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Abstract

We propose a new class of estimators for semiparametric VARMA models with

the innovation density playing the role of nuisance parameter. Our estimators are

R-estimators based on the multivariate concepts of center-outward ranks and signs

recently proposed by Hallin (2017). We show how these concepts, combined with Le

Cam’s asymptotic theory of statistical experiments, yield a robust yet flexible and

powerful class of estimation procedures for multivariate time series. We develop the

relevant asymptotic theory of our R-estimators, establishing their root-n consistency

and asymptotic normality under a broad class of innovation densities including, e.g.,

multimodal mixtures of Gaussians or and multivariate skew-t distributions. An imple-

mentation algorithm is provided in the supplementary material, available online. A

Monte Carlo study compares our R-estimators with the routinely-applied Gaussian

quasi-likelihood ones; the latter appear to be quite significantly outperformed away

from elliptical innovations. Numerical results also provide evidence of considerable

robustness gains. Two real data examples conclude the paper.

Keywords Multivariate ranks, Distribution-freeness, Local asymptotic normality, Measure trans-

portation, Quasi likelihood estimation, Skew innovation density.
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1 Introduction

1.1 Quasi-maximum likelihood and R-estimation in time-series

models

Quasi-likelihood methods, which include QMLE (quasi-maximum likelihood estimation) and

correlogram-based testing, are standard daily practice in the statistical analysis of time series,

univariate and multivariate, linear and non-linear. Focusing on estimation problems in linear

models (autoregressive moving average, ARMA) the properties of (Gaussian) QMLE are gen-

erally considered as fully satisfactory: the estimator is root-n consistent and asymptotically

normal, under finite fourth-order moment assumptions. The case of nonlinear models (with,

e.g., exponential QMLE for non-linear volatility and multiplicative error models) is roughly

similar.

Despite of their popularity, however, QMLE methods are not without some undesirable

consequences. (i) While achieving efficiency under Gaussian innovations, their actual per-

formance can be arbitrarily bad under non-Gaussian ones. More precisely, their asymptotic

relative efficiency with respect to the efficient estimator, depending on the actual innovation

density, can be arbitrarily close to zero. (ii) Due to technical reasons (the Fisher consistency

requirement), the choice of a quasi-likelihood is the most pessimistic one: quasi-likelihoods

automatically are based on the least favorable innovation density (e.g.,ARMA models with

Gaussian innovations). (iii) Actual fourth-order moments might be infinite, thus the validity

of the QMLE can be questionable.

In principle, the ultimate theoretical remedy to those problems is the semiparametric

estimation method described in the monograph by Bickel et al. (1993), which yields uniformly

locally and asymptotically semiparametrically efficient estimators (in ARMA models, which

are adaptive, semiparametric and parametric efficiency coincide). Semiparametric estimation

procedures, however, are not easily implementable, since they require kernel-based estimation

of the actual innovation density. This means the choice of a kernel, the selection of a

bandwidth, and the use of sample splitting techniques and needs relatively large samples. It

explains why the approach is seldom considered in practice.

A more flexible and computationally less heavy alternative is R-estimation, which reaches

efficiency at some chosen reference density (not necessarily Gaussian or least favorable) or

class of densities. R-estimation has been proposed first in the context of location (Hodges and

Lehmann 1956) and regression (Jurečková 1971, Koul 1971, van Eeden 1972, Jaeckel 1972)

models with independent observations. R-estimation later on was extended to autoregres-
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sive time series models (Koul and Saleh 1993, Koul and Ossiander 1994, Terpstra et al. 2001,

Hettmansperger and McKean 2008, Mukherjee and Bai 2002, Andrews 2008, 2012)—note,

however, that the R-estimators considered by these authors are not genuinely rank-based,

as the objective functions they are based on involve both the ranks and the observations

themselves. Extensions to the estimation of non-linear time series such as AR-GARCH,

discretely observed diffusions with jumps, or autoregressive conditional duration models

were considered by Mukherjee (2007), Andreou and Werker (2015), and Hallin and La Vec-

chia (2017, 2019).

The drawbacks of quasi-likelihood methods for observations in dimension d = 1 only get

worse as d increases. The finite-sample performance of a VAR(1) Gaussian QMLE under

a mixture of Gaussians (see Figure 2), for instance, can be quite terrible—although the

conditions for root-n consistency and asymptotic normality are perfectly met. Also the use

of the semiparametric method of Bickel et al. becomes problematic (if not infeasible), since

the higher the dimension, the larger the required sample (curse of dimensionality). Thus, a

natural question is: can R-estimation palliate such drawbacks in dimension d > 1 the way

it does in dimension one?

This question immediately comes up against another one: what are ranks and signs,

hence what is R-estimation, in dimension d > 1? Starting with dimension d = 2, indeed, the

space Rd is no longer canonically ordered. Based on measure-transportation results, a data-

driven ordering yielding a concept of ranks and signs for multivariate observations recently

proposed by Chernozhukov et al. (2017) has been developed by Hallin (2017) and del Barrio

et al. (2018). Those center-outward ranks and signs (see Section 3.2 for details) enjoy all the

properties that make traditional univariate ranks a natural and successful tool of inference

when d = 1. In particular, they are distribution-free and independent, irrespective of the

actual density, of the corresponding order statistic. In this paper, we make use of those new

notions of ranks and signs to derive a novel class of R-estimators for VARMA models with

unspecified innovation densities, we establish its asymptotics and illustrate numerically how

it outperforms the routinely-applied QMLE.

Several attempts had been made previously to introduce ranks and signs in a multivariate

context. Among them are the componentwise ranks (Puri and Sen 1971) and the spatial

ranks (Oja 2010), which are not distribution-free, and the depth-based ranks (Liu 1992; Liu

and Singh 1993) which are distribution-free, but not “maximal distribution-free”: see the

introduction of Hallin (2017) for details and a survey. The concept of Mahalanobis ranks

and signs, due to Hallin and Paindaveine (2002a), has been quite successful in the time-
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series context (Hallin and Paindaveine 2002b, 2004); the validity of their methods, however,

is limited to the case of elliptical innovations—an assumption we are not willing to make

here. The center-outward ranks and signs we are considering below extend the validity of

Mahalanobis ranks and signs-based methods, essentially, to arbitrary absolutely continuous

distributions in Rd.

1.2 Center-outward R-estimation at a glance

To justify our method and illustrate its performance, consider the following two continuous

bivariate innovation densities. The first one is a bivariate N (0, I2) density (I2 the 2 × 2

identity matrix), the second is a mixture

3
8

N (µ1, Σ1) +
3
8

N (µ2, Σ2) +
1
4

N (µ3, Σ3), (1.1)

of three Gaussian densities, with

µ1 = (−3, 0)′, µ2 = (3, 0)′, µ3 = (0, 0)′, Σ1 =


5 4

4 5


 , Σ2 =


 5 −4

−4 5


 , and Σ3 =


4 0

0 1


 .

Those two densities were used to generate independent innovations ǫt in N = 300 replications

of length n = 1000 of the stationary solution of the bivariate VAR(1) model

(I2 −AL)X t = ǫt, t ∈ Z,

where L as usual denotes the lag operator and A = (aij) is a 2 × 2 matrix satisfying

the classical stationarity requirements. The VAR(1) parameter to be estimated is thus

vec(A) = (a11, a21, a12, a22)′. For the simulation we set a11 = 0.2, a21 = −0.6, a12 = 0.3,

and a22 = 1.1. For each replication, we computed the (Gaussian) QMLE, the R-estimator

based on the signs, the Spearman, and the van der Waerden R-estimators. The results are

presented as boxplots in Figures 1 and 2. In the Gaussian case (Figure 1), of course, the

Gaussian QMLE achieves parametric efficiency; the mixture (1.1) generates a multimodal

distribution, which nevertheless satisfies all the conditions required for a root-n consistent

and asymptotically normal QMLE.

Even a rapid inspection of Figures 1 and 2 reveals the overwhelming superiority of R-

estimators over the QMLE. Under the mixture innovations (Figure 2), the bias and mean

squared deviations of the van der Waerden and Spearman estimators are small, while those
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Figure 1: Boxplots of the QMLE and R-estimators (signs, Spearman, van der Waerden)
under spherical Gaussian innovations (sample size n = 1000; N = 300 replications). The
horizontal red line represents the actual parameter value.
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Figure 2: Boxplots of the QMLE and R-estimators (signs, Spearman, van der Waerden)
under the mixture (1.1) of three multivariate normal distributions (sample size n = 1000;
N = 300 replications). The horizontal red line represents the actual parameter value.
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of the QMLE for a11 and a12, for instance, both are dramatic. On the other hand, under

Gaussian innovations (Figure 1), the QMLE is optimal but all R-estimators are nearly as
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good. The good performance of R-estimation under the multimodal mixture (1.1), thus, is

not obtained at the cost of its performance under well-behaved Gaussian innovations.

2 Local asymptotic normality

2.1 Notation and basic assumptions

We throughout consider the d-dimensional VARMA(p, q) model

(
Id −

p∑

i=1

AiL
i

)
X t =


Id +

q∑

j=1

BjL
j


 ǫt, t ∈ Z, (2.1)

where A1, . . . ,Ap,B1, . . . ,Bq are d × d matrices, L is the lag operator, and {ǫt; t ∈ Z} is an

i.i.d. mean 0-innovation with probability density f . The observed series is {X(n)
1 , . . . ,X(n)

n }
(superscript (n) omitted whenever possible), and the (p + q)d2-dimensional parameter of

interest is

θ := ((vecA1)
′, . . . , (vecAp)′, (vecB1)′, . . . , (vecBq)

′)′.

Letting A0 := Id =: B0, A(L) := A0 − ∑p
i=1AiL

i and B(L) := B0 +
∑q

j=1BjL
j , the

following conditions, which are standard in VARMA modelling, are assumed to hold (they

actually define the parameter space Θ).

Assumption (A1). (i) All solutions of the determinantal equations

det

( p∑

i=0

Aiz
i

)
= 0 and det

( q∑

i=0

Biz
i

)
= 0, z ∈ C

lie outside the unit ball in C; (ii) |Ap| 6= 0 6= |Bq|; (iii) Id is the greatest common left

divisor of
∑p

i=0Aiz
i and

∑q
i=0Biz

i.

To proceed with the statement of local asymptotic normality, we need some algebraic

preparation, which we borrow from Garel and Hallin (1995) and Hallin and Paindaveine (2004);

that preparation is needed, essentially, for the explicit expressions of the central sequence (2.3)

and the Fisher information (2.6) below, and can be skipped at fist reading. The interested

reader will find this technical material in Appendix A.

Throughout, we assume that f is non-vanishing with respect to the Lebesgue measure µ
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on Rd. More precisely we assume that, for all c ∈ R+, there exist bc;f and ac;f in R such that

0 < bc;f ≤ ac;f < ∞ and bc;f ≤ f(x) ≤ ac;f

for ‖x‖ ≤ c. Denote by Fd this family of densities, which is the one for which the center-

outward distribution functions to be defined in Section 3.1 are shown to be continuous in

Hallin (2017). In order to have LAN, we moreover are making the following regularity

assumptions.

