
[(
θ̄ − θ

)2
]

+ τ 2E
[
(x− θ)2])− τ

a

= − m

(1 + τ)2

(
σ2 + τ 2σ

2

τ

)
− τ

a
= −mσ2

1 + τ
− τ

a
.

The first-order condition yields the optimal level of effort for an interior solution.

0
!

=
∂ E[u(r, τ)]

∂ τ
=

mσ2

(1 + τ)2 −
1

a
⇒ τ ∗ =

√
maσ − 1 .

As τ 7→ E[u(r, τ)] is strictly convex it follows that τ ∗ is the optimal effort.

Proof of Theorem 1. We will prove the result in the more general setting with sub-
jective self-confidence and scale use as introduced in Sections 2.3.2 and 2.3.3. The case
without subjective self-confidence and scale use stated in the main text corresponds to
special case where τ̃i = τi and φi = 1.

The answer of agent i when asked for the tth time about the kth characteristic is given
by

rikt = (1− φi) c+ φi
θ̄ + τ̃i xikt

1 + τ̃i

By assumption, there exist independent, standard normally distributed random variables
εikt, ηik such that

xikt = θik +
σ
√
τi
εikt

θik = θ̄ + σ ηik .

Plugging into the equation for the agents responses yields that

rikt = (1− φi) c+ φi

(
θ̄ +

τ̃i
1 + τ̃i

σ

[
ηik +

εikt√
τi

])
. (11)
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We thus have that

rikt − r̄ik
φi

=
τ̃i

1 + τ̃i
(xikt − x̄ik) =

τ̃i
1 + τ̃i

σ
√
τi

(εikt − ε̄ik) . (12)

Similarly, we get that

r̄ik − r̄i
φi

=
τ̃i

1 + τ̃i
(x̄ik − x̄i) =

τ̃i
1 + τ̃i

((
θik +

σ
√
τi
ε̄ik
)
−
(
θ̄i +

σ
√
τi
ε̄i
))

=
τ̃i

1 + τ̃i

((
θik − θ̄i

)
+

σ
√
τi

(
ε̄ik − ε̄i

))
=

τ̃i
1 + τ̃i

(
σ
(
ηik − η̄i

)
+

σ
√
τi

(
ε̄ik − ε̄i

))
. (13)

We first show that

A =
(1 + τ̃i)

2

τ̃ 2
i σ

2
τi

K∑
k=1

T∑
t=1

(
rikt − r̄ik

φi

)2

.

is χ2 distributed with K(T − 1) degrees of freedom. It follows from (12) that

A =
K∑
k=1

T∑
t=1

(εikt − ε̄ik)2 .

We have that Ak =
∑T

t=1 (εikt − ε̄ik)2 is χ2 distributed with T − 1 degrees of freedom
as it equals the sum of the squared distance of i.i.d. normals from the mean. As Ak, Aj
are independent for j 6= k and A =

∑K
k=1 Ak it follows that A is χ2 distributed with∑K

k=1(T − 1) = K(T − 1) degrees of freedom.
We next argue that

B =
(1 + τ̃i)

2

τ̃ 2
i σ

2

1

1 + 1
Tτi

K∑
k=1

(
r̄ik − r̄i
φi

)2

is χ2 distributed with K − 1 degrees of freedom. It follows from (13) that

B =
K∑
k=1

(
λik − λ̄i

)2

where λik = 1√
1+ 1

Tτi

(ηik + 1√
τi
ε̄ik). As

var(λik) =
var(ηik) + 1

τi
var(ε̄ik)

1 + 1
Tτi

=
1 + 1

τi
var
(

1
T

∑t
t=1 εikt

)
1 + 1

Tτi

= 1
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the random variables (λik)k∈{1,...,K} are i.i.d. standard normal random variables. Again,
as λik, λij are independent for k 6= j, it follows that B is χ2 distributed with K−1 degrees
of freedom.

