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Abstract

This paper provides a complete review of the continuous–time optimal contracting problem introduced
by Sannikov [54], in the extended context allowing for possibly different discount rates of both parties. The
agent’s problem is to seek for optimal effort, given the compensation scheme proposed by the principal over a
random horizon. Then, given the optimal agent’s response, the principal determines the best compensation
scheme in terms of running payment, retirement, and lump–sum payment at retirement.

A Golden Parachute is a situation where the agent ceases any effort at some positive stopping time, and
receives a payment afterwards, possibly under the form of a lump sum payment, or of a continuous stream
of payments. We show that a Golden Parachute only exists in certain specific circumstances. This is in
contrast with the results claimed by Sannikov [54], where the only requirement is a positive agent’s marginal
cost of effort at zero. Namely, we show that there is no Golden Parachute if this parameter is too large.
Similarly, in the context of a concave marginal utility, there is no Golden Parachute if the agent’s utility
function has a too negative curvature at zero.

In the general case, we provide a rigorous analysis of this problem, and we prove that an agent with
positive reservation utility is either never retired by the principal, or retired above some given threshold (as
in Sannikov’s solution). In particular, different discount factors induce naturally a face–lifted utility function,
which allows to reduce the whole analysis to a setting similar to the equal–discount rates one. Finally, we
also confirm that an agent with small reservation utility does have an informational rent, meaning that the
principal optimally offers him a contract with strictly higher utility value.

Key words: continuous–time principal–agent, optimal control and stopping, face–lifting.

1 Introduction
Principal–agent problems naturally stem from questions of optimal contracting between two parties – a
principal (’she’) and an agent (’he’), when the agent’s effort cannot be observed or contracted upon. Math-
ematically, they are formulated as a Stackelberg non–zero sum game, and can also be identified to bi–level
optimisation problems in the operations research literature. The number of articles related to this topic
is staggering, mainly due to the wide spectrum of concrete problems where this theory is able to provide
relevant results, for instance for moral hazard problem in microeconomics with applications to corporate
governance, portfolio management, and many other areas of economics and finance.

The first, and seminal, paper on principal–agent problems in continuous–time is by Holmström and
Milgrom [34], who show that the optimal contract is linear in the output process, in a finite horizon setting
with CARA utility functions for both parties, and when the agent’s effort impacts solely the drift of the
output process. This paper is the first to highlight that optimal contracting problems tend to be easier to
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address in continuous–time, an observation which has been confirmed by the large continuous–time literature
in this area. Holmström and Milgrom’s work was extended by Schättler and Sung [56], Sung [66; 67], Müller
[43; 44], and Hellwig and Schmidt [32; 31]. While the aforementioned papers use continuous–time extensions
of the celebrated first–order approach from the contract theory literature in static cases, see for instance
Rogerson [52], the papers by Williams [70; 71; 72] and Cvitanić, Wan, and Zhang [15; 16; 17] use the
stochastic maximum principle and forward–backward stochastic differential equations to characterise the
optimal compensation for more general utility functions, see also the excellent monograph by Cvitanić and
Zhang [14].1

The seminal work of Sannikov [54], see also Sannikov [55], represents a genuine breakthrough in this vast
literature from various perspectives. First, from the methodological viewpoint, Sannikov introduced the
idea to focus on the dynamic continuation value of the agent as a state variable for the principal’s problem.
Although this idea was already acknowledged throughout the discrete–time literature on this problem, an
illuminating example being Spear and Srivastava [63], its systematic implementation in continuous–time
offers an elegant solution approach by means of a representation result of the dynamic value function.
Second, the infinite horizon setting considered by Sannikov revealed remarkable economic implications.
Indeed, Sannikov’s main conclusions are that the principal optimally retires the agent, offering him a Golden
Parachute, that is to say a lifetime constant continuous stream of consumption, when his continuation utility
reaches a sufficiently high level, and that an agent with small reservation utility possesses an informational
rent, in the sense that he is offered a contract with strictly higher value.

The main objective of our paper is twofold. First, we revisit Sannikov’s seminal work, but putting a
stronger weight on technical rigour, which is unfortunately lacking in some key parts of [54]. We would like
to emphasise that this should not be seen in any case as a reason to underestimate the importance of this
paper, given the groundbreaking novelties recalled above. In contrast, our first aim is to try and contribute
even more to the success of [54] by making it more accessible to a wider community of mathematicians and
economists, whose overall understanding of the model may be hindered by the technical gaps in [54]. Notice
that we are not the first to try and obtain rigorously the results claimed in [54]. For instance, Strulovici
and Szydlowski [65, Section 4.3] offers a more rigorous take on the existence of optimal contracts in the
model. However, the authors take for granted the fact that [54] proves that the HJB equation for the
principal’s problem has a smooth solution, while we will argue that the proof has important gaps. Similarly,
the unpublished PhD thesis of Choi [12] aims at putting the problem on rigorous foundations. Nonetheless,
existence of optimal contracts is not addressed there, and the results rely on the assumption that it is never
optimal to retire the agent temporarily, while our approach actually proves that this is the case. We also
would like to refer to the recent work of Décamps and Villeneuve [20], where the authors study a related,
but different, contracting problem, and where again the heart of the analysis is technical clarity: this should
be an additional illustration that actually proving rigorously results in this literature is a challenging task.

Our second goal is to prove that our analysis extends beyond the case where the principal and the agent
have the same discount rates. It is an important feature, as most models2 in the discrete– or continuous–
time literature either allow for risk–averse agents who are as patient as the principal, as in Sannikov [54],
Fong [26], Myerson [45], and Hajjej, Hillairet, Mnif, and Pontier [28], or for more impatient, but risk–
neutral agents, as in DeMarzo and Sannikov [21], Biais, Mariotti, Plantin, and Rochet [4], Biais, Mariotti,
Rochet, and Villeneuve [5], Biais, Mariotti, and Rochet [6], He [30], Piskorski and Tchistyi [50], Piskorski
and Westerfield [51], DeMarzo, Fishman, He, and Wang [22], Pagès and Possamaï [48], or Williams [72].
Even more surprisingly, our analysis can also accommodate the case where the principal is actually strictly
more impatient than the agent. More precisely, when the principal is more impatient, but not too much
(the actual bound depends on the level of risk–aversion of the agent), the solution exhibits no fundamental

1Other early continuous–time contract theory models were proposed by Adrian and Westerfield [1], Biais, Mariotti, Plantin,
and Rochet [4], Biais, Mariotti, Rochet, and Villeneuve [5], Biais, Mariotti, and Rochet [6], Capponi and Frei [9], DeMarzo and
Sannikov [21], DeMarzo, Fishman, He, and Wang [22], Fong [26], He [30], Hoffmann and Pfeil [33], Ju and Wan [35], Keiber [37],
Leung [39], Mirrlees and Raimondo [42], Myerson [45], Ou-Yang [46], Pagès [47], Pagès and Possamaï [48], Piskorski and Tchistyi
[50], Piskorski and Westerfield [51], Sannikov [53], Schroder, Sinha, and Levental [58], Van Long and Sorger [68], Westerfield [69],
Zhang [73], Zhou [74], or Zhu [75].

2Exceptions are the recent work by Hajjej, Hillairet, and Mnif [29], where the agent is risk–averse and more impatient than the
principal. However, they do not obtain clear results saying that the hypotheses of their verification result [29, Theorem 4.3] can
be verified in practice, as well as the work of Lin, Ren, Touzi, and Yang [41], but there the emphasis is more on obtaining general
methods to attack infinite horizon moral hazard problems.
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difference compared to the case where the principal is more patient. However, when the discount rate of
the principal falls below a critical threshold, the problem degenerates, optimal contracts cease to exist, and
the principal can achieve her first–best value with appropriately defined sequences of incentive–compatible
contracts. As far as we know, our paper is the first offering such a comprehensive analysis.

Our main findings are the following. First, in contrast with the overall message from [54], we show that
a Golden Parachute only exists in some specific situations. It never happens if the agent’s marginal cost
of effort at zero is zero, or is sufficiently large. And it never happens if the agent’s marginal utility is also
concave, and his utility function has sufficiently large negative curvature at zero, with a level depending on
the marginal cost of effort at zero. We also confirm rigorously the existence of informational rent for an
agent with small reservation utility. Under our set of assumptions, our Theorem 3.6 provides a necessary
and sufficient condition for this important economic effect to occur. The condition combines the curvature
of the agent’s utility function at zero, and his marginal cost of effort at zero. We emphasise that our rigorous
presentation involves advanced tools from stochastic control theory and partial differential equations. In
particular, the justification of the solution claimed by Sannikov in [54] requires the use of Perron’s existence
approach, combined with the theory of viscosity solutions, and it is unclear to us how the proof could be
significantly simplified.

Finally, from the methodological and theoretical point of view, we have highlighted a novel phenomenon
in (properly renormalised) moral hazard problems with risk–aversion and different discount rates, where the
principal’s problem has an optimal stopping component, in the sense that she can terminate the contract.
Indeed, we proved that the problem could actually be treated as in the case with similar discount rates, but
provided that in the principal’s optimisation, the certainty equivalent of the agent’s continuation utility paid
upon retirement is not computed using the inverse utility function of the agent, but using instead a ’face–
lifted’, or a ’shadow utility’ function, obtained as the solution to a specific deterministic control problem.
In words, this deterministic control problem assesses whether upon termination of the contract, it could
actually be profitable for the principal to instead retire the agent by providing him, for a certain amount of
time, a deterministic rent while he exerts no effort. Though we present this method in the specific context
of the model in [54], it applies to generic moral hazard problems with early retirement possibilities. To the
best of our knowledge, such a phenomenon has not been observed before, neither in the contract theory
literature, nor in the optimal stopping literature.3

The paper is organised as follows. Section 2 provides a rigorous formulation of the continuous–time
contracting problem, with a clear description of the set of contracts, and introduces the face–lifted utility F .
Our main results are given in Section 3. Thus, Section 3.1 provides some conditions under which no Golden
Parachute can exist, which can all be recovered by the more abstract sufficient condition I0(F ′, F ′′) > 0
at infinity, where δ is the ratio of the discount rate of the agent and the principal, and I0 is defined in
(3.2). Next, Section 3.2 identifies the value function of the principal and describes optimal contracts, while
Section 3.3 presents our numerical illustrations, and Section 3.4 discusses the gaps in [54]. Subsequently,
for completeness, we provide a review of the first–best version of [54]’s model in Section 4, thus highlighting
the very different nature of the first–best optimal contract, for which a Golden Parachute never exists.
Then, Section 5 uses the result of Lin, Ren, Touzi, and Yang [41], itself an extension of earlier results by
Cvitanić, Possamaï, and Touzi [18; 19], which justify rigorously Sannikov’s [54] remarkable reduction of
the principal’s Stackelberg game problem into a standard control–and–stopping problem. Such a reduction
opens the door for the use of standard tools of stochastic control theory. In particular, we treat the case of a
very impatient principal in Section 6, which can be addressed directly by exhibiting a sequence of contracts
inducing a degenerate situation where both parties achieve as large a payment as possible. The alternative
case of reasonably impatient principal is analysed by means of the corresponding dynamic programming
equation introduced in Section 7, where we also provide a verification result following the standard theory.
In Section 9, we provide a rigorous analysis of the dynamic programming equation, and we isolate a set of

3The ’face–lifting’ phenomenon corresponds to the so–called boundary layer effect in singular optimal control problems, and
appeared naturally in various pricing problems in finance, either with hedging constraints or market frictions, see for instance
Broadie, Cvitanić, and Soner [8], Bouchard and Touzi [7], Chassagneux, Élie, and Kharroubi [10], Guasoni, Rásonyi, and Schacher-
mayer [27], Soner and Touzi [59; 60; 61; 62], Cheridito, Soner, and Touzi [11], and Schmock, Shreve, and Wystup [57], or for utility
maximisation problems, see Larsen, Soner, and Žitković [38]. However all these references consider either ’pure’ optimal control
or stochastic target problems, while in our context, the face–lifting phenomenon occurs because of an optimal stopping problem,
and is therefore of a different nature.
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conditions which guarantee that the solution is of the form claimed in [54]. Finally, Section 10 complements
our results and examines the possibility of existence of a Golden Parachute in the context of the finite horizon
Holmström and Milgrom [34], where both parties are now allowed to be risk–averse.

2 Sannikov’s contracting problem
2.1 Output process, agent’s effort, and contract
This section reports our understanding of the continuous time contracting model in Sannikov [54]. Let
(Ω,F ,P0) be a probability space carrying a one–dimensional P0–Brownian motionW 0. For fixed parameters
σ > 0 and X0 ∈ R, the output process is defined by

Xt := X0 + σW 0
t , t ≥ 0.

We denote by F the P0–augmentation of the natural filtration of X (or equivalently, of W 0), which is well–
known to satisfy the usual conditions. We next introduce distributions Pα of the output process under effort
α, so as to induce the dynamics dXt = αtdt+ σdWα

t , for some Pα–Brownian motion Wα. This is naturally
accomplished by means of the following argument based on the Girsanov transformation.

Let A be the collection of all F–predictable processes α with values in a compact subset A of [0,∞),
containing 0. For all α ∈ A, we may introduce an equivalent probability measure Pα so that the process
Wα := W 0 −

∫ ·
0
αs
σ ds is a Pα–Brownian motion, and the process X can be written in terms of Wα as

Xt = X0 +
∫ t

0
αsds+ σWα

t , t ≥ 0.

Any α ∈ A is called an effort process, and is interpreted as an action exerted in order to affect the
distribution of the output process from P0 to Pα.

A contract is a triple C := (τ, π, ξ), where τ ∈ T , the set of all F–stopping times, ξ is a non–negative Fτ–
measurable random variable, and π ∈ Π, the set of F–predictable non–negative processes. Here, τ represents
a retirement time, π is a process of continuous payment rate until retirement, and ξ is a lump–sum payment
at retirement, which may be interpreted as a Golden Parachute in the terminology of Sannikov [54], see
Definition 2.4 below.

We shall introduce later in Section 2.5 the collection C0 of admissible contracts, by imposing some
integrability requirements. These contracts allow to formulate the contracting problem which sets the terms
of the delegation by the principal (she) of the output process to the agent (he). Namely, the principal seeks
to design the optimal contract so as to guarantee that the agent best serves her objectives, while optimising
his own interest.

2.2 The agent’s problem
The agent preferences are defined by
• a utility function u : [0,∞) −→ [0,∞) which is increasing, strictly concave, twice continuously differ-

entiable on (0,∞), satisfies u(0) = 0 together with the (one–sided) Inada condition limx→∞ u′(x) = 0
and the growth condition

c0(−1 + π
1
γ
)
≤ u(π) ≤ c1

(
1 + π

1
γ
)
, π ≥ 0, for some (c0, c1) ∈ (0,∞)2, and some γ > 1, (2.1)

which implies that u(∞) =∞, and u−1(y) ≤ C
(
1 + yγ

)
, for any (y, π) ∈ [0,∞), and for some C > 0;

• a cost function h : [0,∞) −→ [0,∞) assumed to be increasing, strictly convex, continuously differen-
tiable, with h(0) = 0;

• a fixed discount rate r > 0.
Given a contract C := (τ, π, ξ) ∈ C0 and α ∈ A, the utility obtained by the agent is defined by the problem

V A(C) := sup
α∈A

JA(C, α), where JA(C, α) := EPα
[
e−rτu(ξ) +

∫ τ

0
re−rs

(
u(πs)− h(αs)

)
ds
]
. (2.2)
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As u ≥ 0, and A is bounded, notice that JA(C, α) ∈ R ∪ {∞} is well–defined. Moreover, as the agent is
allowed to choose zero effort, inducing JA(C, 0) ≥ 0, it follows that V A(C) ≥ 0 for any proposed contract
C ∈ C0. We denote by

A?(C) :=
{
α ∈ A : V A(C) = JA(C, α)

}
,

the (possibly empty) set of all optimal responses of the agent.

In addition, the agent only accepts contracts which provide him with a utility above some fixed threshold
u(R), where R ≥ 0, called participation level. Thus he is only willing to consider contracts in the subset

C0
R :=

{
C ∈ C0 : V A(C) ≥ u(R)

}
.

Observe that the final lump–sum utility for the agent can be written as u(ξ) =
∫∞
τ
re−rtu(ξ)dt, so that it

can be equivalently implemented by the payment of the lifetime consumption ξ after retirement at time τ .
We shall comment further on this normalisation in Remark 2.3 below.

