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Bayesian CART priors lead to adaptive rate-minimax posterior concentra-
tion in the supremum norm in Gaussian white noise, performing optimally
up to a logarithmic factor. To further explore the benefits of structured
shrinkage, we propose the g-prior for trees, which departs from the typical
wavelet product priors by harnessing correlation induced by the tree topol-
ogy. Building on supremum norm adaptation, an adaptive non-parametric
Bernstein–von Mises theorem for Bayesian CART is derived using multi-
scale techniques. For the fundamental goal of uncertainty quantification,
we construct adaptive confidence bands with uniform coverage for the re-
gression function under self-similarity.
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1. Introduction

The widespread popularity of Bayesian tree-based regression has raised consid-
erable interest in theoretical understanding of their empirical success. However,
theoretical literature on methods such as Bayesian CART and BART is still in
its infancy.

This work sheds light on Bayesian CART [20, 23] which is a popular learn-
ing tool based on ideas of recursive partitioning and which forms an integral
constituent of BART [19]. Bayesian Additive Regression Trees (also known as
BART) have emerged as one of today’s most effective general approaches to
predictive modeling under minimal assumptions. Their empirical success has
been amply illustrated in the context of non-parametric regression [19], clas-
sification [48], variable selection [7, 47, 45], shape constrained inference [18],
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causal inference [40, 39], to name a few. While theory for random forests, the
frequentist counterpart, has been developed to fruition [65, 5, 57, 43, 64], the-
ory for BART has not kept pace with its application. With the first theoretical
results (Hellinger convergence rates) emerging very recently [56, 46, 55], many
fundamental questions pertaining to, e.g., uncertainty quantification (UQ) have
remained to be addressed. This work takes a leap forward in this important di-
rection by developing a formal frequentist statistical framework for uncertainty
quantification with Bayesian CART using multiscale techniques. As a jumping
off point, we first show that Bayesian CART reaches a (nearly-)optimal poste-
rior convergence rate under the supremum-norm loss, a natural loss for UQ of
smooth regression functions. We are actually not aware of any supremum-norm
convergence rate result for CART methods in the literature. Second, we provide
an adaptive non-parametric Bernstein-von Mises theorem to finally construct an
adaptive credible band for the unknown regression function with (nearly, up a
to logarithmic term) optimal uniform coverage under self-similarity. With these
new results, our paper makes an important contribution to the literature on the
widely sought-after UQ for tree-based machine learning methods.

Regarding supremum-norm (and its associated discrete `∞ version) posterior
contraction rates, their derivation is typically more delicate compared to the
more familiar testing distances (e.g. L2 or Hellinger) for which general theory
has been available since the seminal work [32]. Despite the lack of unifying
theory, however, advances have been made in the last few years [35, 13, 42]
including specific models [59, 70, 51, 50]. However, Bayesian adaptation for the
supremum loss has been obtained, to the best of our knowledge, only through
spike-and-slab priors (the work [69] uses Gaussian process priors, but adaptation
is obtained via the Lespki’s method). In particular, [42] show that spike-and-slab
priors on wavelet coefficients yield the exact adaptive minimax rate in the white
noise model and [68] considers the anisotropic case in a regression framework.
For density estimation, [14, 15] derive optimal ‖ · ‖∞–rates for Pólya tree priors,
while [49] considers adaptation for log-density spike and slab priors. In this
work, we consider Bayesian CART priors which are widely used practice.

Bayesian CART is a method of function estimation based on ideas of recursive
partitioning of the predictor space. The work [25] highlighted the link between
dyadic CART and best ortho-basis selection using Haar wavelets in two dimen-
sions; [29] furthered this connection by considering unbalanced Haar wavelets of
[37]. CART methods have been also studied in the machine learning literature,
see e.g. [6, 58, 66] and references therein. We note that, unlike plain wavelet
shrinkage methods and standard spike-and-slab priors, general Bayesian CART
priors have extra flexibility by allowing for basis selection: first results in this
direction are derived in Section 4. This aspect is particularly useful in higher-
dimensional data, where CART methods have been regarded as an attractive
alternative to other methods [27].

By taking the Bayesian point of view, we relate Bayesian CART to structured
wavelet shrinkage using libraries of weakly balanced Haar bases. The mathemat-
ical development throughout this paper is done under the Gaussian white noise
model, which is an idealized version of non-parametric regression with fixed eq-
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uispaced observations [9]. This model is defined through the following stochastic
differential equation

dX(t) = f0(t)dt+
1√
n
dW (t), t ∈ [0, 1], n ∈ N, (1)

where X(t) is an observation process, W (t) is the standard Wiener process on
[0, 1] and f0 ∈ L2[0, 1] is an unknown bounded function on [0, 1] to be estimated.
The model (1) is observationally equivalent to a Gaussian sequence space model
after projecting the observation process onto a wavelet basis {ψlk : l ≥ 0, 0 ≤
k ≤ 2l − 1} of L2[0, 1]. This sequence model writes as

Xlk = β0
lk +

εlk√
n
, εlk

iid∼ N (0, 1), l ≥ 0, k = 0, . . . , 2l − 1, (2)

where the wavelet coefficients β0
lk = 〈f0, ψlk〉 =

∫ 1

0
f0(t)ψlk(t)dt of f0 are indexed

by a scale parameter l and a location parameter k. A paradigmatic example is
the standard Haar wavelet basis

ψ−10(x) = I[0,1](x) and ψlk(x) = 2l/2ψ(2lx− k), (3)

obtained with orthonormal dilation-translations of ψ = I(0,1/2] − I(1/2,1]. Later
in the text, we also consider weakly balanced Haar wavelet relaxations, as well
as smooth wavelet bases.

Our paper makes contributions on both methodological and theoretical fronts.
On the methodological side, we propose tree-shaped sparsity priors which exert
local and global sparsity for wavelet shrinkage. In order to borrow strength be-
tween coefficients in the tree ancestry, we then propose a variant of the g-prior
[71] for structured wavelet shrinkage. Similarly as independent product priors,
we show that these dependent priors also lead to adaptive `∞ concentration
rates (up to a log factor). To illustrate that local (internal) sparsity is a key
driver of adaptivity, we will show that dense trees are incapable of adaptation.

One of the key motivations behind the Bayesian approach is the mere fact
that the posterior is an actual distribution, whose limiting shape can be ana-
lyzed towards obtaining uncertainty quantification and inference. Regarding the
limiting shape, the Bernstein-von Mises (BvM) phenomenon is known to be non-
trivial to formulate in growing or infinite dimensions (see [62], Chapter 10, for
BvM formulations and consequences in parametric settings and, e.g., Freedman’s
negative result [28] outlining some issues in non-parametric settings). A number
of positive results have nevertheless appeared in [31, 44, 16, 17]. In particular,
[16, 17] formalized a programme to derive non-parametric BvM in spaces with
weak topologies that admit 1/

√
n-consistent estimation, see Section 3 for pre-

cise definitions. Recently, Ray [54] proved that this approach could incorporate
adaption to the unknown regularity. In particular, he showed that the spike-and-
slab prior [42] achieves an adaptive BvM property when the coarsest scales that
capture the gross signal are not shrunk. We show that the widely used Bayesian
CART prior also achieves the BvM property. The first consequence implied by
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our BvM is the derivation of confidence sets for a variety of smooth functionals.
Further, for uncertainty quantification of f0 itself, we construct adaptive and
honest adaptive credible bands under self-similarity. Confidence bands construc-
tion for regression surfaces is a fundamental task in non-parametric regression
and can indicate whether there is empirical evidence to support conjectured
features such as multi-modality or exceedance of a level.

Although for clarity of exposition we focus on (white noise) regression, the
introduced ideas can be applied to other settings as well, including density
estimation. In the latter setting, Pólya trees have been a popular class of non-
parametric prior distributions (see e.g. [33], Chapter 3 and [67, 14]). While their
construction is unrelated to Bayesian CART, there are interesting connections
(see comments in our Discussion).

The paper is structured as follows. Section 2 introduces regression trees-
priors, as well as the notion of tree-shaped sparsity and the g-prior for trees. In
Section 3 we prove multiscale properties of Bayesian dyadic CART. Section 4
considers non-dyadic partitioning allowing basis choice. A brief discussion can be
found in Section 5. The proof of our master Theorem 1 can be found in Section
6, while the proofs of further results and technical lemmata can be found in the
appendix Section 7.

Notation. Let L2[0, 1] denote the set of square integrable functions on [0, 1]
and by C([0, 1]) the set of continuous functions on [0, 1]. Let φσ(x) denote the
normal density with zero mean and variance σ2. Let N = {0, 1, 2, . . .} the set of
natural integers and N∗ = N\{0}. We denote by IK the K×K identity matrix,
Also, Bc denotes the complement of a set B and A ∨ B = max(A,B). For an
interval I = (a, b] ⊂ (0, 1], let |I| = b − a be its diameter. The notation x . y
means x ≤ Cy for C a large enough universal constant.

2. Tree-based Prior Distributions

The multiscale setup enables one to assign a prior on f ∈ L2[0, 1] directly
through a prior on the sequence of its coefficients (βlk). CART-based methods
recursively subdivide the predictor space into cells where f can be estimated
locally. The partitioning process can be captured with a tree object (a hierar-
chical collection of nodes) and a set of splitting rules attached to each node.
The splitting rules are ultimately tied to a chosen basis, where the traditional
Haar wavelet basis yields deterministic dyadic splits (as we explain in Section
2.2). Later in Section 4, we will extend our framework to random unbalanced
Haar bases which allow for more flexible splits. Beyond random partitioning, an
integral component of CART methods are histogram heights assigned to each
partitioning cell. Fleshing out connections between Bayesian histograms and
wavelets in Section 2.3 and 2.4, we discuss several Bayesian CART priors over
histogram heights in Section 2.5.

First, we need to make precise our definition of a tree object which will form
a skeleton of our prior on (βlk) for each given basis {ψlk}, which for now in this
section is taken to be the Haar basis.
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Definition 1 (Tree terminology). We define a binary tree T as a collection of
nodes (l, k), where l ∈ N, k ∈ {0, . . . , 2l − 1}, that satisfies

(l, k) ∈ T , l ≥ 1 ⇒ (l − 1, bk
2
c) ∈ T .

In the last display, the node (l, k) is a child of its parent node (l − 1, bk2 c). A
full binary tree consists of nodes with exactly 0 or 2 children. For a node (l, k),
we refer to l as the layer index (or also depth) and k as the position in the lth

layer (from left to right). The cardinality |T | of a tree T is its total number of
nodes and the depth is defined as d(T ) = max

(l,k)∈T
l.

A node (l, k) ∈ T belongs to the set Text of external nodes (also called leaves)
of T if it has no children and to the set Tint of internal nodes, otherwise. By
definition |T | = |Tint|+|Text|, where, for full binary trees, we have |T | = 2|Tint|+
1. An example of a full binary tree is depicted in Figure 1(a). In the sequel, T
denotes the set of full binary trees of depth no larger than Lmax = blog2 nc. The
choice of full binary trees is traditional and mostly for simplicity of presentation,
and Lmax is a typical cut-off in wavelet analysis, as indeed trees can be associated
with certain wavelet decompositions.

2.1. Priors on Trees

There are various ways of assigning a prior distribution over T. We discuss
two conventional Bayesian CART choices [20, 23], which became an integral
component of many Bayesian tree regression methods including BART [19].

2.1.1. The Galton-Watson Process Prior (à la [20])

One of the earliest Bayesian CART proposals is due to [20], who suggest as-
signing a prior over T via the heterogeneous Galton-Watson (GW) process. We
now provide an algorithmic description of this process (see also [55] for further
discussion).

The prior description utilizes the following top-down left-to-right exploration
metaphor. Denote with Q a queue of nodes waiting to be explored. Each node
(l, k) is assigned a random binary indicator γlk ∈ {0, 1} for whether or not it
is split. Starting with T = ∅, one initializes the exploration process by putting
the root node (0, 0) tentatively in the queue, i.e. Q = {(0, 0)}. One then repeats
the following three steps until Q = ∅:

(a) Pick a node (l, k) ∈ Q with the highest priority (i.e. the smallest index
2l + k) and if l < Lmax, split it with probability

plk = P(γlk = 1). (4)

If l = Lmax, set γlk = 0.
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(b) If γlk = 0, remove (l, k) from Q.
(c) If γlk = 1, then

(i) add (l, k) to the tree, i.e. T ←T ∪ {(l, k)},
(ii) remove (l, k) from Q and if l < Lmax add its children to Q, i.e.

Q ← Q\{(l, k)} ∪ {(l + 1, 2k), (l + 1, 2k + 1)}.

The tree skeleton is probabilistically underpinned by the cut probabilities (plk)
which are typically assumed to decay with the depth l as a way to penalise
too complex trees. While [20] suggest plk = α/(1 + l)γ for some α ∈ (0, 1)
and γ > 0, [55] point out that this decay may not be fast enough and suggest
instead plk = Γ−l for some 2 < Γ < n, which leads to a (near) optimal `2
convergence rate. We will use a similar assumption in our analysis. Each dyadic
tree T ∈ T can be uniquely identified by a collection of binary indicators Γ(T ) =
{γ00, γ10, . . . , γd(T ),2d(T )−1} for whether or not each node (l, k) was split. We
relate this representation to spike-and-slab wavelet shrinkage in Section 2.6.

2.1.2. The Bayesian CART Prior (à la [23])

Independently of [20], [23] proposed another variant of Bayesian CART, which
first draws the number of leaves (i.e. external nodes) K = |Text| at random from
a certain prior on integers, e.g. a Poisson distribution (say, conditioned to be
non-zero). Then, a tree T is sampled uniformly at random from all full binary
trees with K leaves. Noting that there are CK−1 such trees, with CK the K–th
Catalan number (see Lemma 7), this leads to Π(T ) = (λK/[K!(eλ−1)]) ·C−1

K−1.
As we restrict to trees in T, i.e. with depth at most L = Lmax, we slightly
update the previous prior choice by setting, for some λ > 0, with K = |Text|,

ΠT(T ) ∝ λK

(eλ − 1)K!

1

CK−1
IT ∈T, (5)

where ∝ means ‘proportional to’. We call the resulting prior ΠT the “condition-
ally uniform prior” with parameter λ.

Another possibility, which can be just as easily implemented using Metropolis-
Hasting strategies, is sampling the trees directly from a prior that penalizes
larger trees

ΠT(T ) ∝ e−c|Text| lognIT ∈T, for some c > 0, (6)

which we will refer to as the “exponential prior”. The normalization is quite
different as in the previous case, where smaller trees get higher probability.

2.1.3. Flat Trees

The flat tree of depth d = d(T ) is the binary tree which contains all possible
nodes until level d, i.e. γlk = Il<d. An example of a flat tree with d = 3 layers is in
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(0,0)

(1,1)

(2,3)(2,2)

(3,5)(3,4)

(1,0)

(a) A full binary tree

p00

p11

p23p22

p10

p21p20

(b) Binary tree of prior cut probabilities

Fig 1. (Left) A full binary tree T = Tint ∪ Text. Red nodes are external nodes Text and blue
nodes are internal nodes Tint. (Right) A binary tree of cut probabilities plk in (4).

Figure 2. The simplest possible prior on tree topologies (confined to symmetric
trees) is just the Dirac mass at a given flat tree of fixed depth d = D; an adaptive
version thereof puts a prior D and samples from the set of all flat trees. Such
priors coincide with so-called sieve priors, where the sieve spans the expansion
basis (e.g. Haar) up to level D.

2.2. Trees and Random Partitions

Trees provide a structured framework for generating random partitions of the
predictor space (here we choose (0, 1] for simplicity of exposition). In CART
methodology, each node (l, k) ∈ T is associated with a partitioning interval
Ilk ⊆ (0, 1]. Starting from the trivial partition I00 = (0, 1], the simplest way to
obtain a partition is by successively dividing each Ilk into Ilk = Il+1 2k∪Il+1 2k+1.
One central example is dyadic intervals Ilk which correspond to the domain of
the balanced Haar wavelets ψlk in (3), i.e.

I00 = (0, 1], Ilk = (k2−l, (k + 1)2−l] for l ≥ 0 and 0 ≤ k < 2l. (7)

For any fixed depth l ∈ N, the intervals ∪0≤k<2lIlk form a deterministic regular
(equispaced) partition of (0, 1]. Trees, however, generate more flexible partitions
∪(l,k)∈TextIlk by keeping only those intervals Ilk attached to the leaves of the
tree. Since T is treated as random with a prior ΠT (as defined in Section 2.1),
the resulting partition will also be random.

Example 1. Figure 1(a) shows a full binary tree T = Tint ∪ Text, where
Tint = {(0, 0), (1, 1), (2, 2)} and Text = {(1, 0), (2, 3), (3, 4), (3, 5)}, resulting in
the partition of (0, 1] given by

(Ilk)(l,k)∈Text = {(0, 1/2], (1/2, 5/8], (5/8, 3/4], (3/4, 1]}. (8)

The set of possible split points obtained with (7) is confined to dyadic ratio-
nals. One can interpret the resulting partition as the result of recursive splitting
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where, at each level l, intervals Ilk for each internal node (l, k) ∈ Tint are cut in
half and intervals Ilk for each external node (l, k) ∈ Text are left alone. We will
refer to such a recursive splitting process as dyadic CART. There are several
ways to generalize this construction, for instance by considering arbitrary split-
ting rules that iteratively dissect the intervals at values other than the midpoint.
We explore such extensions in Section 4.

2.3. Tree-shaped Wavelet Priors

We now introduce tree-based wavelet shrinkage priors as a more flexible alterna-
tive to sieve priors. Traditional (linear) Haar wavelet reconstructions deploy all
wavelet coefficients βlk with resolutions l smaller than some d > 0. This strategy
amounts to fitting the flat tree with d layers (as the one on Figure 2) or, equiv-
alently, a regular dyadic regression histogram with 2d bins. This construction
can be made more flexible by selecting coefficients prescribed by trees that are
not necessarily flat. For T ∈ T, let us denote by T ′int = Tint ∪ {(−1, 0)} the
‘rooted’ tree where the index (−1, 0) is added to Tint. Note that |T ′int| = |Text|.
Given a full binary tree T ∈ T and a vector β = (β−10, (βlk)0≤l≤L−1,0≤k<2l),
one obtains a wavelet reconstruction

fT ,β(x) = β−10ψ−10(x) +
∑

(l,k)∈Tint

βlkψlk(x) =
∑

(l,k)∈T ′int

βlkψlk(x). (9)

We define our tree-shaped wavelet prior on fT ,β as the prior induced by a hier-
archical model

T ∼ ΠT

(βlk)lk | T ∼
⊗

(l,k)∈T ′int

π(βlk) ⊗
⊗

(l,k)/∈T ′int

δ0(βlk), (10)

where ΠT is a prior on trees as described in Section 2 and where the active
wavelet coefficients βlk for (l, k) ∈ Tint follow a distribution with a bounded and
positive density π(βlk) on R. The prior (10) specifies the coefficients of β and

is seen as a distribution on R2L . We set all remaining coefficients, i.e. β′lks for
l ≥ L, to 0, so that a distribution on the collection of all wavelet coefficients is
now specified.

The prior (10) contains the so-called sieve priors [17] as a special case, where
the sieve is with respect to the approximating spaces Vect{ψlk, l < d} for some
d ≥ 0. For nonparametric estimation of f0, it is well-known that sieve priors
can achieve (nearly) adaptive rates in the L2–sense (see e.g. [33]). In turns out,
however, that sieve priors (and therefore flat tree wavelet priors) are too rigid to
enable adaptive results for more complex multiscale norms, as we demonstrate
in Section 3.4.

