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Abstract

We combine novel data and theory to show that asymmetric information among
investors is an important friction in primary sovereign debt markets. We exploit a
unique dataset of Mexican auctions for Cetes bonds. Auctions are pay-your-bid, and
our data includes all bids made by all individual bidders from 2001 to 2017. We doc-
ument that the largest bidders tend to bid at higher prices (that is, their bids are more
likely to be accepted), but on average they do not pay more for the bonds they buy
(that is, their accepted bids are executed at the average price). We construct a model
in which investors can differ in wealth, risk-aversion, market power and/or informa-
tion. Only heterogeneous information can qualitatively account for our findings. We
calibrate the model and find that heterogenous information about rare disasters can
quantitatively match key aspects of Cetes yield dynamics and bidding behavior.
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1 Introduction

Governments finance their fiscal needs by selling debt claims in sovereign bond auctions
(the primary market for government bonds). Primary market prices experience periods
of high volatility and high average yields, often termed crises, and more tranquil peri-
ods. This is particularly true for emerging economies, such as Mexico, where sovereign
debt pays a substantial premium on the order of the equity risk premium even when ac-
counting for default losses (?)). In this paper we introduce a unique dataset on primary
markets for Cetes bonds in Mexico for the period June 2001 - September 2017 to study
the determination of bond prices at auction. Cetes are domestically-denominated zero-
coupon bonds which are sold at small face values and in large lots to a wide variety of
investors. They are the most important public debt instrument in Mexico, representing
25% of all government securities in 2001.In the sample period, they are auctioned weekly
using a “pay-as-you-bid” protocol.

Figure 1 shows the real marginal price in Cetes auctions (computed as the annual yield
deflated by the yearly CPI inflation), for the four most common maturities of 28, 91, 182
and 364 days. Our sample a is relatively tranquil period for Mexico: prices are high
on average and unconditional volatility is moderate, (at least relative to the prior two
decades which each include a debt crisis. Conditional volatility is particularly low: prices
change in small increments and are well predicted by the previous week’s marginal price.

Figure 1: Marginal Prices
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Our goal is to understand the bidding behavior and asymmetries among investors that
underlie these prices. We collect bid-level data that includes information on the quantities
and prices bid for each investor at each auction. This allows us to document several key
facts. First, there were on average 20 bidders in each auction, with each bidder submitting
an average of three bids per auction. The large number of bids and bidders suggest that
the auctions were fairly competitive. Second, the share of an investor’s bids that are
accepted, which we label the in-the-money share (ITM share), differs substantially across
bidders. The largest bidder at an auction has on average 86% of bids accepted. The
remaining bidders have only 33% of their bids accepted on average. Third, the largest
bidders do not overpay on average relative to the remaining bidders, where we measure
overpayment as the ratio of average price paid to the marginal price.

The combination of the last two facts is both surprising and informative about investor
hetereogeneity. It is surprising because the largest bidders can only have a higher ITM
share if they are bidding at higher prices. However, since marginal prices are determined
by other investors’ bids, this bidding aggression would seem to lead to overpaying on
average. What can account for this apparent inconsistency? And, what does it suggest
about the nature of the shocks driving primary market prices? Answering these questions
is relevant to understanding the fundamental determinants of sovereign bond prices in
primary markets, critical not only for government funding but also for economic perfor-
mance (?)).

We build a model that can accommodate a wide array of heterogeneity across in-
vestors, and asks which type of heterogeneity is most promising in explaining these pat-
terns. The model we propose is a discriminatory-price (DP) auction that captures the
protocol used by Mexico to sell bonds in primary markets during this period. We assume
investors have CRRA preferences and differ in their wealth, their market power, their risk
aversion and their information about the quality of the bond (as measured by its default
probability). This model features a particularly tractable framework to study information
heterogeneity by considering the Walrasian limit where bidders act as price-takers, yet
being amenable to discuss the role of heterogenous market power when information is
symmetric.

In the model, as in the data, investors submit multiple bids consisting of a price and
a commitment to buy a given number of bonds at the bid price. The government runs
down the list of bids in descending order of price until it obtains the desired revenue.
This protocol thus implies a lowest-accepted, or marginal, price, with all bids at prices
above the marginal price also being accepted. We allow for a demand shock about which
there is common uncertainty and a quality shock (default risk) about which there can be
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heterogenous uncertainty. To decide on an optimal bidding strategy, an investor must
forecast the distribution of marginal prices, which requires forecasts of both the demand
and the quality shocks. This is an easier task for informed investors, who we assume
know the probability of default and hence know which price schedule will ensue. Unin-
formed investors, on the other hand, do not know the quality shock and thus do not know
which of the possible marginal price schedules will be operative. As a result, they face
more extreme price risk : bids made at high prices will be accepted even if the probability
of default is high and the marginal price is low. This risk can be avoided by not bidding
at high prices, but this implies not buying bonds with low default probability, not earning
a risk premium on infra-marginal bond purchases.

We find that it is not possible to account for the differences in bidding behavior that we
document between the largest bidders and the rest relying only on the first three sources
of heterogeneity we consider. If largest bidders were wealthier, they would simply scale
their bids with wealth, buying more bonds, but not featuring higher ITM relative to the
rest. If largest bidders had more market power, they would have an incentive to shade
bids at higher prices, and should display lower ITM than the rest, not higher. Finally,
differences in risk aversion could in principle accommodate large differences in the ITM
share if largest bidders were bidding more aggressively at high prices, but this would
mean they are more willing to pay more than the rest for bonds, which is inconsistent
with largest bidders not overpaying relative to the rest.

Asymmetric information about the quality of bonds is the only source of heterogene-
ity with the potential to generate the qualitative patterns we have documented. If largest
bidders were better informed about the bond quality, they would have a natural incen-
tive to bid more in response to positive information and less to negative. This makes less
informed investors more timid about bidding at high prices. This timidity comes from
adverse selection with respect to the bond quality and creates a winner’s curse effect: the
concern of uninformed investors to be only successful in winning their bid (and paying a
high price) when the bond is low quality. As a response, less informed investors tend to
bid mostly at lower prices, knowing they will buy less frequently. Asymmetric informa-
tion is then consistent with informed bidders displaying a larger ITM, as they buy both
good and bad bonds. It is also consistent with informed bidders not overpaying in aver-
age: when bonds are good quality information induces higher marginal prices, and hence
buying at higher prices (what increases the ITM) does not imply overpaying. At the same
time, when bonds are good quality informed investors do not bid at high prices, then not
overpaying either. Since less informed investors largely bid at low prices, for low quality
bonds, they do so at prices similar to the informed investors.
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Not does only this logic suggests that asymmetric information is an important friction
but also that there is a sizable mass of both informed and uninformed bidders. This is
because informed investors must be prevalent enough to largely clear the market when
the bond quality is high, to raise the marginal price enough to avoid overpayment. At the
same time, they cannot be so prevalent that there are small differences between the ITM
shares of the largest bidders and the rest. To accommodate our finding it is needed that
the share of informed bidders is intermediate so the adverse selection effect for the less
informed bidders is strong enough to have a large impact on their bidding.

This evidence that asymmetric information plays an important role in sovereign debt
primary markets is in principle surprising, as it is commonly assumed that information
about a country’s finances is publicly and widely available. To examine the nature of
this asymmetry in greater detail, we calibrate a version of the model to Cetes data and
explore the set of minimum parameters about the information structure that allows us to
match quantitatively both the dynamic behavior of marginal prices and the heterogenous
behavior of investors that we document.

As we discussed, a critical dynamic property of Cetes marginal prices is the relatively
high unconditional volatility and low conditional volatility. Based on this piece of evi-
dence, we make a distinction in the model between publicly observed information, which
determines a public state, and privately observed information, which leads to the infor-
mation heterogeneity we uncover. For the public information we have in mind standard
fundamentals, such as GDP growth or inflation, or the past week’s auction prices. For
the privately observed information we have in mind information that is difficult or costly
to acquire, process and evaluate. Within the Mexican context, a particularly pertinent
example is knowledge of the inner workings of the government, such as the financial
negotiations that took place between Clinton and Congress over the 1995 bailout.1

Our calibration shows that a surprisingly small amount of information heterogene-
ity of this sort is sufficient to generate a large difference in bidding behavior consistent
with a very low conditional uncertainty, especially when the government’s debt is close to
risk-free. However, when the average default risk is modestly higher, a stronger adverse
selection effect is needed to induce the same level of timidity by uninformed investors,
but without generating counterfactual levels of unconditional volatility of prices. The

1On January 30, 1995, at exactly the moment when the Mexican government was informing the Clinton
Administration that without an emergency injection of funds it would have to default, the Speaker of the
House, Newt Gingrich, was informing the Clinton Administration that the bailout bill was stalled in the
Congress. See Chun, John H. ”Post-Modern Sovereign Debt Crisis: Did Mexico Need an International
Bankruptcy Forum.” Fordham L. Rev. 64 (1995): 2647. The relevance of political uncertainty for sovereign
default in emerging markets has been also highlighted by ?).
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version of our model that best achieves this result includes a small probability of an ex-
tremely bad (black swan) event of the sort seen in Mexico during the 1990s and 1980s.2

When we assume that this low-probability bad event has not occurred in the sample data
(as it did not occur during the timeframe we consider), as in the ”peso-problem” litera-
ture on asset pricing anomalies, we generate results that are quite close to the data within
a very sparse model.3

This combination of a fairly large amount of unconditional uncertainty coming through
changes in public information, and the low amount of conditional uncertainty coming
through the combination of heterogeneous information about a rare disaster, along with
a common modest degree of demand uncertainty, provides a plausible set of sources for
both Cetes price movements and bidding behavior. This is relevant because we show in
the model that intermediate levels of asymmetric information increase the yield on bonds
vis-a-vis situations in which information is more symmetric across investors.