Assumption (A2). The density f ∈ Fd is such that (i)
∫
xf(x)dµ = 0,

∫
xx′f(x)dµ = Ξ,

with Ξ positive definite; (ii) there exists a square integrable random vector Df 1/2 such that

for all sequence h ∈ Rd such that 0 6= h → 0,

(h′h)−1
∫

[f 1/2(x+ h) − f 1/2(x) − h′Df 1/2(x)]2dµ → 0,

i.e., f 1/2 is mean-square differentiable, with mean square gradient Df 1/2; (iii) letting

ϕf (x) := (ϕ1(x), . . . , ϕd(x))′ := −2(Df 1/2)/f 1/2, (2.2)

∫
[ϕi(x)]4f(x)dµ < ∞, i = 1, . . . , d; (iv) the score function ϕf is piecewise Lipschitz, i.e.,

there exists a finite measurable partition of Rd into J non-overlapping subsets Ij, j = 1, . . . , J

such that ‖ϕf(x) −ϕf(y)‖ ≤ K‖x− y‖ for all x,y in Ij , j = 1, . . . , J .

Note that Assumption (A2) implies the existence and finiteness of the matrix

I(f) =
∫
ϕf(x)ϕ′

f (x)f(x)dµ

appearing in Proposition 2.1 below.

LetZ(n)
1 (θ), . . . ,Z(n)

n (θ) denote the residuals computed from the initial values ǫ−q+1, . . . , ǫ0

andX−p+1, . . . ,X0, the parameter value θ, and the observations; those residuals can be com-

puted recusively, or from (A.1). Clearly, X(n) := {X(n)
1 , . . . ,X(n)

n } is the finite realization

of a solution of (2.1) with parameter value θ iff Z(n)
1 (θ), . . . ,Z(n)

n (θ) and ǫ1, . . . , ǫn coincide.

Denoting by P(n)

θ;f
the distribution of X(n) under parameter value θ and innovation density f ,

the residuals Z(n)
1 (θ), . . . ,Z(n)

n (θ) under P(n)

θ;f
are i.i.d. with density f .
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2.2 LAN

We are now ready to establish the local asymptotic normality, under very general condi-

tions, of the VARMA model (2.1). Write L
(n)

θ+n−1/2τ (n)/θ;f
for the log-likelihood ratio of

P(n)

θ+n−1/2τ (n);f
with respect to P(n)

θ;f
, where τ (n) is a bounded sequence of R(p+q)d2

. The fol-

lowing LAN result will be used to motivate the definition of our R-estimator and to establish

the asymptotic normality of our R-estimators. Note that it does not require f to be elliptic.

Let

∆
(n)
f (θ) := M ′

θP
′

θQ
(n)′

θ
Γ

(n)
f (θ), (2.3)

where Mθ, Pθ, and Q(n)

θ
are given in (A.2) and (A.3) of Appendix A and

Γ
(n)
f (θ) := ((n − 1)1/2(vecΓ

(n)
1,f (θ))′, . . . , (n − i)1/2(vecΓ

(n)
i,f (θ))′, . . . , (vecΓ

(n)
n−1,f(θ))′)′, (2.4)

with the so-called f -cross-covariance matrices

Γ
(n)
i,f (θ) := (n − i)−1

n∑

t=i+1

ϕf(Z(n)
t (θ))Z(n)′

t−i (θ) (2.5)

(ϕf as in (2.2)). Recall that under Assumption (A1), the Green matrices Gu and Hu (see

Appendix A) decrease exponentially in u: we can thus safely define

Λf(θ) := M ′

θP
′

θ lim
n→∞

{
Q

(n)′

θ
[In−1 ⊗ (Ξ ⊗ I(f))]Q(n)

θ

}
PθMθ. (2.6)

The following LAN result then is essentially the same as in Garel and Hallin (1995,

(LAN 2) in their Proposition 3.1)

Proposition 2.1. Let Assumptions (A1) and (A2) hold. Then, for any bounded sequence τ (n)

in R(p+q)d2
, under P(n)

θ;f
, as n → ∞,

L
(n)

θ+n−1/2τ (n)/θ;f
= τ (n)′∆

(n)
f (θ) − 1

2
τ (n)′Λf(θ)τ (n) + oP(1), (2.7)

and

∆
(n)
f (θ) → N (0, Λf(θ)).

This proposition follows from the LAN result in Garel and Hallin (1995, (LAN 2) in their

Proposition 3.1) and, moving along the same lines as in the proof of Proposition 1 in Hallin

and Paindaveine (2004) (note that there is no need there for the assumption of an elliptic f),
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we obtain the form (2.3) of ∆
(n)
f (θ). The form (2.6) and the finiteness of the asymptotic

covariance matrix Λf(θ) easily follow from applying Lemma 4.12 in Garel and Hallin (1995).

Details are left to the reader.

2.3 Elliptical LAN

The class of densities Fd, of course, contains all elliptical distributions with nonvanishing

radial densities. Let Sd and Sd−1 stand for the (open) unit ball and the unit sphere in Rd,

respectively. Define the (spherical) uniform measure Ud over Sd as the product of the uni-

form measure over Sd−1 with a uniform measure over the unit interval of distances to the

origin. Consider a symmetric and positive definite d × d matrix Σ1/2 and a univariate

distribution function Frad over R+. A centered d-dimensional random vector Z has ellip-

tical distribution with scatter matrix Σ and radial distribution Frad (radial density frad)

iff Frad((Z ′Σ−1Z)1/2)Σ−1/2Z/(Z ′Σ−1Z)1/2 ∼ Ud. In the terminology of measure trans-

portation, the mapping F ell from Rd to Sd defined as

z 7→ F ell(z) := Frad((z′Σ−1z)1/2)Σ−1/2z/(z′Σ−1z)1/2 (2.8)

is thus pushing the elliptical distribution of Z forward to the uniform Ud over the unit ball Sd.

The form of the VARMA central sequence (2.3) considerably simplifies in the case of

such elliptical innovation densities. Letting f ∈ Fd be elliptical with scatter matrix Σ and

radial density frad, put S(n)

Σ,t
:= Σ−1/2Z

(n)
t /(Z(n)′

t Σ−1Z
(n)
t )1/2: it follows from (Hallin and

Paindaveine 2004) that the correponding f -cross-covariances are of the form

Γ
(n)
i,f (θ) := (n − i)−1Σ′−1/2

n∑

t=i+1

ϕ1((Z
(n)′
t Σ−1Z

(n)
t )1/2)ϕ2((Z

(n)′
t−i Σ−1Z

(n)
t−i)

1/2)S(n)

Σ,t
S

(n)′

Σ,t−i
Σ′1/2

(2.9)

where Z(n)
t = Z

(n)
t (θ), ϕ1(r) := −2Df

1/2
rad (r)/f

1/2
rad (r), and ϕ2(r) := r, r ∈ R

+. The existence

of ϕ1 is a consequence of Assumption (A2), which implies the quadratic mean differentiability,

with derivative Df
1/2
rad , of f

1/2
rad and the finiteness of

∫∞
0 (ϕ1(r))2frad(r)dr.
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3 Methodology

3.1 Center-outward ranks and signs

The main novelty of the R-estimation procedures proposed in this paper is the introduction

of the measure transportation-based ranks and signs proposed by Chernozhukov et al. (2017)

and developed in Hallin (2017) and del Barrio et al. (2018) under the name of center-outward

ranks and signs.

Unlike the real line, the real space in dimension d > 1 is not canonically ordered, and find-

ing an appropriate definition of ranks and signs (hence quantiles) has remained an open prob-

lem for quite some time—motivating, for instance, the development of statistical depth. A

successful theory of rank-based inference has been proposed by Hallin and Paindaveine (2002a

and b, 2004), but its validity unfortunately is restricted to models based on elliptical noise.

This restriction is lifted here by considering the newly defined concepts of center-outward

multivariate distribution and quantile functions, ranks, and signs. These new notions hinge

on measure transportation theory; in their empirical version, they are based on the idea of

an optimal (in the sense of a quadratic loss function) coupling of the sample with a regu-

lar grid over the unit ball. We refer to Villani (2009) for a book-length discussion on the

mathematical detail and to Hallin (2017) for a discussion in a statistical context.

Let us briefly recall some key facts about center-outward ranks and signs. Let Pd denote

the family of all distributions P with densities in Fd. The center-outward distribution func-

tion F± is the unique gradient of convex function mapping R
d to Sd and pushing P forward

to the spherical uniform distribution Ud over Sd. For P ∈ Pd, such mapping is (Figalli 2018)

a homeomorphism between Sd \ {0} and R
d \ F−1

± ({0}) and (letting, with a small abuse

of notation, Q±(0) := F−1
± ({0})) we can define the corresponding center-outward quantile

function as Q± := F−1
± . For any given distribution P, F± induces a (partial) ordering of Rd

and the center-outward medianQ±(0) is a uniquely defined compact set of Lebesgue measure

zero.

Turning to the sample, for any θ ∈ Θ, the residuals Z(n)(θ) := (Z(n)
1 (θ), . . . ,Z(n)

n (θ))

under P(n)

θ;f
are i.i.d. with density f ∈ Fd and center-outward distribution function F±. For

the empirical counterpart F (n)
± of F±, let n factorize into n = nRnS + n0, for nR, nS, n0 ∈ N

and 0 ≤ n0 < min{nR, nS}, where nR → ∞ and nS → ∞ as n → ∞, and consider a sequence

of grids, where each grid consists of the intersection between an nS-tuple (u1, . . .unS
) of unit

vectors, and the nR-hyperspheres centered at the origin, with radii 1/(nR+1), . . . , nR/(nR+1),

along with n0 copies of the origin. The resulting grid is such that the discrete distribution
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with probability masses 1/n at each gridpoint and probability mass n0/n at the origin con-

verges weakly to the uniform Ud over the ball Sd. Then, we define F (n)
± (Z(n)

t ), for t = 1, . . . , n

as the solution of an optimal coupling problem between the observations and the grid. Specif-

ically, the empirical center-outward distribution function is the (random) mapping

F
(n)
± : Z(n) := (Z(n)

1 , . . . ,Z(n)
n ) 7→ (F (n)

± (Z(n)
1 ), . . . ,F

(n)
± (Z(n)

n )),

satisfying
n∑

t=1

‖Z(n)
t − (F (n)

± (Z(n)
t )‖2 = min

π

n∑

t=1

‖Z(n)
πt − (F (n)

± (Z(n)
t )‖2, (3.1)

(where Z(n)
t = Z

(n)
t (θ) and ‖ · ‖ stands for the Euclidean norm) or, equivalently,

n∑

t=1

‖Z(n)
t − F (n)

± (Z(n)
t )‖2 = min

T ∈T

n∑

t=1

‖Z(n)
t − T (Z(n)

t )‖2, (3.2)

where the set {F (n)
± (Z(n)

t )|t = 1, . . . , n} coincides with the n points of the grid and π in (3.1)

ranges over the n! possible permutations of {1, . . . , n}, while T denotes the set of all possible

bijective mappings between Z(n)
1 , . . . ,Z(n)

n and the n gridpoints.

