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Abstract

The rise of information technology and big data analytics has given rise to “the new econ-

omy.” But are its economics new? This article constructs a classic growth model where firms

accumulate data. Data has three key features: 1) Data is a by-product of economic activity;

2) data is information used for resolving uncertainty, and 3) uncertainty reduction enhances

firm productivity. The model can explain why data-intensive goods or services, like apps, are

given away for free, why many new firms are unprofitable and why the biggest firms in the

economy profit primarily from data. While these transition dynamics differ from those of tradi-

tional growth models, the long run features diminishing returns. Just like capital accumulation,

data accumulation alone cannot sustain growth. Without other improvements in productivity,

data-driven growth will grind to a halt.

Does the new information economy have new economics, in the long run? When the economy

shifted from agrarian to industrial, economists focused on capital accumulation and removed land

from production functions. As we shift from an industrial to a knowledge economy, the nature of

inputs is changing again. In the information age, production increasingly revolves around infor-

mation and, specifically, data. Many firms, particuarly the most valuable U.S. firms, are valued

primarily for the data they have accumulated. Collection and use of data is as old as book-keeping.

But recent innovations in computing and artificial intelligence (AI) allow us to use more data more

efficiently. How will this new data economy evolve? Because data is non-rival, increases productiv-

ity and is freely replicable (has returns to scale), current thinking equates data growth with idea
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or technological growth. This article uses a simple framework to argue that data accumulation has

forces of increasing and decreasing returns at work. But in the long run, data accumulation is more

like capital accumulation, which, by itself, cannot sustain growth.

Data is information that can be encoded as a binary sequence of zeroes and ones. That broad

definition includes literature, visual art and technological breakthroughs. We are focusing more

narrowly on big data because that is where the technological breakthroughs have taken place that

have spawned talk of a new information age or economy. Machine learning or artificial intelligence

are prediction algorithms. Such algorithms predict the probability of a high demand for a good on

a day, a picture being a cat, or advertisement resulting in a sale. Much of the big data firms use

for these predictions is transactions data. It is personal information about online buyers, satellite

images of traffic patterns near stores, textual analysis of user reviews, click through data, and other

evidence of economic activity. Such data is used to forecast sales, earnings and the future value

of firms and their product lines. Data is also used to advertise, which may create social value or

might simply steal business from other firms. We will consider both possibilities. But the essential

features of the data production economy modeled in Section 1 are user-generated data that is a

long-lived asset, used to predict uncertain future outcomes.

Section 2 explores the logical consequences of this simple set of assumptions. Specifically, we

prove and trace out the consequences of three properties of data as an asset: 1) decreasing returns,

2) increasing returns, and 3) returns to scale. We start with decreasing returns. Data cannot sustain

long-run growth, because ultimately the more data a firm has, the less it benefits from additional

data. The key is that data, like all information, is a means of reducing uncertainty. Uncertainty

is bounded below by zero. Unless a perfect forecast gives a firm access to a pure, real, limitless

arbitrage, the perfect forecast generates finite payoff. If the payoff to infinite data is finite, the

returns, at some point, must diminish, so as not to exceed that upper bound. Furthermore, perfect

forecasts imply that the future is not random. It must be a perfectly predictable function of past

events; otherwise, a data set could not predict it perfectly. While both of these are mathematical

possibilities, they go well beyond the fictions typically used in economic modelling.

At the same time, the way in which data is produced means that, at low levels, data has increas-

ing returns. Our model features what is referred to as a “data feedback loop.” More data makes

a firm more productive, which results in more production and more transactions, which generates
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more data, and further increases productivity and data generation. This force is the dominant force

when data is scarce, before the diminishing returns to forecasting set in and overwhelm it. One

reason this increasing returns force is significant is that it can generate a data poverty trap. Firms,

industries, or countries may have low levels of data, which confine them to low levels of production

and transactions, which make profits low, or even negative. But because data is a long-lived asset,

firms may choose to produce with negative profits, as a form of costly investment in data.

Finally, like all information, data has returns to scale. Large firms’ use of data can be quite

different from small firms’. Our results show how large firms have a comparative advantage in

data production. Small firms have a comparative advantage in high-quality goods production.

Therefore, in some circumstances, the large firms produce high volumes of low-quality goods, in

order to produce data and sell it to small firms, that produce higher-quality goods. The business

model of these large firms is to do lots of transactions at low price and earn more revenue from

data sales. While we know that many firms execute a strategy like this, it is suprising that such a

strategy arises from these simple economic properties of data as information.

The primary contribution of the paper is a tool to think clearly about the economics of aggregate

data accumulation. It answers the question: When we think about the data economy, how should

we adjust our thinking from existing aggregate frameworks like Solow (1956), which lies at the

foundation of modern DSGE models? Because our tool is a simple one, many applications and

extensions are possible. Section 3 describes applications ranging from the distribution of firm size,

to economic development, to finance.

The model also offers guidance for measurement. Measuring and valuing data is complicated by

the fact that frequently, data is given away, in exchange for a free digital service. Our model makes

sense of this pricing behavior and assigns a value to goods and data that have a zero transactions

price. In so doing, it moves beyond price-based valuation, which often delivers misleading answers

when valuing digital assets.

Our result should not be interpreted to mean that data does not contribute to growth. It

absolutely does, in the same way that capital investment does. If non-data-technology (referred

to hereafter as “productivity” or “technology”) continues to improve, data helps us find the most

efficient uses of these new technologies. The accumulation of data may even reduce the costs of

technological innovation by reducing its uncertainty, or increase the incentives for innovation by
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increasing the payoffs. The point is that being non-rival, freely replicable and productive is not

enough for data to sustain growth. If it is used for forecasting, as most big data is, the data

functions like capital. It increases output, but cannot sustain infinite growth all by itself. We still

need innovation for that.

Related literature. Work on information frictions in business cycles, (Veldkamp (2005), Or-

donez (2013) and Fajgelbaum et al. (2017)) have early versions of a data-feedback loop whereby

more data enables more production, which in turn, produces more data. In each of these models,

information is a by-product of economic activity; firms use this information to reduce uncertainty

and guide their decision-making. These authors did not call the information data. But it has all

the hallmarks of modern transactions data. The data produced was used by firms to forecast the

state of the business cycle. Better forecasting enabled the firms to invest more wisely and be more

profitable. These models restricted attention to data about aggregate productivity. In the data

economy, that is not primarily what firms are using data for. But such modeling structures can be

adapted so that production can also generate firm- or industry-specific information. As such, they

provide useful equilibrium frameworks on which to build a data economy.

In the growth literature, our model builds on Jones and Tonetti (2018). They explore how

different data ownership models affect the rate of growth of the economy. In both models, data is

a by-product of economic activity and therefore grows endogenously over time. What is different

here is that data is information, used to forecast a random variable. In Jones and Tonetti (2018),

data contributes directly to productivity. It is not information. A fundamental characteristic of

information is that it reduces uncertainty about something. When we model data as information,

not technology, Jones and Tonetti (2018)’s conclusions about the benefits of data privacy may still

hold. But instead of long-run growth, there is long-run stagnation.

Other authors consider the interaction of artificial intelligence (AI) and innovation. Agrawal et

al. (2018) develops a combinatorial-based knowledge production function and embeds it in the clas-

sic Jones (1995) growth model to explore how breakthroughs in AI could enhance discovery rates

and economic growth. Lu (2019) embeds self-accumulating AI in a Lucas (1988) growth model

and examines growth transition paths from an economy without AI to an economy with AI and

how employment and welfare evolves. Aghion et al. (2017) explore the role of AI for the growth
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process and its reallocative effects. The authors argue that Baumol (1967)’s cost disease leads to

the declining share of traditional industries’ GDP, as they become automated. This decline is offset

by the growing fraction of automated industry. In such an environment, AI may discourage future

innovation for fear of imitation, undermining incentives to innovate in the first place.

While some big data is used to facilitate innovation, most of the “new economy” data is web

searches, shopping behavior and other evidence of economic transactions. While the existence of

such data has inspired innovations such as the sharing economy and recommendations engines,

those new ideas are distinct from the data itself. The contents of transactions data does not,

by itself, reveal a breakthrough technology. Whether data and innovation are complements is

a separate question that these studies shed light on. The accumulation of data used solely for

prediction is driving a large and growing sector of the economy. Our contribution is to understand

the consequence of big data and the new prediction algorithms alone, for economic growth.

In the finance literature, Begenau et al. (2018) explore growth in the data processing capacity

of financial investors and how data affects firm size through financial markets. They do not model

firms’ use of their own data. Such studies complement this work by illustrating other ways in which

abundant data is re-shaping the economy.

Finally, the insight that the stock of knowledge can serve as a state variable comes from the five-

equation toy model sketched in Farboodi et al. (2019). That was a partial-equilibrium numerical

exercise, designed to explore the size of firms with heterogeneous data. This paper builds an

aggregate equilibrium model that we solve analytically, models data in a more realistic way and

explores different questions. The new features, including a market for data, non-rival data, and

adjustment costs are not mere whistles and bells. These new margins shape the answers to our

main questions about aggregate dynamics and long-run outcomes.

1 A Data Economy Growth Model

The model looks much like a simple Solow (1956) model. There are inflows of data from new

economic activity and outflows, as data depreciates. The depreciation comes from the fact that

the state is constantly evolving. Firms are forecasting a moving target. Economic activity many
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periods ago was quite informative about the state at the time. However, since the state has random

drift, such old data is less informative about what the state is today. When data is scarce, little is

lost due to depreciation. As data stocks grow large, depreciation losses are substantial. The point

at which data depreciation equals the inflow of new data is a data steady state. Firms with less

data than their steady state grow in data, and therefore in productivity and investment. If a firm

ever had more data than its steady state level, it should shrink. But without any other source of

growth in the model, data-driven growth, like capital-driven growth eventually grinds to a halt.

The difference between data accumulation and capital accumulation appears in the source of

diminishing returns, the increasing returns from the data feedback loop, and the returns to scale

that arise when one piece of data can guide a large firm, just as well as a small one.

1.1 Model

Real Goods Production Time is discrete and infinite. There is a continuum of competitive

firms indexed by i. Each firm can produce kαi,t units of goods with ki,t units of capital. These goods

have quality Ai,t. Thus firm i’s quality-adjusted output is

yit = Ai,tk
α
i,t (1)

The quality of a good depends on a firm’s choice of a production technique ai,t. Each period

firm i has one optimal technique, with a persistent and a transitory components: θt+ εa,i,t. Neither

component is separately observed. The persistent component θt follows an AR(1) process: θt =

θ̄ + ρ(θt−1 − θ̄) + ηt. The AR(1) innovation ηt ∼ N(0, σ2
θ) is i.i.d. across time.1 The transitory

shock εa,i,t is i.i.d. across time and firms and is unlearnable.

The optimal technique is important for a firm because the quality of a firm’s good, Ai,t, de-

pends on the squared distance between the firm’s production technique choice ai,t and the optimal

1One might consider different possible correlations of ηi,t across firms i. An independent θ processes
(corr(ηi,t, ηj,t) = 0, ∀i 6= j) would effectively shut down any trade in data. Since buying and selling data hap-
pens and is worth exploring, we consider an aggregate θ process (corr(ηi,t, ηj,t) = 1, ∀i, j). It is also possible to
achive an imperfect, but non-zero correlation.
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technique θt:

Ai,t = Ā− (ai,t − θt − εa,i,t)2 (2)

Data The role of data is that it helps firms to choose better production techniques. One in-

terpretation is that data can inform a firm whether blue or green cars or white or brown kitchens

will be more valued by their consumers, and produce accordingly. Transactions help to reveal

these preferences but they are constantly changing and firms must continually learn to catch up.

Another interpretation is that the technique is inventory management, or other cost-saving activi-

ties. Observing many establishments with a range of practices and many customers provides useful

information for optimizing business practices.

Specifically, data is informative about θt. The role of the temporary shock εa is that it prevents

firms, whose payoffs reveal their productivity Ai,t, from inferring θt at the end of each period.

Without it, the accumulation of past data would not be a valuable asset. If a firm knew the value

of θt−1 at the start of time t, it would maximize quality by conditioning its action ai,t on period-t

data ni,t and θt−1, but not on any data from before t. All past data is just a noisy signal about

θt−1, which the firm now knows. Thus preventing the revelation of θt−1 keeps old data relevant

and valuable.

The next assumption captures the idea that data is a by-product of economic activity. The

number of data points n observed by firm i at the end of period t depends on their production kαi,t:

ni,t = zik
α
i,t, (3)

where zi is the parameter that governs how much data a firm can mine from its customers. A data

mining firm is one that harvests lots of data per unit of output.

Each data point m ∈ [1 : ni,t] reveals

si,t,m = θt+1 + εi,t,m, (4)

where εi,t,m is i.i.d. across firms, time, and signals. For tractability, we assume that all the shocks

in the model are normally distributed: fundamental uncertainty is ηt ∼ N(µ, σ2
θ), signal noise is
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εi,t,m ∼ N(0, σ2
ε ), and the unlearnable quality shock is εa,i,t ∼ N(0, σ2

a).

Data Trading and Non-Rivalry In order to model data as a tradeable asset, we need to allow

for the possibility that the amount of data a firm produces is not the same as the amount of data

they use. The difference between the two is the amount of data purchased from or effectively lost

due to its sale to other firms.2 Let δit be the amount of data traded by firm i a time t. If δit < 0,

the firm is selling data. If δit > 0, the firm purchased data. We restrict δit ≥ −nit so that a firm

cannot sell more data than it produces. Let the price of one piece of data be denoted πt.