Related Literature: Our paper fills an important gap in the sovereign debt literature,
which has typically focused on bond yields in secondary market, but has neglected the
specifics of how a government sells its bonds and the role of investors heterogeneity in
general but asymmetric information in particular, in determining bonds prices in primary
markets.4 To focus squarely on the determination of primary market prices, we neglect
some of the issues studied in the literature, but expand on others. First, most papers
study sovereign default as the outcome of governments’ strategic choice, but use a parsi-
monious model of investor optimization (see, for instance, ?), ?), ?)). We take the opposite
route, and focus on the auction mechanics and investors choices while entirely neglecting
strategic considerations on the part of the government.5

Second, most of the literature generates a fixed mapping between the bond quality
and its price by assuming that investors are risk neutral and then requiring that the re-
turn, adjusted for the probability of default, equals the risk-free rate. While there has been
some attention to the impact of the timing of decisions and of debt maturity in sovereign
markets (see ?)), the actual mechanics of how sovereign bonds are sold in reality through
auctions and their impact on observed prices has been largely ignored. Our paper not

2Disaster risk has been argued to play a large role in both asset pricing and macroeconomic fluctuations.
See for example ?), ?) and ?).

3A peso-problem refers to a circumstance in which some infrequent or unprecedented event, such as an
economic disaster, may have a substantial impact on asset prices. However, the infrequency of the event
makes it hard to estimate its empirical probability and it even may not have occurred in the time series
being considered despite affecting the assessments of the investors. See for example ?), ?), ?), and ?).

4Exceptions are ?) and ?), who study how the liquidity of bonds in secondary markets affect their price
in primary markets.

5See for example ?), the review articles by ?) and ?), and the recent quantitative literature by ?), ?), ?), ?).
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only focuses on the neglected roles of auction mechanics and information heterogeneity,
but argues that the interaction of these factors along with investor risk aversion are driv-
ing pricing and bidding in primary markets. The nature of the information shocks, both
public and private, heterogeneous and common, is consistent with the referred literature
on rare disasters and the “peso-problem”.

The paper also contributes theoretically on circumventing some of the challenges that
standard auction models face in accommodating asymmetric information.6 We propose
a novel auction model with three key characteristics: (i) the good being auctioned is per-
fectly divisible, (ii) the number of bidders is large, and (iii) there is both uncertainty about
the good quality and about the mass of investors who participate in the auction. Given
these three characteristics, the price-quantity strategic aspects of standard auction theory
become less relevant, and a price-taking, or Walrasian, analysis emerges as a good ap-
proximation.7 Finally, our paper is related to a recent effort to empirically document the
implications of information sharing across dealers on the revenue of governments (see
?)).

In the next section we describe our novel dataset on Cetes auctions and describe our
main findings on bidding behavior and outcomes. In Section 3 we provide a tractable
model of discriminatory-price auction with several sources of bidder heterogeneity. In
Section 4 we show that only information asymmetry can qualitatively accommodate the
patterns of bidding behavior that we uncover. Once we have identified asymmetric in-
formation as the main friction in primary markets, we explore its implications for bond
prices in Section 5. Finally, in Section 6 we calibrate the model to match relevant moments
on price dynamics and bidding behavior in order to understand the quantitative extent
and nature of asymmetric information for the Mexican case. Section 7 concludes.

6For a discussion see, for instance, ?) who characterize an optimal mechanism in the context of initial
public offering auctions under pure common values in the presence of better informed dealers (investment
banks) and retail investors. Another example is ?), who study a divisible good uniform-price auction with
risk neutral bidders with asymmetric dispersed information in linear strategies.

7Recent auction literature shows that price-taking arises as the number of bidders get large. A recent
example is ?), who show that the equilibria of large double auctions with correlated private values are
essentially fully revealing and approximate price-taking behavior when the number of bidders goes to
infinity. Another is ?) who show a similar result when bidders have affiliated values and prices are on a
fine grid.
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2 Institutional Background and Data

2.1 Cetes Bonds

We study auctions of Mexican Federal Treasury Bills (Cetes), which are zero-coupon pure
discount bonds with typical maturities of 28, 91, 182 and 364 days. They are the leading
instrument in Mexican money markets and main source of federal government funding
since 1978. Since its inception, the primary market for Cetes has consisted of public auc-
tions, with the auction protocols alternating between uniform-price and discriminatory-
price since 1978. Our data comes is from the archives of the Mexican central bank and
we are the first to compile it. We focus on the period June 2001 to September 2017 during
which Cetes of all maturities were regularly sold in weekly pay-your-bid auctions.8 We
have data on all bids submitted (not just those that were executed) and all bidders. More-
over, we have a numeric identifier that allows us to construct the set of submitted bids for
each bidder.

2.2 Basic Facts about Prices and Bids

We observe a total of 2,717 Cetes auctions. On average there are 20 bidders at each auc-
tion, with each bidder submitting an average of 3 bids per auction. Table 1 shows sum-
mary statistics for each maturity.

Table 1: Summary Data on Cetes Auctions. 2001-2017

Maturity (days) Auctions Bidders per auction Bids per auction

28 857 19.4 59.6
91 857 19.2 64.8

182 789 17.2 60.0
364 214 17.3 66.7

As a first step, we establish a number of basic facts about prices and bids that allow
us to discriminate between sources of investor heterogeneity in our model. During the
sample period, Mexico experienced relatively stable inflation and macroeconomic condi-
tions. This is reflected in relatively low average yields and mild conditional volatility of
marginal auction prices. Table 1 shows the time-series moments of marginal prices (MP)

8In October 5, 2017 Mexico switched protocol to uniform-price auctions.
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by maturity. We report the autocorrelation between marginal prices at subsequent auc-
tions as a measure of conditional uncertainty. 364-day bonds are auctioned monthly, all
other maturities are auctioned weekly.

Table 2: Time series properties of marginal prices

Maturity Avg. MP St. Dev. MP Autocorrelation MP

28 0.984 0.017 0.984
91 0.983 0.018 0.983

182 0.982 0.018 0.992
364 0.978 0.019 0.956

The high degree of autocorrelation suggests that the unconditional uncertainty of the
marginal price (its standard deviation) is much higher than the uncertainty conditional
on the prior week’s auction results. To further characterize this uncertainty, we run a
regression of marginal prices 28-day bonds on a constant and one lag,

p28dt = β0 + β1p
28d
t−1 + εt. (1)

We estimate β1 = 0.98, which implies that lagged prices are very informative.9 This is not
surprising because auctions take place every week. We also estimate R2 = 0.97, which
implies that the conditional uncertainty is indeed quite low during this period. A naive
interpretation of this result might suggest that publicly observable prices from previous
weeks encode all relevant information for pricing bonds in the current auction. However,
we will show that even a small amount of conditional uncertainty can have significant
effects on bidding strategies and prices.

Next we establish basic facts about bidding patterns. One drawback of our data is that
the numeric bidder identifier is auction-specific, so that we cannot track bidders across
auctions. To uncover heterogenous bidding behavior, we compare the bidding behavior
of the largest bidder at an auction to all other bidders. The largest bidder is the bid-
der who demands the most bonds, as measured by bid price multplied by bid amounts.
We make this distinction anticipating certain findings from our model. In particular, the
largest bidder would naturally stand out as (i) the wealthiest, (ii) the one with most mar-
ket power, (iii) the least risk-averse, and (iv) the one with the strongest incentive to be
informed, where each of these factors are potential sources heterogeneity in our model.