2.3 The principal’s problem
The principal is risk–neutral with the objective of maximising her overall revenue induced by the agent’s
effort and the promised compensation

JP(C, α) := EPα
[
− e−ρτξ +

∫ τ

0
ρe−ρs(dXs − πsds)

]
,

where we consider here an extension of Sannikov [54], allowing the principal to have a possibly different
discount rate ρ > 0 from that of the agent.

Observe that for any α ∈ A, EPα[ ∫ τ
0 e−2ρsds

]
≤
∫∞

0 e−2ρsds = 1
2ρ < ∞. Then, by standard Itō

integration theory, we have EPα[ ∫ τ
0 e−ρsσdWα

s

]
= 0 for all stopping time τ ∈ T , implying that

JP(C, α) = EPα
[
− e−ρτξ +

∫ τ

0
ρe−ρs(αs − πs)ds

]
,

which is well–defined in {−∞} ∪ R, due to the boundedness of A and the non–negativity of ξ and π.

We also notice again that the lump–sum payment ξ at time τ can be rewritten as ξ =
∫∞
τ
ρe−ρtξdt, and

so it can be implemented by the lifetime payment at rate ξ after τ , in agreement with the corresponding
interpretation in the agent’s problem.

The principal’s problem is defined as follows: anticipating the agent’s optimal response, she chooses the
contract which best serves her objective under the participation constraint

V P := sup
C∈C0

R

sup
α∈A?(C)

JP(C, α). (2.3)

2.4 Reformulation and face–lifted utility
We next re–write our contracting problem equivalently by using the opposite of the inverse of the agent’s
utility

F := −u−11[0,u(∞)) −∞1R+\[0,u(∞)).

Then, denoting ζ := u(ξ) and η := u(π), the criterion of the agent becomes

JA(C, α) = EPα
[
e−rτζ +

∫ τ

0
re−rt

(
ηt − h(αt)

)
dt
]
, (C, α) ∈ C0 ×A, (2.4)

where we abuse notations and indifferently refer as contract the triplet (τ, π, ξ), or the triplet (τ, η, ζ). We
will use this identification implicitly throughout the paper. As for the principal, we have

JP(C, α) = EPα
[
e−ρτF (ζ) +

∫ τ

0
ρe−ρt

(
αt + F (ηt)

)
dt
]
, (C, α) ∈ C0

R ×A.
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Here, the (negative) reward of the principal by stopping at τ is F (ζ).

Our first result shows that in general, the principal may be able to improve her reward by not ending the
contract at some time τ with a lump–sum payment to the agent, but by instead discouraging the agent from
exerting any efforts (which can be understood as an alternative way of ending the contract), and offering him
a continuous consumption. The improved (or face–lifted, hereafter) reward is naturally defined by means of
the following deterministic control problem

F (y0) := sup
p∈BR+

sup
T∈[0,Ty0,p0 ]

{
e−ρTF

(
yy0,p(T )

)
+
∫ T

0
ρe−ρtF

(
p(t)

)
dt
}
, y0 ≥ 0, (2.5)

where BR+ is the set of Borel measurable maps from R+ to R+, and for all (y0, p) ∈ R+ × BR+ ,

T y0,p
0 := inf

{
t ≥ 0 : yy0,p(t) ≤ 0

}
∈ [0,∞],

and the state process yy0,p is defined by the controlled first–order ODE

yy0,p(0) = y0, ẏ
y0,p(t) = r

(
yy0,p(t)− p(t)

)
, t > 0. (2.6)

To better understand the expression (2.5) for the improved payment, notice that for any p ∈ BR+ , direct
integration of this linear ODE leads to

y0 = e−rT yy0,p(T ) +
∫ T

0
e−rtp(t)dt, for all y0 ≥ 0, and T ≤ T y0,p

0 ,

meaning that for a given state of the world ω, the agent is indifferent between a lump–sum payment ξ(ω)
at some retirement time τ(ω), and a continuous payment p(t) on the time interval [τ(ω), τ(ω) + T ], with
zero effort on this time interval, and a retirement deferred to τ(ω) + T , where the lump–sum payment is
now ξ′(ω) := u−1(yζ(ω),p(T )

)
. The restriction T ≤ T y0,p

0 on such deferral policies is induced by the fact that
the agent is protected by limited liability, and therefore can only receive non–negative payments. The idea
is that while the agent is indifferent between these two alternatives, the discrepancy between the discount
rates may be such that the principal can actually benefit from postponing retirement.

An immediate consequence of this is that the value function of the principal can be expressed in its
relaxed formulation as

V
P := sup

C∈CR
sup

α∈A?(C)
J̄P(C, α), where J̄P(C, α) := EPα

[
e−ρτF (ζ) +

∫ τ

0
ρe−ρt

(
αt + F (ηt)

)
dt
]
, (2.7)

where CR := {C ∈ C : V A(C) ≥ u(R), for some subset C ⊂ C0 defined in Section 2.5 below.

The following result states the equivalence of our original contracting problem4 with V P, and characterises
the face–lifted reward F in closed form in terms of the concave conjugate functions

F ?(p) := inf
y≥0

{
yp− F (y)

}
, and F ?(p) := inf

y≥0

{
yp− F (y)

}
, p ∈ R.

Notice that F ? = 0 on R−, and that our condition (2.1) on the agent’s utility function is immediately
converted for F ? into

− c?0
(
1 + |p|γ

?)
≤ F ?(p) ≤ c?1

(
1− |p|γ

?)
, p ≤ 0, with 1

γ
− 1
γ?

= 1, for some (c?0, c?1) ∈ (0,∞)2. (2.8)

Proposition 2.1. We have V P = V
P, and the face–lifted reward function satisfies

(i) F = 0, if ρ ≥ γr;

(ii) F = F , if ρ = r;
4As observed by Yuliy Sannikov in private communication with us, the principal problem may actually be directly defined by

the relaxed formulation (2.7).

6



(iii) if either ρ ∈ (r, γr), or ρ ∈ (0, r) and limy→∞
F ′(y)
yF ′′(y) exists, we have F = (F ?)? where

F
?(p) = 1

1− δ

(
|p|
δ

) 1
1−δ
∫ δp

b

|x|−1− 1
1−δF ?(x)dx, with δ := ρ

r
, b := −∞1{r<ρ} + F ′(0)1{r>ρ}. (2.9)

In particular F is decreasing, strictly concave, rF ′(0) = ρF ′(0)1{r≥ρ}, and F
? satisfies similar bounds to

(2.8), with appropriate positive constants c̄?0, and c̄?1, which translate into bounds on F similar to those in
(2.1), with appropriate positive constants c̄0, and c̄1. Moreover, the supremum over T in (2.5) is attained at
T y0,p

0 , meaning that

F (y0) = sup
p∈BR+

{∫ Ty0,p

0
ρe−ρtF

(
p(t)

)
dt
}
, y0 ≥ 0. (2.10)

The equality V P = V
P in Proposition 2.1 is a direct consequence of our definition of admissible contracts

in Section 2.5 below. The remaining claims are proved in Appendix A, and provide the following significant
results. In the case ρ = r considered by Sannikov [54], the principal never gains by postponing retirement
and allowing the agent to produce zero effort for a while. On the other hand, when ρ 6= r, and ρ is not too
large, it is always optimal to postpone retirement and F is a non–trivial majorant of F . Finally, when the
principal becomes a lot more impatient than the agent, we actually have F = 0, meaning that she can bring
back the cost of permanently retiring the agent to 0.

Example 2.2. Let u(π) := π1/γ , and ρ 6= r with ρ < γr, then F (y) = −yγ , and we compute directly

F ?(p) = −(γ − 1)
(
|p|
γ

)γ/(γ−1)
, F

?(p) = −ρ(γ − 1)2

rγ − ρ

(
r|p|
ργ

) γ
γ−1

, p ≤ 0,

and it follows from Proposition 2.1 that

F (y) = −
(
rγ − ρ
ρ(γ − 1)

)γ−1(
ry

ρ

)γ
, y ≥ 0.

Remark 2.3. The normalisation of the running rewards of the principal and the agent by their corresponding
discount rates in Equation (2.2) and Equation (2.3), is not fundamental, per se. However, the face–lifted
principal’s benefit function plays a crucial role to relate equivalent formulations of the problem. Consider
for instance the agent’s criterion

J
A
0 (C, α) := EPα

[
e−rτu(ξ) +

∫ τ

0
e−rs

(
u(πs)− h(αs)

)
ds
]
,

which differs from JA in (2.2) by the form of discount factor e−rt instead of re−rt. Similarly, change the
principal’s criterion to

J
P
0 (C, α) := EPα

[
− e−ρτξ +

∫ τ

0
e−ρt

(
αt − πt)

)
dt
]
.

Then, following the same argument, the corresponding face–lifted utility function is

F 0(y0) := sup
p∈BR+

sup
T∈[0,Ty0,p0 ]

{
e−ρTF

(
yy0,p(T )

)
+
∫ T

0
e−ρtF

(
p(t)

)
dt
}
, y0 ≥ 0,

with controlled state satisfying for any p ∈ BR+ , yy0,p(0) = y0, and ẏy0,p(t) =
(
ryy0,p(t)− p(t)

)
, t > 0. The

corresponding Hamilton–Jacobi equation is

min
{
F 0 − F, ρF 0 − ryF

′
0 + F ?(F ′0)

}
= 0.

In particular, in the case ρ = r of equal discount rates, we see immediately that F 0(y) := 1
rF (ry), y ≥ 0, is

a solution of this equation. Consequently the decision of retiring the agent should be discussed by comparing
the principal’s value function to F 0 instead of F in this case, see Definition 2.4 below. In this sense, the
setting of [54] is the only parametrisation of the problem with ρ = r for which the face–lifted retirement
reward function F coincides with F .
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2.5 Admissible contracts and Golden Parachute
For technical reasons, we introduce further integrability conditions which guarantee that both criteria of the
agent and the principal are finite, and more importantly, allow to apply the reduction result of Lin, Ren,
Touzi, and Yang [41]. We denote by C the collection of all contracts C := (τ, π, ξ), satisfying in addition the
following integrability condition

lim
n→∞

sup
α∈A

Pα[τ ≥ n] = 0, and sup
α∈A

EPα
[(

e−r
′τ |ξ|

)γ +
∫ τ

0

(
e−r

′s|πs|
)γds

]
<∞, (2.11)

for some r′ ∈ (0, r ∧ ρ
γ ).

In order to guarantee that the equality V P = V
P of Proposition 2.1 holds, we define the set C0 as the

collection of all triples (τ0, π0, ξ0) such that

τ0 = τ + T, π0 = π1[0,τ) + p1[τ,τ0), and u(ξ0) = yu(ξ),p(T ),

for some (τ, π, ξ) ∈ C, and Fτ−measurable p with values in BR+ , and T with values in
[
0, Tu(ξ),p

0
]
.

We can now introduce the notion of Golden Parachute which may have two different meanings in our
relaxed formulation (2.7)

(i) in Sannikov’s formulation, the retirement time τ is not explicitly involved in the model formulation.
Instead, a Golden Parachute is defined as a stopping time τ such that the agent exerts no effort while
receiving a constant consumption on [τ,∞);

(ii) our definition of contracts includes a retirement time τ , and we may naturally define a situation of
Golden Parachute by τ > 0 and ξ > 0, P0–a.s.

Definition 2.4. We say that the contracting model exhibits a Golden Parachute, if there exists an optimal
contract (τ?, π?, ξ?) ∈ CR for the relaxed formulation of the principal problem (2.7) such that τ? > 0, and
P0[ξ? > 0] > 0.

In other words, a Golden Parachute corresponds to a situation where there is a high–retirement point
for the agent, with either lump–sum payment at retirement or continuous payment after retirement, where
retirement means that the agent ceases to exert any effort forever.

Remark 2.5. We shall provide in Section 4 a complete characterisation of the first–best version of our
contracting problem

V P,FB := sup
{
JP(C, α) : C ∈ CFB, α ∈ A, and JA(C, α) ≥ u(R)

}
,

where CFB is an appropriate extension of our C. In particular, Theorem 4.1 shows that the first–best optimal
contract exhibits no Golden Parachute.

3 Main results
3.1 Some cases of non–existence of a Golden Parachute
Our first main result provides a necessary condition for the potential optimality of a Golden Parachute, and
then deduces some sufficient conditions which exclude the existence of a Golden Parachute, thus contrasting
with the results claimed in Sannikov [54]. Our statement requires to introduce the convex conjugate of the
cost of effort function

h?(z) := sup
a∈A
{za− h(a)}, z ∈ R. (3.1)

We also introduce the corresponding subgradient ∂h?(z) := {a ∈ A : h?(z) = za− h(a)}, together with the
second order differential operator

I0(v′, v′′) := sup
z∈R, â∈∂h?(z)

{
â+ h(â)δv′ + ηz2δv′′

}
, for all C2 function v, where δ := r

ρ
, η := 1

2rσ
2. (3.2)
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Proposition 3.1. If a Golden Parachute in the sense of Definition 2.4 exists, then

sup
y≥ȳ

{
I0(F ′, F ′′)(y)

}
≤ 0, for some ȳ > 0, or equivalently sup

p≤p̄

{
I0

(
p,

1
(F ?)′′(p)

)}
≤ 0, for some p̄ < 0.

In particular, there is no Golden Parachute whenever either
(NGP1) h′(0) = 0;

(NGP2) or h′(0) > 0, F ′′ is non–increasing, and I0
(
F
′(0), F ′′(0)

)
> 0;

(NGP3) or h′(0) > 0, A is an interval, and h ∈ C3 with

inf
a∈A

{(
(h′)2)′′(a)
h′′(a)

}
≥ 1
η

sup
y≥0

{
− F

′(y)
F
′′(y)

}
, and sup

y≥0

{
F
′(y) + 2ηF ′′(y)h′′(0)

}
≤ − 1

δh′(0) .

Remark 3.2. Assume for simplicity that F ′(0) = 0, then F ′(0) = 0 by Proposition 2.1. Under our condition
that ā := maxA <∞, we have

sup
z≥h′(0)

{
z−2 max Â(z)

}
≤ ā

(h′(0))2 .

Then, when F ′′ is non–increasing, the existence of a Golden Parachute implies that (h′(0))2 < ā/
(
−ηF ′′(0)

)
.

In other words, the second alternative (NGP2) of Proposition 3.1 states that there is no Golden Parachute for
sufficiently large h′(0). As for the third alternative (NGP3), notice that the first condition is automatically
satisfied whenever (h′)2 is convex, while the second one again requires h′(0) to be large enough.

Example 3.3. Sannikov [54, Figure 1] considers the situation δ = 1, (so that F = F ), and

F (y) = −y2, y ≥ 0, h(a) := 1
2ha

2 + βa, a ∈ A = R+, for some positive constants h and β.

Notice that, given Sannikov’s conclusion that a Golden Parachute exists, the unboundedness of A is not
problematic, as the optimal effort remains bounded, so that the problem is unchanged by restricting to the
corresponding compact subset of A. Under the present specification, we have

F ′′(y) = −2, and sup
z≥β

{
z−2 max Â(z)

}
= sup

a≥0

{
a

h(a+ β)2

}
= 1

4hβ .

Then, since F ′(0) = 0 in this case, the second alternative in Proposition 3.1 can be reformulated as

(NGP2) if and only if 8βηh ≥ 1.

3.2 Complete solution of the contracting problem
Recall from Proposition 2.1 that F = 0 when δγ ≤ 1. Our first result shows that the solution of the
contracting problem is degenerate in this case. Indeed, we shall exhibit a sequence of admissible contracts
which induces a utility as large as we want for the agent, and reaches the highest possible level for the
principal, namely ā. Roughly speaking, these contracts make small intermediate payments, enforce the
highest possible effort for the agent at all times, and promise to pay him an extremely high value after an
extremely long time. By exploiting the large discrepancy between the discount rates of the agent and the
principal, we show that the continuation utilities of both parties reach their maximum.

We emphasise that this result is in line with the solution of the first–best contracting problem of Section 4
below, where we also exhibit a sequence of contracts which induce arbitrarily large level of utility for the
agent, while providing the principal with a value as close as we want to her universal maximal utility of ā.
We refer the reader to Section 4 and Section 6 for more intuitions on the contracts we construct.

Theorem 3.4. Let ρ ≥ γr. Then V P = ā, there is no optimal contract achieving this value, and the
second–best value of the principal coincides with her first–best value.
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The proof of this result is reported in Section 6. We next focus on the more interesting case ρ < γr.
Similar to Sannikov [54], the solution of the contracting problem is characterised by means of the second–
order differential equation

v(0) = 0, and v − δyv′ + F ?(δv′)− I0(v, v′)+ = 0, on [0,∞). (3.3)

Our main results hold under the following assumption.

