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Abstract

The empirical literature on the stability of the Phillips curve has

largely ignored the bias that endogenous monetary policy imparts on

estimated Phillips curve coefficients. We argue that this omission has

important implications. When policy is endogenous, estimation using

aggregate data can be uninformative regarding the existence of a stable

Phillips curve relationship. But we also argue that regional data can be

used to identify the structural relationship between unemployment and

inflation. Using city and state-level data from 1977-2017, we show that

the reduced form and the structural parameters of the Phillips curve

are, to a substantial degree, quite stable.
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1 Introduction

We revisit the empirical debate on the stability of the Phillips curve over time,

using data from the United States. The main innovation is the use of state-level

data for that purpose. There are two principal reasons for this strategy. The

first is that if a central bank responds to shocks with the purpose of maintaining

inflation close to some target, aggregate data may be largely uninformative as

to the existence of a stable relationship between unemployment and future

inflation. The second is that as monetary policy responds to aggregate shocks

only, state-level shocks can be used to identify the key parameters.

The notion that endogenous policy may introduce an estimation bias is

an old one and has been applied in many contexts, including in models with

Phillips curves; the next section discusses in detail key papers in the litera-

ture. We revisit this point in a very simple model in which a Phillips curve

relationship is assumed to be true. We also assume that the central bank

optimally sets monetary policy so as to fully stabilize inflation and show that

model-generated aggregate data alone cannot be used to identify the Phillips

curve featured by the model. More generally, if the central bank has a dual

mandate, identification is possible, but if the policy rule is misspecified, the

estimates of the Phillips curve will be biased.

To motivate the empirical exercises that are the core of the paper, we

use the same model to show how regional data can be used to identify the

relationship between unemployment and future inflation. The main insight

is that as monetary policy reacts only to aggregate shocks, region-specific

variation can be used to uncover the true relationship between inflation and

unemployment.1 We use this last property to reassess the empirical debate over

the existence of a stable Phillips curve, which has dominated the monetary

policy literature over the last decades. The analysis with state-level data

provides strong support to the notion that the relationship between inflation

and unemployment has remained quite stable since the ‘70s in the US.

1We thank Narayana Kocherlakota for raising this question to us during a 2012 policy
briefing at the Minneapolis Fed.

2



The empirical analysis is done in two complementary ways. First, in Sec-

tion 3 we study reduced form relationships between inflation and unemploy-

ment. We address the literature that, as in Atkeson and Ohanian (2001), has

criticized Phillips curve models that use reduced forms. We first document

that, as is well known, the estimated reduced form parameter using aggre-

gate data does exhibit substantial variation over time. We then show that

when using state-level data, as suggested by the theory, the estimate of the re-

duced form coefficient is remarkably stable over time. This is so, even though

we compare the period of high and unstable inflation (1977–1985) with the

subsequent decades, in which inflation was much lower and stable.

Second, in Section 4, we present the estimation results of a standard New

Keynesian model with Calvo-type frictions in the setting of nominal prices

and wages. We show that the estimated Calvo parameters for prices using

state-level data are strikingly stable over time. Again, this is so even though

there is substantial variation in inflation and monetary policy across periods.

The analysis does detect a small statistical instability in the wage Calvo pa-

rameter. We do argue, however, that when translated to either the slope of

the Phillips curve or the implied frequency of wage changes, the difference is of

little economic significance. The estimates based on aggregate data, however,

are sensitive to the sample period and the assumptions regarding the monetary

policy rule.

Our results imply a value of about seven to eight months for the average

duration of price contracts and an average duration of between five and seven

months for wage contracts, both of which are in line with the micro evidence

on nominal frictions, as we discuss in Section 4.

The paper is organized as follows. Section 2 provides background about the

Phillips curve and discusses some key papers in the literature. In Section 3,

we first show in a simple theory how endogenous monetary policy can blur the

true structural relationship in the aggregate. We also show how this is not the

case for the regional data, since regional variation can be used to identify the

true structural parameters. We then run the regressions implied by the theory,

using data from 27 metropolitan statistical areas (MSAs) in the US from 1976
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to 2018. As we show, the regressions are remarkably consistent with the notion

of a reduced form Phillips curve that has remained stable over time. In Section

4, we estimate a full New Keynesian model separately on state and aggregate

data. We find that the estimates of the structural parameters that govern

the frequency of price and wage adjustments are found to be quite stable over

time when using state-level data, echoing the reduced form findings. On the

contrary, the estimates using aggregate data vary widely over different policy

regimes.

2 Background on the Phillips Curve and Re-

lated Literature

The notion that a statistical relationship between inflation and unemployment

implied a trade-off that could be exploited by monetary policy was forcefully

contested on theoretical grounds by the path-breaking work of Lucas (1972).

His analysis of the interaction between the reduced form Phillips curve param-

eters estimated using statistical analysis and the policy rule adopted by the

central bank was a central example in his famous critique of econometric pol-

icy evaluation methodology (Lucas, 1976). The “stagflation,” or joint increase

of unemployment and inflation, that the US and many other developed coun-

tries experienced in the years following Lucas’s work gave the theory a solid

empirical backing and implied the death of the Phillips curve in its simplest

original form.

By the end of the ‘60s, a reincarnation of the Phillips curve adopted the

NAIRU hypothesis, which shared with Lucas’s model the notion that depar-

tures from full neutrality of money could only last for a short time.2 This fea-

ture made the models compatible, at least qualitatively, with the stagflation

experience of the late ‘70s. But NAIRU-type Phillips curve models departed

from the stronger notion in Lucas (1972) that any systematic attempt to affect

2NAIRU stands for the Non-Accelerating Inflation Rate of Unemployment. Details are
spelled out in Friedman (1968).
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the allocation of resources would be futile. They thereby provided a rationale

for an active monetary policy to stabilize the economy. As these models lack

microfoundations, the reasons why the full monetary-neutrality property ex-

hibited by Lucas (1972) did not hold could not be studied and evaluated. This

unsatisfactory feature gave rise to the development of the New Keynesian fam-

ily of models that have been widely adopted in the monetary policy literature

and in research divisions of central banks. By making explicit the assumptions

regarding the nature of the non-neutrality of money, these models could be

estimated and their structural assumptions challenged with data.

As an example, consider one of the most popular forms to introduce non-

neutrality in an otherwise neoclassical model, proposed by Calvo (1983). The

key assumption is that the ability to change a price (or a wage) is not available

in every period; rather, agents can change prices only with some exogenously

specified probability typically called “the Calvo parameter.” Anyone who has

ever participated in a transaction knows that assumption to be absurd. How-

ever, as the intellectual founders of the New Keynesian literature have argued,

the assumption may well approximate aggregate behavior if the underlying pol-

icy regime does not “change too much.”3 The exact meaning of “too much” is,

of course, a quantitative issue. Addressing it belongs to the agenda pursued

in this paper.

Alongside these theoretical developments, the hypothesis of an exploitable

Phillips curve continues to be controversial. For example, Atkeson and Oha-

nian (2001) (henceforth AO) show that the empirical relationship between

current aggregate unemployment and inflation growth is highly unstable over

the period 1960–2000 in the US. They forcefully argue this point by showing

that a naive prediction rule for inflation that simply uses past inflation is sys-

tematically better than empirical Phillips curves at forecasting inflation. A

natural interpretation of their results follows from the observation that the

period covered by the analysis includes changes in the policy regime. Thus,

the corresponding shift in parameters is evidence that the relationship is not

structural, an unavoidable corollary of the Lucas critique. As mentioned above,

3See Woodford (2003), p. 141 and 142.
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even the most extreme defender of the New Keynesian paradigm would agree

with the notion that the Calvo parameter is not invariant to any policy regime

change. The quantitative question we pursue is whether the Calvo parameters

can be safely assumed to be policy invariant – and therefore not subject to the

Lucas critique – given the policy regime changes actually experienced by the

US in the postwar era. The evidence in this paper points towards a positive

answer to that question. Our interpretation of the evidence in AO, therefore,

is that the instability over time of the estimated relationship using aggregate

data is the result of policy changes, along the lines discussed in Sargent (1999).

Under this interpretation, the evidence in AO is uninformative regarding the

true relationship between current unemployment and future inflation.

Recently, the stability of the Phillips curve relationship has again been

put into question. The “flattening” of the Phillips curve has been debated at

length, fed by the strong changes in unemployment rates in the United States

during the 2008–2009 recession and the subsequent recovery, with little sign of

inflation rates responding to those movements. A series of papers addressing

this issue followed the policy debate.4

These criticisms exhibit two main characteristics. First, aggregate data are

used in the analysis.5 This is problematic since, as mentioned above, a bias

arises when monetary policy endogenously responds to shocks, as preceding

literature discussed in detail below has forcefully argued. Second, these criti-

cisms are based, albeit most of the time implicitly, on the behavior of reduced

form parameters over time, which makes addressing the identification problem

hard.6 The paper of AO represents a concrete example, and its virtue is that

it is explicit regarding the nature of the exercise. But arguing that the stagfla-

4See Krugman (2015); Blanchard (2016); and, for a recent survey of the literature,
Hooper, Mishkin and Sufi (2019).

5An early exception is Nishizaki and Watanabe (2000) who use a panel of regional data to
estimate a reduced form Phillips curve relation for Japan. Beraja, Hurst and Ospina (2019)
and Jones, Midrigan and Philippon (2018) use state- and aggregate-level data together as
part of their identification procedure; however those papers were not speaking to the issue
we address – namely, the stability of Calvo price and wage parameters over time. This paper
also uses information on prices at the MSA level in estimation.

6There are a few exceptions, such as Coibion and Gorodnichenko (2015).
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tion of the ‘70s represents evidence of an unstable Phillips curve, as many do,

also entails a reduced form discussion, and so does arguing that the “missing”

deflation in 2009 and 2010 and the subsequent “missing inflation” represent

evidence of a flattening of the Phillips curve. So, while many times we will

directly compare our results with a particular interpretation of AO, it should

be understood that our results speak to a broader literature that evaluates the

stability of the Phillips curve in its structural form as well.

Our empirical exploration using state-level data is consistent with the no-

tion that the slopes of price and wage Phillips curves in a standard New Key-

nesian model are roughly invariant to the policy regimes experienced in the

US since 1977, the first year for which we have data. And it is consistent

with the notion that reduced form regressions of future inflation on current

unemployment are also stable across sub-periods.

These results suggest an alternative interpretation of the data used by

proponents of the “shifting Phillips curve”: the changes over time in the cor-

relation between unemployment and inflation observed in aggregate data are

the results of changes in the policy followed by the Federal Reserve over the

period. Thus, the stability of inflation from 2008 onwards is the result of

monetary policy’s response to the state of the economy, with the purpose of

maintaining stable inflation. In addition, the evidence in AO is compatible

with a change in the policy rule that started somewhere in the ‘80s. And

the stagflation of the ‘70s is the result of a monetary policy that made in-

flation persistently higher, at a time in which the economy was undergoing

a recession.7 This rather brief account of the recent history of US monetary

policy evolved in an economy where the frequency of price and wage changes

remained quite stable over time – at least, so says our state-level analysis.

Hazell, Herreno, Nakamura and Steinsson (2020), in a contemporanous paper

to ours, make a strong and detailed case towards a similar reinterpretation of

the recent US macroeconomic history.

As mentioned above, the notion that endogenous policy makes identifica-

tion of structural parameters problematic dates at least to the work of Samuel-

7See Gao, Kulish and Nicolini (2020) for an interpretation along these lines.
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son and Solow (1960) and Kareken and Solow (1963). It has since then been

applied in several contexts by Brainard and Tobin (1968), Goldfeld and Blin-

der (1972), Worswick (1969), Peston (1972), and Goodhart (1989). Haldane

and Quah (1999); Mishkin (2007); Carlstrom, Fuerst and Paustian (2009); and

Edge and Gurkaynak (2010) specifically apply it to a monetary policy model

with a Phillips curve. These papers show that if policy reacts to the state

of the economy, the relationship in the aggregate data can be blurred by the

policy rule. We find useful to reproduce the result in the case the central bank

aims to stabilize inflation. We do so in order to illustrate, in a very transparent

fashion, the pervasive effect of endogenous policy on the ability to identify the

underlying parameters and also to provide an alternative interpretation of the

analysis in Atkeson and Ohanian (2001).

Nakamura and Steinsson (2014) used regional data to identify the fiscal

multiplier. We borrow their idea to address the bias brought about by the

problem of endogenous policy in a Phillips curve model. This is the contri-

bution of our paper. This strategy, spelled out in the working paper version

of this paper (see Fitzgerald and Nicolini, 2014) has since been followed by

Kiley (2015), Babb and Detmeister (2017), Leduc and Wilson (2017), and

more recently by Levy (2019), Hooper, Mishkin and Sufi (2019), McLeay and

Tenreyro (2020), and Hazell, Herreno, Nakamura and Steinsson (2020).

3 Reduced Form Analysis

In this section, we use a reduced form representation to guide some simple

regression analysis. The main reason to do so is that a sizeable share of

the literature addressing the stability of the Phillips curve has framed the

discussion in reduced form terms, as discussed in detail in Section 2.

Consider an economy composed of a continuum of geographically separated

regions that potentially exhibit price frictions. All regions use the same unit of

account and face the same monetary policy. Let πt(s), ut(s) represent regional

inflation and unemployment for region s. Assume also that the equilibrium
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solution in each region can be characterized by the following dynamic system:

πt+1(s) = bπt(s) + cut(s) + dit + eXt(s) + επt+1(s) + ξπt+1 (1)

ut+1(s) = b′πt(s) + c′ut(s) + d′it + e′Xt(s) + εut+1(s) + ξut+1, (2)

where εjt(s) and ξjt , for j = u, π, are the regional and aggregate shocks; it is the

interest rate determined by monetary policy, to be discussed below; and Xt(s)

is a vector that allows for the inclusion of control variables in the regression

analysis that follows. We call the dynamic system defined by (1) and (2) the

reduced form of some structural model. The vector Xt(s) is introduced to

allow for control variables in the regression analysis that follows. To simplify

the algebra, we now set Xt(s) = 0 for all t, s.