9As can be guessed from Figure 1 and Table 5, the result for other maturities is very similar.
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Figure 2 shows a histogram of the fraction of bids that are accepted for the largest bid-
der at an auction and all other bidders, aggregated across all auctions and maturities. We
call the fraction of accepted bids the in-the-money share (the ITM). For the largest bidder,
the mode of the ITM is 1 (typically, all of their bids are accepted), but there is much more
dispersion for smaller bidders. On average, the largest investors have an average 84% of
their bids executed, while only 33% of the rest of the bidders’ bids are executed.

Figure 2: In the Money Shares Largest vs. Rest
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What accounts for differences in in-the-money shares across bidders? One possibility
is that large bidders systematically bid higher prices. To investigate this issue, we con-
struct a measure of overpayment, defined as the ratio of the average price paid (weighted
by bids executed at each price) to the marginal price. Since all bids above the marginal
price are accepted, a ratio greater than one indicates that the bidder overpaid for at least
some bids. In Figure 3 we show a histogram (for all auctions and all maturities) of the
overpayment for the largest bidder and the rest of bidders. We find that the distribution
of overpayment is very similar for large bidders and other bidders. Hence it is unlikely
that excessively high bids by the largest bidders account for the observed differences in
in-the-money shares.

The combination of aggressive bidding by the largest bidder (as measured by the dif-
ferences in-the-money shares) without concomitant differences in overpaying is puzzling:
in a pay-your bid auction, having more bids accepted is typically associated with higher
bids. In the next section we construct a model that can replicate these facts by relying on
asymmetric information about default risk.
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Figure 3: Ratio between Weighted Price Paid and the Marginal Price
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3 A Model of the Primary Debt Market

We now construct a model of sovereign debt auctions that allows for rich heterogeneity
across bidders, including differences in wealth, risk aversion, market power, and infor-
mation. We find that only information asymmetry can rationalize the bidding patterns
discussed in the previous section.

3.1 Environment

There is a single period with two dates (t = 1, 2), and a single good (the numeraire). The
economy is populated by a government and a measure one of risk-averse investors. In-
vestors consume only in period two. Their objective is to maximize their expected utility
over second-period consumption given a strictly concave flow utility function that satis-
fies the Inada conditions. Each investor has wealth Wj in period one and can either invest
it in a risk-free bond (storage) or the risky bond being auctioned by the government. There
is no borrowing. The government is modeled mechanically: it needs to raise D units of
the numeraire good in period one by auctioning multiple units of a bond that promises re-
payment in period two. Without loss of generality (and like Cetes), bonds are zero-coupon
and pure-discount: each bond promises a claim to one unit of the numeraire good in the
period two. Bonds are risky in that the government may default on its promises. If the
government defaults, investors cannot recover any of their investment.
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The government’s default probability κθ is random and determined by the realization
of an exogenous state of the world θ ∈ {g, b}. We assume that κg < κb and that the ex-
ante probability of each state is given by f(g) and f(b) respectively, with f(g) + f(b) = 1.
Since the default probability determines the expected repayment of the bond, we refer
to the realization of κ as a quality shock. The bond with default probability κg is a good
quality bond and the one with default probability κb is a bad quality bond. In our simple
one-period model, we capture different bond maturities by the length of the period. If we
view defaults as random events that occur with some (constant) arrival rate, then longer
maturities are associated with higher default probabilities κθ.

To allow for the fact that not all bids are always accepted, we introduce demand shocks.
Specifically, we assume that a random share of investors η cannot participate in the auc-
tion and instead invests in the risk-free bond only. The demand shock η is discrete and
lives on an arbitrarily fine discrete grid H ≡ {η0, ..., ηM} with length M . We index the
demand shock by k ∈ {0,M}. Without loss of generality, let ηk be strictly increasing in k
and denote the probability of ηk by h(ηk).

We refer to s = (θ, η) as the state of the world and to the set of states by S = {g, b}×H.
The cumulative distribution function over states is denoted by Γ. Consistent with our
mechanical modeling of the government we assume that it observes neither θ nor η before
the auction. This precludes signaling by the government.

Remark 1. We later consider a repeated version of the static model in which the possible realiza-
tions of θ are governed by an aggregate shock process that is publicly observed at the end of the
previous period. While this process allows us to account for dynamic evolution of bond prices, it
does not impact the analysis of the single-period auction. Hence we abstract from it for now.

Remark 2. A natural interpretation of η is that it represents the fraction of investors who suffer
a liquidity or hedging shock. Another interpretation is that some investors randomly have access
to more favorable investment opportunities and this do not invest in bonds. In the context of the
auction literature, the demand shock η can be therefore be thought of as a correlated private value
shock, while the quality shock θ is a common value shock. The demand shock can also be thought
as a supply shock to the government financing needs Dψ, where ψ = 1/(1− η).

3.2 Investor Heterogeneity

Investors can differ in terms of their fundamental type and their information type. The
fundamental type j ∈ {1, 2} indexes both the investor’s utility function Uj over second pe-
riod consumption and their initial wealth Wj , capturing differences in both risk-aversion
and wealth. Further, higher wealth can also capture the extent of market power of the
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bidder. To hold down notational clutter we will only consider two fundamental types at
a time; thus we will assume that either they have the same preferences over consumption
but differ in terms of their wealth, or that they have the same wealth level but differ in
their preferences over consumption. We will also assume for simplicity that there are an
equal mass of the two fundamental types. This does not affect our results.

The information type refers to whether investors are informed (I) about θ and thus
know its realization, or uninformed (U ) about θ and do not know its realization. We de-
note by i ∈ {I, U} the type of investor and by n ∈ [0, 1] the share of informed investors.
The remaining share 1 − n consists of uninformed investors. The fraction n determines
the degree of asymmetric information in the sense that it measures the relative mass of in-
vestors with superior information about the quality of the bond. No investor is informed
about the demand shock η, which means that all investors face some uncertainty.

To reduce notational clutter, we assume that there is no correlation between funda-
mental and information types and that both fundamental and information types are sym-
metrically impacted by η.

3.3 Auction Protocol and Strategies

We now describe the discriminatory-price auction protocol used to sell bonds. A bid is
a pair {P̃ , B̃} representing a commitment to purchase B̃ units of the bond at a price P̃ ,
should the government decide to accept the bid. Each investor is free to submit as many
bids as desired at the beginning of the auction. There is no short-selling, B̃ ≥ 0. The
government treats each bid independently, sorts all received bids from the highest to
the lowest bid price, and accepts all bids in descending price-order until it raises D in
revenue. We refer to the lowest accepted price in state s as the state-contingent marginal
price P (s). All bids at prices above the marginal price are accepted, all bids below are
rejected. We refer to bids at or above the marginal price as in the money, and to bids below
the marginal price as out of the money.10

Since bonds pay one unit of the numeraire after repayment and zero after default, the
range of feasible prices is [0, 1]. A bidding strategy for an investors maps any price in [0, 1]

into a weakly positive bid quantity. Since all prices above the marginal price are accepted

10If there is excess demand at the marginal price, we assume that the government rations bids pro-rata.
In the model, this does not occur in equilibrium. In our data, there is some rationing because prices are
restricted to a fine grid. However the extent of rationing of the bids at the marginal price is roughly uni-
formly distributed between 0 and 1, suggesting that it is not playing a key role. As rounding bids does
not add anything to our insights, we follow the literature that assumes the set of possible bid prices is in a
continuum, as in the seminal work of ?). For a treatment of bidders restricted to submit discrete bidpoints
in a uniform-price auction of a perfectly divisible good see ?).
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and bids are executed at the bid price, it is without loss of generality to restrict attention
to bidding strategies that assign zero bids to any price that is not marginal in at least one
state of the world. This simplification allows us to define bidding strategies as follows.

Let P (s) denote the marginal price in state s = (θ, η), and define P to be the set of
marginal prices. A bidding strategy for an uninformed investor of fundamental type j is a
functionBU

j (s) denoting the number of bids at marginal price P (s).A bidding strategy for
an informed investor of fundamental type j is a function BI

j (s|θ̂(s)) denoting the number
of bids at marginal price P (s), where θ̂(s) is the realized quality shock associated with
state s that is observed by the informed investor. Observe that bids in any two states
with a common price are perfect substitutes because they are accepted and rejected in the
identical set of states. The precise allocation of bids across such states is thus irrelevant.
A useful

Since there are two fundamental types with mass 1
2

each, the primary market clearing
condition which ensures that the government raises revenues equal to D in state s is

D = (1− η)

1

2

∑
j∈{1,2}

∑
s̃:P (s̃)≥P (s)

[
nBI

j (s̃|θ̂(s̃)) + (1− n)BU
j (s̃)

]
P (s̃)

 . (2)

The left-hand side is the debt level, the right-hand side is the sum over bids submitted at
prices above the state-contingent marginal price P (s), evaluated at the bid price P (s̃).