Assumption 3.5. Either β := h′(0) > 0, or A ⊃ [0, ā0] for some ā0 > 0. Moreover, if ρ ∈ (0, r) then
limy→∞ F ′(y)/

(
yF ′′(y)

)
exists.

Theorem 3.6. Let Assumption 3.5 hold true, and let S :=
{
v = F

}
. Then

(i) there exists a unique solution v ∈ C2(R+) of (3.3), such that 0 ≤ (v − F )(y) ≤ C log(1 + log(1 + y)),
y ≥ 0, for some C > 0;

(ii) v is strictly concave, ultimately decreasing, v′(0) ≥ 0, and whenever F ′(0) = 0, we have v′(0) > 0 if and
only if I0

(
0, F ′′(0)

)
> 0;

(iii) if β = 0, then S = {0}, and if β > 0, and in addition the maps F and I0 of (7.2) are analytic, then
S = {0} ∪ [ygp,∞) for some ygp ∈ [0,∞];

(iv) if S = {0} ∪ [ygp,∞) for some ygp <∞, then

V
P = sup

y≥u(R)
v(y),

and the supremum is attained at some ŷ ≥ u(R). Defining ẑ : [0,∞) −→ R to be a (measurable) maximiser
of I0(v′, v′′), π̂ : [0,∞) −→ R to be a (measurable) minimiser of F ?(δv′), there exists a unique weak solution
to the SDE corresponding to Ŷ := Y ŷ,ẑ(Ŷ ),π̂(Ŷ ). In particular, the contract

(
τ̂ , π̂(Ŷ ), u−1(Ŷτ̂ )

)
, where

τ̂ := inf
{
t ≥ 0 : Ŷt 6∈ (0, ygp)

}
,

is an optimal contract for the relaxed principal problem (2.7).

Remark 3.7. Sannikov mentions that if ‘the agent had a higher discount rate than the principal, then with
time the principal’s benefit from output outweighs the cost of the agent’s effort,’ and that ‘it is sensible to
avoid permanent retirement by allowing the agent to suspend effort temporarily.’ ([54, pp. 959]). Our result
shows that this statement is not correct: having δ > 1 does not change the nature of the solution to the
problem.

Remark 3.8. The case S = {0} is not covered by Theorem 3.6.(iv), due to the fact that in this case,
the optimal retirement time τ? may be infinite with positive probability, and therefore cannot satisfy the
integrability requirement in Equation (2.11). This is however not a critical issue. Indeed, the integrability
condition on admissible stopping times in Equation (2.11) is taken from the general result in [41]. But a
detailed reading of their arguments shows that they only require it in order to be able to treat moral hazard
problems where the agent is allowed to control the volatility of the output process, for which they need a theory
for second–order backward SDEs with random horizon, which is obtained in Lin, Ren, Touzi, and Yang [40],
but does not allow for infinite horizon. In our problem of interest, the agent only controls the drift of X,
meaning that the classical theory of backward SDEs is sufficient, and these objects are known to be well–
posed even with infinite horizon, see for instance Papapantoleon, Possamaï, and Saplaouras [49]. With these
results in hand, we can straightforwardly extend the general reduction result of Section 5 to include possibly
infinite retirement times, and then obtain a verification result general enough to cover these situations. As
this is not central to our message, we refrain to go to this level of generality.

3.3 Numerical illustration
We next provide some numerical results with the cost of effort function from Example 3.3, and utility
function u(π) := πγ , γ > 1. We of course choose the model parameters so that neither (NGP2) nor (NGP3)
are satisfied, since in those cases the solution is F everywhere.
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Figure 1a takes the parameters in [54] (with γ = 2, η = 0.05, h = 0.5, β = 0.4, and δ = 1), and shows the
archetypical case where a Golden Parachute exists, as in [54]. Figure 1b however (with γ = 3/2, η = h = 1,
β = 0.01, and δ = 1) suggests strongly that v remains always strictly above F but becomes asymptotically
close to it, a case for which a Golden Parachute would not exist.

(a) v (red), F (blue) (b) v (red), F (green)

The next two sets of figures show what happens when δ 6= 1. More precisely, Figure 2a (with γ = 3/2,
η = h = 1, β = 0.01, and δ = 3/4) shows a case where v becomes equal to F after a while and a Golden
parachute does exist, while, at least numerically, Figure 2b (with γ = 3, η = h = 1, β = 0.01, and δ = 2),
seems to show that v remains always above F , and that no Golden Parachute exists.

(a) v (red), F (green), F (blue) (b) v (red), F (green), F (blue)

3.4 Sannikov’s solution
In this subsection, we specialise the discussion to the case δ = 1 to better compare with [54]. Notice that
the HJB equation considered by Sannikov in [54, Equation (5)] is the same as our Equation (3.3) when
restricted to the continuation region

v − yv′ + F ?(v′)− I0(v, v′)+ = 0, y ∈ [0, ygp], v(0) = F (0), v(ygp) = F (ygp) and v′(ygp) = F ′(ygp),

which corresponds to the natural guess that the stopping region S = {v = F} is of the form {0} ∪ [ygp,∞),
with some free boundary point ygp <∞ to be determined so as to guarantee that the smooth–fit condition
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v′(ygp) = F ′(ygp) holds. Such a guess is more naturally justified by the optimal stopping component of the
principal’s problem in our formulation. We shall also see that it is necessary in order to apply the verification
argument of Proposition 7.2 below (which in fact requires C2 regularity).

A few pages later, namely in [54, Equation (6)], the author rewrites this ODE with I0 instead of I+
0

v − yv′ + F ?(v′)− I0(v, v′) = 0, y ∈ [0, ygp], v(0) = F (0), v(ygp) = F (ygp) and v′(ygp) = F ′(ygp). (3.4)

This is motivated by the natural guess that the principal is expected to induce a positive effort for the agent
on the continuation region. More importantly, direct manipulations allow to reformulate the last equation
equivalently as

v′′ = inf
z≥h′(0), â∈Â(z)

{
v − yv′ + F ?(v′)− â− h(â)v′

ηz2

}
, (3.5)

thus reducing the equation to an explicit non–linear second–order ODE under the additional restriction to
a positive marginal cost of effort, that is to say when h′(0) > 0.

Next, assuming that ygp < ∞, the potential explosion of the solution due to the superlinear feature of
F ? is bypassed, as the concavity of v implies that v′ is bounded in [v′(ygp), v′(0)]. Although this assumption
is not always true, see Proposition 3.1, we continue along the line of Sannikov. Then, it follows from the
standard Cauchy–Lipschitz theorem that the last ODE, with initial data v(0) = 0 and v′(0) = b, has a
unique classical solution for any choice of b, say vb. Then, Sannikov argues that it is possible to choose b so
that this solution vb indeed solves Equation (3.4). Although, Sannikov’s proof of this claim is not rigorous,
we show in the subsequent analysis that this result may be correct for sufficiently small β. However, notice
that our main results given in Section 3.2 and Section 3.1, show that
• for β = 0, there is no ygp ≥ 0 such that the solution of the dynamic programming equation (3.3) agrees

with F on [ygp,∞), see (NGP1) of Proposition 3.1;
• for β > 0 sufficiently small, we prove under additional conditions that the solution of (3.3) may exhibit

the behaviour claimed by Sannikov. In fact, we shall prove that the stopping region S is either reduced
to {0}, or is of the form {0} ∪ [ygp,∞) for some ygp ≥ 0. This requires some involved technical
arguments which are displayed in Section 9 below;

• when the curvature at zero u′′(0) of the agent’s utility is sufficiently large negative, the stopping region
S is always reduced to {0} for whatever value of β > 0. See (NGP2) of Proposition 3.1.

Finally, we observe that in [54, Figure 6], the value function v is tangent to F at the point ygp, but
seems to be strictly above F on (ygp,∞)! We believe that the function plotted in this figure is the solution
of (3.4). Although this solution coincides with the solution of the dynamic programming equation (3.3) on
the continuation region [0, ygp], this figure shows that it lies strictly above it on the stopping region (ygp,∞)
where the principal optimally retires the agent. Hence, this seems to be a concrete numerical evidence that
the dynamic programming equation is not equivalent to (3.4).

4 The first–best contracting problem
This section reports for completeness the solution of the first–best version of the contracting problem

V P,FB := sup
{
JP(C, α) : C ∈ CFB, α ∈ A, and JA(C, α) ≥ u(R)

}
,

where CFB consists of all contracts (τ, π, ξ) where τ ∈ T is a stopping time with values in [0,∞], and (π, ξ)
satisfy the integrability condition of (2.11). In particular, we shall see that the first–best optimal contract
exhibits no Golden Parachute.

We first consider the case where δγ ≤ 1, which is somewhat degenerate. Indeed, as mentioned earlier,
we can find a sequence of admissible contracts which ensure a utility as large as we want for the agent, and
reaches the highest possible level for the principal, namely ā. The idea is to offer no intermediate payments,
to ask the agent to exert maximal effort at all times, and to retire him after a very long time, at which we
offer him a very large lump–sum payment. The difficulty is then in how to calibrate the speed at which the
retirement time and the final payment explode, so as to ensure that the principal’s utility still increases.
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Theorem 4.1. Assume that δγ ≤ 1. Then, we have V P,FB = ā, and there does not exist an optimal contract.

Proof. Notice first that the limited liability constraints on the payments made to the agent, and the fact
that A is bounded by ā imply immediately that for any (C, α) ∈ CFB ×A, we have

JP(C, α) ≤ ā.

Moreover, the only way this can be an equality is to choose α = ā, and C := (τ, π, ξ) such that π = 0
and F (ξ)eρτ = 0, which means that either τ = ∞, or ξ = 0. However, such contracts do not satisfy the
participation constraint of the agent, and therefore there cannot exist an admissible contract attaining the
upper bound ā for the principal. We will however show that one can find a sequence of admissible contracts
which allows to approach ā as close as we want.

For any ε > 0, let us consider the following contract: τε := − log(ε)/ε, πε := 0, ξε := ε−1eγ(r−ε)τε , with
the level of effort αε := ā. Since these contracts are defined by deterministic components, they automatically
satisfy the integrability condition of (2.11). Notice also that when ε goes to 0, both τε and ξε converge
to ∞. Therefore, we can choose ε small enough and find a constant C > 0, independent of ε, such that
u(ξε) ≥ C(ξε)1/γ . The utility received by the agent is then

e−rτ
ε

u
(
ξε
)
− h(ā)

(
1− e−rτ

ε)
≥ C

εγ−1 − h(ā) −→
ε→0
∞,

so that the agent’s participation constraint is satisfied for ε small enough. The principal’s utility is

−e−ρτ
ε

ξε + ā
(
1− e−ρτ

ε)
= eρ(1−δγ) log(ε)

ε εγ−1 + ā
(
1− e−ρτ

ε)
−→
ε→0

ā,

since δγ ≤ 1, which ends the proof in this case.

When δγ > 1, the problem does not degenerate any longer, unless the reservation utility of the agent is
too low and either ā is too small, or (F ?)′(0) is too large. The solution is expressed in terms of the function

G?(p) := sup
a∈A

{
a+ ph(a)

}
, p ∈ R.

Theorem 4.2. Let δγ > 1. Then
(i) if u(R) ≤ −h(ā) +

(
F ?
)′(0), the value function of the first–best problem is V P,FB = ā, and there is no

optimal contract which achieves this value;
(ii) otherwise, V P,FB = −λ?δu(R) +

(
G? − F ?

)(
− δλ?

)
, where λ? is the unique positive solution of

−u(R)−
∫ ∞

0
re−rt

(
G? − F ?

)′(− δλ?e(ρ−r)t)dt = 0.

Moreover, the agent’s participation constraint is saturated, with first–best optimal contract

τ? =∞, and π?t ∈ Û
(

e(r−ρ)t

δλ?

)
, a?t ∈ Â

(
e(r−ρ)t

δλ?

)
, t ≥ 0,

where for any z ∈ R, Û(z) := argminp≥0
{
zp− u(p)

}
.

Proof. By the standard Karush–Kuhn–Tucker method, we rewrite the first best problem as

inf
λ≥0

{
− λu(R) + sup

(C,α)∈CFB×A
EPα

[
−
(
e−ρτξ − e−rτλu(ξ)

)
−
∫ τ

0

(
ρe−ρtπt − re−rtλu(πt)

)
dt

+
∫ τ

0

(
ρe−ρtαt − re−rtλh(αt)

)
dt
]}

= inf
λ≥0

{
− λu(R) + sup

(τ,α)∈T ×A
EPα

[
− e−ρτF ?

(
− λe(ρ−r)τ)+

∫ τ

0
ρe−ρt

(
G? − F ?

)(
− δλe(ρ−r)t)dt]}

= inf
λ≥0

{
− λu(R) + sup

T≥0
f(T )

}
, f(T ) := −e−ρTF ?

(
− λe(ρ−r)T )+

∫ T

0
ρe−ρt

(
G? − F ?

)(
− δλe(ρ−r)t)dt.
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As G? ≥ 0, and F ? is concave, we have

f ′(T ) ≥ ρe−ρT
(
F ?
(
− λe(ρ−r)T )− F ?(− λδe(ρ−r)T )+ λ(1− δ)e(ρ−r)T (F ?)′

(
− λe(ρ−r)T )) ≥ 0, T ≥ 0.

Then, the supremum over T ≥ 0 is attained at infinity, with limT→∞ f(T ) = φ(λ) <∞, as δγ > 1, where

φ(λ) :=
∫ ∞

0
ρe−ρt

(
G? − F ?

)(
− δλe(ρ−r)t)dt <∞, and V P,FB

0 = inf
λ≥0

{
− λu(R) + φ(λ)

}
.

Notice that φ is strictly convex, with φ(0) = (G? − F ?)(0) = G?(0) = ā, and limλ→∞ φ(λ) = ∞, since G?
has linear growth (recall that A is compact), and F ? grows as (−p)γ/(γ−1) at −∞. We also compute directly
that

φ′(0) = −
(
G? − F ?

)′(0) ≤ −
(
G? − F ?

)′(0) = −h(ā) +
(
F ?
)′(0),

where the last equality follows from the differentiability of G? and the observation that G?(p) = ā + ph(ā)
for p ≥ 0. Consequently, the minimum in the last expression of V P,FB is attained
• either at λ? = 0, if −u(R)−h(ā)+

(
F ?
)′(0) ≥ 0, inducing the value V P,FB = (G?−F ?)(0) = G?(0) = ā,

• or at the unique solution λ? of −u(R)− φ′(λ?) = 0. Then it follows from a direct integration by parts
that −λ?(1− δ)u(R) = λ?(1− δ)φ′(λ?) = (G? − F ?)(−δλ?)− φ(λ?), and therefore

V P,FB = −λ?u(R) + φ(λ?) = −λ?δu(R) +
(
G? − F ?

)(
− δλ?

)
.

Notice finally that when λ? = 0, similar to the proof of Theorem 4.1, there is no optimal contract.

5 Reduction to a mixed control–and–stopping problem
In order to prove our main results reported in Section xsect:mainresults, we use the general approach of Lin,
Ren, Touzi, and Yang [41]5 which justifies the remarkable solution approach introduced by Sannikov [54],
reducing the Stackelberg game problem of the principal (2.7) into a standard stochastic control one.

To do this, observe that the Hamiltonian of the agent’s problem is given by convex conjugate function h?
introduced in (3.1), and that the corresponding sub–gradient contains all possible optimal agent responses

Â(z) := ∂h?(z) = {a ∈ A : h?(z) = za− h(a)}.

As A is closed and h is strictly convex6, notice that

Â(z) 6= ∅, whenever h?(z) <∞, and Â(z) = {0}, for z ≤ h′(0), (5.1)

because a 7−→ za − h(a) is decreasing whenever z ≤ h′(0). We also abuse notations slightly, and for any
F–predictable, real–valued process Z and any α ∈ A, we write α ∈ Â(Z) whenever αt ∈ Â(Zt), dt⊗dP0–a.e.