Of course, data is non-rival. Some firms use data and then sell that same data to others. If there

were no cost to selling one’s data, then every firm in this competitive, price-taking environment

would sell all its data to all other firms. In reality, that does not happen. Instead, we assume that

when a firm sells its data, it loses a fraction ι of the amount of data that it sells to each other firm.

Thus if a firm sells an amount of data δit < 0 to other firms, then the firm has nit+ ιδit data points

left to add to its own stock of knowledge. (Note that ιδ < 0 so that the firm has less data than

the nit points it produced.) This loss of data could be a stand-in for the loss of market power that

comes from sharing one’s own data. It can also represent the extent of privacy regulations that

prevent multiple organizations from using some types of personal data. If the firm buys δit > 0

units of data, it adds nit + δit units of data to its stock of knowledge. Another interpretation of

this assumption is that there is a transaction cost of trading data, proportional to the data value.

Data Adjustment and the Stock of Knowledge The information set of firm i when it

chooses its technique ai,t is Ii,t = [{Ai,τ}t−1
τ=0; {{si,τ,m}

ni,τ
m=1}

t−1
τ=0]. To make the problem recursive

and to define data adjustment costs, we construct a helpful summary statistic for this information,

called the “stock of knowledge.”

Each firm’s flow of ni,t new data points allows it to build up a stock of knowledge Ωi,t that it

uses to forecast future economic outcomes. We define the stock of knowledge of firm i at time t

to be Ωi,t. We use the term “stock of knowledge” to mean the precision of firm i’s forecast of θt,

which is formally:

Ωi,t := Ei[(Ei[θt|Ii,t]− θt)2]−1. (5)

2This formulation prohibits firms from both buying and selling data in the same period.
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Note that the conditional expectation on the inside of the expression is a forecast. It is the firm’s

best estimate of θt. The difference between the forecast and the realized value, Ei[θt|Ii,t] − θt, is

therefore a forecast error. An expected squared forecast error is the variance of the forecast. It’s

also called the variance of θ, conditional on the information set Ii,t, or the posterior variance. The

inverse of a variance is a precision. Thus, this is the precision of firm i’s forecast of θt

Data adjustment costs capture the idea that a firm that does not store or analyze any data

cannot freely transform itself to a big-data machine learning powerhouse. That transformation

requires new computer systems, new workers with different skills, and learning by the management

team. As a practical matter, data adjustment costs are important because they make dynamics

gradual. If data is tradeable and there is no adjustment cost, a firm would immediately purchase

the optimal amount of data, just as in models of capital investment without capital adjustment

costs. Of course, the optimal amount of data might change as the price of data changes. But such

adjustment would mute some of the cross-firm heterogeneity we are interested in.

We assume that, if a firm’s data stock was Ωi,t and becomes Ωi,t+1, the firm’s period-t output

is diminished by Ψ(∆Ωi,t+1) = ψ(∆Ωi,t+1)2, where ψ is a constant parameter and ∆ represents the

percentage change: ∆Ωi,t+1 = (Ωi,t+1 − Ωi,t)/Ωi,t. The percentage change formulation is helpful

because it makes doubling one’s stock of knowledge equally costly, no matter what units data is

measured in.

Firm’s Problem. A firm chooses a sequence of production, quality and data-use decisions

ki,t, ai,t, δi,t to maximize

E0

∞∑
t=0

(
1

1 + r

)t (
PtAi,tk

α
i,t −Ψ(∆Ωi,t+1)− πtδit − rki,t

)
(6)

Firms update beliefs about θt using Bayes’ law. Each period, firms observe last period’s revenues

and data, and then choose capital level k and production technique a. The information set of firm

i when it chooses its technique ai,t and its investment kit is Ii,t.

As in Solow (1956), we take the rental rate of capital as given,. This reveals the data-relevant

mechanisms as clearly as possible. It could be that this is an industry or a small open economy,

facing a world rate of interest r.
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Equilibrium

Pt denotes the equilibrium price per quality unit of goods. In other words, the price of a good

with quality A is APt. The inverse demand function and the industry quality-adjusted supply are:

Pt = P̄ Y −γt , (7)

Yt =

∫
i
Ai,tk

α
i,tdi. (8)

Firms take the industry price Pt as given and their quality-adjusted outputs are perfect substitutes.

1.2 Solution

The state variables of the recursive problem are the prior mean and variance of beliefs about θt−1,

last period’s revenues, and the new data points. However, we can simplify this to one sufficient

state variables to solve the model simply. The next steps explain how.

Optimal technique and expected quality. Taking a first order condition with respect to the

technique choice, we find that the optimal technique is a∗i,t = Ei[θt|Ii,t]. Thus, expected quality

of firm i’s good at time t in (2) can be rewritten as E[Ai,t] = Ā − E
[
(Ei[θt|Ii,t]− θt − εa,i,t)2

]
.

The second term is an expected squared forecast error, or equivalently, a conditional variance, of

θt + εi,t. That conditional variance is denoted Ω−1
it +σ2

a. Therefore, the expected quality of firm i’s

good at time t in (2) can be rewritten again as Ei[Ai,t] = Ā− Ω−1
i,t − σ2

a.

Notice that the way signals enter in expected utility, only the variance (or precision) matters,

not the prior mean or signal realization. As in Morris and Shin (2002), precision, which in this

case is the stock of knowledge, is a sufficient statistic for expected utility and therefore, for all

future choices. Dispensing with the need to keep track of signal realizations, only signal precisions,

simplifies the problem greatly.

The Stock of Knowledge Since the stock of knowledge Ωi,t is the sufficient statistic to keep

track of information and its expected utility, we need a way to update or keep track of how much

of this stock there is. Lemma 1 is just an application of Bayes’ law, or equivalently, a modified

Kalman filter, that tell us how the stock of knowledge evolves from one period to the next.
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Lemma 1 Evolution of the Stock of Knowledge In each period t,

Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+ (nit + δit(1δit>0 + ι1δit<0))σ−2

ε (9)

Details of the proof are in Appendix A. However, we can understand Lemma 1 as a sum of the

initial stock, outflows and inflows. When updating to time t + 1, the initial stock of knowledge

is Ωi,t. Outflows of data are data lost due to depreciation. The inflows of data are new pieces of

data that are generated by economic activity. The number of new data points ni,t was assumed

to be data mining ability times end of period physical output: zik
α
i,t. By Bayes’ law for normal

variables, the total precision of that information is the sum of the precisions of all the data points:

ni,tσ
−2
ε . σ−2

a is the additional information learned from seeing one’s own realization of quality Ai,t,

at the end of period t. That information also gets added to the stock of knowledge. At the firm

level, we need to keep track of whether a firm buys or sells data. That is the role of the indicator

functions at the end of (9). But at the aggregate level, an economy as a whole cannot buy or sell

data. Therefore, for the aggregate economy,

Inflows = zik
α
i,tσ
−2
ε + σ−2

a (10)

How does data flow out or depreciate? Data depreciates because data generated at time t is

about next period’s optimal technique θt+1. But that means that data generated s periods ago is

about θt−s+1. Since θ is an AR(1) process, it is constantly evolving. Data from many periods ago,

about a θ realized many periods ago, is not as relevant as more recent data. So, just like capital,

data depreciates.

The first term of the law of motion is the amount of data carried forward from period t:[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. The Ωi,t + σ−2

a term represents the stock of knowledge at the start

of time t plus the information about period t technique revealed to a firm by observing its own

output. The information precision is multiplied by the persistence of the AR(1) process squared,

ρ2. If the process for optimal technique θt was perfectly persistent then ρ = 1 and this term would

not discount old data. If the θ process is i.i.d. ρ = 0, then old data is irrelevant for the future.

Next, the formula says to invert the precision, to get a variance and add the variance of the AR(1)
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process innovation σ2
θ . This represents the idea that volatile θ innovations add noise to old data

and make it less valuable in the future. Finally, the whole expression is inverted again so that the

variance is transformed back into a precision and once again, represents a (discounted) stock of

knowledge. The depreciation of knowledge is the period-t stock of knowledge, minus the discounted

stock:

Outflows = Ωi,t+1 + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
(11)

A one-state-variable problem We can thus express expected firm value recursively, with the

stock of knowledge as the single state variable. The form of that recursive problem is described in

the following lemma.

Lemma 2 The optimal sequence of capital investment choices {ki,t} and data sales {δi,t ≥ −ni,t}

solve the following recursive problem:

V (Ωi,t) = max
ki,t,δi,t

Pt

(
Ā− Ω−1

i,t − σ
2
a

)
kαi,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t

+

(
1

1 + r

)
V (Ωi,t+1) (12)

where ni,t = zik
α
i,t and the law of motion for Ωi,t is given by (9).

See Appendix for the proof. This result greatly simplifies the problem by collapsing it to a

deterministic problem with only one choice variable k and one state variable, Ωi,t. The reason we can

do this is that quality Ai,t depends on the conditional variance of θt, and because the information

structure is similar to that of a Kalman filter, where the sequence of conditional variances is

generally deterministic. In expressing the problem this way, we have already substituted in the

optimal choice of production technique.

Notice here that the non-rivalry of data does not change our problem substantially. It is

equivalent to a kinked price of data, or to a transactions cost. We could redefine the choice variable

to be ω, the amount of data added to a firm’s stock of knowledge Ω. Then, ω = nit + δit for data

purchases (δit > 0) and ω = nit + ιδit for data sales when δit < 0. Then, we could re-express this

problem as a choice of ω and a corresponding price that depends on whether ω ≥ nit or ω < nit.
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Valuing Data In this formulation of the problem, Ωi,t can be interpreted as the amount of data

a firm has. Technically, it is the precision of the firm’s posterior belief. But according to Bayes’ rule

for normal variables, posterior precision is the discounted precision of prior beliefs plus the precision

of each signal observed. In other words, the precision of beliefs, Ωit is a linear transformation of

the number of all past used data points, {ωis}ts=1. Ωit captures the value of past observed data

through the term for the discounted prior precision, Ωi,t−1.

The marginal value of one additional piece of data, of precision 1, is simply ∂Vt/∂Ωit. When we

consider markets for buying and selling data, ∂Vt/∂Ωit represents the firm’s demand, its marginal

willingness to pay for data.

2 Properties of a Data Economy

We begin by establishing a few key properties of this data economy. The first three results are not

model-specific. They describe conditions under which data can sustain infinite growth. They do

not prove that data-driven growth is not possible. Rather, they show that, if one believes that the

accumulation of data for forecasting can sustain growth forever, here are some logically equivalent

statements that one must therefore also accept.

The remainder of the results describe comparative statics and dynamic properties: Who buys

or sells data, at what price; how does the behavior of one firm affect the incentives of others, and

finally, what are the dynamics of data accumulation?

2.1 Diminishing Returns and Zero Long Run Growth

Just like we typically teach the Solow (1956) model by examining the inflows and outflows of capital,

we can gain insight into our data economy growth model by exploring the inflows and outflows of

data. Figure 1 illustrates the inflows and outflows (eq.s 10 and 11), in a form that looks just

like the traditional Solow model with capital accumulation. What we see on the left is the large

distance between inflows and outflows of data, when data is scarce. This is a period of fast data

accumulation and fast growth in the quality and value of goods. What we see on the right is that

distance diminishing, which represents growth slowing, and eventually a crossing of inflows and

outflows that we label steady state. If the stock of knowledge ever reached its steady state level,
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Figure 1: Economy converges to a data steady state: Aggregate inflows and outflows of data.
Line labeled inflows plots zik

α
i,tσ

−2
ε for a firm i, that makes an optimal capital decision k∗i,t, with different levels of

initial data stock. Line labeled outflows plots the quantity in (11).

it would no longer rise or diminish. Instead, data, quality and GDP would be constant as inflows

and outflows just balance each other.

One difference between data and capital accumulation is the nature and form of depreciation.

In the Solow model of capital accumulation, depreciation is a fixed fraction of the capital stock,

always linear. In the data accumulation model, depreciation is not linear, but is very close to linear.

The proof of Proposition 4 (step 2) shows that depreciation is approximately linear in the stock of

knowledge, with an error bound that depends primarily on the variance of the innovation in θ.

Inflows have diminishing returns. As stated in the previous section, the reason is that the

returns to data are bounded. With infinite data, all learnable uncertainty about θ can be resolved.

With a perfect forecast of θ, the expected good quality is
(
Ā− σ2

a

)
, which is finite.3 Thus, the

optimal capital investment is finite. Since a function that is continuous and not concave will always

cross any finite upper bound, productivity, investment and data inflows must all be concave in the

stock of knowledge Ω.

Conceptually, diminishing returns arise because we model data as information, not directly as an

addition to productivity. Information has diminishing returns because its ability to reduce variance

3It is also true that inflow concavity comes from capital having diminishing returns. The exponent in the production
function is α < 1. But that is a second force. Even if capital did not have diminishing marginal returns, inflows
would still exhibit concavity.
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gets smaller and smaller as beliefs become more precise. Of course, mathematically, diminishing

returns is hard-wired into the model by imposing Ā as the upper bound on productivity. That

raises the question of how general this result is. The next set of results speak to the generality and

justify the mathematical form we adopt.

Long Run Growth Impossibility Results How general is this idea that data accumulation

cannot sustain positive growth? Here, we consider an abstract economy, where the only assumptions

we impose are that data is used to forecast future outcomes and that productivity is not growing,

so that we can see what growth can possibly come from data alone.

Consider an economy, where productivity Ā is fixed. Only data nit grows. Data is used to

forecast random outcomes. Call that a “data economy.” Then the following results must hold for

data accumulation to sustain a minimal positive rate of aggregate output growth.

Proposition 1 Data and Infinite Output. A data economy can sustain an aggregate growth

rate of output ln(Yt+1)− ln(Yt) that is greater than any lower bound g > 0, in each period t, only

if infinite data nit →∞ for some firm i implies infinite output yit →∞.