Next, recall that for the Normal distribution, the sample variance 1
T−1

∑T
t=1 (εikt − ε̄ik)2

is independent of the sample mean ε̄ik. As η is independent of ε it follows that∑T
t=1 (εikt − ε̄ik)2 and λik = 1√

1+ 1
Tτi

(ηik + 1√
τi
ε̄ik) are independent. This implies that

A and B are independent. As A and B are independently χ2 distributed it follows that

Fi =
1

K−1
B

1
K(T−1)

A

follows an F -distribution with parametersK−1 andK(T−1).19 Recall that in Equation 8
we defined τ̂i

τ̂i =
1

K−1

∑K
k=1 (r̄ik − r̄i)2

1
K(T−1)−2

∑K
k=1

∑T
t=1 (rikt − r̄ik)2

− 1

T

Plugging in the definition of A and B yields that

τ̂i +
1

T
=
K(T − 1)− 2

K(T − 1)

1
K−1

∑K
k=1

(
r̄ik−r̄i
φi

)2

1
K(T−1)

∑K
k=1

∑T
t=1

(
rikt−r̄ik

φi

)2

=
K(T − 1)− 2

K(T − 1)

1
K−1

B
τ̃2i σ

2

(1+τ̃i)2

(
1 + 1

Tτi

)
1

K(T−1)
A

τ̃2i σ
2

(1+τ̃i)2
1
τi

=
K(T − 1)− 2

K(T − 1)
× τi

(
1 +

1

Tτi

)
×

1
K−1

B
1

K(T−1)
A

=
K(T − 1)− 2

K(T − 1)
×
(
τi +

1

T

)
× Fi .

This establishes (9). Part 2 of the Theorem follows as E [Fi] = K(T−1)
K(T−1)−2

.20 Part 3 follows
as

var(Fi) = E [Fi]
2 2((K − 1) +K(T − 1)− 2)

(K − 1)(K(T − 1)− 4)
.

To prove Part 4 observe that (10) is decreasing in T and thus an upper bound is given by
setting T = 2

√
E[(τ̂i − τi)2 | τi] ≤

(
τi +

1

2

)√
2((K − 1) +K − 2)

(K − 1)(K − 4)
=

(
τi +

1

2

)√
4K − 6

(K − 1)(K − 4)

≤
(
τi +

1

2

)√
4

K − 4
= (2τi + 1)

1√
K − 4

.

19See https://en.wikipedia.org/wiki/F-distribution#Characterization.
20See https://en.wikipedia.org/wiki/F-distribution.
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This establishes the result. Finally, we note that this result immediately extends to the
case of endogenous effort introduced in Section 2.3.1, where for agent-specific ability ai
and incentives mi, the precision is endogenously chosen as τi =

√
mi ai σ − 1.

Appendix B Empirical Details

B.1 Different Average Characteristics

The estimator introduced in Section 3 assumes that the population means of types are
identical for all of the K characteristics that are being used. Empirically, however, this
is usually not the case (at least not exactly). For this reason, we next describe a general-
ization of the estimator derive in Section 3 to the case where the population mean θ̄k of
each characteristic is k potentially different. We make no assumption about the distribu-
tion of these population means, but maintain the assumption that the agent’s prior belief
equals the distribution of characteristics in the population. Throughout, we maintain the
assumption of no scale use φi = 1. The response of agent i when asked for the tth time
about characteristic k is then given by

rikt =
θ̄k + τ̃i xikt

1 + τ̃i
= θ̄k +

τ̃i
1 + τ̃i

(xikt − θ̄k) .

We note that the mean answer r̄ik of each agent i when asked about characteristic k un-
conditional on his type is θ̄k. Thus, by the strong law-of-large-numbers, the mean answer
r̄k in the population converges to θ̄k when the population gets large. By assumption, there
exists independent, standard normally distributed random variables εikt, ηik such that

xikt = θik +
σ
√
τi
εikt

θik = θ̄k + σ ηik .

We first note that rikt− r̄ik is the same as in the case with equal means (see Equation 12)
as the mean of the characteristic cancels out if one subtracts an agent’s mean response

rikt − r̄ik =
τ̃i

1 + τ̃i
(xikt − x̄ik) =

τ̃i
1 + τ̃i

σ
√
τi

(εikt − ε̄ik) .