Then, the lump–sum payment ξ = u−1(ζ) promised by the principal at τ takes the form

ζ = Y Y0,Z,π
τ = Y0 + r

∫ τ

0
ZtdXt +

(
Y Y0,Z,π
t − h?(Zt)− ηt

)
dt, (5.2)

where Y Y0,Z,π represents the continuation utility of the agent given a continuous consumption stream π =
u−1(η) and Z satisfies the integrability condition

sup
α∈A

EPα
[

sup
0≤t≤τ

(
e−r

′t|Yt|
)p]

<∞, and sup
α∈A

EPα
[(∫ τ

0
(e−r

′t|Zt|)2dt
) p

2
]
<∞. (5.3)

5See Footnote 7. The methodology developed in [41] extends the finite maturity setting of Cvitanić, Possamaï, and Touzi [19]
and is largely inspired by the method developed in Sannikov [54].

6If A is an interval, then the strict convexity of h guarantees that Â(z) is a singleton. However, for a general closed subset A,
the maximiser may not be unique.
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Remark 5.1. As observed by Sannikov [54], notice that the non–negativity condition on u and h implies
that the so–called limited liability condition Y Y0,Z,π ≥ 0 is satisfied. Indeed, as the dynamics of the process
Y Y0,Z,π are given by dY Y0,Z,π

t = r
(
Y Y0,Z,π
t +h?(Zt)− ηt

)
dt+σrZtdW 0

t , under the agent’s optimal response,
we see that 0 is an absorption point for the continuation utility with optimal effort 0.

By the main reduction result of [41],7 we may rewrite the principal’s problem (2.7) as

V P = sup
Y0≥u(R)

V (Y0), where V (Y0) := sup
(τ,Z,π)∈Z(Y0)

â∈Â(Z)

J(τ, π, Z, â), (5.4)

and
J(τ, π, Z, â) := EPâ

[
e−ρτF

(
Y Y0,Z,π
τ

)
+
∫ τ

0
ρe−ρt

(
ât + F (ηt)

)
dt
]
. (5.5)

Here Z(Y0) is the collection of all triples (τ, Z, π) such that τ , â and ξ = −F (Y Y0,Z,π
τ ) satisfy the integrability

conditions (2.11), for some â ∈ Â(Z), and therefore also (5.3), together with the limited liability condition
Y Y0,Z,π ≥ 0 of Remark 5.1.

The last control problem only involves the dynamics of Y Y0,Z,π under the optimal response of the agent
(due to the principal’s criterion which does not involve anymore the state variable X)

dY Y0,Z,π
t = r

(
Y Y0,Z,π
t + h

(
ât
)
− ηt)

)
dt+ rZtσdW â

t , Pâ–a.s., for all â ∈ Â(Z). (5.6)

6 Second–best value for a (very) impatient principal
We now provide the proof of Theorem 3.4 by using the problem reduction from the previous section. Notice
first that whenever V P = ā, then the result of Theorem 4.1 shows that there cannot exist an optimal contract,
and that the first–best and second–best value coincide. Our proof is based on an explicit construction of a
sequence of contracts following the idea used in the proof of Theorem 4.1: we want to have a retirement time
going to ∞, associated with a large lump–sum payment. However, because we are now in the second–best
case, we need to offer the agent contracts which are incentive–compatible with the level of effort ā, meaning
that these contracts cannot be deterministic. This can however be achieved by choosing a large enough
and constant control process Z in Equation (5.6). The price to pay now with such contracts is that the
continuation utility of the agent may reach 0 in finite time with positive probability, thus preventing the
principal from offering a large lump–sum payment. This thus requires to carefully control the probability
of early termination of the contract, and we show that by offering the agent a sufficiently large utility, this
probability can be made arbitrarily small.

Proof of Theorem 3.4. Let us fix some y0 > 0, z > h′(ā). It is immediate that in this case Â(z) = {ā}. For
arbitrary ε ∈ (0, r ∧ 1), consider the continuous payment πεt := u−1(εY εt ), t ≥ 0, where Y ε := Y y0/

√
ε,z,πε is

the corresponding continuation utility of the agent, which is given by

Y εt = y0√
ε

+
∫ t

0

(
(r − ε)Y εs + rh(ā)

)
ds+ rzσW ā

t , t ≥ 0.

Notice that Y ε an Ornstein–Uhlenbeck process under Pā, whose SDE can be solved explicitly:

Y εt = e(r−ε)t y0√
ε

+ r

r − ε
h(ā)

(
er(t−ε) − 1

)
+ rzσ

∫ t

0
e(r−ε)(t−s)dW ā

s , t ≥ 0.

Let now T ε0 := inf
{
t > 0 : Y εt = 0

}
, and consider the contract Cε with retirement time τε :=

(
− log(ε)

ε

)
∧T ε0 ,

continuous payments πε, and terminal payment ξε := u−1(Y ετε). We know from the general results in
Section 5 that such a contract provides the agent with utility − log(ε)y0, which he will accept for ε small

7 By the growth condition (2.1) on u, the integrability condition (2.11) implies that

sup
α∈A

EPα
[(

e−r
′τu(ξ)

)γ +
∫ τ

0

(
e−r
′su(πs)

)γds
]
< ∞,

which is precisely the integrability condition required by Lin, Ren, Touzi, and Yang [41].
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enough, regardless of the level of his participation constraint. Indeed, all the integrability requirements are
obviously satisfied here, since z is deterministic, τε is bounded, and from the explicit formula for Y ε.

We now compute the principal’s utility induced by this contract

JP(Cε, ā) = EPā[e−ρτεF (Y ετε)]+ EPā
[ ∫ τε

0
ρe−ρtF

(
εY εt

)
dt
]

+ ā
(

1− EPā[e−ρτε]).
Step 1. For ε < r, we have T ε0 > T̄ ε0 := inf

{
t > 0 : Ȳ εt = 0

}
, where Ȳ εt := y0/

√
ε+ rh(ā)t+ rzσW ā

t , t ≥ 0.
The law of T̄ ε0 is well–known (see for instance Karatzas and Shreve [36, Equation (5.13)]), and we have

Pā
[
T ε0 <∞

]
≤ Pā

[
T̄ ε0 <∞

]
= exp

(
− 2h(ā)y0

rσ2z2√ε

)
−→
ε→0

0. (6.1)

This implies that

EPā[e−ρτε] = eρ
log(ε)
ε Pā

[
T ε0 =∞

]
+ EPā

[
e−ρτ

ε

1{T ε0<∞}
]
≤ eρ

log(ε)
ε Pā

[
T ε0 =∞

]
+ Pā

[
T ε0 <∞

]
−→
ε→0

0.

Step 2. Next, we have that there exists some C > 0, which may change value from line to line, but is
independent of ε, such that for any t ∈

[
0, T ε0

]
0 ≤ −e−ρtF

(
Y εt
)
≤ Ce−ρt

(
1 +

∣∣Y εt ∣∣γ)
≤ Ce−ρt

(
1 +

(
1 + ε−γ/2

)
e(r−ε)γt + eγ(r−ε)t

∣∣∣∣ ∫ t

0
e−(r−ε)sdW ā

s

∣∣∣∣γ).
Then, as the last stochastic integral is a Gaussian random variable, and δγ ≤ 1, we see that

0 ≤ −EPā[e−ρτεF (Y ετε)]
≤ CEPā

[
e−ρτ

ε

(
1 +

(
1 + | log(ε)|γ

)
e(r−ε)γτε + eγ(r−ε)τε

∣∣∣∣ ∫ τε

0
e−(r−ε)sdW ā

s

∣∣∣∣γ)]
≤ Ceρ

log(ε)
ε

(
1 +

(
1 + ε−γ/2

)
e(r−ε)γ − log(ε)

ε + e−γ(r−ε) log(ε)
ε EPā

[∣∣∣∣ ∫ − log(ε)
ε

0
e−(r−ε)sdW ā

s

∣∣∣∣γ])
+ CEPā

[
1{T ε0<∞}e

−ρτε
(

1 +
(
1 + ε−γ/2

)
e(r−ε)γτε + eγ(r−ε)τε

∣∣∣∣ ∫ τε

0
e−(r−ε)sdW ā

s

∣∣∣∣γ)]
≤ Ceρ

log(ε)
ε

(
1 +

(
1 + ε−γ/2

)
e−(r−ε)γ log(ε)

ε + e−γ(r−ε) log(ε)
ε

(
1− e2(r−ε) log(ε)

ε

) γ
2
])

+ C
(
1 + ε−γ/2

)
Pā
[
T ε0 <∞

]
+ CEPā

[
1{T ε0<∞}

∣∣∣∣ ∫ τε

0
e−(r−ε)sdW ā

s

∣∣∣∣γ]. (6.2)

It can be checked directly that since δγ ≤ 1, the first term on the right–hand side of Equation (6.2) goes to
0 as ε go to 0. By (6.1), the second term also goes to 0 as ε goes to 0. Finally, for the third one, we have
using Cauchy–Schwarz inequality and Burkholder–Davis–Gundy’s inequality

EPā
[
1{T ε0<∞}

∣∣∣∣ ∫ τε

0
e−(r−ε)sdW ā

s

∣∣∣∣γ] ≤ (Pā[T ε0 <∞]) 1
2EPā

[∣∣∣∣ ∫ τε

0
e−(r−ε)sdW ā

s

∣∣∣∣2γ] 1
2

≤ C
(
Pā
[
T ε0 <∞

]) 1
2
(∫ ∞

0
e−2(r−ε)sds

) γ
2

≤ C
(
Pā
[
T ε0 <∞

]) 1
2 −→
ε→0

0,

Step 3. Notice also at this point that when δγ < 1, we can follow all the steps above but take instead
πε = 0 in the contract. Then, all the terms appearing still converge to 0 when ε goes to 0, and it is enough
in this case to conclude that limε→0 J

P(Cε, ā) = ā.
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In the case δγ = 1, it remains to control the continuous payment term

0 ≤ −EPā
[ ∫ τε

0
ρe−ρtF

(
εY εt

)
dt
]

≤ −
∫ ∞

0
ρe−ρtEPā

[
1{ε|Y εt |≤1}F

(
ε|Y εt |

)]
dt+ C

∫ ∞
0

ρe−ρtEPā
[
1{ε|Y εt |>1}

(
1 + εγ |Y εt |γ

)]
dt

≤ −
∫ ∞

0
ρe−ρtEPā

[
F
(
1 ∧ |εY εt |

)]
dt+ Cεγ

∫ ∞
0

ρe−ρtEPā[|Y εt |γ]dt+ C

∫ ∞
0

ρe−ρtPā
[
ε|Y εt | ≥ 1

]
dt.

Notice next that we have that for any t ≥ 0

εγ |Y εt |γ ≤ C
(
εγ/2 + εγeγ(r−ε)t + εγ

∣∣∣∣ ∫ t

0
e(r−ε)(t−s)dW ā

s

∣∣∣∣γ).
Therefore, we have since γ > 1

0 ≤ εγ
∫ ∞

0
ρe−ρtEPā[|Y εt |γ]dt ≤ εγ/2 + Cρ

εγ−1

γ
+ ρεγ

∫ ∞
0

e−γεt
(

1− e−2(r−ε)t
) γ

2 dt

≤ εγ(− log(ε))γ + 2ρε
γ−1

γ
−→
ε→0

0.

Finally, since for any t ≥ 0, ε|Y ε| converges Pā–a.s. to 0, it is immediate by dominated convergence that∫ ∞
0

ρe−ρtPā
[
ε|Y εt | ≥ 1

]
dt −→

ε→0
0, and

∫ ∞
0

ρe−ρtEPā
[
F
(
1 ∧ |εY εt |

)]
dt −→

ε→0
0,

which concludes the proof.

7 Dynamic programming equation
This section prepares for the proof of the remaining main results of Section 3 by applying the dynamic
programming approach to solve the mixed control–and–stopping problem (5.4)–(5.5).

Notice that this problem is stationary in time due to the infinite horizon feature, and the time homogeneity
of the dynamics of Y . By standard stochastic control theory, together with Remark 5.1, the corresponding
HJB equation is

v(0) = 0, and min
{
v − F ,Lv

}
= 0, on (0,∞), (7.1)

where for any y > 0

Lv(y) := v − δyv′(y) + F ?
(
δv′(y)

)
− I0

(
v(y), v′(y)

)+ = v(y)− F (y)−TF
(
y, δv′(y)

)
− I0

(
v′(y), v′′(y)

)+
,

and the second order differential operator I0 is as introduced in Equation (3.2), and can be rewritten thanks
to (5.1) as

I0(p, q) =∞1{q>0} + 1{q≤0} sup
z≥h′(0), â∈Â(z)

{
â+ h(â)p+ ηz2q

}
, (p, q) ∈ R2, (7.2)

where
TF (y, p) := yp− F (y)− F ?(p), y ≥ 0, p ∈ R.

Observe by definition that

TF (y, p) ≥ 0, and TF
(
y, F ′(y)

)
= 0, for all y ≥ 0. (7.3)

Moreover, the face–lifted principal reward function F introduced in (2.5) satisfies

F − F −TF
(
·, δF ′

)
= 0, on R+, (7.4)

see the proof of Proposition 2.1 in Appendix A.
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Remark 7.1. (i) Notice that LF ≤ 0 on R+. Indeed LF = F − F − TF (y, δF ′) − I0(F ′, F ′′)+ =
−I0(δF ′, δF ′′)+ ≤ 0 by (7.4).

(ii) Equation (7.1) is equivalent to

v(0) = 0, and Lv = 0, on (0,∞), (7.5)

which agrees exactly with Equation (3.3) used in the statement of Theorem 3.4. Indeed, if v is a solution of
(7.1), then Lv = 0 on Sc, where S := {v = F} is the so–called stopping region, and Lv = LF ≥ 0 on S,
which implies that Lv = 0 on R+ by part (i) of the present remark.

Conversely, assuming that Lv = 0, we see that v = F + TF (·, δv′) + I0(v′, v′′)+ ≥ F + TF (·, δv′), and
therefore v is a supersolution of (7.4). By Lemma A.2, this implies that v ≥ F , and we conclude that v
solves Equation (7.1).

We next provide a verification argument which is the standard justification of the importance of the
dynamic programming equation (7.1), and which guides the subsequent technical analysis to solve the con-
tracting problem.

Proposition 7.2. (i) Let v ∈ C2(R+) be a super–solution of (7.1), i.e. v(0) ≥ 0, and Lv ≥ 0. Then v ≥ V
on R+.

(ii) Assume further that v(0) = 0, Lv = 0 on the continuation region Sc := {v > F}, and that
• for any y > 0, there exists a maximiser ẑ(y) of I(δv′, δv′′)(y) such that the SDE (5.6), with, for any
t ≥ 0, u(π?t ) := (F ?)′

(
δv′(Yt)

)
, Z?t := ẑ(Yt), and â?t ∈ Â(Z?t ), has a weak solution;

• defining τ? := inf
{
t : Y y,Z

?,π?

t 6∈ Sc
}
, the triplet (τ?, Z?, π?) belongs to Z(Y0).

Then v(Y0) = V (Y0).

(iii) If in addition v is ultimately decreasing, then the value function of the principal is V P = v(Y ?0 ), for
some Y ?0 ≥ u(R) with optimal contract ξ? given by

u(ξ?) := Y ?0 + r

∫ τ?

0
Z?t dXt + r

∫ τ?

0

(
Yt − h?(Z?t )− u(π?)

)
dt.

Proof. (i) We first prove that v ≥ V . For an arbitrary Y0 ≥ 0, and (τ, Z, π) ∈ Z(Y0) with corresponding
â ∈ Â(Z), we introduce τn := τ ∧ inf{t ≥ 0 : Yt ≥ n}, and we directly compute by Itō’s formula that

v(Y0) = e−ρτnv(Yτn)−
∫ τn

0
e−ρt

(
− ρv + ∂tv + (y + h(ât)− u(πt))rvy + 1

2σ
2r2Z2

t vyy

)
(Yt)dt

−
∫ τn

0
e−ρtvy(Yt)rZtσdW â

t

≥ e−ρτnF (Yτn) +
∫ τn

0
e−ρt

(
Lv(Yt) + ât − πt

)
dt−

∫ τn

0
e−ρtvy(Yt)rZtσdW â

t

≥ e−ρτnF (Yτn) +
∫ τn

0
e−ρt

(
ât − πt

)
dt−

∫ τn

0
e−ρtvy(Yt)rZtσdW â

t .