We assume that the underlying structural model is such that all shocks

have zero unconditional means and regional shocks are independent of the

aggregate shock. The terms dit and d′it describe the effect of monetary policy

on the system. The timing indicates that the monetary authority decides on

policy before observing the t+ 1 shocks.

Letting ϕ(s) be state weights with
∫ 1

0
ϕ(s) ds = 1, the aggregates are:

πt+1 =

∫ 1

0

ϕ(s)πt+1(s) ds

ut+1 =

∫ 1

0

ϕ(s)ut+1(s) ds.

We then obtain the following relationship between the aggregate variables:

πt+1 = bπt + cut + dit + ξπt+1 (3)

ut+1 = b′πt + c′ut + d′it + ξut+1. (4)

The focus of this section is the ability to identify and estimate the parameters

of the reduced form equations (3) and (4).

A particular example of a structural model that delivers a reduced form like

the one described above will be discussed in the next section, where we also
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estimate its structural parameters. But the system defined by (3) and (4) is

compatible with many other models. In particular, as we show in Appendix A,

this reduced form is also consistent with a simple old Keynesian model essen-

tially identical to the one presented in Taylor (1999) and discussed in Cochrane

(2011). As we show there, under this interpretation, the coefficient c in (3)

can be associated with the slope of a NAIRU Phillips curve.

The stability over time of parameter c in equation (3), particularly across

different monetary policy regimes, has been the focus of much discussion in the

literature. In particular, the natural interpretation of the analysis in Atkeson

and Ohanian (2001) is that the estimate of c obtained using aggregate data is

unstable over time. We now address this issue.

3.1 Exogenous Policy

To fix ideas, assume first that the monetary authority follows an exogenous

constant interest rate policy. Then, taking differences in (3), equilibrium in-

flation evolves as

πt+1 − πt = b (πt − πt−1) + c (ut − ut−1) +
(
ξπt+1 − ξπt

)
. (5)

Under this policy, standard econometric techniques should suffice to identify

the parameter c.

Figure 1 shows the rolling coefficient for c that results in estimating an

equation (5) using inflation and unemployment data for the US from 1975 to

2017. We estimate that equation using both headline and core inflation, which

explains why we have two solid lines in the figure. Specifically, for each of the

two measures of inflation, we first estimate the coefficient c in equation (5)

using semiannual data from the first semester of 1975 to the second semester

of 1995.8 The resulting point estimate is then plotted in Figure 1 as the value

for the second semester of 1995. We then repeated the estimation, but using

8We use semiannual data because the frequency for which we have regional data is
semiannual. We also used a few controls, as explained in Appendix B. The results without
controls, also reported in Appendix B, are very similar.
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Figure 1: Coefficient from Rolling 20-Year Regression, Aggregate Level

data starting and ending one semester after; plotted the point estimate for

the first semester of 1996; and reproduced the steps moving forward. Each

point in the series thus represents the point estimate of c for a sample size

that starts 20 years before and ends at that point. The dotted lines represent

90% confidence intervals.

The figure makes clear how the point estimate for c depends on the sample

period. For instance, when we use headline inflation, the first estimate is

very close to −1, but it decreases over time to become zero by the end of

the sample. A similar but less drastic change is apparent for the estimates

using core inflation. The picture explains why using a Phillips curve like

(5) estimated using aggregate data would perform poorly as an out-of-sample

forecasting device. This explains the exercise in Atkeson and Ohanian (2001).

To the extent that policy is exogenous, Figure 1 offers evidence that is

inconsistent with a stable value for c in this model. But our take is different:

as policy is not exogenous, the evidence provided in Figure 1 is in itself un-

informative regarding the value of the reduced form parameter c. We address

this issue next.
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3.2 Endogenous Policy

We now assume the central bank has a mandate to stabilize inflation. We also

assume the central bank knows the model economy. Specifically, it solves the

following policy problem:

min
it

1

2
Et
[
πt+1 − π∗t+1

]2
,

given πt, ut, and the solution for aggregate inflation (3) . The target for inflation

is given by π∗t+1 and is part of the policy rule. The objective function is defined

as the time−t expectation of the deviation of next period inflation relative to

the target. Implicit in this way of writing the problem is the assumption that

the central bank chooses policy before observing time t+ 1 shocks.

As shown in the Appendix, the optimal policy rule9 is

iOptt =
1

d

[
π∗t+1 −

(
bπt + cut + Etξ

π
t+1

)]
, (6)

so the equilibrium value for inflation is given by

πt+1 = π∗t+1 + ξπt+1 − Etξπt+1. (7)

Inflation in equilibrium therefore equals the target plus a forecasting error

that, by definition, is orthogonal to any variable in the central bank’s infor-

mation set at time t. In particular, inflation is independent of all the model

parameters. This is the consequence of a central bank that knows the model of

the economy and uses it to design policy so as to stabilize a specific target.10 A

direct implication of this observation is that if the central bank’s only objective

is to stabilize inflation and it uses a model that describes the economy well,

the behavior of inflation in equilibrium is completely uninformative regarding

the underlying model that determines inflation. It should be obvious by now

that this property is independent of the model that determines inflation, as

9We show in Appendix A that with this policy rule, there is a unique solution. See also
Cochrane (2011) for a discussion of determinacy in models of this type.

10As mentioned in Section 2, this insight is not new. See the literature quoted therein.
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long as the central bank knows it.

The behavior of equilibrium inflation depends on the behavior of the target,

π∗t+1, which is not necessarily observable. To gain further insight, we next

consider two specifications. Consider first the case of a constant inflation

target, so π∗t = π∗ for all t. Then, taking differences in (7),

πt+1 − πt =
(
ξπt+1 − Etξπt+1

)
− (ξπt − Et−1ξπt ) ,

so current unemployment would be related to the change in inflation to the

extent that the forecast error (ξπt − Et−1ξπt ) affects unemployment ut. But if

an estimate of the change in inflation that is different from zero is obtained,

it is unrelated to the direct effect of unemployment on future inflation, or c.

Assume next that

π∗t = πt−1, if πt−1 ∈ [πmin, π
max] (8)

π∗t = πmax, if πt−1 > πmax

π∗t = πmin, if πt−1 < πmin.

This case corresponds to a central bank that establishes a range for the target

and, to the extent that current inflation is within the bands, wants to keep

inflation equal to the previous period. As long as the target remains within

the band, π∗t+1 = πt, then

πt+1 − πt = ξπt+1 − Etξπt+1,

so inflation follows a random walk. In this case, current unemployment–or,

for that matter, any variable in the information set at time t–should not help

predict inflation growth. In this case, no forecasting rule for inflation could

beat a random walk. As shown in Appendix A, the reduced form (3) and (4)

are consistent with a simple NAIRU-type model. Therefore, such a model,

coupled with the assumption that the central bank stabilizes inflation around

a target as defined in (8), generates equilibrium observations that are fully

consistent with the result that a random walk is good predictor for inflation,
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as in AO. The example also rationalizes the difficulty the literature encountered

in its attempts at developing trustworthy forecasting models for inflation, as

explained in Stock and Watson (2009). In the next section we explain why

state-level data can be used to tackle the endogeneity problem.

3.3 State-Level Data Regressions

We now show how to estimate the reduced form parameters exploiting the

fact that regional variables’ deviations from the national average will not be

correlated with policy.

We first replace the optimal policy (6) into the solution for inflation in each

region (1) and obtain

πt+1(s) = π∗t+1 + b (πt(s)− πt) + c (ut(s)− ut) + επt+1(s) + ξπt+1 − Etξπt+1. (9)

Notice that by exploiting state-level deviations from the national average,

the effect of policy does not enter the solution.

In order to estimate equation (9), we need to take a stand on the evolution

over time of the target for inflation. In what follows, we consider an agnostic

specification. Thus, we define a time dummy and run

πt+1(s) = Dt + b (πt(s)− πt) + c (ut(s)− ut) + επt+1(s) + (ξt+1 − Etξt+1) . (10)

The time dummy is naturally interpreted as an estimate of the inflation target

for each period.11

3.4 Results

In this section, we show the results using CPI inflation and unemployment data

for 27 metropolitan statistical areas in the US. For many MSAs and periods,

the lowest frequency for the data is semiannual, so we used that frequency

11In the working paper version of this paper (Fitzgerald and Nicolini, 2014), we discuss
more specific assumptions that lead to alternative formulations for the regression. We also
compare the results of those regressions with this agnostic strategy.
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to construct the database. The price data for MSAs are available only as

non-seasonally adjusted, so we compute yearly changes. In our regressions

we define ut(s) as the period t unemployment rate for MSA s and πt+1(s) as

the inflation rate over the following year (i.e., CPIt+2(s)/CPIt(s)). We use

headline as a measure of inflation, for which we have data since 1977.12

There are a few issues that we need to address in order to clarify the way

we will interpret the estimated parameters of equation (10). Our first inter-

pretation will be based on our use of system (3) and (4) as representing purely

a reduced form of an unspecified structural model. As such, the estimates

provide information only on such a reduced form and lack any additional in-

terpretation. For that purpose, a simple OLS regression suffices, and the only

relevant question is if the estimate of the coefficient c is stable over time.

A second possibility is to interpret the system (3) and (4) as a reduced form

of a NAIRU (old) Keynesian model. Under that interpretation, the coefficient c

approximates the estimate of the slope of the NAIRU Phillips curve, as we show

in Appendix A. However, for the OLS estimator to be unbiased, it is necessary

that unemployment be uncorrelated with the shock, επt+1(s) + ξπt+1 − Etξπt+1.

The second component, being a forecast error, presents no difficulty. However,

if the region-specific shock is autocorrelated over time, there will be a bias.

In that case, it may be important to use instrumental variables. To this end,

we will also report two-stage least-squares (2SLS) results in what follows. We

have no natural instrument, but since the problem arises only if the regional

shocks are autocorrelated, using lagged values of the unemployment rate would

naturally reduce the bias. Thus, we use lagged values of the unemployment

rate in the first stage. As further justification for this interpretation, one can

analyze the estimates of the autocorrelation of the errors. We do so in the

working paper version of this paper (Fitzgerald and Nicolini, 2014), where we

show that there is no strong evidence of autocorrelation being a major issue

in our preferred specification.

We interpret the variables ut(s) and ut as deviations from the natural rate

of unemployment. To allow for the possibility that the natural rate of un-

12Appendix C describes this dataset in detail.

15



Table 1: Regressions with Headline Inflation

1977-2018 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018

A. Headline Inflation, OLS, without Controls

c −0.28∗∗ −0.31∗∗ −0.41∗∗ −0.31∗∗ −0.24∗∗ −0.21∗∗

(0.04) (0.11) (0.11) (0.05) (0.06) (0.07)

Overall R2 0.88 0.83 0.69 0.45 0.70 0.51
Obs 2059 381 288 492 536 362

B. Headline Inflation, 2SLS, without Controls

c −0.27∗∗ −0.39∗∗ −0.29∗ −0.46∗∗ −0.21∗∗ −0.24∗∗

(0.04) (0.12) (0.15) (0.13) (0.08) (0.08)

Overall R2 0.88 0.79 0.71 0.39 0.70 0.51
Obs 2055 377 288 492 536 362

C. Headline Inflation, 2SLS, with Controls

c −0.33∗∗ −0.50∗∗ −0.45∗∗ −0.45∗∗ −0.28∗∗ −0.28∗

(0.05) (0.19) (0.14) (0.10) (0.10) (0.13)

Overall R2 0.88 0.76 0.65 0.40 0.70 0.54
Obs 1933 327 288 484 532 362

Standard errors in parentheses
∗ significance at 5% level, ∗∗ significance at 1% level

employment differs across MSAs, we introduce a region fixed effect in the

regressions. To control for potential heteroscedasticity, we compute the sta-

tistical tests using standard errors that are clustered at the MSA level. All

tests results are uniformly stronger if we do not cluster the errors. Finally,

in some specifications, we use a series of regional controls that may correlate

with shocks affecting local economic conditions, like inflation expectations and

government expenditures or temperature and precipitations, as well as lagged

values of both inflation and unemployment. A detailed explanation of the

controls used is in Appendix B.

Table 1 provides estimates for the coefficient c in regression (10). Results

are reported for OLS and 2SLS without and with controls.13 We present results

13We report the estimates for all other parameters in Appendix B.
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Figure 2: Coefficient from Rolling 20-Year Regression, State Level

for the whole period first and then for five sub-periods. The first sub-period

is chosen to contain the years of rising inflation and the Volcker stabilization.

The second sub-period contains the rest of the decade until 1990. We take

these two to be the ones with policy regimes that differ from the rest of the

sample.

The results are striking. The point estimate for c using the whole period

is close to −0.3 for the three specifications and very precisely estimated. In

addition, the point estimate is similar for all the sub-periods and are all sta-

tistically significant. In fact, for all specifications and almost all sub-periods,

the point estimate is within one standard deviation of −0.3. In Appendix B,

we show the estimates of the inflation target (the time dummy). The results

confirm the obvious: the first two sub-periods correspond to inflation target

behavior that differs from the rest of the sample. We also show that even

stronger results are obtained if one uses core inflation, rather than headline –

with the caveat that we have data starting only in 1985.

As further evidence of the stability of the estimated coefficient, we show in

Figure 2 an exercise like the one presented in Figure 1, but using state-level

data to run the rolling regressions, rather than aggregate data. In this case,

it takes two pictures (Figures 1 and 2) to be worth a thousand words.
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In the working paper version of this paper (Fitzgerald and Nicolini, 2014)

and its appendix, we performed several additional exercises. We first explored

the possibility that results would be driven by a few MSAs so that other

geographic issues could affect the results. We also checked if the overlapping

nature of our data is important. We finally explored the extent to which

autocorrelation of the errors could be an issue, given the lack of a natural

instrument in our 2SLS specification. In there, we showed our results to be

very robust to all these concerns.

These results can be thought of as consistent with an old Keynesian struc-

tural model; they thereby relate to the criticism of Atkeson and Ohanian and

others. But they can be interpreted as reduced form regressions from the

perspective of current structural New Keynesian models. One may therefore

wonder the extent to which the results of this section speak to the stability

of the frequency of price and wage adjustment in structural New Keynesian

models. This is a natural question to raise, since the coefficients of reduced

form solutions are functions of the parameters of the corresponding structural

model. Thus, we now estimate a simplified version of the the state-level struc-

tural model of Jones, Midrigan and Philippon (2018).

