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Abstract

We use a simple random growth model to study the role of changing dy-

namics of family firms in shaping the evolution of top wealth shares in the

United States over the course of the past century. Our model generates a time

path for top wealth shares. The path is remarkably similar to those found by

Saez and Zucman (2016) and Gomez (2019) when the volatility of idiosyncratic

shocks to the value of family firms is similar to that found for public firms by

Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016). We also show that

consideration of family firms contributes not only to overall wealth inequality

but also to considerable upward and downward mobility of families within the

distribution of wealth. We interpret our results as indicating that improving

our understanding of how families found new firms and eventually diversify

their wealth is central to improving our understanding of the distribution of

great wealth and its evolution over time.

∗All errors are ours.
†Department of Economics, University of California, Los Angeles, NBER, and Federal Reserve

Bank of Minneapolis, e-mail: andy@atkeson.net
‡Department of Finance, London School of Economics, e-mail: magnus.irie@gmail.com



1 Introduction

Research by Saez and Zucman (2016); Smith, Zidar, and Zwick (2020); and others

indicates that the share of total wealth held by the wealthiest Americans has changed

substantially over the past 100 years. Top wealth shares have followed a U -shaped

pattern — they were high in the 1920s, fell to a low around 1980, and have risen

substantially since then (see Figure 1). Wealth based on dynastic family ownership

of large firms both private and public is a striking feature of capitalist economies

worldwide. In this paper we ask, what is the role of family firms in shaping the

dynamics of top wealth shares in the United States over the past century?

Families with a concentrated ownership position in a single family firm constitute

a large fraction of the wealthiest families in America. Owing to the concentration

of their portfolios in the shares of a single firm, these families are subject to highly

volatile idiosyncratic shocks to their wealth. Research by Herskovic et al. (2016)

and others indicates that the volatility of idiosyncratic shocks to firm value, at least

for publicly traded firms, has changed substantially over the past century. The

idiosyncratic volatility of firm value has also followed a U -shaped pattern over the

past century — the volatility of idiosyncratic shocks to firm value was high in the

1920s, it reached a low in the early 1950s, and has risen substantially since then

(see Figure 2). We explore the hypothesis that the evolution of the shares of wealth

held by families in the top percentiles of the distribution of wealth of the United

States over the last 100 years can be accounted for by changes in the volatility of

idiosyncratic shocks to the value of family firms over this time period.

We present a purely statistical model of the evolution of the distribution of wealth

similar to that in Champernowne (1953); Luttmer (2016); Gabaix, Lasry, Lions, and

Moll (2016); and Benhabib, Bisin, and Luo (2017) that adds consideration of the

role of family firms in shaping the distribution of wealth. We find that when we feed

into the model a time series for the volatility of idiosyncratic shocks to firm value

similar to that observed by Herskovic et al. (2016) for public firms over the past 100

years, our model generates a time path for top wealth shares over this time period
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similar to that found by Saez and Zucman (2016) and Gomez (2019) (see Figure 8).

Of particular interest is the observation that the transition dynamics of the model

lead to a roughly 30 year lag between the minimum point of firm volatilities and

the minimum point of top wealth shares. Likewise, the model implies a roughly 30

year lag between the increase in firm volatilities observed in the stock market and

increases in top wealth shares. This lag emerges endogenously from the dynamics of

the model.

We also explore our model’s implications for the mobility of families within the

overall distribution of wealth once family firms are taken into account. Building on

the work of Gabaix et al. (2016), Luttmer (2016), and Gomez (2019), we establish

analytically a tight link between our model’s quantitative success in explaining the

transition dynamics of top wealth shares and its implications for the degree of wealth

mobility experienced by families starting out at the bottom of the distribution of

wealth, as well as its implications for the rate at which families starting out with

great fortunes dissipate their wealth.

A continuum of family dynasties that live forever and are subject to both common

and idiosyncratic shocks to wealth populates our model. The family dynasties in our

model have one of two types. The vast majority are what we term the diversified

type. These dynasties hold portfolios of assets that are subject to a relatively small

amount of idiosyncratic risk. A small minority of dynasties are what we term the

family firm type. These dynasties hold portfolios of assets subject to a large amount

of idiosyncratic risk. We interpret these dynasties as holding a concentrated position

in a single firm, which we term a family firm. We focus on family firms over and above

the traditional notion of entrepreneurship (see, for example, Cagetti and De Nardi

(2009) and Quadrini (2009)) because we allow for the possibility that these dynasties

may maintain a concentrated ownership position in the family firm for multiple

generations.