By definition, the prior (10) weeds out all wavelet coefficients βlk that are not
supported by the tree skeleton (i.e. are not internal nodes in T ). This has two
shrinkage implications: global and local. First, the global level of truncation (i.e.
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β00
−1 1

β10
−
√

2
√

2

β11
−
√
2

√
2

β20
−2 2

β21
−2 2

β22
−2 2

β23
−2 2

β̃30 β̃31 β̃33 β̃34 β̃35 β̃36 β̃37 β̃38

Fig 2. Flat tree with edges weighted by the amplitude of the Haar wavelets.

the depth of the tree) in (10) is not fixed but random. Second, unlike in sieve
priors, only some low resolution coefficients are active depending on whether
or not the tree splits the node (l, k). These two shrinkage aspects create hope
that tree-shaped wavelet priors (10) attain adaptive multiscale behavior. We
will demonstrate in Section 3 that this optimism is indeed warranted.

2.4. Dyadic Bayesian CART priors

Each tree T = Tint ∪ Text can be associated with two sets of coefficients: (a)
internal coefficients βlk attached to wavelets ψlk for (l, k) ∈ T ′int and (b) external

coefficients β̃lk attached to intervals Ilk for (l, k) ∈ Text, as defined in the next
paragraph. Bayesian CART priors [20, 23], as opposed to wavelet priors, assign

the prior distribution externally on β̃lk.
Given a tree T ∈ T, itself generating a random partition via intervals Ilk as

in Section 2.2, Bayesian CART methods yield histogram reconstructions

f̃T ,β̃(x) =
∑

(l,k)∈Text

β̃lkIIlk(x), (11)

where β̃ = (β̃lk : (l, k) ∈ Text)′ is a vector of reals interpreted as step heights and
where Ilk’s are obtained from the tree T as in (8). We now define the Dyadic
Bayesian CART prior using the following hierarchical model on the external
coefficients rather than internal coefficients (compare with (10))

T ∼ ΠT

(β̃lk)(l,k)∈Text | T ∼
⊗

(l,k)∈Text

π̃(β̃lk), (12)

for ΠT a prior as in Section 2.1, and where the height β̃lk at a specific (l, k) ∈
Text has a bounded and positive density π̃(β̃lk) on R. This coincides with the
widely used Bayesian CART priors using a midpoint dyadic splitting rule (as we
explained in Section 2.2). In practice, the density π̃ is often chosen as centered
Gaussian with some variance σ2 > 0 [20, 23].

The histogram prior (11) can be rephrased in terms of wavelets. Indeed, link-
ing the Haar wavelet functions ψlk’s in (3) with IIlk ’s via the duality 2II(l+1)2k

=

9



β00
−1 1

β10
−
√
2

√
2

β̃11

β̃20 β21
−2 2

β̃32 β̃33

(a)


β̃11

β̃20

β̃32

β̃33

 =


1 1 0 0

1 −1 −
√

2 0

1 −1
√

2 −2

1 −1
√

2 2


β−10

β00

β10

β21



(b)

Fig 3. (a) Example of a full binary tree, edges weighted by the amplitude of the Haar wavelets.
(b) Pinball matrix of the tree in (a).

IIlk +2−l/2ψlk and 2II(l+1)2k+1
= IIlk −2−l/2ψlk, the indicators can be expressed

in terms of the ψlk’s of smaller depths. The histogram representation (11) can

then be rewritten in terms of the internal coefficients, i.e. f̃T ,β̃(x) = fT ,β(x) as

in (9), with βlk’s and β̃lk’s linked through

β̃lk = β−10 +

l−1∑
j=0

sbk/2l−j−1c2
j/2βjbk/2l−jc, (13)

where sk = (−1)k+1. There is a pinball game metaphor behind (13). A ball
is dropped through a series of dyadically arranged pins of which the ball can
bounce off to the right (when sk = +1) or to the left (when sk = −1). The

ball ultimately lands in one of the histogram bins Ilk whose coefficient β̃lk is
obtained by aggregating βlk’s of those pins (l, k) that the ball encountered on
its way down. The pinball aggregation process can be understood from Figure
3. The duality between the equivalent representations (11) and (9) through (13)
provides various avenues for constructing prior distributions, and enables a re-
interpretation of the Bayesian CART prior, as we now see.

2.5. Introducing the g-prior for Trees

For a given tree T , let βT = (βlk : (l, k) ∈ T ′int)′ denote the vector of ordered
internal node coefficients βlk including the extra root node (−1, 0) (and with

ascending ordering according to 2l + k). Similarly, β̃T = (βlk : (l, k) ∈ Text)′
is the vector of ordered external node coefficients β̃lk. The duality between βT
and β̃T is apparent from the pinball equation (13) written in matrix form

β̃T = AT βT , (14)

where AT is a square |Text| × (|T ′int|) matrix (noting |Text| = |T ′int|), further
referred to as the pinball matrix. Each row of AT encodes the ancestors of the
external node, where the nonzero entries correspond to the internal nodes in the
family pedigree. The entries are rescaled, where younger ancestors are assigned
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more weight. For example, the tree T in Figure 3(a) induces a pinball matrix
AT in Figure 3(b). The pinball matrix AT can be easily expressed in terms of
a diagonal matrix and an orthogonal matrix as

AT A
′
T = DT , where DT = diag{d̃lk,lk}(l,k)∈Text , d̃lk,lk = 2l. (15)

This results from the fact that the collection (2l/2Ilk, (l, k) ∈ Text) is an or-

thonormal system spanning the same space as (ψjk, (j, k) ∈ T ′int), so D
−1/2
T AT

is an orthonormal change–of–basis matrix. We now exhibit precise connections
between the theoretical wavelet prior (10) which draws βlk ∼ π and the practical

Bayesian CART histogram prior which draws β̃lk ∼ π̃.
Starting from within the tree, one can assume standard Gaussian π(·) to

obtain βT ∼ N (0, I|Text|). Through the duality (14), this implies an independent

product prior on the external coefficients β̃lk, i.e.

β̃T ∼ N (0,DT ), where DT was defined in (15), (16)

i.e. var β̃lk = 2l where the variances increase with the resolution l.
The Bayesian CART prior, on the other hand, starts from outside the tree

by assigning β̃T ∼ N (0, gnI|Text|) for some gn > 0 (given T ), ultimately setting
the bottom node variances equal. This translates into the following “g-prior” on
the internal wavelet coefficients through (14).

Definition 2. Let T ∈ T with a pinball matrix AT and denote with βT the
internal wavelet coefficients. We define the g-prior for trees as

βT ∼ N
(
0, gn (A′T AT )−1

)
for some gn > 0. (17)

Note that, except for very special cases (e.g. flat trees) A′T AT is in general not
diagonal, unlike AT A

′
T . This means that the correlation structure induced by

the Bayesian CART prior on internal wavelet coefficients is non-trivial, although
A′T AT admits some partial sparsity (we characterize basic properties of the
pinball matrix in Section 7.1.1 in the Appendix). Also, comparison with (15)
suggests possible choices of gn: the independent wavelet prior makes variances of
external coefficients increase as 2l ≤ 2Lmax � n, which suggests setting gn = n
to cover (“undersmooth”) all possible variance configurations. This choice, as
well as others, is considered in our results below.

We regard (17) as the “g-prior for trees” due to its apparent similarity to
g-priors for linear regression coefficients [71]. The g-prior has been shown to
have many favorable properties in terms of invariance or predictive matching
[4, 3]. Here, we explore the benefits of the g-type correlation structure in the
context of structured wavelet shrinkage where each “model” is defined by a tree
topology. The correlation structure (17) makes this prior very different from any
other prior studied in the context of wavelet shrinkage.

2.6. Connection to Spike-and-Slab Priors

The tree-priors introduced above induce irregular dyadic partitions, where the
partitioning intervals Ilk are not necessarily of equal length. Standard wavelet
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thresholding [26] reconstructs regression surfaces with an inverse wavelet trans-
form of thresholded coefficients, which also yields a piece-wise constant recon-
struction where the pieces are not necessarily of equal size. This brings us to
the following interesting connection to spike-and-slab wavelet priors.

For adaptive wavelet shrinkage, [21] propose a Gaussian mixture spike-and-
slab prior on the wavelet coefficients. The point mass spike-and-slab incarnation
of this prior was studied by [42], who show adaptive minimax posterior concen-
tration over Hölder balls for the sup-norm loss, and by [54] who subsequently
quantified an adaptive BvM property in the multiscale setting using a similar
prior. Independently for each wavelet coefficient βlk at resolutions larger than
some l0(n) (strictly increasing sequence), the prior in [54] can be written in the
standard spike-and-slab form

π(βlk | γlk) = γlkπ(βlk) + (1− γlk)δ0(βlk), (18)

where γlk ∈ {0, 1} for whether or not the coefficient is active with P(γlk =
1 | θl) = θl. Moreover, the prior on all coefficients at resolutions no larger than
l0(n) is dense, i.e. θl = 1 for l ≤ l0(n). The value θl can be viewed as the prob-
ability that a given wavelet coefficient βlk at resolution l will contain “signal”.
[21] suggest setting θl equal to the proportion of signal coefficients (at resolu-
tion l) as determined by the universal threshold value, whereas [54] specifies
n−a ≤ θl ≤ 2−l(1+b) for some a > 0 and b > 1/2 for l0(n) < l ≤ Ln, where
Ln = blog n/ log 2c and l0(n) � (log n)1/(2ν+1) for some ν > 0.

There are undeniable similarities between (10) and (18), in the sense that
the binary inclusion indicator γlk in (18) can be regarded as the node splitting
indicator γlk in (4). While the indicators γlk in (18) are independent under the
spike-and-slab prior, they are hierarchically constrained under the CART prior,
where the pattern of non-zeroes encodes the tree oligarchy. While the spike-
and-slab prior has been widely regarded as the methodological ideal [42], it is
not very practical in higher dimensions and is confined to one given basis. The
Bayesian CART prior is widely used in practice, allows for basis selection (as will
be seen in Section 4) but is not yet theoretically well understood. The seeming
resemblance of the Bayesian CART prior (10) to the spike-and-slab prior (18)
makes one naturally wonder whether, unlike sieve-type priors, Bayesian CART
posteriors verify optimal multiscale properties.

3. Bayesian Dyadic CART is Multiscale

In this section we investigate the inference properties of tree-based posteriors,
showing that they are “multiscale” in the sense that (a) they attain the minimax
rate of posterior concentration in the supremum-norm sense (up to a log factor),
and (b) exhibit an adaptive non-parametric BvM behavior in typical multiscale
spaces. We complement these results by addressing the question of uncertainty
quantification via the construction of adaptive confidence bands. For clarity
of exposition, we focus in the main text on the one-dimensional case, but the
results readily extend to the multi-dimensional setting with Rd, d ≥ 1 fixed, as
predictor space; see the appendix Section 7.3 for more details.
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3.1. Posterior supremum-norm convergence

Let us recall the standard inequality (see e.g. (66) below), for f and f0 two
continuous (or Haar-histogram) functions with Haar-wavelet coefficients βlk and
β0
lk,

‖f − f0‖∞ ≤ |β−10 − β0
−10|+

∑
l≥−1

2l/2 max
0≤k<2l

|βlk − β0
lk| =: `∞(f, f0). (19)

As `∞ dominates ‖ · ‖∞, it is enough to derive results for the `∞–loss.
Given a tree T ∈ T, and recalling that trees in T have depth at most L :=

Lmax = blog2 nc, we consider a generalized tree-shaped prior Π on the internal
wavelet coefficients, recalling the notation T ′int from Section 2.3,

T ∼ ΠT

(βlk)l≤L,k | T ∼ π(βT ) ⊗
⊗

(l,k)/∈T ′int

δ0(βlk), (20)

where π(βT ) is a distribution to be chosen on R|T ′int|, not necessarily of prod-
uct form. This is a generalization of (10), which allows for correlated wavelet
coefficients (e.g. the g-prior). Similarly, let XT denote the vector of ordered
responses Xlk in (2) for (l, k) ∈ T ′int. From the white noise model, we have

XT = βT +
1√
n
εT , with εT ∼ N (0, I|Text|).

By Bayes’ formula, the posterior distribution Π[· |X] of the variables (βlk)l≤L,k
has a density equal to∑

T ∈T
Π[T |X] · π(βT |X) ·

∏
(l,k)/∈T ′int

I0(βlk), (21)

where, denoting as shorthand NX(T ) =
∫

e−
n
2 ‖βT ‖

2
2+nX′T βT π(βT )dβT ,

π(βT |X) =
e−

n
2 ‖βT ‖

2
2+nX′T βT π(βT )

NX(T )
, (22)

Π[T |X] =
WX(T )∑

T ∈T
WX(T )

, with WX(T ) = ΠT(T )NX(T ). (23)

Let us note that the sum in the last display is finite, as we restrict to trees of
depth at most L = Lmax. While the posterior expression (22) allows for general
priors π(βT ), we will focus on conditionally conjugate Gaussian priors for sim-
plicity. Note that the classes of priors ΠT from Section 2 are non-conjugate: the
posterior on trees is given by the somewhat intricate expression (23) and does
not belong to one of the classes of ΠT priors.
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Our first result exemplifies the potential of tree-shaped sparsity by showing
that Bayesian Dyadic CART achieves the minimax rate of posterior concentra-
tion over Hölder balls in the sup-norm sense, i.e. εn = (n/ log n)−α/(2α+1), up
to a logarithmic term. Define Hölder-type spaces of functions on [0, 1] as

H(α,M) ≡
{
f ∈ C[0, 1] : max

l≥0, 0≤k<2l
2l(

1
2 +α)|〈f, ψlk〉| ∨ |〈f, ψ−10〉| ≤M

}
.

(24)
For balanced Haar wavelets ψlk as in (24), H(α,M) contains the standard space
of α-Hölder (resp. Lipschitz when α = 1) functions for any α ∈ (0, 1], defined as

HαM ≡
{
f : ‖f‖∞ ≤M,

|f(x)− f(y)|
|x− y|α

≤M ∀x, y ∈ [0, 1]

}
. (25)

Our master rate-theorem, whose proof can be found in Section 6.1, is stated
below. It will be extended in various directions in the sequel.

Theorem 1. Let ΠT be one of the Bayesian CART priors from Section 2.1,
with parameters Γ > 2e3 and c > 7/4, i.e

(i) the Galton-Watson process prior with plk = Γ−l, or
(ii) the conditionally uniform prior with λ = 1/nc in (5), or

(iii) the exponential prior (6) with a parameter c.

Consider the tree-shaped wavelet prior (20) with ΠT as above and π(βT ) ∼
N (0,ΣT ), where ΣT is either I|Text| or gn(A′T AT )−1 with gn = n. Define

εn =

(
log2 n

n

) α
2α+1

for α > 0. (26)

Then for any α ∈ (0, 1], M > 0, any sequence Mn →∞ we have for n→∞

sup
f0∈H(α,M)

Ef0Π [fT ,β : `∞(fT ,β, f0) > Mnεn |X]→ 0. (27)

By (19), the statement (27) also holds for the supremum loss ‖ · ‖∞.

Theorem 1 encompasses both original Bayesian CART proposals for priors
on coefficients β̃T ∼ N (0, I|Text|) (the case ΣT = gn(AT A

′
T )−1) as well as the

mathematically slightly simpler wavelet priors ΣT = I|Text|. One may also note
that the tree-shaped Bayesian CART priors occupy the middle ground between
flat trees (with only a depth cutoff) and spike-and-slab priors (with general
sparsity patterns). We did not fully optimize the constants in the statement; for
instance, one can check that Γ > 2 for the g-prior works.

While Theorem 1 is posited for Bayesian CART obtained with Haar wavelets,
the concept of tree-shaped sparsity extends to general wavelets that give rise
to smoother objects than just step functions. The following Theorem, proved in
Section 7.5 in the Appendix, formalizes this intuition and generalizes Theorem
1 to (a) prior distributions over functions fT ,β in (9), where {ψlk} is not nec-
essarily the Haar basis, (b) general unstructured covariance matrices on active
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wavelet coefficients βlk. In the next statement, {ψlk} is an S–regular wavelet
basis on [0, 1], such as the boundary-corrected wavelet basis of [22] (see also [36],
Chapter 4), and the space H(α,M) still defined as in (24), with {ψlk} referring
to the considered basis.

Theorem 2. Let {ψlk}lk be an S–regular wavelet basis, S ≥ 1, and let ΠT
be one of the tree priors (i)-(iii) in Theorem 1, for some Γ ≥ Γ0(S) > 0 or
c ≥ c0 > 0 large enough. Let f0 ∈ H(α,M) for some M > 0 and arbitrary
0 < α ≤ S. Consider the tree-shaped wavelet prior (20) with

π(βT ) ∼ N (0,ΣT ), and λmin(ΣT ) & 1/
√

log n, λmax(ΣT ) . na, (28)

for some a > 0. Then for any Mn →∞ and for εn as in (27) we have

sup
f0∈H(α,M)

Ef0Π [fT ,β : `∞(fT ,β, f0) > Mnεn |X]→ 0.

Example 2. As an example of the general covariance matrix ΣT , consider an
autoregressive histogram prior β̃T ∼ N (0, Σ̃T ) with Σ̃T = cn

(
ρ|i−j|

)
for some

0 < ρ < 1 and cn > 0. This prior links jump sizes of neighboring histogram
cells and implies ΣT = (A′T AT )−1A′T Σ̃T AT (A′T AT )−1. From Proposition 2 in
the Appendix (Section 7.1.1) and the Gershgorin circle theorem, the maximal

eigenvalue satisfies λmax(ΣT ) ≤ λmax(Σ̃T )/λmin(A′T AT ) ≤ cn(1 + 2
1−ρ ), where

we have used the fact that the spectral matrix norm is sub-multiplicative, that
the non-zero eigenvalues of AB and BA are the same and that Σ̃T is symmetric
and positive semi-definite. Moreover, λmin(ΣT ) ≥ λmin(Σ̃T )/λmax(A′T AT ) ≥
1/
√

log n for large enough cn > 0.

The rate εn in (26) coincides with the minimax rate for the supremum norm
in the white noise model up to a logarithmic factor, which equals (log n)

α
2α+1 .

This means that there may be a slight logarithmic term to pay (no more than√
log n in the limit α→∞ and no price in the limit α→ 0) when using Bayesian

CART. We next show that this logarithmic factor is in fact real, i.e. it is not an
artifact from the upper-bound proof, and cannot be removed for the considered
class of priors. We state the results for smooth-wavelet priors, which enable to
cover arbitrarily large regularities, but a similar result could also be formulated
for the Haar basis.

Theorem 3. Let ΠT be one of the Bayesian CART priors from Theorem 1.
Consider the tree-shaped wavelet prior (20) with π(βT ) ∼ N (0,ΣT ), where ΣT
is I|Text| and {ψlk} an S–regular wavelet basis, S ≥ 1. Let εn be the rate defined
in (26) for a given 0 < α ≤ S. Let the parameters of ΠT verify either Γ ≥ Γ0(S)
a large enough constant, or c ≥ c0 > 0 large enough. For any M > 0, there
exists m > 0 such that, as n→∞,

inf
f0∈H(α,M)

Ef0
Π [`∞(fT ,β, f0) ≤ mεn |X]→ 0. (29)

In other words, there exists a sequence of elements of H(α,M) along which
the posterior convergence rate is slower than mεn in terms of the `∞–metric.
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In particular, the upper-bound rate of Theorem 1 cannot hold uniformly over
H(α,M) with a rate faster than εn, which shows that the obtained rate is sharp
(note the reversed inequality in (29) with respect to (27); we refer to [12] for
more details on the notion of posterior rate lower bound). The proof of Theorem
3 can be found in Section 7.6.

3.2. From ‖ · ‖∞ to BvM

Let us now formalize the notion of a nonparametric BvM theorem in multiscale
spaces following [17] (we refer also to [16] for more background and discussion
of the, different, L2–type setting). Such spaces are defined through the speed
of decay of multiscale coefficients βlk = 〈f, ψlk〉. For a monotone increasing
weighting sequence w = (wl)

∞
l=0, with wl ≥ 1 and wl/

√
l → ∞ as l → ∞ (such

a w = (wl)
∞
l=0 is called admissible) we define the following multiscale sequence

space

M(w) =

{
x = (xlk) : ‖x‖M(w) ≡ sup

l

maxk |xlk|
wl

<∞
}
.