Figure 3: Empirical center-outward quantile contours (probability contents 26.9%, 50 %,
and 80%, respectively) computed from n = 1000 points drawn from a standard multivariate
normal (left panel) and the mixture of Gaussians (1.1) (right panel).
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Based on this empirical center-outward distribution function, the center-outward ranks

are defined as

R
(n)
±,t := R

(n)
±,t(θ) := (nR + 1)‖F (n)

± (Z(n)
t )‖ (3.3)
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and the center-outward signs as

S
(n)
±,t := S

(n)
±,t(θ) := F

(n)
± (Z(n)

t )I[F (n)
± (Z(n)

t ) 6= 0]/‖F (n)
± (Z(n)

t )‖. (3.4)

It follows that F (n)
± (Z(n)

t ) factorizes into

F
(n)
± (Z(n)

t ) =
R

(n)
±,t

nR + 1
S

(n)
±,t, hence Z

(n)
t = Q

(n)
±

(
R

(n)
±,t

nR + 1
S

(n)
±,t

)
. (3.5)

Those ranks and signs are jointly distribution-free (for f ∈ Fd): more precisely, un-

der P(n)

θ;f
, the n-tuple F (n)

± (Z(n)
1 ), . . . ,F

(n)
± (Z(n)

n ) is uniformly distributed over the n! permu-

tations of the n underlying gridpoints. Actually, denoting by B(n) the σ-field generated by

the sample, by B(n)
(.) and B(n)

± the sub-σ-fields generated by the order statistic and the em-

pirical center-outward distribution function, respectively, the sample σ-field B(n) factorizes

into the product B(n)
(.) ×B(n)

± with the remarkable property that P(n)

θ;f
in turn factorizes as the

product measure of its B(n)
(.) and B(n)

± marginals (see Sections 3.1 and 6 in Hallin (2017) for

details).

We illustrate these definitions in Figure 3, where n = 1000 bivariate observations were

drawn from the spherical Gaussian and from the mixture of Gaussians (1.1) considered in

the introduction. Their center-outward ranks and signs were obtained via the Hungarian

algorithm—see Appendix C for computational details. Figure 3 displays a few empirical

center-outward quantile contours, which nicely conform to the shape of the underlying dis-

tribution.

A strong parallel exists between Mahalanobis ranks and signs and the center-outward

ones: indeed, both z 7→ F±(z) and z 7→ F ell(z) are pushing P forward to the uniform Ud

over the unit ball. However, F± is the gradient of a convex function, hence, provided

that P has finite moments of order two, is an optimal Monge-Kantorovich transport for

quadratic transportation costs. So is Σ−1/2z 7→ F ell(z). Unless Σ = cId for some c > 0,

however, z 7→ F ell(z) is not a gradient of convex function, hence is not an optimal transport.

Denoting by Σ̂
(n)

a consistent estimator of Σ measurable with respect to the order statistic

of the Zt’s and by F
(n)
rad the empirical distribution function (with denominator (n + 1)) of

the (Z ′
tΣ̂

(n)−1
Zt)1/2’s, an empirical counterpart of F ell(Zt) is

F
(n)
ell (Zt) := F

(n)
rad ((Z ′

tΣ̂
(n)−1

Zt)
1/2)Σ̂

(n)−1/2
Zt/(Z ′

tΣ̂
(n)−1

Zt)
1/2 (3.6)
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with the Mahalanobis ranks

R
(n)
ell,t := (n + 1)‖F ell(Zt)‖ = (n + 1)F (n)

rad ((Z ′
tΣ̂

(n)−1
Zt)

1/2)

and Mahalanobis signs

S
(n)
ell,t := F

(n)
ell (Z(n)

t )I[F (n)
ell (Z(n)

t ) 6= 0]/‖F (n)
ell (Z(n)

t )‖ = Σ̂
(n)−1/2

Zt/(Z ′
tΣ̂

(n)−1
Zt)

1/2

and, similar to (3.5), we have the factorization

F
(n)
ell (Z(n)

t ) =
R

(n)
ell,t

n + 1
S

(n)
ell,t, hence Σ̂

(n)−1/2
Z

(n)
t = F

(n)−1
rad


 R

(n)
ell,t

n + 1


S(n)

ell,t = Σ−1/2Z
(n)
t + oP(1).

(3.7)

3.2 Center-outward sign- and rank-based central sequences

Intuitively, the basic idea in R-estimation consists in replacing the residuals Z(θ) appearing

in estimating equations with some adequate function of their ranks and their signs.

This, in dimension d = 1 and a context of asymptotic optimality, can be achieved by

considering the central sequence ∆
(n)
f (θ) associated with some reference density f (not nec-

essarily the actual one, which is unknown), conditioning it on the vector of residual ranks

and performing a one-step (in practice, a multistep one) Newton-Raphson iteration based on

the resulting “rank-based central sequence” rather than ∆
(n)
f (θ) itself. This latter strategy

has been applied quite successfully in Hallin and La Vecchia (2017, 2019) in the context

of nonlinear time series models; due to the classical equivalence between exact and approx-

imate score statistics it essentially leads to substituting F −1
(
R(n)(θ)/(n + 1)

)
for Z(n)(θ)

in ∆
(n)
f (θ), then proceeding as usual.

In dimension d > 1, similar ideas—namely, substituting

Σ̂
(n)1/2

F −1
rad(R(n)

ell,t/(n + 1))S(n)
ell,t = F−1

ell ((R(n)
ell,t/(n + 1))S(n)

ell,t) = F−1
ell (F (n)

ell (Z(n)
t (θ))) (3.8)

for Z(n)
t (θ) in ∆

(n)
f (θ)—have been applied by Hallin et al. (2006) for the estimation of shape

matrices based on the Mahalanobis ranks and signs.

The validity of the latter approach, however, is limited to models with elliptical noise.

Here, we aim at removing that restriction by considering the center-outward counterpart

of (3.8), that is, by substituting

13



F−1
± ((R(n)

±,t/(nR + 1))S(n)
±,t) = F−1

± (F (n)
± (Z(n)

t (θ))) = Q± ◦ F (n)
± (Z(n)

t (θ))

(F± and Q± associated with the chosen reference density f ∈ Fd—not the actual one, which

remains unspecified within Fd) for Zt(θ) in ∆
(n)
f (θ). Except for a few particular densities

such as the spherical or elliptical ones, explicit forms of center-outward distribution and

quantile functions are seldom available, though, and we therefore focus, for the choice of the

reference density f , on the spherical ones: let us insist again that this does not mean that

the actual density, which remains unknown, has to be spherical.

In view of (2.5), writing F (n)
±,t, R

(n)
±,t, and S(n)

±,t, respectively, for F (n)
± (Z(n)

t (θ)), R
(n)
±,t(θ),

and S(n)
±,t(θ), we thus concentrate on rank-based f -cross-covariance statistics of the form

Γ
˜

(n)
i,ϕ1,ϕ2

(θ) := (n− i)−1
n∑

t=i+1

ϕ1


 R

(n)
±,t

nR + 1


ϕ2


 R

(n)
±,t−i

nR + 1


S(n)

±,tS
(n)′
±,t−i, i = 1, . . . , n−1, (3.9)

where ϕ1 and ϕ2 : (0, 1) → R are appropriate score functions; see Section 4.2 for examples.

Denote by ∆
˜

(n)
ϕ1,ϕ2

(θ) the center-outward rank-based central sequence resulting from substi-

tuting Γ
˜

(n)
i,ϕ1,ϕ2

(θ) for Γ
(n)
i,f (θ) in the elliptical central sequence ∆

(n)
f (θ). Our center-outward

R-estimators, which we now describe, are based on those ∆
˜

(n)
ϕ1,ϕ2

(θ).

4 R-estimation

4.1 One-step R-estimators

We now proceed with a precise definition of our R-estimators and establish their asymptotic

properties. Throughout, ϕ1 and ϕ2 are assumed to satisfy the following mild assumption.

Assumption (A3). The score functions ϕ1 and ϕ2 are (i) square integrable, that is,

σ2
ϕl

:=
∫ 1

0
ϕ2

l (u)du < ∞, l = 1, 2,

and (ii) continuous differences of two monotonic increasing functions (i.e., have bounded

variation).

Define

Jϕ2,f :=
∫

Sd

ϕ2(‖u‖)
u

‖u‖F
−1′
± (u)dUd(u), (4.1)
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and

Kϕ1,ϕ2,f :=
∫

Sd

ϕ1(‖u‖)

[
Id ⊗ u

‖u‖

]
Jϕ2,f

[
Id ⊗ϕ′

f

(
F−1

± (u)
)]

dUd(u). (4.2)

Those two matrices under Assumptions (A2) and (A3) exist and are finite in view of the

Cauchy–Schwarz inequality since u/‖u‖ is bounded.

Whether defined under one-step form (as in Hallin et al. (2006) and here) or as the

solution of a minimization problem, R-estimation requires the asymptotic linearity of the

rank-based objective function involved: sufficient conditions for such linearity have been

established by Jurečková (1971) and van Eeden (1972) for single-output regression models,

by Hallin and Puri (1994) for univariate ARMA models, by Hallin and Paindaveine (2005) for

elliptical VARMA and Mahalanobis ranks and signs; see also Hallin et al. (2015) for a general

criterion. The conditions we need here are regularity assumptions on ϕ1 and ϕ2. They are

quite similar to those in Hallin and Paindaveine (2005), and so is the proof (important pieces

of which actually are Lemmas B.1 and B.3 in Appendix B), which we therefore omit. We

thus directly make the following assumption on the rank-based statistics Γ
˜

(n)
i,ϕ1,ϕ2

(θ); the form

of the linear term in the right-hand side of (4.3) follows from the form of the asymptotic

shift in Lemma B.3.

Assumption (A4) For any positive integer i, as n → ∞,

(n − i)1/2
[
vec(Γ

˜
(n)
i,ϕ1,ϕ2

(θ + n−1/2τ )) − vec(Γ
˜

(n)
i,ϕ1,ϕ2

(θ))
]

= −Kϕ1,ϕ2,fQi,θPθMθτ + oP(1),

(4.3)

where Q
i,θ, Pθ and Mθ are given in (B.1), (A.3), and (A.2) in Appendix.

Now, for m ≤ n − 1, let

Γ
˜

(m,n)
ϕ1,ϕ2

(θ) := ((n − 1)1/2(vecΓ
˜

(n)
1,ϕ1,ϕ2

(θ))′, . . . , (n − m)1/2(vecΓ
˜

(n)
m,ϕ1,ϕ2

(θ))′)′, (4.4)

T
(m+1)

θ
:= M ′

θP
′

θQ
(m+1)′

θ
, and ∆

˜
(n)
m,ϕ1,ϕ2

(θ) := T
(m+1)

θ
Γ
˜

(m,n)
ϕ1,ϕ2

(θ); (4.5)

clearly, ∆
˜

(n)
m,ϕ1,ϕ2

(θ) is a version of ∆
˜

(n)
ϕ1,ϕ2

(θ) truncated after lag m. The asymptotic linearity

of Γ
˜

(n)
i,ϕ1,ϕ2

(θ) entails, for ∆
˜

(n)
ϕ1,ϕ2

(θ), the following result.