Furthermore, we have that

r̄ik = θ̄k +
τ̃i

1 + τ̃i
(x̄ik − θ̄k) = θ̄k +

τ̃i
1 + τ̃i

(θ̄k + σηik +
σ
√
τi
ε̄ik − θ̄k)

= θ̄k +
τ̃i

1 + τ̃i
(σηik +

σ
√
τi
ε̄ik) .
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As limN→∞ r̄k = θ̄k we have that

lim
N→∞

(r̄ik − r̄k) =
τ̃i

1 + τ̃i
(σηik +

σ
√
τi
ε̄ik) .

This yields that

lim
N→∞

[
(r̄ik − r̄k)−

1

K

K∑
k′=1

(r̄ik′ − r̄k′)

]
=

τ̃i
1 + τ̃i

(σ(ηik − η̄i) +
σ
√
τi

(ε̄ik − ε̄i)) , (14)

and thus is the same as in (13) when the means of different characteristics are equal.
Consequently, rikt− r̄ik has the same distribution as in the case with equal means and the
expression in (14) converges to a random variable that has exactly the same distribution
as r̄ik − r̄i in the case where the means are identically. We define the population-based
estimator

τ̂POPi =

1
K−1

∑K
k=1

(
r̄ik − r̄k − 1

K

∑K
k′=1 (r̄ik′ − r̄k′)

)2

1
K(T−1)−2

∑K
k=1

∑T
t=1 (rikt − r̄ik)2

− 1

T
(15)

Applying, Theorem 1 then yields the following result:

Proposition 1. For every K,T that satisfy K(T − 1) > 4.

1. The estimator τ̂POPi satisfies

lim
N→∞

τ̂POPi =

(
τi +

1

T

)
K(T − 1)− 2

K(T − 1)
Fi −

1

T
(16)

for some random variable Fi that is F distributed with K − 1, K(T − 1) degrees of
freedom for every fixed vector of parameters τi, σ, θ̄.

2. τ̂POPi is a consistent estimator for τPOPi , i.e., limN→∞ E[τ̂i | τi] = τi.

3. The standard error of the estimator τ̂POPi in large populations is given by

lim
N→∞

√
E[(τ̂POPi − τi)2 | τi] =

(
τi +

1

T

)√
2((K − 1) +K(T − 1)− 2)

(K − 1)(K(T − 1)− 4)
. (17)

4. τ̂POPi converges to τi at the rate 1/
√
K in the number of attributes and for all K > 4

satisfies the following upper bound independent of the number of repeated observa-
tions T

lim
N→∞

√
E[(τ̂POPi − τi)2 | τi] ≤

2τi + 1√
K − 4

.

The properties of the population-based estimator are now asymptotic and do not
necessarily hold in small samples. However, the only dimension of the sample size that is
relevant for convergence is the number N of respondents. While in most applications the
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number of characteristics and waves (K and T , respectively) will probably be limited, the
number of respondents is usually fairly large. The asymptotic properties might, therefore,
be a realistic approximation to the actual behavior of the population-based estimator in
many relevant contexts, as we illustrate with the simulation results below.

Table 7: Accuracy of estimates with different means

(1) (2) (3) (4) (5)

I (respondents) 100 10,000 100 100 100
K (characteristics) 15 15 50 15 50
T (waves) 3 3 3 10 10

Correlation 0.669 0.667 0.870 0.760 0.910
Rank corr. 0.746 0.758 0.899 0.820 0.928
Median split 78.7% 79.3% 88.0% 82.6% 90.3%
Bias -0.029 0.005 -0.028 -0.034 -0.032

The table replicates Table 1, aside from that the means of the characteristics, θ̄, are
independently drawn from a Normal distribution with mean 5 and standard deviation 1.
A comparison of the result shows that the performance is almost identical to the case
with equal means. This even holds true for the cases where the simulated number of
respondents is just 100, a number that most studies exceed.

B.2 Correlated Characteristics

We choose the Big Five inventory for estimating self-knowledge because, by design, the
five measured traits are close to statistical independence. However, the five traits are
each measured with a set of three survey items, which among each other are correlated.
This does not impede the logic behind our estimator: subjects with high self-knowledge
should give similar answers over time to the same questions, and they should give differ-
ent answers to questions pertaining to different traits. What does not hold here is that
estimates are necessarily unbiased. In the stylized experiment presented in Section 4, all
assumptions of the estimator were fulfilled, and yet unbiasedness was not the important
property that we used for the results in Table 3. Instead, we relied on sample splits, i.e.,
our aim was to sort subjects according to how much information about the true type was
entering their reports. The same is our interest here, and the estimator remains informa-
tive. To gain a better understanding of how correlations in characteristics influence our
estimates, we replicate the simulation results from Table 1 with the following modifica-
tions: we impose that characteristics are correlated in the same way as answers to the 15
Big Five questions in the 2009 wave of the SOEP, and we replicate all the columns that
use 15 characteristics.