We consider a separable closed subspace of M(w) defined as

M0(w) =

{
x ∈M(w) : lim

l→∞
max
k

|xlk|
wl

= 0

}
.

Defining random variables glk =
∫ 1

0
ψlkdW (t) ∼ N (0, 1), according to Propo-

sition 2 in [17], the Gaussian white noise W = (glk) defines a tight Gaussian
Borel measure in the spaceM0(w) for admissible sequences w. The convergence
in distribution of random variables in the multiscale space M0(w) is metrised
via the bounded Lipschitz metric βM0(w) defined below. For µ, η probability
measures on a metric space (S, d) define

βS(µ, η) = sup
F :‖F‖BL≤1

∣∣∣∣∫
S

F (x)(dµ(x)− dη(x))

∣∣∣∣ ,
‖F‖BL = sup

x∈S
|F (x)|+ sup

x 6=y,x,y∈S

|F (x)− F (y)|
d(x, y)

.

Denote with X = X(n) = (Xlk : l ∈ N0, 0 ≤ k < 2l), where Xlk satisfy (2). Let

Π̃n = Πn ◦ τ−1
X be the image measure of Π(· | X) under τX : f →

√
n(f − X).

Namely, for any Borel set B we have

Π̃n(B) = Π
(√
n(f − X) ∈ B |X

)
. (30)

The following Theorem characterizes the adaptive non-parametric Bernstein-von
Mises behavior of posteriors under the Bayesian Dyadic CART. In the result
below, one assumes that trees sampled from ΠT contain all nodes (j, k) for all
j ≤ j0(n)→∞ slowly. Note that this constraint is easy to accommodate in the
construction: for the GW process, one starts stopping splits only after depth
j0(n), while for priors (5)–(6), it suffices to constrain the indicator IT ∈T to trees
that fill all first j0(n) layers.
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Theorem 4. (Adaptive Non-parametric BvM) Let M0 = M0(w) for some
admissible sequence w = (wl). Assume the Bayesian CART priors ΠT from
Theorem 1 constrained to trees that fit j0(n) layers, i.e. γlk = 1 for l ≤ j0(n),
for some strictly increasing sequence j0(n) → ∞ that satisfies wj0(n) ≥ c log n
for some c > 0. Consider tree-shaped priors as in Theorem 1, or using an S–
regular wavelet basis, S ≥ 1, as in Theorem 2. Then the posterior distribution
satisfies the weak Bernstein-von Mises phenomenon in M0 in the sense that

Ef0βM0(Π̃n,N )→ 0 as n→∞,

where N is the law of W in M0.

This statement, proved in Section 7.7 in the Appendix, can be shown, for
example, by verifying the conditions in Proposition 6 of [17]. The first condition
pertains to contraction in theM0–space, which can be obtained from our ‖ ·‖∞
result. In order to attain BvM, we need to modify the prior to always include
a few coarsest dense layers in the tree (similarly as [54]). Such trees are semi-
dense, where sparsity kicks in only deeper in the tree after j0(n) dense layers
have already been fitted.

While Theorem 4 will be of use in the next subsection, we now briefly mention
its several implications, referring to [17] for details. First, let us consider multi-
scale credible balls for f0, which consist of functions fT ,β that simultaneously
satisfy multi-scale linear constraints (see e.g. (5) in [17]):

Bn =
{
fT ,β : ‖fT ,β − X‖M(w) ≤ Rn/

√
n
}
, (31)

where Rn is chosen such that Π[Bn |X] = 1−γ (or the smallest radius such that
Π[Bn |X] ≥ 1− γ), i.e. Bn a credible set of level 1− γ. It follows from Theorem
4 and Theorem 5 in [17] that Bn is also a confidence set for f0 in M(w) of
level 1 − γ, i.e. Pf0

(f0 ∈ Bn) → 1 − γ. As a second application of Theorem

4, one directly obtains confidence bands for F (t) :=
∫ t

0
f(x)dx for 0 ≤ t ≤ 1:

those result from taking quantile credible bands in the following limiting distri-
bution result. By combining Theorem 4 and Theorem 4 in [17], one indeed ob-
tains βC([0,1])

(
L(
√
n(F (·)−

∫ ·
0
dX(n) |X),L(G)

)
→ 0 in Pf0

-probability, where
(G(t) : t ∈ [0, 1]) is a Brownian motion.

3.3. Adaptive Honest Confidence Bands for f0

In order for uncertainty quantification to be as informative as possible, it is
desirable that the confidence sets shrink as fast as possible. When the degree of
smoothness α is a priori known, one can intersect (31) with qualitative restric-
tions on f0 to obtain “optimal” frequentist confidence intervals (whose diameters
shrink at the sup-norm rate). For the more practical case when α is unknown,
[54] obtained multiscale credible balls under the spike-and-slab prior that are
adaptive and have uniform coverage over self-similar functions [53, 10, 34, 52].
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Definition 3. (Self-similarity) Given an integer j0 > 0, we say that f ∈
H(α,M) is self-similar if, for some constant ε > 0,

‖Kj(f)− f‖∞ ≥ ε2−jα for all j ≥ j0, (32)

where Kj(f) =
∑
l≤j−1

∑
k 〈ψlk, f〉ψlk is the wavelet projection at level j. The

class of all such self-similar functions will be denoted by HSS(α,M, ε).

Following [54], we construct adaptive honest credible sets by first defining a
pivot centering estimator, and then determining a data-driven radius.

Definition 4. (The Median Tree) Given a posterior distribution ΠT[· |X] over
trees, we define the median tree T ∗X = T ∗(ΠT[· |X]) as the following set of nodes

T ∗X = {(l, k), l ≤ Lmax, Π[(l, k) ∈ Tint |X] ≥ 1/2} . (33)

Similarly as in the median probability model [3, 2], a node belongs to T ∗X if
its (marginal) posterior probability to be selected by a tree estimator exceeds
1/2. Interestingly, it turns out that T ∗X is an actual tree, i.e. the nodes follow
hereditary constraints (see Lemma 14 in the Appendix). We define the resulting
median tree estimator as

f̂T (x) =
∑

(l,k)∈T ∗X

Xlkψlk(x). (34)

Moreover, with Rn as in (31), we define the radius as

σn = σn(X) = sup
x∈[0,1]

Lmax∑
l=0

vn

√
log n

n

2l−1∑
k=0

I(l,k)∈T ∗X |ψlk(x)|, (35)

for some vn →∞ to be chosen. Finally, we construct the credible band as

Cn =
{
fT ,β : ‖fT ,β − X‖M(w) ≤ Rn/

√
n, ‖fT ,β − f̂T ‖∞ ≤ σn

}
, (36)

where f̂T as in (34) and σn = σn(X) is as in (35).
The following Theorem (proved in Section 7.8) shows that uncertainty quan-

tification with Bayesian CART is well-calibrated from a frequentist point of
view, where posterior credible bands (36) have uniform coverage under self-
similarity.

Theorem 5. Let 0 < α1 ≤ α2<∞, M ≥ 1, γ ∈ (0, 1) and ε > 0. Let Π be any
prior as in the statement of Theorem 4 and let (wl) be an admissible sequence
such that wj0(n)/

√
log n ↑ ∞. Assume Rn as in (31), σn as in (35) with vn such

that (log n)1/2 = o(vn) and let f̂T denote the median tree estimator (34). Then
the set Cn defined in (36) satisfies, uniformly over α ∈ [α1, α2],

sup
f0∈HSS(α,M,ε)

|Pf0
(f0 ∈ Cn)− (1− γ)| → 0,

18



as n → ∞. In addition, for every α ∈ [α1, α2] and uniformly over f0 ∈
HSS(α,M, ε), the diameter |Cn|∞ = supf,g∈Cn ‖f − g‖∞ and the credibility of
the band verify, as n→∞,

|Cn|∞ = OPf0 ((n/ log n)−α/(2α+1)vn), (37)

Π[Cn |X] = 1− γ + oPf0 (1). (38)

3.4. Flat Trees are not Multiscale

Depending on the tree topology, some tree priors may be more or less suited
to derive adaptive multiscale properties. Only very few priors (actually only
point mass spike-and-slab based priors, as discussed in the Introduction) were
shown to attain adaptive sup-norm concentration rates. Theorem 1 now cer-
tifies Bayesian Dyadic CART as one of them. Recall that the spike-and-slab
prior achieves the actual `∞ minimax rate without any additional factor. Inter-
estingly, the very same prior misses the `2 minimax rate by a log factor [42].
This illustrates that `2 and `∞ adaptations require different desiderata when
constructing priors. Product priors that correspond to separable rules do not
yield adaptation with exact rates in the `2 sense [11]. Mixture priors that are
adaptive in `2, on the other hand, may not yield `∞ adaptation. We now provide
one example of this phenomenon in the context of flat trees from Section 2.1.3.

Recall that flat dyadic trees only keep Haar wavelet coefficients at resolutions
smaller than some d > 0 (i.e. γlk = 0 for l ≥ d). The implied prior on (βlk)lk
can be written as, with π(βlk) ∝ σ−1

l φ (βlk/σl),

(βlk) | d ∼
⊗
l<d,k

π(βlk) ⊗
⊗
l≥d,k

δ0(βlk), (39)

where φ(·) is some bounded density that is strictly positive on R and σl are
fixed positive scalars. The sequence (σl) is customarily chosen so as it decays
with the resolution index l, e.g. σl = 2−l(β+1/2) for some 0 < β ≤ α. This
“undersmoothing” prior requires the knowledge of (a lower bound on) α and
yields a non-adaptive non-parametric BvM behavior [17].

A tempting strategy to manufacture adaptation is to treat the threshold d
as random through a prior π(d) on integers (and take constant σl), which cor-
responds to the hierarchical prior on regular regression histograms [56, 61]. It
is not hard to check that the flat-tree prior (39) with random d has a marginal
mixture distribution similar to the one of the spike-and-slab prior on each co-
ordinate (l, k). Despite marginally similar, the probabilistic structure of these
two priors is very different. Zeroing out signals internally, the spike-and-slab
prior (18) is `∞ adaptive [42]. The flat tree prior (39), on the other hand, fits a
few dense layers without internal sparsity and is `2 adaptive (up to a log term)
[61]. However, as shown in the following Theorem proved in Section 7.9 in the
Appendix, flat trees fall short of `∞ adaptation.

Theorem 6. Assume the flat tree prior (39) with random d, where π(d) is
non-increasing and where the active wavelet coefficients βlk are Gaussian iid
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N (0, 1). Moreover, assume {ψlk} is an S–regular wavelet basis for some S ≥ 1.
For any 0 < α ≤ S and M > 0, there exists f0 ∈ H(α,M) such that

Ef0Π [`∞(fT ,β, f0) < ζn |X]→ 0,

where the lower-bound rate ζn is given by ζn =
(

logn
n

) α
2α+2

.

Theorem 6 can be applied to standard priors π(d) with exponential decrease,
proportional to e−d or e−d log d, or to a uniform prior over {1, . . . , Lmax}. In [1],
a negative result is also derived for sieve-type priors, but only for the posterior
mean and for Sobolev classes instead of the, here arguably more natural, Hölder
classes for supremum losses (which leads to different rates for estimating the
functional–at–a–point). Here, we show that when the target is the `∞–loss for
Hölder classes the sieve-prior is severely sub-optimal.

4. Non-dyadic Bayesian CART is Multiscale

A fundamental limitation of midpoint splits in dyadic trees is that they treat the
basis as fixed, allowing the jumps to occur only at pre-specified dyadic locations
even when not justified by data. General CART regression methodology [8, 30]
avoids this restriction by treating the basis as unknown, where the partitioning
cells shrink and stretch with data. In this section, we leave behind ‘static’ dyadic
trees to focus on the analysis of Bayesian (non-dyadic) CART [20, 23] and its
connection to Unbalanced Haar (UH) wavelet basis selection.

4.1. Unbalanced Haar Wavelets

UH wavelet basis functions [37] are not necessarily translates/dilates of any
mother wavelet function and, as such, allow for different support lengths and
design-adapted split locations. Here, we particularize the constructive definition
of UH wavelets given by [29]. Assume that possible values for splits are chosen
from a set of n = 2Lmax breakpoints X = {xi : xi = i/n, 1 ≤ i ≤ n}1. Using the
scale/location index enumeration, pairs (l, k) in the tree are now equipped with
(a) a breakpoint blk ∈ X and (b) left and right brackets (llk, rlk) ∈ X ∪ {0, 1}.
Unlike balanced Haar wavelets (3), where blk = 1/2l+1, the breakpoints blk are
not required to be regularly dyadically constrained and are chosen from X in a
hierarchical fashion as follows. One starts by setting l00 = 0, r00 = 1. Then

(a) The first breakpoint b00 is selected from X ∩ (0, 1).
(b) For each 1 ≤ l ≤ Lmax and 0 ≤ k < 2l, set

llk = l(l−1)bk/2c, rlk = b(l−1)bk/2c, if k is even, (40)

llk = b(l−1)bk/2c, rlk = r(l−1)bk/2c, if k is odd.

If X ∩ (llk, rlk] 6= ∅, choose blk from X ∩ (llk, rlk].

1In non-parametric regression, X could be regarded as the set of observed covariate values.
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Let A denote the set of admissible nodes (l, k), in that (l, k) is such that X ∩
(llk, rlk] 6= ∅, obtained through an instance of the sampling process described
above and let

B = (blk)(l,k)∈A

be the corresponding set of breakpoints. Each collection of split locations B
gives rise to nested intervals

Llk = (llk, blk] and Rlk = (blk, rlk].

Starting with the mother wavelet ψB−10 = ψ−10 = I(0,1), one then recursively
constructs wavelet functions ψBlk from Llk and Rlk as

ψBlk(x) =
1√

|Llk|−1 + |Rlk|−1

(
ILlk(x)

|Llk|
− IRlk(x)

|Rlk|

)
. (41)

The system ΨB
A = {ψB−10, ψ

B
lk : (l, k) ∈ A} is orthonormal with respect to the

L2[0, 1]–inner product. Indeed, by construction, the functions ψBlk have a unit
L2–norm and, for a given depth l, they have disjoint supports. Furthermore, ψBlk
integrate to 0 on their support and thereby each ψBlk is orthogonal to ψBl′k for
any l′ < l. Similarly as in (7), where Ilk denotes the support of the balanced
Haar wavelets ψlk, we denote with IBlk the support of ψBlk.

We characterized Hölder functions though the speed at which the multi-
scale coefficients decay as a function of the resolution index l (see (24)). With
UH wavelets, the decay can be expressed in terms the lengths of the right/left
wavelet pieces Llk and Rlk.

Lemma 1. For a set A of admissible nodes (l, k) as above, let us define βBlk =
〈f, ψBlk〉, where ψBlk is the unbalanced Haar wavelet in (41) and where f ∈ HαM
was defined in (25). Then

|βBlk| ≤M 2α−1/2 max{|Llk|, |Rlk|}α+1/2. (42)

For the classical Haar basis (3), one obtains (24) from (42) by noting max{|Llk|, |Rlk|} =
2−(l+1). [29] points out that the computational complexity of the discrete UH
transform could be unnecessarily large and imposes the balancing requirement
max {|Llk|, |Rlk|} ≤ E(|Llk|+ |Rlk|) ∀(l, k) ∈ A, for some 1/2 ≤ E < 1. In order
to control the combinatorial complexity of the basis system, we also require that
the UH wavelets are not too imbalanced. To this end, we introduce the notion
of weakly balanced wavelets.

Definition 5. Consider a collection of UH wavelets ΨB
A = {ψB−10, ψ

B
lk : (l, k) ∈

A}. We say that ΨB
A is weakly balanced with balancing constants E,D ∈ N\{0}

if, for any (l, k) ∈ A,

max (|Llk|, |Rlk|) =
Mlk

2l+D
for some Mlk ∈ {1, . . . , E + l}. (43)
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Example 3. To glean insights into the balancing condition (43), we first con-
sider an example of UH system which is not weakly balanced for some given
n,D, say n = 24 and D = 2. If we choose b00 = 1/2, b10 = 1/2 − 1/n and
b11 = 3/4, we have

L10 = (0, 1/2− 1/n], R10 = (1/2− 1/n, 1/2],

L11 = (1/2, 3/4], R11 = (3/4, 1].

While the node (1, 1) is seen to satisfy (43) with E = 5, we note that max{|L10|, |R10|} =
(n − 2)/(2n) = 7/16. However, 7/16 cannot be written as M10/2

D+1 = M10/8
for any integer M10. This is why the split points b00, b10 and b11 do not belong to
any weakly balanced UH wavelet system with balancing constant D = 2. Weakly
balanced systems can be built by choosing splits in such a way that the “gran-
ularity” does not increase too rapidly throughout the branching process. With
granularity R(l,ΨB

A) of the lth layer we mean the smallest integer R ≥ 1 such
that min0≤k<2l min{|Llk|, |Rlk|} = j/2R for some j ∈ {1, 2, . . . , 2R−1}. For in-
stance, setting D = 2 and E = 3 one can build weakly balanced wavelets by first
picking b00 from values { 1

4 ,
1
2 ,

3
4}. If, e.g. b00 = 3/4 (i.e. R(0,ΨB

A) = 2), the next
split b10 can be selected from { 1

4 ,
3
8 ,

1
2}, while b11 has to be set as 7/8.

Our theoretical development relies in part on combinatorial properties of
weakly balanced UH systems and on the speed of decay of the multiscale func-
tionals βBlk = 〈f, ψBlk〉 as the layer index l ∈ N increases. These two fundamental
properties are encapsulated in the Lemma 11 which is vital to the proof of the
upcoming Theorem 7.

Note that in the actual BART implementation, the splits are chosen from
sample quantiles to ensure balancedness (similar to our condition (43)). Quantile
splits are a natural way to generate many weakly balanced systems, providing
a much increased flexibility compared to dyadic splits, which correspond to
uniform quantiles.

Example 4 (Quantile Splits). Denote with G a c.d.f with a density g on [0, 1]
that satisfies ‖g‖∞ ≤ 2D−1/(2E) for E,D > 0 chosen below and ‖1/g‖∞ ≤ Cq
for some Cq > 0. Let us define a dyadic projection of G as

G−1
l (x) := 2−lb2lG−1(x)c,

and next define the breakpoints, for l ≤ Lmax and 0 ≤ k < 2l, as

blk = G−1
Lmax+D[(2k + 1)/2l+1]. (44)

The system ΨB
A obtained from steps (a) and (b) with splits (44) is weakly bal-

anced for E = 2 + 3Cq2
D−1. This is verified in Lemma 12 in the Appendix

(Section 7.2.4). Moreover, Figure 4 in Section 7.2.4 illustrates the implementa-
tion of the quantile system, where splits are placed more densely in areas where
G(x) changes more rapidly.
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4.2. Non-dyadic CART prior and multiscale properties.

The recursive construction of the weakly balanced Haar basis pertains closely
to the Bayesian CART prior of [20]. Instead of confining blk to dyadic midpoints
(step (i) in Section 2.1.1), such a prior draws blk from available observations.
We consider a related, and more general, strategy which separates the prior on
the basis ΠB from the prior on the trees ΠT. We regard the non-dyadic Bayesian
CART prior as arising from the following three steps:

• Step 1. (Basis Generation) Sample B = (blk)0≤k<2l−1,l≤L from ΠB by
following the steps a)–b) around (40) subject to satisfying the balancing
condition (43).

• Step 2. (Tree Generation) Independently of B, sample a binary tree T
from one of the priors ΠT described in Section 2.1.1 or Section 2.1.2.

• Step 3. (Step Heights Generation) Given T , we obtain the coefficients (βBlk)
from the tree-shaped prior (20). Using the UH wavelets, the prior on the
internal coefficients βBlk can be translated into a model on the histogram

heights β̃Blk through (9).

An example of such a prior is obtained by drawing a density at random verifying
conditions as in Example 4 to generate the breakpoints and then following the
construction from Section 2 for Steps 2–3. The following theorem, proved in
Section 7.10, is positioned for the (non-smooth) weakly balanced UH wavelets.