Proof: Suppose not. Then, for every firm i, producing infinite data implies finite firm output

yit. If each firm’s output is finite and the measure of all firms is finite, aggregate output, an integral

of these individual firm outputs, is finite: Yt has a finite upper bound in each period t. If Yt has

a finite upper bound in each period t and ln(Yt+1) − ln(Yt) > g > 0 in every period t, then there

exists a finite time at which Yt will surpass its upper bound. Since only data is growing and not

the measure of firms, aggregate output can only be infinite if some firm’s output is infinite, yit =∞

for some i, t. That is a contradiction. �

This result is significant for two reasons. First, a perfect forecast is does not generate infinite

real economic value. An individual who knows what will yield profit tomorrow can leverage that

information and become very rich. But if society as a whole knows tomorrow’s state, they can simply

produce today what they would otherwise be able to produce tomorrow. Second, the feasibility of

perfect foresight is dubious, as the next two results show. Both these observations are independent

of the model. They simply start from the premise that data is used to forecast tomorrow’s state.

If data does not have diminishing returns, then that implies one of these awkward conclusions.
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Of course, data can fuel growth temporarily. It can also be an input in idea production, which

does fuel growth. But both of these statements are true for capital accumulation as well. The point

is not that data is unproductive. The point is that absent any technological progress, data alone

will not sustain growth.

Let Γt represent the distribution of firms’ stock of knowledge Ωit at time t. For a continuum

of firms, Γt encapsulates exactly what measure of firms have how much data, or more specifically,

what forecast precision, when they forecast θt.

Proposition 2 Data and Infinite Precision. Suppose aggregate output is a finite-valued

function of each firm’s forecast precision: Yt = f(Γt). A data economy can sustain an aggregate

growth rate of output ln(Yt+1) − ln(Yt) that is greater than any lower bound g > 0, in each each

period t, only if infinite data nit →∞ for some firm i implies infinite precision Ωit →∞.

Proof : From proposition 1, we know that sustaining aggregate growth above any lower bound

g > 0 arises only if a data economy achieves infinite output Yt → ∞ when some firm has infinite

data nit → ∞. Since Yt is a finite-valued function of Γt, it can only be that Yt → ∞ if some

moment of Γt is also becoming infinite Γt → ±∞. Moments of Γt cannot become negative infinite

because Γt is a distribution over Ωt which is a precision, defined to be non-negative. Thus for some

moment, Γt →∞. If some amount of probability mass is being placed on Ω’s that are approaching

infinity, that means there is some measure of firms that are achieving perfect forecast precision:

Ωit →∞. �

The next result says that if signals are derived from the observations of past events, then

infinite precision implies that the one-period-ahead future is deterministic. Allowing precesion to

be infinite means there cannot be any fundamental randomness, any unlearnable risk, because that

would cause forecasts to be imperfect. Infinite precision means zero forecast error with certainty.

Such perfect forecasts can only exist if future events are perfectly forecastable with past data.

Perfectly forecastable means that, conditional on past events, the future is not random. Thus,

future events are conditionally deterministic.

Proposition 3 Infinite Precision Implies a Deterministic Future. Suppose all data points

si,t,m are t-measurable signals about some future event θt+1. If infinite data nit →∞ for some firm i
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Figure 2: Aggregate growth dynamics: Data accumulation grows knowledge and output over time,
with diminishing returns. Parameters: ρ = 1, r = 0.2, β = 0.97, α = 0.3, ψ = 0.4, γ = 0.1, A = 1, P = 1, σ2

a =
0.05, σ2

θ = 0.5, σ2
ε = 0.1, z = 5, ι = 1 . See appendix B for details of parameter selection and numerical solution of the

model.

implies infinite precision Ωit →∞, then future events θt+1 are deterministic: θt+1 is a deterministic

function of the sigma algebra of past events.

Proof in the appendix. This result is significant because it illustrates why forecast precisions

should have a finite upper bound. If they did not, that would mean precision could become infinite.

Inifinite precision implies no un-forecastable noise. If there is not un-forecastable component of

the future state, then the future state is deterministic. Many think the idea of future determinism

is a priori implausible. If you believe some events tomorrow are truly random today, then you

must logically believe in a finite upper bound on precision. A finite upper bound implies a form of

diminishing marginal returns, because any function without this property would violate the upper

precision bound.

What diminishing returns means for a data-accumulation economy is that, over time, the aggre-

gate stock of knowledge and aggregate amount of output would have a time path that resembles the

concave path in Figure 2. Without idea creation, data accumulation alone would generate slower

and slower growth.

Taken together, these results suggests two distinct reasons why one might be skeptical of long-

run, data-driven growth. The first reason is that perfect forecasts might not create infinite output.

The second reason is that a perfect forecast implies that future events are deterministic functions

of past events. Proving such determinism is well beyond the scope of this paper, and beyond the
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Figure 3: New firms grow slowly: inflows and outflows of data of a single firm.
Line labeled inflows plots zik

α
i,tσ

−2
ε + δit for a firm i, that makes an optimal capital decision k∗i,t and data decision

δit, with different levels of initial data stock. This firm is in an economy where all other firms are in steady state.
Line labeled outflows plots the quantity in (11). Data production is zik

α
i,tσ

−2
ε , which is inflows, without the data

purchases δit.

scope of economics.

2.2 Increasing Returns, Data Barter and Entry Barriers

There are two main competing forces in this model. While the previous results focused on di-

minishing returns, the other force is one for increasing returns. Increasing returns arise from the

data feedback loop: Firms with more data produce higher-quality goods, which induces them to

invest more, produce more, and sell more, which, in turn, generates more data for them. That is

a force that causes aggregate knowledge accumulation to accelerate. The feedback loop competes

agains diminishing returns. Diminishing returns always dominates when data is already abundant.

That’s why the previous results about the long run were about concavity and were unambiguous.

But when firms are young, or data is scarce, increasing returns can be strong enough to create

an increasing rate of growth. While that sounds positive, it also creates the possibility of a firm

growth trap, with very slow growth, early on the in the lifecycle of a new firm.

For some parameter values, the diminishing returns to data is always stronger than the data

feedback loop. Each firm’s trajectory for output and knowlege is concave, as in Figure 2. But for

other types of economies, the increasing returns of the data feedback loop is strong enough to make
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data inflows convex, at low levels of knowledge. The inflows, outflows and growth dynamics of such

an economy are illustrated in Figure 3.

The next set of results describe what properties of an economy determine which regime prevails.

We learn what makes increasing returns stronger or diminishing returns weaker. While we have

been talking about symmetric firms that do not trade data, we now relax the symmetry assumption.

We consider a setting were all firms are in steady state. Then, we drop in one atomless firm and

observe its transition. From this exercise, we learn about how data accumulation can create barriers

to new firm entrants.

Just to be clear, these results only hold for a single firm entrant, not for the transition path of

the entire economy of firms growing together. Why does this S-shape arise for one firm, but not

for the aggregate economy? The difference between one firm entering when all other firms are in

steady state, and all firms growing together, is prices. When all firms are data-poor, all goods are

low quality. Since quality units are scarce, prices are high. The high price of good induces these

firms to produce goods and thus data. When the single firm enters, others are already data-rich.

Quality goods are abundant, so prices are low. This makes it costlier for the single firm to grow.

What works in the opposite direction is that data is also abundant, keeping the price of data low.

Notice that the difference between data inflows (solid line) and data production (dashed line) is

data purchases. These purchases push the inflows line above the outflows line and help speed up

convergence.

While the diminishing returns to data was quite general, this S-shape is not robust. It arises

only when lots of risk is unlearnable. Before we state the formal result, we need to define terms.

First, let ζ ≡ σ2
θ
σ2
a
. This is the ratio of variance of the learnable component of the state to the

variance of the unlearnable component. If this ratio is high, most uncertainty can be resolved by

accumulating enough data. Next, we define data inflows dΩ+
it , data outflows dΩ−it , and net data

flows dΩit. Data inflows are the total precision of all new data points at t: dΩ+
it = zi,tk

α
i,tσ
−2
ε .

Data outflows are the end-of-period-t stock of knowledge minus the discounted stock: dΩ−it =

Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Net data flows are the difference between data inflows

and outflows: dΩit = dΩ+
it − dΩ−it . Give these definitions, Proposition 4 states precisely when a

single firm entering faces increasing and then decreasing returns.
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Proposition 4 S-shaped accumulation of aggregate stock of knowledge. With symmetric

firms and sufficiently low adjustment cost Ψ, the net data flows dΩit

1) increase with the stock of knowledge Ωit when that stock is low, Ωit < Ω̂, when goods production

has sufficient diminishing marginal return, α < 1
2 , price is above a threshold Pt > f(Ω̂) and

the second derivative of the value function is bounded V ′′ ∈ [ν, 0); and

2) decrease with Ωit when Ωit is larger than
ˆ̂
Ω.

As we saw in the last section, the concave region of knowledge accumulation (part 2) is always

present. However, the convex region (part 1) is not. Proposition 8 in the Appendix proves the

converse of this result: when learnable risk is abundant, relative to unlearnable risk, the S-shape

disappears; knowledge accumulation is concave.

Figure 4: S-shaped growth creates initial profit losses, a possible barrier to entry. Parameters: ρ =
1, r = 0.2, β = 0.97, α = 0.3, ψ = 0.4, A = 1, P = 0.5, σ2

a = 0.05, σ2
θ = 0.5, σ2

ε = 0.1, z = 0.05, π = 0.002, P = 1, ι = 1

What does an economy with this S-shaped knowledge accumulation look like? Figure 4 illus-

trates the growth path of a new entrant firm in this environment. On the left side of the time path,

where the firm is young and the stock of data is low, increasing returns dominates. In this region,

increasing returns in knowledge means low returns to production at low levels of knowledge. Since

the returns to producing and accumulating knowledge are low, data inflows are low. This makes

the firm grow slowly and be less profitable. When this force is strong, such firms will be losing
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money throughout this early phase of their growth.

This S-shape is important for firm dynamics. It is the same shape that the output takes in

a growth model with poverty traps (Easterly, 2002). The same dynamic forces that give rise to

poverty traps can give rise to data traps. Increasing returns implies high returns, for high levels of

asset accumulation, but also implies low return to investment at low levels of asset accumulation.

The asset here is data. Firms invest in data by producing goods. Thus, this low returns region is

one with low profitability. Small firms can get stuck for a while in the convex region as they slowly

produce more and accumulate more data to escape the trap.4

Data Barter In the model, barter arises when the goods are exchanged for customer data,

at a zero price. This is a possibility result and a knife-edge case. But it is an interesting case

because it illustrates a phenomenon we see in reality. In many cases, digital products, like apps,

are being developed at great cost to a company and then given away “for free.” Free here means

zero monetary price. But obtaining the app does involve giving one’s data in return. That sort of

exchange, with no monetary price attached, is a classic barter trade.

The possibility of barter is perhaps not surprising, given the value of data as an asset. But

the result demonstrates the value of the framework, by showing how it speaks to data-specific

phenomena we see.

Proposition 5 Firms barter goods for data. If πtziα(
r+

∂Ψ(∆Ωi,t+1)

∂ki,t

)
ι
> 0, then it is possible that

a firm will optimally choose positive production kαit > 0, even if its price per unit is zero: Pt = 0.

Proof: Proving this possibility requires a proof by example. Suppose the price of goods is

zero Pt and the price of data π is such that firm i finds it optimal to sell all its data produced

in period t: δit = −nit. In this case, differentiating the value function (12) with respect to k

yields (πt/ι)ziαk
α−1 = r +

∂Ψ(∆Ωi,t+1)
∂ki,t

. Can this optimality condition hold for positive k? If

k1−α = πtziα(
r+

∂Ψ(∆Ωi,t+1)

∂ki,t

)
ι
> 0, then the firm optimally chooses kit > 0, at price Pt = 0. �

The idea of this argument is that costly investment kit > 0 has a marginal benefit: more data

that can be sold at price πt and a marginal cost r. If the price of data is sufficiently high, and/or

4With additional parameter restrictions, an additional proposition in the Appendix proves that the time-path of
the stock of knowledge is s-shaped, implying a long low-return incubation period for new entrants. The additional
parameter restrictions ensure that the stock of knowledge Ω is always increasing.
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the firm is a sufficiently productive data producer (high zi), then the firm should engage in costly

production, even at a zero goods price because it also produces data, which has a positive price.

In some economies, the optimal price of a firms’ goods are initially well below marginal cost,

and even close to zero. Figure 4 illustrates an example of this where the firm makes negative profits

for the first 1-2 periods because they price their goods at less than marginal cost. The reason for

producing at the near-zero price is that the firm wants to sell many units, in order to accumulate

data. Data will boost the productivity of future production and enable future profitable goods

sales. It could also be that the firm wants to accumulate data, in order to sell it. Lowering the

price is a costly investment in a productive asset that yields future value. This is what makes a

zero optimal price, or data barter, possible.

In this example, that strategy works for the firm because it faces no financing constraint. In

reality, many firms that make losses for years on end lose their financing and exit.

Data purchases and data poverty traps. On the left side of Figure 3, there is a point where

data outflows equal data production. If data were not traded, or if the available data was not the

relevant data for this firm, the stock of data would not grow past that point. The optimal capital

investment is not high enough to generate enough transactions to replace the number of data points

lost due to data depreciation. This no-growth phase, in which the firm produces low-quality goods,

can be interpreted as a barrier to entry in global data markets. Without data markets, if a firm

could manage to accumulate enough data, it could escape the trap and then sustain a high stock

of knowledge. However, the ability to buy data from other firms avoids this trap.