Proposition 4.1. Let Assumptions (A1), (A2), (A3), and (A4) hold. Then, for any (m, n)

such that m ≤ n − 1 and m → ∞ (hence also n → ∞),

∆
˜

(n)
ϕ1,ϕ2

(θ + n−1/2τ ) − ∆
˜

(n)
m,ϕ1,ϕ2

(θ) = −Υ
(m+1)
ϕ1,ϕ2,f(θ)τ + oP(1), (4.6)
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where Υ
(m+1)
ϕ1,ϕ2,f(θ) := T

(m+1)

θ
(Im ⊗Kϕ1,ϕ2,f)T (m+1)′

θ
.

With the above asymptotic linearity result, we are now ready to define our R-estimators.

First, let us introduce some notations. Under Assumption (A1), we can safely define the

limit

Υϕ1,ϕ2,f(θ) := lim
n→∞

Υ
(n)
ϕ1,ϕ2,f(θ)

and the cross-information matrix

Iϕ1,ϕ2,f(θ) := lim
n→∞

Eθ,f

[
∆
˜

(n)
ϕ1,ϕ2

(θ)∆(n)
f (θ)′

]
. (4.7)

Let

Γ̄
(n)
i,ϕ1,ϕ2

(θ) := (n − i)−1
n∑

t=i+1

ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)S±,tS
′
±,t−i (4.8)

with S±,t := F±,t/‖F±,t‖ the “sign” of F±,t. Denote by ∆̄(n)
ϕ1,ϕ2

(θ) the central sequence

resulting from substituting Γ̄
(n)
i,ϕ1,ϕ2

(θ) for Γ
˜

(n)
i,ϕ1,ϕ2

(θ) in ∆
˜

(n)
ϕ1,ϕ2

(θ). Following the proofs in

Lemma B.4 and Lemma B.3, it is not difficult to see that the difference between ∆̄(n)
ϕ1,ϕ2

and ∆
˜

(n)
ϕ1,ϕ2

converges to zero in quadratic mean as n → ∞. Therefore, in view of the proofs

in Lemma B.1 and (B.19) in Appendix ??, Υϕ1,ϕ2,f(θ) coincides with the cross-information

matrix when Assumptions (A1), (A2) and (A3) hold.

Denote by Υ̂(n)
ϕ1,ϕ2

a consistent estimator of Υϕ1,ϕ2,f(θ); one way to obtain such an esti-

mator is by using (4.6); see Appendix C for details. Also, denote by θ̂(n) a root-n consistent

and asymptotically discrete estimator of θ (note that asymptotic discreteness is only a the-

oretical requirement since in practice θ̂(n) only has a bounded number of digits; see Le Cam

and Yang (2000, Chapter 6) and van der Vaart (1998, Section 5.7) for details). Then the

one-step R-estimator is defined as

θ̂
˜n := θ̂(n) + n−1/2

(
Υ̂(n)

ϕ1,ϕ2

)−1
∆
˜

(n)
ϕ1,ϕ2

(θ̂(n)). (4.9)

The following proposition then establishes the
√

n-consistency and asymptotic normality

of θ̂
˜n. We remark that asymptotic efficiency can be achieved by θ̂

˜n under spherical distri-

butions with adequate choices of ϕ1 and ϕ2. More specifically, for spherical distributions, it

is shown in Chernozhukov et al. (2017, Section 2.4) (see, also, Hallin (2017)) that F± actu-

ally coincides with F ell. Hence (see Section 2.3), the central sequence ∆̄(n)
ϕ1,ϕ2

also coincides

with ∆
(n)
f when

ϕ1 = −2
(
Df

1/2
rad /f

1/2
rad

)
◦ F −1

rad and ϕ2 = F −1
rad. (4.10)
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Therefore, due to the convergence of ∆
˜

(n)
ϕ1,ϕ2

to ∆̄(n)
ϕ1,ϕ2

in quadratic mean as mentioned above,

when (4.10) holds, ∆
˜

(n)
ϕ1,ϕ2

and ∆
(n)
f are asymptotically equivalent, and Υϕ1,ϕ2,f(θ) coincides

with the Fisher information matrix. In this case, asymptotic efficiency can be achieved by θ̂
˜n.

Proposition 4.2. Let Assumptions (A1), (A2), (A3), and (A4) hold. Then,

n1/2
(
Ω(n)

)−1/2
(θ̂
˜n − θ) → N (0, Id2(p+q)), (4.11)

as both nR and nS tend to infinity, where

Ω(n) := d−2σ2
ϕ1

σ2
ϕ2

(
Υ

(n)
ϕ1,ϕ2,f(θ)

)−1
T

(n)

θ
T

(n)′

θ

(
Υ

(n) ′

ϕ1,ϕ2,f(θ)
)−1

and
(
Ω(n)

)−1/2
stands for the symmetric square root of Ω(n).

See Appendix B for the proof. Appendices C and D provide some details on the computa-

tional aspects of the procedure and describe the algorithm we are using. Codes are available

upon request.

4.2 Some examples of score functions

The rank-based central sequence ∆
˜

(n)
ϕ1,ϕ2

still depends on the choice, which is left to the user,

of score functions ϕ1 and ϕ2. We provide three examples of sensible choices. The proposed

scores hinge on scores widely applied in the univariate time series setting (see e.g. Hallin

and La Vecchia (2019)) and in the multivariate setting under elliptical innovation density

(see Hallin and Pandaveine (2004)).

Example 1 (Sign test scores). Setting ϕ1(u) = 1 = ϕ2(u) yields the center-outward

sign-based cross-covariance matrices

Γ
˜

(n)
i,sign(θ) = (n − i)−1

n∑

t=i+1

S
(n)
±,tS

(n)′
±,t−i, i = 1, . . . , n − 1. (4.12)

The resulting central sequence ∆
˜

(n)
sign(θ) relies on the center-outward signs S(n)

±,t and we label

these scores as sign test scores.

Example 2 (Spearman scores). A simple choice is ϕ1(u) = ϕ2(u) = u. The correspond-

ing rank-based cross-covariance matrices are

Γ
˜

(n)
i,Sp(θ) = (n − i)−1

n∑

t=i+1

F
(n)
±,tF

(n)′
±,t−i, i = 1, . . . , n − 1, (4.13)
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reducing, for d = 1, to Spearman autocorrelations, whence the terminology Spearman rank

scores.

Example 3 (van der Waerden or normal scores). Finally, ϕ1(u) = ϕ2(u) = {γ−1
d (u)}1/2,

where γd is the chi-square distribution function with d degrees of freedom, yields the van der

Waerden (vdW) rank scores, with cross-covariance matrices

Γ
˜

(n)
i,vdW(θ) = (n − i)−1

n∑

t=i+1


γ−1

k


 R

(n)
±,t

nR + 1






1/2 
γ−1

k


 R

(n)
±,t−i

nR + 1






1/2

S
(n)
±,tS

(n)′
±,t−i, (4.14)

i = 1, . . . , n − 1.

4.3 Algorithmic and computational aspects

The computational aspects of our estimation method are discussed in Appendices C and D.

The corresponding codes are available on request.

5 Numerical illustration

5.1 Finite-sample performance

In this section we illustrate the finite-sample performance of our R-estimators by considering

different actual innovation densities and comparing the R-estimates to the routinely-applied

Gaussian QMLE. The aim of this numerical exercise is to complement and reinforce the

picture glanced in section 1.2 and demonstrate the superiority of R-estimators over the

QMLE under non-Gaussian densities.

To begin with, we set the bivariate (d = 2) VAR(1) model

(Id −AL)X t = ǫt, t ∈ Z (5.1)

with parameter of interest θ := vecA = (a11, a21, a12, a22)′. For ǫt, we consider some heavy-

tailed and skew distributions: Student t3, skew normal and skew t3. Those densities are

quite commonly used in the modelization of a number of real data in finance, economics,

and biostatistics. The skew normal distribution has density (φ(·; Σ) stands for the N (0, Σ)

density, Φ for the standard normal distribution function)

fǫ(z; ξ, Σ,α) := 2φ(z − ξ; Σ)Φ(α′w−1(z − ξ)), z ∈ R
d, (5.2)
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where ξ ∈ Rd, α ∈ Rd, and w = diag(w1, . . . , wd) > 0 are location, shape, and scale

parameters, respectively. The skew tν distribution has density
(5.3)

fǫ(z; ξ, Σ,α, ν) := 2det(w)−1td(x; Σ, ν)T
(
α′x

(
(ν + d)/(ν + x′Σ−1x)

)1/2
; ν + d

)
, z ∈ R

d,

where x = w−1(z − ξ), T (y; ν) denotes the univariate tν distribution function, and

td(x; Σ, ν) :=
Γ((ν + d)/2)

(νπ)d/2Γ(ν/2)det(Σ)1/2

(
1 +

x′Σ−1x

ν

)−(ν+d)/2

, x ∈ R
d.

We refer to Azzalini and Dalla Valle (1996), Azzalini and Capitanio (2003) for details.

We generate N = 300 Monte Carlo replications—larger values of N only show non-

significant changes in the estimates—with sample size n = 1000 and the same parameter

value θ = (0.2, −0.6, 0.3, 1.1)′ as in Section 1.2.

Throughout, the QMLEs are computed from the MTS package in R program, while the R-

estimators are obtained using the one-step procedure as described in the online Appendix C.

The simulation results are reported in Figures 4-6 under the form of boxplots. Table 1

provides a numerical summary, in terms of the first two moments of the sampling distribution

of the estimators—averaged Bias (×103) and MSE (×103).

Figure 4: Boxplots of the QMLE and R-estimators (signs, Spearman, van der Waerden)
under skew normal innovations (5.2); sample size n = 1000; N = 300 replications. The
horizontal red line represents the actual parameter value.
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First consider the case of skew innovation densities: under skew normal (Figure 4) and

skew t3 (Figure 5) distributions, the benefits of using the R-estimators rather than the
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QMLE are evident. While all R-estimators unbiased, the QMLE exhibits, for a12 and a22,

quite dramatic deviations from the true parameter value, entailing large bias and large MSE.

Figure 5: Boxplots of the QMLE and R-estimators (signs, Spearman, van der Waerden)
under skew t3 innovations (5.3); sample size n = 1000; N = 300 replications. The horizontal
red line represents the actual parameter value.
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One may wonder, however, what happens if skewness is removed and only the heavy-tail

feature is kept. Figures 1 and 6 answer this question, displaying the boxplots obtained under

Gaussian and t3 innovation densities. We see that the QMLE recovers a most reasonable

performance (small bias; MSE only slightly larger than the R-estimators), even though the

finite fourth moment condition is not satisfied. It does not, however, outperform our R-

estimators, which keep displaying an excellent performance, with a virtually negligible bias

and MSE similar to that of the QMLE. The benefits in Figures 4 and 5, thus, are not obtained

at the cost of a poorer performance under Gaussian or well-behaved symmetric densities.