Theorem 7. Let ΠB be any prior on breakpoint collections that satisfy weak
balancedness according to Definition 5. Let ΠT be one of the Bayesian CART
priors discussed in Section 2.1, i.e either, for some Γ > 0, c ≥ 1,

(i) the Galton-Watson Process prior with plk = Γ−l
4

,
(ii) the conditionally uniform prior with π(K) ∝ exp

(
−cK log4 n

)
,

(iii) the exponential prior π(T ) ∝ exp
(
−c |Text| log4 n

)
.

Moreover, consider the tree-shaped wavelet prior (20) where the conditions in

(28) are replaced by λmin(ΣT ) & 1/
√

log4 n and λmax(ΣT ) . na for some
a > 0. Let f0 ∈ HMλ as in (25) for some M > 0 and 0 < α ≤ 1 and define

εn = (log n)1+ 3
2

(
log n

n

) α
2α+1

. (45)

Then, there exist Γ0, c0 > 0 depending only on the constants E,D in the weak
balancedness condition such that, for any Γ ≥ Γ0 and c ≥ c0, for any Mn →∞,
we have, for n→∞

Ef0
Π [ `∞(fT ,β, f0) ≥ ‖fT ,β − f0‖∞ > Mnεn |X]→ 0. (46)

In the context of piecewise constant priors, Theorem 7 allows further flexibility
in the choice of the prior as compared to Theorem 1 in that the location of the
breakpoints, on the top of their structure given by the tree prior, can vary in
their location according to a specific own prior.
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Remark 1. The log-factor in Theorem 7 depends on the amount of unbalanced-
ness. A more general statement with a log factor (log n)1+ δ

2 for some δ > 0 can
be obtained under Conditions (B1) and (B2) in Lemma 11 and under the as-
sumption ‖ψBlk‖ . 2l. According to Lemma 11, weakly balanced systems verify
(B1) and (B2) with δ = 3. Whether one can further weaken the balancing con-
dition to still get optimal multiscale results is an interesting open question that
goes beyond the scope of this paper. In addition, the log-factor in (45) could be
further optimized, similarly as in Theorem 1.

5. Discussion

In this paper we explored connections between Bayesian tree-based regression
methods and structured wavelet shrinkage. We demonstrated that Bayesian tree-
based methods are multiscale, in the sense that they attain (almost) optimal
convergence rates in the supremum norm, as well as verify a fully non-parametric
and adaptive Bernstein-von Mises theorem in multiscale spaces. The developed
framework also allows us to construct adaptive credible bands around f0 un-
der self-similarity. To allow for non-dyadically organized splits, we introduced
weakly balanced Haar wavelets (an elaboration on unbalanced Haar wavelets of
[37]) and showed that Bayesian CART performs basis selection from this library
and attains a near-minimax rate of posterior concentration under the sup-norm
loss.

Although for clarity of exposition we focused on the white noise model, we
note that the techniques of proof are non-conjugate in their key tree aspect,
which opens the door to applications in many other statistical settings. The
obtained results extend to fixed design regression for regular design or possibly
more general designs under some conditions. A version of Bayesian CART in the
model of density estimation following the ideas of the present work is currently
investigated by T. Randrianarisoa as part of his PhD thesis. More precisely,
using the present techniques, it is possible to develop multiscale rate results for
Pólya trees with ‘optional stopping’ along a tree, in the spirit of [67]. Further
natural extensions include high-dimensional versions of the model, extending
the multi-dimensional version briefly presented here, as well as forest priors.
These will be considered elsewhere.

6. Proofs

6.1. Proof of Theorem 1

Let us first introduce the event, with L = Lmax,

A =

{
max

−1≤l≤L, 0≤k<2l
ε2
lk ≤ 2 log

(
2L+1

)}
. (47)
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Assuming εlk ∼ N (0, 1), this event has large probability in the sense that

P (Ac) . (log n)−1, which follows from P

[
max

1≤i≤N
|Zi| >

√
2 logN

]
≤ c0/

√
logN

for some c0 > 0 when Zi ∼ N (0, 1) for 1 ≤ i ≤ N .

6.1.1. Posterior Probability of Deep Trees

The first step is to show that, on the event A, the posterior concentrates on
reasonably small trees (i.e. with small depth d(T )). Let us define the cutoff
Lc = Lc(α,M) as

Lc =

⌈
log2

(
(8M)

1
α+1/2

(
n

log n

) 1
2α+1

)⌉
. (48)

Lemma 2. Under the assumptions of Theorem 1, on the event A,

Π[d(T ) > Lc |X]→ 0 (n→∞). (49)

Proof. We first show (49) for the GW-process prior as in Section 2.1.1. Consider
one tree T ∈ T such that d(T ) ≥ 1 and denote with T − a pruned subtree
obtained from T by turning its deepest rightmost internal node, say (l1, k1),
into a terminal node. Then T − = T −int ∪ T

−
ext, where

T −int = Tint\{(l1, k1)}, T −ext = Text\{(l1 + 1, 2k1), (l1 + 1, 2k1 + 1)} ∪ {(l1, k1)}.

Note that T − is a full binary tree, where the mapping T → T − is not necessarily
injective. Indeed, there are up to 2d(T −) trees T that give rise to the same pruned
tree T −. Let Td = {T ∈ T : d(T ) = d} denote the set of all full binary trees of
depth exactly d ≥ 1. Then, using the notation (23),

Π[Td |X] =

∑
T ∈TdWX(T )∑
T ∈TWX(T )

=

∑
T ∈Td

WX(T )
WX(T −)WX(T −)∑
T ∈TWX(T )

, (50)

where
WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

∫ ∏
(l,k)∈T ′int

enXlkβlk−nβ
2
lk/2dπ(βT )∫ ∏

(l,k)∈T −int
′ enXlkβlk−nβ

2
lk/2dπ(βT −)

.

Let XT = (Xlk : (l, k) ∈ T ′int)′ and βT = (βlk : (l, k) ∈ T ′int)′ top-down left-
to-right ordered sequences (recall that we order nodes according to the index
2l + k). Assuming βT ∼ N (0,ΣT ), and denoting K = |Text| = |Tint|+ 1,

WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

√
|ΣT − |
2π|ΣT |

∫
enX

′
T βT −β

′
T [nIK+Σ−1

T ]βT /2dβT∫
enX

′
T −
βT−−β

′
T −

[nIK−1+Σ−1

T−
]βT−/2dβT −

=
ΠT(T )

ΠT(T −)

√
|ΣT − |
|ΣT |

√
|nIK−1 + Σ−1

T − |
|nIK + Σ−1

T |
en

2X′T (nIK+Σ−1
T )−1XT /2

en
2X′
T −

(nIK−1+Σ−1

T−
)−1XT−/2

.

(51)
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Since Xl1k1 corresponds to the node (l, k) with the highest index 2l+k, we have
XT = (XT − , Xl1k1

)′.
The Independent Prior. We first consider the independent prior ΣT = IK .

Using the expression (51) and since (l1, k1) is the deepest rightmost internal
node in T of depth d = d(T ) = l1 + 1, using the definition of the GW prior,

WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

∏
(l,k)∈T \T −

e
n2

2(n+1)
X2
lk

√
n+ 1

=
pd−1(1− pd)2

1− pd−1

e
n2

2(n+1)
X2
l1k1

√
n+ 1

.

From the Hölder continuity (24), one gets 8|βl1k1 | ≤
√

log n/n for l1 ≥ Lc,
where Lc is as in (48). Conditionally on the event (47), we can then write

|Xl1k1 | ≤
1√
n

[
1

8

√
log n+

√
2 log n+ log 4

]
(52)

and thereby 2X2
l1k1

≤ 5 log n/n. Recall that, under the GW-prior, the split

probability is pd = Γ−d. As Γ > 2, one has pd < 1/2 and so, for any d > Lc,

WX(T )

WX(T −)
≤ 2 pd−1 exp

(
5n log n

4(n+ 1)
− 1

2
log(1 + n)

)
< 2n3/4pd−1.

Going back to the ratio (50), we now bound, with a(n, d) =: 2n3/4pd−1,

Π[Td |X]

a(n, d)
≤
∑
T ∈TdWX(T −)∑
T ∈TWX(T )

≤
∑
T ∈T−d

2d(T −)WX(T )∑
T ∈TWX(T )

≤ 2d,

where T−d is the set of all possible trees T − that correspond to some T ∈ Td.
Using this bound one deduces that, on the event A,

Π[d(T ) > Lc |X] =

L∑
d=Lc+1

Π[Td |X] ≤ 4n3/4
L∑

d=Lc+1

2d−1pd−1 (53)

< 4n3/4 L exp [−Lc log(Γ/2)] . (54)

As Lc ∼ (log n)/(1 + 2α), the right hand side goes to zero as soon as, e.g.
log(Γ/2) > 7(1 + 2α)/8 that is, for α ≤ 1, Γ > 2e3.

The g-prior. With ΣT = gn (A′T AT )−1, Proposition 1 implies

nIK + Σ−1
T =

(
nIK−1 + Σ−1

T − + 1
gn
vv′ 0

0′ n+ 2l1+1

gn

)
. (55)

Using the formula |A + uu′| = |A|(1 + u′A−1u) for A invertible, and setting
M = (nIK−1 + Σ−1

T −)−1, one gets

|nIK−1 + Σ−1
T − |

|nIK + Σ−1
T |

=
1

(n+ 2l1+1/gn) [1 + v′Mv/ gn]
<

1

(n+ 2l1+1/gn)
.
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Because ||v||22 = 1+
∑l1−1
l=0 2l = 2l1 and λmax(A′T −AT −)−1 = λmin(A′T −AT −)−1

is at most 1, using that the smallest eigenvalue of A′T AT equals 2d+1 where d
is the depth of the most shallow parent of a leaf node in T , we can write, again
with the help of the determinant formula above,

|ΣT − |
|ΣT |

=
2l1+1

gn

(
1 + v′(A′T −AT −)−1v

)
≤ 2l1+1

gn

(
1 + 2l1

)
.

Let us set D := X ′T (nI + Σ−1
T )−1XT −X ′T −(nI + Σ−1

T −)−1XT − . Combining
with (55), it follows from a variant of the Sherman–Morrison’s matrix inversion
formula (Lemma 6) that

(nIK + Σ−1
T )−1 =

(
M − Mvv′M

gn+v′Mv 0

0′ 1/(n+ 2l1+1/gn)

)
,

from which one deduces that

D =
X2
l1k1

n+ 2l1+1/gn
− X

′
T −Mvv

′MXT −

gn + v′Mv
<

X2
l1k1

n+ 2l1+1/gn
. (56)

Since for l1 > Lc we have 2X2
l1k1
≤ 5 log n/n, we can write

WX(T )

WX(T −)

ΠT(T −)

ΠT(T )
<

√
2l1+1 (1 + 2l1)

gn(n+ 2l1+1/gn)
e

X2
l1k1

n2

2(n+2l1+1/gn) <

√
22(l1+1)

ngn
n5/4.

For gn = n, and for T ∈ Td, so that 2l1 . 2d, the last display is bounded by a
constant times n−1/42dpd, and the argument can be completed in similar vein
as before, with now Π[d(T ) > Lc |X] = oP (1) if Γ > 2.

Other Tree Priors ΠT. The only modification needed to carry over the proof
to the other two priors is the bound for the ratio ΠT(T )/ΠT(T −). Consider the
prior from Section 2.1.2. Denoting K = |Text| and CK the number of full binary
trees with K + 1 leaves, we have

ΠT(T )

ΠT(T −)
=

π(K)

π(K − 1)

CK−1

CK−2
,

and Lemma 7 now implies, for a universal constant C > 0,

ΠT(T )

ΠT(T −)
.

λ

K

4K−1(K − 2)3/2

4K−2({K − 1} ∨ 1)3/2
≤ Cλ/K.

Choosing λ = 1/nc for some c > 7/4, it follows that Π[d(T ) > Lc |X] ≤
4λn3/4

∑L
d=Lc+1 2d/K ≤ 4λn3/42L → 0. Finally, for the prior (6), one has

ΠT(T )/ΠT(T −) = 1/nc, so one can argue similarly.

6.1.2. Posterior Probability of Missing Signal

The next step is showing that the posterior probability of missing a node with
large signal vanishes.
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Lemma 3. Let us denote, for A > 0 to be chosen suitably large,

S(f0;A) =

{
(l, k) : |β0

lk| ≥ A
log n√
n

}
. (57)

Under the assumptions of Theorem 1, on the event A,

Π [{T : S(f0;A) * T } |X]→ 0 (n→∞). (58)

Proof. As before, we start the proof with the GW prior from Section 2.1.1.
Let us first consider a given node (lS , kS) ∈ S(f0;A), for A to be specified
below, and note that the Hölder condition on f0 implies lS ≤ Lc (for n large
enough). Let T\(lS ,kS) = {T ∈ T : (lS , kS) /∈ Tint} denote the set of trees that
miss the signal node in the sense that they do not have a cut at (lS , kS). For
any such tree T ∈ T\(lS ,kS) we then denote by T + the smallest full binary
tree (in terms of the number of nodes) that contains T and that splits on
(lS , kS). Such a tree can be constructed from T ∈ T\(lS ,kS) as follows. Denote by
(l0, k0) ∈ Text∩[(0, 0)↔ (lS , kS)] the external node which is closest to (lS , kS) on
a route from the root to (lS , kS) in a flat tree. Next, denote by T + the extended
tree obtained from T by sequentially splitting all (l, k) ∈ [(l0, k0) ↔ (lS , kS)].
Similarly as for T → T − above, the map T → T + is not injective and we denote
by T(lS ,kS) the set of all extended trees T + obtained from T ∈ T\(lS ,kS). Now

Π
[
T\(lS ,kS) |X

]
equals∑

T ∈T\(lS,kS)
WX(T )∑

T ∈TWX(T )
≤

∑
T ∈T\(lS,kS)

WX(T )
WX(T +)WX(T +)∑

T ∈T(lS,kS)
WX(T )

. (59)

Let us denote by T (j) for j = −1, . . . , S the sequence of nested trees obtained
by extending one branch of T towards (lS , kS) by splitting the nodes [(l0, k0)↔
(lS , kS)], where T + = T (S) and T = T (−1). Then

WX(T )

WX(T +)
=

ΠT(T )

ΠT(T +)

S∏
s=0

NX(T (s−1))

NX(T (s))
. (60)

Under the GW process prior with pl = Γ−l for some Γ > 2, the ratio of prior
tree probabilities in the last expression satisfies

ΠT(T )

ΠT(T +)
=

1− pl0
1− plS+1

(
lS∏
l=l0

1

pl

)(
lS+1∏
l=l0+1

1

1− pl

)
, (61)

which is bounded by 2lS−l0+2Γ(l0+lS)(lS−l0+1)/2 < 4Γ2l2S .
The Independent Prior. Assuming the independent prior ΣT = IK , we can

write for any T in T\(lS ,kS)

WX(T )

WX(T +)
=

ΠT(T )

ΠT(T +)

∏
(l,k)∈T +\T

√
n+ 1

e
n2

2(n+1)
X2
lk

. (62)
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Using the definition of the model and the inequality 2ab ≥ −a2/2 − 2b2 for
a, b ∈ R, we obtain X2

lSkS
≥ (β0

lSkS
)2/2− ε2

lSkS
/n. On the event A, one gets

exp

{
− n2

2(n+ 1)
X2
lSkS

}
≤ exp

{
−
n2(β0

lSkS
)2

4(n+ 1)
+
n log 2(log2 n+ 1)

n+ 1

}
,

The ratio in (62) can be thus bounded, for any T ∈ T\(lS ,kS), by

WX(T )

WX(T +)
. Γ2l2S exp

{
3(lS − l0 + 1)(log2 n+ 1)

2
− nA2 log2 n

4(n+ 1)

}
=: b(n, lS),

where we bounded the exponential term in (62) from below by 1. We now
continue to bound the ratio (59). For each given T +, there is at most lS trees

T̃ ∈ T\(lS ,kS) which have the same extended tree T̃ + = T +. This is because T +

is obtained by extending one branch by adding no more than lS nodes. Using
this fact and the definition of b(n, lS) above,

Π
[
T\(lS ,kS) |X

]
b(n, lS)

≤

∑
T ∈T\(lS,kS)

WX(T +)∑
T ∈T\(lS,kS)

WX(T )
≤ lS

∑
T ∈\T(lS,kS)

WX(T )∑
T ∈T\(lS,kS)

WX(T )
.

By choosing A = A(Γ) > 0 large enough, this leads to

Π [(lS , kS) /∈ Tint |X] ≤ e(3/2+3 log Γ)(log2 n+1)2−A2

8 log2 n ≤ e−
A2

16 log2 n.

Then the result follows as, on the event A,∑
(lS ,kS)∈S(f0,A)

Π
[
T\(lS ,kS) |X

]
≤ 2Lc+1e−

A2

16 log2 n ≤ e−
A2

32 log2 n → 0.

The g-prior. We now modify the proof for the g-prior obtained with ΣT =
gn(A′T AT )−1. Denoting with Ks = |T sext| and because T (s−1) is obtained from

T (s) by removing two children nodes, we can apply Proposition 1 to obtain
the following upper bound for NX(T (s−1))/NX(T (s)). Namely, invoking again
the matrix determinant lemma |A + uu′| = |A|(1 + u′A−1u) and the matrix
inversion lemma (Lemma 6), one obtains the bound√

(gnn+ 2ls+1)(gn + v′Mv)

gn2ls+1
exp

{
−

n2 X2
lsks

2(n+ 2ls+1/gn)
+ n2X

′
T (s−1)Mvv′MXT (s−1)

2(gn + v′Mv)

}
,

where M = (nIKs−1 + Σ−1
T (s−1))

−1 for some v ∈ R|T (s−1)|. Next, for C > 0 a
large enough constant,

‖XT (s−1)‖22 = X2
−10 +

ls−1∑
l=0

2l−1∑
k=0

X2
lk ≤ C{1 +

ls−1∑
l=0

(2−2 l α +
2l

n
log n)}, (63)
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which is uniformly bounded. Moreover, since

X ′T (s−1)Mvv
′MXT (s−1) ≤ ‖X(s−1)

T ‖22λmax(Mvv′M) ≤ ‖X(s−1)
T ‖22tr(Mvv′M)

≤ ‖X(s−1)
T ‖2v′MMv ≤ ‖X(s−1)

T ‖22λmax(M)v′Mv

and λmax(M)−1 = n+ λmin(A
(s−1)′

T A
(s−1)
T )/gn > n, one can write

n2X
′
T (s−1)Mvv′MXT (s−1)

2(gn + v′Mv)
<
n2‖XT (s−1)‖22λmax(M)

2gn/(v′Mv) + 2
≤ C4

2ls

2gn
,

where we used the fact that ‖v‖22 = 2ls . Finally, because X2
lSkS

≥ C5A
2 log2 n/n

for some C5 > 0 we have

S∏
s=0

NX(T (s−1))

NX(T (s))
<

(
n(gn + 2)

gn

)S+1

exp

{
C4

S∑
s=0

2ls−1

gn
− nC5A

2 log2 n

2(n+ 2ls+1/gn)

}

< exp

{
(S + 1) log(3n) + C4

(S + 1)2lS−1

gn
− C5A

2 log2 n/4

}
.

With gn = n, the exponent is dominated by the last term. One then proceeds
with (60) as above.

Other Tree Priors π(T ). As before, the only modification needed is the bound
for ΠT(T )/ΠT(T +). Denote by K+ = |T +

ext| and K = |Text| and note that
K+ −K = lS − l0. For the prior from Section 2.1.2, we then have

ΠT(T )

ΠT(T +)
= λ−(lS−l0)K

+!CK+−1

K!CK−1
.

(
λ

4

)−(lS−l0)
(K+)!

K!

.

(
λ

4

)−(lS−l0)

e(lS−l0){1+log[K+(lS−l0)]}.

With λ = n−c and K ≤ 2Lc+1, this is bounded from above by CeC log2 n for
some C > 0 and the proof is completed as before. For the prior (6), one similarly

uses ΠT(T )/ΠT(T +) = ec(lS−l0) logn ≤ ec log2 n.