These results suggest that financially constrained young firms may never enter or make the

investment in data systems, unless there is relevant data available for purchase. By not collecting

and using data, they never escape the trap of poor data and low value-added.

2.3 Returns to Scale: Firm Size and Data Strategy

Large firms generate lots of data. There are two possible ways a firm might profit from this situation.

First, they could retain the data, use it to make even higher-quality goods, and make profits from

good production. In this case, we say data-productive firms are specialized in production of goods

and services. Alternatively, they could profit by selling the data and produce a large volume of
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low-quality goods. Little of their revenue would come from goods sales. But their data sales would

earn their profits. We say that they are data platforms if specialize in data (services) production.

Regardless of their strategy, high data-productivity firms would produce a lot of data. The

difference between the two strategies is what the firm specializes in and how it earns profits: the

former strategy implies that the large firm makes profits from high quality goods and services it

produces, while the latter strategy involves profits from data services.

One might think that allowing firms to trade data would eliminate data dispersion. Presumably,

firms that do not produce much data could simply pay to acquire it. This would eliminate data

dispersion. But that is not what happens. This section explores the conditions under which a large

firm would optimally choose each strategy. We consider a market populated by a measure λ of

low data-productivity firms (zi = zL, hereafter L-firms), and 1− λ of high data-productivity firms

(zi = zH , hereafter H-firms). H-firms’ superior efficiency at extracting or processing data allows

them to be more efficient and produce higher-quality goods, which in turn, induces them to rent

more capital and produce at a larger scale. Despite the two types, there is still an infinite number

of price-taking firms. Since firms have different data productivity, there is room for data trade

among firms. Data price adjusts endogenously so that the data market clears.

We are interested in the difference between the accumulated data of the H- and L-firms in the

steady state. Firms who accumulate more data produce higher quality goods. We will show that

counter-intuitively, higher data-productivity firms can own less data in equilibrium. Furthermore,

as their data-productivity grows, they might choose to keep even less data compared to L-firms. In

order to make this comparison clear, it is useful to define the concept of the knowledge gap.

Definition 1 (Knowledge Gap) Knowledge gap denotes the equilibrium difference between knowl-

edge level of a high and low data productivity firm, Υt = ΩHt − ΩLt.

We use the knowledge gap to guide our thinking about the systematic emergence of data users

and data platforms. Consider a single H-firm entering a market populated by L-firms (λ = 1), and

focus on the steady state. In this case, the outcome is what is intuitively expected. The data-

productive firm is always larger, accumulates more data in the steady state, and specializes in high

quality production. Thus the knowledge gap is positive. Furthermore, as the data productivity

of the H-firm increases, it accumulates even more knowledge in steady state, i.e. the knowledge
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gap is increasing in zH . Note that the single H-firm does not influence the good or data price.

Furthermore, since it is infinitesimal it does not affect the allocation of capital or data for the

measure of L-firms. By continuity, the same pattern arises when the measure of data-productive

firms is tiny, i.e. λ→ 1. The following result describes the parameter conditions under which this

scenario arises.

Proposition 6 If a single firm is more efficient at data production, that firm keeps

more data for itself. Suppose λ = 1, but there is a single, measure-zero H-firm in the market

with zi = zH . If the economy is in steady state, then ∀ι and zH , Υss > 0 and dΥss

dzH
> 0.

Next, consider a steady state in which the measure of L-firms, λ, is bounded away from one.

H-firms, which are more efficient in data production, may retain more data and use it to improve

their products, as does the single firm in the previous result. In this case, the knowledge gap is

positive, Υt > 0. One might think of this as the Uber model, named after the ride-sharing service

that uses users’ demand for rides to direct drivers to high-demand areas and price the rides to

equate supply and demand. Uber’s main business is not the sale of the data they collect.

In other circumstances, the reverse happens. Firms that are better data producers find that

their comparative advantage is in data distribution, not in high-quality goods production. Therefore,

they retain less data, which reduces the quality of the goods they produce. Such firms derive most

of their revenue from selling data, not from using the data. In this case, knowledge gap is negative,

Υt < 0. The next result describes the circumstances in which data-productive firms specialize in

using data for high-quality production and what circumstances they specialize in data sales.

Proposition 7 If a measure of firms becomes more efficient at data production, they

keep more (less) data for themselves when data is more (less) private. Suppose λ < 1,

γ = 0, α ≤ 1
2 , and the economy is in steady state. For each λ, there exists ῑ1 such that ∀zH

 Υss > 0 ι > ῑi

Υss < 0 ι < ῑ1.
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Figure 5: Big Firms Are Data Distributors When Privacy is Weak. Parameters: ρ = 1, r = 0.2, β =
0.97, α = 0.3, ψ = 0.3, γ = 0.1, A = 1.4, P = 0.5, σ2

a = 0.05, σ2
θ = 1, σ2

ε = 0.1, z1 = 1, λ = 0.75

Furthermore, ∃ῑ2, zH such that


dΥss

dzH
> 0 zH > zH , ι > ῑ2

dΥss

dzH
< 0 zH > zH , ι < ῑ2.

In the second scenario, the data-productive firm that keeps less data for themselves looks like a

data platform. An example is Google. Most of its valuation comes not from the profit margins on

internet searches. Rather, Google’s revenue and valuation come mostly from the value of the data.

Data is what allows it to sell advertising, which is a data service.

When data-productivity is a very scarce ability, λ → 1, the more data productive firms al-

ways specialize in high quality production. As such, the rise of data platforms is a pure general

equilibrium phenomena. However, even when high data productivity is not scarce, data should

not be single-use in order for the data platforms to emerge. In this case, large supply of data by

data-productive firms encourages the low data-productivity ones to demand a lot of it. When data

is multi-use, highly data productive firms find it less costly to sell a lot of their data and capture

the corresponding profits, i.e. become data platforms.

In either scenario, an increase in data productivity among high-type firms, zH , prompts more

specialization. In one case, the H firm specializes in high-quality goods production. In the other

case, they specialize more in data production. This specialization is most pronounced when the

demand curve for final goods is less elastic, γ ≈ 0.
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To visually interpret these results, Figure 5 shows how a larger, more data-productive firm could

end up producing higher-quality goods and service, i.e. knowledge gap above zero, or choose to

produce lower-quality goods and instead specialize in data production and distribution, depending

on the privacy or rivalry of data. This figure demonstrates a second interesting phenomena. As

one would expect, when data-productivity of H-firms increases, they might choose to accumulate

more data, and increase the knowledge gap. However, they might choose to specialize even more

in data distribution, in which case the knowledge gap becomes even more negative. In the latter

case, higher data-productivity does lead to more data for both group of firms, i.e. both ΩH and ΩL

increase. However, the data productive firms choose to specialize even more than before in data

distribution. As such, an increase in zH leads to more data accumulation by L firms than H firms,

and knowledge gap gets more negative.

Data Platforms and Data Services One interpretation of the large firms that sell most of

their data is as data platforms. That might appear contradictory because social networks and

search engines do use lots of their own data. But much of what they use that data for is to sell

data services to their business cutomers. That may look different from what is going on in this

model, but in fact, it is a type of data sale. Data can be sold both directly and indirectly. A data

vendor can sell you a data set directly, and transfer the binary code that constitutes the data. But

they can also offer data services, which are an indirect sale of data. Such a service might entail

using their data to place your ad on the screen of a particular user type; it could entail using their

data to choose assets to invest your money in, or it could involve using proprietary data to provide

a firm strategic business consulting advice. Such services monetize data, without transferring the

underlying data used in the service. Admati and Pfleiderer (1990) examine when each type of data

sale is optimal for the seller.

3 Extending the Data Growth Framework

Frameworks like this are only as important as the questions they can be used to answer. The benefit

of a simple framework is that it can be extended in many directions to answer other questions.

Below are seven extensions that could allow the model to address a variety of interesting data-
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related phenomena.

Data as an Input in Idea Production The previous result that data accumulation cannot

sustain growth is a statement about what happens when we hold ideas fixed. However, if there is

technological progress and ideas are accumulating, data could facilitate that accumulation of ideas,

and thereby promote growth. For example, suppose that the maximum quality level Ā in equation

2 is endogenous and time-varying. Advances in the quality frontier Āt might depend on the size of

the labor force engaged in research LR, some research capital KR, and research data DR:

Āt − Āt−1 = (LRt )α(KR
t )γ(DR

t )1−α−γ

In this formulation, if 1 − α − γ > 0, then it means that data is an essential ingredient in idea

production. If that is true, then data not only contributes to growth, it is essential for growth.

Of course, this raises the question of whether we are talking about the same kinds of data.

Perhaps transactions records are essential for marketing and product development, but true inno-

vations make use of some other kind of data, perhaps developed with labor and capital, in a lab. If

that is true, then DR is a function of LR and KR, in which case, we could write the idea production

function in terms of LR and KR, without mentioning data at all. That model’s role for data would

be similar to our baseline model. The alternative, where production or transactions generates data

looks like learning-by-doing models (Jovanovic and Nyarko, 1996). Either could be integrated into

this framework, perhaps to explore optimal data policy.

Data for Business Stealing Data is not always used for a socially productive purpose. One

might argue that many firms use data simply to steal customers away from other firms. So far,

we’ve modeled data as something that enhances a firm’s productivity. But what if it increases

profitability, in a way that detracts from the profitability of other firms? Using an idea from Morris

and Shin (2002), we can model such business-stealing activity as an externality that works through

productivity:

Ai,t = Â−
(
ai,t − θt − εa,i,t

)2
+

∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj (13)
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This captures the idea that when one firm uses data to reduce the distance between their chosen

technique ait and the optimal technique θ + ε, that firm benefits, but all other firms lose a little

bit. These gains and losses are such that, when added up to compute aggregate productivity, they

cancel out:
∫
Ait = Â. This represents an extreme view that data processing contributes absolutely

nothing to social welfare. While that is unlikely, examining the two extreme cases is illuminating.

What we find is that reformulating the problem this way makes very little difference for most

of our conclusions. The externality does reduce the productivity of firms and does reduce welfare,

relative to the case without the externality. But it does not change firms’ choices. Therefore, it

does not change data inflows, outflows or accumulation. It does not change firm dynamics. The

reason there is so little change is that the externality does not enter in a firm’s first order condition.

It does not change its optimal choice of anything. Firm i’s actions have an infinitesimal, negligible

effect on the average productivity term
∫ 1
j=0

(
aj,t − θt − εa,j,t

)2
dj. Because firm i is massless in a

competitive industry, its actions do not affect that aggregate term. So the derivative of that term

with respect to i’s choice variables is zero. If the term is zero in the first order condition, it means

it has no effect on choices of the firm.

Whether data is productivity-enhancing or not matters for welfare and the price per good, but

does not change our conclusions that a firm’s growth from data alone is bounded, that firms can

be stuck in data poverty traps, or that markets for data will arise to partially mitigate the unequal

effects of data production.

Investing in Data-Savviness So far, the data savviness parameter zi has been fixed. To some

extent, this represents the idea that certain industries will spin off more data than others. Credit

card companies learn an enormous amount about their clients, per dollar value of service they

provide. Barber shops or other service providers may be learning soft information from their

clients, but accumulate little hard data. At the same time, every firm can do more to collect,

structure and analyze the data that its transactions produce. We could allow a firm to increase

its data-savviness zi, at a cost. Our previous results still hold for a given set of z choices. Put

differently, for any exogenously assumed set of z’s, there exists a cost structure on the choice of z

that would give rise to that set of z as an optimal outcome. However, endogenizing these choices,

with a fixed cost structure, might produce changes in the cross-section of firms’ data, over time.
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Data allocation choice. A useful extension of the model would be to add a choice about what

type of data to purchase or process. To do that, one needs to make the relevant state θt a vector

of variables. Then, use rational inattention.

Why is rational inattention a natural complement to this model? Following Sims (2003), ratio-

nal inattention problems consider what types of information or data is most valuable to process,

subject to a constraint on the mutual information of the processed information and the underlying

uncertain economic variables. The idea of using mutual information as a constraint, or the basis

of a cost function, comes from the computer science literature on information theory. The mutual

information of a signal and a state is an approximation to the length of the bit string or binary

code necessary to transmit that information (Cover and Thomas (1991)). While the interpreta-

tion of rational inattention in economics has been mostly as a cognitive limitation on processing

information, the tool was originally designed to model computers’ processing of data. Therefore, it

would be well suited to explore the data processing choices of firms.

Measuring data. The model suggests two possible ways of measuring data. One is to measure

output or transactions. If we think data is a by-product of economic activity, then a measure of that

activity should be a good indicator of aggregate data production. At the firm level, a firm’s data

use could differ from their data production, if data is traded. But one can adjust data production

for data sales and purchases, to get a firm-level flow measure of data. Then, a stock of data is

a discounted sum of data flows. The discount rate depends on the persistence of the market. If

the data is about demand for fashion, then rapidly changing tastes imply that data has a short

longevity and a high discount rate. If the data is mailing addresses, that is quite persistent, with

small innovations. An AR(1) coefficient and innovation variance of the variable being forecasted

are sufficient to determine the discount rate.

The second means of measuring data is to look at what actions it allows firms to choose. A

firm with more data can respond more quickly to market conditions than a firm with little data

to guide them. To use this measurement approach, one needs to take a stand on what actions

firms are using data to inform, what variable firms are using the data to forecast, and to measure

both the variable and the action. One example is portfolio choice in financial markets Farboodi

et al. (2018). Another example is firms’ real investment David et al. (2016). Both measure the

29



covariance between investment choices and future returns. That covariance between choices and

unknown states reveals how much data investors have about the future unknown state. A similar

approach could be to use the correlation between consumer demand and firm production, across a

portfolio of goods, to infer firms’ data about demand. To check the power of the resulting measure,

one might look at the covariance with Solow residuals, under the assumption that more data makes

firms look more productive. One could also compare that measure to imputed values of intangible

capital.