4 Structural Model

We now move beyond linear reduced forms and estimate an economy with

Calvo-type rigidities in prices and wages. We use our estimation results to

evaluate the stability of the parameters over time. As discussed in Section 2,

the assumptions in Calvo are not to be understood as invariant to any policy

regime change. The question we address is whether those parameters have

been stable across the monetary regime changes that have prevailed in the US

since 1977, the first year for which we have state-level data.

We employ the simplest framework, which forms the basis of numerous

models in the literature. Thus, we use as a starting point the standard three-

equation New Keynesian model. In adapting that model to a series of geo-

graphically separated units in which local shocks can move local pricing and
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employment decisions that are different than those for the country as a whole,

we do need to extend that basic popular model to allow for tradable and

non-tradable goods. This is the only deviation from the standard textbook

example of the New Keynesian model with price and wage frictions. We make

the model more precise below.

4.1 Model Description

The economy consists of a continuum of ex ante identical islands. These islands

form a monetary union and trade with one another. Consumers on each island

derive utility from the consumption of a final good and from leisure:

maxE0

∞∑
t=0

βt(s)

[
log(ct(s))−

ηnt (s)

1 + ν
nt(s)

1+ν

]
,

where s indexes the island, ct(s) is consumption, nt(s) is labor supplied, βt(s)

is a preference shock, and ηnt (s) is a labor disutility shock. The structure of

the shock processes is described below.

The final good yt(s) is assembled using inputs of non-traded goods yNt (s)

and traded goods yMt (s, j) imported from island j:

yt(s) =

(
ω

1
σ yNt (s)

σ−1
σ + (1− ω)

1
σ

(∫ 1

0

yMt (s, j)
κ−1
κ dj

) κ
κ−1

σ−1
σ

) σ
σ−1

,

where ω determines the share of non-traded goods, σ is the elasticity of sub-

stitution between non-traded and traded goods, and κ is the elasticity of sub-

stitution across varieties of traded goods. Letting pNt (s) and pMt (s) denote the

inputs’ corresponding prices, the price of the final good on an island is

pt(s) =

(
ωpNt (s)1−σ + (1− ω)

(∫ 1

0

pMt (j)1−κdj

) 1−σ
1−κ
) 1

1−σ

. (11)

Notice that in the particular case of ω = 0, there are only traded goods and

the consumption basket in each location is the same as in the aggregate, in
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which case inflation in each state is the same as in the aggregate and the

model collapses to the simple textbook three-equation model. Thus, the only

innovation of our model is to allow for non-traded goods at the state level,

which in turns explains why inflation at the regional level may differ from the

aggregate.

The production technologies we use are standard in both the monetary and

the trade literatures. In particular, we model non-traded goods and traded

export goods yXt (s) on each island as CES composites of varieties k of differ-

entiated intermediate inputs with an elasticity of substitution ϑ:

yNt (s) =

(∫ 1

0

yNt (s, k)
ϑ−1
ϑ dk

) ϑ
ϑ−1

yXt (s) =

(∫ 1

0

yXt (s, k)
ϑ−1
ϑ dk

) ϑ
ϑ−1

.

The production of the varieties of non-traded goods and the varieties of

traded exports on each island is linear in labor:

yNt (s, k) = zNt (s)nNt (s, k)

yXt (s, k) = zXt (s)nXt (s, k),

where zNt (s) and zXt (s) are productivity shocks.

Nominal frictions affect this economy in a standard way. Individual produc-

ers of tradable and non-tradable intermediate goods are subject to Calvo price

adjustment frictions–parameterized by λp, the probability that a firm cannot

reset its price in a given period–and individual households supply differenti-

ated varieties of labor that are subject to Calvo wage adjustment frictions–

parameterized by λw, the probability that a labor variety cannot reset its wage

in a given period. Labor is immobile across states and is aggregated using a

CES aggregator with an elasticity of substitution across labor varieties of ψ.

We thus abstract from slow-moving interstate migration in our analysis given

that our interest is in fluctuations at business cycle frequencies. The optimal

price and wage control problems thus give rise to linearized Phillips curves in

20



price and wage inflation.

At the aggregate level, monetary policy is set using a Taylor rule when

the ZLB does not bind. The nominal interest rate it responds to its lag with

weight αr; deviations of inflation πt from target π̄ with weight απ; deviations

of output yt from the flexible-price level of output yFt , with weight αy; and the

growth rate of the output gap with weight αx:

1 + it = (1 + it−1)
αr

[
(1 + ī)

(πt
π̄

)απ ( yt
yFt

)αy]1−αr ( yt
yt−1

/
yFt
yFt−1

)αx
exp(εit),

The following shocks drive fluctuations in the model. At the state level, we

have shocks to the rate of time preference of individual households, to the

household’s disutility from work, to productivity, and to non-tradable pro-

ductivity.14 At the aggregate level we also have shocks to the rate of time

preference of individual households, labor disutility, and aggregate productiv-

ity, in addition to shocks to the interest rate rule εit and the aggregate price

Phillips curve (via standard markup shocks).15

The model in Jones, Midrigan and Philippon (2018) has households that

also derive utility from the consumption of housing goods, which must be used

as collateral for household borrowing. These features allow them to capture

better the relative state-level data around the Great Recession described in

Mian and Sufi (2011, 2014). In robustness exercises, we add these realistic

features to our model and show in Appendix E.3 that our results are very

robust to this extension.

4.2 Estimation Strategy

We use Bayesian methods, as is common in the literature. Our estimation

on state-level data for 51 states over the period 1977 to 2017, however, is

not standard: inflation data do not exist for around half of the 51 states in

our panel. And the inflation series that are available are observed at only a

14In robustness exercises, we also allow for shocks to the household’s preference for hous-
ing and the loan-to-value borrowing constraint (or credit shocks).

15Appendix D contains a full description of the model.
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biannual frequency, whereas the remaining state-level observables are observed

annually. So, to rely on as much data as possible, we estimate the state-

level model on an unbalanced mixed-frequency panel. To the best of our

knowledge, the use of an unbalanced mixed-frequency panel in the estimation

of a structural model is new in the literature. We describe the estimation in

more detail below.

Approach To capture the period of zero nominal interest rates, we use a

piecewise linear approximation as proposed in Jones (2017), Kulish, Morley

and Robinson (2017), and Guerrieri and Iacoviello (2015). Under this ap-

proximation, the reduced form solution of our model has a time-varying VAR

representation:

xt = Jt + Qtxt−1 + Gtεt,

where xt collects the state and aggregate endogenous variables and εt collects

the state and aggregate shocks. The time-varying coefficient matrices Jt, Qt,

and Gt, arise because of the non-linearities induced by the ZLB. In the partic-

ular case of ω = 0, the vector xt includes the current values for the aggregate

shocks as well as inflation – which is the same across states – the output gap –

which may be different across states, owing to local shocks and the immobile

labor force – and the nominal interest rate.

Following Jones, Midrigan and Philippon (2018), we separate the state-level

variables from the aggregate variables. We decompose the vector of variables

for each island s, expressed in log-deviations from the steady state as xt(s),

into a component due to state s’s dependence on its own history xt−1(s) and

its own shocks εt(s) and a component encoding the state-level dependence on

aggregate variables:

xt(s) = Qxt−1(s) + Gεt(s)︸ ︷︷ ︸
state-level component

+ J̃t + Q̃tx
∗
t−1 + G̃tε

∗
t︸ ︷︷ ︸

aggregate component

. (12)

The coefficient matrices that appear in the aggregate component, J̃t, Q̃t, and

G̃t, are time-varying because of the non-linearities induced by the ZLB. The
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vector x∗t which contains the aggregate variables evolves as:

x∗t = J∗t + Q∗tx
∗
t−1 + G∗t ε

∗
t . (13)

Here, ε∗t are the aggregate shocks. Given this structure of our model, let-

ting x̄∗t =
∫

xt(s)ds denote the economy-wide average of the island-level vari-

ables, the deviation of island-level variables from their economy-wide averages,

x̂t(s) = xt(s)− x̄∗t , is a time-invariant function of island-level variables alone:

x̂t(s) = Qx̂t−1(s) + Gεt(s), (14)

where we use the assumption that island-level shocks have zero mean in the

aggregate, that is,
∫
εt(s)ds = 0. We make explicit also that a key assumption

we make in (12) in order to arrive at (14) is that the parameters across states

are the same (that is, that the coefficient matrices Q and G for the state-level

components are not state-specific).

The use of deviations of state-level observables from aggregates in estima-

tion is crucial for our study. This is because by removing the dependence of

state-level outcomes on aggregate variables, the nominal interest rate drops

out from the reduced form just as it did in the reduced form analysis of Sec-

tion 3.3 that led to specification (10). Equation (14) therefore circumvents,

as (10) did, the problem of having to rely on aggregate data to estimate the

Phillips curve in the presence of endogenous and possibly time-varying policy

at the aggregate level.16 This argument mirrors the one made in the reduced

form analysis in Section 3.3, where subtracting aggregate optimal policy from

the solution for state-level inflation removes aggregate quantities.17

In the particular case in which consumption is composed only of tradable

16Another advantage of representation (14) is that we can overcome the curse of dimen-
sionality associated with all 51 states’ dependence on the time-varying aggregate structure,
which would otherwise make our estimation computationally infeasible.

17More formal arguments can be found in the literature. As mentioned in Section 2,
Haldane and Quah (1999) were the first to show that endogenous policy leads to biases in
estimating New Keynesian models. A simple and very elegant argument is presented in
McLeay and Tenreyro (2020).
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goods (ω = 0), the final goods price (11) – and therefore inflation – is the

same in every state, and the deviation from the aggregate is equal to zero in

every state. In this case, even with local state shocks moving the output gap,

a representation like (14) would fail to identify the Calvo price parameter, as

there would be no relative variation in state-level inflation data.

Practically, the use of equations (13) and (14) to estimate the model in-

volves first expressing each state’s observable variable as a deviation from its

aggregate counterpart by subtracting time effects for each year and each vari-

able. It also involves subtracting a state-specific fixed effect and time trend

for each observable, since in the model, all islands are ex ante identical.

We estimate the model using state-level data, following the strategy just

described. With the purpose of comparing results, we also estimate the model

using aggregate data. In doing so, we jointly estimate the structural parame-

ters and the policy rule.

In all cases, we use Bayesian methods to estimate the model’s structural pa-

rameters.18 To construct the posterior distribution, as the island-level shocks

in (14) are independent and do not affect aggregate outcomes, we can write

the likelihood of the model as the product of each individual state’s likelihood,

computed from (14). When we estimate the model using aggregate data, we

use equation (13) to compute the aggregate likelihood. For the prior distribu-

tions for the model’s structural parameters, we follow standard practice and

use the same priors Smets and Wouters (2007) use for the Calvo parameters λp

and λw. We use this procedure for both the state-level data and the aggregate

data estimations. As it turns out, assumptions regarding prior distributions

of the Calvo parameters can be quite important in standard aggregate-level

estimation. On the other hand, estimates using state-level data are found to

be robust to the assumed priors.19

As we want to illustrate the role that changing policy regimes may have

on the estimated values of the Calvo parameters using aggregate data, we do

18We estimate λp, λw, αr, αp, αx, αy, and the persistence and standard deviations of
the autoregressive exogenous processes. See Appendix E for the full estimation results.

19See Jones, Kulish and Nicolini (2021), who discuss in detail the role of priors in the
estimation of New Keynesian models with aggregate and state-level data.
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not wish to take a strong stand on the priors for the Taylor rule parameters.

For this reason, in the estimates we report, we use uniform priors for αr, αp,

αx, and αy. In Appendix E.3, we show that results are similar if we instead

used the priors of Smets and Wouters (2007) for the Taylor rule parameters.

Data We use a panel of employment, nominal output, wages, and inflation

in the cross section of 51 US states from 1977 to 2017.20

We use aggregate data from 1977 to 2015 on employment, output, wages,

inflation, and the Fed Funds rate.21 We construct these data in a similar way

to the state-level data. We also use sequence of expected durations of the ZLB

between 2009 and 2015 from the Blue Chip Financial Forecasts survey from

2009 to 2010 and the New York Federal Reserve’s Survey of Primary Dealers

from 2011 to 2015 (see Kulish, Morley and Robinson, 2017).

Mixed frequency/observation As mentioned above, our data is such that

inflation data do not exist for around half of the 51 states in our panel, and the

inflation series is biannual, while other state-level observables are annual. An

innovation of our analysis is to extend the estimation of the structural model

to this unbalanced panel. To do this, let N be the size of the model’s state-

space, and define by zst the (N̂ s
t × 1) vector of state s’s observable variables

at time t. Note that the dimension of state s’s observable vector is changing

over time with the availability of data. We map each state’s zst to the (N × 1)

vector of model variables x̂st by the (N̂ s
t ×N) matrix Hs

t :

zst = Hs
t x̂

s
t .

Thus, to allow for estimation using different frequencies and observables, the

differences across states and time are encoded in the matrix Hs
t , so that forecast

20See Appendix C for details of data availability across states and time and how we
construct our series. For the robustness check where we include housing and household debt,
we extend the set of observables to household debt and house prices in robustness checks.
In this case, we can only estimate the model from 1999 to 2017, given data availability.

21We extend the sample to 1965 onwards in robustness exercises reported in Appendix E.
We also extend the set of observables to include household debt and house prices.
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errors are computed only for the data series available at each point in time.22

To illustrate the procedure with an example, consider an estimation using

an unbalanced panel dataset consisting of two regions labeled A and B and

two observables, inflation and the output gap (which, for simplicity, also define

the state space; that is, N = 2 in the dimension of x̂st). With two observables,

N̂ s
t can be 0, 1, or 2, depending on data availability.