Finally, we consider the performance of the estimators in the presence of anomalous

records—additive outliers. For univariate time series, rank-based methods have been shown

resistant to outliers, while even a very small number of them can ruin the validity of

correlogram-based tests and QMLEs; see e.g. Hallin and Mélard (1988) or, for a book-

length presentation, Maronna et al. (2019). To investigate the robustness aspects of our

R-estimators, we consider a simulation study where “clean” observations are contaminated
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Figure 6: Boxplots of the QMLE and R-estimators (signs, Spearman, van der Waerden) under
symmetric t3 innovations (sample size n = 1000; N = 300 replications). The horizontal red
line represents the actual parameter value.
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Figure 7: Boxplot of the QMLE and R-estimators (signs, van der Waerden, Spearman) under
Gaussian innovations in the presence of additive outliers (sample size n = 1000; N = 300
replications). The horizontal red line represents the actual parameter value.
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by some additive outliers (AO). Specifically, we first generate Gaussian VAR(1) realiza-

tions {X t} of (5.1). Then, adding the outliers, we obtain a new sample, with contami-

nated observations {X∗
t = X t + I(t = h)ξ} where h and ξ denote the location and size

of the contamination, respectively. We set h in order to have 5% equally spaced AOs and

put ξ = (4, 4)′. The parameter θ remains the same as in the previous settings and the

sample size is again n = 1000, with N = 300 Monte Carlo replications. In Figure 7, we

compare the three R-estimators (sign, Spearman, vdW) with the QMLE by displaying the

resulting boxplots. Note that the additive outliers have a large impact on the QMLE, while

their impact on the R-estimators, especially the sign-based one, is much less.

5.2 Empirical examples

We illustrate the applicability and good performance of our R-estimators in two real data

problems, originating in electroencephalograms analysis and macroeconomics, respectively.

5.2.1 Electroencephalogram data

We consider two Electroencephalogram (EEG) signals from a dataset freely available in

the eegkitdata package of the R program. That dataset contains multichannel signals from

several patients; we selected the channels FP1 and FP2 of the first patient. The channels

convey information on the brain reaction to the visual inputs. For each channel, the sample

size is n = 256.

In Figure 8, we display the resulting demeaned time series. The plots indicate that the

two signals tend to co-move over time. Moreover, we notice that the FP2 signal oscillates

more than the FP1 one, exhibiting more extreme values, either above or below zero. The

study of co-movement among EEG signals recorded at different brain locations represents

an active research area. The statistical analysis of these co-movements may shed light on

the joint functioning of different parts of the human brain. In this spirit, our aim is to

estimate the squared coherence (related to the cross-spectrum) of those co-movements. To

obtain a flexible semiparametric estimate of the cross-spectrum, we follow the widely-applied

minimum entropy criterion. First, we look for the best VAR approximation to the dynamics

of the bivariate (FP1, FP2) series. Selecting the order via AIC, we obtain a VAR(6). Second,

we estimate the model parameters via QMLE, routinely-applied in biostatistical softwares,

and via our R-estimates with the robust estimator of Croux and Joossens (2008) (R routine

varxfit available in the package rgarch) as a preliminary using the algorithm described

in the online Appendix C, where we refer to for details. The QMLE-based multivariate
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Table 1: The estimated bias (×103) and MSE (×103) for the QMLE and R-estimators (signs,
van der Waerden, Spearman) under various innovation densities (normal, t3, skew normal,
skew t3, normal mixture as in (1.1)) and with additive outliers. The sample size is n = 1000;
N = 300 replications.

Bias (×103) MSE (×103)
a11 a21 a12 a22 a11 a21 a12 a22

(Normal)
QMLE -0.484 -0.054 0.201 -1.571 0.769 0.679 0.173 0.195
vdW -0.662 -0.434 0.504 -1.833 0.780 0.688 0.178 0.205
Sign -0.372 -0.600 1.545 -2.642 1.314 1.141 0.305 0.310

Spearman -1.263 -0.979 1.274 -2.134 0.810 0.728 0.189 0.216
(t3)

QMLE -3.558 -0.210 2.092 -0.967 0.844 0.671 0.205 0.185
vdW -2.680 -1.937 2.393 -1.053 0.602 0.557 0.143 0.135
Sign -2.204 -3.916 1.996 0.104 0.784 0.681 0.201 0.179

Spearman -2.880 -2.014 2.663 -1.033 0.640 0.589 0.150 0.142
(Skew normal)

QMLE 4.438 -5.728 -42.601 42.700 0.612 1.026 1.879 1.939
vdW -1.740 -0.768 1.186 -1.384 0.590 1.146 0.103 0.219
Sign -3.033 -0.108 1.499 -1.849 0.857 1.917 0.167 0.400

Spearman -1.761 -0.452 1.134 -1.682 0.600 1.184 0.104 0.224
(Skew t3)
QMLE 4.116 -4.407 -34.612 34.898 0.634 0.965 1.280 1.349
vdW -1.789 1.533 1.937 -2.854 0.378 0.876 0.081 0.192
Sign -2.347 -0.039 1.858 -1.879 0.655 1.185 0.124 0.241

Spearman -1.702 1.603 1.848 -2.968 0.388 0.907 0.084 0.198
(Mixture)

QMLE 73.967 -1.157 -129.089 -0.472 6.137 0.399 16.940 0.054
vdW 2.600 -3.905 -0.612 1.429 0.389 0.239 0.220 0.227
Sign 4.419 -8.879 -1.815 13.927 0.713 0.437 0.622 1.168

Spearman 3.086 -4.301 -2.275 2.346 0.400 0.277 0.252 0.249
(Additive outliers)

QMLE -146.702 -145.957 13.106 12.255 22.584 22.221 0.443 0.509
vdW -62.338 -61.643 6.419 3.374 4.718 4.533 0.225 0.236
Sign -30.489 -31.571 4.390 0.172 2.169 2.262 0.297 0.295

Spearman -62.151 -61.167 6.394 3.203 4.686 4.466 0.224 0.237
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Ljung-Box test (we use the mq function in the MTS package; see Section 2.7.2 of Tsay (2014)

for details) does not reject the model at nominal level 1%.

Table 2 in the online Appendix E reports the estimates along with (in parentheses) their

standard errors (SEs). While some differences can be noticed (see, for instance, the first row

of A3), spotting the significant ones and interpreting them is not easy. In order to do so,

we plugged the various estimators into the squared coherence of the series; see Chapter 11

of Brockwell and Davis (2006) for an interpretation.

Figure 8: Left panel: EEG signals of the channels FP1 and FP2. Right panel: Squared
coherence for EEG signals of the channels FP1 and FP2, as implied by different model
parameter estimates.
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The resulting squared coherences are plotted in the right panel of Figure 8. They all

reveal strong co-movements at low frequencies, with squared coherence values above 0.8. The

intensity of co-movements then decreases, with a trough about 0.14 Hz where the estimated

squared coherence drops below 0.3 irrespective of the estimation method. The estimated

squared coherence implied by the sign R-estimator, however, exhibits a drop, followed by a

sudden rise, both much sharper than the other ones. We conjecture that this difference of

the sign R-estimator can be related to the presence of spiky values in FP2. Recall indeed

that sign-based R-estimators are significantly more robust against outliers, hence against the

extreme oscillations (see Figure 8, left plot) of FP2 which, moreover, do present some visible

periodic pattern. We are thus inclined to believe that the sign-based squared coherence is

more reliable than the other ones.

5.2.2 A macroeconomic application

We consider two macroeconomic time series: the seasonally adjusted monthly housing starts

(Hstarts) and the 30-year conventional mortgage rate (Mortg—no need for seasonal adjust-
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ment) in the US from January 1989 to January 2016, with a sample size n = 325 each.

Both series are freely available on the Federal Reserve Bank of Saint Louis website, where

we refer to for details. Similarly to Tsay (2014, Section 3.15.2), we analyze the differenced

series; Figure 9 displays plots of their demeaned differences. While the Mortg series seems

to be driven by skew innovations (with large positive values more likely than the negative

ones), the Hstarts series looks more symmetric about zero. Visual inspection suggests the

presence of significant auto- and cross-correlations, as expected from macroeconomic theory.

Figure 9: Plots of demeaned differences of the monthly housing starts (measured in thousands
of units) (left panel) and the 30-year conventional mortgage rate (in percentage) (right panel)
in the US, from January 1989 through January 2016.
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The AIC criterion selects a VARMA(3, 1) model, the parameters of which we estimated

using the benchmark QMLE (see e.g. Tsay (2014), Chapter 3) and our R-estimators (sign,

Spearman, and van der Waerden). The QMLE-based multivariate Ljung-Box test does not

reject the model at nominal level 1%. We report the estimates (along with their standard

error, SE, in parentheses) in Table 3 in the online Appendix E. Again, spotting the differences

in Table 3 is all but simple, even though some look quite significant (see, for instance, the

QMLE and R-estimates of A21 and A22) and analizing them is even more difficult.

Impulse response functions (IRFs) are easier to read, and easier to interpret. In Fig-

ures 10 and 11, we plot the estimated IRFs resulting from the QMLE and R-estimators. In

accordance with macroeconometric practice, we are plotting the IRFs associated with both

the original and the orthogonalized innovations—the latter in order to reduce the impact

on IRFs of the off-diagonal elements of the innovation correlation matrix. Looking at the

plots, we see that all IRFs decay to zero quickly; however, the QMLE-based IRFs decay uni-

formly faster than the R-estimator-based ones. This has interesting economic implications:

25



for instance, looking at the bottom-right panel of Figure 10 and Figure 11, we notice that

the R-estimators, especially the sign-based ones, estimate a more persistent impact of past

mortgage rates on the present one.

6 Conclusion

Starting from the LAN central sequence of VARMA models, we define a class of R-estimators

based on the multivariate concept of center-outward ranks and signs recently proposed by

Hallin (2017). Those R-estimators are flexible, robust, and easy to implement. They perform

remarkably well both in simulations, where they significantly outperform the QMLE under

non-Gaussian innovations, and in real data analysis. We conjecture that those attractive

features are not limited to the VARMA case and we believe they extend to other models

such as the dynamic conditional correlation model of Engle (2002), for which the QMLE is

routinely applied.

Figure 10: Plots of estimated impulse response functions of the VARMA(3, 1) model for the

differenced Hstarts and Mortg data (QMLE and R-estimators; original innovations).
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Figure 11: Plots of estimated impulse response functions of the VARMA(3, 1) model for the

differenced Hstarts and Mortg data (QMLE and R-estimators; orthogonalized innovations).
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A Technical material: some algebraic preparation

Denote by Gu and Hu, u ∈ Z the Green’s matrices associated with the difference opera-

tors A(L) and B(L) defined in Section 2.1: those matrices are defined as the solutions of

the homogeneous linear recursions

A(L)Gu =
p∑

i=0

AiGu−i = 0 and B(L)Hu =
q∑

i=0

BiHu−i = 0, u ∈ Z

with initial values Id, 0, . . . , 0 at u = 0, −1, . . . , −p+1 and u = 0, −1, . . . , −q+1, respectively.

Then, the residual process {Z(n)
t (θ); 1 ≤ t ≤ n} has the representation

Z
(n)
t (θ) =

t−1∑

i=0

p∑

j=0

H iAjX
(n)
t−i−j

+
[
H t+q−1 · · · H t

]




Id 0 · · · 0

B1 Id · · · 0
...

...
. . .

...

Bq−1 Bq−2 · · · Id







ǫ−q+1

...

ǫ0


 (A.1)

(see Hallin (1986), Garel and Hallin (1995), or Hallin and Paindaveine (2004)).