The results are reported in Table 8, whose columns are identically constructed as
Columns 1, 2, and 4 in Table 1. The main result is that in assigning respondents to
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Table 8: Accuracy of estimates with correlated characteristics

(1) (2) (3)

I (respondents) 100 10,000 100
K (characteristics) 15 15 15
T (waves) 3 3 10

Correlation 0.632 0.626 0.717
Rank corr. 0.721 0.729 0.796
Median split 77.4% 77.9% 81.3%
Bias -0.193 -0.190 -0.187

having a level of self-knowledge that lies above or below the population average, the
fraction of correctly classified respondents decreases by less than two percentage points,
i.e., the informativeness of the median-splits remains.

B.3 OLS Coefficients

In the analyses presented in the paper, we concentrate on OLS regressions, where the
relevant self-report serves either as the dependent or as an independent variable. To
facilitate understanding of our results, we first summarize the effects that we would expect
from τ in the light of our model. Table 9 provides a schematic overview of the effects
that the our model of survey responses predicts for regression coefficients estimated with
OLS, formulated in terms of attenuation (bias towards zero; −) and amplification (bias
away from zero; +). The two columns of the table differentiate between the cases of

Table 9: Effect of reduction in self-knowledge τ on OLS estimates

Report as: dependent variable independent variable

Effect through:
increased noise none (◦) attenuation (−)
decreased τ̃ attenuation (−) amplification (+)

Overall effect with:
τ̃ < τ −− +
τ̃ = τ − ◦
τ̃ > τ −/◦ −

the report being used as the dependent variable (left-hand side of the equation) or as an
independent variable (right-hand side of the equation). The respective other variable is
assumed to be measured without error. In the upper panel, we distinguish between two
channels through which a decrease in τ affects estimates: first, increased zero-mean noise
around the expected answer, and second, bias in answers towards the population mean
due to reduced confidence in one’s signals. The lower panel presents the total effects for
the three cases of τ̃ < τ , τ̃ = τ , and τ̃ > τ (see Section 2.3.2).
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B.3.1 Self-reports as the Dependent Variable

For the report as the dependent variable, it is well known that increased noise per se does
not introduce any bias, as stated in the respective table cell. However, in our context,
reduced confidence leads to attenuation bias, as we have already seen in the experimental
results (see Figure 4a). Formally, assume that we want to estimate the following equation:

θi = β0 + β1 yi + εi ,

where yi is the respective realization of the independent variable and εi is and i.i.d. error
terms with an expected value of zero that is independent of yi and the signals that subjects
receive. Crucially, the value θi is not observable and instead replaced with the response
ri. To gain a deeper insight into the forces behind the composite effect, we use the
notation involving subjective self-knowledge (see Section 2.3.2. The asymptotic result of
the standard OLS estimator is derived below.

β̂1 =
cov(ri, yi)

var(yi)
=

E[(ri − r̄) (yi − ȳ)]

E
[
(yi − ȳ)2] =

E
[
τ̃(xi−θ̄)

1+τ̃
(yi − ȳ)

]
E
[
(yi − ȳ)2]

=
τ̃

1 + τ̃

E
[(
xi − θi + θi − θ̄

)
(yi − ȳ)

]
E
[
(yi − ȳ)2] =

τ̃

1 + τ̃

E[(xi − θi + β1 (yi − ȳ) + ηi) (yi − ȳ)]

E
[
(yi − ȳ)2]

=
τ̃

1 + τ̃

E[β1 (yi − ȳ) (yi − ȳ)]

E
[
(yi − ȳ)2] =

τ̃

1 + τ̃
β1

β̂0 = θ̄ − β̂1 ȳ = β0 + β1 ȳ −
τ̃

1 + τ̃
β1 ȳ = β0 +

(
1− τ̃

1 + τ̃

)
β1 ȳ

Thus, as long as a decrease in τ is accompanied by a decrease in τ̃ , the overall effect on
the absolute value of the slope parameter β1 is strictly negative.