6.1.3. Posterior Concentration Around Signals

Let us now show that the posterior does not distort large signals too much.

Lemma 4. Let us denote, for Lc as in (48) and S(f0;A) as in (57),

T = {T : d(T ) ≤ Lc, S(f0;A) ⊂ T }. (64)

Then, on the event A, for some C ′ > 0, uniformly over T ∈ T,∫
max

(l,k)∈T ′int
|βlk − β0

lk|dΠ[βT |XT ] < C ′
√

log n

n
, (65)

with XT = (Xlk : (l, k) ∈ T ′int)′ the ordered vector of active responses.
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Proof. A sketch of the proof for the independent prior ΣT = I is as follows:
under the conditional posterior, βlk is normally distributed, centered very close
to Xlk (and hence to β0

lk on the event A), and the expectation of the maximum

of n Gaussians of variance of order 1/n is of order
√

log n/n. A detailed proof
including the g-prior case can be found in the Appendix.

6.2. Supremum norm Convergence Rate

Let us write f0 = fLc0 + f
\Lc
0 , where fLc0 the L2–projection of f0 onto the first

Lc layers of wavelet coefficients. Under the Hölder condition the equality holds

also pointwise and ‖f\Lc0 ‖∞ ≤
∑
l>Lc 2l/22−l(1/2+α) . (log n/n)α/(2α+1).

The following inequality bounds the supremum norm by the `∞–norm,

‖f − f0‖∞ ≤
∑
l≥−1

max
0≤k<2l

|βlk − β0
lk|

∑
0≤k<2−l

‖ψlk‖∞

≤ |〈f − f0, ϕ〉|+
∑
l≥0

2l/2 max
0≤k<2l

|βlk − β0
lk| = `∞(f, f0). (66)

We use the notation S(f0;A),T as in (57)–(64) and

E = {fT ,β : T ∈ T}. (67)

Using the definition of the event A from (47), one can write

Ef0
Π[fT ,β : ‖fT ,β − f0‖∞ > εn |X] ≤ Pf0

[Ac] + Ef0
Π[Ec |X]

+ Ef0
{Π[fT ,β ∈ E : ‖fT ,β − f0‖∞ > εn |X]IA} . (68)

By Markov’s inequality and the previous bound (66),

Π[fT ,β ∈ E : ‖fT ,β − f0‖∞ > εn |X]IA ≤ ε−1
n

∫
E
‖fT ,β − f0‖∞dΠ[fT ,β |X]IA

≤ ε−1
n

∑
l≤Lc

2l/2
{∫
E

max
0≤k<2l

|βlk − β0
lk|dΠ[fT ,β |X]IA

}
+ ε−1

n ‖f
\Lc
0 ‖∞.

With T as above, the integral in the last display is bounded by, for l ≤ Lc,∫
E

max
0≤k<2l

|βlk − β0
lk|dΠ[fT ,β |X] =

∑
T ∈T

π[T |X]

∫
max

0≤k<2l
|βlk − β0

lk|dΠ[βT |XT ]

=
∑
T ∈T

π[T |X]

∫
max

(
max

0≤k<2l, (l,k)/∈T ′int
|β0
lk|, max

0≤k<2l, (l,k)∈T
|βlk − β0

lk|
)
dΠ[βT |XT ]

≤ min

(
max

0≤k<2l
|β0
lk|, A

log n√
n

)
+
∑
T ∈T

π[T |X]

∫
max

0≤k<2l, (l,k)∈T
|βlk − β0

lk|dΠ[βT |XT ],

where we have used that on the set E , selected trees cannot miss any true signal
larger than A log n/

√
n. This means that any node (l, k) that is not in a selected

tree must satisfy |β0
lk| ≤ A log n/

√
n.
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Let L∗ = L∗(α) be the integer closest to the solution of the equation in L
given by M2−L(α+1/2) = A log n/

√
n. Then, using that f0 ∈ H(α,M),∑

l≤Lc

2
l
2 min

(
max

0≤k<2l
|β0
lk|, A

log n√
n

)
≤
∑
l≤L∗

2
l
2A

log n√
n

+
∑

L∗<l≤Lc

2
l
2M2−l(

1
2 +α)

≤ C2L
∗/2A

log n√
n

+ C2−L
∗α ≤ C̃2−L

∗α ≤ c
(
n−1 log2 n

) α
2α+1 . (69)

Using Pf0 [Ac] + Ef0Π[Ec |X] = o(1) and Lemma 4, one obtains

Ef0
Π[fT ,β : ‖fT ,β − f0‖∞ > εn |X] ≤ o(1)+

ε−1
n

∑
l≤Lc

2l/2

[
min

(
max

0≤k<2l
|β0
lk|, A

log n√
n

)
+ C ′

√
log n

n

]
+ ε−1

n ‖f
\Lc
0 ‖∞

≤ o(1) + ε−1
n

[
c

(
log2 n

n

) α
2α+1

+ 2C ′
√

2Lc log n

n

]
+ ε−1

n ‖f
\Lc
0 ‖∞

≤ o(1) + ε−1
n

[
c(log n)α/(2α+1) + 2C ′

]( log n

n

) α
2α+1

+ ε−1
n ‖f

\Lc
0 ‖∞

for some C ′ > 0. Choosing εn = Mn

(
(log2 n)/n

) α
2α+1 , the right hand side goes

to zero for any arbitrarily slowly increasing sequence Mn →∞.
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[51] Nickl, R. and J. Söhl (2019). Bernstein–von Mises theorems for statisti-
cal inverse problems II: compound Poisson processes. Electronic Journal of
Statistics 13, 3513–3571.
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7. Appendix

7.1. Basic Lemmata

7.1.1. Properties of the pinball matrix (14)

While A′T AT is not proportional to an identity matrix (for trees other than
flat trees), it does have a nested sparse structure which will be exploited in our
analysis.

Proposition 1. Denote with (l1, k1) the deepest rightmost internal node in the
tree T , i.e. the node (l, k) ∈ Tint with the highest index 2l + k. Let T − be a tree
obtained from T by turning (l1, k1) into a terminal node. Then

A′T AT =

(
A′T −AT − + vv′ 0

0′ 2l1+1

)
(70)

for a vector of zeros 0 ∈ R|Text|−1 and a vector v ∈ R|Text|−1 obtained from AT
by first deleting its last column and then transposing the last row of this reduced
matrix.

Proof. The index (l1, k1), by definition, corresponds to the last entry in the vec-
tor βT . We note that T −int = Tint\{(l1, k1)} and T −ext = Text\{(l1 + 1, 2k1), (l1 +
1, 2k1 + 1)} ∪ {(l1, k1)}. The matrix AT − can be obtained from AT by deleting
the last column of AT and then deleting the last row, further denoted with v′.
The desired statement (70) is obtained by noting that the last column of AT
(associated with βl1,k1

) is orthogonal to all the other columns. This is true be-
cause (a) this column has only two nonzero entries that correspond to the last
two siblings {(l1 + 1, 2k1), (l1 + 1, 2k1 + 1)}, (b) the last two rows of AT differ
only in the sign of the last entry because {(l1 + 1, 2k1), (l1 + 1, 2k1 + 1)} are
siblings and share the same ancestry with the same weights up to the sign of
their immediate parent. Finally, the entry 2l1+1 follows from (13).

Corollary 1. Under the prior (17), the coefficient βlk of any internal node (l, k)
which has terminal descendants is independent of all the remaining internal
coefficients.

Proof. Follows directly from Prop. 1 after reordering the nodes.

The following proposition characterizes the eigenspectrum of A′T AT which
will be exploited in our proofs.

Proposition 2. The eigenspectrum of A′T AT consists of the diagonal entries of

D = diag(d̃lk,lk) = AT A
′
T in (15). Moreover, the diagonal entries diag(A′T AT ) =

{dlk,lk}lk∈Tint satisfy d−10,−10 = |Text| and dlk,lk =
∑d(T )
j=l+1 2j

∑2j−1

m=0 I[βlk ∈
[(0, 0)↔ (j,m)]T ] with [(0, 0)↔ (l, k)]T ≡ {(0, 0), (1, bk/2l−1c), . . . , (l−1, bk/2c)}.

Proof. The first statement follows from (15) and the fact that A′T AT and AT A
′
T

have the same spectrum, and the second statement from (13).
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7.1.2. Other Lemmata

Lemma 5. Assume that a square matrix A is diagonally dominant by rows
(i.e., akk >

∑
j 6=k |akj |). Then

‖A‖∞ <
1

mink(|akk| −
∑
j 6=k |akj |)

.

Proof. Theorem 1 in Varah [63].

Lemma 6. For an invertible matrix M ∈ Rp×p and v ∈ Rp we have

(M−1 + vv′/gn)−1 = M − Mvv′M

gn + v′Mv
for gn > 0.

Proof. Follows immediately by direct computation.

Lemma 7. Let CK denote the number of full binary trees with K + 1 leaves.
Then

CK =
(2K)!

(K + 1)!K!
� 4K/K3/2.

Proof. The number CK is the Catalan number (see e.g. [60]), which verifies the
identity. The second assertion follows from Stirling’s formula.

Lemma 8. Let Y ∼ NK(µ,Σ) be a Gaussian random vector. Denote with
{σi}Ki=1 = diag(Σ), with µ̄ = max

1≤i≤K
µi and with σ̄2 = max

1≤i≤K
σ2
i the maximal

mean and variance. Then

E
[

max
1≤i≤K

|Yi|
]
≤ µ̄+

√
2 σ̄2 logK + 2

√
2πσ̄2. (71)

Proof. We start by noting that |Yi| ≤ µ̄+|Yi−µi|. Next, one can use the formula,
valid for any real µi, c > 0 and real random variables Yi,

E [ max
1≤i≤K

|Yi − µi|] ≤ c+

K∑
i=1

∫ ∞
c

P(|Yi − µi| > x)dx. (72)

Assuming the Gaussian distribution, the integral is of order
∫∞
c

2e−x
2/2σ2

i dx

≤
√

2πσ2
i e−c

2/2σ2
i . Then (71) follows from (72) by choosing c =

√
2σ̄2 logK.

Lemma 9 (see, e.g., [24]). For a positive integer d, let µ, µ1, µ2 ∈ Rd and let
Σ,Σ1,Σ2 be positive definite d× d matrices. Then the exist universal constants
C1, C2 > 0 such that, for TV the total variation distance,

TV (N (µ,Σ1),N (µ,Σ2)) ≤ C1‖Σ−1
1 Σ2 − Id‖F

TV (N (µ1,Σ),N (µ2,Σ)) ≤ C2
‖µ1 − µ2‖2√

(µ1 − µ2)′Σ(µ1 − µ2)
,

where ‖ · ‖F denotes the Frobenius norm.

Proof. The first inequality follows from Theorem 1.1 in [24] and the second by
Theorem 1.2 in [24] (by setting Σ = Σ1 = Σ2 in their statement).
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7.2. Properties of Unbalanced systems

7.2.1. Proof of Lemma 1

Proof. Let us denote by C̄ = 1/
√
|Llk|−1 + |Rlk|−1. We have

|βBlk| =
∣∣∣∣C̄ {∫

Llk

f(x)

|Llk|
dx−

∫
Rlk

f(x)

|Rlk|
dx

}∣∣∣∣
≤ C̄

|Llk|

∫ |Llk|
0

∣∣∣∣f(x+ llk)− f
(
blk + x

|Rlk|
|Llk|

)∣∣∣∣ dx.
Next, from α-Hölder continuity (25), we have∣∣∣∣f(x+ llk)− f

(
blk + x

|Rlk|
|Llk|

)∣∣∣∣ ≤M ∣∣∣∣|Llk|+ x

(
|Rlk|
|Llk|

− 1

)∣∣∣∣α .
Suppose that |Rlk| > |Llk|, then for x ∈ (0, |Llk|) the above can be bounded
with |Rlk|α. When the contrary is true, the bound is 2α|Llk|α.

7.2.2. Granularity lemma

Lemma 10. Denote with ΨB
A a weakly balanced UH system according to Defi-

nition 5. Then for any (l, k)∈ A,

min{|Llk|, |Rlk|} =
mlk

2l+D
for some mlk ∈ {1, . . . , C + l}.

Proof. We prove the statement by induction. First, from the definition of weak
balancedness, we have min{|L00|, |R00|} = 1 −M00/2

D = j/2D (for j = 2D −
M00) and by definition this is less than M00/2

D ≤ C/2D, so j ≤ C. Assume
now that the statement holds for l − 1 ≥ 0 and consider a node (l, k)∈ A for
some 0 ≤ k < 2l. The union Llk ∪Rlk is either Ll−1 bk/2c or Rl−1 bk/2c; without
loss of generality, suppose it is Rl−1 bk/2c. Then, from weak balancedness, we
find

min{|Llk|, |Rlk|} = |Rl−1 bk/2c| −Mlk/2
l+D. (73)

If |Rl−1 bk/2c| ≤ |Ll−1 bk/2c|, we use induction to find |Rl−1 bk/2c| = j1/2
l−1+D

for some j1 ∈ {1, . . . , C+l−1} and thereby (73) equals j/2l+D for j = 2j1−Mlk.
As this is at most Mlk/2

l+D = max{|Llk|, |Rlk|}, one deduces Mlk ≥ j1 and then
j/2l+D ≤ j1/2

l+D with j1 ≤ C + l − 1 ≤ C + l. If |Rl−1 bk/2c| > |Ll−1 bk/2c|,
we again use weak balancedness to write (73) as j/2l+D with j = 2Ml−1 bk/2c−
Mlk ≤ Mlk, using again Mlk/2

l+D = max{|Llk|, |Rlk|}, so that j is again less
than C + l. The result follows by induction.
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7.2.3. Complexity lemma

Lemma 11. Consider a weakly balanced UH wavelet system ΨB
A = {ΨB

lk :
(l, k) ∈ A} according to (43) and let f ∈ HαM . Then the following conditions
hold for δ = 3, with constants independent of B: for any (l, k) ∈ A

(B1) the basis function ψBlk can be expressed as a linear combination of at most
C0l

δ Haar functions ψjk for j ≤ l +D and some C0 > 0, and
(B2) there exists C1 > 0 (depending only on E,D from (43)) such that |βBlk| ≤

C1Mlδ/22−l(α+1/2).

Proof. First, the function ψBlk belongs to Vect{II(l+D)m
: 0 ≤ m < 2l+D} and the

support of ψBlk spans at most 2(E+ l) of the indicators II(l+D)m
. These indicators

can be expressed in terms of at most l+D of ψlk’s (one per level above l+D),
which yields an upper bound 2(E+ l)(l+D) � l2 and thereby (B1) with δ = 2.
Second, the balancing condition (43) gives max{|Llk|, |Rlk|} ≤ (E + l)2−l−D

which, combined with Lemma 1 implies

|βBlk| ≤M2α−1(E + l)α+1/22−(l+D)(α+1/2) ≤ C1Ml3/22−l(α+1/2),

by taking the worst case α = 1, which proves (B2) with δ = 3.

7.2.4. The Quantile Example

Lemma 12. The quantile system ΨB
A from Example 4 is weakly balanced in the

sense of Definition 5 for balancing constants satisfying E = 2+3Cq2
D−1, where

‖1/g‖∞ ≤ Cq and ‖g‖∞ < 2D−1/(2E).

Proof. Let us start by writing explicitly the intervals Llk, Rlk. Assuming without
loss of generality that k is odd, i.e. (l, k) is the right child node,

|Llk| = blk − b(l−1)bk/2c = G−1
Lmax+D[(2k + 1)/2l+1]−G−1

Lmax+D[(2bk/2c+ 1)/2l],

|Rlk| = b(l−2)bk/4c − blk = G−1
Lmax+D[(2bk/4c+ 1)/2l−1]−G−1

Lmax+D[(2k + 1)/2l+1].

We first show by contradiction that max{|Llk|, |Rlk|} ≥ E/2l+D for E ≥ 1.
Let us denote y1 = G−1[(2k + 1)/2l+1], y2 = G−1[(2bk/2c + 1)/2l] and y3 =
G−1[(2bk/4c+ 1)/2l−1]. Assuming |Llk| < E/2l+D, one obtains

b2Lmax+Dy1c − b2Lmax+Dy2c < E2Lmax−l,

and thereby y1 − y2 < E2−l−D+1. Next, using the fact that k is odd,

1

2l+1
= |(2k + 1)/2l+1 − (2bk/2c+ 1)/2l|

= |G(y1)−G(y2)| ≤ ‖g‖∞|y1 − y2| ≤ ‖g‖∞2E2−l−D,

which yields a contradiction when ‖g‖∞ < 2D−1/(2E). Similarly, when |Rlk| <
E/2l+D, one obtains

1/2l+1 < |(2k + 1)/2l+1 − (2bk/4c+ 1)/2l−1|
= |G(y3)−G(y1)| ≤ ‖g‖∞|y3 − y1| < ‖g‖∞2E 3 2−l−D.

40



Next, we note that for ‖1/g‖∞ ≤ Cq and E ≡
(
2 + 3Cq2

D−1
)
,

|Rlk| =
1

2Lmax+D

[
b2Lmax+Dy1c − b2Lmax+Dy3c

]
≤ 2

2Lmax+D
+

∥∥∥∥1

g

∥∥∥∥
∞

3

2l+1
≤ E

2l+D
.

Similarly, one obtains |Llk| < E/2l+D, which concludes that the quantile system
is weakly balanced.
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Fig 4. Example of quantile splits for a uniform density g(x) and a non-uniform beta
density g(x) using Lmax = 6.

7.3. Multi-dimensional extensions

Our tree-shaped wavelet reconstruction generalizes to the multivariable case,
where a fixed number d ≥ 1 of covariate directions are available for split. We
outline one such generalization using the tensor product of Haar basis functions
ψlk from (3) defined as

Ψlk(x) := ψlk1
(x1) · · ·ψlkd(xd)

for l ≥ 0 and k = (k1, . . . , kd)
′ with 0 ≤ ki ≤ 2l − 1 for i = 1, . . . , d, where

Ψ−10(x) = I(0,1]d(x). These wavelet tensor products can be associated with d-

ary trees (as opposed to binary trees), where each internal node has 2d children.
The nodes in a d-ary tree satisfy a hierarchical constraint: (l,k) ∈ T , l ≥ 1 ⇒
(l − 1, bk/2c) ∈ T , where the floor operation is applied element-wise. This
intuition can be gleaned from Figure 5 which organizes tensor wavelets with
l = 0, 1 and d = 2 in a flat 4-ary tree. We assume that f0 belongs to α-Hölder
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Fig 5. A plot of tensor Haar wavelets. The top figure plots Ψ0 (0,0)′ and the bottom figures
are Ψ1 (0,0)′ ,Ψ0 (1,0)′ ,Ψ0 (0,1)′ ,Ψ0 (1,1)′ (from left to right).

functions on [0, 1]d for 0 < α ≤ 1 defined as

Hα,dM ≡

{
f ∈ C([0, 1]d) : ‖f‖∞ + sup

x 6=y

|f(x)− f(y)|
‖x− y‖α

≤M

}
. (74)

The multiscale coefficients β−10 = 〈f0,Ψ−10〉 and

βlk = 〈f0,Ψlk〉 =

∫
[0,1]d

f0(x)Ψlk(x) dx.

can be verified to satisfy, for some universal constant C > 0,

|βlk| ≤ C2−l(
1
2 +α)d. (75)

Similarly as in Section 2.3, denoting with T ′int the collection of internal nodes
(l,k) in a d-ary tree (including the node (−1,0)), one then obtains a wavelet
reconstruction fT ,β(x) =

∑
(l,k)∈T ′int

βlkΨlk(x), where coefficients βlk can be

assigned, for instance, a Gaussian independent product prior. There are several
options for defining the d–dimensional version of the prior ΠT. Restricting to
Galton-Watson type priors, the most direct extension, for each node (l,k) to
be potentially split, either does not split it with probability 1 − Γ−l, or splits
it into 2d children, leading to a full 2d–ary tree. Another, more flexible option,
is to split (l,k) into a random number of children inbetween 0 and 2d, where a
split in each specific direction occurs with probability Γ−l, for Γ a large enough
constant.