Assumption (A1) ensures the exponential decrease of {‖Hu‖, u ∈ N}. Specifically, there

exists some ε > 0 such that ‖Hu‖(1 + ε)u converges to 0 as u → ∞. This also holds

for Green matrices Gu associated with the operator A(L). It follows that the initial val-

ues {ǫ−q+1, . . . , ǫ0} and {X−p+1, . . . ,X0} in (A.1), which are typically unobservable, have

no asymptotic influence on the residuals nor any asymptotic results. Therefore, they all

can safely set to zero in the sequel. This allows us to invert the AR and MA polynomi-

als, and to define the Green matrices Gu and Hu as the matrix coefficients of the inverted

operators (A(L))−1 and (B(L))−1:

∞∑

u=0

Guzu :=

( p∑

i=0

Aiz
i

)−1

and
∞∑

u=0

Huzu :=

( q∑

i=0

Biz
i

)−1

, z ∈ C, |z| < 1.

Associated with an arbitrary d-dimensional linear difference operator C(L) :=
∑∞

i=0CiL
i

(this of course includes operators of finite order s), define, for any integers u and v, the
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d2u × d2v matrices

C(l)
u,v :=




C0 ⊗ Id 0 . . . 0

C1 ⊗ Id C0 ⊗ Id . . . 0
...

. . .
...

Cv−1 ⊗ Id Cv−2 ⊗ Id . . . C0 ⊗ Id

...
...

Cu−1 ⊗ Id Cu−2 ⊗ Id . . . Cu−v ⊗ Id




and

C(r)
u,v :=




Id ⊗C0 0 . . . 0

Id ⊗C1 Id ⊗C0 . . . 0
...

. . .
...

Id ⊗Cv−1 Id ⊗Cv−2 . . . Id ⊗C0

...
...

Id ⊗Cu−1 Id ⊗Cu−2 . . . Id ⊗Cu−v




.

WriteC(l)
u forC(l)

u,u andC(r)
u forC(r)

u,u. With this notation, note thatG(l)
u ,G(r)

u ,H(l)
u , andH(r)

u

are the inverses of A(l)
u ,A(r)

u ,B(l)
u and B(r)

u , respectively. Denoting by C ′(l)
u,v and C ′(r)

u,v

the matrices associated with the transposed operator C ′(L) :=
∑∞

i=0C
′
iL

i, we also have

that G′(l)
u = (A′(l)

u )−1, H ′(l)
u = (B′(l)

u )−1, and so on. Define the d2(p + q) × d2(p + q) matrix

Mθ := (G
′(l)
p+q,p

...H ′(l)
p+q,q) : (A.2)

under Assumption (A1), Mθ is of full rank.

Also, consider the operatorD(L) := Id+
∑p+q

i=1 DiL
i (note thatD(L) and most quantities

defined below depends on θ; for simplicity, however, we are dropping this reference to θ),

where




D′
1

...

D′
p+q


 := −




Gq Gq−1 . . . G−p+1

Gq+1 Gq . . . G−p+2

...
. . .

...

Gp+q−1 Gp+q−2 . . . G0

Hp Hp−1 . . . H−q+1

Hp+1 Hp . . . H−q+2

...
. . .

...

Hp+q−1 Hp+q−2 . . . H0




−1




Gq+1

...

Gp+q

Hp+1

...

Hp+q



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(recall that G−1 = G−2 = · · · = G−p+1 = 0 = H−1 = H−2 = · · · = H−q+1).

Let {ψ(1)
t , . . . ,ψ

(p+q)
t } be a set of d×d matrices forming a fundamental system of solutions

of the homogeneous linear difference equation associated with D(L). Such a system can be

obtained from the Green matrices of the operator D(L) (see, e.g., Hallin 1986). Defining

ψ̄m(θ) :=




ψ
(1)
1 . . . ψ

(p+q)
1

ψ
(1)
2 . . . ψ

(p+q)
2

...
...

ψ(1)
m . . . ψ(p+q)

m




⊗ Id,

the Casorati matrix Cψ associated with D(L) is ψ̄p+q. Finally, let

Pθ := C−1

ψ
and Q

(n)

θ
:= H

(r)
n−1B

′(l)
n−1ψ̄n−1. (A.3)

B Proofs of Propositions 4.1 and 4.2

In order to prove Propositions 4.1 and 4.2, we first need to establish the asymptotic normality,

under P
(n)

θ;f
and P

(n)

θ+n−1/2τ ;f
, of the rank-based ∆

˜
(n)
ϕ1,ϕ2

(θ).

As in the univariate case, however, due to the fact that the ranks are not mutually inde-

pendent, the asymptotic normality of a rank statistic does not follow from classical central-

limit theorems. The approach we are adopting here is inspired from Hájek, and consists in

establishing an asymptotic representation result for the rank-based statistic under study—

namely, its asymptotic equivalence with a random variable which is no longer rank-based—

then proving the asymptotic normality of the latter. This is achieved here in a series of

lemmas: Lemma B.1 deals with the asymptotic normality of (n−i)1/2vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)), a corol-

lary of which is the asymptotic normality of the truncated versions ∆̄(n)
m,ϕ1,ϕ2

(θ) of ∆̄(n)
ϕ1,ϕ2

(θ);

Lemma B.3 provides the asymptotic representation of vec(Γ
˜

(n)
i,ϕ1,ϕ2

(θ)) by vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ));

the asymptotic representation of ∆
˜

(n)
ϕ1,ϕ2

(θ) by ∆̄(n)
ϕ1,ϕ2

(θ) and their asymptotic normality are

obtained in Lemma B.4. The proofs of Propositions 4.1 and 4.2 follow.

Let us start with the asymptotic normality of (n − i)1/2vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)). Considering the

matrix Q(n)

θ
defined in (A.3), decompose it into d2 × d2(p + q) blocks (note that those blocks

do not depend on n), write

Q
(n)

θ
=
(
Q′

1,θ . . .Q′

n−1,θ

)′

. (B.1)

Lemma B.1. Let Assumptions (A1), (A2), and (A3) hold. Then, for any positive integer i,
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the vector (n−i)1/2vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)) in (4.8) is asymptotically normal with mean 0 under P
(n)

θ;f
,

mean Kϕ1,ϕ2,fQi,θPθMθτ under P
(n)

θ+n−1/2τ ;f
, and covariance d−2σ2

ϕ1
σ2

ϕ2
Id2 under both.

Proof. Since L
(n)

θ+n−1/2τ /θ;f
= τ ′∆

(n)
f (θ)− 1

2
τ ′Λf (θ)τ+oP(1), the joint asymptotic normality

of (n − i)1/2vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)) and L
(n)

θ+n−1/2τ /θ;f
under P

(n)

θ;f
follows, via the classical Wold-

Cramér argument, from the asymptotic normality of

N
(n)
α,β := (n − i)1/2α′vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ)) + βτ ′∆
(n)
f (θ)

for arbitrary α ∈ Rd2
and β ∈ R.

Since Z(n)
1 , . . . ,Z(n)

n are i.i.d. and F±,t := F±(Z
(n)
t ) is uniform over the unit ball, N

(n)
α,β is

a sum of martingale differences. If it is uniformly square-integrable, with finite variance C
(n)
α,β,

say, such that limn→∞ C
(n)
α,β =: Cα,β exists and is finite, the martingale central limit theorem

applies, and N
(n)
α,β is asymptotically normal with mean 0 and variance Cα,β.

Now, the variance of N
(n)
α,β takes the form

C
(n)
α,β = (n − i)α′Var

(
vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ))
)
α

+ 2βα′(n − i)1/2Cov
(
vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ)), τ ′∆
(n)
f (θ)

)

+ β2τ ′Var
(
∆

(n)
f (θ)

)
τ .

The entries of each Γ̄
(n)
i,ϕ1,ϕ2

(θ) are uniformly square-integrable. As for ∆
(n)
f (θ), it follows

from Lemma 2.2 in Hallin and Werker (2003) that, for any LAN family, a uniformly pth-order

integrable version of the central sequence exists: without loss of generality, let us assume

that ∆
(n)
f (θ), for p = 2, is one of them. The sequence N

(n)
α,β thus has a limiting N (0, Cα,β)

distribution provided that limn→∞ C
(n)
α,β =: Cα,β exists and is finite.

Due to the independence between the signs S±,t := F±,t/‖F±,t‖ and the moduli ‖F±,t‖
(which follows from the fact that F±,t ∼ Ud), and due to the fact that Z(n)

1 , . . . ,Z(n)
n are i.i.d.,

lim
n→∞

Var
(
vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ))
)

= lim
n→∞

E
{
(n − i)vecΓ̄

(n)
i,ϕ1,ϕ2

(θ)(vecΓ̄
(n)
i,ϕ1,ϕ2

(θ))′
}

= lim
n→∞

(n − i)−1E








n∑

t=i+1

ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)vec(S±,tS
′
±,t−i)




×



n∑

t=i+1

ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)vec(S±,tS
′
±,t−i)




′


=
1

d2
σ2

ϕ1
σ2

ϕ2
Id2 , (B.2)

35



where the last equation follows from the uniform distribution of S±,t over Sd−1. Next, the

uniform square-integrability of ∆
(n)
f (θ) and its asymptotic normality in Proposition 2.1 yield

lim
n→∞

(n − i)1/2Cov
(
vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ)), τ ′∆
(n)
f (θ)

)

= lim
n→∞

E
[
(n − i)1/2vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ))τ ′∆
(n)
f (θ)

]

= lim
n→∞

E
[
(n − i)1/2vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ))Γ
(n)′
f (θ)

]
Q

(n)

θ
PθMθτ , (B.3)

where the last equality follows from (2.3). Due to the independence of Z(n)
i and Z(n)

j for i 6= j,

only Γ
(n)
i,f (θ) in Γ

(n)
f (θ) is contributing to (B.3). Therefore, using the block matrix form

of Q(n)

θ
in (B.1), (B.3) reduces to

lim
n→∞

(n − i)E
[
vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ))(vec(Γ
(n)
i,f (θ)))′

]
Q

i,θPθMθτ . (B.4)

From (2.5), we have

(n − i)E
[
vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ))(vec(Γ
(n)
i,f (θ)))′

]

= (n − i)−1E








n∑

t=i+1

ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)vec(S±,tS
′
±,t−i)






n∑

t=i+1

vec(ϕf (Z
(n)
t ))Z ′

t−i)




′


= E
[
ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)(Id ⊗ S±,t)S±,t−iZ

′
t−i(Id ⊗ϕ′

f(Z
(n)
t ))

]
(B.5)

where the last two equalities follow from the independence of Z(n)
1 , . . . ,Z(n)

n and the uniform

distribution of F±,t ∼ Ud. In view of (2.7), (B.3), (B.4) and (B.5), we thus obtain

lim
n→∞

(n − i)1/2Cov
(
vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ)), τ ′∆
(n)
f (θ)

)
= Kϕ1,ϕ2,fQi,θPθMθτ . (B.6)

Combining (B.2), (B.6) and the asymptotic normality of ∆
(n)
f (θ) in Proposition 2.1 yields,

for arbitrary α and β,

lim
n→∞

C
(n)
α,β = α′αd−2σ2

ϕ1
σ2

ϕ2
+ 2βα′Kϕ1,ϕ2,fQi,θPθMθτ + β2τ ′Λf (θ)τ . (B.7)

It follows that
(
(n− i)1/2vec′(Γ̄

(n)
i,ϕ1,ϕ2

(θ)), L
(n)

θ+n−1/2τ /θ;f

)′
, under P

(n)

θ;f
, is asymptotically
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jointly normal, with mean
(
0′, −1

2
τ ′Λf(θ)τ

)′
and covariance


 d−2σ2

ϕ1
σ2

ϕ2
Id2 Kϕ1,ϕ2,fQi,θPθMθτ

(Kϕ1,ϕ2,fQi,θPθMθτ )′ τ ′Λf(θ)τ


 . (B.8)

The desired result then readily follows from applying Le Cam’s third Lemma.