Which approach is better depends on what data is available. One difference between the two

is the units. Measuring correlation gives rise to natural units, in terms of the precision of the

information contained in the total data set. The first approach of counting data points, measures

the data points more directly. But not all data is equal. Some data is more useful to forecast a

particular variable. The usefulness or relevance of the data is captured in how it is used to correlate

decisions and uncertain states.

Firm Size Dispersion: Bigger then Smaller. One of the biggest questions in macroeconomics

and industrial organization is: What is the source of the changes in the distribution of firm size?

One possible source is the accumulation of data. Big firms do more transactions, which allows

them to be more productive and grow bigger. This force is present in our model and does generate

dispersion in firm size. However, that dispersion is a transitory phenomenon.

The S-shaped dynamic of firm growth implies that firm size first becomes more heterogeneous

and then converges. During the convex, increasing returns portion of the growth trajectory, small

initial differences in the initial data stock of firms get amplified. Increasing returns means that

a firm with a larger stock of knowledge acumulates additional data at a faster pace. That drives

divergence. Later on in the growth path, the trajectory becomes concave. This is where diminishing

returns sets in. In this region, firms with a larger stock of knowledge accumulate more data, but

less additional knowledge. As diminishing returns to data set in, firms that have varying degrees of

abundance in their stock of knowlege become similar in their productivity and their output. This

is the region of convergence. Small initial differences in the stock of knowledge fade in importance.

30



Data traps as a barrier to national growth The data trap at a firm level, described in Section

2, might also manifest itself as a data trap at the country level. Instead of one small, transitioning

firm facing a static market, the interpretation would be that this is a small open economy, facing

stable world prices. If that economy cannot purchase data, or the data for sale is not relevant to

their forecasting problem, a strong data feeback loop could create a barrier to growth.

The policy solution would be a form of big push for data investment. The current policy debates

around data privacy, for example in the European Union, could be partly about countries fighting

for their ability to keep up in the data race, to prevent being stuck in relative data poverty.

Finally, there could be a trap that arises from the lack of complementary skills. In a country

where data science skills are scarce, the labor cost of hiring a data analyst may make this data

adjustment cost very high. Thus scarce data-skilled labor might condemn an economy of firms to

this data poverty trap.

4 Conclusions

The economics of transactions data bears some resemblance to technology and some to capital.

It is not identical to either. Yet, when economies accumulate data alone, the aggregate growth

economics are similar to an economy that accumulates capital alone. Diminishing returns set in

and the gains are bounded. Yet, the transition paths differ. There can be regions of increasing

returns that create possible poverty traps. Such traps arise with capital externalities as well.

Data’s production process, with its feedback loop from data to production and back to data, makes

such increasing returns a natural outcome. When markets for data exist, some of the effects are

mitigated, but the diminishing returns persist. Even if data does not increase output at all, but is

only a form of business stealing, the dynamics are unchanged. Thus, while the accumulation and

analysis of data may be the hallmark of the “new economy,” this new economy has many economic

forces at work that are old and familiar.
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A Appendix: Derivations and Proofs

A.1 Belief updating

The information problem of firm i about its optimal technique θi,t can be expressed as a Kalman

filtering system, with a 2-by-1 observation equation, (µ̂i,t,Σi,t).

We start by describing the Kalman system, and show that the sequence of conditional variances

is deterministic. Note that all the variables are firm specific, but since the information problem is

solved firm-by-firm, for brevity we suppress the dependence on firm index i.

At time t, each firm observes two types of signals. First, date t − 1 output reveals −1 good

quality Ai,t−1 = yi,t−1/k
α
i,t−1. Good quality Ai,t−1 provides a noisy signal about θt−1. Let that

signal be sai,t−1 = (Ā−Ai,t−1)1/2− ai,t−1. Note that, from equation 2, that the signal derived from

observed output is equivalent to

sai,t−1 = θt−1 + εa,t−1, (14)

where εa,t ∼ N (0, σ2
a).

The second type of signal the firm observes is data points. They are a by-product of economic

activity. For firms that do not trade data, the number of new data points added to the firm’s data

set is ωit = nit = zkαit. For firms that do trade data, ωit = nit + δit(1δit>0 + ι1δit<0). The set of

signals {st,m}m∈[1:ωi,t] are equivalent to an aggregate (cross-firm average) signal s̄t such that:

s̄t = θt + εs,t, (15)

where εs,t ∼ N (0, σ2
ε /ωit). The state equation is

θt − θ̄ = ρ(θt−1 − θ̄) + ηt,

where ηt ∼ N (0, σ2
θ).
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At time, t, the firm takes as given:

µ̂t−1 = E
[
θt | st−1, yt−2

]
Σt−1 = V ar

[
θt | st−1, yt−2

]
where st−1 = {st−1, st−2, . . . } and yt−2 = {yt−2, yit−3, . . . } denote the histories of the observed

variables, and st = {st,m}m∈[1:ωi,t].

We update the state variable sequentially, using the two signals. First, combine the priors with

sai,t−1:

E
[
θt−1 | It−1, s

a
i,t−1

]
=

Σ−1
t−1µ̂t−1 + σ−2

a sai,t−1

Σ−1
t−1 + σ−2

a

V
[
θt−1 | It−1, s

a
i,t−1

]
=
[
Σ−1
t−1 + σ−2

a

]−1

E
[
θt | It−1, s

a
i,t−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1, s

a
i,t−1

]
− θ̄
)

V
[
θt | It−1, s

a
i,t−1

]
= ρ2

[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

Then, use these as priors and update them with s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1
· E
[
θt | It−1, s

a
i,t−1

]
+ ωtσ

−2
ε s̄t[

ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1
+ ωtσ

−2
ε

(16)

Σt = V ar
[
θt | It

]
=
{[
ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1
+ ωtσ

−2
ε

}−1
(17)

Multiply and divide equation (16) by Σt as defined in equation (17) to get

µ̂it = (1− ωtσ−2
ε Σt)

[
θ̄(1− ρ) + ρ

(
(1−Mt)µt−1 +Mts

a
i,t−1

)]
+ ωtσ

−2
ε Σts̄t, (18)

where Mt = σ−2
a (Σt−1 + σ−2

a )−1.

Equations (17) and (18) constitute the Kalman filter describing the firm dynamic information

problem. Importantly, note that Σt is deterministic.
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A.2 Making the Problem Recursive: Proof of Lemma 1

Lemma. The sequence problem of the firm can be solved as a non-stochastic recursive problem

with one state variable. Consider the firm sequential problem:

maxE0

∞∑
t=0

(
1

1 + r

)t
(PtAtk

α
t − rkt)

We can take a first order condition with respect to at and get that at any date t and for any level

of kt, the optimal choice of technique is

a∗t = E[θt|It].

Given the choice of at’s, using the law of iterated expectations, we have:

E[(at − θt − εa,t)2|Is] = E[V ar[θt + εa,t|It]|Is] + σ2
a,

for any date s ≤ t. We will show that this object is not stochastic and therefore is the same for

any information set that does not contain the realization of θt.

We can restate the sequence problem recursively. Let us define the value function as:

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Σt−1) = max
kt,at

E
[
PtAtk

α
t − rkt +

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Σt)|It−1

]

with ωit being the net amount of data being added to the data stock. Taking a first order condition

with respect to the technique choice conditional on It reveals that the optimal technique is a∗t =

E[θt|It]. We can substitute the optimal choice of at into At and rewrite the value function as

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[
Pt
(
Ā− (E[θt|It]− θt − εa,t)2

)
kαt − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Σt)|It−1

]
.
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Note that εa,t is orthogonal to all other signals and shocks and has a zero mean. Thus,

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[
Pt
(
Ā− ((E[θt|It]− θt)2 + σ2

a)
)
kαt − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Σt)|It−1

]
.

Notice that E[(E[θt|It] − θt)
2|It−1] is the time-t conditional (posterior) variance of θt, and the

posterior variance of beliefs is E[(E[θt|It] − θt)2] := Σt. Thus, expected productivity is E[At] =

Ā−Σt − σ2
a, which determines the within period expected payoff. Additionally, using the Kalman

system equation (17), this posterior variance is

Σt =
[
Pt
[
ρ2(Σ−1

t−1 + σ2
a)
−1 + σ2

θ

]−1
+ ωtσ

−2
ε

]−1

which depends only on Σt−1, nt, and other known parameters. It does not depend on the realization

of the data. Thus, {st,m}m∈[1:ωt], yt−1, µ̂t do not appear on the right side of the value function

equation; they are only relevant for determining the optimal action at. Therefore, we can rewrite

the value function as:

V (Σt) = max
kt

[
Pt(Ā− Σt − σ2

a)k
α
t + πδit−Ψ(∆Ωi,t+1)− rkt +

(
1

1 + r

)
V (Σt+1)

]
s.t. Σt+1 =

[[
ρ2(Σ−1

t + σ2
a)
−1 + σ2

θ

]−1
+ ωitσ

−2
ε

]−1

Data use is incorporated in the stock of knowledge through (9), which still represents one state

variable.

A.3 Lemma 2: Equilibrium and Steady State Without Trade in Data

Capital choice. The first order condition for the optimal capital choice is

αPtAitk
α−1
t −Ψ′(·)∂∆Ωt+1

∂kit
− r +

(
1

1 + r

)
V ′(·)∂Ωt+1

∂kit
= 0
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where ∂Ωt+1

∂kit
= αzik

α−1
it σ−2

ε and Ψ′(·) = 2ψ(Ωi,t+1 − Ωit). Substituting in the partial derivatives

and for Ωi,t+1, we get

kit =

[
α

r

(
PtAit + ziσ

−2
ε (

(
1

1 + r

)
V ′(·)− 2ψ(·))

)]1/(1−α)

(19)

Differentiating the value function in Lemma 1 reveals that the marginal value of data is

V ′(Ωit) = PtAitk
α
it

∂Ait
∂Ωit

−Ψ′(·)
(
∂Ωt+1

∂Ωt
− 1

)
+

(
1

1 + r

)
V ′(·)∂Ωt+1

∂Ωt

where ∂Ait/∂Ωit = Ω−2
it and ∂Ωt+1/∂Ωt = ρ2

[
ρ2 + σ2

θ(Ωit + σ−2
a )
]−2

.

To solve this, we start with a guess of V ′ and then solve the non-linear equation above for kit.

Then, update our guess of V .

Steady state The steady state is where capital and data are constant. For data to be constant,

it means that Ωi,t+1 = Ωit. Using the law of motion for Ω (eq 9), we can rewrite this as

ωssσ
−2
ε +

[
ρ2(Ωss + σ−2

a )−1 + σ2
θ

]−1
= Ωss (20)

This is equating the inflows of data ωitσ
−2
ε with the outflows of data

[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1−Ωit.

Given a number of new data points ωss, this pins down the steady state stock of data. The number

of data points depends on the steady state level of capital. The steady state level of capital is given

by (19) for Ass depending on Ωss and a steady state level of V ′(Ωss). We use the term V ′ss to refer

to the partial derivative ∂V/∂Ω, evaluated at the steady state value of Ω. We solve for that steady

state marginal value of data next.

If data is constant, then the level and derivative of the value function are also constant. Equating

V ′(Ωit) = V ′(Ωi,t+1) allows us to solve for the marginal value of data analytically, in terms of kss,

which in turn depends on Ωss:

V ′ss =

[
1−

(
1

1 + r

)
∂Ωt+1

∂Ωt
|ss
]−1

Ptk
α
ssΩ
−2
ss (21)

Note that the data adjustment term Ψ′(·) dropped out because in steady state ∆Ω = 0 and we
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assumed that Ψ′(0) = 0.

The equations (19), (20) and (21) form a system of 3 equations in 3 unknowns. The solution

to this system delivers the steady state levels of data, its marginal value and the steady state level

of capital.

A.4 Equilibrium With Trade in Data

To simplify our solutions, it is helpful to do a change of variables and optimize not over the amount

of data purchased or sold δit, but rather the closely related, net change in the data stock ωit. We

also substitute in nit = zik
α
it and substitute in the optimal choice of technique ait. The equivalent

problem becomes

V (Ωi,t) = max
ki,t,ωi,t

Pt

(
Ā− Ω−1

i,t − σ
2
a

)
kαi,t − π

(
ωit − zikαit

1ωit>nit + ι1ωit<nit

)
− rki,t

−Ψ (∆Ωi,t+1) +

(
1

1 + r

)
V (Ωi,t+1) (22)

where Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+ ωitσ

−2
ε (23)

Capital choice. The first order condition for the optimal capital choice is

FOC[kit] : αPtAitk
α−1
it +

παzik
α−1
it

1ωit>nit + ι1ωit<nit
− r = 0 (24)

Solving for kit gives

kit =

(
1

r
(αPtAit + π̃αzi)

) 1
1−α

(25)

where π̃ ≡ π/(1ωit>nit + ι1ωit<nit). That the adjusted price π̃ is higher when a firm sells data. We

are dividing by ι < 1, which raises the price. This idea is that a firm that sells δ units of data only

gives up δι units of data. So it’s as if they are getting a higher price per unit of data they actually

forfeit.

Note that a firm’s capital decision is optimally static. It does not depend on the future marginal

value of data (i.e., V ′(Ωi,t+1)) explicitly.
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Data use choice. The first order condition for the optimal ωit is

FOC[ωit] : −Ψ′(·)∂∆Ωi,t+1

∂ωit
− π̃ +

(
1

1 + r

)
V ′(Ωi,t+1)

∂Ωi,t+1

∂ωit
= 0 (26)

where
∂Ωit,t+1

∂ωit
= σ−2

ε .