Assuming that d is fixed as n→∞, the general proving strategy of Theorem
1 can still be applied to conclude `∞–posterior convergence at the rate εn =
(log n/n)α/(2α+d) logδ n for some δ > 0. The proof requires the threshold Lc in
(48) to be modified as satisfying 2Lc � (n/ log n)1/(2α+d).
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7.4. Proof of Lemma 4

Proof. For a given tree T with K = |Text| leaves, we denote by βT = (βlk :
(l, k) ∈ T ′int)′ the vector of wavelet (internal node) coefficients, with XT the
corresponding responses and with εT the white noise disturbances. We have
seen in (22) that, given XT (so for fixed εlk) and T , the vector βT has a
Gaussian distribution

βT |XT ∼ N (µT , Σ̃T ),

where Σ̃T = (nIK + Σ−1
T )−1 and

µT = nΣ̃T

(
β0
T +

1√
n
εT

)
.

Next, using Lemma 8, we have

E
[
‖βT − β

0
T ‖∞ |XT

]
≤ ‖µT − β

0
T ‖∞ +

√
2 σ̄2 logK + 2

√
2πσ̄2, (76)

where σ̄2 = max diag(Σ̃T ). Focusing on the first term, we can write

‖µT − β
0
T ‖∞ ≤

√
n‖Σ̃T εT ‖∞ + ‖(nΣ̃T − IK)β0

T ‖∞. (77)

Using the fact (I + B)−1 = I − (I + B−1)−1, we obtain nΣ̃T − IK = −(IK +

nΣT )−1. For the g-prior, we have λmax(Σ̃T ) < 1/n and λmax(IK + nΣT )−1 <
λmax(A′T AT )/(ngn) < 1/gn. These inequalities hold trivially also for the inde-

pendent prior. Next, we note that ‖Bx‖∞ ≤ ‖B‖∞‖x‖∞ ≤
√
Kλmax(B)‖x‖∞,

where K is the number of rows (columns) of a symmetric matrix B and where
‖B‖∞ denotes the matrix sup norm (maximum absolute row sum of the matrix).
Assuming gn = n we can thus write

‖(nΣ̃T − IK)β0
T ‖∞ ≤

‖β0
T ‖∞

√
K

1 + nλmin(ΣT )
≤ C
√
Kλmax(A′T AT )

n gn
≤ C/

√
n. (78)

Next, we note that Σ̃−1
T is strictly diagonally dominant. This is trivially true for

the independent prior and holds also for the g-prior with gn = n in which case

Σ̃−1
T = nIK + 1

gn
A′T AT and 1

gn
‖A′T AT ‖∞ ≤

√
K
gn
λmax(A′T AT ) <

√
n. Writing

A′T AT = (aij)
K,K
i,j , it then follows from Lemma 5 (Theorem 1 in [63]) that

‖Σ̃T ‖∞ ≤
1

n+ 1
gn

min
1≤k≤K

∆k

, where ∆k = |akk| −
∑
j 6=k

|akj |. (79)

Since ∆k/gn > − 1
gn
‖A′T AT ‖∞ > −

√
n and using the fact that ‖εT ‖∞ .

√
log n

on the event A, we obtain

√
n‖Σ̃T εT ‖∞ .

√
log n

n
. (80)

The sum of the remaining two terms in (76) can be bounded by a multiple of√
log n/n by noting that σ̄2 ≤ ‖Σ̃T ‖∞ . 1/n. The statement (65) then follows

from (76).
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7.5. Proof of Theorem 2

The strategy of the proof of Theorem 1 can be directly applied for an S–regular
wavelet basis, also noting that the correspondingH(α,M) space in (24) contains
the usual Hölder–space for α ≤ S, using the properties of S–regular wavelets
(see e.g. Section 2.2 in [13]).

We now show how the proof can be modified by assuming a general covariance
matrix ΣT on the internal wavelet coefficients. Recall the ratio (51) from Section
6.1.1

WX(T )

WX(T −)
=

ΠT(T )

ΠT(T −)

√
|I + nΣT − |√
|I + nΣT |

en
2X′T (nI+Σ−1

T )−1XT /2

en
2X′
T −

(nI+Σ−1

T−
)−1XT−/2

. (81)

Using the fact that eigenvalues of a principal submatrix interlace the eigenvalues
of the original matrix (Theorem 8.1.7 of [38]), we can write

|I + nΣT − |
|I + nΣT |

≤ 1

1 + nλmin(ΣT )
.

Using the matrix inversion formula (I +B)−1 = I − (I +B−1)−1, we get

(nI + Σ−1
T )−1 =

1

n

[
I − (I + nΣT )−1

]
and thereby

X ′T (nI + Σ−1
T )−1XT =

1

n
‖XT ‖22 −

1

n
X ′T (I + nΣT )−1XT .

Writing XT = (XT − , Xl1k1
)′, where (l1, k1) it the deepest rightmost internal

node in T (as in Section 6.1.1), and Z ≡ X ′T (nI + Σ−1
T )−1XT −X ′T −(nI +

Σ−1
T −)−1XT − , we have

Z = X2
l1k1

/n− 1

n

[
X ′T (I + nΣT )−1XT −X ′T −(I + nΣT −)−1XT −

]
<
X2
l1k1

n

(
1− 1

1 + nλmax(ΣT )

)
+
‖XT −‖22

n

(
1

1 + nλmin(ΣT −)
− 1

1 + nλmax(ΣT )

)
.

It follows from the proof of Lemma 2 thatX2
l1k1

. log n/n and ‖XT −‖22 ≤ C1 (as
was shown in (63)). Moreover, from our assumption (28) we have λmin(ΣT −) ≥
1/
√

log n and thereby

WX(T )

WX(T −)
<

√
log n

n

ΠT(T )

ΠT(T −)
exp

{
nX2

l1k1

2
+

n‖XT −‖22
2(1 + nλmin(ΣT −))

}

<
ΠT(T )

ΠT(T −)
e(C+C1) logn.
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Proceeding as in the proof of Lemma 2, one can show (49).
Regarding missing the signal, we use the same strategy as in the proof of

Lemma 3. We deploy the interlacing eigenvalue theorem in (60) to obtain the

following upper bound for NX(T (s−1)
NX(T (s))

(using matrix determinant and inversion

lemmata as before)

√
1 + nλmax(ΣT (s)) exp

{
−
nX2

lsks

2

nλmin(ΣT (s))

1 + nλmin(ΣT (s))
+

n‖XT (s−1)‖22
2(1 + nλmin(ΣT (s)))

}
.

Using the expression (60) and assumptions λmax(ΣT ) . na for some a ≥ 1 and
λmin(ΣT (s)) ≥ 1/

√
log n, we obtain for C2, C3 > 0

WX(T )

WX(T +)
<

ΠT(T )

ΠT(T +)
exp

{
C2(S + 1)

√
log n− C3A

2 log2 n
}
.

Using this bound, one can proceed as in the proof of Lemma 3 and show (112).
For the posterior concentration around signals, we modify the proof of Lemma

4. Similarly as in (78), we find that when λmin(ΣT ) ≥ 1/
√

log n we have ‖(nΣ̃T −
IK)β0

T ‖∞ ≤ C
√

log n/n. Next, because

‖Σ−1
T ‖∞ ≤

√
Kλmax(Σ−1

T ) ≤
√
K log n <

√
n log n

the matrix Σ̃T = (nIK + Σ−1
T )−1 is diagonally dominant and thereby (using

Lemma 5)

‖Σ̃T ‖∞ ≤
1

n+ min
1≤k≤K

∆k
where ∆k = |σkk| −

∑
j 6=k

|σkj |

and where Σ−1
T = (σjk)K,Kj,k=1. Since ∆k > −

√
n log n for all k = 1, . . . ,K, the

inequalities (80) and (65) hold. The rest of the proof can be completed using
similar arguments as in Section 6.2.

7.6. Proof of Theorem 3

Define a sequence

L∗ =
⌈
log2

[
M1/(α+1/2)

(
n/ log2 n

)1/(2α+1)
]⌉
,

so that 2L
∗ � (n/ log2 n)1/(2α+1). Define the sequence of functions fn0 (below we

write simply f0 for simplicity) by its sequence of wavelet coefficients as follows:
set all coefficients β0

lk to 0 except for β0
L∗0 = M2−L

∗(1/2+α). By definition, f0

belongs to H(α,M). Let us also note that if (L∗, 0) does not belong to the tree
T , one can bound from below

`∞(fT ,β, f0) ≥ 2L
∗/2|βL∗0| = M2−L

∗α ≥ C ′εn.
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So, to prove the result, it is enough to show that Π[(L∗, 0) /∈ Tint | X] → 1,
i.e. the node (L∗, 0) does not belong to a tree sampled from the posterior with
probability going to 1, or equivalently, if TL∗0 denotes the set of all full binary
trees (of depth at most Lmax) that contain (L∗, 0) as an internal node, that
Π[TL∗0 |X] = oP (1). To prove this, let us consider a given tree T ∈ TL∗0. As it
contains the node (L∗, 0), it must also contain all nodes (λ, 0) with 0 ≤ λ ≤ L∗,
in particular (L1, 0), where L1 = dL∗/2e, say. We note that L∗ � L∗−L1 � log n.
Let τ∗ be the maximal subtree of T that has (L1, 0) as its root. Next, let T ∗−
denote the remainder tree built from T by erasing all of τ∗ except for the node
(L1, 0) (so that T ∗− still has a full-binary tree structure). So, T ∗− and τ∗ have
only the node (L1, 0) in common, and the union of their nodes gives the original
tree T . Let us now write

Π[TL∗0 |X] =

∑
T ∈TL∗0 WX(T )∑
T ∈TWX(T )

=

∑
T ∈TL∗0

WX(T )
WX(T ∗−)WX(T ∗−)∑
T ∈TWX(T )

.

Let q = q(τ∗) denote the number of internal nodes τ∗int of the subtree τ∗. From
the Galton-Watson prior, we obtain

ΠT[T ]

ΠT[T ∗− ]
=

∏
(l,k)∈τ∗int

pl
∏

(l,k)∈τ∗ext

(1− pl)
1

1− pL1

≤ 2
∏

(l,k)∈τ∗int

Γ−l. (82)

Then, by definition of T ∗− and τ∗,

WX(T )

WX(T ∗−)
=

ΠT(T )

ΠT(T ∗−)

∏
(l,k)∈τ∗int

exp{(n+ 1)X2
lk/2}√

n+ 1

≤ 2(n+ 1)−q/2 ·
∏

(l,k)∈τ∗int

Γ−l exp{(n+ 1)X2
lk/2}. (83)

We bound the data-dependent part in the previous line by using (a+b)2 ≤ 2a2+
2b2. Furthermore, noting that the noise variables |εlk| are uniformly bounded
for l+1 ≤ Lmax, 0 ≤ k < 2l, by 2 log n on an event of overwhelming probability,
we can upper-bound (n+ 1)

∑
(l,k)∈τ∗int

X2
lk/2 by

(n+ 1)
∑

(l,k)∈τ∗int

[
(β0
L∗0)2I(l,k)=(L∗,0) +

1

n
max

l+1≤Lmax,k
ε2
lk

]

≤ (n+ 1)(β0
L∗0)2 + 2

n+ 1

n
(log n)q ≤ n+ 1

n
log2 n+ 2

n+ 1

n
(log n)q.

Now, using that for (l, k) ∈ τ∗int, we have l ≥ L1 ≥ 1
2α+1 log2

(
M2n
logn

)
≡

c(α,M, n), one notes that

∑
(l,k)∈τ∗int

l ≥ max
(
c(α,M, n)q,

L∗∑
l=L1

l
)
≥ c(α,M, n) max

(
q,

3

2
c(α,M, n)

)
,
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which is bounded from below by c(α,M, n)q, where we have used that q ≥
L∗ − L1 + 1 ≥ L1 ≥ c(α,M, n) and L1 + L∗ > 3c(α,M, n). One then deduces
that the product of terms Γ−l dominates (83), as long as log(Γ) is large enough
(noting also that 1/(2α+ 1) ≥ 1/(2S + 1)), in the control of WX(T )/WX(T ∗−).
That is, for some constant C > 0,

WX(T )

WX(T ∗−)
≤ exp{−C(log n)q} =: bq,

where the last bound only depends on the number of internal nodes q of τ∗. By
coming back to the above bound on the posterior Π[TL∗0 |X], let us split the
sum on the numerator as follows. Let TqL∗0 denote the set of trees T = T ∗− ∪ τ∗
in TL∗0 such that |τ∗int| = q. Then Π[TL∗0 |X] is bounded by

∑
q≥1

∑
T ∈Tq

L∗0
bqWX(T ∗−)∑

T ∈TWX(T )
≤
∑
q≥1

∑
T1∈T∗q−

aqbqWX(T1)∑
T1∈T∗q−

WX(T1)
,

where T∗q− denotes the set of all possible T ∗− that can be obtained from T ∈
TqL∗0 and where aq denotes the number of different possible trees τ∗ such that
|τ∗int| = q. To obtain the last bound, we also used that each T ∈ TL∗0 is uniquely
caracterised by a pair (T ∗− , τ∗), so that the sum over T can be rewritten as a
double sum over T ∗− and τ∗. One deduces that, as q cannot be larger than 2L,

Π[TL∗0 |X] ≤
2L∑
q=1

aqbq.

As aq is less (because of the restriction |T | ≤ L) or equal to the number of
full binary trees with q internal nodes, i.e. with 2q + 1 nodes in total, we have
aq ≤ C2q, which is bounded from above by 42q by Lemma 7. We conclude that
Π[TL∗0 |X] is bounded above by exp(−C log2 n) for some C > 0, on an event
of overwhelming probability, which concludes the proof for the Galton-Watson
prior. Similarly, for the exponential prior, we replace (82) directly with

ΠT[T ]

ΠT[T ∗− ]
∝ e−c(|Text|−|T

∗
−ext|) logn = e−c q logn,

where we used the fact that |Text| − |T ∗−ext| = |τ∗ext| − 1 = |τ∗int| = q. For the
conditionally uniform prior, we have for λ = 1/nc for some c > 0

ΠT[T ]

ΠT[T ∗− ]
=

π(|Text|)
π(|T ∗−ext|)

C|T ∗−int|
C|Tint|

. λqe−q log |Text| . e−c q logn,

and the end of the proof is then the same as for the GW prior.

7.7. Proof of Theorem 4

This BvM statement can be shown, for example, by verifying the conditions in
Proposition 6 of [17] or by proceeding as in the proof of Theorem 3.5 of [54]. The
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first requirement is the “tightness condition” (Proposition 6 of [17]) summarized
by the following lemma.

Lemma 13. Under the assumptions of Theorem 4, we have

Ef0
Π(‖fT ,β − f0‖M(w) ≥Mnn

−1/2 |X)→ 0.

Proof. Similarly as in Section 6.2, for j ∈ N and f ∈ L2[0, 1] we denote with
f j the L2 projection onto the first j layers of wavelet coefficients and write
f = f j + f\j . Similarly as in the proof of Theorem 1, we denote with A the
event (47) and with S(f0;A) the set (57). Recall also the notation

T = {T : d(T ) ≤ Lc, S(f0;A) ⊂ T } and E = {fT ,β : T ∈ T}

from (67), where E is the subset of tree-based functions fT ,β with up to Lc
leaves that do not miss any signal. Similarly as in the proof of Theorem 1, we
will condition on the event A and focus on the set E (as in (68)). For simplicity,
we will write j0 = j0(n). Following [54], one can write for some suitably chosen
D = D(η) > 0, where η > 0 is a fixed small constant.

Ef0

{
Π(fT ,β : ‖fT ,β − f0‖M(w)

≥Mnn
−1/2 |X)

}
≤ o(1)

+ Ef0

{
Π(fT ,β ∈ E : ‖f j0T ,β − f

j0
0 ‖M(w)

≥ Dn−1/2 |X)IA
}

(84)

+ Ef0

{
Π(fT ,β ∈ E : ‖f\j0T ,β − f

\j0
0 ‖M(w)

≥ M̃n n
−1/2 |X)IA

}
, (85)

where M̃n = Mn −D →∞ as n→∞. We have for fT ,β ∈ E

‖f\j0T ,β − f
\j0
0 ‖M(w)

≤ sup
j0<l≤Lc

maxk |βlk − β0
lk|

wl
+ ‖f\Lc0 ‖M(w). (86)

From the Hölder property (24) and the definition of Lc in (48) we have

‖f\Lc0 ‖M(w) = max
l>Lc

maxk |β0
lk|

wl
.

2−Lc(α+0.5)

√
Lc

≤ C/
√
n, (87)

where we used the fact that {wl} is admissible in the sense that wl/
√
l→∞ as

l→∞. Using Markov’s inequality and bounds (86) and (87), the term (85) can
be bounded with

Ef0

{ √
n

M̃n wj0

∫
E

max
j0<l≤Lc

max
0≤k≤2l

|βlk − β0
lk|dΠ[fT ,β |X]IA

}
+ C/M̃n. (88)

Using similar arguments as in Section 6.2 and using Lemma 4, we can upper
bound the integral above on the event A by∑

T ∈T

π[T |X]

∫
max

j0<l≤Lc
max

0≤k≤2l
|βlk − β0

lk|dΠ[βT |X]

≤

(
A

log n√
n

+ C ′
√

log n

n

)
.

log n√
n
.
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For wj0 ≥ c log n for some c > 0, the term (88) goes to zero. Now we focus on
the first term (84). By Markov’s inequality and using the notation W = (glk)
for the white noise from Section 1 and X = (Xlk) for the observation sequence,
we find the following upper bound

√
n

D

{
Ef0

∫
E
‖f j0T ,β − f

j0
0 ‖M(w)dΠ[fT ,β |X]IA

}
≤
Ef0

{
‖Wj0‖M(w)IA

}
D

(89)

+

√
n

D
Ef0

{∫
E
‖Xj0 − f j0T ,β‖M(w)dΠ[fT ,β |X]IA

}
. (90)

We can write the second term as∑
T ∈T

π[T |X]Ef0

∫
E

(
sup
l≤j0

l−1/2 max
0≤k<2l

√
n

D
|Xlk − βlk|

)
dΠ[βT |XT ]. (91)

Note that all trees T ∈ T fit j0 layers and under both the g-prior and the inde-
pendent prior, the coefficients βlk for 0 ≤ l ≤ j0 are a-priori (and a-posteriori)
independent given T . Similarly as in the proof of Theorem 2 in [17], we can
show that the term (91) is bounded by a constant by first showing that for each
l ≤ j0 and 0 ≤ k < 2l

Ef0

{∫
et
√
n(βlk−Xlk)dΠ[βT |XT ]IA

}
≤ Cet

2/2. (92)

This follows from [17]. The second term Ef0

{
‖Wj0‖M(w)IA

}
is also bounded

by C?/D for some C? > 0. Choosing D = D(η) > 0 large enough, the term on
the left side of (89) can be made smaller than η/2.

The second step in the proof of Theorem 4 is showing convergence of finite-
dimensional distributions (as in Proposition 6 of [17]). Similarly as in the proof
of Theorem 2 of [17], convergence of the finite-dimensional distributions can be
established by showing BvM for the projected posterior distribution onto Vj =
Vect{ψlk, l ≤ j} for any fixed j ∈ N. Denote with βj = (β−10, β00, . . . , βj 2j−1)′

the Haar wavelet coefficients up to the level j. The prior on βj consists of
βj ∼ N (0,Σj), where Σj is the submatrix of Σ that corresponds to coefficients
up to level j.

Let us first consider the case of the independent prior ΣT = IK . Because
j0(n) → ∞, for large enough n we have an independent product prior on βj
when Σj = I. Then one is exactly in the setting of Theorem 7 of [16] which
derives finite-dimensional BvM for product priors (see the paragraph below the
statement of Theorem 7 in [16] for two different arguments).