Recall that T (n)

θ
= M ′

θP
′

θQ
(n)′

θ
. For any positive integer m ≤ n − 1, let

∆̄(n)
m,ϕ1,ϕ2

(θ) := T
(m+1)

θ
Γ̄(m,n)

ϕ1,ϕ2
(θ), (B.9)

where

Γ̄(m,n)
ϕ1,ϕ2

(θ) :=
(
(n − 1)1/2(vecΓ̄

(n)
1,ϕ1,ϕ2

(θ))′, . . . , (n − m)1/2(vecΓ̄(n)
m,ϕ1,ϕ2

(θ)
)′

)′ :

clearly, ∆̄(n)
m,ϕ1,ϕ2

(θ), it is the truncated version of ∆̄(n)
ϕ1,ϕ2

(θ) defined in Section 4.1. The

asymptotic normality of ∆̄(n)
m,ϕ1,ϕ2

(θ) follows from Lemma B.1 as a corollary.

Corollary B.1. Let Assumptions (A1), (A2), and (A3) hold. Then, for any positive inte-

ger m, the vector ∆̄(n)
m,ϕ1,ϕ2

(θ) in (B.9) is asymptotically normal, with mean 0 under P
(n)

θ;f
,

mean

T
(m+1)

θ
(Im ⊗Kϕ1,ϕ2,f)T

(m+1)′

θ
τ (B.10)

under P
(n)

θ+n−1/2τ ;f
, and covariance d−2σ2

ϕ1
σ2

ϕ2
T

(m+1)

θ
T

(m+1)′

θ
under both.

The following auxiliary lemma, which follows along the same lines as Lemma 4 in Hallin

and Paindaveine (2002) and Lemma 5 in Hallin and Paindaveine (2004), will be useful in

subsequent proofs.

Lemma B.2. Let i ∈ {1, . . . , n − 1} and t, t′ ∈ {i + 1, . . . , n} be such that t 6= t′. Assume

that g : Rnd = Rd × · · · ×Rd → R is even in all its arguments, and such that the expectation

below exists. Then, under P
(n)

θ;f
,

E
[
g(Z

(n)
1 , . . . ,Z(n)

n )(P ′
tQt)(R

′
t−iSt′−i)

]
= 0, (B.11)

where P t,Qt,Rt and St are any four random vectors among S
(n)
±,t and S

(n)
±,t − S±,t.

The next lemma establishes an asymptotic representation result for the rank-based cross-

covariance matrices Γ
˜

(n)
i,ϕ1,ϕ2

(θ) defined in (3.9) by showing their asymptotic equivalence
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with Γ̄
(n)
i,ϕ1,ϕ2

(θ) defined in (4.8). LAN implies that P
(n)

θ+n−1/2τ ;f
and P

(n)

θ;f
are mutually con-

tiguous; (B.12) therefore holds under both. This asymptotic representation in the Hájek

style of a center-outward serial rank statistic extends to a multivariate setting a univariate

result first established by Hallin et al. (1985).

Lemma B.3. Let Assumptions (A1), (A2), and (A3) hold. Then, for any positive integer i,

vec
(
Γ
˜

(n)
i,ϕ1,ϕ2

(θ) − Γ̄
(n)
i,ϕ1,ϕ2

(θ)
)

= oP(n−1/2) (B.12)

under P
(n)

θ;f
and P

(n)

θ+n−1/2τ ;f
, as n → ∞.

Proof. Note that (n − i)1/2(Γ
˜

(n)
i,ϕ1,ϕ2

(θ) − Γ̄
(n)
i,ϕ1,ϕ2

(θ)) = (n − i)−1/2(δ
(n)
1 + δ

(n)
2 ) where

δ
(n)
1 := (n − i)−1/2

n∑

t=i+1


ϕ1(

R
(n)
±,t

nR + 1
)ϕ2(

R
(n)
±,t−i

nR + 1
) − ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)


S(n)

±,tS
(n)′
±,t−i

and

δ
(n)
2 := (n − i)−1/2

n∑

t=i+1

ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)
(
S

(n)
±,tS

(n)′
±,t−i − S±,tS

′
±,t−i

)
.

It suffices to show that vec(δ
(n)
1 ) and vec(δ

(n)
2 ) both converge in quadratic mean to zero

as n → ∞ under P
(n)

θ;f
.

Let ‖ · ‖L2 denote the l2-norm. For δ(n)
1 , we make use of Lemma B.2, and we exploit

the independence of the ranks {R
(n)
±,t; t = 1, . . . , n} and the signs {S(n)

±,t; t = 1, . . . , n} (see

Hallin (2017)). Given that (vecA)′(vecB) = tr(A′B), we have

∥∥∥vec(δ
(n)
1 )

∥∥∥
2

L2
= (n − i)−1

n∑

t=i+1

E





ϕ1(

R
(n)
±,t

nR + 1
)ϕ2(

R
(n)
±,t−i

nR + 1
) − ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)




2

 .

The Glivenko-Cantelli result in Hallin (2017, Proposition 5.1) entails

max1≤t≤n

∣∣∣∣R
(n)
±,t/(nR + 1) − ‖F±,t‖

∣∣∣∣ → 0 a.s. as n → ∞. (B.13)

In view of the assumptions made on ϕ1 and ϕ2, Lemma 6.1.6.1 of Hájek et al. (1999) yields

‖vec(δ
(n)
1 )‖2

L2 → 0 as n → ∞. (B.14)
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For δ(n)
2 , we have

δ
(n)
2 = (n−i)−1/2

n∑

t=i+1

ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖)
[(
S

(n)
±,t − S±,t

)
S

(n)′
±,t−i + S±,t

(
S

(n)′
±,t−i − S ′

±,t−i

)]
.

Similar to the arguments used for δ(n)
1 , Lemma B.2 and the fact that (vecA)′(vecB) =

tr(A′B) imply

‖vec(δ
(n)
2 )‖2

L2 ≤ 2(n − i)−1
n∑

t=i+1

E
[
(ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖))2 ‖S(n)

±,t − S±,t‖2
]

(B.15)

+ 2(n − i)−1
n∑

t=i+1

E
[
(ϕ1(‖F±,t‖)ϕ2(‖F±,t−i‖))2 ‖S(n)

±,t−i − S±,t−i‖2
]

.

(B.16)

Still in view of Proposition 5.1 in Hallin (2017), max1≤t≤n‖S(n)
±,t − S±,t‖ → 0 a.s. as n → ∞.

Since ϕ1, ϕ2 are square integrable and Z(n)
1 , . . . ,Z(n)

n are independent, both (B.15) and (B.16)

converge to 0. The result follows.

We now can extend the above asymptotic representation and asymptotic normality re-

sults from the rank-based cross-covariance matrices Γ
˜

(n)
i,ϕ1,ϕ2

(θ) to the rank-based central

sequence ∆
˜

(n)
ϕ1,ϕ2

(θ).

Lemma B.4. Let Assumptions (A1), (A2), and (A3) hold. Then,

∆
˜

(n)
ϕ1,ϕ2

(θ) − ∆̄(n)
ϕ1,ϕ2

(θ) = oP(1) as n → ∞ (B.17)

both under P
(n)

θ;f
and P

(n)

θ+n−1/2τ ;f
. Moreover, ∆

˜
(n)
ϕ1,ϕ2

(θ) is asymptotically normal, with mean 0

under P
(n)

θ;f
, mean

lim
n→∞

{
T

(n)

θ
(In−1 ⊗Kϕ1,ϕ2,f)T

(n)′

θ

}
τ (B.18)

under P
(n)

θ+n−1/2τ ;f
, and covariance d−2σ2

ϕ1
σ2

ϕ2
lim

n→∞

{
T

(n)

θ
T

(n)′

θ

}
under both.

Note that the limits appearing in the above asymptotic means and covariances exist due

to Assumption (A1) on the characteristic roots of the VARMA operators involved.

Proof. For (B.17), due to Lemma B.3 and contiguity, it is sufficient to prove that, under P
(n)

θ;f
,

for m = m(n) ≤ n − 1 and provided that m(n) → ∞ as n → ∞,

lim sup
n→∞

‖∆̄(n)
ϕ1,ϕ2

(θ) − ∆̄
(n)
m(n),ϕ1,ϕ2

(θ)‖ = oP(1) (B.19)
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and

lim sup
n→∞

‖∆
˜

(n)
ϕ1,ϕ2

(θ) − ∆
˜

(n)
m(n),ϕ1,ϕ2

(θ)‖ = oP(1). (B.20)

For m = n − 1, the left-hand sides in (B.19) and (B.20) are exactly zero. Therefore, we only

need to consider m ≤ n − 2.

It follows from Proposition 3.1 (LAN2) in Garel and Hallin (1995) that

∆̄(n)
ϕ1,ϕ2

(θ) − ∆̄
(n)
m(n),ϕ1,ϕ2

(θ)

=




∑n−1
i=m+1

∑i−1
j=0

∑min(q,i−j−1)
k=0 [(Gi−j−k−1Bk) ⊗H ′

j ](n − i)1/2(vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)))
...

∑n−1
i=m+1

∑i−p
j=0

∑min(q,i−j−p)
k=0 [(Gi−j−k−pBk) ⊗H ′

j ](n − i)1/2(vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)))
∑n−1

i=m+1(Id ⊗H ′
i−1(n − i)1/2(vec(Γ̄

(n)
i,ϕ1,ϕ2

(θ))
...

∑n−1
i=m+1(Id ⊗H ′

i−q(n − i)1/2(vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ))




for any p ≤ m ≤ n−2,. Due to the square-integrability of ϕ1, ϕ2 and the fact thatZ(n)
1 , . . . ,Z(n)

n

are i.i.d., it follows from (vecA)′(vecB) = tr(A′B) that

‖(n−i)1/2(vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)))‖2
L2 = (n−i)−1

n∑

t=i+1

E
[
ϕ2

1(‖F±,t‖)
]
E
[
ϕ2

2(‖F±,t−i‖)
]

= σ2
ϕ1

σ2
ϕ2

< ∞.

Recall that, under Assumption (A1), the Green matrices Gu and Hu decrease exponentially

fast (see Appendix A). Using the fact that ‖Ax‖L2 ≤ ‖A‖ ‖x‖L2 (where ‖A‖ denotes the

operator norm of A) and the triangular inequality, we thus obtain

lim sup
n→∞

‖∆̄(n)
ϕ1,ϕ2

(θ) − ∆̄
(n)
m(n),ϕ1,ϕ2

(θ)‖L2 = 0.