Since vy is bounded on [0, τn] and Z satisfies (5.3), this implies that

v(Y0) ≥ EPâ
[
e−ρτnF (Yτn) +

∫ τn

0
e−ρt

(
ât − πt

)
dt
]
−→ EPâ

[
e−ρτF (Yτ ) +

∫ τ

0
e−ρt

(
ât − πt

)
dt
]
, as n −→∞,

where the last convergence follows from the fact that

∣∣e−ρτnF (Yτn)
∣∣ ≤ C(1 + e−ρτnY γτn

)
≤ C

(
1 + sup

0≤t≤τ

(
e−

ρ
γ tYt

)γ)
,

by the estimate stated in Proposition 2.1, together with the integrability conditions on π in (2.11) and on
Y in (5.3). By the arbitrariness of (τ, Z, π) ∈ Z(Y0), this shows that v(Y0) ≥ V (Y0).
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To prove (ii), we now repeat the previous argument starting from the control (τ?, Z?, π?) introduced in
the statement, and denoting Y ? the induced controlled state process. As Z?t and u(π?t ) are maximisers of
I(δv′, δv′′)(Y ?t ) and F ?(δv′(Y ?t )), respectively, we see that for any â? ∈ Â(Z?)

v(Y0) = EPâ
?
[
e−ρτnv(Y ?τ?n) +

∫ τ?n

0
e−ρt

(
α̂?t − π?t

)
dt
]
−→
n→∞

EPâ
?
[
e−ρτ

?

v
(
Y ?τ?
)

+
∫ τ?

0
e−ρt

(
â?t − π?t

)
dt
]

= EPâ
?
[
e−ρτ

?

F
(
Y ?τ?
)

+
∫ τ?

0
e−ρt

(
â?t − π?t

)
dt
]
,

since v = F on the boundary of S.
(iii) Finally, v is concave by Remark 7.1 (iii). As it is assumed to be ultimately decreasing, the existence

of a maximiser Y ?0 of v(y) on [u(R),∞) follows, and we obtain that V P = supY0≥u(R) v(y) = v(Y ?0 ).

8 On the existence of a Golden Parachute
This section reports the proof of Proposition 3.1 by analysing the action of the operator L on the face–lifted
principal’s reward F . Indeed, if there is a Golden Parachute, then the value function of the principal coincides
with F on [ygp,∞), and we must therefore have LF ≥ 0 on that interval. In view of Remark 7.1.(i), we must
have in fact LF = 0 on [ygp,∞). By definition of F , this means that we must have I0

(
F
′(y), F ′′(y)

)+ = 0
for any large enough y, and that I0

(
F
′(y), F ′′(y)

)
> 0 for y in a set of non–empty interior. Hence the

first part of the statement. The equivalence with the condition written in terms of F ? can be obtained by
evaluating I0

(
F
′(y), F ′′(y)

)+ at the point y =
(
F
′)−1(p), and by computing that F ′′(y) = 1/(F ?)′′(p).

Consequently, we now justify the sufficient conditions of the proposition by verifying some cases where
F either solves Equation (7.1) on the whole R+, or nowhere.
Lemma 8.1. Let β := h′(0). We have

(i) LF (y) = 0 for some y > 0, if and only if I0(F ′, F ′′)(y)+ = 0;

(ii) if β > 0, then LF = 0 on [y1,∞), for some y1 ≤
(
F
′)−1

(
F
′(0) ∧ −1

βδ

)
;

(iii) if β = 0, and A ⊃ [0, ā] for some ā > 0, then LF < 0 on (0,∞).

Proof. (i) follows immediately from the definition of F . To prove (ii), recall from Proposition 2.1 that F is
decreasing and strictly concave on [0,∞), implying that

0 ≤ I0
(
δF
′
, δF

′′)+ ≤ sup
z∈R, â∈Â(z)

{
â+ h(â)δF ′} ≤ sup

z∈R, â∈Â(z)

{
â(1 + βδF

′)},

where the last inequality is a consequence of the convexity of h, which implies that h(â) ≥ h(0)+h′(0)â = βâ.
Now, observe that y0 := (F ′)−1(F ′(0) ∧ −1

βδ

)
is such that 1 + βδF

′ ≤ 0 on [y0,∞). Then, since Â(0) = {0},
we deduce that I0(F ′, F ′′)+ = 0 on [y0,∞).

(iii) As A contains an interval, h is strictly convex, F is concave, and h′(0) = 0, we have that

I0
(
F
′(y), F ′′(y)

)+ = sup
z≥0, â∈Â(z)

{
â+ h(â)δF ′(y) + ηz2δF

′′(y)
}

≥ sup
z≥0, â∈Â(z)⊂[0,ā]

{
â+ h(â)δF ′(y) + ηz2δF

′′(y)
}

= sup
z≥0

{
(h′)−1(z) ∧ ā+ h

(
(h′)−1(z) ∧ ā

)
δF
′(y) + ηz2δF

′′(y)
}

= sup
a∈[0,ā]

{
a+ h(a)δF ′(y) + η

(
h′(a)

)2
δF
′′(y)

}
, y > 0.

Now notice that since h′(0) = 0, the derivative at a = 0 of the map inside the supremum above is equal to
1 > 0. Therefore, this map is increasing on a right–neighbourhood of 0, and thus for any y > 0, we have
I0
(
F
′(y), F ′′(y)

)+
> 0.
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The next result complements Lemma 8.1.(ii) by exploring the regions where LF = 0 may hold under
additional conditions on either F or h. Let

φ(y) := sup
z≥β, â∈Â(z)

{
â+ h(â)δF ′(y) + ηz2δF

′′(y)
}
, y ≥ 0, so that I0(F ′, F ′′)+ = φ+,

and notice that φ is non–increasing, whenever F ′′ is.

Lemma 8.2. Let β := h′(0) > 0. Then the following holds

(i) if F ′′ is non–increasing, then{
LF = 0

}
= {I0(F ′, F ′′)+ = 0

}
= [y1,∞), where y1 := inf

{
y ≥ 0 : φ(y) ≤ 0

}
<∞.

In particular, LF = 0 on R+ if and only if I0
(
F
′(0), F ′′(0)

)+ = 0;

(ii) if A = [0, ā] for some ā > 0, and h ∈ C3 with

inf
a∈A

{(
(h′)2)′′(a)
h′′(a)

}
> 0, and F ′(0) + 2ηF ′′(0)h′′(0) < −1

βδ
, (8.1)

then I0(F ′, F ′′)+ = 0, on [0, y0] ∪ [y1,∞), for some y0 > 0, and y1 ≤ (F ′)−1
(
F
′(0) ∧ −1

βδ

)
;

(iii) In the context of (NGP3) we have I
(
δF
′
, δF

′′) = 0, on (0,∞).

Proof. (i) Since I+
0 ≥ 0 and LF = I0

(
F
′
, F
′′)+ as in the previous proof, the first part of (i) follows

immediately, and we see that y1 < ∞ by Lemma 8.1.(iii). Next, we just observe that φ(0) ≤ 0 if and only
if â+ h(â)δF ′(0) + ηz2δF

′′(0) ≤ 0, for all z ≥ β and â ∈ Â(z), which provides the required condition given
that F ′(0) ≤ 0.

(ii) The existence of y1 is direct as in (i). Next, under our assumption on A, we have directly that

I0
(
F
′(y), F ′′(y)

)+ = sup
a∈A

{
a+ h(a)δF ′(y) + η

(
h′(a)

)2
δF
′′(y)︸ ︷︷ ︸

=:ψ(a,y)

}+
, y > 0.

Notice that
∂aaψ(a, y) = h′′(a)δF ′(y) + η

(
(h′)2)′′(a)δF ′′(y), (a, y) ∈ A× [0,∞),

so that the first condition in Equation (8.1) implies that supa∈A ∂aaψ(a, 0) < 0, and therefore by continuity,
supa∈A ∂aaφ(a, y) ≤ 0 on some small interval [0, y0], y0 > 0. This shows that ψ(·, y) is concave in a, for y in
this interval. We next compute that, reducing y0 if necessary

∂aψ(0, y) = 1 + βδ
(
F
′(y) + 2ηF ′′(y)h′′(0)

)
≤ 0, y ∈ [0, y0],

by the second condition in Equation (8.1) and the continuity of F ′(0)′′. Hence, for any y ∈ [0, y0], the
function a 7−→ ψ(a, y) is non–increasing, concave, and thus attains its maximum at a = 0, implying that
I0
(
F
′(y), F ′′(y)

)+ = ψ(0, y)+ = 0.

(iii) This is very similar to (ii). Simply notice that now the first condition in (NGP3) implies that for any
y ≥ 0, A 3 a 7−→ ψ(a, y) is concave, while the second condition in (NGP3) implies that for any y ≥ 0,
∂aψ(0, y) ≤ 0, and thus that φ is non–increasing in a for any y ≥ 0, and therefore the desired result.

9 Analysis of the dynamic programming equation
Throughout this section, Assumption 3.5 is in force. We start with proving the strict concavity of v.

Lemma 9.1. Any continuous solution of Equation (7.1) is strictly concave.
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Proof. To prove concavity, suppose to the contrary that v is strictly convex on some non–empty open
interval (y0, y1) ⊂ R+, then we would have that −v′′ < 0 in the viscosity sense on (y0, y1), and thus that
−I0(v′, v′′)+ = −∞ on (y0, y1) (still in the viscosity sense), contradicting the fact that v is a continuous
viscosity solution of Equation (7.1).

The strict concavity follows the same line of argument as in [54]. Suppose to the contrary that v(y) =
b0 + by for y in some interval [y0, y1] ⊂ R+, then

b0 + (1− δ)by + F ?(δb)− I0(b, 0)+ = 0, y ∈ [y0, y1].

If δ 6= 1, this implies that b = 0, and therefore b0 = I0(0, 0)+ = ā > 0. In particular I+
0 = I0.

We next argue that this ODE is in addition uniformly elliptic. This is immediate when β > 0. For β = 0,
we have [0, ā0] ⊂ A by Assumption 3.5, and

I0
(
δv′, δv′′

)+ ≥ sup
z≥0, â∈Â(z)⊂[0,ā0]

{
â+ δh(â)v′ + δηz2v′′(y)

}
= sup
a∈[0,ā0]

{
a+ δh(a)v′(y) + δη

(
h′(a)

)2
v′′(y)︸ ︷︷ ︸

=:Φ(a,y)

}
,

and Φ(0, y) = 0, ∂aΦ(0, y) = 1, for any y > 0. Then, for any compact subset of (0,∞), the supremum in
I0
(
δv′, δv′′

)+ is attained on [ε, ā0] for some ε > 0, independent of y (but of course depending on the chosen
compact set). Hence, the ODE can always be written in explicit form on any compact subset of (0,∞).

Consequently, the standard Cauchy–Lipschitz existence and uniqueness theory applies. By uniqueness
of the solution of Equation (7.1) with boundary condition v(y0) = b0 and v′(y0) = 0, we deduce that v = b0
on [0, y0], contradicting the boundary condition v(0) = 0. If δ = 1, we also see by the same argument that
v(y) = b0 + by on [0, y0], so that v(0) = 0 implies that b0 = 0, and we get F ?(δb) − I0(δb, 0)+ = 0 and
therefore F ?(δb) = I0(δb, 0)+ = 0, which again cannot happen.

Remark 9.2. By Lemma 9.1, it is natural to introduce the concave dual function v?(p) := infy≥0 {yp−v(y)},
p ∈ R. Then, if in addition v is a C2 solution of the dynamic programming equation, v? solves the equation

L?v?(p) := v?(p)− F ?(δp) + (δ − 1)p(v?)′(p) + I0

(
p,

1
(v?)′′(p)

)+
= 0, p ∈ R. (9.1)

This follows by evaluating (7.5) at the point y = (v′)−1(p) and by computing that v′′(y) = 1/(v?)′′(p).8

Lemma 9.3. There is a unique solution v of Equation (7.1), such that 0 ≤ (v−F )(y) ≤ C log(1+log(1+y)),
y ≥ 0, for some C > 0. Besides, v is strictly concave, ultimately decreasing, and belongs to C2(R+).

Proof. By Remark 7.1 and Lemma B.1 below, F and F b are respectively sub–solution and super–solution
of (7.1), for b large enough. Lemma B.3 below shows that this equation satisfies comparison between
sub–solutions and super–solutions lying between F and F b. Then, since F (0) = F b(0) = 0, we deduce from
Perron’s existence result, see Crandall, Ishii, and Lions [13, Theorem 4.1], that Equation (7.1) has a viscosity
solution vb lying between F and F b. Using Lemma B.3, this solution must be unique, and thus does not
depend on b, so that we can denote it by v.

Recall that v is strictly concave by Lemma 9.1. Since it is below F b, it has to be ultimately decreasing,
as F b is. In addition, v is differentiable Lebesgue–a.e., and we may define the measurable set

I :=
{
y ≥ 0 : v(y)− F (y)−TF

(
y, δv′(y)

)
= 0
}
.

For almost–every y ∈ I, we have by using the inequality v−F ≥ 0 (which must hold for any y since it holds
in the viscosity sense and both v and F are continuous) and the definitions of F ? and T

F ?
(
δv′(y)

)
= δyv′(y)− v(y) ≤ δyv′(y)− F (y) ≤ F ?

(
δv′(y)

)
.

8Such a transformation can also be conducted if the solution is expressed in the sense of viscosity solutions (as it will be needed
later), but one has to be careful as strict convexity is not sufficient, see Alvarez, Lasry, and Lions [3, Proposition 5] and the remark
after its proof.
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Therefore, the above inequalities must be equalities almost–everywhere on I, which in particular implies
that v = F , a.e. on I, and therefore everywhere on I since v and F are continuous. We also automatically
have that v is C2 on I.

On the other hand, we have on R+ \ I that I0
(
v′, v′′

)+ = I0
(
v′, v′′

)
> 0, almost–everywhere. Arguying

as in the proof of Lemma 9.1, we see that v is a viscosity solution of a (locally) uniformly elliptic ODE

v′′ = L(y, v, v′), on R+ \ I,

for some locally Lipschitz nonlinearity L. Consequently, since R+ \ I =
(
v−F

)−1((0,∞)) is an open set by
continuity of v and F , the standard Cauchy–Lipschitz theorem then shows that v must also be smooth on
R+ \ I. Finally, any point y0 on the boundary ∂I ∩ (0,∞) is a minimiser of the difference v − F . As such

• we have by the first order condition that v′(y0−)−F ′(y0) ≤ 0 ≤ v′(y0+)−F ′(y0), implying by concavity
that v is differentiable at y0 and v′(y0) = F

′(y0);

• we also have v′′(y0) ≥ F ′′(y0), implying by continuity that

0 = Lv(y0) = −I0
(
F
′(y0), v′′(y0)

)
≤ −I0

(
F
′(y0), F ′′(y0)

)
≤ 0,

which implies that v′′(y0) = F
′′(0), and I0

(
F
′(y0), F ′′(y0)

)+ = 0. Hence, y0 ∈
{
I0
(
F
′
, F
′′)+ = 0

}
.

Lemma 9.4. Let β > 0, assume that F and I0 are analytic, and let v be the solution from Lemma 9.3.
Then

{
v = F

}
∩ (0,∞) is a possibly empty interval unbounded to the right.

Proof. (i) Suppose v = F on some interval [y0, y1], and let us show that we must have v = F on [y0,∞),
which implies in particular that I0

(
F
′
, F
′′)+ = 0 on [y0,∞), and consequently I ∩ (0,∞) has the claimed

form, where the set I is introduced in the proof of Lemma 9.3.

To see this, suppose to the contrary that LF < 0 on some neighbourhood (y1, y
′
1) to the right of y1, and

denote φ(y) :=
(
v − F

)
(y)−TF (y, δv′(y)). Clearly, φ ≥ 0 on R+ and φ = 0 on [y0, y1], so that

0 =
(
v − F

)
(y1) = min

y∈(y0,y′1)

(
v − F

)
(y), and 0 = φ(y1) = min

y∈(y0,y′1)
φ(y). (9.2)

Next, reducing y′1 > y1 if necessary, we have that on (y1, y
′
1), both v and F are strictly concave and

decreasing, and we claim that the supremum in I0(δv′, δv′′)+ cannot be attained on a right–neighbourhood
of β. Indeed, otherwise I0(δv′, δv′′)+ would be equal to 0 on some interval at the right of y1, since we have

I0(v′, v′′) = sup
â∈Â(β)

{
â+ δv′h(â) + δηv′′β2} = δηv′′β2 < 0,

so that, by continuity, this supremum remains negative on a right–neighbourhood of y1, and I0(v′, v′′)+ =
I0(v′, v′′)+ = 0. Consequently, v and F are both solutions of the ODE w − δyw′ + F ?(δw′) = 0 with
same boundary condition at y1, implying that v = F on some interval at the right of y1, and therefore
contradicting the definition of y1 as a (right) extreme point of

{
v = F

}
.