Assume the following structure for the panel: from period t, the output

gap is observed every two periods for both regions, while inflation is observed

every period, but only for region A. Defining zt =
[
(zAt )′ (zBt )′

]′
as the vector

of observable variables, the panel’s structure implies that zt is of dimension

N̂A
t + N̂B

t = 2 + 1 in period t and has dimension N̂A
t+1 + N̂B

t+1 = 1 + 0 in period

t + 1. To map these to the state vector, the coefficient matrices for region A

are

HA
t =

[
1 0

0 1

]
, HA

t+1 =
[
1 0

]
,

and the coefficient matrices for region B are

HB
t =

[
0 1

]
,

and HB
t+1 is of zero dimension. Notice that in period t+ 1, region B exits the

set of observable variables that are used to compute forecast errors and the

model’s likelihood with the Kalman filter.

To the best of our knowledge, by using this procedure, ours is the first

paper to show how to bring an unbalanced panel dataset to the estimation

of a structural macro model, which could prove useful in other contexts and

applications. More generally, this flexible approach opens up more possibilities

of how to bring regional-level data to identify key parameters of macro models,

building on the work of Nakamura and Steinsson (2014); Beraja, Hurst and

Ospina (2019); and Jones, Midrigan and Philippon (2018).

22We describe the full Kalman filter in Appendix D.
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Table 2: Posterior Distributions, Relative State Data Only

1977 to 2017 1977 to 1998 1999 to 2017

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.60 0.59 0.61 0.57 0.55 0.60 0.62 0.60 0.64
λw 0.43 0.41 0.44 0.55 0.52 0.58 0.40 0.38 0.42

4.3 Estimation Results

The key objects of the estimated structural model that we focus on are the

two Calvo parameters. We thus discuss our results regarding λp and λw first.

This formal statistical analysis allows us to discuss the extent to which the

parameters of interest are statistically stable over time. However, in order

to get a sense of the extent to which any statistical difference brings about

relevant economic differences, we also discuss the implications of our results

regarding two transformations of the Calvo parameters. The first is to convert

the Calvo parameters into slopes of the corresponding price and wage Phillips

curves. This is important, since those slopes are the relevant objects governing

the dynamics of the system. The second is to convert the Calvo parameters

into frequency of price changes by firms and wage changes by unions in the

model. This not only provides us with an alternative metric but also allows

us to compare our implied estimates with the micro estimates found in the

literature.

In light of the previous discussion, we first report in Table 2 the posterior

distributions of the Calvo parameters λp and λw estimated using state-level

data only. The remaining structural parameters for all estimations are reported

in Appendix E, including all prior specifications. The first panel of Table 2

reports the results of the estimation for the entire sample, 1977 to 2017. We

find that the Calvo parameter for prices is 0.60 at the posterior mode, and

the Calvo parameter for wages is 0.43 at the posterior mode. The posterior

distributions for both parameters are very tight around their respective modes,

with 90% of the mass concentrated in barely 3 basis points.
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The second and third panels of Table 2 report the results for two sub-

samples, the first covering the 1977 to 1998 period and the second covering

the 1999 to 2017 period.23 As the table makes clear, the estimates for the

Calvo price parameter are remarkably close to each other and to the estimate

for the overall sample. Both of them are also tightly estimated, with a 90%

probability interval of 4 and 5 basis points. The estimates for the Calvo

wage parameter present some signs of instability. The estimate for the second

sub-sample is very close to the estimate for the overall sample and also very

precisely estimated – a 90% probability interval of 4 basis points. However,

the estimate for the first sub-sample (0.55) is higher than the estimate for the

overall sample (0.43), with a probability interval of 6 basis points.

Table 3 shows the Calvo parameters of the same model estimated of ag-

gregate data alone. We also report the estimated Taylor rule parameters. In

estimating the model with aggregate data, there is no reason to restrict the

estimation to a start date in 1977. However, in order to make a comparison

of the results with the ones in Table 2, we use the exact same periods as in

there. We explore and report a larger sample period for the aggregate data

estimation below.

Before turning to the discussion of the estimated Calvo parameters, notice

that the estimated coefficients of the Taylor rule vary substantially across the

two sub-periods. How these different policy regimes may affect the estimates

is discussed below.

Regarding the values for the Calvo parameters over the full sample, note

first that the difference with the ones estimated using state-level data is strik-

ing: the mode of the Calvo price parameter is 0.92 (compared with 0.60 in

Table 2), while for the Calvo wage parameter, the mode is 0.84 (compared

with 0.43 in Table 2).24

23The natural way would be to split the sample equally, choosing 1997 as the break
year. However, we will check the robustness of the estimates to a model that additionally
uses household debt during the buildup and subsequent bust around the financial crisis, as
emphasized in Jones, Midrigan and Philippon (2018). As the debt data at the state level
start in 1999, we chose to start the second sub-sample in that year.

24The finding that wages are more flexible at the state level compared with the aggregate-
level has already been pointed out in Beraja, Hurst and Ospina (2019) and in Jones, Midri-

28



Table 3: Posterior Distributions, Aggregate Data Only

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

Calvo Parameters

λp 0.92 0.90 0.94 0.85 0.79 0.89 0.93 0.90 0.95
λw 0.84 0.80 0.88 0.91 0.87 0.93 0.84 0.80 0.89

Taylor Rule Parameters

αr 0.81 0.73 0.85 0.63 0.38 0.78 0.81 0.71 0.86
αp 2.35 1.98 3.03 2.02 1.62 3.38 1.35 1.05 2.59
αx 0.46 0.37 0.65 1.72 0.99 1.96 0.17 0.13 0.25
αy 0.26 0.21 0.39 0.05 0.01 0.23 0.26 0.21 0.35

The sample size of the aggregate data is substantially shorter than the size

of the panel used in the state-level analysis. In spite of that, the Calvo price

parameter is quite precisely estimated, with a 90% probability band of 4 basis

points. The case of the wage Calvo parameter is slightly less precise, with a

corresponding value of 8 basis points. In comparing the differences between

the estimates of the two different sub-samples we see differences (8 basis points

for the Calvo price and 7 basis points for the Calvo wage parameter), but they

are orders of magnitude smaller than those for the Calvo wage parameter in

using state-level data (15 basis points).

These rather small differences in the estimated Calvo parameters across

the two sub-periods using aggregate data mask much larger differences in the

implied slopes of the Phillips curves, which have been the elasticities focused

on in the literature (see the discussion in Section 2). Just as in standard New

Keynesian models, the slope of the Phillips curve in our model is a non-linear

function of the Calvo parameter. Indeed, the relationship between the Calvo

parameter and the implied coefficient in the slope of the respective Phillips

gan and Philippon (2018). We find that observation applies also to prices.

29



curve is given by

slopek =
(1− βλk)(1− λk)

λk
, k ∈ {p, w}. (15)

A quick inspection of (15) reveals that a change in λk from 0.9 to 0.95, say,

implies a more drastic change in the Phillips curve slope than a change in λk

from, say, 0.6 to 0.65.

With this non-linearity in mind, we map the implied Calvo price and wage

estimates to the slopes of the Phillips curves in Table 4 to get a sense of what

our estimates for the Calvo price and wage parameters imply for the slopes

of their respective Phillips curves.25 As expected, the implied slopes vary

considerably depending on whether we use the state-level estimates or the

aggregate ones. Our state-level estimate for the whole sample of λp implies

a slope of 0.28. The aggregate estimates give a much flatter slope, closer to

0.01, consistent with New Keynesian models estimated with aggregate data in

the literature.

The slope of the price Phillips curve implied by our whole state-level sam-

ple estimate of the Calvo price parameter, very close to 0.3, is statistically

indistinguishable from the estimate of the preferred specification in McLeay

and Tenreyro (2020). The point estimate they report is 0.379 with a stan-

dard deviation of 0.052 (see column 4 of Table 3 on page 273). They also

use MSA-level data, but they use a limited information approach, a some-

what different sample, and different observables than we do. Our estimate of

a relatively steep Phillips curve slope is also close to the findings of Barnichon

and Mesters (2020) who employ monetary shocks as instrumental variables

in an alternative limited information approach. In the structural estimation

literature, our state-level estimate is essentially the same as the calibrated

value used by Martin and Philippon (2017) who find, in the context of a New

Keynesian model, that a Phillips curve slope coefficient of 0.3 works well in

capturing relative changes in macroeconomic variables in the eurozone.

25The slope of the curves may involve other parameters from preferences or technology.
But the term (15) is typically found in the formulas for the slopes (see Gaĺı, 2008).
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Table 4: Implied Slopes of Phillips Curve at Baseline Estimates

1977 to 2015 1977 to 1998 1999 to 2015

A. State-Level Estimates

Prices? 0.276 0.317 0.237
Wages† 0.814 0.363 0.892

B. Aggregate-Level Estimates

1977 to 2017 1977 to 1998 1999 to 2017

Prices? 0.008 0.030 0.006
Wages† 0.035 0.011 0.031

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw

But the key finding we want to emphasize is how the estimates of the

implied slope of the Phillips curves change across sub-periods. As expected

from the previous discussion, there are no relevant differences across subperiods

in the estimation of the slopes for the price Calvo parameters using state-level

data. But there are major differences using aggregate data. For the case of

the wage Phillips curve, there are detectable differences in the implied slope

using the state-level estimates. But the differences relative to the estimated

slope using the whole sample are larger when using aggregate data.

This is most apparent in Figure 3, which plots the posterior distribution

of the slopes implied by the posterior distribution of Calvo parameters for

two sub-samples, but they are normalized to the full sample mode to aid the

comparison. The distribution of Phillips curve slopes is not only significantly

wider using the estimates coming from aggregate data but also significantly

different across periods.

In the case of the wage slope estimated of state-level data (bottom left

panel of in Figure 3), although the distributions suggest statistically different

slopes across periods, the difference is small and of little economic significance.

To see this in a different metric, note that the Calvo parameters governing
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Figure 3: Distributions of Phillips Curve Slopes

Notes: Each sub period posterior distribution of slopes is normalized by the
mode of the full sample slope.

nominal rigidities in our model have a precise interpretation: the timing of

price and wage adjustments are time dependent, with an average contract

duration of 1/(1 − λk), k ∈ {p, w}. Thus, at the mode, these different slopes

in the wage Phillips curve correspond to a frequency of wage adjustment of

2 quarters for the 1977 to 1998 sample and 1.7 quarters for the 1999 to 2017

sample. For the comparable estimates on aggregate data, the frequency of

wage adjustment is around 10 quarters for the 1977 to 1998 sample but 6.2

quarters for the 1999 to 2017 sample. In Table 5, we present a full analysis

of the mapping between Calvo parameters and frequency of price and wage

changes for our estimates in Tables 2 and 3.

Table 5 highlights the close match between our state-level estimates and

existing micro evidence on the frequency of price and wage changes. Because
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Table 5: Average Contract Durations Implied by Calvo Parameters

State-Level Aggregate-Level

Mode 5% 95% Mode 5% 95%

A. Price Contracts (Quarters)

Full Sample 2.5 2.4 2.6 12.4 9.7 17.5
1977 to 1998 2.4 2.2 2.5 6.5 4.7 9.2
1999 to 2017 2.6 2.5 2.7 14.3 10.4 19.0

B. Wage Contracts (Quarters)

Full Sample 1.7 1.7 1.8 6.4 4.9 8.3
1977 to 1998 2.2 2.1 2.4 10.8 7.6 14.5
1999 to 2017 1.7 1.6 1.7 6.2 4.9 9.0

of the importance of price stickiness for aggregate dynamics, a large literature

has developed that uses micro evidence to shed light on the frequency of price

and wage adjustments and thus λp and λw. Our estimates are surprisingly

close to those reported in these studies. For instance, Nakamura and Steinsson

(2008) find average price durations of about 7 to 9 months, while our range

of estimates of between 0.55 and 0.64 for the Calvo price parameter λp over

the subsamples implies average durations between 62/3 to 81/3 months. For

wages, Bihan, Montornes and Heckel (2012) find that the mean duration of

a wage spell is just over 2 quarters or 6 months, using firm-level data from

France. Our range of estimates, depending on the sample, of between 0.38 and

0.58 for the Calvo wage parameter λw implies an average duration of a wage

contract of about 1.6 quarters (or just under 5 months) to 2.4 quarters (about

7 months).

The large differences in the distributions of the slope that emerge when

relying on aggregate data reflect changes in the monetary policy regime, ac-

cording to our interpretation of the results presented so far. These differences

are therefore consistent with the evidence provided in Section 3: while the re-

duced form parameter on state-level data was invariant to the sub-periods used

for the estimation, the slopes implied by the estimates using aggregate data
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that depends on the policy rule changed over time. The structural estimation,

however, allows us to move beyond those qualitative statements and evaluate

the quantitative relevance of the key conceptual point raised by Haldane and

Quah (1999): that endogenous changes in the policy regime blur the ability

to estimate the structural parameters using aggregate data.

In order to do so, we show the results obtained from two exercises. In the

first, we use the fact that the estimated Taylor rule parameters αr, αp, αx, and

αy vary widely across the two sub-samples, as shown in Table 3. For instance,

we find that the weight on the growth rate of potential output is highest in

the first sub-sample of 1977 to 1998, while the weight on inflation deviations

is smallest over the second sub-sample (which includes the zero lower bound

period).

With this fact in mind, we repeat the estimation using aggregate data only

over the full sample of 1977 to 2015, comparable with the first panel in Table 3.

But rather than jointly estimating the Taylor rule, we fix its parameters at the

sub-sample estimates from Table 3. Thus, we estimate the Calvo parameters

for the whole sample but fix the Taylor rule at the values estimated for the

1977 to 1998 sub-sample, as reported in the second panel of Table 3 (that is,

αr = 0.85, αp = 3.03, αx = 0.65, and αy = 0.39). Then, we repeat the same

estimation but fix the parameters of the Taylor rule at the values estimated

for the 1999 to 2015 subsample (that is, αr = 0.81, αp = 1.35, αx = 0.17, and

αy = 0.26).

These results are in Panel A of Table 6. The first column reports the

estimated Calvo parameters when the Taylor rule is estimated for the full

sample. These are the same as the ones reported in the first column of Table 3.