3.4 In-the-money shares and average prices paid

To map bids into the data moments described above, we define the in-the-money share
ITM of informed investors in state [θ, η] as

ITM I
j (θ, η) =

∑
P (θ,η̂)≥P (θ,η)B

I
j (θ, η̂)h(η̂)∑

BI
j (θ, η̂)h(η̂)

(3)

The big-weighted average price paid by informed investors in state (θ, η) is

AP I
j (θ, η) =

∑
P (θ,η̂)≥P (θ,η)

P (θ, η̂)
BI
j (θ, η̂)h(η̂)∑
BI
j (θ, η̂)h(η̂)

. (4)

Overpayment is the ratio between the weighted average price and the marginal price,

OverpaymentIj =
AP I

j (θ, η)

P (θ, η)
(5)
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The analogous definitions for uninformed investors are

ITMU
j (θ, η) =

∑
P (θ̂,η̂)≥P (θ,η)B

U
j (θ̂, η̂)f(θ̂)h(η̂)∑

BU
j (θ̂, η̂)f(θ̂)h(η̂)

, (6)

APU
j (θ, η) =

∑
P (θ̂,η̂)≥P (θ,η)

P (θ̂, η̂)
BU
j (θ̂, η̂)f(θ̂)h(η̂)∑
BU
j (θ̂, η̂)f(θ̂)h(η̂)

, (7)

and

OverpaymentUj =
APU

j (θ, η)

P (θ, η)
(8)

3.5 Uninformed Investor Decision Problem

We start defining the problem of the uninformed investor. If the government ends up
defaulting in the second period, the uninformed investor of fundamental type j simply
consumes the unit payoff from his risk-free bonds, which we denote by BURF,j(s). If the
government does not default, then the investor additionally consumes the unit payoff
from his total holdings of the risky bond, which we denote by BUR,j(s).Hence the expected
payoff of an uninformed investor of fundamental type j is the probability-weighted sum
over conditional payoffs in each state (θ, η), i.e.

V U
j =

∑
θ∈{g,b}

∑
η∈H

{
U(BURF,j([θ, η]))κθ + U

(
BURF,j([θ, η]) + BUR,j([θ, η])

)
(1− κθ)

}
f(θ)h(η). (9)

The total number of risky bonds purchased by an uninformed bidder in each state, BUR,j(s),
is the sum of in-the-money bids,

BUR,j(s) =
∑

s′:P (s′)≥P (s)

BU
j (s′). (10)

The total expenditure on risky bonds determines the investor’s holding of the risk-free
bond BURF,j(s). Since the price at which a bid is executed depends on the state of the
world s, so does the expenditure on risky bonds. Given that the price of risk-free bonds
is normalized to one, we have

BURF,j(s) = Wj −

 ∑
s′:P (s′)≥P (s)

BU
j (s′)P (s′)

 . (11)
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The short-sale and borrowing constraints for an uninformed investor are:

BU
j (s) ≥ 0 and BURF,j(s) ≥ 0 ∀s ∈ S. (12)

3.6 Informed Investor Decision Problem

Informed investors make bids conditional on the realized quality shock θ ∈ {g, b} since
they can observe it by virtue of being informed. Hence we can restrict attention to bid
functions of the form BI

j (s, θ). Define BIR,j(s, θ) and BIRF,j(s, θ) to be the total purchases of
the risky bond and the risk-free bond in state s = [θ, η]. respectively, given that θ(s) = θ

denotes the quality shock associated with state s. The expected payoff to an informed
investor of fundamental type j is

V I
j =

∑
η∈H

{
U(BIRF,j([θ, η], θ))κθ + U

(
BIRF,j([θ, η], θ) + BIR,j([θ, η], θ)

)
(1− κθ)

}
h(η), ∀θ ∈ {g, b}.

(13)
The total purchases of risky bonds are

BIR,j(s, θ) =
∑

s′:P (s′)≥P (s)

BI
j (s
′, θ), ∀θ ∈ {g, b}, (14)

and the holdings of the risk-free bond are

BIRF,j(s, θ) = Wj −

 ∑
s′:P (s′)≥P (s)

BI
j (s
′, θ)P (s′)

 , ∀θ ∈ {g, b}, (15)

The short-sale and borrowing constraints are

BI
j (s, θ) ≥ 0 and BIRF,j(s, θ) ≥ 0 ∀s ∈ S and θ ∈ {g, b}. (16)

3.7 Equilibrium Definition

The definition of an equilibrium is as follows.

Definition 1 (Auction Equilibrium). An auction equilibrium is a price schedule P : S → [0, 1],

and bidding fuctions BU
j : S → [0,∞) and BI

j : S × {g, b} → [0,∞) for j ∈ {1, 2}, such that

1. Uninformed investors choose BU
j (s) ∀s ∈ S to maximize (9) subject to (10), (11) and (12).

2. Informed investors choose BI
j (s, θ) ∀s ∈ S and each realized θ ∈ {g, b} to maximize (13)

subject to (14), (15) and (16).

16



3. The auction-clearing condition (2) is satisfied for all s ∈ S,

4 Role of Investor Heterogeneity on Auction Equilibrium

We can now characterize some properties of the equilibrium.

Proposition 1. The price function P (θ, η) is strictly decreasing in η conditional on θ.

Proof. Monotonicity in η follows directly from the auction-clearing condition for a real-
ization of θ.

Corollary 1. A bid made at price P (θ, η) is in-the-money for all η̂ ≥ η given θ. If there exists a η̄
such that P (θ̄, η̄) = P (θ, η) for θ̄ 6= θ, then it is also in-the-money for all η̂ ≥ η̄ given θ̄.

4.1 Investors’ Optimal Bidding - Information Types

The informed investor’s problem is relatively simply because they know the realized
quality shock, which we denote here as θ = θ∗. The first-order condition for bidBI

j ([θ
∗, η∗])

for each state s = [θ∗, η∗] is

∑
η


−U ′j(BIRF,j([θ∗, η]))κθ∗P ([θ∗, η∗])

+U ′j

(
BIRF,j([θ∗, η])

+BIR,j([θ∗, η])

)
(1− κθ∗)(1− P ([θ∗, η∗]))

 I {P ([θ∗, η∗]) ≥ P ([θ∗, η]))}h(η)

− χIj ([θ∗, η∗]) = 0, ∀θ∗ ∈ {g, b}. (17)

where χIj (s) is the multiplier on the nonnegativity constraint for the short-sale constraint,
and I {·} is an indicator function.11 The marginal price P ([θ∗, η]) determines the set of
states the bid is in the money, but not the price at which each accepted bid is executed, as
all in-the-money bids are executed at the bid price in the discriminatory-price protocol.

Notice that the sum over the indicator function indicates the “in-the-money” share of
bids for informed investors. A bid made for state [θ∗, η∗] is not in the money when η is
such that P [θ∗, η∗] < P [θ∗, η], which according to Proposition 1 corresponds to states for
which η < η∗. This implies that all bids are in the money only when η = ηM . For all η < ηM

a fraction of bids will not be in the money. For uninformed investors of fundamental type
j, the first-order conditions for BU

j ([θ∗, η∗]), given that uninformed investors do not know

11Notice that the constraint that risk-free bonds have to be non-negative is never binding given the as-
sumption of Inada conditions for preferences.
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the realized state θ = θ∗ is,

∑
θ∈{g,b}

∑
η


−U ′j(BURF,j([θ, η]))κθ∗P ([θ∗, η∗])

+U ′j

(
BURF,j([θ, η])

+BUR,j([θ, η])

)
(1− κθ∗)(1− P ([θ∗, η∗]))

×
I {P ([θ∗, η∗]) ≥ P ([θ, η]))} f(θ)h(η) − χUj ([θ∗, η∗]) = 0.

Comparing this expression to the informed investors’ first-order condition, it is clear that
the uninformed face the same basic tradeoffs as the informed, but take expectations over
all possible quality shocks, not only the realized one. As we show below, this leads to a
form of adverse selection: when bidding at high marginal prices, uninformed investors
also expect these bids to be accepted after bad quality shocks, leading to a downward re-
vision of the asset quality they expect to acquire. Uninformed investors thus have weaker
marginal incentives to bid at high prices than informed investors.

As we discuss later, when analyzing the auction equilibrium with asymmetric infor-
mation, it is possible that in-the-money shares are different across information types, and
while the average prices that they pay conditional on buying is similar.

4.2 Investors’ Optimal Bidding - Fundamental Types

Here we show that fundamental type differences cannot accommodate the bidding pat-
tern heterogeneity we document in Cetes data.

Differences in Wealth: How does differences in wealth affect the bidding behavior of
an investor of information type i when there is symmetric information (all investors have
the same information type)? As preferences are constant-relative-risk-aversion (CRRA),
it turns out that wealth impacts on bidding behavior only by scaling up bids.