Family dynasties in our model switch type at random. We interpret a dynasty’s

switch from holding a diversified portfolio to a concentrated position in a family firm
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as the founding of a new family business by a previously diversified dynasty. We

interpret a dynasty’s switch from holding a concentrated position in a family firm to

a diversified portfolio as occurring when the firm’s founding family sells the bulk of

its ownership stake and diversifies its portfolio. We interpret these switching prob-

abilities as standing in for an underlying economic process in which entrepreneurs

and their families found new firms and hold a concentrated position in them while

these firms are young. Eventually, they sell out and diversify their wealth.

The quantitative success of our model in accounting for the evolution of top wealth

shares in the United States over the past 100 years rests heavily on our assumption

that those dynasties with a concentrated investment in a single family firm face a

great deal of idiosyncratic risk in the returns to their wealth — a level of idiosyn-

cratic risk on par with that found for individual publicly traded stocks in Herskovic

et al. (2016). It is also considerably higher than levels found in available studies of

the idiosyncratic risk in returns to wealth even for wealthy families in panel data.1

Our model can be reconciled with these data on the idiosyncratic volatility of fam-

ily wealth for wealthy families, however, because of our assumption that our model

economy is populated by two types of families facing different levels of idiosyncratic

risk in returns to wealth. Thus, our model predicts that the distribution of idiosyn-

cratic returns to wealth for families at any initial level of wealth is a mixture of two

distributions of returns. This feature is decisive for reconciling the data in Gomez

(2019) on the average standard deviation and excess kurtosis of innovations to wealth

for the Forbes 400 with the large amount of idiosyncratic volatility faced by family

firms in the calibration of our model.

We derive both analytical and numerical results regarding the connections between

the mobility of families within the distribution of wealth and the transition dynamics

of top wealth shares. We derive analytical results regarding the link beetween wealth

mobility and the transition dynamics of top wealth shares in a simplified version of

our model in which all families are identical. We refer to this simplified version of our

1See, for example Bach, Calvet, and Sodini (2018); Fagereng, Guiso, Malcrino, and Pistaferri
(2020); and Gomez (2019).
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model as the one-type version of our model.2 In particular, we show analytically that

in our one-type model, there is a tight connection between the speed of transition of

top wealth shares and the degree of upward wealth mobility for families starting at

the bottom of the distribution of wealth. Moreover, in our one-type model, given a

level of volatility of idiosyncratic risk in returns to wealth, there is a direct connection

between the model’s implications for top wealth shares in the steady-state and the

rate at which dynasties that start high up in the distribution of wealth dissipate their

fortunes. Specifically, holding fixed the model’s implications for top wealth shares,

the higher the volatility of idiosyncratic shocks to wealth is, the faster the dissipation

of great fortunes relative to aggregate wealth is. We provide an extension of our

analytical transition results to the two-type version of our model in the Appendix.

Motivated by these analytical results, for our one-type model, we examine the

quantitative implications of our full model which includes family firms for both up-

ward and downward wealth mobility. We find that after 50-70 years, the probability

that a family that started at the bottom of the distribution of wealth ends up in the

very top wealth percentiles approaches quite closely to the unconditional probability

that any family is in these very top wealth percentiles. We also consider our model’s

implications for the dissipation of great fortunes. We compare the implications of

our model in this dimension with data in Gomez (2019) on the level of turnover in

the Forbes 400 from the period 1983 to the present and find that the two match well.

We show that policy changes that speed up the rate at which families with concen-

trated ownership positions in family firms sell those positions and diversify their port-

folios would also have a powerful impact on the equilibrium distribution of wealth.

We illustrate this point with an experiment. We speed up the rate at which dynasties

switch from the family firm to the diversified type and find that holding all other

parameters fixed, our model implies a dramatic reduction in top wealth shares.

We interpret our results as indicating for researchers going forward that improving

2Our model implies a stationary distribution of wealth across dynasties in the long run because
we assume that there is a minimum level of the idiosyncratic component of dynastic wealth that
serves as a reflecting barrier as in Gabaix et al. (2016) andChampernowne (1953).
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our understanding of how families found new firms and eventually diversify their

wealth is central to improving our understanding of the distribution of great wealth

and its evolution over time.3

Our paper follows a large literature on the dynamics of the distribution of income

and wealth. To allow for an analytical comparison of our results with those in the

literature, particularly those in Gabaix et al. (2016), we keep the model very simple.