We added them to aid the comparison. To avoid clutter, we also chose not to

report the confidence intervals as they are similar to what was reported so far

and the full results can be found in the Appendix. The second column reports

the estimates when the Taylor rule is fixed at the estimated values of the first

sub-period. The third column reports the estimates when fixing the Taylor

rule parameters at the estimated values of the second sub-period.

In our second and final exercise, we repeat the estimation using aggregate
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Table 6: Mode of Posterior Distributions, Interaction With Policy Rules

A. Aggregate Data Only, Fixed Taylor Rule Parameters

Parameter 1977 to 2015? 1977 to 2015† 1977 to 2015‡

λp 0.92 0.89 0.92
λw 0.83 0.78 0.83

B. Aggregate Data Only, Policy Regime Periods

Parameter 1965 to 2015§ 1965 to 1985§ 1986 to 2015§

Calvo Parameters

λp 0.86 0.72 0.93
λw 0.90 0.91 0.87

Taylor Rule Parameters

αr 0.93 0.95 0.86
αp 4.02 4.48 2.42
αx 0.46 0.55 0.21
αy 0.77 0.82 0.27

?: Estimated Taylor Rule with uniform priors
†: Taylor Rule parameters fixed at 1977 to 1998 estimates (see Table 3)
‡: Taylor Rule parameters fixed at 1999 to 2015 estimates (see Table 3)
§: No credit or house price series and no credit or housing preference shocks

data, but without restricting the sample period to coincide with the state-level

data. The motivation to do so is the presumption that the period of increasing

inflation and subsequent stabilization that the US experienced starting in the

mid ‘60s and ending in the mid ‘80s was a different policy regime than the

one that followed after the Volcker stabilization. That presumption leads us

to estimate the model for the whole 1965-2017 period as well as for the sub-

periods that are obtained by dividing the sample in 1985, much in the spirit

of the results reported in Table 3, but without restricting the estimation to

be over the same sample period than with the state-level data exercise. The

results are reported in Panel B of Table 6. The bottom panel shows the

estimated values for the policy rule and confirms the presumption of large
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Figure 4: Distributions of Phillips Curve Slopes, Interaction with Policy

Notes: Each sub-period posterior distribution of slopes is normalized by the
mode of the full sample slope.

variations across sub-periods.

Again, there is substantial variation over sub-periods in the estimated val-

ues for the Calvo parameters. The implications for the estimated slopes of the

corresponding Phillips curves are even more pronounced, which is consistent

with these sub-samples capturing more clear policy regime changes (Figure 4).

This figure is comparable to Figure 3 and illustrates the wide dispersion of

implied slopes over the aggregate posterior distributions of λp and λw.

5 Conclusion

The empirical literature on the stability of the Phillips curves has largely ig-

nored the impact of endogenous monetary policy on Phillips curve regression

coefficients. As has been discussed in the literature, this omission has impor-
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tant implications: when policy is endogenous, regressions on aggregate data are

uninformative as to the existence of a stable relationship between unemploy-

ment and future inflation. We show how regional data can be used to identify

the structural relationship between unemployment and inflation. This insight

guides our empirical strategy: we use city-level and state-level data from 1977

to 2017 and show that both the reduced form and the structural parameters

of the Phillips curve are quite stable over time.

Our analysis implies that these parameters can be safely assumed to be

invariant to policy regime changes of the magnitude observed in the US since

the mid ‘70s. These implications are consistent with the findings in Alvarez,

Beraja, Gonzalez-Rozada and Neumeyer (2018), which show that a model

with exogenous Calvo frictions approximates very well an estimated menu-

cost model as long as inflation rates are not much higher than 10% a year.

We therefore conclude that in designing monetary policy in the US, the

assumptions that prices change on average about every 21/2 quarters while

wages change on average every 2 quarters are not subject, quantitatively, to

the Lucas critique.
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Appendix

For Online Publication

A An Old Keynesian Model

In this appendix, we present a slightly modified version of the model used by Taylor (1999)

and discussed in Cochrane (2011). We show that model to deliver a reduce form like the one

analyzed in Section 3. The model specifies a NAIRU-type Phillips curve, where the growth

rate of inflation holds a negative linear relationship with the difference between the current

unemployment rate and a constant level (known as the natural rate of unemployment). Thus,

we write

πt − πt−1 = −γ (ut−1 − u)− ε(ut − u) + eπt ,

where πt is the inflation rate; ut is the unemployment rate; γ, u, and ε are positive parameters,

and eπt is a shock. This is the same equation used by Taylor (1999), except that he assumes

ε = 0.26 This assumption implies that the policy rate has no immediate effect on the inflation

rate. By letting ε > 0, albeit it is small, we allow for that immediate effect.

The second equation establishes a negative linear relationship between unemployment

and the difference between the policy interest rate and the inflation rate, so we write

ut = σ(it − πt − r) + eut ,

where σ, r are positive parameters and eut is a shock.27

In what follows, we interpret the unemployment rate as deviations from its steady state

level u, or, equivalently, we set u = 0.

Using the second in the first, we have

πt = πt−1 − γut−1 − ε (σ(it − πt − r) + eut ) + eπt

26Taylor’s model is expressed in terms of output deviations instead of unemployment deviations. Our
specification implies a negative linear relationship between output deviations and unemployment deviations.

27To the extent that the term in parentheses on the right-hand side of this equation aims at capturing
movements in the real interest rate as deviations from r (presumably its steady state value), the fact that πt
rather than Etπt+1 is in this equation may appear surprising. However, as we show below, this equation—
with a reinterpretation of the parameters—will arise exactly as the solution in any case, as long as ε is zero.
Given the lack of microfoundations, this reinterpretation seems innocuous to us.

42



or

πt =
πt−1 − γut−1 + σεr − σεit − εeut + eπt

(1− εσ)
,

whereas using the first in the second, we have

ut(1− εσ) = σ(it − πt−1 + γut−1 − eπt − r) + eut

ut = − σ

(1− σε)
πt−1 +

σγ

(1− σε)
ut−1 +

σit − σr − σeπt + eut
(1− σε)

.

Thus, we can write the system as[
πt

ut

]
=

[
1

(1−εσ) − γ
(1−εσ)

− σ
(1−σε)

σγ
(1−σε)

][
πt−1

ut−1

]
+

[
− σε

(1−εσ)
σ

(1−εσ)

]
(it − r) +[

− ε
(1−εσ)

1
(1−εσ)

1
(1−σε) − σ

(1−σε)

][
eut

eπt

]
.

Recall that we had assumed that ε > 0, albeit it is small. Thus, the coefficient of unem-

ployment in the inflation equation is close to −γ, which is the slope of the NAIRU Phillips

curve.

A.1 The Interest Rate Rule

If we assume, as Taylor (1999) and Cochrane (2011) do, that

it = r + φππt + φyyt,

then the solution is[
πt

ut

]
=

[
(1+σφu)

(1+σφu)+σ(φπ−1)ε −
(1+σφu)

(1+σφu)+σ(φπ−1)εγ
σ(φπ−1)

(1+σφu)+σ(φπ−1)ε −
σ(φπ−1)

(1+σφu)+σ(φπ−1)εγ

][
πt−1

ut−1

]
+

1

(1 + σφu) + σ(φπ − 1)ε

[
−ε 1

1 σ(φπ − 1)

][
eut

eπt

]
.

The two roots are given by

λ1λ2 = 0

λ1 + λ2 =
(1 + σφu)− (φπ − 1)σγ

(1 + σφu) + σ(φπ − 1)ε
,
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so one root is zero, and the other is given by

(1 + σφu)− (φπ − 1)σγ

(1 + σφu) + σ(φπ − 1)ε
,

which is less than one as long as φπ > 1, as described in Taylor (1999). Therefore, the system

has a unique bounded solution.

A.2 Characterizing the Optimal Policy Rule

Recall that the solution is given by[
πt

ut

]
=

[
1

(1−εσ) − γ
(1−εσ)

− σ
(1−σε)

σγ
(1−σε)

][
πt−1

ut−1

]
+

[
− σε

(1−εσ)
σ

(1−εσ)

]
(it − r) +[

− ε
(1−εσ)

1
(1−εσ)

1
(1−σε) − σ

(1−σε)

][
eut

eπt

]
,

so, in the notation of the paper,

πt+1 = a+ bπt + cut + dit + ξπt ,

so

b =
1

(1− εσ)
, c = − γ

(1− εσ)
, d = − σε

(1− εσ)
,

and the optimal policy is

iOptt =
1

d

[
π∗t+1 −

(
a+ bπt + cut + Etξ

π
t+1

)]
,

so

iOptt =
1

− σε
(1−εσ)

[
π∗t+1 −

(
a+

1

(1− εσ)
πt +− γ

(1− εσ)
ut + Etξ

π
t+1

)]
or

iOptt =

[
−(1− εσ)

σε
π∗t+1 +

(1− εσ)

σε
a+

1

σε
πt −

γ

σε
ut − Etξπt+1

]
.

Thus, as long as σε < 1, which will hold for small values of ε, the conditions for a unique

stable solution are satisfied.
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A.3 The Reduced Form Parameter versus the Structural Form

Parameter

The solution of the model is given by[
πt

ut

]
=

[
(1+σφu)

(1+σφu)+σ(φπ−1)ε −
(1+σφu)

(1+σφu)+σ(φπ−1)εγ
σ(φπ−1)

(1+σφu)+σ(φπ−1)ε −
σ(φπ−1)

(1+σφu)+σ(φπ−1)εγ

][
πt−1

ut−1

]
+

1

(1 + σφu) + σ(φπ − 1)ε

[
−ε 1

1 σ(φπ − 1)

][
eut

eπt

]
,

so we can write the solution for inflation as

πt =
(1 + σφu)

(1 + σφu) + σ(φπ − 1)ε
πt−1 −

(1 + σφu)

(1 + σφu) + σ(φπ − 1)ε
γut−1 +

eπt − εeut
(1 + σφu) + σ(φπ − 1)ε

.

Thus, the reduced form parameter γ̂ is equal to

γ̂ =
(1 + σφu)

(1 + σφu) + σ(φπ − 1)ε
γ =

1

1 + εσ(φπ−1)
(1+σφu)

γ,

so it is lower than the structural parameter γ but arbitrarily close when ε is close to zero.

B Regression Specifications

In this section, we present more details on the empirical specifications presented in Section

3. In Section B.1, we provide the list of variables that are used as controls in Table 1 and

their sources. In Section B.2, we present the regressions models we adopt in the main text.

Section B.3 shows additional results in the reduced form analysis.

B.1 Control Variables

• rgdp: state-level real GDP growth relative to national average in the same period,

trend term of HP filtered series with smoothing parameter 400.

Source: Bureau of Economic Analysis (BEA) https://apps.bea.gov/regional/downloadzip.

cfm, all MSAs since 1960.

• temp: MSA-level temperature relative to regional average in 1960 and 2018.

Source: National Centers for Environmental Information (NCEI), https://www.ncdc.

noaa.gov/cag/, all MSAs since 1960, except for Kansas City since 1972 and Honolulu
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since 1965.

• prec: MSA-level precipitation relative to regional average in 1960 and 2018.

Source of variable prec is the same as temp.

• infExp: division-level inflation expectation relative to national average in the same

period.

Source: Survey of Consumers from the University of Michigan, https://data.sca.

isr.umich.edu/sda-public/cgi-bin/hsda?harcsda+sca, all divisions since 1978.

• bartik : interaction of regional exposure variable (combining regional industrial em-

ployment composition and government expenditure shipment by industry ) with a

measure of the growth rate of real aggregate federal government consumption.

Source: constructed following McLeay and Tenreyro (2020).

The variable x in region i in period t is denoted by xit, we further define its cross-sectional

deviation from US average ∆xit and its deviation from 1960–2018 regional average ∆Rxit as

∆xit = xit −XUS
t

∆Rxit = xit −
1

N

2018∑
t=1960

xit

B.2 Regression Specifications

• We specify the OLS regression models without controls in the following form:

πit+1 = b∆uit + c∆πit +
∑
s

I{t = s}αs.

• For the 2SLS without control regression models, we use ∆uit−1 as instruments for the

first stage.

• For the regression models with controls (both OLS and 2SLS), we extend the models

without controls to include ∆Rtempit, ∆Rprecit, ∆infExpit, ∆uit−2, ∆πit−1, ∆πit−2, and

bartikt as explanatory variables. However, we can use the bartik starting in 1990

only, owing to the availability of data. We show that when adding this control to the

sub-samples from 1990 onwards, the results do not change for headline or core inflation.
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B.3 Full Reduced Form Results

In this subsection, we present a complete set of results corresponding to the regression anal-

ysis of Section 3. First, we show the estimated value for the time dummy, which corresponds

to the estimate of the inflation target. We report the results using both core and headline

inflation in Figure 5.

Figure 5: Model Estimation of Inflation Target

In Tables 7 to 9, we report complete results for the regressions using headline inflation,

including OLS and 2SLS, with and without controls. We also show, in Table 10, results

including the bartik variable as a control, which we have only since the late 80s. As we

show, the results barely change when including that additional control for the period in

which we have data. We report only the case of 2SLS with controls, but the results are also

robust for the other specifications and also when we use core inflation rather than headline.

We then present the results for OLS and 2SLS with and without controls when using core

in tables 11 to 13.

C Data

C.1 Description of Data for Reduced Form Exercises

This appendix describes our data sources and calculations for the reduced form exercises.