The result (B.19) follows. Turning to (B.20), we have, in view of (B.14), (B.15) and (B.16),

max
1≤i≤n−1

‖(n − i)1/2[vec(Γ̄
(n)
i,ϕ1,ϕ2

(θ)) − vec(Γ
˜

(n)
i,ϕ1,ϕ2

(θ))]‖2
L2 = o(1)

as n → ∞. Hence, (B.20) follows along the same lines as (B.19).

The asymptotic normality of ∆
˜

(n)
ϕ1,ϕ2

(θ) then follows from (B.17) and the asymptotic

normality of ∆̄(n)
ϕ1,ϕ2

(θ), itself implied by (B.19) and Lemma B.1. The asymptotic mean and

variance are the limits as m = m(n) and n tend to infinity, of the asymptotic mean and

variance of ∆̄
(n)
m(n),ϕ1,ϕ2

(θ) and do not depend on the way m grows with n.
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Proof of Proposition 4.1.

Proof. Proposition 4.1 readily follows from (B.20) and the asymptotic linearity of the trun-

cated ∆
˜

(n)
m,ϕ1,ϕ2

(θ) implied by Assumption (A4).

Proof of Proposition 4.2.

Proof. From the definition of θ̂
˜n in (4.9), the asymptotic linearity in Proposition 4.1, the

consistency of Υ̂(n)
ϕ1,ϕ2

, the convergence of Υ
(n)
ϕ1,ϕ2,f to Υϕ1,ϕ2,f , and the asymptotic discreteness

of θ̂(n) (which allows us to treat n1/2(θ̂(n)−θ) as if it were a bounded constant: see Lemma 6.1

in Kreiss (1987)), we have

n1/2(θ̂
˜

n − θ) = n1/2
{
θ̂(n) + n−1/2

[(
Υ̂(n)

ϕ1,ϕ2

)−1
∆
˜

(n)
ϕ1,ϕ2

(θ̂(n))
]

− θ
}

= n1/2
{
θ̂(n) + n−1/2

[
Υ−1

ϕ1,ϕ2,f

(
∆
˜

(n)
ϕ1,ϕ2

(θ) − Υ
(n)
ϕ1,ϕ2,fn1/2(θ̂(n) − θ)

)]
− θ

}
+ oP(1)

= Υ−1
ϕ1,ϕ2,f∆

˜
(n)
ϕ1,ϕ2

(θ) + oP(1).

This, in view of the asymptotic normality of ∆
˜

(n)
ϕ1,ϕ2

(θ) in Lemma B.4, completes the proof

of Proposition 4.2.

C Computational aspects

In this section, we briefly discuss some computational issues related, mainly, to the measure

transportation aspects of the estimation method and the one-step procedure.

Consistency requires that both nR and nS tend to infinity. In practice, we factorize n

into nRnS + n0 in such a way that both nR and nS are large—typically, nR of order n1/d

and nS of order n(d−1)/d. Generating “regular grids" of nS points over the unit sphere Sd−1

as described in Section 3.1 is easy for d = 2, where perfect regularity can be achieved by

dividing the unit circle into nS arcs of equal length 2π/nS. For d ≥ 3, however, this typically

becomes impossible. A random array of nS independent and uniformly distributed unit

vectors does satisfy (almost surely) the weak convergence (to Ud) requirement. More regular

deterministic arrays (with faster convergence) can be constructed, though, such as the low-

discrepancy sequences (see, e.g., Niederreiter (1992), Judd (1998), Dick and Pillichshammer

(2014), or Santner et al. (2003)) considered in numerical integration and the design of

computer experiments. To compute {F (n)
±,t; t = 1, . . . , n} via (3.2), we first create a n × n

matrix, with (i, j) entry the squared Euclidean distance between Z
(n)
i and the j-th gridpoint;
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the optimal coupling then can be obtained following del Barrio et al. (2018), using, for

instance, a Hungarian algorithm (already included in the clue package of R program).

The computation of the one-step R-estimator in (4.9) involves two basic ingredients:

a preliminary root n-consistent estimator θ̂(n) and an estimator of the cross-information

matrix Υϕ1,ϕ2,f . For the preliminary θ̂(n), robust M-estimators such as the Multivariate Least

Trimmed Square Estimator (MLTS) derived by Croux and Joossens (2008) for VAR models

are obvious candidates; provided that fourth-order moments can be assumed to be finite, the

QMLE still constitutes a reasonable choice, though. Different preliminary estimators may

lead to different one-step R-estimators. Differences, however, gradually wane on iterating

(for fixed n) the one-step procedure and the asymptotic impact (as n → ∞) of the choice

of θ̂(n) is nil. Turning to the estimation of Υϕ1,ϕ2,f , the issue is that this matrix depends on

the unknown actual density f . A simple consistent estimator is obtained by letting τ = ei

in (4.6) where ei, i = 1, . . . , (p + q)d2 denotes the ith vector of the canonical basis in the

parameter space R(p+q)d2
: ∆
˜

(n)
ϕ1,ϕ2

(θ̂(n) + n−1/2ei) − ∆
˜

(n)
ϕ1,ϕ2

(θ̂(n)) then provides a consistent

estimator of the i-th column of −Υϕ1,ϕ2,f(θ). More sophisticated constructions also are

possible: see Hallin et al. (2006) or Cassart et al. (2010).

D Algorithm.

We provide here a detailed description of the estimation algorithm; codes are available on

request.

Step 1. Given a sample of n (demeaned) observations of the VARMA process, compute

a preliminary root-n consistent estimator θ̂(n) and, setting the initial values ǫ−q+1, . . . , ǫ0

and X−p+1, . . . ,X0 all equal to zero, recursively compute residuals Z(n)
1 (θ̂(n)), . . . ,Z(n)

n (θ̂(n))

as in (A.1).

Step 2. Factorize n into nRnS + n0 and generate, as explained in (i) above, a “regular

grid" of nRnS points over the unit ball Sd.

Step 3. Create a n × n matrix D with (i, j) entry the squared Euclidean distance be-

tween Z
(n)
i and the j-th gridpoint. Based on that matrix, compute {F (n)

± (Z
(n)
t ); t = 1, . . . , n}

solving the optimal pairing problem in (3.2) using, e.g., the Hungarian algorithm as coded

in the clue package of R program.

Step 4. From F
(n)
± , compute the center-outward ranks (3.3), signs (3.4), and ∆

˜
(n)
ϕ1,ϕ2

(θ̂(n));

for some chosen τ 1, . . . , τ (p+q)d2 , compute ∆
˜

(n)
ϕ1,ϕ2

(θ̂(n) + n−1/2τ ), then, via (4.6), Υ̂(n)
ϕ1,ϕ2

.
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Step 5. Using (4.9), compute θ̂
˜n and perform the one-step iteration to update it; iterate

this until numerical stabilization; in practice, four or five iterations yield a stable result.

E Tables for Section 5.2

We provide here the tables of estimated coefficients for the empirical examples of Section 5.2

that did not fit into the main paper.
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Table 2: The QMLE and R-estimates of θ in the VAR(6) fitting of the EEG data in Section 5.2.1; the standard errors are
shown in parentheses.

A1 A2 A3 A4 A5 A6

QMLE 2.333 0.242 -2.227 -0.447 0.443 0.260 0.999 0.190 -0.899 -0.330 0.250 0.162
(0.070) (0.062) (0.164) (0.146) (0.210) (0.187) (0.210) (0.187) (0.163) (0.145) (0.068) (0.061)
0.413 2.351 -0.713 -2.237 0.276 0.353 0.689 0.980 -0.915 -0.784 0.405 0.165

(0.076) (0.067) (0.178) (0.158) (0.228) (0.203) (0.228) (0.203) (0.177) (0.158) (0.074) (0.066)
vdW 2.303 0.250 -2.146 -0.450 0.363 0.221 1.010 0.270 -0.859 -0.397 0.235 0.173

(0.043) (0.032) (0.106) (0.052) (0.082) (0.073) (0.158) (0.105) (0.103) (0.245) (0.127) (0.147)
0.374 2.379 -0.648 -2.285 0.258 0.362 0.634 1.036 -0.858 -0.843 0.395 0.179

(0.048) (0.045) (0.122) (0.065) (0.143) (0.204) (0.213) (0.025) (0.104) (0.087) (0.107) (0.027)
Sign 2.327 0.237 -2.173 -0.447 0.360 0.229 1.043 0.270 -0.865 -0.413 0.230 0.181

(0.033) (0.070) (0.219) (0.154) (0.021) (0.034) (0.147) (0.150) (0.213) (0.208) (0.469) (0.033)
0.374 2.393 -0.638 -2.310 0.254 0.369 0.634 1.035 -0.873 -0.846 0.402 0.203

(0.085) (0.208) (0.257) (0.144) (0.345) (0.104) (0.523) (0.037) (0.366) (0.049) (0.115) (0.116)
Spearman 2.279 0.274 -2.139 -0.435 0.358 0.186 0.989 0.329 -0.853 -0.400 0.207 0.175

(0.083) (0.114) (0.291) (0.050) (0.329) (0.116) (0.117) (0.252) (0.461) (0.266) (0.183) (0.145)
0.369 2.385 -0.656 -2.289 0.256 0.368 0.652 1.036 -0.887 -0.856 0.419 0.183

(0.118) (0.116) (0.040) (0.076) (0.118) (0.084) (0.074) (0.142) (0.201) (0.251) (0.139) (0.095)
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Table 3: The QMLE and R-estimates of θ in the VARMA(3, 1) fitting of the econometric
data (demeaned differenced Hstarts and Mortg series) in Section 5.2.2; the standard errors
are shown in parentheses. The datasets are demeaned changes in Hstarts and Mortg.

A1 A2 A3 B1

QMLE 0.137 0.487 -0.154 -0.199 0.032 0.056 -0.703 -0.490
(0.265) (0.353) (0.284) (0.130) (0.171) (0.072) (0.258) (0.350)
0.596 0.974 0.030 -0.400 0.070 0.110 -0.152 -0.636

(0.327) (0.537) (0.436) (0.189) (0.285) (0.077) (0.282) (0.533)
vdW 0.155 0.526 -0.096 -0.181 0.017 0.038 -0.705 -0.527

(0.141) (0.088) (0.122) (0.079) (0.133) (0.062) (0.088) (0.071)
0.561 0.943 0.094 -0.386 0.011 0.128 -0.161 -0.627

(0.148) (0.079) (0.133) (0.100) (0.098) (0.040) (0.081) (0.015)
Sign 0.087 0.536 -0.032 -0.198 0.075 -0.044 -0.705 -0.562

(0.148) (0.079) (0.133) (0.100) (0.098) (0.040) (0.081) (0.015)
0.471 1.036 0.107 -0.403 0.035 0.148 -0.161 -0.627

(0.178) (0.084) (0.165) (0.073) (0.138) (0.061) (< 10−3) (< 10−3)
Spearman 0.180 0.511 -0.090 -0.180 0.030 0.049 -0.705 -0.537

(0.066) (0.033) (0.092) (0.046) (0.113) (0.049) (< 10−3) (0.014)
0.531 0.946 0.072 -0.374 0.011 0.121 -0.161 -0.627

(0.124) (0.054) (0.115) (0.075) (0.112) (0.042) (< 10−3) (< 10−3)
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