B.3.2 Self-reports as the Independent Variable

For the report as an independent variable, noise in the sense of classical measurement er-
ror is well known to induce attenuation bias. However, reduced subjective self-knowledge
works as a counter-force, inducing amplification, i.e., making the slope of the regression
line steeper. To see the intuition, consider a regression line fitted through just two data
points with coordinates (r1, z1) and (r2, z2). The point estimate for the regression coeffi-
cient is then given by (z2 − z1) / (r2 − r1). Reduced subjective self-knowledge attenuates
the absolute difference between r1 and r2, thereby increasing the estimate. Formally,
assume that we want to estimate the unknown coefficients of the following equation:

zi = γ0 + γ1 θi + ηi ,
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where zi is the respective realization of the dependent variable and ηi an i.i.d. error terms
with an expected value of zero that is independent of both θi and the signals that subjects
receive. Again, the unknown true values θi are replace with reports ri, and the asymptotic
result of the standard OLS estimator is derived below.

γ̂1 =
cov(zi, ri)

var(ri)
=

E[(zi − z̄) (ri − r̄)]
E
[
(ri − r̄)2] =

E
[(
γ0 + γ1 θi + εi − γ0 − γ1 θ̄

) (
θ̄+τ̃ xi
1+τ̃

− θ̄
)]

E
[(

θ̄+τ̃ xi
1+τ̃

− θ̄
)2
]

=
E
[(
γ1

(
θi − θ̄

)
+ εi

) (
τ̃

1+τ̃

(
xi − θi + θi − θ̄

))](
τ̃

1+τ̃

)2 E
[(
xi − θ̄

)2
] =

γ1
τ̃

1+τ̃
var(θ)(

τ̃
1+τ̃

)2
[var(θ) + var(x | θ)]

=
γ1 σ

2

τ̃
1+τ̃

(
σ2 + σ2

τ

) =
1 + τ̃

τ̃

τ

1 + τ
γ1

γ̂0 = z̄ − γ̂1 θ̄ = γ0 + γ1 θ̄ − γ̂1 θ̄ = γ0 +

(
1− 1 + τ̃

τ̃

τ

1 + τ

)
γ1 θ̄

The overall effect of a reduction in τ for the report as the independent variable is thus
ambiguous. As it turns out, for subjects that are correctly specified about their self-
knowledge as assumed in our benchmark model, the effects cancel out exactly. If a reduc-
tion of τ results in an excess of subjective self-knowledge, estimates are attenuated. In
the opposite case, the reverse applies and estimates are amplified.

In sum, contrary to economists’ typical understanding of the effects from measurement
error in the context of OLS, our model suggests that for responses from surveys, error in
an independent variable might not always induce “innocent” attenuation bias but perhaps
no bias at all or even amplification, and that it always induces attenuation bias when
reports are used as the dependent variable.
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Appendix C Robustness tests

C.1 Results for non-standardized self-reports

Table 10: Predictive power of non-standardized domain-specific attitudes towards risk

Without controls Including controls

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Dependent variable: Investing in stocks

Risk attitude 0.0519∗∗∗ 0.0398∗∗∗ 0.0627∗∗∗ 0.0431∗∗∗ 0.0324∗∗∗ 0.0533∗∗∗

(0.00183) (0.00254) (0.00256) (0.00200) (0.00274) (0.00286)
(Partial) R2 0.0566 0.0361 0.0774 0.0396 0.0238 0.0574
Observations 15202 7601 7601 12081 6041 6040

Dependent variable: Performance pay

Risk attitude 0.0133∗∗∗ 0.00715∗∗ 0.0190∗∗∗ 0.0105∗∗∗ 0.00579∗ 0.0152∗∗∗

(0.00178) (0.00224) (0.00277) (0.00199) (0.00250) (0.00310)
(Partial) R2 0.00918 0.00326 0.0158 0.00559 0.00202 0.0102
Observations 5612 2806 2806 4509 2255 2254