Moreover, since A is bounded, the supremum over z must be attained on a compact set, meaning that
for some βmin > β and some finite βmax > βmin

I0(v′, v′′)+ = I0(v′, v′′) = max
z∈[βmin,βmax], â∈Â(z)

{
â+ δv′h(â) + δηz2v′′

}
.

By our assumptions on F and I0, the function v solves on R+\I an explicit ODE with analytic non–linearity.
Indeed, I0 is invertible and does not take the value 0, implying that its reciprocal function is still analytic.
By Cauchy–Kowaleski’s theorem, we deduce that v is also analytic on [y1, y

′
1), and therefore C∞. Using all

the above results, we have that on (y1, y
′
1)

I0
(
F
′
, F
′′)+

> 0 = −Lv = I0(v′, v′′)+ − φ

≥ I0(F ′, F ′′)+ − φ+ δ
(
ηβ2(v′′ − F ′′)+ − ηβ2

max
(
v′′ − F ′′

)− + h(a)
(
v′ − F ′

)+)
− δh(a)

(
v′ − F ′

)−
.
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Denoting c1 := (ηβ2) ∧ h(a) > 0 and c2 := (ηβ2
max) ∨ h(a) > 0, we have then

δc1
[
(v′′ − F ′′)+ +

(
v′ − F ′

)+]− δc2[(v′′ − F ′′)− +
(
v′ − F ′

)−]
< φ, on (y1, y

′
1). (9.3)

As v′(y1) = F
′(y1), v′′(y1+) ≥ F

′′(y1) and φ(y1) = 0, by (9.2), these inequalities imply by sending y ↘ y1,
that (v′′ − F ′′)(y1) = 0. This implies in turn that φ is differentiable at y1, and, since v and F are C∞ on
the right of y1, and y1 is a local minimum of v − F(

v − F
)′′′(y1+) ≥ 0, and φ′(y1) = −v′′(y1)

(
y1 − (F ′)−1 ◦ v′(y1)

)
= 0,

Then, dividing (9.3) by (y − y1) and sending y ↘ y1, we get (v′′′ − F ′′′)(y1+) = 0, and we deduce that φ is
twice differentiable at y1, and (

v − F
)′′′′(y1+) ≥ 0, and φ′′(y1) = 0.

Direct iteration of this argument shows that
(
v − F

)
is infinitely differentiable at the point y1, with 0

derivative of any order. Since it is an analytic function on a right–neighbourhood on y1, we deduce that
v − F = 0 on a right–neighbourhood of y1, which contradicts the definition of y1.

Together with the previous lemmatas, the following result concludes the proof of Theorem 3.6.(i)–(ii)–
(iii).

Lemma 9.5. Let v be the solution constructed in Lemma 9.3, and define S :=
{
v = F

}
. Then

(i) we have v′(0) ≥ 0, and whenever F ′(0) = 0, we have v′(0) > 0 if and only if I
(
0, δF ′′(0)

)
> 0;

(ii) if β = 0, then S = {0}.

Proof. (i) By continuity, we have

0 = Lv(0) = F ?
(
δv′(0)

)
− I
(
δv′(0), δv′′(0)

)
.

Since F ? ≤ 0 and I ≥ 0, it follows that F ?
(
δv′(0)

)
= 0, and consequently v′(0) ≥ 0, since F ? < 0 on (−∞, 0).

Because I(p, q) is non–decreasing in p, we deduce that 0 = I
(
δv′(0), δv′′(0)

)
≥ I
(
0, δv′′(0)

)
. However, under

our assumptions, I
(
0, δF ′′(0)

)
> 0. Then it follows from the non–decrease of I(p, q) in q that v′′(0) < F

′′(0).
Consequently, we have v ≥ F , v(0) = F (0), v′(0) ≥ F

′(0) = 0 and v′′(0) < F
′′(0) ≤ 0, implying that

v′(0) > 0, as required.

(ii) By Lemma 8.1.(iii), we know that F never solves the ODE, and we claim that this implies that v > F
on (0,∞). Indeed, notice that any contact point y0 of v and F is a local minimiser of the difference v − F ,
so that v′ = F

′ at such a point. Then, as I ≥ 0, it follows from Equation (7.1) that TF
(
y0, δF

′(y0)
)

= 0
which cannot happen unless y0 = 0.

We finally prove Theorem 3.6.(iv) by using the verification result provided in Proposition 7.2, in order to
show that one can identify the value function of the principal with the function v constructed in Theorem 3.6.

Proof of Theorem 3.6.(iv). The existence of ŷ is immediate by the strict concavity of v, and the fact that
it is ultimately decreasing. Then, the rest of the proof simply requires to check that the assumptions in
Proposition 7.2 are satisfied here. First of all, notice that the map ẑ is bounded from above since A is
compact, and from below by β, and it is continuous on Sc because v is C2 there. Similarly, the map π̂ is
bounded on Sc, from below by 0 and from above as well because Sc is a bounded set under our assumptions.
The existence of a unique weak solution for Ŷ is then direct from Stroock and Varadhan [64, Corollary
6.4.4].9 Notice in addition that Ŷ has moments of any order under P0 (and thus under any Pα, α ∈ A,
recall that A is compact). It remains to verify that τ̂ satisfies (2.11). However, Ŷ is a one–dimensional
Markov process for which the boundaries 0 and ygp are regular and accessible, it is therefore well–known
that τ̂ is finite with probability 1. Since A is compact, the densities dPα/dP0 all have moments of any order,
uniformly in α ∈ A, from which it is immediate that (2.11) holds.

9The drift of Ŷ is not bounded as required in [64, Corollary 6.4.4], because of the term rŶ . However, it suffices to apply the
result to

(
ertŶt

)
t≥0

.
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10 Holmström–Milgrom’s model with early retirement
In this section, we explore whether adding risk–aversion for the principal fundamentally modifies the results
for the existence of a Golden Parachute. As such, we consider a variation which mixes both Sannikov’s
model [54] and Holmström and Milgrom’s [34]. There is a finite horizon T > 0, the contracts only stipulate
a lump–sum payment at τ (meaning that π is always 0). Moreover, the agent also has a CARA utility and,
abusing notations slightly, for any admissible contract C := (τ, ξ), we have

V A(C) := sup
α∈A

JA(C, α), where JA(C, α) := EPα
[
UA

(
ξ −

∫ τ

0
h(αs)ds

)]
,

where UA(x) := −e−ψx, x ∈ R, for some ψ > 0. Using again the general approaches from Cvitanić, Possamaï,
and Touzi [19] and Lin, Ren, Touzi, and Yang [41]10, we can show that the lump–sum payment ξ at time τ
takes the form

ξ = Y Y0,Z
τ = Y0 +

∫ τ

0
ZtdXt −

∫ τ

0

(
h?(Zt)−

1
2ψσ

2Z2
t

)
dt,

where this time Y Y0,Z should be interpreted as the certainty equivalent of the agent. In turn, the principal’s
problem boils now down to

V P = sup
Y0≥R

sup
(τ,Z,â)∈Z(Y0)×Â(Z)

EPâ
[
UP

(
Xτ∧T − Y Y0,Z

τ∧T

)]
, (10.1)

where UP(x) := −e−ηx, x ∈ R, for some η > 0, and Z(Y0) is a proper reformulation of Z(Y0) in this context.

In the present context, a Golden Parachute is a situation where the optimal retirement time chosen
by the principal lies in (0, T ) with positive probability. As V P(t, x, y) = UP(x − y) upon retirement, the
existence of a Golden Parachute is reduced to the non–emptiness of the stopping region before maturity{

(t, x, y) : t < T and V P(t, x, y) = UP(x− y)
}
.

Similar to Section 8, we shall explore the potential existence of a Golden Parachute by analysing the
action of the dynamic programming operator on the obstacle UP(x−y). In the present context, the dynamic
programming equation corresponding to the reduced principal problem (10.1) is given by

min
{
v −UP(x− y);−∂tv −

σ2

2 vxx −M(vx, vy, vyy, vxy)
}

= 0, v(t, x, 0) = UP(x), on [0, T )× R× (0,∞),

v(T, x, y) = UP
(
x− y

)
, on (x, y) ∈ R× [0,∞),

where
M(q1, q2, γ1, γ2) := sup

(z,â)∈R×Â(z)

{
â(z)q1 +

(
σ2ψ

2 z2 + h
(
â(z)

))
q2 + σ2

2 z2γ1 + σ2zγ2

}
.

For the sake of clarity, the following result focuses on the case where the agent’s cost of effort is quadratic.

Lemma 10.1. In the present setting, assume that A = [0,∞), and h(a) = ha2/2 + βa, a ≥ 0, for some
h > 0 and β ≥ 0. A necessary condition for a Golden Parachute to exist is

β ≥ β :=
(

1−

√
σ2hψ(1 + σ2hη)
1 + σ2h(ψ + η)

)+

.

Proof. With the choice of A and h in the statement of the lemma, we have that when σ2h(ψq2 +γ1)+q2 < 0,
and ψq2 + γ1 < 0

M(q1, q2, γ1, γ2) = 1
2h max

{
sup
z≥β

{(
σ2h(ψq2 + γ1) + q2

)
z2 + 2

(
σ2hγ2 + q1

)
z − β

(
2q1 + βq2

)}
,

sup
z<β

{
σ2h

(
ψq2 + γ1

)
z2 + 2σ2hγ2z

}}
.

10See also Cvitanić, Possamaï, and Touzi [18], Aïd, Possamaï, and Touzi [2], Élie and Possamaï [23], Élie, Mastrolia, and Possamaï
[25], or Élie, Hubert, Mastrolia, and Possamaï [24] for models with CARA utilities using this approach.
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We now evaluate M along the appropriate derivatives of the map (x, y) 7−→ UP(x − y), which corresponds
to the substitutions

q1 ←→ −ηUP(x− y), q2 ←→ ηUP(x− y), γ1 ←→ η2UP(x− y), γ2 ←→ −η2UP(x− y).

DefiningM(x, y) := M
(
− ηUP(x− y), ηUP(x− y), η2UP(x− y),−η2UP(x− y)

)
, we compute directly that

for ψ > 0, η
ψ+η <

σ2hη+1
σ2h(ψ+η)+1 , from which we have

M(x, y) = −ηUP(x− y)
2h


(σ2hη + 1)2

σ2h(ψ + η) + 1 + β
(
β − 2

)
, if η

ψ + η
> β,

σ2hη2

ψ + η
, if σ2hη + 1

σ2h(ψ + η) + 1 < β.

In the intermediary case η
ψ+η ≤ β ≤ σ2hη+1

σ2h(ψ+η)+1 , to find the maximum in the expression ofM, we need to
solve the inequality

(σ2hη + 1)2

σ2h(ψ + η) + 1 + β
(
β − 2

)
≥ σ2hη2

ψ + η
⇐⇒ β2 − 2β + σ2hη2 + 2σ2hηψ + η + ψ

(ψ + η)(1 + σ2h(ψ + η)) ≥ 0.

It is straightforward to check that the second–order polynomial in β above has two positive roots, the
smallest one only belonging to

[
η

ψ+η ,
σ2hη+1

σ2h(ψ+η)+1
]
, and therefore that for η

ψ+η ≤ β ≤
σ2hη+1

σ2h(ψ+η)+1

β2 − 2β + σ2hη2 + 2σ2hηψ + η + ψ

(ψ + η)(1 + σ2h(ψ + η)) ≥ 0⇐⇒ β ≤ 1− ψσ

√
h

(ψ + η)(1 + σ2h(ψ + η)) =: β.

Overall, we thus have

M(x, y) = −ηUP(x− y)
2h


(σ2hη + 1)2

σ2h(ψ + η) + 1 + β
(
β − 2

)
, if β > β,

σ2hη2

ψ + η
, if β ≤ β.

Hence, the diffusion operator in the PDE applied to (x, y) 7−→ UP(x− y) is exactly equal to

−ηUP(x− y)
2h


ησ2h− (σ2hη + 1)2

σ2h(ψ + η) + 1 − β
(
β − 2

)
, if β > β,

ησ2h− σ2hη2

ψ + η
, if β ≤ β.

When β ≥ β̄, the above quantity is always non–negative, and when β < β, one can check that the second–
order polynomial in β we get always has real roots, that the largest one is above β, the lowest one is below
β, and therefore that it will be non–negative if and only if β ≥ β.

The message from the previous lemma is that whenever the lower bound for β given in the statement is
positive, which is equivalent to having

1 > σ2hη
(
σ2hψ − 1), (10.2)

a Golden Parachute cannot exist for small values of β. Since the classical Holmström and Milgrom’s model
has exactly β = 0, Golden Parachute cannot exist as soon as Equation (10.2) holds, which happens for small
risk aversions for either the principal or the agent. This means that golden parachutes can only arise in
situations where we have either high risk–aversions, or high marginal costs for the agent, or high uncertainty
on the returns of the output X. Though one should keep in mind that the setting is now somewhat different
from [54], this is in stark contrast with the statement that ‘if we allow the principal to be explicitly risk
averse we can expect the qualitative features of the optimal contract (including retirement) to be the same
as with risk neutrality.’ ([54, Remark 3]).
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Appendices
A Face–lifted principal’s reward
This section is dedicated to the proof of Proposition 2.1.

A.1 Very impatient principal may reduce her loss to zero
We first consider the case ρ ≥ γr of Proposition 2.1.(i). Notice that we always have F (0) = 0, and that since
F is non–positive, we have F ≤ 0. Besides, by our assumptions on u, there exists M > 0 and C > 0, such
that for any y ≥M , F (y) ≥ −Cyγ . Fix some some y0 > 0 and some ε > 0, and consider then the following
control

p(t) := 1[t?,∞)(t)ρεy(t), t ≥ 0,

where t? is the first instant at which yy0,0 reaches the value M . We immediately have that

yy0,p(t) = y0ert1[0,t?)(t) +Me(r−ρε)(t−t?)1[t?,∞)(t), t ≥ 0.

In particular, T y0,p
0 =∞, and for T > t?

F (y0) ≥ e−ρTF
(
yy0,p(T )

)
+
∫ T

0
ρe−ρtF

(
p(t)

)
dt

= e−ρTF
(
Me(r−ρε)(T−t?))+

∫ T

t?
ρe−ρtF

(
ρεMe(r−ρε)(t−t?))dt

≥ −CMγeγ(ρε−r)t?−ρT (1−γ ρr+εγ) − CεγργMγe−ρt?

1− γ ρr + γε

(
1− e−ρ(T−t

?)(1−γ ρr+γε)
)
−→
T→∞

−CεγργMγe−ρt?

1− γδ + γε
,

by the condition ρ ≥ γr. As γ > 1, the last limit converges to 0 as ε↘ 0.

A.2 Non–degenerate face–lifted utility
By standard control theory, the Hamilton–Jacobi equation corresponding to the mixed control–stopping
problem defining F is

min
{
w − F,w − δyw′ + F ?

(
δw′
)}

= 0, on (0,∞), w(0) = 0.

Notice first that, similar to Remark 7.1.(ii), this ODE is equivalent to

w − δyw′ + F ?
(
δw′
)

= 0, on (0,∞), w(0) = 0, (A.1)

as the last equation implies that w − F = δyw′ − F − F ?
(
δw′
)
≥ 0.

Now, this ODE has 0 as a trivial solution, and when δ = 1, it has a unique strictly concave solution given
by F . The following lemma addresses the general case.

Lemma A.1. Let δ 6= 1 and γδ > 1, Denote by w? be the function introduced in (2.9), and let w := (w?)? be
its concave conjugate. Then w is a solution of (A.1) satisfying c̄0(−1+yγ) ≤ w(y) ≤ c̄0(−1+yγ). Moreover,
w′(0) = F ′(0) 1

δ1{δ≥1}.

Proof. Notice first that if w solves Equation (A.1), then, whenever w′(0) is finite, by letting y go to 0, we
get F ?

(
δw′(0)

)
= 0. This implies that δw′(0) ≥ F ′(0), and as w ≥ F we deduce that w′(0) ≥ F ′(0)

1∨δ , an
inequality obviously satisfied when w′(0) = ∞, which is the only possible infinite value by concavity of w.
We now show that

w′(0) = F ′(0)1
δ

1{δ≥1}. (A.2)

To see this, we consider the following alternative cases.
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• δ ≥ 1. Assume to the contrary that δw′(0) > F ′(0), then δw′ > F ′(0) on [0, ε) for some ε > 0, by
continuity. This in turn implies that F ?(δw′) = 0 on [0, ε), and equation (A.1) reduces to w(y)−δyw′(y) = 0,
on [0, ε), and we get

w(y) = Const.w(y0)

y
1
δ
0

y
1
δ , 0 < y0 ≤ y < ε. (A.3)

As w(0) = 0 and w ≤ 0, we see that w(y0)/y
1
δ
0 −→ 0, as y0 ↘ 0, and therefore w = 0 on [0, ε), contradicting

the strict concavity of w.