Proposition 2. With CRRA preferences, if Bi
j([θ

∗, η∗]) is a solution to the first-order condition
for a bidder of type (i, j) then the solution to the problem of a (i, j′) type bidder is

Bi
j′([θ

∗, η∗]) = αBi
j([θ

∗, η∗])

where α = Wj′/Wj .

Proof. Define Wj′ = αWj . By scaling all bids Bi
j([θ

∗, η∗]) by α then, by the property of
CRRA utility functions U ′j′(BIRF,j′([θ∗, η∗])) = αU ′j(BIRF,j([θ∗, η∗])) (from equation 15) and
U ′j′(BIRF,j′([θ∗, η∗])+BIR,j′([θ∗, η∗])) = αU ′j(BIRF,j([θ∗, η∗])+BIR,j′([θ∗, η∗])) (from equation 14).

18



Replacing these results in the first-order condition for informed investors in (17) it is clear
that scaling all bids by α is indeed optimal when wealth is scaled by α.

From applying this result to equation (3) or (6) it is clear that a wealthier bidder would
bid and buy more bonds, but not a larger fraction of his total bids, which is the same across
wealth levels, state by state.

Differences in Market Power: One may wonder, however, whether the largest bidder,
by being potentially wealthier and buying a larger fraction of the auction. If one of the
bidders were sufficiently large to impact on the price, she would internalize the fact that
by bidding less at a price P (θ, η) she would be lowering the demand in all states for
which that bid is in-the-money (for all states η′ > η for a given θ). In equilibrium the
marginal price schedule from this point on would decline to increase the demand for
bonds by other, smaller, price-taker, bidders. This additional term in the large bidder first-
order condition would encourage her to bid less, especially at the very top of the price
schedule where it would depress the largest number of prices in the schedule. However,
the fact that she had bid less at the top would mean that the large bidder’s cumulative
purchases would be lower, and this in term would give a stronger incentive to bid more at
lower prices through the terms in (17). These two effects (bid less than price takers at low
values of η with high prices and more at high values of η with low prices) would imply
that bidders large enough to have an impact on prices would display lower in-the-money
share than their smaller, price-taker, counterparts. We summarize these insights in the
next Corollary

Corollary 2. With CRRA preferences, wealthier bidders who have market power as a result, do
not have a larger in-the-money share.

Differences in Risk Aversion: Can differences in risk aversion accommodate the bid-
ding patterns we document in Cetes data? To see why this cannot be the case, denote the
coefficient of risk aversion by σ and assume the fundamental type 1 is more risk averse
than type 2, this is σ1 > σ2.

Naturally, more risk averse individuals will demand less risky bonds. To see this,
assume otherwise, that the two types bid the same, this is Bi

2([θ
∗, η∗]) = Bi

1([θ
∗, η∗]) in

each state s = [θ∗, η∗]. The first order condition (17) would be strictly negative for type
j = 1 for all bid choices at which type j = 2 makes a positive bid. This is the case because
the marginal utility from low consumption (in case of default), which enters negatively,
increases faster than the marginal utility from high consumption (in case of repayment),
which enters positively. In words, higher risk aversion lowers the marginal incentive to
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invest in a risky asset. It is not clear, however, in which section of the price schedule
this reduction in bidding is more prevalent, and then it may create in-the-money share
differences consistent with the patterns in the data.

However, even if differences in risk aversion could in principle rationalize in-the-
money share differences between the largest bidders and the rest, those positively cor-
relate with overpayment. To see this, if at state (θ, η) the fundamental type j has a higher
in-the-money share that type j′, as P (θ, η̂) > P (θ, η) it should be the case, from equations
(4) that

AP I
j (θ,η)

P (θ,η)
is also higher for type j than for type j′. The same holds for uninformed

investors from equation (7).

Corollary 3. With CRRA preferences, investors whose preferences induce a higher in-the-money
share also overpay more.

Intuitively, the positive correlation between in-the-money shares and overpayment
(conditional on buying) comes from bidding on a single pricing schedule, which is the
case when all investors have the same informational type (either they are all informed or
uninformed). As we show next, differences in informational type creates different price
schedules for different quality shocks θ, which breaks the correlation between the in-the-
money share and overpayment, as data suggests.

5 Price Effects of Asymmetric Information

Since heterogeneity in wealth or risk aversion cannot be important factors in account-
ing for the heterogeneity in bidding behavior that we observe in the data, henceforth we
will drop the fundamental type distinction in order to focus on heterogeneity in informa-
tion. We start our characterization of an auction equilibrium when there is no information
heterogeneity (as a benchmark) and then we introduce asymmetric information. For ex-
positional simplicity, among the CRRA preference family, we assume log utility.

5.1 Symmetric Information (or Ignorance)

To start our analysis of symmetric information, we consider first the extreme example
in which investors know the demand shock η. In case of symmetric information the in-
vestors also know the quality shock θ. In case of symmetric ignorance, investors are
equally uninformed about the quality shock. In this case our auction equilibrium is equiv-
alent to a standard competitive equilibrium, as there is a representative investor. In both
cases the solution follows the same construction. Under symmetric information it is based
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on κ = κθ and under symmetric ignorance on κ = E(κθ). We can simplify notation to P (η)

for prices and B(η) for bond purchases. The auction-clearing condition in state η is

(1− η)B(η)P (η) = D. (18)

The investor’s f.o.c. is given by

κP (η)

W −B(η)P (η)
=

(1− κ)(1− P (η))

W +B(η)(1− P (η))
.

And we can solve for prices in closed form using the two previous expressions

P (η) = 1− κ− κ
D

1−η

W − D
1−η

. (19)

Plugging this price back into the market clearing condition allows us to derive an ex-
pression for the level of total bond purchases. At this benchmark, no one bids above the
marginal price, and all bids are in-the-money in the sense that there is no incentive to bid
at anything but the correct marginal price.

Now assume that the demand shock η is not known but all investors still share beliefs
about the probability of default, κ. As total expenditures are monotonically increasing
in η and bids must be strictly positive, B(η) > 0 for all η ∈ H, the short-sale constraint
for the investors cannot bind for any η. In this simple case we can rewrite the first-order
condition (17) for the representative investor at η∗,

∑
η≥η∗

{
−U ′(BRF (η))κP (η∗)

+U ′
(
BRF (η) +

∑
η̂≤η B(η̂)

)
(1− κ)(1− P (η∗))

}
h(η) = 0 ∀η∗. (20)

Notice that the cumulation of marginal utilities is determined by the holdings of risk-free
bonds, which are the residual of expenditures evaluated at the bid price rather than at
the marginal price. As a result, the system of first-order conditions is not block-recursive
and must be solved simultaneously. This introduces both computational and analytical
complexity. For convenience in exposition and computation we can rewrite this system
defining the following vectors of prices, returns, and bids

~P =


P (η0)

...
P (ηM)

 , (1− ~P
)

=


1− P (η0)

...
1− P (ηM)

 , ~B =


B(η0)

...
B(ηM)
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and the following triangular matrices of dimension M ×M

P =

{
Prk = P (ηr) if r ≤ k

Prk = 0 o.w.
, 1−P =

{
1− Prk = 1− P (ηr) if r ≤ k

1− Prk = 0 o.w.
.

Price vector P must then solve the stacked system of first-order conditions

−U ′
(
W −P× ~B

)
· ~P · κ+ U ′

(
W + [1−P]× ~B

)
·
[
1− ~P

]
· [1− κ] = 0. (21)

5.2 Asymmetric Information

In this case, heterogeneity comes through n ∈ (0, 1), the fraction of the investors who
are informed about θ; i.e. whether the default risk is κg or κb. Given the discrete grid
for demand shock η ∈ H, there is a discrete set of states {s0, . . . , sN} indexed by r, with
N = M × 2. Without loss of generality, order states in decreasing order of prices, P (sr) >

P (sr+1), and let

~P =


P (s0)

...
P (sN)

 , ~BU =


BU(s0)

...
BU(sN)

 , (1− ~P
)

=


1− P (s0)

...
1− P (sN)

 , κ =


κ(θ0)

...
κ(θN)

 ,

P =

{
Prk = P (sr) if r ≤ k

Prk = 0 o.w.
, 1−P =

{
1− Prk = 1− P (sr) if r ≤ k

1− Prk = 0 o.w.
.

Given this notation, the system of first-order conditions that pins down the optimal bids
of uninformed investors is

U ′
(
W −P× ~BU

)
· ~P · κ + U ′

(
W + [1−P] · ~BU

)
·
[
1− ~P

]
· [1− κ] ≤ 0,

and BU(sr) = 0 if the inequality is slack.

For informed investors, the analogous system of equations is

U ′
(
W −P× ~BI

)
· ~P · κθ(s) + U ′

(
W + [1−P]× ~BI

)
·
[
1− ~P

]
· [1− κθ(s)] = 0.

and BI(sr) = 0 for all θ 6= θ(sr).