Dependent variable: Smoking

Risk attitude 0.0198∗∗∗ 0.0178∗∗∗ 0.0226∗∗∗ 0.0129∗∗∗ 0.00872∗∗∗ 0.0172∗∗∗

(0.00154) (0.00220) (0.00216) (0.00171) (0.00243) (0.00241)
(Partial) R2 0.0119 0.00924 0.0161 0.00517 0.00231 0.00924
Observations 15146 7573 7573 12122 6061 6061

Note: Table reports OLS estimates. The variable risk attitude in each of the panels refers to the respective
domain-specific question asked in the SOEP. The contexts are financial matters for investing in stocks,
career for performance pay, and health for smoking. The controls used in Columns 4–6 are gender, age,
body height, parental education, log wealth, log debts, and log gross household income. All data are from
2009, except for information on except for information on body height and smoking, which due to a lack
of availability, are from 2010. The model for performance pay includes only respondents up to the age of
66 who are working full-time and that are not self-employed. Tests for the significance of differences in
R2 are each based on 10,000 simulations randomly assigning relevant subjects to counterfactual groups
of corresponding sizes. Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.
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Table 11: Differences in non-standardized risk attitudes

Gender Height

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Risk domain: general

Coefficient -0.817∗∗∗ -0.756∗∗∗ -0.878∗∗∗ 0.0479∗∗∗ 0.0441∗∗∗ 0.0510∗∗∗
(0.0334) (0.0476) (0.0469) (0.00189) (0.00264) (0.00270)

R2 0.0348 0.0295 0.0406 0.0425 0.0346 0.0502
Observations 16633 8317 8316 15103 7552 7551

Risk domain: car driving

Coefficient -1.029∗∗∗ -0.962∗∗∗ -1.097∗∗∗ 0.0632∗∗∗ 0.0597∗∗∗ 0.0657∗∗∗
(0.0399) (0.0568) (0.0559) (0.00228) (0.00322) (0.00323)

R2 0.0407 0.0352 0.0468 0.0534 0.0456 0.0602
Observations 15742 7871 7871 14314 7157 7157

Risk domain: financial matters

Coefficient -0.798∗∗∗ -0.705∗∗∗ -0.891∗∗∗ 0.0401∗∗∗ 0.0343∗∗∗ 0.0449∗∗∗
(0.0328) (0.0465) (0.0461) (0.00189) (0.00264) (0.00272)

R2 0.0352 0.0275 0.0440 0.0316 0.0225 0.0407
Observations 16523 8262 8261 15011 7506 7505

Risk domain: sports/leisure

Coefficient -0.834∗∗∗ -0.771∗∗∗ -0.896∗∗∗ 0.0594∗∗∗ 0.0530∗∗∗ 0.0638∗∗∗
(0.0401) (0.0567) (0.0563) (0.00225) (0.00319) (0.00319)

R2 0.0261 0.0224 0.0303 0.0470 0.0361 0.0563
Observations 16344 8172 8172 14848 7424 7424

Risk domain: career

Coefficient -0.736∗∗∗ -0.695∗∗∗ -0.772∗∗∗ 0.0576∗∗∗ 0.0552∗∗∗ 0.0580∗∗∗
(0.0439) (0.0625) (0.0614) (0.00244) (0.00341) (0.00348)

R2 0.0189 0.0167 0.0212 0.0410 0.0363 0.0434
Observations 14618 7309 7309 13251 6626 6625

Risk domain: health

Coefficient -0.750∗∗∗ -0.613∗∗∗ -0.887∗∗∗ 0.0417∗∗∗ 0.0349∗∗∗ 0.0471∗∗∗
(0.0373) (0.0527) (0.0525) (0.00210) (0.00296) (0.00297)

R2 0.0240 0.0161 0.0335 0.0263 0.0179 0.0345
Observations 16625 8313 8312 15096 7548 7548

Note: Table reports OLS estimates. Tests for the significance of differences in R2 are each based on
10,000 simulations randomly assigning relevant subjects to counter-factual groups of corresponding sizes.
Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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C.2 Accounting for Selection

The below table replicates Table 6 but, in columns that use split samples (2, 3, 5, and 6),
inverse probability weighting is used to account for selection on observable characteristics.
The underlying probabilities are prediction from Probit models regressing above vs. below
values of τ̂ on gender, age, squared age, and years of education (all as of 2011). For
observations where any necessary information are missing, the probability is set to 0.5.