We analyze semiannual CPI inflation and unemployment data for the United States and for
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Table 7: Headline without Controls

Model Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

OLS

c -0.31** -0.41** -0.31** -0.24** -0.21** -0.28** -0.28**
(0.11) (0.11) (0.05) ( 0.06) (0.07) (0.03) (0.04)

b -0.17** 0.00 0.21** 0.05 0.04 0.22** 0.10**
(0.06) (0.06) (0.06) ( 0.06) (0.07) (0.04) (0.05)

Overall R2 0.83 0.69 0.45 0.70 0.51 0.72 0.88

2SLS

c -0.39** -0.29* -0.46** -0.21** -0.24** -0.24** -0.27**
(0.12) (0.15) (0.13) ( 0.08) (0.08) (0.03) (0.04)

b -0.18** 0.05 0.14 0.06 0.03 0.24** 0.10**
(0.06) (0.09) (0.09) ( 0.06) (0.07) (0.05) (0.05)

Overall R2 0.79 0.71 0.39 0.70 0.51 0.74 0.88

Observations 377 288 492 536 362 1678 2055

* significant at 5% level, ** significant at 1% level

Table 8: Headline OLS with Controls

Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

c -0.19 -0.43** -0.14* -0.26** -0.17 -0.28** -0.27**
(0.18) (0.09) (0.07) (0.07) ( 0.10) (0.04) (0.07)

b -0.30** -0.01 0.19** 0.06 0.02 0.23** 0.08
(0.10) (0.08) (0.06) (0.06) ( 0.07) (0.04) (0.04)

e(infExp) -0.30** -0.01 0.19** 0.06 0.02 0.23** 0.08
(0.10) (0.08) (0.06) ( 0.06) (0.07) (0.04) (0.04)

e(prec) -0.20 0.00 0.03 -0.01 0.07* 0.05 0.00
(0.13) (0.06) (0.04) ( 0.05) (0.03) (0.03) (0.03)

e(temp) 0.19** 0.01 -0.02 -0.09* 0.07 0.00 0.00
(0.07) (0.06) (0.03) ( 0.04) (0.04) (0.01) (0.02)

e(u(−1)) -0.21 -0.02 -0.27* -0.02 -0.10 -0.07 -0.06
(0.15) (0.12) (0.12) ( 0.09) (0.11) (0.05) (0.06)

e(u(−2)) -0.04 0.02 0.09 0.03 0.12 0.12* 0.08
(0.15) (0.07) (0.11) ( 0.12) (0.08) (0.05) (0.05)

e(π(−1)) -0.22* -0.23** 0.06 -0.09 -0.03 0.03 0.05
(0.11) (0.08) (0.05) ( 0.06) (0.06) (0.03) (0.04)

e(π(−2)) -0.23** -0.11 -0.09 -0.02 0.09 -0.01 0.00
(0.06) (0.08) (0.05) ( 0.06) (0.06) (0.03) (0.02)

Overall R2 0.80 0.64 0.46 0.70 0.54 0.73 0.88

Observations 327 288 484 532 362 1666 1993

* significant at 5% level, ** significant at 1% level
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Table 9: Headline 2SLS with Controls

Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

c -0.50** -0.45** -0.45** -0.28** -0.28* -0.35** -0.33**
(0.19) (0.14) (0.10) (0.10) ( 0.13) (0.05) (0.05)

b -0.29** -0.02 0.14 0.06 0.01 0.22** 0.08
(0.09) (0.09) (0.08) (0.06) ( 0.08) (0.04) (0.04)

e(infExp) -0.04 -0.07 0.17 0.11 0.08 0.16 -0.13
(0.33) (0.18) (0.17) ( 0.25) (0.23) (0.11) (0.15)

e(prec) -0.20 0.00 0.04 -0.01 0.08** 0.05 0.00
(0.13) (0.06) (0.04) ( 0.05) (0.03) (0.03) (0.03)

e(temp) 0.20** 0.01 -0.02 -0.09* 0.08* 0.00 0.00
(0.08) (0.06) (0.03) ( 0.04) (0.03) (0.01) (0.02)

e(u(−2)) -0.06 0.02 0.00 0.02 0.09 0.10** 0.07
(0.14) (0.06) (0.10) ( 0.11) (0.07) (0.04) (0.04)

e(π(−1)) -0.20* -0.22** 0.07 -0.09 -0.03 0.03 0.05
(0.10) (0.08) (0.06) ( 0.06) (0.06) (0.03) (0.04)

e(π(−2)) -0.21** -0.10 -0.09 -0.02 0.09 -0.01 0.00
(0.07) (0.08) (0.05) ( 0.05) (0.06) (0.03) (0.02)

Overall R2 0.76 0.65 0.40 0.70 0.54 0.74 0.88

Observations 327 288 484 532 362 1666 1993

* significant at 5% level, ** significant at 1% level
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Table 10: Headline 2SLS with Controls Including Bartik Variable

Coefficient 1991-2000 2001-2010 2011-2018 1985-2018

c -0.47** -0.29** -0.28* -0.36**
(0.11) (0.10) ( 0.13) (0.06)

b 0.17* 0.06 0.00 0.20**
(0.08) (0.06) ( 0.08) (0.04)

e(infExp) 0.13 0.11 0.09 0.14
(0.16) ( 0.25) (0.24) (0.11)

e(prec) 0.06 -0.01 0.07** 0.04
(0.03) ( 0.05) (0.03) (0.03)

e(temp) -0.02 -0.09* 0.07* 0.00
(0.03) ( 0.05) (0.03) (0.01)

e(bartik) -1.09 3.59 2.41 -0.37
(5.60) ( 5.52) (2.98) (2.87)

e(u(−2)) 0.04 0.02 0.09 0.11*
(0.09) ( 0.11) (0.07) (0.05)

e(π(−1)) 0.07 -0.10 -0.03 0.02
(0.05) ( 0.06) (0.06) (0.04)

e(π(−2)) -0.06 -0.02 0.09 0.01
(0.05) ( 0.05) (0.06) (0.02)

Overall R2 0.55 0.69 0.54 0.70

Observations 532 532 362 1426

* significant at 5% level, ** significant at 1% level

Table 11: Core – without Controls

Model Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

OLS

c -0.47** -0.33** -0.34** -0.29** -0.32**
(0.10) (0.05) (0.07) ( 0.09) (0.04)

b 0.09 0.23** 0.10 0.06 0.26**
(0.06) (0.08) (0.06) ( 0.08) (0.04)

Overall R2 0.41 0.36 0.34 0.10 0.61

2SLS

c -0.34** -0.41** -0.25** -0.27** -0.24**
(0.15) (0.13) ( 0.08) (0.10) (0.04)

b 0.13 0.20 0.12* 0.07 0.30**
(0.11) (0.10) (0.06) ( 0.07) (0.04)

Overall R2 0.42 0.34 0.36 0.13 0.63

Observations 288 492 536 362 1678

* significant at 5% level, ** significant at 1% level
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Table 12: Core OLS with Controls

Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

c -0.44** -0.21* -0.37** -0.30** -0.36**
(0.09) (0.08) (0.07) (0.11) ( 0.05)

b 0.10 0.21** 0.12* 0.03 0.26**
(0.09) (0.08) (0.06) (0.07) ( 0.03)

e(infExp) 0.08 0.12 0.11 0.26 0.17
(0.22) (0.17) (0.30) ( 0.29) (0.12)

e(prec) 0.00 0.02 0.03 0.07 0.05*
(0.07) (0.04) (0.04) ( 0.05) (0.02)

e(temp) 0.03 -0.06 -0.08 0.00 -0.03*
(0.06) (0.04) (0.05) ( 0.05) (0.01)

e(u(−1)) -0.10 -0.22 0.00 0.01 -0.06
(0.10) (0.15) (0.11) ( 0.12) (0.07)

e(u(−2)) 0.13 0.14 0.04 0.04 0.16**
(0.10) (0.13) (0.14) ( 0.11) (0.05)

e(π(−1)) -0.17 -0.09* -0.07 0.07 0.06*
(0.09) (0.04) (0.06) ( 0.08) (0.03)

e(π(−2)) -0.08 -0.07 -0.10 0.01 -0.03
(0.08) (0.05) (0.06) ( 0.07) (0.02)

Overall R2 0.37 0.41 0.34 0.13 0.63

Observations 260 484 532 362 1638

* significant at 5% level, ** significant at 1% level
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Table 13: Core 2SLS with Controls

Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

c -0.57** -0.46** -0.37** -0.29 -0.41**
(0.15) (0.12) (0.13) (0.16) ( 0.06)

b 0.08 0.18* 0.12* 0.04 0.25**
(0.09) (0.08) (0.06) (0.07) ( 0.03)

e(infExp) 0.03 0.13 0.11 0.27 0.16
(0.19) (0.17) (0.30) ( 0.29) (0.13)

e(prec) 0.00 0.03 0.03 0.07 0.06*
(0.07) (0.04) (0.04) ( 0.05) (0.02)

e(temp) 0.04 -0.06 -0.08 0.00 -0.03*
(0.06) (0.04) (0.05) ( 0.05) (0.01)

e(u(−2)) 0.09 0.07 0.04 0.04 0.14**
(0.11) (0.11) (0.13) ( 0.09) (0.04)

e(π(−1)) -0.17 0.10* -0.07 0.07 0.06*
(0.09) (0.05) (0.06) ( 0.08) (0.03)

e(π(−2)) -0.08 -0.07 -0.10 0.01 -0.03
(0.08) (0.05) (0.06) ( 0.07) (0.02)

Overall R2 0.37 0.38 0.35 0.15 0.64

Observations 260 484 532 362 1638

* significant at 5% level, ** significant at 1% level
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27 metropolitan statistical areas (MSAs). All semiannual data for unemployment and CPI

price indices are computed as the arithmetic average of monthly data for the first and second

half of each year. Inflation and price data for MSAs are available only as non seasonally

adjusted, so all the data are not seasonally adjusted.

C.1.1 Inflation Data

The Bureau of Labor Statistics (BLS) publishes CPI data for 27 MSAs. The BLS publishes

semiannual data for 13 MSAs and higher frequency data (monthly or bimonthly) for the

other 14 MSAs. We use semiannual data to obtain the largest possible sample. Headline

CPI is available back to 1941 for 23 MSAs, with data for the remaining MSAs starting in

1977, 1987, 1997, and 2002. Core CPI is available back to 1982 for 24 MSAs, with data for the

remaining MSAs starting in 1987, 1997, and 2002. When semiannual data are not available

as a published series, we compute the semiannual average following BLS methodology: first,

interpolate the missing monthly indices using a geometric mean of values in adjacent months;

second, calculate the arithmetic average of the monthly data in the first and second half of

each year.

C.1.2 Unemployment Data

The BLS publishes a monthly unemployment rate, not seasonally adjusted, for each of the

27 MSAs with corresponding CPI price indices. Published BLS data are available back to

1990. The BLS has unpublished unemployment data back to 1976, but these data are not

consistent with the published data because of changes in the MSA geographic definitions

and other factors. However, the BLS also has unemployment and labor force data by county,

going back to 1976. We used the county-level data to construct a geographically consistent

definition of MSAs, going back to 1976. The constructed unemployment and labor force

series overlap very closely with the published data in the post-1990 period. We combine our

pre-1990 constructed unemployment rates with the published data to obtain unemployment

rate series back to 1976. The lack of readily accessible unemployment data before 1976 is a

limiting factor for our analysis.
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C.2 Description of Data for Structural Model Estimation

C.2.1 State Level

We use the MSA-level inflation data, described above, and map the 27 MSA regions into 20

states with the mapping in Table 14. For states which contain multiple MSA regions (for

example, Cincinnati and Cleveland are both in Ohio), we select only the data of one of the

MSA regions.

Table 14: MSA to State Mapping

State MSA

AK Anchorage
AZ Phoenix
CA Los Angeles
CO Denver
FL Miami
GA Atlanta
HI Honolulu
IL Chicago
KS Kansas City
MA Tampa
MD Baltimore
MI Detroit
MO St. Louis
NY New York
OH Cincinnati
OR Portland
PA Philadelphia
TX Dallas
WA Seattle
WI Minneapolis

For the other state-level data series, we use state-level data on employment, output, and

compensation. The observed state data are annual. To construct the data, we first take each

state’s series relative to its initial value, compute the devation of each state’s observation

from the state mean, regress that series on time dummies, weighted by the state’s relative

population, and work with the residuals. We then take out a linear trend from the resulting

series, for each subsample studied.

Main estimations Here, we provide more details on each series.
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• Output: We use state-level data on Gross Domestic Product in current dollars. (BEA

SAGDP2S). The data are available for download at the BEA website.

• Employment: We use state-level data on total employment from the BEA annual table

SA4. In our empirical analysis, we scale this measure of employment by each state’s

population.

• Labor Compensation: We use state-level data on compensation of employees from the

BEA annual table SA6N.

• Wages: To construct our wages series, we divide total labor compensation by the

number of employed individuals, using the two series described above.

• Population: We use state-level data on population from the BEA annual table SA1-3.

Robustness Exercises In robustness exercises, we use the following data series.

• Income: We use state-level data on personal income from the BEA annual table SA4.

• Household Debt: We use data from the FRBNY Consumer Credit Panel Q4 State

statistics by year. Our measures of debt include auto loans, credit card debt, mortgage

debt and student loans. This database also provides information on the number of

individuals with credit scores in each state, which we use to express the debt data in

per capita terms. We then construct a debt-to-income series by dividing this measure

of per capita debt by per capita income, using the data described above on income and

population from the BEA.

• House Prices: We used data on the not seasonally adjusted house price index available

on the FHFA website.

• Consumption: For the robustness exercise with consumption, we use state-level data

on total personal consumption expenditures by state from the BEA, net of housing.

The data are available for download at the BEA website.

C.2.2 Aggregate Level

At the aggregate level, we use the GDP deflator for inflation, employment, output, wages,

the Fed Funds rates, and ZLB durations from NY Federal Reserve Survey Data. The codes

for each raw data series are as follows:

• Gross Domestic Product: Implicit Price Deflator (GDPDEF).
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• Gross Domestic Product: (GDP).

• Cumulated nonfarm business section compensation (PRS85006062) minus employment

growth (PRS85006012) and deflated by the GDP deflator.

• Total employment net of construction, over the civilian noninstitutional population.

In robustness exercises, we use:

• Household Debt from FRED (code CMDEBT) deflated by PCE deflator, and expressed

relative to income (from the BEA Table 2.1).

• House Prices from Case-Logic.

• Personal Consumption Expenditures (BEA Table 2.4.5U). Current, $. We subtract

housing from consumption.

Fed Funds rate: the interest rate is the Federal Funds Rate, taken from the Federal

Reserve Economic Database.

ZLB Durations: we follow the approach of Kulish, Morley and Robinson (2017) and

use the ZLB durations extracted from the New York Federal Reserve Survey of Primary

Dealers, conducted eight times a year from 2011Q1 onwards.28 We take the mode of the

distribution implied by these surveys. Before 2011, we use responses from the Blue Chip

Financial Forecasts survey.