This leads to the following results. Observe first that the gap between the high-quality
and low-quality price schedules is increasing in n. When n is large, uninformed investors
face a substantial adverse selection problem: if they bid on the high-quality schedule,
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they will overpay in the bad state since the government is sure to accept their high-state
bids and executes them at the high bid price. For n sufficiently large (n = 0.6 in our
example), the uninformed may therefore refrain from placing any bids on the high-price
schedule. This has two effects. First, an uninformed investor who bids only on the low-
price schedule knows that, conditional on a bid being accepted, the state must be bad.
Hence they choose the same portfolio as informed investors when θ = b, and the compo-
sition of informed and uninformed investors is irrelevant in determining bad bond prices,
this is the low-quality schedule is locally independent of n. Second, precisely because the
uninformed do not participate at high prices, informed investors have to buy more bonds
per capita in the good state, and are therefore disproportionately exposed to the gov-
ernment’s default risk. Since there are fewer participants as n decreases, the high-price
schedule must decline. This discussion leads to the next Proposition.

Proposition 3. When the gap between price schedules in the informed equilibrium is large enough,
for all large n such that BU(g, η) = 0 for all η, then BU(b, η) = BI(b, η) for all η.

Proof. Assume BU(g, η) = 0 for all η, then the uninformed know that conditional on their
bids being on the money the state should be θ = b. As in the bad state informed and unin-
formed are identical, in terms of their characteristics and knowledge, BU(b, η) = BI(b, η)

for all η.

We use this case in which n is large enough to discourage bidding of uninformed at
high-quality bond prices to show that different information types can display differences
in-the-money shares and still overpay similarly conditional on acquiring bonds, consis-
tent with the patterns documented for Cetes data.

Proposition 4. Assume BU(g, η) = 0 for all η, uninformed investors bids are in average less
in-the-money than informed investors, but their overpayment is similar.

Proof. Assume BU(g, η) = 0 for all η. The average in-the-money shares for uninformed
investors is,

E[ITMU(θ, η)] = f(b)E|θ=b[ITMU(b, η)].

As informed investors observe θ when making their bids, their average in-the-money
shares is,

E[ITM I(θ, η)] = f(b)E|θ=b[ITM I(b, η)] + f(g)E|θ=g[ITM I(g, η)],

From Proposition 3,BU(b, η) = BI(b, η) for all η and then E|θ=b[ITMU(b, η)] = E|θ=b[ITM I(b, η)].
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Since ITM I(g, ηM) = 1, the expectation E|θ=g[ITM I(g, η)] is positive and then

E[ITMU(θ, η)] < E[ITM I(θ, η)]

Also, since BU(g, η) = 0 for all η

E
[
APU(θ, η)

P (θ, η)

]
= E

[
AP I(b, η)

P (b, η)

]
.

From Proposition 3, BU(b, η) = BI(b, η) for all η. Assume that

E|θ=g
[
AP I(g, η)

P (g, η)

]
≈ E|θ=b

[
AP I(b, η)

P (b, η)

]
.

which is the case with different price schedules. In such case,

E
[
APU(θ, η)

P (θ, η)

]
≈ E

[
AP I(θ, η)

P (θ, η)

]
.

Proposition 5. Fix n ∈ (0, 1). The quality-contingent price schedules converge to each as other
as n→ 0. That is, limn→0 P ([g, η];n) = P ([b, η];n) for all η < ηM .

Proof. Denote byXU([θ, η];n) the uninformed investors’ total expenditures on risky bonds.
Then limn→0X

U([θ, η];n)→ D/(1−η) for all θ by auction-clearing. As uninformed bids are
made unconditionally on θ, limn→0X

U([g, η];n) → XU([b, η];n) and limn→0 P ([g, η];n) →
P ([b, η];n). By Proposition 1, P (θ, η;n) is strictly decreasing in η given θ and n. When
n→ 0, prices must then be sorted by η. That is, there is always a ε small enough such that
for η′ − η = ε, i.e P ([θ, η];n) < P ([θ′, η′];n) < P ([θ, η′];n). This proof does not apply at
extreme values of η, and then convergence will not happen at η = 0 and η = ηM .

5.3 Numerical Illustration of Asymmetric Information Equilibrium

Solving for equilibrium prices is analytically intractable. To illustrate the main properties
of the auction equilibrium with asymmetric information, we use a numerical example
based on log-preferences and arbitrary parameters. In the next section we discipline pa-
rameters with Mexican Cetes data.

As per capita supply in our model is given by D/(1− η), and it is useful that supply is
uniformly distributed, we make a change in variables and use the previously mentioned
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supply shocks ψ = (1−η)−1. The demand shock η distributed between 0 and ηM is equiv-
alent to a supply shock ψ distributed between 1 and ψM = (1 − ηM)−1. We will assume
that the ψ shocks are uniformly distributed on this interval. We use the parameters in
Table 3 below.

Table 3: Illustration Parameterization

κg = 0.15 κb = 0.35
W = 250 D = 60
f(b) = 0.5 ψ ∼ U [1, 1.20]

Symmetric Information (or Ignorance): We start out by computing the symmetric in-
formation (and ignorance) price function (19) with information about the supply shock
(complete information), as in subsection 5.1, and without such information. The results
are plotted in the first panel of Figure 4. The price schedules with and without complete
information, given a default probability, are very close. In both cases schedules are fairly
flat, with the complete information price starting higher and falling faster: investors bid
more aggressively when they do not have to worry about overpaying because of uncer-
tainty about the supply shock. One can also see that the schedules under symmetric infor-
mation in each quality shock or under symmetric ignorance (the intermediate schedule)
are very similar in shape, showing that information extremes are very similar in shape
and just differ in levels.

Figure 4: Symmetric Benchmarks

(a) Price Schedules (b) Bid Schedules

In the second panel of Figure 4 we show optimal bid schedules for different coefficient
of risk aversion (CRRA) fixing the price schedule under symmetric ignorance. The first
thing to note from the figure is that the bulk of investor’s bids are made at the highest
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price. This is simply because the lion share of the supply happens at that price and only
incrementally increases with ψ, and the equilibrium price schedule must induce this pat-
tern of bids in aggregate to clear the market. As we discussed in subsection 4.2, a higher
risk aversion shades down the bids, but the effect on in-the-money share is analytically
unclear. In this particular illustration the share of the bids that are in-the-money is es-
sentially identical, ranging from 0.83 at σ = 1, to 0.80 at σ = 6. While more risk averse
investors bid less, they do not bid ”less aggressively,” since they shade down their bids
by the same factor everywhere, with overpayment being virtually identical too.

Asymmetric Information and the Role of n: Now we perform comparative statics
with respect to asymmetric information, n. Figure 5 shows equilibrium prices as we
shrink n from one to zero. Adverse selection of uninformed bidders and the concentra-
tion of default risk among informed investors play a prominent role in understanding the
forces behind equilibrium prices under asymmetric information. Each example in Figure
5 is chosen to highlight one of these forces.

Observe first that the gap between the high-quality and low-quality price schedules is
increasing in n. When n is large, uninformed investors face a substantial adverse selection
problem: if they bid on the high-quality schedule, they will overpay in the bad state since
the government is sure to accept their high-state bids and executes them at the high bid
price. For n sufficiently large (n = 0.6 in our example), the uninformed may therefore
refrain from placing any bids on the high-price schedule. This has two effects. First, an
uninformed investor who bids only on the low-price schedule knows that, conditional
on a bid being accepted, the state must be bad. Hence they choose the same portfolio
as informed investors when θ = b, and the composition of informed and uninformed
investors is irrelevant in determining bad bond prices, this is the low-quality schedule is
locally independent of n. Second, precisely because the uninformed do not participate at
high prices, informed investors have to buy more bonds per capita in the good state, and
are therefore disproportionately exposed to the government’s default risk. Since there are
fewer participants as n decreases, the high-price schedule must decline. This discussion
leads to the next Proposition.

When n is sufficiently small (n = 0.4 in our example), prices on the high-quality sched-
ule are low enough such that the uninformed investors are less worried about adverse
selection and begin to bid on both price schedules. Since bids on the high-price schedule
are also executed in the bad state, there is less residual demand that needs to be met by
marginal bids on the low-price schedule. Hence the low-price schedule rises.

The adverse selection effect continues to operate as n decreases further (to n = 0.1 in
our example). In particular, because the per-capita bids of the uninformed remain below
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Figure 5: DP auction equilibrium as n falls.
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(b) n = 0.3
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(c) n = 0.1
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(d) n = 0.05
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those of the informed on the high-price schedule, reductions in n continue to further con-
centrate default risk in informed portfolios. This forces a large fraction of the high-quality
schedule to drop below the uninformed price schedule. That is, the adverse selection ef-
fect may be severe enough that prices are lower than in the uninformed equilibrium for
both high- and low-quality bonds. Finally, when n is very small (n = 0.02 in the figure),
price schedules start overlapping. Uninformed investors are now willing to participate
fully on both schedules and prices converge to the uninformed price schedule as n→ 0.
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Yields: The yield of a government bond sold at price P is the promised return,

Y ield =
1− P
P

.