• δ < 1. Since w′(0) ≥ F ′(0), we have again F ?(δw′) = 0 on [0, ε), for some ε > 0, and by arguying as
in the previous case, we arrive to again to the same conclusion (A.3). However, as δ < 1, the only way to
avoid explosion of w(y0)/y

1
δ
0 as y ↘ 0 is that w′(0) = 0.

In particular, notice that (A.2) implies that any strictly concave solution of (A.1) is decreasing. Next, we can
use convex duality and consider the dual of w, given by w?(p) := infy≥0

{
py − w(y)

}
. Notice that since we

proved that we needed to have w′(0) = F ′(0) 1
δ1{δ>1} =: fδ, the domain over which w? is naturally defined

is (−∞, fδ]. As such the ODE satisfied by w? is

− w?(p) + (1− δ)p
(
w?
)′(p) + F ?(δp) = 0, p < fδ, w

?(fδ) = 0. (A.4)

This linear ODE has the generic solution, for any C ∈ R and ε > 0

w?(p) = (−p)−
1
δ−1

(
C − 1

1− δ

∫ fδ−ε

p

F ?(δx)
(−x)1+ 1

1−δ
dx
)
, p < fδ. (A.5)

We need to study the behaviour of the solution when p goes to fδ−. We will thus consider three cases.

Case 1: fδ < 0. In this case, we can take directly ε = 0 in Equation (A.5), as the integrand has no singularity,
and the boundary condition at fδ imposes that C = 0, so that the solution is uniquely determined by

w?(p) = (−p)−
1
δ−1

δ − 1

∫ fδ

p

F ?(δx)
(−x)1+ 1

1−δ
dx, p ≤ fδ.

In this case, we necessarily have δ > 1, therefore, by Lemma A.4, w? is strictly concave, increasing, and
w? ≤ F ?. This immediately proves that w is unique, strictly concave, decreasing, and above F . Besides,
the explicit formula we obtained shows by direct integration and using Equation (2.8) that w? satisfies also
Equation (2.8) with appropriate constants, which directly implies the required inequalities for w.

Case 2: fδ = 0 and δ > 1. Under this condition, we can take ε = 0 in Equation (A.5), leading to

(−p)−
1
δ−1

1− δ

∫ 0

p

F ?(δx)
(−x)1+ 1

1−δ
dx =

p→0−
o(1),

and thus converges to 0 as p goes to 0−. Therefore, when δ > 1, we need to take again C = 0 in Equa-
tion (A.5) to satisfy the boundary condition w?(0) = 0, and our solution is uniquely determined. Moreover,
by Lemma A.4, w? is strictly concave, increasing, and w? ≤ F ?. This immediately proves that w is unique,
strictly concave, decreasing, and above F . We deduce that w satisfies the required inequalities as in the
previous case.

Case 3: δ < 1. In this case, it can be checked that for any C ∈ R and ε > 0, we have

lim
p→0−

(−p)−
1
δ−1

(
C − 1

1− δ

∫ −ε
p

F ?(δx)
(−x)1+ 1

1−δ
dx
)

= 0.

We therefore have, a priori, infinitely many possible solutions to the ODE. However, notice that the growth
imposed on w translates into c̄∗0(−1 + |p|

γ
γ−1 ) ≤ w?(p) ≤ c̄∗1(1 + |p|

γ
γ−1 ), and this implies that

|p|−
1

1−δw?(p) ≤ c̄∗1
(
|p|−

1
1−δ + |p|

1−γδ
(1−δ)(γ−1)

)
−→
p→−∞

0, (A.6)
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as γδ > 1. Then, C and ε must be such that C = 1
1−δ

∫ −ε
−∞

F?(δx)

(−x)1+ 1
1−δ

dx, where the finiteness of the last

integral is satisfied in our setting again by γδ > 1. Consequently, w? is uniquely determined and given by

w?(p) = (−p)−
1
δ−1

(1− δ)

∫ p

−∞

F ?(δx)
(−x)1+ 1

1−δ
dx, p ≤ 0, (A.7)

and we can again use Lemma A.4 to conclude.

The following is the easy inequality in a generic verification theorem for F .

Lemma A.2. Let w be a C2 super–solution of w − δyw′ + F ?(δw′) ≥ 0 on R+. Then w ≥ F .

Proof. We first observe that w−F ≥ TF (y, δw′) ≥ 0. We next compute for all p ∈ BR+ and T ≤ T y0,p
0 that

w(y0) = e−ρTw
(
yy0,p(T )

)
+
∫ T

0
ρe−ρt

(
w(yy0,p(t))− δ

(
yy0,p(t)− p(t)w′(yy0,p(t)

))
dt

≥ e−ρTF
(
yy0,p(T )

)
+
∫ T

0
ρe−ρtF

(
p(t)

)
dt,

by the super–solution property of w. The arbitrariness of p ∈ BR+ and T ≤ T y0,p
0 implies that w ≥ F .

Lemma A.3. Let δ 6= 1 and δγ > 1. Assume further that Assumption 3.5 holds. Then F =
(
F
?)?, where

F
? is given explicitly in (2.9), is the unique solution of Equation (A.1) in the class of functions satisfying

c̄0(−1 + yγ) ≤ F (y) ≤ c̄0(−1 + yγ). Moreover, F is a strictly concave decreasing majorant of F , with
F
′(0) = δ−1F ′(0)1{δ>1}.

Proof. We show by a standard verification argument that w = F where w is the solution of (A.1) whose
concave dual was derived explicitly in the Lemma A.1. By Lemma A.2, w is an upper bound for F , i.e.
F ≤ w.

On the other hand, consider for any y > 0 the maximiser in the definition of F ?(δw′(y)), that is to say
(F ?)′

(
δw′(y)

)
as a feedback control

ẏ?t = r
(
y?t − p?t

)
, where p?t := (F ?)′

(
δw′(y?t )

)
.

Direct differentiation of (A.1) provides that for any y > 0, (1 − δ)w′(y) =
(
y − (F ?)′

(
δw′(y))

)
δw′′(y), so

that
ẏ?t = r

(
1
δ
− 1
)
y?t h(y?t ), t ≥ 0, where h(y) := w′(y)

yw′′(y) , y > 0.

Since h ≥ 0, we see that y? is decreasing when δ > 1, and is therefore well–defined at least until the hitting
time of zero T ? := T y0,p

?

0 < ∞. In contrast, when δ < 1, y? is increasing until some explosion time T̄ , and
T ? =∞.

Following the same calculation as in the first step of the present proof, we see that under the control p?,
all inequalities are turned into equalities, leading for any T ∈ [0, T̄ ] to

w(y0) = e−ρT∧T
?

w(y?T∧T?) +
∫ T∧T?

0
ρe−ρtF (p?t )dt. (A.8)

First, by the previous step, when δ > 1, we have T ? < ∞, and we obtain by sending T to ∞ and using
the boundary condition w(0) = 0 that (T ?, p?) attains the upper bound w(y0), and is therefore an optimal
control for the problem F .

In the alternative case δ < 1, we have T ? =∞. In the rest of this proof, we show that

h̄ := sup
y≥ŷ
{h(y)} < 1

γ(1− δ) , for some ŷ > 0. (A.9)
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Then, y? is defined on R+, i.e. T̄ =∞, and since T̂ := inf{t ≥ 0 : y?t ≥ ŷ} <∞, we deduce from the growth
of w that for some C > 0, whose value may change from line to line, and any t ≥ T̂

e−ρ(t−T̂ )|w(y?t )| ≤ Ce−ρ(t−T̂ )(1 + |y?t |γ
)
≤ Ce−ρ(t−T̂ )

(
1 + eργ(1−δ)

∫ t
T̂
h(y?s )ds

)
≤ Ce−ρ(t−T̂ )

(
1 + eργ(1−δ)h̄(t−T̂ )

)
−→
t→∞

0,

as 1− γ(1− δ)h̄ > 0. Sending T to ∞ in (A.8) this provides again that (T ?, p?) = (∞, p?) attains the upper
bound w(y0).

In order to verify (A.9), we prove equivalently that the concave dual w? satisfies

sup
p≤p̂

{
p(w?)′′(p)
(w?)′(p)

}
<

1
γ(1− δ) , for some p̂ < 0. (A.10)

Differentiating the ODE (A.4) satisfied by w?, and using the expression of w? from Equation (A.7) in the
present case, we see that

p(w?)′′

(w?)′ = δ

1− δ −Ψ(δp), with Ψ(p) := −pψ
′(p)

ψ(p) , and ψ(p) := (−p)−
1

1−δF ?(p)−
∫ p

−∞

F ?(u)
(1− δ)(−u)1+ 1

1−δ
du.

Notice that limp→−∞ ψ(p) = 0, and that ψ is easily shown to be non–negative and non–decreasing. Therefore,
if −pψ′(p) does not go to 0 as p goes to −∞, we have that limp→−∞Ψ(δp) = ∞, and Equation (A.10)
automatically holds. Now if −pψ′(p) −→

p→−∞
0, it follows from l’Hôpital’s rule and our assumptions that

lim
y→∞

{
F ′(y)
yF ′′(y)

}
= lim
p→−∞

{
p(F ?)′′(p)
(F ?)′(p)

}
= δ

1− δ − lim
p→−∞

{
−ψ′(p)− pψ′′

ψ′(p)

}
.

Then, using again l’Hôpital’s rule, we deduce

lim sup
p→−∞

{
p(w?)′′(p)
(w?)′(p)

}
= δ

1− δ − lim inf
p→−∞

{
−pψ′(p)
ψ(p)

}
= δ

1− δ − lim inf
p→−∞

{
−ψ′(p)− pψ′′

ψ′(p)

}
= lim
y→∞

{
F ′(y)
yF ′′(y)

}
.

Then, assuming to the contrary that (A.10) does not hold means that, for fixed γ0 ∈ (1 + γ(1 − δ), γ), we
may find y0 > 0 such that F ′′(y)

F ′(y) ≤ (γ0 − 1) 1
y , for y ≥ y0. Integrating twice and recalling that F ≤ 0, this

implies that

F (y) ≥ F (y0) + y0F
′(y0)
γ0

((
y

y0

)γ0

− 1
)
, for all y ≥ y0,

which in turn leads to the following contradiction y0F
′(y0)
γ0

≤ lim F (y)
yγ0 = −∞ by our assumption on the

growth of F together with the fact that γ0 < γ.

We end this section with the result used in the proof of Lemma A.1.

Lemma A.4. Let δ 6= 1, and let F ? be a solution of

− F ? + (1− δ)p
(
F
?)′ + F ?(δp) = 0, p < F ′(0)

δ
1{δ>1}, F

?
(
F ′(0)
δ

1{δ>1}

)
= 0. (A.11)

Then F ? ≤ F ?, F ? is strictly concave and increasing.

Proof. Denote φ := F ? − F ?, and notice that Equation (A.11) says that for any p < F ′(0)/δ1{δ>1} =: fδ

φ(p) = F ?(p)− F ?(δp) + (δ − 1)p
(
F
?)′(p) ≥ (1− δ)pφ′(p),

by the concavity of F ?. In other words, if we define for p < fδ, ψ(p) := (−p)
1
δ−1 , we have

ψ′(p) = (−p)
1
δ−1

1− δ
(
φ(p)− (1− δ)pφ′(p)

)
.
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We need to distinguish two cases, depending on whether δ > 1 or δ < 1. First, if δ > 1, we have that ψ is
non–increasing, and thus for any p < fδ

(−p)
1
δ−1φ(p) ≥ lim

p→fδ

{
(−p)

1
δ−1φ(p)

}
= 0,

since F ?(fδ) = F ?(fδ) = 0 (recall that F ? is 0 above F ′(0), which is itself below fδ, since δ > 1). Similarly,
when δ < 1, by arguying as in (A.6), we arrive at the conclusion φ ≥ 0, and thus that F ? ≤ F ?, as desired.

Next, by direct differentiation of Equation (A.11), then substituting the expression of (F ?)′ from Equa-
tion (A.11), and finally using the strict concavity of F ?, we deduce that for any p < fδ

(δ − 1)2p2(F ?)′′(p) = δ(δ − 1)p
(
(F ?)′(δp)− (F ?)′(p)

)
= δ(δ − 1)p(F ?)′(δp)− δ

(
F ?(δp)− F ?(p)

)
< δ
(
F
?(p)− F ?(p)

)
≤ 0,

thus proving the strict concavity of F ?.

Finally, since F ? is strictly concave, remains below F ? which is increasing on (−∞, F ′(0)], and 0 on
[F ′(0), fδ ∧ F ′(0)], then F ? must also be increasing on its domain.

B Ingredients for Perron’s existence method
This section provides two main technical results which were needed to justify the existence of a solution
of the dynamic programming equation in Lemma 9.3. We first prove the existence of a super–solution for
the dynamic programming equation with appropriate growth. Then, we show that, despite the exploding
feature of F ?, the dynamic programming equation satisfies a comparison result.

Lemma B.1. (Super–solution) Let g : R+ −→ R+ be a C2, increasing, strictly concave function, with at
most logarithmic growth at infinity, such that g(0) = 0 and the following possibly infinite limit exists

co := lim
y→∞

−yg′′(y)
g′(y) ≥ (1− δ−1)+.

For b > 0, let F b(y) := F (y) + bg(y), y ≥ 0. Then, for b sufficiently large, we may find a super–solution v̄
of (7.1) with growth at infinity controlled by F b.

Proof. We proceed in five steps.

Step 1. As I0 is Lipschitz in (p, q), it follows from the standard Cauchy–Lipschitz theorem that we may
consider the maximal solution vb on [0, ȳ), for some ȳ, of

vb − δyv′b + F ?
(
δv′b
)
− I0

(
δv′b, δv

′′
b ) = 0, vb(0) = 0, v′b(0) = b,

by writing this equation in its explicit form (3.5). Indeed, this is immediate when β > 0, and when β = 0,
we can argue as in the proof of Lemma 9.1.

Next, as long as vb is non–decreasing, we necessarily have vb ≥ F (recall that F (0) = 0 and F is
decreasing), and therefore I0(v′b, v′′b ) = vb − δyv′b + F ?

(
δv′b
)
≥ F − δyv′b + F ?

(
δv′b
)
≥ 0. Consequently

I0(δv′b, δv′′b ) = I0(δv′b, δv′′b )+ as long as vb is non–decreasing, and vb is a solution of the required equation
(7.1) on this region.

Step 2. We first consider the case where vb remains increasing on [0, ȳ). Then, vb solves the ODE on [0,∞),
i.e. ȳ =∞, and we claim that

0 ≤ vb ≤ ā, and v̄b := vb + F is a super–solution of (7.1).
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The last statement follows from the fact that

Lv̄b(y) = vb(y) + F (y)− δy
(
v′b(y) + F

′(y)
)

+ F ?
(
δv′b(y) + δF

′(y)
)
− I0

(
δv′b(y) + δF

′(y), δv′′b (y) + δF
′′(y)

)+
≥ vb(y) + F (y)− δy

(
v′b(y) + F ′(y)

)
+ F ?

(
δv′b(y) + δF

′(y)
)
− I0

(
δv′b(y), δv′′b (y)

)+
− sup
z∈R, â∈Â(z)

{
h(â)δF ′(y) + ηz2δF

′′(y)
}

= F ?
(
δv′b(y) + δF

′(y)
)
− F ?

(
δF
′(y)

)
− sup
z∈R, â∈Â(z)

{
h(â)δF ′(y) + ηz2δF

′′(y)
}

≥ − sup
z∈R, â∈Â(z)

{
h(â)δF ′(y) + ηz2δF

′′(y)
}
≥ 0,

by the non–decrease of F ?, together with direct manipulation of the supremum and the negativity of F ′ and
F
′′. To verify the claim that vb ≤ ā, we consider two separate cases.

(i) Case δ ≤ 1: by the concavity of vb and the increase of I0 in q, we have

0 = vb(y)− δyv′b(y)− I0
(
δv′b(y), δv′′b (y)

)
≥ vb(y)− δyv′b(y)− ā− h(ā)δv′b(y).