The case of the g–prior ΣT = gn(A′T AT )−1 is more involved, as the induced
prior distribution on the first coordinates is not of product form. Nevertheless,
one can express the posterior distribution on coefficients as a mixture over trees
(all containing the first j0(n) layers) of certain T –dependent Gaussian distribu-
tions (complemented by zeroes for the coefficients outside the tree T ), and study
each individual mixture component separately. Let PVj be the n× n projection
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matrix onto Vj and P TVj the |Text| × |Text| projection matrix onto Vj , projecting

the coordinates corresponding to nodes in T only (recalling that by definition of
the prior, all nodes of Vj are in trees T sampled from the prior). We also denote
by IVj the identity matrix on Vj . It is enough for our needs to show, if TV(P,Q)
denotes the total variation distance between the probability distributions P and
Q, that

TV
(

Π[· |X] ◦ P−1
Vj

, RXj

)
= oP (1), (93)

where RXj := N (PVjX, IVj/n). From the expression of the posterior (22),

βT | T , X ∼ N (µT (X), Σ̃T ) =: QXT , (94)

where µT (X) := nΣ̃TXT and Σ̃T = (nIK + ΣT )−1. Further, the coefficients βlk
for (l, k) /∈ T ′int are zero, which together gives a prior on βL−1 ∈ R2L = Rn. By
definition of the prior distribution, all trees T sampled from the prior contain the
nodes (l, k), l ≤ j0(n), in particular all nodes corresponding to Vj , so (identifying
in slight abuse of notation a matrix with its corresponding linear map) the

projected posterior Π[· |X, T ] ◦ P−1
Vj

coincides with N (µT (X), Σ̃T ) ◦ P TVj
−1

=:

QXT ,j . Then

TV
(

Π[· |X] ◦ P−1
Vj

, RXj

)
= TV

(∑
T

Π[T |X]QXT ,j , R
X
j

)

= TV

(∑
T

Π[T |X]QXT ,j ,
∑
T

Π[T |X]RXj

)
≤
∑
T

Π[T |X]TV
(
QXT ,j , R

X
j

)
≤ max

T
TV

(
N (µT (X), Σ̃T ) ◦ P TVj

−1
,N (XT , IK/n) ◦ P TVj

−1
)

≤ max
T

TV
(
N (µT (X), Σ̃T ),N (XT , IK/n)

)
,

where sums and maxima in the last display span over trees that fill in the
first j0(n) layers of nodes, and where the last line uses that the total variation
distance can only decrease after projecting onto Vj (one restricts to marginal
probabilities in the definition of the t.v. distance). In order to obtain (93), one
now needs to bound individual distances given the tree T , in a uniform way
with respect to T . By the triangle inequality, for any T as above,

TV
(
N (µT (X), Σ̃T ),N (XT , IK/n)

)
≤ TV

(
N (µT (X), Σ̃T ),N (µT (X),

IK
n

)

)
+ TV

(
N (µT (X),

IK
n

),N (XT ,
IK
n

)

)
.

Both terms on the right hand side of the last display can be bounded using
Lemma 9, where one sets d = K = |Text|, µ = µT (X) = µ1, µ2 = XT , and

Σ = IK/n = Σ1, Σ2 = Σ̃T . Then Σ−1
1 Σ2 − IK = n(nIK + Σ−1

T )−1 − IK =
−(IK+nΣT )−1, using the formula (I+B)−1 = I−(I+B−1)−1 for B invertible.
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Setting MT := (IK +nΣT )−1, the first and second inequalities of Lemma 9 lead
to

TV

(
N (µT (X), Σ̃T ),N (µT (X),

IK
n

)

)
. ‖MT ‖F

TV

(
N (µT (X),

IK
n

),N (XT ,
IK
n

)

)
.

‖MTXT ‖2√
1
n‖MTXT ‖2

=
√
n‖MTXT ‖.

One now notes ‖MT ‖F ≤
√
Kλmax(MT ) =

√
K/λmin(IK + nΣT ). By Propo-

sition 2, we have λmin((A′T AT )−1) is at least 2−L ≥ 1/n, and one deduces

that λmin(IK + nΣT ) & 1 + ngn/n ≥ 1 + gn, so that ‖MT ‖F .
√
K/gn .

2L/2/gn . 1/
√
n = o(1), uniformly over T . On the other hand, we have, as

λmax(MT ) ≤ 1/(1+gn) as seen above and XT = β0
T +εT /

√
n, so that, working

on the event A from (47),

‖MTXT ‖2 ≤ λmax(MT )2‖XT ‖2 . g−2
n (‖β0

T ‖2 + ‖εT ‖2/n)

. g−2
n (1 + n(log n)/n) . (log n)/g2

n,

where we have used that ‖β0‖2 = ‖f0‖2 is bounded and ‖εT ‖2 . n log n on the
event A. The previous bounds together imply that the total variation distance
betweenN (µT (X), Σ̃T ) andN (XT , IK/n) goes to 0 uniformly in T on the event
A. As P [Ac] vanishes, this proves (93).

7.8. Proof of Theorem 5

In the proof, we repeatedly use the properties of the median tree T ∗X established
in Lemma 15. We denote by E the event from Lemma 15. We first show the
diameter statement (37). The depth of the median tree estimator f̂T verifies
condition (i) of Lemma 15 on the event E . For any f, g ∈ Cn, by definition of
Cn, we then have, for C(ψ) a constant depending on the wavelet basis only,

‖f − g‖∞ ≤ ‖f − f̂T ‖∞ + ‖f̂T − g‖∞

≤ 2 sup
x∈[0,1]

Lmax∑
l=0

vn

√
log n

n

2l−1∑
k=0

I(l,k)∈T ∗X |ψlk(x)|

≤ 2vnC(ψ)

√
log n

n

∑
l:2l≤C12Lc

2l/2 ≤ C ′vn

√
log n

n
2Lc .

We now turn to the confidence statement. First, one shows that the median
estimator (34) is (nearly) rate optimal. Denote with f̂T,lk = 〈f̂T , ψlk〉 and let
S = {(l, k) : |β0

lk| ≥ A log n/
√
n}. Let us consider the event

Bn = {f̂T,lk 6= 0, ∀ (l, k) ∈ S} ∩ {f̂T,lk = 0, ∀ (l, k) : 2l ≥ C1 2Lc} ∩ A, (95)
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where the noise-event A is defined in (47). Lemma 15 together with Pf0(A) =
1 + o(1) imply that Pf0

(Bn) = 1 + o(1). On the event Bn, we have

‖f̂T − f0‖∞ ≤
∑

l: 2l≤C12Lc

2l/2max

(
max

0≤k<2l: (l,k)∈S
|Xlk − β0

lk|, max
0≤k<2l: (l,k)/∈S

{|β0
lk|}
)

+
∑

l: 2l>C12Lc

2l/2 max
0≤k<2l

|β0
lk|

. 2Lc/2
√

log n

n
+

∑
l: 2l≤C12Lc

2l/2 min

(
max

0≤k<2l
|β0
lk|, A

log n√
n

)
+ 2−αLc ,

where we have used the definition of S, that f̂T equals 0 or Xlk, that f0 belongs
to H(α,M) and max(a, b) ≤ a+b (note also that the term with the minimum in
the last display is an upper bound of the maximum over (l, k) /∈ S on the first
line of the display). This shows that the median tree estimator is rate-optimal
up to a logarithmic factor, in probability under Pf0

. In particular, on Bn, we
have for some C > 0

‖f̂T − f0‖∞ ≤ C(log2 n/n)α/(2α+1), (96)

where we used the inequality in (69) in the case of smooth wavelets. Second, we
now show that σn is appropriately large. By the proof of Proposition 3 of [41],
we have for f0 ∈ HSS(α,M, ε), for ln ≥ j0 suitable sequence chosen later

sup
(l,k): l≥ln

|β0
lk| ≥ C(M,ψ, α, ε)2−ln(α+1/2),

for some constant C(M,ψ, α, ε) depending on α,M , the wavelet basis and ε (as
in (2.12) of [41]). Let Λn(α) be defined by, for η > 0 to be chosen below,

η(n/ log2 n)1/(2α+1) ≤ 2Λn(α) ≤ 2η(n/ log2 n)1/(2α+1)

Combining the previous two displays leads to, for f0 ∈ HSS(α,M, ε),

sup
(l,k): l≥Λn(α)

|β0
lk| ≥ C(M,ψ, α, ε)η−α−1/2 log n√

n
.

By taking η small enough, one obtains that there exists (λ, κ) with λ ≥ Λn(α)

verifying |β0
λκ| ≥ A log n/

√
n and thus, in turn, f̂T,λκ 6= 0, by the second part

of Lemma 15. One deduces that the term (l, k) = (λ, κ) in the sum defining σn
is nonzero on the event Bn, so that

σn ≥ vnc(ψ)

√
log n

n
‖ψλκ‖∞ ≥ vnc(ψ)

√
log n

n
2Λn(α)/2.

This leads to

σn ≥ c′
vn

(log n)1/2

(
log2 n

n

)α/(2α+1)

. (97)
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The ratio in the last display goes to infinity for vn of larger order than log1/2 n.
Now, on the event Bn, one can thus write ‖f̂T − f0‖∞ ≤ σn/2 for large enough

n, uniformly over f0 ∈ HSS(α,M, ε), implying that Bn ⊂ {‖f̂T − f0‖∞ ≤ σn}.
This implies the desired coverage property, since

Pf0
(f0 ∈ Cn) = Pf0

(
{‖f0 − X‖M(w) ≤ Rn/

√
n} ∩Bn

)
+oPf0 (1) = 1−γ+oPf0 (1),

where we used Theorem 5 of [17].
For the credibility statement, we only need to show that the second constraint

in Cn is satisfied with posterior probability tending to one, since Π[‖fT ,β −
X‖M(w) ≤ Rn/

√
n |X]=1− γ by definition of Rn. In addition, we note that the

posterior distribution (from Theorem 2 part a)) and the median estimator f̂T
(from (96)) converge at a rate strictly faster than σn on the event Bn, using again

the lower bound on σn in (97). In particular, because Bn ⊂ {‖f̂T − f0‖∞ ≤ σn}
we can write

Ef0

(
Π[‖fT ,β − f̂T ‖∞ ≤ σn |X]

)
≥ Ef0 (Π[‖fT ,β − f0‖∞ ≤ σn/2 |X]IBn)+oPf0 (1).

The right side converges to 1 in Pf0
-probability, which concludes the proof of

the theorem.

Lemma 14. The set of nodes T ∗X in (33) Pf0-almost surely defines a binary
tree.

Proof. Let us recall that T is the set of all admissible trees that can be obtained
by sampling from the prior ΠT and with depth at most Lmax. For any given
node (l1, k1) with 0 ≤ l1 ≤ Lmax, one can write

Π[(l1, k1) ∈ T |X] =
∑
T1∈T

ΠT[T1 |X]×Π[(l1, k1) ∈ T1 |X, T = T1]

=
∑

T1∈T: (l1,k1)∈T1

ΠT[T1 |X].

Let (l1−1, k−1 ) denote the parent node of (l1, k1) in T1, where k−1 = bk1/2c. Any
(full-)binary tree that contains (l1, k1) must also contain (l1 − 1, k−1 ), so that,
using the formula in the last display, Π[(l1, k1) ∈ T |X] ≤ Π[(l1−1, k−1 ) ∈ T |X].
This implies, by definition of T ∗X , that if a given node (l1, k1) belongs to T ∗X , so
does the node (l1 − 1, k−1 ). Therefore T ∗X is a tree.

Lemma 15. Consider a prior distribution Π as in Theorem 1. There exists an
event E such that Pf0

[E ] = 1 + o(1) on which the tree T ∗X defined in (33) has the
following properties: there exists a constant C1 > 0 such that

(i) the depth of the tree satisfies 2d(T ∗X) ≤ C12Lc � (n/ log n)α/(2α+1), where
Lc is as in (48),

(ii) the tree contains as interior nodes all nodes (l, k) that satisfy |β0
lk| ≥

A log n/
√
n, for some A > 0.
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Proof. We focus on the GW-prior, the proof for the other two priors ΠT being
similar. Let T(1), respectively T(2), denote the set of binary trees that satisfy
condition (i), respectively (ii), in the statement of the lemma. By the proof of
Theorem 1, Π[T(1) |X] and Π[T(2) |X] both tend to 1 in probability under Pf0

,
hence also Π[T(1) ∩ T(2) |X]. In fact, it also follows from the proof of Theorem
1 that, for T(1), we also have the stronger estimate Π[d(T ) > d |X] ≤ 2−c1d log Γ

for some c1 > 0 under the GW process prior, uniformly over Lc < d ≤ Lmax,
on an event A of Pf0

-probability going to 1. The latter probability is o(2−d)
provided Γ is chosen large enough, which will be used below. Defining E =
{Π[T(1) ∩T(2) |X] ≥ 3/4}, we have Pf0

[E ]→ 1 as n→∞. For any node (l2, k2)
such that |β0

l2k2
| ≥ C log n/

√
n, we have

Π[(l2, k2) ∈ Tint |X] =
∑

T2∈T: (l2,k2)∈T2 int

Π[T2 |X] ≥ Π[T(2) |X],

where we used that any tree in T(2) must, by definition, contain (l2, k2). As
Π[T(2) |X] ≥ 3/4 > 1/2, we deduce that (l2, k2) belongs to T ∗X on the event
E . In other words, T ∗X verifies the second property (ii) of the lemma on E . To
conclude the proof of the lemma, one observes that on E , for a given node (l3, k3)
with 2l3 > C12Lc ,

Π[(l3, k3) ∈ Tint |X] ≤ Π[d(T ) > l3 |X],

Recall that Π[d(T ) > l3 |X] ≤ C2−c1l3 log Γ on A (which holds uniformly over
l3 ∈ [Lc, Lmax]). Then, on the event A, we can write

Pf0
[{T ∗X /∈ T(1)} ∩ A] ≤ Pf0

[{∃ (l3, k3) : 2l3 > C12Lc , (l3, k3) ∈ T ∗X} ∩ A]

≤
Lmax∑

l3: 2l3>C12Lc

2l3−1∑
k3=0

Pf0
[{Π[(l3, k3) ∈ Tint |X] ≥ 1/2} ∩ A]

≤
Lmax∑

l3: 2l3>C12Lc

2l3+1Ef0
[Π[d(T ) > l3 |X]IA] = o(1).

Using that Pf0
[A] goes to 1, one obtains Pf0

[T ∗X /∈ T(1)}] = o(1), which concludes
the proof.

7.9. Proof of Theorem 6

Denote with T FD the flat tree of depth D+ 1 (i.e. all βlk’s for l ≤ D are active).
The formula (23) gives

Π[T FD |X] ∝WX(T FD ) = ΠT(T FD )
∏

(l,k)∈T F ′D int

e
n2

2(n+1)
X2
lk

√
n+ 1

∝ exp

{
− log ΠT(T FD )− 2D log(n+ 1) +

n2

2(n+ 1)
‖X(D)‖22

}
,
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where ‖X(D)‖22 =
∑
l≤D,kX

2
lk is the squared L2–norm of the signal, truncated

at the level D. Next, we have

‖X(D)‖22 =
∑
l≤D,k

(β0
lk)2 +

∑
l≤D,k

2√
n
εlkβ

0
lk +

∑
l≤D,k

1

n
ε2
lk,

= Cn −
∑

D<l≤Lmax,k

(β0
lk)2 −

∑
D<l≤Lmax,k

2√
n
εlkβ

0
lk +

∑
l≤D,k

1

n
ε2
lk,

where Cn = C(n, {εlk}, f0) does not depend on D. We can also write

‖X(D)‖2 = Cn −
∑

D<l≤Lmax,k

(β0
lk)2 +

2D+1

n
− 2√

n
Z(D) +

1

n
Q(D), (98)

where we have used
∑
l≤D,k 1 = 2D+1 and have set

Z(D) =
∑

D<l≤Lmax,k

β0
lkεlk, Q(D) =

∑
l≤D,k

(ε2
lk − 1).

Let D∗ be an integer defined as, for f0 to be chosen below,

D∗ = argmin
0≤D≤n

[
2D log(n+ 1) +

n

2

Lmax∑
l=D+1

∑
k

(β0
lk)2

]
.

Consider the following true signal f0 = f∗0 which belongs to H(α,M) with M =
1 (which we can assume without loss of generality) and which is characterized
by the following wavelet coefficients

β0∗
lk =

{
2−l(

1
2 +α) if k = 0,

0 otherwise.
(99)

For such a signal, D∗ above has the following behavior

2D
∗
�
(

n

log n

) 1
2α+2

. (100)

With the maximum-type norm `∞ defined in (66), we use the decomposition
`∞(f, f0) = `∞(f, fD0 ) + `∞(fD0 , f0), where fD0 is the L2–projection of f0 onto
the first D levels of wavelet coefficients. Moreover, using `∞(fD0 , f0) = c 2−Dα

for some c > 0, we can write, for ρn = (log n/n)α/(2α+2)

Π[`∞(f, f0) < µρn |X] ≤ Π[`∞(f0, f
D
0 ) < µρn |X]

=Π[c2−Dα < µρn |X] = Π[2D > (cµ−1ρ−1
n )1/α |X]

≤ Π[2D > (cµ−1)1/α2D
∗
|X].

To conclude, it is enough to show that for B = {2D > (cµ−1)1/α2D
∗}, where

µ > 0 is a small enough constant, we have Π[B |X] = o(1) or, equivalently,
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Π[B |X] = o(Π[Bc |X]) (possibly on an event of vanishing probability). Rewrit-
ing B = {D : D > cD∗} for c = c(µ) ≥ 1 (up to taking µ small enough), and
using the above expression of Π[T FD |X], one obtains

Π[B |X]

Π[Bc |X]
=

∑
D>cD∗ exp

{
− log Π(T FD )− 2D log(n+ 1) + n2

2(n+1)‖X
(D)‖22

}
∑
D≤cD∗ exp

{
− log Π(T FD )− 2D log(n+ 1) + n2

2(n+1)‖X
(D)‖22

}
≤

∑
D>cD∗ exp

{
− log Π(T FD )− 2D log(n+ 1) + n2

2(n+1)‖X
(D)‖22

}
exp

{
− log Π(T FD∗)− 2D∗ log(n+ 1) + n2

2(n+1)‖X
(D∗)‖22

} .

Since c ≥ 1 we have D ≥ D∗ + 1 for any D > cD∗ and from the monotonicity
assumption on the prior we obtain log Π(T FD∗)−log Π(TD) ≤ 0 on B. In addition,
note that 2D

∗ − 2D ≤ −2D/2 on B, which implies

(2D
∗
− 2D) log(n+ 1) ≤ −1

2
2D log(n+ 1).

Going further, using the decomposition of ‖X(D)‖22 in (98) we have for Z =

‖X(D)‖22 − ‖X
(D∗)‖22 the following

Z =
∑

D∗<l≤D,k

(β0
lk)2 +

1

n
(2D+1 − 2D

∗+1)− 2√
n

(Z(D)− Z(D∗)) +
1

n
(Q(D)−Q(D∗))

≤
∑

D∗<l≤Lmax,k

(β0
lk)2 +

2D+1

n
+

2√
n

(|Z(D)|+ |Z(D∗)|) +
1

n
(|Q(D)|+ |Q(D∗)|).

We now provide bounds for the stochastic terms Z and Q. First, for any D > D∗,
denoting σ2

D :=
∑
D<l≤Lmax,k(β0

lk)2, we have

|Z(D)| ≤ σD max
D∗≤D≤Lmax

σ−1
D |Z(D)|.

The variables Z(D)/σD are standard normal, which implies that, on some event
A1 such that Pf0

(Ac1) = o(1), we have, uniformly in D ∈ B,

|Z(D)| ≤ σD
√

2 logLmax.

To bound the term Q(D), one can use the following standard concentration
bound for chi-square distributions. Namely, for ξq standard normal variables
and any t > 0, we can write

P

[
Q∑
q=1

(ξ2
q − 1) ≥ t

]
≤ exp

{
− t2

4(Q+ t)

}
.