We compute the quantity-weighted average yield using the individual yields on all sold
bonds and considering all participating investors (both informed and uninformed).12 This
average yield captures the risk-neutral component of the government’s payoff and the risky
component, given by the variation in the average yield conditional on the quality of the
bond, capturing the government’s exposure to demand shocks.

In Figure 6 we compare certain key features of our equilibria as we increase the frac-
tion of informed investors, n. The first panel shows the average ITM shares for informed
and uninformed bidders. As n increases from 0, the participation of the uninformed on
the high-quality bond schedule decreases and completely ceases close to n = 0.4. At this
level of asymmetric information the difference of ITM share between the informed and
the uninformed is maximized. In the second panel of Figure 6 we plot the average over-
payment by information type, which is the average price paid relative to the marginal
price. As one can see from the figure, an informed share of 0.4 or higher generates very
similar overpayments by the informed and the uninformed, as the uninformed only par-
ticipate on the low-quality bond schedule.

Figure 6: Examining Impact of Informed Share
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(b) Overpayment and Yield
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In the second panel of Figure 6 we also plot average yields, which are hump-shaped:

12Relatedly, the government’s debt burden can be defined as D/P = D(1+ Y ield): the government faces
a higher average debt burden if bonds trade at a higher average yield.
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increasing for low levels of n and declining for high levels of n. If n is low, uninformed
investors bid on both schedules, but face adverse selection because bids on the high-
quality schedule are also accepted if the bond is bad. This effect depresses prices on
the high-quality schedule to an extent that is not fully compensated by an increase of
the low-quality schedule. Indeed, the adverse selection effect grows in importance as
n rises, up to the point at which uninformed investors stop bidding on the high-quality
schedule. When only informed investors participate, further increases in n lead to lower
per-capita risk exposure. As a result, informed investors’ information rents are gradually
competed away as n grows. In that case, bad-state prices are unaffected because the
uninformed choose the same portfolio as the informed conditional on the bad state. This
cannibalization effect raises prices in the good state and reduces the yield as n→ 1.

An important insight of this analysis is that only intermediate levels of n have both
the potential to generate a higher ITM share for informed, and at the same time a similar
overpayment than uninformed. However, it is exactly at those levels of asymmetric in-
formation when a government is forced to offer the highest average yield for their bonds
and then face the largest debt burden.

6 The Extent and Nature of Asymmetric Information

6.1 Calibration Exercise

In this section we calibrate both investors’ bidding behavior and the dynamics of Cetes
marginal prices. The goal of this calibration is twofold. First, examining the quantitative
extent to which the bidding behavior of investors participating in Cetes auctions can be
accounted for by our simple model with asymmetric information. Second, matching the
dynamics of marginal prices informs us what sort of information investors have asym-
metric access to. In particular, if a price in a week’s auction can predict quite well the
price of the next week’s auction, what sort of information asymmetries are relevant? By
calibrating the model we show that, even though conditionally there is not much uncer-
tainty for investors (what we denote as the public regime being common knowledge) there
is enough uncertainty within a regime that can explain the patterns of bidding behavior.

The goal of this section is not to match dynamics and cross-investor bidding behavior
moments perfectly, but instead to provide a proof of concept that both set of moments
can be captured quite well with plausible parameters within the simplest structure of our
model, without imposing extra bells and whistles. In principle we can always include
more parameters and richness into the structure to match the moments perfectly, but this
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is beyond the goal and scope of the paper.

Calibrated Parameters: The two-period model we have discussed above has to be
extended to accommodate dynamics. We do so by repeating the structure dynamically,
with a long-lived government and short-lived (for two periods) investors, who buy bonds
in the first period of life and consume in the second. At each auction period the country
is in one of two possible public regimes, z ∈ {1, 2}. Each public regime has, as in the text,
two possible states θ ∈ {b, g}. Public regimes follow a symmetric transition matrix[

ρ 1− ρ
1− ρ ρ

]

parameterized by the single parameter ρ. Because of our symmetry assumption each
public regime has equal unconditional probability to occur. Observe that investors can
typically learn the public shock from past prices. This is grounded int he following ob-
servations:

In this simple dynamic setting, the minimum set of parameters we need to calibrate
are: the default probabilities, κg,z and κb,z, and the probability of the good state f(gz) in
each public regime z ∈ {1, 2}, the transition probability ρ, the maximum demand shock
ηM (we maintain our assumption that η follows a uniform distribution), and most impor-
tantly, the mass corresponding to the informed largest bidder (which we call nbig) and
the fraction of informed investors, n. In what follows we combine the description of the
moments we match with the role of these parameters on their determination. We focus
on calibrating Cetes bonds of 28 days of maturity, but similar results hold for the other
maturities.

6.2 Disciplining Moments

The first two important moments in the data are the average and standard deviation of
marginal prices, which are 0.98 and 0.017 respectively. The standard deviation gives us a
natural measure of the unconditional volatility of prices. These moments have an immedi-
ate mapping with the mean and variance of κ across the two regimes and the two states
in each regime.

The second set of moments are (i) the coefficient β1 = 0.98 from the price regression
in (1), and the conditional volatility of prices as measured by the regression’s R2 = 0.97.
This high predictability of prices is informative about the nature of information, in par-
ticular the persistence of information and the degree of conditional (on previous period’s
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auctions) volatility of prices. In terms of the calibration this information points towards
highly persistent public regimes (high ρ), without much volatility of within regime states.

How much volatility within regimes and how different those regimes are, however,
should also be consistent with differences in bidding behavior. The in-the-money share
of the largest bidder is in average 0.84 (this is, in average, the largest bidder buys 84% of
his submitted bids), while the in-the-money share of the rest of investors is just 0.33 in
average. At the same time, all bidders (both the largest and the rest) pay in average 0.1%

above marginal price. According to our model, if the largest bidder were informed and
there were no demand uncertainty, both his in-the-money share and overpay would be
1. The fact that this is not the case, helps us discipline ηM , this is the range of demand
shocks that prevents the largest bidder to always be in the money.

Also according to our model, the rest of investors have a low in-the-money share be-
cause part of them are uninformed, who choose not to bid at high prices. As nbig is defined
as the “size” of the largest bidder, the total fraction of informed investors in the market, n
determines the composition of the rest of investors and the strength of adverse selection.
Adverse selection comes from the spread between κg and κb in a given public regime.
This creates a tension in the fitting exercise, as both increasing ηMand the gap in default
probabilities raise the conditional uncertainty in the model given the public regime.

In the data, the largest bidder buys in average 38% of the bonds. Formally,

nbig
∑
BI

n
∑
BI + (1− n)

∑
BU

= 0.38

Under the assumption that the largest bidder is informed, this value puts a lower bound
on the fraction of informed investors. Further, the difference in-the-money shares be-
tween the largest bidder and the rest puts an upper bound. To see this notice that the
in-the-money share of the rest of bidders is a combination between informed and unin-
formed investors

1− n
1− nbig

ITMU +
n− nbig
1− nbig

ITM I ,

As n is maximized when ITMU = 0, then n−nbig

1−nbig
0.84 = 0.33 and

nbig < n < nbig +
ITMU

ITM I
(1− nbig).

The fact that n in intermediate is consistent with the range of informed investors that cre-
ates enough adverse selection to shy uninformed investors to bid at high prices. From this
discussion, ηM and nbig are relatively well identified by in-the-money shares and partici-
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pation of the largest bidder respectively, while the combination of n, ρ, κ and the within-
regime state probabilities jointly affects the other moments.

6.3 Capturing Moments

Under the denomination “Baseline Model,” we have chosen a set of parameters (listed in
Table 4) that minimizes the sum of squared errors between the model generated moments
(second column of Table 5) and the data targets (first column of Table 5).13 We match quite
well the mean and standard deviation of marginal prices, as well as the in-the-money
share of the largest bidder and the extent of overpayment for both the largest and the
rest. Qualitatively, but not quantitatively, we do well with respect to the in-the-money
share of the rest of the investors (lower than for the largest bidder but much larger than
in the data, 0.62 versus 0.33) and the extent of predictability (positive but much smaller
than in the data, 0.7 versus 0.97).