Table 12: Differences in risk attitudes, with inverse probability weighting

Gender Height

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Risk domain: general

Coefficient -0.374∗∗∗ -0.345∗∗∗ -0.409∗∗∗ 0.0220∗∗∗ 0.0195∗∗∗ 0.0243∗∗∗
(0.0153) (0.0219) (0.0222) (0.000866) (0.00122) (0.00128)

R2 0.0348 0.0298 0.0411 0.0425 0.0326 0.0532
Observations 16633 8317 8316 15103 7552 7551

Risk domain: car driving

Coefficient -0.403∗∗∗ -0.366∗∗∗ -0.446∗∗∗ 0.0248∗∗∗ 0.0224∗∗∗ 0.0269∗∗∗
(0.0156) (0.0226) (0.0226) (0.000893) (0.00129) (0.00131)

R2 0.0407 0.0335 0.0491 0.0534 0.0423 0.0645
Observations 15742 7871 7871 14314 7157 7157

Risk domain: financial matters

Coefficient -0.376∗∗∗ -0.342∗∗∗ -0.415∗∗∗ 0.0190∗∗∗ 0.0167∗∗∗ 0.0213∗∗∗
(0.0154) (0.0226) (0.0218) (0.000896) (0.00130) (0.00129)

R2 0.0352 0.0288 0.0435 0.0316 0.0233 0.0420
Observations 16523 8262 8261 15011 7506 7505

Risk domain: sports/leisure

Coefficient -0.323∗∗∗ -0.294∗∗∗ -0.356∗∗∗ 0.0231∗∗∗ 0.0198∗∗∗ 0.0259∗∗∗
(0.0155) (0.0223) (0.0225) (0.000875) (0.00126) (0.00127)

R2 0.0261 0.0216 0.0313 0.0470 0.0334 0.0607
Observations 16344 8172 8172 14848 7424 7424

Risk domain: career

Coefficient -0.275∗∗∗ -0.259∗∗∗ -0.301∗∗∗ 0.0215∗∗∗ 0.0197∗∗∗ 0.0235∗∗∗
(0.0164) (0.0236) (0.0239) (0.000912) (0.00130) (0.00134)

R2 0.0189 0.0167 0.0223 0.0410 0.0331 0.0498
Observations 14618 7309 7309 13251 6626 6625

Risk domain: health

Coefficient -0.310∗∗∗ -0.256∗∗∗ -0.375∗∗∗ 0.0173∗∗∗ 0.0140∗∗∗ 0.0203∗∗∗
(0.0154) (0.0221) (0.0222) (0.000868) (0.00125) (0.00125)

R2 0.0240 0.0164 0.0347 0.0263 0.0167 0.0376
Observations 16625 8313 8312 15096 7548 7548

Note: Table reports OLS estimates. Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001.
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C.3 Effects on Big Five

Table 13 replicates Table 6, analyzing differences in the Big Five traits instead of differ-
ences in risk attitudes. The results are qualitatively similar to those observed for risk

Table 13: Differences in Big Five

Gender Height

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Domain: Agreeableness

Coefficient 0.344∗∗∗ 0.290∗∗∗ 0.394∗∗∗ -0.0172∗∗∗ -0.0132∗∗∗ -0.0207∗∗∗
(0.0155) (0.0220) (0.0218) (0.000863) (0.00127) (0.00117)

R2 0.0296 0.0210 0.0388 0.0261 0.0149 0.0388
Observations 16338 8169 8169 14815 7408 7407

Domain: Conscientiousness

Coefficient 0.142∗∗∗ 0.0585∗∗ 0.219∗∗∗ -0.00873∗∗∗ -0.00417∗∗ -0.0124∗∗∗
(0.0157) (0.0222) (0.0221) (0.000885) (0.00128) (0.00123)

R2 0.00504 0.000854 0.0119 0.00673 0.00149 0.0140
Observations 16338 8169 8169 14815 7408 7407