Applying this bound for the noise variables εlk and choosing t = tD := (D2D)1/2

leads to

P

 ∑
l≤D,k

(ε2
lk − 1) > tD

 ≤ exp

{
− D2D

4(2D+1 + tD)

}
.
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For D ≥ D∗, one has tD ≤ 2D+1 so the last display is bounded from above by
exp{−C1D}. Let us consider the event, with tD as above,

A2 =

Lmax⋂
D=D∗

∑
l≤D

2l−1∑
k=0

(ε2
lk − 1) ≤ tD

 .

A union bound gives Pf0 [Ac2] ≤ C exp(−c1D∗), which is a o(1) using the previous
bound. Now let us choose µ small enough in such a way that C22D

∗ ≤ 2D/2
for any D in the set B defined above (this is possible by definition of B) and
thereby

n

2

∑
D∗<l≤Lmax,k

(β0
lk)2 ≤ 2D

4
log(n+ 1)

for any D in B. This in particular implies that σD ≤ (2D log(n+1)/n)1/2. Now,
on the event A1 ∩A2, we have

Π[B |X]

Π[Bc |X]
≤

∑
D>cD∗

exp
{
− 1

2
2D log(n+ 1) +

2D

4
log(n+ 1) + 2D

+ 2
√
nσD

√
2 logLmax + (D2D)1/2

}
≤

∑
D>cD∗

exp
{
− 1

8
2D log(n+ 1)

+

[
2D + 2

√
2D log(n+ 1)2 logLmax + (D2D)1/2 − 1

8
2D log(n+ 1)

]}
≤

∑
D>cD∗

exp
{
− 1

8
2D log(n+ 1)

}
≤ exp

{
− C2D

∗
log(n+ 1)

}
,

where we have used that the term under brackets in the second inequality is
negative for large enough n, as 2D & 2D

∗
goes to infinity. This shows that the

last display goes to 0, which concludes the proof.

7.10. Proof of Theorem 7

As the breakpoints verify the balancing condition (43), they verify the properties
(B1)–(B2) in the complexity Lemma 11 for δ = 3. The Gaussian white noise
model projects onto the Haar system ΨB

A = {ψB−10, ψ
B
lk : (l, k) ∈ A)} as follows:

XB
lk = β0B

lk +
1√
n
εBlk, (101)

where XB
lk = 〈X,ψBlk〉, β0B

lk = 〈f0, ψ
B
lk〉 and εBlk = 〈W,ψBlk〉. As the functions

ψBlk form an orthonormal system, the variables εBlk are iid standard Gaussian
given B. The observations here are viewed as the collection of XB

lk variables
which depend on B. We regard the breakpoints B as one extra “variable” in the
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model. Given the breakpoints B, we use the same notation XB
T and εBT for the

ordered responses and noise variables (as in the proof of Theorem 1). Similarly,
βT = βBT are the ordered internal wavelet coefficients.

As the priors on breakpoints B and trees T are independent, the tree posterior
remains relatively tractable where the amount of signal at each location (l, k)
now depends on B, which requires a separate “uniform in B” treatment.

The Multiscale Posterior Distribution. To determine the posterior distribu-
tion on f , it is enough to consider the posterior on wavelet coefficients (βlk),
which then induces a posterior on f via

fBT ,β̃(x) =
∑

(l,k)∈Text

β̃BlkI
B
lk(x) =

∑
(l,k)∈T ′int

βBlkψ
B
lk(x). (102)

Again, the internal unbalanced Haar wavelet coefficients βT = (βBlk : (l, k) ∈
T ′int) are linked to the external histogram coefficients β̃T = (β̃Blk : (l, k) ∈ Text)
through β̃T = AT βT for some sparse matrix AT ∈ R|Text|×|Text| (a generaliza-
tion of (14)). This section describes the posterior distribution over coefficients
(βlk) driven by the prior distribution

(B, T ) ∼ ΠB ⊗ΠT

(βlk)l≤L,k |B, T ∼ π(βT ) ⊗
⊗

(l,k)/∈T ′int

δ0(βlk), (103)

where L = Lmax = blog2 nc. From the white noise model, we have, given B,

XB
T = βT +

1√
n
εBT , with εBT ∼ N (0, I|Text|).

The joint density of (B, T , (βlk)l≤L,k, X) arising from the above distributions
equals

ΠT(T )ΠB(B)π(βT )

 ∏
(l,k)∈T ′int

φ 1√
n

(XB
lk − βlk)

 ∏
(l,k)/∈T ′int

φ 1√
n

(XB
lk − βlk)I0(βlk)


= ΠT(T )ΠB(B)

 ∏
l≤L,k

φ 1√
n

(XB
lk)

 ∏
(l,k)/∈T ′int

I0(βlk)

 e−
n
2 ‖βT ‖

2
2+nXB′

T βT π(βT ).

Integrating out (βlk), one obtains the marginal density of (B, T , X) asΠB(B)
∏
l≤L,k

φ 1√
n

(XB
lk)

ΠT(T )NB
X (T ), (104)

where

NB
X (T ) =

∫ ∏
(l,k)∈T ′int

enX
B
lkβlk−nβ

2
lk/2dπ(βT ).
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The first bracket in (104) only depends on B and X, from which one deduces
that the posterior distribution of T , given B and X, satisfies

Π[T |B,X] =
WB
X (T )∑

T ∈TLW
B
X (T )

, with WB
X (T ) = ΠT(T )NB

X (T ).

Next, the posterior distribution on B, given X, is given by

Π[B |X] ∝ ΠB(B)
∏
l≤L,k

φ 1√
n

(XB
lk)

{∑
T∈T

WB
X (T )

}
.

Also, we have

(βlk)l≤L,k | (Xlk)l≤L,k, T , B ∼ π(βT |X
B
T )⊗

⊗
(l,k)/∈T ′int

δ0(βlk), (105)

where the posterior density on the selected coefficients on T is (in slight abuse
of notation writing in the same way the distribution and its density)

π(βT |X
B
T ) =

e−
n
2 ‖βT ‖

2
2+nXB′

T βT π(βT )

NB
X (T )

. (106)

Controlling the Noise. Similarly as in the proof of Theorem 1, we will condi-
tion on a set of large probability, where the noise level is relatively small. Denote
with B the set of all breakpoints B that can be obtained by performing steps (a)
and (b) in Section 4.1 and that yield a system ΨA

B satisfying conditions (B1)–

(B2) from Lemma 11. Recall L = Lmax = blog2 nc and εBlk =
∫ 1

0
ψBlk(u)dW (u),

and let δ be as in (B2). We define

AB =

{
max
B∈B

max
l∈[0,L],k∈[0,2l−1]

(εBlk)2 ≤ D1 log1+δ n

}
(107)

for some D1 > 0. Using assumption (B1), one can express every single ψBlk for
l ≤ L in terms of a number C0l

δ of ψjm’s for j ≤ l + D, where ψjm are the
regular Haar wavelet functions from (3). That is, with XBlk the set of such pairs
(j,m) and Card(XBlk ) ≤ C0l

δ, we have

ψBlk =
∑

(j,m)∈XBlk

pBjmψjm,

for some real numbers pBjm that satisfy
∑

(j,m)∈XBlk
(pBjm)2 = 1 (since ψBlk has a

unit L2–norm and ψlk’s are orthonormal in L2[0, 1]). Next, we have

εBlk =
∑

(j,m)∈XBlk

pBjmεjm.
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This itself implies the following, by the Cauchy-Schwarz inequality,

|εBlk| ≤ max
l≤L,k

{
Card(XBlk ) max

l≤L+D,k
ε2
lk

}1/2

≤ C1/2
0 Lδ/2 max

l≤L+D,k
|εlk|.

Using L ≤ log2 n and denoting

A ≡
{

max
l∈[0,L+D],k∈[0,2l−1]

ε2
lk ≤ 2 log(2L+D+1)

}
,

one obtains the inclusion A ⊂ AB, provided that D1 is chosen larger than a
universal constant (in particular it is independent of B). This implies Pf0

(AcB) ≤
Pf0(Ac) ≤ c0/

√
log(2L+D+1). Next, we follow the structure of the proof of

Theorem 1.

Posterior Probability of Too Deep Trees. For a given tree T , we again denote
with T − the pruned subtree obtained by turning the deepest rightmost internal
node (l1, k1) ∈ Tint into a leaf. Given B ∈ B, we proceed as in the proof of
Lemma 2 and evaluate the ratio WB

X (T )/WB
X (T −). When l1 > Lc, with Lc as

in (48), Lemma 11 leads to (B2), that is |βBl1k1
| . (log n)δ/2

√
log n/n for large

enough n. Similarly as in (52), we can write for l1 > Lc and some C2 > 0
(depending on E,D only), on the set AB from (107),

(XB
l1k1

)2 ≤ C2

n
(log n)1+δ.

Under the Galton-Watson process prior from Section 2.1.1 with pl ≤ 1/2 and
the independent prior with ΣT = I|Text| this gives for all B ∈ B and d ≥ Lc,

WB
X (T )

WB
X (T −)

≤ 2 pd−1e(C2/2)(logn)1+δ

,

from which one deduces that

Π[d(T ) > Lc |B,X] ≤ 4 e(C2/2)(logn)1+δ
Lmax∑
d=Lc+1

2d−1pd−1. (108)

The right side goes to 0 at rate e−C(logn)1+δ

if, e.g., pd is of the order (1/Γ)d
1+δ

for
some large enough Γ > 0. This also holds for a variant of the tree prior (6) using

instead π(T ) ∝ e−c|Text| log1+δ n and the conditionally uniform prior from Section

2.1.2 using π(K) ∝ e−cK log1+δ n where K = |Text|. Using a similar strategy as
in the proof of Theorem 2, a statement similar to (108) can also be obtained for
the general prior π(βT ) ∼ N (0,ΣT ) where λmin(ΣT ) >

√
1/(log n)1+δ.

Posterior Probability of Missing a Significant Node. We show a variant of
Lemma 4 assuming instead that a signal node (lS , kS) satisfies

lS ≤ Lc, |β0B
lSkS | ≥

A(log n)1+ δ
2

√
n

, (109)
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for some A > 0 to be chosen below. As before, for a tree T ∈ T\(lS ,kS) that
does not have a cut at (lS , kS), we denote with T + the smallest full binary
tree (in terms of number of nodes) that contains T and cuts at (lS , kS). Using
similar arguments as in the proof of Lemma 4, we use the fact (XB

lSkS
)2 ≥

(β0B
lSkS

)2/2−(εBlSkS )2/n to find that on the event AB and for A > 0 large enough,

WB
X (T )

WB
X (T +)

≤ Γl
1+δ
S (lS+1)e

3
2D1(lS+1) log1+δ n−A2

8 log2+δ n ≤ e−
A2

16 log2+δ n (110)

under the independent Gaussian prior on βT and the Galton-Watson process

prior from Section 2.1.1 with pl � (1/Γ)l
1+δ

. Following the steps in the proof
of Lemma 3, one can show similarly that Π [(lS , kS) /∈ Tint |X,B]→ 0 for each
B ∈ B sufficiently quickly. More precisely, if

SB(f0;A) =

{
(l, k) : |β0B

lk | ≥ A
(log n)1+ δ

2

√
n

}
, (111)

where Lc is defined in (48), we have, on the event AB and for A large enough,

Π
[{
T : SB(f0;A) * T

}
|X
]
≤ e−C(logn)1+δ

. (112)

uniformly in B ∈ B. This statement can be obtained also for the general prior
π(βT ) ∼ N (0,ΣT ) with λmax(ΣT ) . na for some a ≥ 1 and for other tree
priors from Section 2.1.2.

Putting Pieces Together. Let us also set

TB = {T : d(T ) ≤ Lc, SB(f0;A) ⊂ T }, EB = {fT ,β : T ∈ TB}. (113)

From the two previous subsections one obtains that for some constant C > 0

Π[T /∈ TB |X,B] ≤ e−C(logn)1+δ

,

for any possible set of breakpoints B ∈ B (that satisfy the balancing conditions).
The uniformity in B is essential in the next bounds.

Using the definition of the event AB from (107), one can bound

Ef0Π[‖fT ,β − f0‖∞ > εn |X] ≤ Pf0 [AcB] + Ef0 {Π[‖fT ,β − f0‖∞ > εn |X]IAB} .

By decomposing the posterior along B and T and using Markov’s inequality
one obtains, on the event AB,

Π[‖fT ,β − f0‖∞ > εn |X] =
∑
B

Π[B |X]
∑
T

Π[T |X,B] Π[‖fT ,β − f0‖∞ > εn |X, T , B]

≤
∑
B

Π[B |X]Π[T /∈ TB |X,B] +
∑
B

Π[B |X]
∑
T ∈TB

Π[T |B,X]Π[‖fT ,β − f0‖∞ > εn |X, T , B]

≤ e−C(logn)1+δ

+
∑
B

Π[B |X]
∑
T ∈TB

Π[T |B,X]ε−1
n

∫
‖fT ,β − f0‖∞dΠ[fT ,β |X, T , B].
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Let us now turn to bounding ‖fT ,β−f0‖∞. First, note that unlike the traditional
Haar basis, the UH basis system is never built up until L = ∞ because, by
construction, we stop splitting when there are no xi are available (i.e. we do
not split nodes that are not admissible). In result, the very high frequencies
are not covered by the system, which might induce some unwanted bias. This
is, however, not an issue with our weakly balanced UH wavelets. The following
Lemma shows that in weakly balanced UH systems, all nodes at levels l ≤ Λ :=
blog2(n/ logc n)c for any c > 0 are admissible.

Lemma 16. Consider a weakly balanced UH wavelet system ΨB
A, where A is

the set of admissible nodes (l, k) in the sense that X ∩ (llk, rlk] 6= ∅ with X =
{xi : xi = 1/n, 1 ≤ i ≤ n}. Let c > 0, then for Λ = Λ(c) = blog2(n/ logc n)c, we
have

A ⊃ {(l, k) : l ≤ Λ}.

Proof. The proof follows from the fact that the granularity of weakly balanced
UH systems is very close to l. In Example 3 we defined the granularity R(l,ΨB

A)
of the lth layer as the smallest integerR ≥ 1 such that min0≤k<2l min{|Llk|, |Rlk|} =
j/2R for some j ∈ {1, 2, . . . , 2R−1}. From Lemma 10, the granularity of weakly
balanced systems ΨB

A is no larger than l + D. This means that for l < Λ,
0 ≤ k < 2l, any c > 0 and n large enough

min{|Llk|, |Rlk|} ≥ 1/2l+D >
logc n

2Dn
> 1/n.

This implies that X ∩ (llk, rlk] 6= ∅ for any (l, k) with l ≤ Λ, where we used
the fact that (llk, rlk] is either Rl−1 bk/2c (for when (l, k) is the right child) or
Ll−1 bk/2c (for when (l, k) is the left child).

Next, we show that the weakly balanced UH systems are indeed rich enough
to approximate f0 well.

Lemma 17. Consider the weakly balanced UH system ΨB
A. Let fΛ

0 denote the
L2–projection of f0 ∈ HαM onto Vect{ψBlk : l ≤ Λ} for Λ = blog2(n/ logc n)c with
some c > 0. Then

‖f0 − fΛ
0 ‖∞ . |Λ2−Λ|α . (logc+1 n/n)α.

Proof. The L2–projection is a step function fΛ
0 =

∑
m IΩm β̃m supported on

the pieces Ωm ∈ {LΛk, RΛk : 0 ≤ k < 2Λ} where the jump sizes equal

β̃m = |Ωm|−1
∫

Ωm
f0(x)dx. From the Hölder continuity in (25) we have |f0(x)−

fΛ
0 (x)| ≤ M |Ωm|α for x ∈ Ωm. From the definition of weakly balanced UH

systems, we have maxm |Ωm| ≤ C+Λ
2Λ+D . The rest follows from the definition of

Λ.
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We can now write the following decomposition. For fT ,β in EB , we have

‖fT ,β − f0‖∞ .
∑
l≤Lc

2l/2 max
0≤k<2l

|βBlk − β0B
lk |

+
∑
Lc≤l≤Λ

2l/2 max
0≤k<2l

|β0B
lk |+ ‖f0 − fΛ

0 ‖∞. (114)

In the last display, we have used the fact that for weakly balanced UH systems
one has

max
0≤k<2l

‖ψBlk‖∞ < max
0≤k<2l

[(
1

|Llk|
∨ 1

|Rlk|

)
1√

|Llk|−1 + |Rlk|−1

]
< 2(l+D)/2.

The second term in (114) can be upper-bounded by (log n)1+δ/2(log n/n)α/(2α+1)

by using (B2) and the definition of Lc. Using Lemma 17, the term ‖f0 − fΛ
0 ‖∞

is always of smaller order than the previous one (as the bound decreases as n−α

up to a logarithmic factor).
Regarding the first term, one obtains for T ∈ TB∫
max

0≤k<2l
|βBlk − β0B

lk |dΠ[fT ,β |X, T , B]

=

∫
max

(
max

0≤k<2l, (l,k)/∈Tint
|β0B
lk |, max

0≤k<2l, (l,k)∈Tint
|βBlk − β0B

lk |
)
dΠ[fT ,β |X, T , B]

≤ A (log n)1+ δ
2

√
n

+

∫
max

0≤k<2l, (l,k)∈Tint
|βBlk − β0B

lk |dΠ[fT ,β |X, T , B],

where we have used that on the set EB , selected trees cannot miss any true
signal larger than A(log n)1+δ/2/

√
n. This means that any node (l, k) that is

not in a selected tree must satisfy |β0B
lk | ≤ A(log n)1+δ/2/

√
n.

We now focus on the independent prior βT ∼ N (0, I|Text|). We have seen
above that, given X, B (so for fixed εBlk) and T , if (l, k) belongs to Tint, the
difference βBlk − β0B

lk has a Gaussian distribution Qlk given by

Qlk
L
= Xlk − β0B

lk +N
(

0,
1

n+ 1

)
= − β0B

lk

n+ 1
+

√
nεBlk

n+ 1
+N

(
0,

1

n+ 1

)
.

If Zlk are arbitrary random variables distributed according to Qlk, and Zlk
arbitrary N (0, 1) random variables,

E
[

max
0≤k<2l

|Zlk|
]
≤ max

0≤k<2l

|β0B
lk |
n

+ max
0≤k<2l

|εBlk|√
n

+
1√
n
E
[

max
0≤k<2l

|Zlk|
]
.

On the event AB from (107), the sum of the first two terms on the last display
is bounded by M/n + C

√
(log n)1+δ/n while the last expectation is at most

C
√
l/(n+ 1) by Lemma 8. This implies∫

max
0≤k<2l, (l,k)∈Tint

|βBlk − β0B
lk |dΠ[fT ,β |X, T , B] ≤ C ′

√
(log n)1+δ

n
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uniformly over B and TB , where we have used l ≤ C log n. Putting the various
pieces together and using the fact that Pf0

[AcB] = o(1), we obtain

Ef0Π[‖fT ,β − f0‖∞ > εn |X]

≤ o(1) + ε−1
n

∑
l≤Lc

2l/2

A (log n)1+δ/2

√
n

+ C ′

√
log1+δ n

n

+ 2(log n)1+ δ
2

(
log n

n

) α
2α+1


≤ o(1) + ε−1

n

{[
A(log n)

1+δ
2 + C ′(log n)

δ
2

]
2

√
2Lc log n

n
+ 2(log n)1+ δ

2

(
log n

n

) α
2α+1

}

≤ o(1) + ε−1
n 2C ′

[
A(log n)

1+δ
2 + 4(log n)1+ δ

2

]( log n

n

) α
2α+1

.

This means that one can set

εn = (log n)1+δ/2

(
log n

n

) α
2α+1

and this is the obtained posterior rate in terms of the supremum norm. A sim-
ilar conclusion can be obtained for the general prior π(βT ) ∼ N (0,ΣT ) using

Lemma 4 under the assumption λmin(ΣT ) &
√

1/ log1+δ n.
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