Assume to the contrary that vb(y0) > ā, for some y0 > 0. Then, vb > ā on [y0, y1) for some y1 > y0, and it
follows from the last inequality that

v′b(y)
vb(y)− ā ≥

1
δy + h(ā) , and therefore vb(y)− ā ≥ (vb(y0)− ā)

(
δy + h(ā)
δy0 + h(ā)

) 1
δ

, y ∈ [y0, y1).

This shows that we may take y1 =∞. Moreover, this completes the proof in the case δ < 1 as it contradicts
the concavity of vb. In the remaining case δ = 1, this shows that vb is affine to the right of y0, and as this
affine function solves the ODE on R+, we deduce that vb(y) = b0 + by is affine on R+. But this cannot
happen as the equation imposes that the constant b0 = I0(b, 0) = ā + bh(ā), while the boundary condition
imposes that vb(0) = b0 = 0.

(ii) Case δ > 1: as vb is increasing, we have 0 = vb − δyv′b − I0(δv′b, δv′′b )+ ≤ vb − δyv′b, which implies that
vb(y) ≤ y

1
δ . Indeed, if we define wb(y) := y1/δ − vb(y), then the previous inequality implies directly that(

wb(y)y−1/δ)′ ≥ 0. Since for δ > 1, we have limy→0+ wb(y)y−1/δ = 1 > 0, we obtain the desired result.

Next, let ψ be a non–negative continuous function defined on a neighbourhood of the origin with ψ(0) = 0.
We shall specify this function later, and we denote ψε := ψ(ε) for all small ε > 0. Assuming to the contrary
that 2η := vb(yo)− ā > 0, for some yo ∈ (0, ȳ), we may find for all ε > 0 a maximiser yε > 0 of

Mε := max
y≥0

{
vb(y)− ā− εy 1

δ+ψε
}

= vb(yε)− ā− εy
1
δ+ψε
ε .

Besides, for ε small enough, we have

Mε ≥ vb(yo)− ā− εy
1
δ+ψε
o ≥ η > 0,

showing that yε must be an interior maximiser for ε small enough. In particular, for such small values of ε,
we have v′b(yε) = ε

( 1
δ + ψε

)
y

1
δ+ψε−1
ε , as well as v′′b (yε) ≤ 0, and it follows from the definition of vb that

0 = vb(yε)− δyεv′b(yε)− I0
(
δv′b(yε), δv′′b (yε)

)+ ≥ vb(yε)− δyεv′b(yε)− I0
(
δv′b(yε), 0

)+
= vb(yε)− δyεv′(yε)− ā− h(ā)v′(yε)

≥ η − δεψεy
1
δ+ψε
ε − h(ā)δ

(
1
δ

+ ψε

)
εy

1
δ+ψε−1
ε . (B.1)

On the other hand, we have η ≤ vb(yε)− ā− εy
1
δ+ψε
ε ≤ y

1
δ
ε − ā− εy

1
δ+ψε
ε , which implies that as ε goes to 0

• either (yε)ε>0 remains bounded (and is in any case bounded away from 0, since vb is non–decreasing)
and, by sending ε↘ 0, (B.1) implies that 0 ≥ η, contradicting the positivity of η;
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• or yε −→ε→0 ∞ along some sub–sequence, with εyψεε < 1. We claim that we may choose the function
ψ so that for ε small enough

ψε = ε1+ 1
δψε . (B.2)

In this case, εψεy
1
δ+ψε
ε = ε2yψεε

ψεy
1
δ
ε

ε ≤ ε2ψε, and (B.1) provides again a contradiction by sending ε↘ 0.

We finally justify the existence of ψε satisfying (B.2) by verifying directly that for ε small enough, the
function fε(ψ) := ψε−1− 1

δψ is decreasing on [ε,∞), with f(ε) > 1 and fro any ψ > 0, f(ε2+ 1
δψ ) < 1. in

particular, for any ψ > 0, ε2+ 1
δψ < ψε < ε implying that ψε −→ 0 as ε↘ 0.

Step 3: otherwise, if vb is ultimately decreasing, then we may find a point of maximum ŷb > 0, and we shall
justify in Step 4 below that

v′b(ŷb) = 0, and ŷb ↗∞, as b↗∞. (B.3)

Let b̂ := −F ′(ŷb), and set

v̄b(y) := vb(y)1[0,ŷb](y) +
(
vb(ŷb) + F b̂(y)− F b̂(ŷb)

)
1(ŷb,∞)(y), y ≥ 0.

By definition Lv̄b = 0 on [0, ŷb]. On [ŷb,∞), we compute directly that

Lv̄b(y) = vb(ŷb)− F (ŷb) + LF b̂(y),

Since vb(ŷb) > 0 > F (ŷb), this implies that

Lv̄b(y) > LF b̂(y) ≥ 0, for large b̂,

by Step 5 below, together with (B.3) which implies that b̂ = −F ′(ŷb)↗∞ as b↗∞.

Step 4: we next justify (B.3). By Remark 9.2, the concave dual v?b of vb solves the ODE (9.1), which reduces
on [0, b] (that is to say the domain where y ≤ ŷb) to

−(v?b )′′(p) = δη inf
z≥β, â∈Â(z)

{
z2

v?(p) + â+ δh(â)p+ (δ − 1)p(v?b )′(p)

}
, on [0, b], v?b (b) = 0, (v?b )′(0) = ŷb,

by the identity (v?b )′ = (v′b)−1, and the fact that on the domain where vb is increasing, we can replace I+
0 by

I0 in the ODE.

Assume first that δ ≤ 1. As 0 = v(0) = − supp∈R v?(p), and since v?b is concave and increasing on [0, b],
we deduce from the previous PDE that

−(v?b )′′ ≥ ηδ β2

ā+ δh(ā)p ,

which provides by direct integration between 0 and b that

ŷb = (v?b )′(0) ≥ −
(
(v?b )′(b)− (v?b )′(0)

)
≥ ηδβ2( log

(
ā+ δh(ā)b

)
− log (ā)

)
−→∞, as b↗∞.

Similarly, when δ > 1, we have

−(v?b )′′ ≥ ηδ β2

ā+ (δh(ā) + (δ − 1)ŷb)p
,

which provides by direct integration between 0 and b that

ŷb ≥ ηδβ2( log
(
ā+ (δh(ā) + (δ − 1)ŷb)b

)
− log (ā)

)
.

Now, if ŷb remained bounded as b goes to ∞, the above inequality would lead to a contradiction for b large.
We can then let b go to ∞ and deduce again that ŷb goes to ∞ as b goes to ∞.
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Step 5: It remains to prove that F b is a super–solution of (7.1) on
{
F
′
b ≤ 0

}
for sufficiently large b > 0.

We first observe that{
F
′
b ≤ 0

}
= [y0(b),∞), where y0(b) is the unique solution of F ′

(
y0(b)

)
+ bg′

(
y0(b)

)
= 0,

which exists as F b is strictly concave and ultimately decreasing. Moreover, we get by direct differentiation,
and using the fact that g is increasing, and both g and F are strictly concave

y′0(b) = − g′(y0(b))
bg′′(y0(b)) + F

′′(y0(b))
> 0, b ≥ 0.

Hence b 7−→ y0(b) is increasing, and it is immediate from the equation defining y0(b) that it must go to ∞
as b goes to ∞. Next, by the non–decrease of F ? and I0(p, .)+, we directly compute that

LF b ≥ bf(y)− I(δF ′b, δF
′′) ≥ bf(y)− ā, where f(y) := g(y)− δyg′(y), y ≥ 0.

Direct calculations show that

f ′(y) = g′(y)
(

1− δ − δ yg
′′(y)

g′(y)

)
, y ≥ 0.

If co =∞, then for y large enough f must be increasing. Otherwise, we have

f ′(y) ∼
y→∞

g′(y)
(
1− δ + δco

)
,

and f is still increasing for large values of y. We can then choose b large enough so that f is increasing on
[y0(b),∞), and we can then deduce that LF b ≥ bf

(
y0(b)

)
− ā on [y0(b),∞). We now complete the proof by

showing that f
(
y0(b)

)
− ā ≥ 0 for sufficiently large b. However this is immediate since we have that f is

increasing on [y0(b),∞) for b large, that it converges to ∞ as f goes to ∞, and we have already proved that
y0(b) increases to ∞ as b goes to ∞.

Remark B.2. In Lemma B.1, there are several possible choices for the function g. For instance, g(y) =
log(1 + y), or g(y) = log

(
1 + log(1 + y)

)
, both verify the required properties with co = 1. This actually

extends to arbitrary many iterations of the logarithm. In particular, the upper bound for vb in Lemma 9.3
below can be improved, but the one we give is enough for our purpose here.

We conclude this section by reporting the comparison result used in the proof of Lemma 9.3.

Lemma B.3. (Comparison) Let u and v be respectively a viscosity sub–solution and a viscosity super–
solution of (7.1), such that for ϕ ∈ {u, v} and for some b > 0

F (y) ≤ ϕ(y) ≤ F (y) + b log
(
1 + log(1 + y)

)
, y ≥ 0.

Then u ≤ v on R+.

Remark B.4. The specific upper bound in the statement of Lemma B.3 with an iterated logarithm is not
important per se. Indeed, the proof goes through as long as the upper bound is of the form bg(y) for some
positive, increasing, strictly concave map g, null at 0, growing strictly slower at ∞ than log(y). And we
have already seen in Remark B.2 that we could find infinitely many such functions such that F + bg is a
super–solution of Equation (7.1) for b large enough.

Proof of Lemma B.3. Notice that u and v are respectively viscosity sub–solution and super–solution of the
equation

w +G(y, w′, w′′) = 0, on R+, (B.4)
where the nonlinearity G is given, for any (y, p, q) ∈ R+ × R2, by

G(y, p, q) := −δyp+ F ?(δp)− I0
(
δp, δq

)+
,

Our objective is to follow Crandall, Ishii, and Lions [13, Section 3], and adapt the arguments there to our
context. Fix some ν > 0 and define µ := 2 ∨ (γ + ν). We consider for any α > 0 and ε > 0 the map

ψα,ε(x, y) := u(x)− v(y)− α

µ
|x− y|µ − ε log(1 + y), (x, y) ∈ R2

+.
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We let for any α > 0 and ε > 0
Mα,ε := sup

(x,y)∈R2
+

ψα,ε(x, y).

By the growth assumptions on u and v, the supremum in the definition of Mα,ε is attained, and we can
define an R2

+–valued sequence (xα,ε, yα,ε)α>0 such that for any α > 0 and ε > 0

Mα,ε = ψα,ε(xα,ε, yα,ε).

Since the supremum is attained on a compact set, we can find for any ε > 0 a further subsequence, denoted
by (xεn, yεn)n∈N := (xαn,ε, yαn,ε)n∈N, converging to some (x̂ε, ŷε). Moreover, by standard arguments from
viscosity solution theory (see for instance Crandall, Ishii, and Lions [13, Proposition 3.7]), we have

x̂ε = ŷε, lim
n→∞

αn
∣∣xεn − yεn∣∣µ = 0, Mε := lim

n→∞
Mαn,ε = sup

y≥0
(u− v)(y)− ε log

(
1 + ŷε

)
.

Let us now assume that there is some yo > 0 such that η := (u− v)(yo) > 0. Then, we have for any n ∈ N
and ε > 0

η − ε log(1 + yo) ≤Mαn,ε = ψα,ε(xεαn , y
ε
αn).

In particular, for n sufficiently large, we have that xεn and yεn are both positive, and we assume for notational
simplicity that we took the appropriate subsequence. Using Crandall–Ishii’s lemma (see Crandall, Ishii, and
Lions [13, Theorem 3.2]), we can find for each integer n, an R2

+–valued sequence (Xε
n, Y

ε
n )n∈N such that

(
αn(xεn − yεn)µ−1, Xε

n) ∈ J2,+
u(xεn),

(
αn(xεn − yεn)µ−1 − ε

1 + yεn
, Y εn

)
∈ J2,−

v(yεn),

with the notation xφ := sgn(x)|x|φ for all φ > 0 and x ∈ R, and

−
(

1
λ

+ ‖Cεn‖
)
≤
(
Xε
n 0

0 −Y εn

)
≤ Cεn

(
I2 + λCεn

)
, for all λ > 0,

where I2 is the two–dimensional identity matrix, and

Cεn := aεnA+ bεnB, a
ε
n := αn(µ− 1)|xεn − yεn|µ−2, bεn := ε

(1 + yεn)2 , A :=
(

1 −1
−1 1

)
, B :=

(
0 0
0 1

)
,

and where we use the spectral norm for symmetric matrices. Take λ = ‖Cεn‖−1, we get

−2‖Cεn‖I2 ≤
(
Xε
n 0

0 −Y εn

)
≤ Cεn

(
I2 + Cεn

‖Cεn‖

)
.

This implies in particular (simply multiply the above inequality by (1, 1) to the left and (1, 1)> to the right)
that for any n ∈ N

Xε
n − Y εn ≤

(bεn)2

‖Cεn‖
+ bεn.

By the sub–solution and super–solution properties of u and v, we have for any n ∈ N

u(xεn) +G
(
xεn, αn(xεn − yεn)µ−1, Xε

n

)
≤ 0 ≤ v(yεn) +G

(
yεn, αn(xεn − yεn)µ−1 − ε

1 + yεn
, Y εn

)
.

We deduce that η − ε log(1 + yo) ≤ u(xεn)− v(yεn) ≤ Fn,ε, where

Fn,ε := G

(
yεn, αn(xεn − yεn)µ−1 − ε

1 + yεn
, Y εn

)
−G

(
xεn, αn(xεn − yεn)µ−1, Xε

n

)
.
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Now notice that since I+
0 is Lipschitz continuous and non–decreasing with respect to its second variable,

and since F ? is non–decreasing, we have for some co > 0

Fn,ε = δαn|xεn − yεn|µ + δε
yεn

1 + yεn
+ F ?

(
δαn(xεn − yεn)µ−1 − δε

1 + yεn

)
− F ?

(
δαn(xεn − yεn)µ−1)

+ I0
(
δαn(xεn − yεn)µ−1, Xε

n

)+ − I0

(
δαn(xεn − yεn)µ−1 − δε

1 + yεn
, Y εn

)+

≤ δαn|xεn − yεn|µ + δε+ I0

(
δαn(xεn − yεn)µ−1, Y εn + (bεn)2

‖Cεn‖
+ bεn

)+

− I0

(
δαn(xεn − yεn)µ−1 − δε

1 + yεn
, Y εn

)+

≤ δαn|xεn − yεn|µ + δε+ co

(
(bεn)2

‖Cεn‖
+ bεn

)
+ co

δε

1 + yεn

≤ δαn|xεn − yεn|µ + (1 + co)δε+ cob
ε
n + co

(bεn)2

‖Cεn‖
.

We now want to let n go to ∞, and will distinguish two cases. First, if
(
‖Cεn‖

)
n∈N is unbounded, taking a

subsequence if necessary, we deduce by letting n go to ∞ that

η − ε log(1 + yo) ≤ (1 + co)δε+ co
ε

(1 + ŷε)2 ,

which gives a contradiction when ε goes to 0.

If now
(
‖Cεn‖

)
n∈N remains bounded, we take a converging subsequence, and notice that we then have for

some aε ∈ R
‖Cεn‖ −→

n→∞
‖Cε‖ :=

∥∥∥aεA+ ε

(1 + ŷε)2︸ ︷︷ ︸
=:bε

B
∥∥∥.

If the sequence (aε)ε>0 is unbounded, we take again a subsequence and get a contradiction by letting ε go
to 0 in

η − ε log(1 + yo) ≤ (1 + co)δε+ cob
ε + co

(bε)2

‖Cε‖
. (B.5)

If now (aε)ε>0 remains bounded and is such that a := limsupε→0a
ε 6= 0, or a := liminfε→0a

ε 6= 0, then
taking another subsequence, we obtain a contradiction by letting ε go to 0 in Equation (B.5). Finally, if
limε→0 a

ε = 0, then three cases can occur

(i) first, if aε =
ε→0

o
(
bε
)
, then (bε)2

‖Cε‖ ∼ε→0
bε −→

ε→0
0, and we conclude again by letting ε go to 0 in Equa-

tion (B.5);

(ii) if instead bε =
ε→0

o
(
aε
)
, then (bε)2

‖Cε‖ ∼ε→0
bε

aε b
ε −→
ε→0

0, and we conclude similarly;

(iii) finally, if aε ∼
ε→0

cbε for some c 6= 0, then (bε)2

‖Cε‖ ∼ε→0
bε

‖cA+B‖ −→ε→0
0, and we get once more a contradiction.
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