Domain: Extraversion

Coefficient 0.197∗∗∗ 0.156∗∗∗ 0.231∗∗∗ -0.00245∗∗ -0.000182 -0.00405∗∗∗
(0.0156) (0.0221) (0.0220) (0.000878) (0.00127) (0.00122)

R2 0.00964 0.00610 0.0133 0.000532 0.00000284 0.00149
Observations 16338 8169 8169 14815 7408 7407

Domain: Neuroticism

Coefficient 0.434∗∗∗ 0.364∗∗∗ 0.496∗∗∗ -0.0204∗∗∗ -0.0169∗∗∗ -0.0233∗∗∗
(0.0153) (0.0218) (0.0214) (0.000863) (0.00126) (0.00119)

R2 0.0470 0.0330 0.0614 0.0365 0.0245 0.0493
Observations 16338 8169 8169 14815 7408 7407

Domain: Openness

Coefficient 0.128∗∗∗ 0.124∗∗∗ 0.134∗∗∗ 0.00118 0.00253∗ -0.000510
(0.0156) (0.0221) (0.0220) (0.000878) (0.00124) (0.00124)

R2 0.00411 0.00381 0.00448 0.000124 0.000548 0.0000236
Observations 16338 8169 8169 14815 7408 7407

Note: Table reports OLS estimates. Tests for the significance of differences in R2 are each based on
10,000 simulations randomly assigning relevant subjects to counterfactual groups of corresponding sizes.
Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

attitudes and quantitatively even stronger.
Table 14 replicates Table 13 but, in columns that use split samples (2, 3, 5, and 6),

inverse probability weighting is used to account for selection on observable characteristics.
The underlying probabilities are prediction from Probit models regressing above vs. below
values of τ̂ on gender, age, squared age, and years of education (all as of 2011). For
observations where any necessary information are missing, the probability is set to 0.5.
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Table 14: Differences in Big Five, with inverse probability weighting

Gender Height

Sample: pooled below above pooled below above
(1) (2) (3) (4) (5) (6)

Domain: Agreeableness

Coefficient 0.344∗∗∗ 0.286∗∗∗ 0.414∗∗∗ -0.0172∗∗∗ -0.0129∗∗∗ -0.0219∗∗∗
(0.0155) (0.0221) (0.0224) (0.000863) (0.00128) (0.00121)

R2 0.0296 0.0206 0.0419 0.0261 0.0143 0.0433
Observations 16338 8169 8169 14815 7408 7407

Domain: Conscientiousness

Coefficient 0.142∗∗∗ 0.0576∗∗ 0.222∗∗∗ -0.00873∗∗∗ -0.00422∗∗∗ -0.0123∗∗∗
(0.0157) (0.0222) (0.0226) (0.000885) (0.00128) (0.00127)

R2 0.00504 0.000841 0.0122 0.00673 0.00154 0.0138
Observations 16338 8169 8169 14815 7408 7407

Domain: Extraversion

Coefficient 0.197∗∗∗ 0.159∗∗∗ 0.215∗∗∗ -0.00245∗∗ -0.0000615 -0.00315∗
(0.0156) (0.0224) (0.0223) (0.000878) (0.00129) (0.00124)

R2 0.00964 0.00630 0.0116 0.000532 0.000000324 0.000909
Observations 16338 8169 8169 14815 7408 7407

Domain: Neuroticism

Coefficient 0.434∗∗∗ 0.366∗∗∗ 0.502∗∗∗ -0.0204∗∗∗ -0.0171∗∗∗ -0.0235∗∗∗
(0.0153) (0.0220) (0.0219) (0.000863) (0.00129) (0.00121)

R2 0.0470 0.0336 0.0622 0.0365 0.0249 0.0500
Observations 16338 8169 8169 14815 7408 7407

Domain: Openness

Coefficient 0.128∗∗∗ 0.113∗∗∗ 0.126∗∗∗ 0.00118 0.00247∗ 0.000654
(0.0156) (0.0223) (0.0226) (0.000878) (0.00126) (0.00127)

R2 0.00411 0.00321 0.00390 0.000124 0.000526 0.0000388
Observations 16338 8169 8169 14815 7408 7407

Note: Table reports OLS estimates. Heteroskedasticity-robust standard errors in parentheses. ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001.
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