Steady state The steady state is where capital and data are constant. For data to be constant,

it means that Ωi,t+1 = Ωit. Using the law of motion for Ω (eq 9), we can rewrite this as

ωssσ
−2
ε +

[
ρ2(Ωss + σ−2

a )−1 + σ2
θ

]−1
= Ωss (27)

This is equating the inflows of data ωitσ
−2
ε with the outflows of data

[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1−Ωit.

Given a number of new data points ωss, this pins down the steady state stock of data. The number

of data points depends on the steady state level of capital. The steady state level of capital is given

by Equation 25 for Ass depending on Ωss and a steady state level of V ′ss. We solve for that steady

state marginal value of data next.

If data is constant, then the level and derivative of the value function are also constant. Equating

V ′(Ωit) = V ′(Ωi,t+1) allows us to solve for the marginal value of data analytically, in terms of kss,

which in turn depends on Ωss:

V ′ss =

[
1−

(
1

1 + r

)
∂Ωt+1

∂Ωt
|ss
]−1

Pssk
α
ssΩ
−2
ss (28)

Note that the data adjustment term Ψ′(·) dropped out because in steady state ∆Ω = 0 and we

assumed that Ψ′(0) = 0.

From the first order condition for ωit (eq 26), the steady state marginal value is given by

V ′ss = (1 + r)π̃σ2
ε (29)

The equations (25), (26), (27) and (28) form a system of 4 equations in 4 unknowns. The

solution to this system delivers the steady state levels of capital, knowledge, data, and marginal

value data.
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A.4.1 Characterization of Firm Optimization Problem in Steady State

At this point, from tractability, we switch notation slightly. Instead of optimizing over the net

additions to data ω, we refer to the purchase/sale of data δ := ωit − nit.

Individual Optimization Problem.

V (Ωi,t) = max
ki,t,δi,t

PtAi,tk
α
i,t − ψ

(
Ωi,t+1 − Ωi,t

Ωi,t

)2

− πδi,t − rki,t +
1

1 + r
V (Ωi,t+1)

Ωi,t+1 =
(
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

)−1
+
(
zik

α
i,t +

(
1δi,t>0 + ι1δi,t<0

)
δi,t
)
σ−2
ε

Ai,t = Ā− Ω−1
i,t − σ

2
a

where i denotes the firm data productivity.

Thus the steady state is characterized by the following 8 equations:

ΩL =
(
ρ2(ΩL + σ−2

a )−1 + σ2
θ

)−1
+
(
zLk

α
L + δL

)
σ−2
ε (30)

ΩH =
(
ρ2(ΩH + σ−2

a )−1 + σ2
θ

)−1
+
(
zHk

α
H + ιδH

)
σ−2
ε (31)

αP (Ā− Ω−1
L − σ

2
a)k

α−1
L + παzLk

α−1
L = r (32)

αP (Ā− Ω−1
H − σ

2
a)k

α−1
H +

παzHk
α−1
H

ι
= r (33)

Pσ−2
ε kαL = πΩ2

L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(34)

ιPσ−2
ε kαH = πΩ2

H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(35)

P = P̄
(
λ(Ā− Ω−1

L − σ
2
a)k

α
L + (1− λ)(Ā− Ω−1

H − σ
2
a)k

α
H

)−γ
(36)

λδL + (1− λ)δH = 0 (37)

A.5 Proof of Proposition 1: Data without Diminishing Returns Implies Infinite

Output.

Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I di = 0, producing infinite data nit →∞ implies

finite firm output yit <∞. Thus My ≡ supi{yi,t}+ 1 exists and is finite. By definition, yi,t < My,

∀i. If the measure of all firms is also finite, that is ∃0 < N <∞ such that
∫
i di < N . As a result,
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the aggregate output is also finite in any period t+ s, ∀s > 0:

Yt+s =

∫
i
yi,tdi < My

∫
i
di < MyN <∞. (38)

On the other hand, given that the aggregate growth rate of output ln(Yt+1) − ln(Yt) > g > 0,

we have that in period t+ s, ∀s > 0,

ln(Yt+s)− ln(Yt) =[ln(Yt+s)− ln(Yt+s−1)] + · · ·+ [ln(Yt+1)− ln(Yt)] > gs, (39)

which implies

Yt+s > Yte
gs. (40)

Thus for ∀s > s ≡ d ln(MN)−ln(Yt)
g e,

Yt+s > Yte
gs > Yte

gs > Yte
g

ln(MyN)−ln(Yt)

g = MyN, (41)

which contradicts (38).

A.6 Proof of Proposition 2: Data without Diminishing Returns Implies Infinite

Precision.

Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I di = 0, producing infinite data nit →∞ implies

finite precision Ωit < ∞, that is Γt is finite (except for zero-measure sets). Since Yt = f(Γt) is

a finite-valued function, we must have Yt < ∞, as nit → ∞. In other words, since Yt is a finite-

valued function of Γt, it can only be that Yt → ∞ if some moment of Γt is also becoming infinite

Γt → ±∞. Moments of Γt cannot become negative infinite because Γt is a distribution over Ωt

which is a precision, defined to be non-negative. Thus for some moment, Γt →∞. If some amount

of probability mass is being placed on Ω’s that are approaching infinity, that means there is some

measure of firms that are achieving perfect forecast precision: Ωit →∞.

But finite limit output is inconsistent with sustained growth. From proposition 1, we know that

sustaining aggregate growth above any lower bound g > 0 arises only if a data economy achieves
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infinite output Yt → ∞ when some firm with positive measure has infinite data nit → ∞. This is

a contradiction.

A.7 Proof of Proposition 3: Infinite Precision Implies Deterministic Future.

We prove this statement by proving the contrapositive: If the future, θt is not deterministic at t−1,

then the stock of knowledge must be finite.

Suppose θt+1 is not a deterministic function of the sigma algebra of past events. Then θt+1 is

random with respect to the sigma algebra of the t-1 history of events. Let Ft be the sigma algebra

derived from the history {θτ , sτ,m, sai,τ}
t−1
τ=0.

If signals are measurable with respect to all past events, then they are a subset of the sigma

algebra of past events. Formally, the information set of firm i when it chooses its technique ai,t is

Ii,t = [{sai,τ}
t−1
τ=0; {{si,τ,m}

ni,τ
m=1}

t−1
τ=0]. By assumption, si,t−1,m and sai,t−1 are measurable with respect

to Ft, that is ∀B ∈ B, {ω : si,t,m(ω) ∈ B} ⊂ Ft. So σ(Ii,t) ⊂ Ft. This implies that t−1 measurable

signals cannot contain information about the future event θt, other than what is already present in

the history of events.

By construction, θt is not measurable with respect to Ft−1, that is ∃B′ ∈ B s.t. {ω : θt(ω) ∈

B} 6⊂ Ft. Since σ(Ii,t) ⊂ Ft, we have that {ω : θt(ω) ∈ B} 6⊂ Ii,t,m, and thus θt is not measurable

with respect to Ii,t,m. Therefore Var(θt | Ii,t,m) > 0. By the definition of Ω as the inverse of the

conditional variance, this implies Ωit <∞.

This showed that, if θt is random with respect to past events, it must be random with respect

to all possible signals si,t,m . If θt is random with respect to the signals, there is strictly positive

forecast variance. If forecast variance cannot be zero, then signal precision cannot be infinite.

Since we proved that the the stock of knowledge must be finite, therefore the contrapositive,

that infinite precision implies a deterministic future, must also be true.

A.8 Proof of Proposition 4: S-shaped accumulation of knowledge.

Before we proceed to the proof, we define data inflows dΩ+
it , data outflows dΩ−it , and net data flows

dΩit. Data inflows are the total precision of all new data points at t: dΩ+
it = zi,tk

α
i,tσ
−2
ε . Data

outflows are the end-of-period-t stock of knowledge minus the discounte stock: dΩ−it = Ωi,t +σ−2
a −
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[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Net data flows are the difference between data inflows and outflows:

dΩit = dΩ+
it − dΩ−it .

Proof: We proceed in two parts: convexity and then concavity.

Part 1: Convexity at low levels of Ωt. In this part, we first calculate the derivatives of data

infow and outflow with respect to Ωit, combine them to form the derivative of data net flow, and

then show that it is positive in given parameter regions for Ωit < Ω̂.

Recall that data inflow is dΩ+
it = zi,tk

α
i,tσ
−2
ε and its first derivative is

∂dΩ+
it

∂Ωi,t
= αzi,tk

α−1
i,t σ−2

ε
∂ki,t
∂Ωi,t

.

We then need to find
∂ki,t
∂Ωi,t

.

Since we assumed that Ψ is small, consider the case where ψ = 0. In this case, the data adjust-

ment term in equation 19) drops out and it reduces to kit =
[
α
r

(
PtAit + ziσ

−2
ε

1
1+rV

′(Ωit+1)
)]1/(1−α)

,

which implies

k1−α
it =

α

r

(
PtAit + ziσ

−2
ε

1

1 + r
V ′(Ωit+1)

)
.

Differentiating with respect to Ωit on both sides yields

∂k1−α
i,t

∂Ωi,t
=
∂k1−α

i,t

∂ki,t
· ∂ki,t
∂Ωi,t

= (1− α)k−αi,t ·
∂ki,t
∂Ωi,t

Plugging in ∂Ait
∂Ωit

= Ωit
−2 and ∂Ωit+1

∂Ωit
= ρ2[ρ2 + σ2

θ(Ωit + σ−2
a )]−2, we have

=⇒ ∂kit
∂Ωit

= kαit
α

(1− α)r

(
PtΩit

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωit+1)ρ2[ρ2 + σ2

θ(Ωit + σ−2
a )]−2

)
.

Therefore,

∂dΩ+
it

∂Ωit
= zitk

2α−1
it σ−2

ε

α2

(1− α)r

(
PtΩit

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωit+1)ρ2[ρ2 + σ2

θ(Ωit + σ−2
a )]−2

)
= zitk

2α−1
it σ−2

ε

α2

(1− α)r
PtΩit

−2 + z2
itk

2α−1
it σ−4

ε

α2

1− α
1

r(1 + r)
V ′′(Ωit+1)ρ2[ρ2 + σ2

θ(Ωit + σ−2
a )]−2.

(42)

Next, we calculate the derivative of data outflow dΩ−it = Ωi,t+σ
−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
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with respect to Ωit. We have

∂dΩ−it
∂Ωit

= 1− 1

ρ2(Ωit + σ−2
a )2(σ2

θ + ρ−2(Ωit + σ−2
a )−1)2

. (43)

The derivatives of net data flow is then

∂dΩ+
it

∂Ωit
−
∂dΩ−it
∂Ωit

= zitk
2α−1
it σ−2

ε

α2

(1− α)r
PtΩit

−2 + z2
itk

2α−1
it σ−4

ε

α2

1− α
1

r(1 + r)
V ′′(Ωit+1)ρ2[ρ2 + σ2

θ(Ωit + σ−2
a )]−2

+
1

ρ2(Ωit + σ−2
a )2(σ2

θ + ρ−2(Ωit + σ−2
a )−1)2

− 1. (44)

For notational convenience, denote the first term in (2) as M1 = zitk
2α−1
it σ−2

ε
α2

(1−α)rPtΩit
−2 > 0, the

second term as M2 = z2
itk

2α−1
it σ−4

ε
α2

1−α
1

r(1+r)V
′′(Ωit+1)ρ2[ρ2 + σ2

θ(Ωit + σ−2
a )]−2 ≤ 0 and the third

term as M3 = 1
ρ2(Ωit+σ

−2
a )2(σ2

θ+ρ−2(Ωit+σ
−2
a )−1)2

> 0. Notice that M3 − 1 < 0 always holds, and thus

M2 +M3 − 1 < 0.
∂dΩ+

it
∂Ωit

− ∂dΩ−
it

∂Ωit
> 0 only holds when Pt is sufficiently large so that M1 dominates.

Assume that V ′′ ∈ [ν, 0). Let h(Ωit) ≡M1(P̄ ) +M2(ν). Then

h′(Ωit) = (2α− 1)zitk
3α−2
it α

(
α

r(1− α)

)2

σ−2
ε

[
P̄Ωit

−2 + zitσ
−2
ε

1

1 + r
νρ2[ρ2 + σ2

θ(Ωit + σ−2
a )]−2

]2

+zitk
2α−1
it

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

it − zitσ
−2
ε

1

1 + r
νρ2 2σ2

θ

(ρ2 + σ2
θ(Ωit + σ−2

a ))3

]
.

The first term is positive when α > 1
2 , and negative when α < 1

2 . And the second term is positive

when P̄ < f(Ωit), and negative when P̄ > f(Ωit). To see this, note that

zitk
2α−1
it

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

it − zitσ
−2
ε

1

1 + r
νρ2 2σ2

θ(
ρ2 + σ2

θ

(
Ωit + σ−2

a

))3
]

> 0 (45)

if and only if P̄ < f(Ωit), where

f(Ωi,t) := −zitσ−2
ε

1
1+rνρ

2Ω3
it

σ2
θ

(ρ2+σ2
θ(Ωit+σ

−2
a ))

3 (46)

Notice by inspection that f ′(Ωit) < 0.

Let Ω̂ be the first root of

h(Ωit) = 1−M3, (47)
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then if α < 1
2 , when Ωit < Ω̂ and Pt > f(Ω̂), we have that h(Ωit) is decreasing in Ωit and

h(Ω) ≥ 1−M3. Since ν ≤ V ′′, we then have M1 +M2 ≥ 1−M3, that is
∂dΩ+

it
∂Ωit

− ∂dΩ−
it

∂Ωit
> 0. By the

same token, if α > 1
2 and Pt < f(Ωit), then

∂dΩ+
it

∂Ωit
− ∂dΩ−

it
∂Ωit

< 0.