D Structural Model

The model description follows Jones, Midrigan and Philippon (2018). We describe the model

with the full operative credit channel. But we note that absent this credit channel and the

tradeable production structure, the model would reduce to the familiar 3-equation New

Keynesian model.

D.1 Full Model with Credit Channel

Household problem The economy consists of a continuum of ex ante identical islands

of measure 1 that belong to a trading bloc in a monetary union. Consumers on each is-

land derive utility from the consumption of a final good, leisure, and housing. Let s index

28See the website here. For example, in the survey conducted on January 18 2011, one of the questions
asked was: “Of the possible outcomes below, please indicate the percent chance you attach to the timing of
the first federal funds target rate increase” (Question 2b). Responses were given in terms of a probability
distribution across future quarters.
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an individual island and pt(s) denote the price of the final consumption good. Individual

households on each island belong to labor unions that sell differentiated varieties of labor.

We assume perfect risk-sharing across households belonging to different labor unions on a

given island. Labor is immobile across islands and the housing stock on each island is in

fixed supply. The problem of a household that belongs to labor union ι is to

maxE0

∞∑
t=0

(
t−1∏
j=0

βj(s)

)[∫ 1

0

vit(s) log (cit(s)) di+ ηht (s) log (ht(s))−
ηnt (s)

1 + ν
nt(ι, s)

1+ν

]
(16)

where ht(s) is the amount of housing the household owns, nt(ι, s) is the amount of labor

it supplies, and cit(s) is the consumption of an individual member i. The term vit(s) ≥ 1

represents a taste shifter, an i.i.d random variable drawn from a Pareto distribution:

Pr(vit(s) ≤ v) = F (v) = 1− v−α. (17)

Here, α > 1 determines the amount of uncertainty about v. A lower α implies more uncer-

tainty. The terms ηht (s) and ηnt (s) affect the preference for housing and the disutility from

work, while βt(s) is the household’s one-period-ahead discount factor. We assume that each

of these preference shifters have an island-specific component and an aggregate component,

all of which follow AR(1) processes with independent Gaussian innovations. The household’s

budget constraint is:

pt(s)xt(s) + et(s)(ht+1(s)− ht(s)) = wt(ι, s)nt(ι, s) + qtlt(s)− bt(s) + (1 + γqt)at(s) + Tt(ι, s),

(18)

where xt(s) are transfers made to individual members in the goods market, et(s) is the

price of housing, wt(ι, s) is the wage rate, and Tt(ι, s) collects the profits households earn

from their ownership of intermediate goods firms, transfers from the government aimed at

correcting the steady state markup distortion, and the transfers stemming from the risk-

sharing arrangement.29 We let at(s) denote the amount of coupon payments the household

is entitled to receive in period t, bt(s) the amount it must repay, and qt the economy-wide

price of the securities described below. Thus, qtat(s) represents the household’s total asset

holdings (savings), while qtbt(s) represents its outstanding debt. We describe a household’s

holdings of the security by recording the amount of coupon payments bt that the household

has to make period t. Letting lt(s) denote the amount of securities the household sells in

29We assume that households on island s exclusively own firms on that particular island.
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period t, the date t+ 1 coupon payments are

bt+1(s) =
∞∑
i=0

γilt−i(s) = lt(s) + γbt(s). (19)

The household also faces a liquidity constraint limiting the consumption of an individual

member to be below the amount of real balances the member holds:

pt(s)cit(s) ≤ pt(s)xt(s). (20)

The household also faces a borrowing constraint

qtlt(s) ≤ mt(s)et(s)ht+1(s). (21)

The law of motion for a household’s assets is given by

qtat+1(s) = pt(s)

(
xt(s)−

∫ 1

0

cit(s)di

)
. (22)

There are no barriers to capital flows, so all islands trade securities at a common price qt.

The credit limit mt(s) evolves as the product of an island-specific and aggregate component,

both of which are AR(1) processes with Gaussian disturbances.

At this point, we note that as α→∞, vit(s)→ 1. In this case, there is no idiosyncratic

uncertainty. There is no meaningful role for the liquidity constraints and, since housing is

separable in the utility function and exogenously fixed, there is no role for credit, and the

economy collapses to the standard 3-equation New Keynesian model (see Jones, Midrigan

and Philippon, 2018, for details and a discussion of this point).

Final goods producers Final goods producers on island s produce yt(s) units of the final

good using yNt (s) units of non-tradable goods produced locally and yMt (s, j) units of tradable

goods produced on island j and imported to island s:

yt(s) =

(
ω

1
σ yNt (s)

σ−1
σ + (1− ω)

1
σ

(∫ 1

0

yMt (s, j)
κ−1
κ dj

) κ
κ−1

σ−1
σ

) σ
σ−1

, (23)

where ω determines the share of non-traded goods, σ is the elasticity of substitution between

traded and non-traded goods and κ is the elasticity of substitution between varieties of the

traded goods produced on different islands. Letting pNt (s) and pMt (s) denote the prices of
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these goods on island s, the final goods price on an island is

pt(s) =

(
ωpNt (s)1−σ + (1− ω)

(∫ 1

0

pMt (j)1−κdj

) 1−σ
1−κ
) 1

1−σ

. (24)

The demand for non-tradable intermediate goods produced on an island is

yNt (s) = ω

(
pNt (s)

pt(s)

)−σ
yt(s), (25)

while demand for an island’s tradable exports yXt (s) is an aggregate of what all other islands

purchase:

yXt (s) = (1− ω)pMt (s)−κ
(∫ 1

0

pMt (j)1−κdj

)κ−σ
1−κ
(∫ 1

0

pt(j)
σyt(j)dj

)
. (26)

Intermediate goods producers Traded and non-traded goods on each island are them-

selves CES composites of varieties of differentiated intermediate inputs with an elasticity of

substitution ϑ. The demand for an individual variety k for non-tradeable goods (for example)

are

yNt (s, k) =
(
pNt (s, k)/pNt (s)

)−ϑ
yNt (s).

Individual producers of intermediate goods are subject to Calvo price adjustment fric-

tions. Let λp denote the probability that a firm does not reset its price in a given period.

A firm that resets its price maximizes the present discounted flow of profits weighted by

the probability that the price it chooses at t will still be in effect at any particular date.

As was the case earlier, the production function is linear in labor, but it is now subject to

sector-specific productivity disturbances zNt (s) and zXt (s), so that

yjt (s, k) = zjt (s)n
j
t(s, k), for j ∈ {N,X}

so that the unit cost of production is simply wt(s)/z
j
t (s) in both sectors.

For example, a traded intermediate goods firm that resets its price solves

max
pX∗
t (s)

∞∑
j=0

(
λjp

j−1∏
i=0

βt+i(s)

)
µt+j(s)

(
pX∗t (s)− τp

wt+j(s)

zXt+j(s)

)(
pX∗t (s)

pXt+j(s)

)−ϑ
yXt+j(s), (27)

where µt+j(s) is the shadow value of wealth of the representative household on island s – that

is, the multiplier on the flow budget constraint (18) – and τp = ϑ−1
ϑ

is a tax the government
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levies to eliminate the steady state markup distortion. This tax is rebated lump sum to

households on island s. The composite price of traded exports or non-traded goods is then

a weighted average of the prices of individual differentiated intermediates. For example, the

price of export goods is

pXt (s) =
[
(1− λp)pX∗t (s)1−ϑ + λpp

X
t−1(s)

1−ϑ] 1
1−ϑ . (28)

Wage setting We assume that individual households are organized in unions that supply

differentiated varieties of labor. The total amount of labor services available in production

is

nt(s) =

(∫ 1

0

nt(ι, s)
ψ−1
ψ dι

) ψ
ψ−1

, (29)

where ψ is the elasticity of substitution between labor varieties. Demand for an individual

union’s labor given its wage wt(ι, s) is therefore nt(ι, s) = (wt(ι, s)/wt(s))
−ψ nt(s). The

problem of a union that resets its wage is to choose a new wage w∗t (s) to

max
w∗
t (s)

∞∑
j=0

(
λjw

j−1∏
i=0

βt+i(s)

)τwµt+j(s)w∗t (s)( w∗t (s)

wt+j(s)

)−ψ
nt+j(s)−

ηnt+j(s)

1 + ν

((
w∗t (s)

wt+j(s)

)−ψ
nt+j(s)

)1+ν
 ,

(30)

where λw is the probability that a given union leaves its wage unchanged and τw = ψ−1
ψ

is a

labor income subsidy aimed at correcting the steady state markup distortion. The composite

wage at which labor services are sold to producers is

wt(s) =
[
(1− λw)w∗t (s)

1−ψ + λwwt−1(s)
1−ψ] 1

1−ψ . (31)

D.2 Monetary Policy

Let yt =
∫ 1

0
pt(s)yt(s)/pt ds be total real output in this economy, where pt =

∫ 1

0
pt(s)ds is

the aggregate price index. Let πt = pt/pt−1 denote the rate of inflation and

1 + it = EtRt+1 (32)

be the expected nominal return on the long-term security, which we refer to as the nominal

interest rate. Aggregation over the pricing choices of individual producers implies, up to a

first-order approximation,

log(πt/π̄) = β̄Et log(πt+1/π̄) +
(1− λp)(1− λpβ̄)

λp
(log(wt)− log(zt)) + θt,
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where we add an AR(1) disturbance θt to individual firms’ desired markups, β̄ is the steady

state discount factor, and π̄ is the steady-state level of inflation.

We assume that monetary policy is characterized by a Taylor rule when the ZLB does

not bind:

1 + it = (1 + it−1)
αr

[
(1 + ı̄) παπt

(
yt
y∗t

)αy]1−αr ( yt/y
∗
t

yt−1/y∗t−1

)αx
exp(εrt ),

where εrt is a monetary policy shock; αr determines the persistence; and απ; αy; and αx

determine the extent to which monetary policy responds to inflation, deviations of output

from its flexible price level y∗t , and the growth rate of the output gap, respectively. We

assume that ı̄ is set to a level that ensures a steady state level of inflation of π̄. When the

ZLB binds, then

it = 0.

The interest rate may be at zero either because aggregate shocks cause the ZLB to bind,

or because the Fed commits to keeping it at 0 for a longer time period than implied by the

constraint. We thus implicitly assume that the Fed can manipulate expectations of how the

path of interest rates evolves, as in Eggertsson and Woodford (2003) and Werning (2015).

In our estimation we use survey data from the New York Federal Reserve to discipline the

expected duration of the zero interest rate regime during the 2009 to 2015 period.

Since we assume that an individual island is of measure zero, monetary policy does not

react to island-specific disturbances. The monetary union is closed so aggregate savings must

equal aggregate debt: ∫ 1

0

at+1(s)ds =

∫ 1

0

bt+1(s)ds. (33)

D.3 Likelihood Function

We use Bayesian likelihood methods to estimate the parameters of the island economy and

the shocks. We use a panel dataset across states for the state-level estimation, and aggregate

data and the ZLB for the aggregate-level estimation. We formulate the state-space of the

model so as to separate our estimation into a collection of regional components to make it

computationally feasible.

We discuss the likelihood function of the state/regional component and then the likelihood

function of the aggregate component.
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D.3.1 Likelihood of the State Component

We use Bayesian methods. We first log-linearize the model. The log-linearized model has

the state space representation

xt = J + Qxt−1 + Gεt (34)

zt = Htxt. (35)

The state vector is xt. The error is distributed εt ∼ N(0,Ω), where Ω is the covariance

matrix of εt. We assume no observation error of the data zt.

Denote by ϑ the vector of parameters to be estimated. Denote by Z = {zτ}Tτ=1 the

sequence of Nz × 1 vectors of observable variables, combined over states. By Bayes law, the

posterior P(ϑ | Z) satisfies

P(ϑ | Z) ∝ L(Z | ϑ)× P(ϑ).

With Gaussian errors εt, the likelihood function L(Z | ϑ) is computed using the sequence of

structural matrices and the Kalman filter, described below:

logL(Z | ϑ) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log det St −
1

2

T∑
t=1

ỹ>t (St)
−1 ỹt,

where ỹt is the vector of forecast errors and St is its associated covariance matrix.

D.3.2 Kalman Filter

The Kalman filter recursion is given by the following equations. The state of the system is

(x̂t,Pt−1). In the predict step, the structural matrices J, Q and G are used to compute a

forecast of the state x̂t|t−1 and the forecast covariance matrix Pt|t−1 as

x̂t|t−1 = J + Qx̂t

Pt|t−1 = QPt−1Q
> + GΩG>. (36)

We update these forecasts with imperfect observations of the state vector. This update step

involves computing forecast errors ỹt and their associated covariance matrix St as

ỹt = zt −Htx̂t|t−1

St = HtPt|t−1H
>
t .
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The Kalman gain matrix is given by

Kt = Pt|t−1H
>
t S−1t .

With ỹt, St and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 + Ktỹt,

and for its associated covariance matrix,

Pt = (I −KtHt) Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments

and is computed until the final time period T of data. We can show that the stationary P0

has the expression

vec(P0) = (I−Q⊗Q)−1 vec(GΩG>) (37)

D.3.3 Kalman Smoother

With the estimates of the parameters on a sample up to time period T , the Kalman smoother

gives an estimate of xt|T , or an estimate of the state vector at each point in time given all

available information. With x̂t|t−1, Pt|t−1, Kt, and St in hand from the Kalman filter, the

vector xt|T is computed by

xt|T = x̂t|t−1 + Pt|t−1rt|T ,

where the vector rT+1|T = 0 and is updated with the recursion

rt|T = H>t S−1t
(
zt −Htx̂t|t−1

)
+ (I −KtHt)

>P>t|t−1rt+1|T .

Finally, to get an estimate of the shocks to each state variable under this model’s shock

structure, denoted by et, we can compute

et = Gεt = Grt|T .
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D.3.4 Block Structure

The regional component of the model has a block structure separated by state. For example,

consider two states so that the log-linearized state-space representation is[
x1t

x2t

]
=

[
J1

J2

]
+

[
Q1 0

0 Q2

][
x1t−1

x2t−1

]
+

[
G1 0

0 G2

][
ε1t

ε2t

]

Under this block structure, the forecast covariance matrix Pt|t−1 also has a block structure.