Table 4: Calibrated Parameters

Common Parameters Values Model Specific Baseline Model Black Swan Model

κg1 0.001 κg2 0.019 0.02
κb1 0.014 κb2 0.029 0.50
f(g1) 0.65 f(g2) 0.65 0.95
ψmax 1.3 n 0.40 0.39
ρ 0.999 nbig 0.22 0.17

The main reason the calibration fails in these dimensions is the tension of matching
bidding behavior given the high unconditional volatility and the low conditional volatil-
ity we observe in the data. To see why, we look more closely at our outcomes. Some model
elements behind the Baseline calibration are plotted in Figure 7. The price schedules for
both public regimes, plotted in the first panel, show that we are able to accommodate
both a moderately high degree of unconditional volatility and a low degree of condi-
tional volatility by having two high price schedules in public regime 1, and two low price
schedules in public regime 2, along with each public regime being highly persistent.

As default rates in average have to be very close to 0, a very small gap between κg

and κb is sufficient to induce enough adverse selection. The second and third panel of
Figure 7 show both the informed and uninformed bid schedules for public regimes 1

13The level of the persistence parameter reflects the fact that this is a weekly model; .99952 = 0.95.
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Table 5: Calibration Targets: Data vs. Model

Target Data Baseline Model BS Model PP Model

Mean Price 0.98 0.98 0.96 0.97
Std. Price 0.02 0.02 0.10 0.02

Regression β 0.98 0.84 0.14 0.96
Regression R2 0.97 0.70 0.02 0.92
LB ITM share 0.84 0.87 0.88 0.88

Rest ITM share 0.33 0.62 0.43 0.41
UI ITM share 0.45 0.18 0.16
Overpay LB 1.001 1.001 1.003 1.002

Overpay Rest 1.001 1.004 1.005 1.004
Share LB 0.38 0.38 0.37 0.38

and 2, respectively. The high unconditional volatility means, however, that one of the
public regimes had to include moderately high default rates (lower prices). But this in
turn means that the risk-free and the risky bond are close substitutes, and then getting
the informed to hold all of the risk when the bond is good pushed the price of bad bonds
so low that the uninformed also bid on it. This can be seen in the public regime 2 bid
schedules: the uninformed bid more on the high-quality schedule than the low-quality
schedule. In particular, they bid their largest amount at the highest possible price, thereby
insuring a fairly high ITM for uninformed in public regime 2. In this baseline calibration,
uninformed bidders would display a lower in-the money share only if they were much
more concerned about adverse selection in public regime 2, which would be the case with
a much higher κb2, which would, however, distort other moments, such as average prices.

Figure 7: Baseline Figures

(a) Price Schedules (b) Bid Schedules 1 (c) Bid Schedules 2

As an alternative calibration, which we label “Black Swan” (BS), we increase κb2 con-
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siderably, while making κg2 much more likely. This alternative prevents average prices on
becoming too large while increasing adverse selection concerns for uninformed bidders
in public regime 2 (we maintain default probabilities in public regime 1, which induce
sufficient adverse selection already). To gauge the plausibility of this calibration, note
that the likelihood that a BS event does not occur in a decade is 31%, consistent with the
fact that over the three decades before our dataset, Mexico experienced two major crises.14

Figure 8 plot prices and bid functions for this alternative calibration, while the gener-
ated moments are reported in the third column of Table 5. The first panel of the Figure
shows that the price schedule for bad quality bonds in public regime 2 is now much lower
than in the baseline case, consistent with having a very high default probability. The small
possibility of this extreme outcome still has a substantial impact on adverse selection and
on discouraging the uninformed to bid at high prices in public regime 2 (see third panel
of the Figure). As a result, the in-the money share of the rest of investors declines sub-
stantially, though not as low as in the data.

Figure 8: Black Swan Figures

(a) Price Schedules (b) Bid Schedules 1 (c) Bid Schedules 2

Our Black Swan alternative, however, fails more dramatically in the dynamic compo-
nents. Even though the probability of the black swan is fairly low, it substantially raises
the standard deviation of prices (to 0.10), greatly depresses our measure of persistence (β
falls to 0.14) and increases conditional uncertainty (R2 falls to 0.02).15

14The probability of not having a black swan in a decade obeys the following backwards recursion: de-
note πi

j is the probability that a black swan (a bad state in public regime 2) does not happen j weeks from the
end of the decade, where i denotes the public regime. Then

π1
j = .999 ∗ π1

j−1 + (1− .999) ∗ [.95× π2
j−1]

π2
j = .999 ∗ [.95× π2

j−1] + (1− .999) ∗ π1
j−1.

The unconditional probability of not having a crisis over a decade is then (π1
520 + π2

520)/2 = 0.31.
15This dynamic failure comes from the nonlinear nature of these metrics and the high weight associated

with large pricing errors.
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One way to rationalize the data given this alternative calibration is arguing that the
data suffers from a peso problem, a phrase attributed to Milton Freedman to explain the
gap between Mexican and U.S. deposit rates during the 1970s. A peso problem arises
in asset pricing models when market participants anticipate the possibility of a discrete
change in the probability distribution generating outcomes, and hence their subjective
distribution differs from the distribution which has generated the historical data (see ?)
and ?)). The possibility of such a shift seems particularly salient in Mexico during this
period 2001-2017 from which we obtain our targets. In our considered timeframe Mexico
did not experience any major crisis, but it did suffered sovereign debt crises in both the
1980s and 1990s, with very high and volatile bond spreads.

To examine the extent to which a peso-problem can account for the data, we kept the
parameters at the Black Swan calibration for the purposes of computing the equilibrium
outcomes, hence the price and bid functions are as shown in Figure 8. But, in computing
the time series implications of the model, we set the probability of a high-quality bond in
public regime 2 at 1 rather than 0.95. This is equivalent to assuming that while a black
swan event is anticipated as possible by the investors in our model, it did not occur in
the sample realization. We label this alternative as a ”Peso Problem” (PP) calibration and
the results are reported in the last column of Table 5. This version of our model does
very well, matching almost all of the data moments closely. In particular, the dynamic
moments: the regression β has risen to 0.96, while the R2 has risen to 0.92, which are
quite close to the data.

This quantitative exploration sheds light on the sources of information asymmetries.
Investors do not differ much in their information about usual price movements, because
they can all access publicly available data on the health of the country’s finances, the pre-
vious auction results and even the functioning of secondary markets. The joint patterns
of bidding behavior and dynamic bond price evolution, however suggests that some in-
vestors may be particularly well informed about events leading to large price swings, and
then more difficult to access information (such as internal political decisions and other
sorts of “insider” information).

7 Conclusion

By using a unique dataset of Mexican primary Cetes (domestically denominated bonds)
weekly auctions between 2001 and 2017, we document a set of 3 key facts about prices and
bidding behavior patterns. First, the unconditional price volatility is sizable, the volatility
conditional on the previous auction price is low, which suggests high predictability of
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prices. Second the largest bidders tend to buy a larger fraction of submitted bids than
the rest, which in a “pay as you bid” auctions (as the one conducted by Mexico in the
considered period) suggests that they bid at higher prices. At the same time, and despite
the low conditional volatility, the rest of the bidders tend to buy a fairly small fraction of
their bids. Third, and prima facie inconsistent with the previous fact, the largest bidders
do not pay more conditional on buying.

We then construct a Walrasian model of price-discriminating sovereign debt auctions
in which participating investors can differ in their wealth, on their market power, risk-
aversion and/or information. We use the implications of our model to show that the
documented heterogeneity in bidding patterns across investors cannot be explained by
differences in wealth, market power or risk aversion. However, it is consistent with the
largest investors being more or better informed about the probability the bonds default
than the rest of bidders.

Finally, we perform a calibration of the model that is informative both about the ex-
tent of asymmetric information and its nature. First, to conform to the data, our model
implies an intermediate fraction of investors informed, which according to the model
generates a larger debt burden for Mexico compared to situations in which most of in-
vestors were informed or most were ignorant. Second, to generate bidding by the less
informed investors that is consistent with the data, we need not only a small amount in-
formation heterogeneity with respect to information about usual price movements, but
also, and critically, information asymmetries about the advent of low probability events
that generate large and sudden price swings (such as liquidity crises or currency runs).

The goal of this paper was providing a tractable model of sovereign debt primary
markets with asymmetric information that is useful to confront our novel empirical find-
ings on bidders behavior and to identify the main frictions behind these auctions. As we
make a case of the existence of asymmetric information and its relevance for sovereign
bond yields, a natural extension is understanding its implication more generally. In ?),
for instance, we explore the role of information asymmetry for spillovers across coun-
tries. By endogenizing information acquisition and extending the setting to accommo-
dating many countries and secondary markets, we show the possibility of multiplicity
on informational regimes and the possibility that a country suffers from a shock in an
unrelated country through endogenous asymmetric information. Our model, however,
is tractable enough to explore many other dimensions, such as the incentives of the gov-
ernment to disclose information or to affect information asymmetry by using different
auction protocols. We leave these extensions for future research.
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