Part 2: Concavity at high levels of Ωt. In this part, we first calculate limit of the derivatives

of net data flow with respect to Ωit is negative when Ωit goes to infinity and then prove that when

Ωit is large enough, ∂dΩit
∂Ωit

is negative.

For ρ ≤ 1 and σ2
θ ≥ 0, data outflows are bounded below by zero. But note that outflows are not

bounded above. As the stock of knowledge Ωit →∞, outflows are of O(Ωit) and approach infinity.

We have that
∂dΩ−

it
∂Ωit

= 1− 1
ρ2(Ωit+σ

−2
a )2(σ2

θ+ρ−2(Ωit+σ
−2
a )−1)2

. It is easy to see that limΩit→∞
∂dΩ−

it
∂Ωit

= 1.

For the derivative of data inflow (42), note that
∂dΩ+

it
∂Ωit

≤ zitk
2α−1
it σ−2

ε
α2

(1−α)rPtΩit
−2 because

0 < α < 1 and V ′′ < 0. Thus limΩit→∞
∂dΩ+

it
∂Ωit

≤ 0.

Therefore, limΩit→∞
∂dΩit+
∂Ωi,t

− ∂dΩit−
∂Ωi,t

≤ −1. Since data outflows and inflows are continuously

differentiable, ∃ ˆ̂
Ω > 0 such that ∀Ωi,t >

ˆ̂
Ω, we have ∂dΩit+

∂Ωi,t
− ∂dΩit−

∂Ωi,t
< 0, which is the decreasing

returns to data when data is abundant.

A.9 Proof of Proposition 6: Knowledge Gap When High Data Productivity is

Scarce.

When there is a single zH firm, δL = 0 in steady state and (kL,ΩL) and (P, π) are determined by

the following 4 equations:

ΩL =
(
ρ2(ΩL + σ−2

a )−1 + σ2
θ

)−1
+ zLk

α
Lσ
−2
ε (48)

αP (Ā− Ω−1
L − σ

2
a)k

α−1
L + παzLk

α−1
L = r (49)

Pσ−2
ε kαL = πΩ2

L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(50)

P = P̄
(
(Ā− Ω−1

L − σ
2
a)k

α
L

)−γ
(51)

While (kH ,ΩH , δH) are determined by the following 3 equations, taking the above (kL,ΩL, P, π)

as given:
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αP (Ā− Ω−1
H − σ

2
a)k

α−1
H +

παzHk
α−1
H

ι
= r (52)

ιPσ−2
ε kαH = πΩ2

H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(53)

ΩH =
(
ρ2(ΩH + σ−2

a )−1 + σ2
θ

)−1
+
(
zHk

α
H + ιδH

)
σ−2
ε (54)

Manipulate to get

αP (Ā− Ω−1
H − σ

2
a) +

παzH
ι

= rk1−α
H (55)

kαH =
(
k1−α
H

) α
1−α =

π

ιPσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(56)

ι
1−2α
1−α

1

r
α

1−α

(
ιαP (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α =

π

Pσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(57)

Next we show three steps:

1. For ι < ῑ, more data productivity makes the “more data productive firm” (zH firm) both

larger, and retaining more data.

∃ῑ s.t. ι < ῑ⇒ dkH
dzH

> 0,
dΩH

dzH
> 0.

2. For ι < ῑ and ∀zH , the “more data productive firm” (zH firm) retains more data when ι

increases.

∃ῑ s.t. ι < ῑ⇒ dΩH

dι
> 0.

3. ῑ > 1.

This completes the proof.
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Step 1. Take the total derivative of equation (57) wrt to zH and simplify. It implies

dΩH

dzH
=

α2πι
2− 1

1−α
(
α
(
ιP
(
Ā−σ2

a− 1
ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

(
1+r−

ρ4+ρ2σ2
aσ

2
θ

(ρ2+σ2
θ

(σ2
a+ΩH ))

3

)
P −

α2Pι
1

α−1 +3
(
α

(
ĀιP− ιP (σ2

aΩH+1)

ΩH
+πzH

)) 1
1−α−2

(1−α)Ω2
H

=
πΩ2

iA(H)

B(H)− ιPA(H)

Note that ιiP̄
(
Ā− σ2

a − 1
Ωi

)
+ πzi = ιirk

1−α
i . Use that to simplify dΩH

dzH
by letting

A(i) =
α2ι

2− 1
1−α

i

(
ιirk

1−α
i

) 1
1−α−2

(1− α)Ω2
i

=
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

(58)

B(i) =

2πσ2
εΩi

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ(σ2

a+Ωi))
3

)
P

= π
dC(i)

dΩi
(59)

C(i) =

σ2
εΩ

2
i

(
1 + r − ρ2

(ρ2+σ2
θ(σ2

a+Ωi))
2

)
P

=
ιik

α
i

π
(60)

where i = L,H, ιL = 1 and ιH = ι.

In dΩH
dzH

the numerator is positive. Thus “more data productive firms retains more data”, or

dΩH
dzH

> 0 iff the denominator is positive, which is the case if

2πσ2
εΩH

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ(σ2

a+ΩH))
3

)
P

− ιiP
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

> 0

2πσ2
ε (1− α)Ω3

H

(
1 + r −

ρ2(ρ2 + σ2
aσ

2
θ)(

ρ2 + σ2
θ(σ

2
a + ΩH)

)3
)
> ιiP

2α2r
2α−1
1−α k2α−1

i

which leads to ῑ:

ῑ =

2πσ2
ε (1− α)Ω3

H

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ(σ2

a+ΩH))
3

)
α2P 2r

2α−1
1−α k2α−1

i

Furthermore, consider equation (35). Keeping the prices constant, the left hand side is increasing
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in kH . Alternatively, the derivative of the right hand side with respect to ΩH is given by

2ΩH

(
1 + r −

ρ2(ρ2 + σ2
θσ
−2
a )(

ρ2 + σ2
θ(ΩH + σ−2

a )
)3
)
.

(ρ2+σ2
θσ

−2
a )

(ρ2+σ2
θ(ΩH+σ−2

a ))
< 1, thus equation (35) implies that the term in the parenthesis is positive, thus

the derivative is positive. Thus ΩH and kH move in the same direction.

Since the high data productivity firm is atomistic, so ΩL and kL are unchanged. Thus the

proposition also implies that surprisingly, both H-L size ratio and H-L knowledge gap of the two

firms is increasing in data productivity of the more productive firm if ι < ῑ:

d(kH − kL)

dzH
> 0,

d(ΩH − ΩL)

dzH
> 0

Equation (56) implies that fixing ι, kH moves in the same direction as ΩH .

Step 2. The proof is the same as the previous step The derivative dΩH
dι is more complicated but

it simplifies to the exact same expression. Furthermore, let ι̂ denote the smallest ι for which an

equilibrium exists. We have ΩH(ι̂) > ΩL. Since ΩL is independent of ι, this implies that whenever

an equilibrium exist, ∀zH ,

ΩH − ΩL > 0 ι < ῑ

Step 3. It is straight forward to show that ῑ > 1. ι > 1 would mean that selling data would result

in more data for the seller. That makes no economic sense. We have thus restricted ι ≤ 1, from the

start. The interpretation of this result is therefore that the conditions that guarantee Proposition

6 holds are satisfied for any ι.

A.10 Proof of Proposition 7: Knowledge Gap When High Data Productivity

is Abundant.

When γ = 0, P = P̄ . The proof proceeds in a few steps.

zH firms are data sellers while zL firms are data buyers (δH < 0 and δL > 0).
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dπ
zH

< 0.

Change in knowledge gap: dΥss

dzH
. Equations (32) and (34) can be solved to get (kL,ΩL) in

terms of data price π:

k1−α
L =

α

r

(
P̄ (Ā− Ω−1

L − σ
2
a) + πzL

)
Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

1(
P̄ (Ā− Ω−1

L − σ2
a) + πzL

) α
1−α

=
P̄ σ−2

ε

π

(α
r

) α
1−α

The second equation implies

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

=

(
P̄ (Ā− Ω−1

L − σ2
a) + πzL

) α
1−α

π
P̄σ−2

ε

(α
r

) α
1−α

(61)

The same argument as in proposition 6 shows that using equation (34), the derivative of the left

hand side with respect to ΩL is positive. Next, using implicit function theorem on both sides of

equation (61) implies that if α ≤ 1
2 , the equation is only consistent with dΩL

dπ < 0. Note that α ≤ 1
2

is a sufficient (not necessary) condition. As such, π ↓⇔ ΩL ↑. Using this in the first equation

implies kL increases as well, kL ↑.

Next, merge equations ((32), (34)) and ((33), (35)) to get:

1

r
α

1−α

(
αP (Ā− Ω−1

L − σ
2
a) + παzL

) α
1−α =

π

Pσ−2
ε

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(62)

ι
1−2α
1−α

r
α

1−α

(
ιαP (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α =

π

Pσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)
. (63)
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Again, γ = 0 implies P = P̄ , thus taking the derivatives we have

dΩL

dzH
=
−
σ2
εΩ2

L

(
1+r− ρ2

(ρ2+σ2
θ

(σ2
a+ΩL))

2

)
P̄

+
zLα

2
(
α
(
P̄
(
Ā−σ2

a− 1
ΩL

)
+πzL

)) 1
1−α−2

(1−α)

2πσ2
εΩL

(
1+r−

ρ2(ρ2+σ2
aσ

2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩL))

3

)
P̄

−
P̄α2

(
α
(
P̄
(
Ā−σ2

a− 1
ΩL

)
+πzL

)) 1
1−α−2

(1−α)Ω2
L

dπ

dzH

dΩH

dzH
=

πα2ι
2− 1

1−α
(
α
(
ιP̄
(
Ā−σ2

a− 1
ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

(
1+r−

ρ2(ρ2+σ2
aσ

2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩH ))

3

)
P̄

−
P̄α2ι

3− 1
1−α

(
α
(
ιP̄
(
Ā−σ2

a− 1
ΩH

)
+πzH

)) 1
1−α−2

(1−α)Ω2
H

+
−
σ2
εΩ2

H

(
1+r− ρ2

(ρ2+σ2
θ

(σ2
a+ΩH ))

2

)
P̄

+
zHα

2ι
2− 1

1−α
(
α
(
ιP̄
(
Ā−σ2

a− 1
ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

(
1+r−

ρ2(ρ2+σ2
aσ

2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩH ))

3

)
P̄

−
P̄α2ι

3− 1
1−α

(
α
(
ιP̄
(
Ā−σ2

a− 1
ΩH

)
+πzH

)) 1
1−α−2

(1−α)Ω2
H

dπ

dzH

Using definition (58)-(60) the above expressions simplify to:

dΩL

dzH
=
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

dπ

dzH

dΩH

dzH
=

πΩ2
HA(H)

B(H)− ιP̄A(H)
+
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)

dπ

dzH

Thus the derivative of the knowledge gap is given by

dΥ

dzH
=
d(ΩH − ΩL)

dzH
=

πΩ2
HA(H)

B(H)− ιP̄A(H)
+

(
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)
−
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

)
dπ

dzH

We have already shown that dπ
dzH

< 0. Using that, we first show that fixing the parameters, ∃ι̂ such

that if and only if ι > ι̂, the knowledge gap is increasing in zH .

∃ι̂ s.t. ι > ι̂⇔ dΥ

dzH
> 0.
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Note that

d(ΩH − ΩL)

dzH
=

πΩ2
HA(H)

B(H)− ιP̄A(H)
+

(
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)
−
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

)
dπ

dzH
=⇒

d(ΩH − ΩL)

dzH
> 0⇔

πΩ2
HA(H) +

(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

B(H)− ιP̄A(H)
>
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

dπ

dzH

Multiply both sides by the denominator on the left hand side, which is positive as ι < 1.

and divide both sides by the right hand side expression which is also positive. Since both

expressions are positive, the inequality sign does not change

πΩ2
HA(H) +

(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

zLΩ2
LA(L)−C(L)

B(L)−P̄A(L)
dπ
dzH

> B(H)− ιP̄A(H)

ι >
1

P̄A(H)

B(H)−
πΩ2

HA(H) +
(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

zLΩ2
LA(L)−C(L)

B(L)−P̄A(L)
dπ
dzH



A(i) =
α

1
1−α ι

2− 1
1−α

i

((
ιiP̄

(
Ā− σ2

a − 1
Ωi

)
+ πzi

)) 1
1−α−2

(1− α)Ω2
i

=
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

ι >
1

P̄
α2r

2α−1
1−α k2α−1

i

(1−α)Ω2
i

B(H) +
C(H)

zLΩ2
LA(L)−C(L)

B(L)−P̄A(L)



ι >ῑ1H =

 (1− α)Ω2
i

P̄α
1

1−α (πzi)
1

1−α−2

B(H) +
C(H)

zLΩ2
LA(L)−C(L)

B(L)−P̄A(L)

 1− α
2− 3α

Since α < 1
2 , and Ωi and ki, i = L,H are finite, sufficiently large zH insures ῑ1H < 1.

Next we show that fixing the parameters, ∃ι̃, ι such that if ι < ι̃, the knowledge gap is negative.

∃ι̃ s.t. ι < ι < ι̃→ ΩH − ΩL < 0.

This is done in the following steps:

1. compute dΩH
dι and dΩL

dι .
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2. show that ∃ι1 such that d(ΩH−ΩL)
dι > 0 when ι > ι1. (we know no equilibrium exist when

ι = 0, so ι keeps us away from the non-existence limit for sure).