This is clear from the expressions (36) and (37).

The block structure is also helpful for computational reasons. The log-likelihood becomes

a weighted sum of state-by-state log-likelihood functions. To show this: because Pt|t−1 has

a block structure, so does St. And because St has a block structure

log det St = log
∏
j

det Sjt =
∑
j

log det Sjt .

Also, because St has a block structure, so does its inverse, so that the last term in the

log-likehood can also be separated by state. The log-likelihood is then

logL(Z | ϑ) =
∑
s

logLs(Zs | ϑ).

D.4 Likelihood of the Aggregate Component

D.4.1 Solution with Zero Lower Bound

We write the model that approximates the ZLB in the following way. Under the ZLB, the

economy has time variation in the evolution of the model’s structural parameters At, Bt,

Ct, Dt, and Ft, where

Atxt = Ct + Btxt−1 + DtEtxt+1 + Ftεt.

For example, if the ZLB binds, the equation describing the Taylor rule becomes it = 0,

changing the structural matrices At, and so on. With time-varying structural matrices, the

solution we seek is the time-varying VAR representation:

xt = Jt + Qtxt−1 + Gtεt, (38)
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where Jt, Qt and Gt are conformable matrices that are functions of the evolution of beliefs

about the time-varying structural matrices At, Bt, Ct, Dt, and Ft (Kulish and Pagan, 2017).

These matrices satisfy the recursion

Qt = [At −DtQt+1]
−1 Bt

Jt = [At −DtQt+1]
−1 (Ct + DtJt+1)

Gt = [At −DtQt+1]
−1 Et,

where the final structures QT and JT are known and computed from the time invariant

structure above under the terminal period’s structural parameters–that is, the no-ZLB case.

Given a sequence of ZLB durations, the state-space of the model is

xt = Jt + Qtxt−1 + Gtεt

zt = Htxt.

The observation equation is time-varying because the nominal interest rate becomes unob-

served when it is at its bound.

Denote by ϑ the vector of parameters to be estimated and by T the vector of ZLB

durations that are observed each period. Denote by Z = {zτ}Tτ=1 the sequence of vectors

of observable variables. With Gaussian errors, the likelihood function L(Z,T | ϑ) for the

aggregate component is computed using the sequence of structural matrices associated with

the sequence of ZLB durations, and the Kalman filter:

logL(Z,T | ϑ) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log det HtStH
>
t −

1

2

T∑
t=1

ỹ>t
(
HtStH

>
t

)−1
ỹt.

D.4.2 Kalman filter

The state of the system is (x̂t,Pt−1). In the predict step, the structural matrices Jt, Qt,

and Gt are used to compute a forecast of the state x̂t|t−1 and the forecast covariance matrix

Pt|t−1 as

x̂t|t−1 = Jt + Qtx̂t

Pt|t−1 = QtPt−1Q
>
t|t−1 + GtΩG>t .

This formulation differs from the time-invariant Kalman filter used at the state level, because

in the forecast stage, the matrices Jt, Qt and Gt can vary over time. We update these fore-
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casts with imperfect observations of the state vector. This update step involves computing

forecast errors ỹt and its associated covariance matrix St as

ỹt = zt −Htx̂t|t−1

St = HtPt|t−1H
>
t .

The Kalman gain matrix is given by

Kt = Pt|t−1H
>
t S−1t .

With ỹt, St, and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 + Ktỹt,

and for its associated covariance matrix:

Pt = (I −KtHt) Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments

and is computed until the final time period T of data.

D.4.3 Kalman Smoother

With the estimates of the parameters and durations in hand at time period T , the Kalman

smoother gives an estimate of xt|T , or an estimate of the state vector at each point in time

given all available information (Hamilton, 1994). With x̂t|t−1, Pt|t−1, Kt and St in hand from

the Kalman filter, the vector xt|T is computed by

xt|T = x̂t|t−1 + Pt|t−1rt|T ,

where the vector rT+1|T = 0 and is updated with the recursion:

rt|T = H>t S−1t
(
zt −Htx̂t|t−1

)
+ (I −KtHt)

>P>t|t−1rt+1|T .

Finally, to get an estimate of the shocks to each state variable under this model’s shock

structure, denoted by et, we compute:

et = Gtεt = Gtrt|T .
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Table 15: Calibrated Parameters

Parameter Value Description Source/Target

ν 2 Inverse labor supply elasticity
β 0.995 Quarterly discount factor 2% annual real rate
ω 0.7 Weight on non-traded goods
σ 0.5 Elasticity traded/non-traded
κ 4 Elasticity traded goods Simonovska and Waugh (2014)
ψ 21 Elasticity labor aggregator Christiano, Eichenbaum and Evans (2005)

D.5 Posterior Sampler

This section describes the sampler used to obtain the posterior distribution of interest. We

compute the likelihood function at the state level and the aggregate level, together with the

prior. The posterior of our full model P(ϑ | T,Z) satisfies

P(ϑ | T,Z) ∝ L(Z,T | ϑ)× P(ϑ).

We use a Markov Chain Monte Carlo procedure to sample from the posterior. It has a

single block, corresponding to the parameters ϑ.30 The sampler at step j is initialized with

the last accepted draw of the structural parameters ϑj−1.

First, start by selecting which parameters to propose new values. For those parameters,

draw a new proposal ϑj from a proposal density centered at ϑj−1 and with thick tails to

ensure sufficient coverage of the parameter space and an acceptance rate of roughly 20% to

25%. The proposal ϑj is accepted with probability
P(ϑj |T,Z)
P(ϑj−1|T,Z) . If ϑj is accepted, then set

ϑj−1 = ϑj.

E Additional Structural Model Estimation Results

E.1 Calibrated Parameters

Table 15 details the small set of parameters that are calibrated prior to estimation.

30It is worth noting that as in Kulish, Morley and Robinson (2017), in addition to the structural parame-
ters, one can estimate the expected zero lower bound durations, in which case an additional block is needed
in the posterior sampler.
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Table 16: Structural Estimation, State Data Only

Prior Posterior

Parameter Dist Mean SD Mode 5% 95%

λp B 0.5 0.1 0.602 0.586 0.614
λw B 0.5 0.1 0.427 0.411 0.444
ρz B 0.5 0.2 0.993 0.990 0.995
ρn B 0.5 0.1 0.956 0.950 0.964
ρb B 0.5 0.2 0.960 0.954 0.963
ρNz B 0.5 0.2 0.961 0.955 0.968
σz IG 2.0 1.4 1.507 1.464 1.545
σn IG 2.0 1.4 0.033 0.031 0.036
σb IG 2.0 1.4 0.717 0.656 0.822
σNz IG 2.0 1.4 1.372 1.312 1.423

E.2 Full Structural Model Estimation Results

Tables 16 and 17 give the full prior and posterior distributions of the estimated structural

parameters using state and aggregate data, respectively.

The parameters are the Calvo parameter on prices λp, the Calvo parameter on wages λw,

the persistence of TFP shocks ρz, the persistence of labor disutility shocks ρn, the persistence

of preference shocks ρb, the persistence of non-tradeable TFP shocks ρNz , and the respective

standard deviations of those four shocks. At the aggregate level, we also have the persistence

of markup shocks ρp, the standard deviation of markup shocks σp, and the standard deviation

of policy interest rate shocks σr. The Taylor rule parameters are given by αr, αp, αx, and

αy.

We choose the same prior as Smets and Wouters (2007) for the Calvo parameters. Our

remaining priors are chosen to be wide/diffuse. We choose a relatively tighter prior on the

persistence of labor disutility shocks at the state-level as preliminary estimations took ρn to

a value of 1. We use uniform priors over a wide range for the parameters of the Taylor rule.

E.3 Robustness

E.3.1 Estimation with Credit Channel

Results with an active credit channel and the use of household debt and house prices as

observables are shown in Tables 18 to 22. The structure of the results is similar to that of

the main tables reported in the text.
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Table 17: Structural Estimation, Aggregate Data Only

Prior Posterior

Parameter Dist Mean SD Mode 5% 95%

λp B 0.5 0.1 0.920 0.897 0.943
λw B 0.5 0.1 0.844 0.796 0.880
ρz B 0.5 0.2 0.959 0.939 0.975
ρn B 0.5 0.2 0.065 0.032 0.176
ρb B 0.5 0.2 0.859 0.840 0.879
ρp B 0.5 0.2 0.905 0.858 0.945
σz IG 2.0 1.4 0.586 0.531 0.644
σn IG 2.0 1.4 0.097 0.067 0.206
σb IG 2.0 1.4 2.755 2.365 3.256
σp IG 2.0 1.4 0.389 0.287 0.523
σr IG 2.0 1.4 1.485 1.290 2.086
αr U 0.5 0.3 0.809 0.725 0.848
αp U 4.5 2.6 2.351 1.983 3.031
αx U 1.0 0.6 0.460 0.370 0.653
αy U 1.0 0.6 0.260 0.210 0.391

Table 18: Posterior Distributions, Relative State Data Only, with Credit

1977 to 2017 1977 to 1998 1999 to 2017

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.59 0.58 0.61 0.58 0.55 0.60 0.62 0.61 0.64
λw 0.38 0.35 0.39 0.50 0.46 0.54 0.40 0.39 0.43
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Table 19: Posterior Distributions, Aggregate Data Only, with Credit

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

Calvo Parameters

λp 0.92 0.89 0.94 0.84 0.79 0.89 0.93 0.90 0.94
λw 0.83 0.81 0.94 0.90 0.87 0.93 0.84 0.79 0.88

Taylor Rule Parameters

αr 0.80 0.72 0.85 0.68 0.40 0.78 0.77 0.70 0.84
αp 2.38 1.93 2.82 2.00 1.52 3.13 1.06 1.03 1.85
αx 0.44 0.37 0.65 1.56 0.89 1.94 0.18 0.13 0.24
αy 0.27 0.20 0.36 0.07 0.01 0.24 0.23 0.20 0.30

Notes: Beta(0.5, 0.1) prior on Calvos. Uniform priors on Taylor Rule parameters

Table 20: Implied Slopes of Phillips Curve at Baseline Estimates, with Credit

1977 to 2015 1977 to 1998 1999 to 2015

A. State-Level Estimates

Prices? 0.279 0.306 0.228
Wages† 1.044 0.517 0.882

B. Aggregate-Level Estimates

1977 to 2017 1977 to 1998 1999 to 2017

Prices? 0.008 0.032 0.007
Wages† 0.034 0.012 0.031

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw
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Table 21: Posterior Distributions, Interaction with Policy Rules, with Credit

A. Aggregate Data Only, Fixed Taylor Rule Parameters

1977 to 2015? 1977 to 2015† 1977 to 2015‡

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.92 0.89 0.94 0.87 0.80 0.89 0.92 0.89 0.94
λw 0.83 0.81 0.94 0.71 0.67 0.73 0.95 0.80 0.95

B. Aggregate Data Only, Policy Regime Periods

1965 to 2015 1965 to 1985§ 1986 to 2015§

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.86 0.83 0.90 0.72 0.67 0.77 0.93 0.90 0.95
λw 0.90 0.87 0.93 0.91 0.88 0.94 0.87 0.83 0.90
αr 0.93 0.90 0.95 0.95 0.86 0.96 0.86 0.81 0.91
αp 4.02 3.30 7.29 4.48 2.81 9.43 2.42 1.85 3.62
αx 0.46 0.40 0.59 0.55 0.44 0.79 0.21 0.15 0.27
αy 0.77 0.46 1.13 0.82 0.34 1.72 0.27 0.20 0.38

?: Estimated Taylor Rule with uniform priors
†: Taylor Rule parameters fixed at 1977 to 1998 estimates (see Table 3)
‡: Taylor Rule parameters fixed at 1999 to 2015 estimates (see Table 3)
§: No credit or house price series and no credit or housing preference shocks

Table 22: Implied Slopes of Phillips Curve at Aggregate Estimates

1977 to 2015 1977 to 1998 1999 to 2015

A. Aggregate-Level Estimates, Fixed Taylor Rule

Prices? 0.008 0.020 0.008
Wages† 0.034 0.117 0.003

B. Aggregate-Level Estimates, Policy Regime Periods

1965 to 2005 1965 to 1985 1986 to 2005

Prices? 0.022 0.107 0.006
Wages† 0.012 0.009 0.020

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw
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Table 23: Aggregate-Level, Smets and Wouters (2007) Priors on Calvos and Taylor Rule

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.92 0.89 0.94 0.87 0.82 0.91 0.92 0.90 0.94
λw 0.84 0.79 0.88 0.90 0.87 0.93 0.84 0.80 0.89
αr 0.79 0.75 0.82 0.80 0.74 0.84 0.78 0.72 0.82
αp 1.70 1.53 1.87 1.61 1.44 1.81 1.41 1.24 1.62
αx 0.30 0.26 0.35 0.33 0.28 0.39 0.15 0.11 0.20
αy 0.20 0.16 0.25 0.18 0.13 0.24 0.23 0.19 0.26

Table 24: Posterior of Calvo Prices λp and Calvo Wages λw

(1) (2)

Mode 10% 90% Mode 10% 90%

λp 0.57 0.55 0.58 0.58 0.57 0.60
λw 0.33 0.31 0.35 0.34 0.33 0.36

(1): 1999 to 2015, consumption spending and no credit shocks
(2): 1999 to 2015, consumption spending

E.3.2 Smets and Wouters (2007) Priors on Calvo and Taylor Rule

Parameters

Table 23 shows the estimated structural parameters when the same priors as Smets and

Wouters (2007) are used on the Calvo parameters and on the Taylor rule parameters. In

these estimations, there is a role for the credit channel.

E.3.3 State-Level Estimation with Consumption

The results from an estimation using state-level consumption spending are given in Table

24. The estimated nominal frictions are lower–in the model, nominal output equals nomi-

nal consumption, and since consumption is less volatile than output, the model estimation

explains relatively more volatile prices and wages with more flexible prices. The addition of

credit shocks does not change the estimated λp and λw, as for the estimation using nominal

output.
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