3. show that ΩH − ΩL > 0 for ι = 1.

4. show that ∃ι ≥ ι1 such that ΩH − ΩL < 0 for ι = ι.

Step 1. Taking the derivative, we have

dΩL

dι
=
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

dπ

dι

dΩH

dι
=
P̄
(
Ā− Ω−1

H − σ2
a

)
A(H)−D(H)

B(H)− ιP̄A(H)
+
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)

dπ

dι

where

D(i) =
(1− 2α)ι

− α
1−α

i

(
α
(
ιiP̄

(
Ā− σ2

a − 1
Ωi

)
+ πzi

)) α
1−α

(1− α)
=

(
(1− α)Ω2

i

α2

α2r
2α−1
1−α k2α−1

i

(1− α)Ω2
i

) −α
1−2α

= r
α

1−αkαi

A.11 Proposition 8: Data Accumulation Can be Purely Concave

It turns out that data accumulation is not always S-shaped. The S-shaped results in the previous

proposition hold only for some parameter values. For others, it can be that data accumulation is

purely concave. In other words, even when Ωit is small enough, there is no convex region. Instead,

the net data flow (the slope) decreases with Ωit, right from the start.

Proposition 8 ∃ε > 0 such that ∀Ωit ∈ Bε(0), the net data flow decreases with Ωit if σ2
θ > σ2

a.

We proceed in two steps. In Step 1, we prove that data outflows are approximately linear when

Ωit is small. And then in Step 2, we first calculate the derivative of net data flow with respect to

Ωit and then characterize the parameter region where it is negative.

Step 1: Data outflows are approximately linear when Ωit is small.

This is proven separately in Lemma 3.
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Step 2: Characterize the parameter region where the derivative of net data flow with respect to

Ωit is negative. A negative least upper bound is sufficient for it be negative.

Recall that the derivative of data inflows with respect to the current stock of knowledge Ωt is

∂dΩ+
it

∂Ωi,t
= ρ2

[
ρ2 + σ2

θ(Ωi,t + σ−2
a )
]−2

> 0 (see the Proof of Proposition 4 for details). Thus

∂dΩ+
it

∂Ωit
−
∂dΩ−it
∂Ωit

≈ ρ2
[
ρ2 + σ2

θ(Ωi,t + σ−2
a )
]−2 − 1 + ρ2(1 + ρ2σ2

θσ
−2
a )−2. (64)

Since this derivative increases in ρ2 and decreases in Ωit = 0, so its least upper bound 2
1+σ2

θσ
−2
a
− 1

is achieved when ρ2 = 1 and Ωi,t = 0. A non-negative least upper bound requires σ2
a ≥ σ2

θ . That

means, if σ2
θ > σ2

a, the supreme of
∂dΩ+

it
∂Ωit
− ∂dΩ−

it
∂Ωit

is negative, so it will always be negative ∀Ωit ∈ Bε(0).

A.12 Proposition 9: S-shaped stock of knowledge over time.

This proposition shows the S-shape of Ωit in the time domain. The result differs from Proposition

4 because instead of establishing that data flows are increasing or decreasing in Ω, this result

establishes that flows increase and then decrease in time.

Proposition 9 Let γ ≡ σ2
θ
σ2
a

. If γ is sufficiently small, σε sufficiently small, zi sufficiently large, or

σa sufficiently large, then

1) ∂2Ωit
∂t2

> 0 when Ωit is small enough, there is sufficient diminishing return to scale α < 1
2 ,

price is sufficiently large Pt > f(Ω̂) and the value function is not too concave V ′′ ∈ [ν, 0),

where Ω̂ is the first root of (47), and f is defined by (46);

2) and ∂2Ωit
∂t2

< 0 when Ωit is large enough.

Proof: We have established how net data flows change with Ωit. To map it to concavity and

convexity of Ωit with respect to t, we need to find the regions where net data flow, dΩ+
it − dΩ−it =

zi,tk
α
i,tσ
−2
ε −Ωit−σ−2

a +
[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
is positive. If dΩ+

it−dΩ−it > 0, then
∂dΩ+

it−dΩ−
it

∂Ωit
>

0 maps to ∂2Ωit
∂t2

> 0 and
∂dΩ+

it−dΩ−
it

∂Ωit
< 0 maps to ∂2Ωit

∂t2
< 0. The rest of the proof proceeds in two

steps.

Step 1: Prove that net data flows are positive when Ωit ∈ (0, Ω̄f ) and negative when Ωit ∈

(Ω̄l,∞).
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We can sign the second derivative of outflows with respect to Ωit easily:
∂2dΩ−

it

∂Ω2
it

=
2ρ4σ2

θ

(1+ρ2σ2
θσ

−2
a +ρ2σ2

θΩit)3
>

0. The first derivative of outflows with respect to Ωit is
∂dΩ−

it
∂Ωit

= 1− 1
ρ2(Ωit+σ

−2
a )2(σ2

θ+ρ−2(Ωit+σ
−2
a )−1)2

.

Since
∂2dΩ−

it

∂Ω2
it

> 0, we have that
∂dΩ−

it
∂Ωit

is monotonically increasing and its minimum value is obtained

when Ωit = 0:
∂dΩ−

it
∂Ωit
|Ωit=0 = 1− 1

ρ2σ−4
a (σ2

θ+ρ−2σ2
a)−1)2

, which is always positive given σa, σθ > 0 and

ρ2 ≤ 1. Therefore
∂dΩ−

it
∂Ωit

> 0. On the other hand, we know from the proof of Proposition 8 that

∂dΩ+
it

∂Ωit
|Ωit=0 > 0 and limΩit→∞

∂dΩ+
it

∂Ωit
|Ωit=0 ≤ 0.

When Ωit = 0, the data infow and outflow are dΩ+
it |Ωit=0 = zi(k

∗
0)ασ−2

ε , where k∗0 is the optimal

invesment when Ωit = 0, and dΩ−it |Ωit=0 = σ−2
a (1− ρ2

1+ρ2γ
), respectively. If dΩ+

it |Ωit=0 ≥ dΩ−it |Ωit=0,

then the data outflow and inflow curves must have intersection(s) in the region (0,∞). Let’s denote

the first intersection by Ω̄f and the last by Ω̄l. When there is a unique intersection, Ω̄f and Ω̄l

coincide. Then net data flows are positive when Ωit ∈ (0, Ω̄f ) and negative when Ωit ∈ (Ω̄l,∞).

Step 2: Find out the parameter regions where Step 1 holds.

Since dΩ−it |Ωit=0 is monotonic in ρ2 and ρ2 ∈ [0, 1], we have dΩ−it |Ωit=0 ∈ [ γ
1+γσ

−2
a , σ−2

a ].

dΩ+
it |Ωit=0 ≥ dΩ−it |Ωit=0 is guaranteed when dΩ+

it |Ωit=0 ≥ γ
1+γσ

−2
a , that is k∗0 ≥

σ2
ε

ziσ2
a

γ
1+γ . The

last inequality is only true when γ is sufficiently small, σε sufficiently small, zi sufficiently large, or

σa sufficiently large.

We can then apply Proposition 8 and map concavity and convexity of Ωit to the time domain.

A.13 Linearity of Data Depreciation

One property of the model that comes up in a few different places is that the depreciation of

knowledge (outflows) is approximately a linear function of the stock of knowledge Ωi,t. There are a

few different ways to establish this approximation formally. The three results that follow show that

the approximation error from a linear function is small i) when the stock of knowledge is small; ii)

when the state is not very volatile; and iii) when the stock of knowledge is large.

Lemma 3 (Low levels of Ωit) ∃ε > 0 such that ∀Ωit ∈ Bε(0), data outflow is approximately

linear and the approximation error is bounded from above by
ρ4σ2

θ

1+ρ2σ2
θσ

−2
a

ε2

1+ρ2σ2
θ(ε+σ−2

a )
. The approx-

imation error is small when ρ or σθ is small, or when Ωit is very close to 0.

Proof:
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Recall that data outflows are dΩ−it = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡[

(ρ2(Ωi,t + σ−2
a ))−1 + σ2

θ

]−1
be the nonlinear part of data outflows. Its first-order Taylor expansion

around 0 is g(Ωi,t) = g(0)+g′(0)Ωit+o(Ωit), with g′(0) = ρ2

(1+ρ2σ2
θσ

−2
a )2

. Thus
∂dΩ−

it
∂Ωit

= 1−g′(Ωi,t) ≈

1 − g′(0) for Ωit in a small open ball Bε(0), ε > 0, around 0. And the approximation error is

|o(Ωit)| =
ρ4σ2

θΩ2
it

(1+ρ2σ2
θσ

−2
a )[1+ρ2σ2

θ(Ωit+σ
−2
a )]

, which increases with Ωit and thus is bounded from above by

error term evaluated at ε, that is
ρ4σ2

θ

1+ρ2σ2
θσ

−2
a

ε2

1+ρ2σ2
θ(ε+σ−2

a )
.

Lemma 4 ∃εσ > 0 such that ∀σθ ∈ Bεσ(0), data outflows are approximately linear and the approx-

imation error is bounded from above by ρ4ε̄2(Ωit+σ
−2
a )2

1+ρ2ε2σ(Ωit+σ
−2
a )

. The approximation error is small when ρ

is small, or when σθ is close to 0.

Proof:

Recall that data outflows are dΩ−it = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. The non-linear

term g(Ωit) = [(ρ2(Ωit + σ−2
a ))−1 + σ2

θ ]
−1 is linear when σθ = 0. Therefore, ∃εσ > 0 such that

∀σθ ∈ Bεσ(0), g(Ωit) is approximately linear. The approximation error |g(Ωit) − ρ2(Ωit + σ−2
a )| is

increasing with εσ and reaches its maximum value at σθ = εσ, with value ρ4ε2σ(Ωit+σ
−2
a )2

1+ρ2ε̄2(Ωit+σ
−2
a )

.

Lemma 5 When Ωit � σ−2
θ , discounted data stock is very small relative to Ωit, so that data

outflows are approximately linear. The approximation error is small when ρ is small or when σθ is

sufficiently large.

Proof:

Recall that data outflows are dΩ−it = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡[

(ρ2(Ωi,t + σ−2
a ))−1 + σ2

θ

]−1
be the nonlinear part of data outflows. Since (ρ2(Ωit + σ−2

a ))−1 ≥ 0,

we have g(Ωit) ≤ σ−2
θ . Since Ωit ≥ 0, we have g(Ωit) ≥ (ρ−2σ2

a + σ2
θ)
−1. That is g(Ωit) ∈

[(ρ−2σ2
a + σ2

θ)
−1, σ−2

θ ]. For high levels of Ωit, Ωit � σ−2
θ generally holds. And for low levels of Ωit,

it holds when σθ is very large. The approximation error is |σ−2
θ −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1 | and

decreases with Ωit, reaching its minimum at Ωit = 0 with a value of ρ2

(1+ρ2σ2
θσ

−2
a )2

.
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B Numerical Examples

The section contains computational details, additional comparative statics and steady state numer-

ical analyses that illustrate how our data economy responds to changes in parameter values for one

or more firms.

Parameter Selection The results below are not calibrated.5 However, the share of aggregate

income paid to capital is commonly thought to be about 0.4. Since this is governed by the exponent

α, we set α = 0.4. For the rental rate on capital, we use a riskless rate of 3% , which is an average

3-month treasury rate over the last 40 years. The inverse demand curve parameters determine the

price elasticity of demand. We take γ and P̄ from the literature. Finally, we model the adjustment

cost for data ψ in the same was as others have the adjust cost of capital.This approach makes sense

because adusting one’s process to use more data typically involves the purchase of new capital, like

new computing and recording equipment and involves disruptive changes in firm practice, similar

to the disruption of working with new physical machinery.

Finally, we normalize the noise in each data point σε = 1. We can do this without loss of

generality because it is effectively a re-normalization of all the data-savviness parameter for all

firms {zi}. This is because for normal variables, having twice as many signals, each with twice the

variance, makes no difference to the mean or variance of the agent’s forecast. As long as we ignore

any integer problems with the number of signals, the amount of information conveyed per signal is

irrelevant. What matters is the total amount of information conveyed.

B.1 Computational Procedure

No-Trade Value Function Approximation

Figure 2 solves for the dynamic transition path when firms do not trade data.

Value Function Iteration: To solve for the value function, make a grid a values for Ω (state

variable) and k (choice variable). Guess functions V0(Ω) and P0(Ω) on this grid. Guess a vector

5To calibrate the model, one could match the following moments of the data. The capital-output ratio tells us
something about the average productivity, which would be governed by a parameter like Ā, among others. The
variance of GDP and the capital stock, each relative to its mean, var(Kt)/mean(Kt) and var(Yt)/mean(Yt), are
each informative about variance of the shocks to the model, such as σ2

θ and σ2
a.
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of ones for each. In an outer loop, iterate until the pricing function approximation converges. In

an inner loop, given a candidate pricing function, iterate until the value function approximation

converges.

Forward Iteration: Solving for the value function as described above also gives a policy function

for k(Ω) and price function P (Ω). Linearly interpolate the approximations to these functions.

Specify some initial condition Ω0. For each t until T : Determine the choice of kt and price at this

state Ωt. Calculate Ωt+1 from Ωt and kt.

Trade Value Function Approximation

Figure 4 solves for dynamic transition path when firms are allowed to buy/sell data for fixed final

goods and data prices. We take the same steps as written above, but now optimize over ω rather

then k.

Heterogeneous Firm Steady State Calculation

Figure 5 solves for the steady state equilibrium with two types of firms, in which both P and π are

endogenous.
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