In particular, motivated by the results in Benhabib et al. (2017), we abstract from

idiosyncratic risk in labor earnings’ role in shaping the wealth distribution in our

model and focus instead on the role of idiosyncratic risk in the returns to wealth in

leading to the large shares of wealth held by those in the very top wealth percentiles

as observed in the data. Benhabib, Bisin, and Luo (2019) and Hubmer, Krusell,

and Smith (Forthcoming) study much richer models than ours, and they look to

account for the distribution of wealth across a broad range of wealth percentiles.

Our work differs from theirs in that we focus our attention on the evolution shares

of wealth held by families in wealth percentiles above the top 1%, including a very

top percentile corresponding to the Forbes 400. The model in Aoki and Nirei (2017)

is most similar to ours in that they have only a small fraction of agents exposed to a

large amount of idiosyncratic risk due to the concentration of their portfolios in the

shares of a single firm. They study the evolution of top incomes shares in the United

States in response to changes in tax rates. Jones and Kim (2018) also use a related

model with creative destruction to study the evolution of top incomes shares in the

United States in response to changes in tax rates.

Our paper is organized as follows. In section 2, we review the key data we use in

calibrating and evaluating our model. In section 3, we present our model. In section

4, we present analytical results in the one-type version of our model. In section 5,

we present the quantitative results from our full model. In section 6, we conclude.

In the appendix in section provide an extension of our analytical transition result

in the two-type version of our model and our procedure for mapping our calibration

moments to the parameters of the model.

3See Bertrand and Schoar (2006) for a discussion of the economics of family firms.

5



2 Review of Key Data

In this section we review the data that we target with our model. We also review

some of the data available on the prevalence of family firms among top firms in the

United States using several alternative definitions of such firms.

Data on top wealth shares We ask whether our model can reproduce the evo-

lution of top wealth shares in the United States over the past century. We target

specifically the data on these shares reported in Saez and Zucman (2016). We also

compare the model’s implications with data on the evolution of the wealth share

of the Forbes 400 since the early 1980s, as reported in Gomez (2019) and Zheng

(2019). In figure 1, taken from Smith et al. (2020), we show the data on the evo-

lution of various alternative estimates of the wealth share of the top 0.1% over the

past century.

Figure 1: Evolution of the wealth share of the top 0.1% over the past century as shown in Smith
et al. (2020)
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As shown in this figure, the share of wealth held by the top 0.1% of the wealth

distribution has followed a distinctive U -shape: this share was high in the 1920s, it

reached a minimum around 1980, and has risen since then.

This U -shaped pattern of top wealth shares extends to very top percentiles of the

wealth distribution. In table 1, we show data on a variety of top wealth shares at

various dates, as reported in Saez and Zucman (2016). Gomez (2019) and Zheng

(2019) also report a large increase in the share of wealth held by the Forbes 400 from

the early 1980s to the present — its share increase by a factor of 3.5 over this time

period.

% of total Household Wealth

Year top 1% top 0.1% top 0.01% top 0.00025%

1925 43.1 18.6 6.7
1950 30.5 10.6 2.8
1975 24.7 7.6 2.4
1982 25.7 9.4 3.3 .83
2000 34.1 16.0 6.9 3.04
2012 41.8 22.0 11.2 3.09
Table 1: Top wealth shares from Saez and Zucman (2016)

Vermuelen (2018) reports on the tail coefficient of the distribution of top wealth

implied by these top wealth shares.4 In the calibration of the initial steady-state of

our two-type model described below, we target a top tail coefficient of the distribution

of gross assets of 1.5.

Data on wealth volatility When we calibrate our model, we target the volatility

of innovations to wealth for very wealthy individuals from one year to the next.

Gomez (2019) reports on the moments of annual changes in the logarithm of wealth

4It is common to model the right tail of the distribution of wealth as if it were the right tail
of a Pareto distribution. The shape coefficient of a Pareto distribution fit to the right tail of the
distribution of wealth is referred to as the tail coefficient of the wealth distribution.
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for members of the Forbes 400. We reproduce these moments from his paper in table

2. In our calibration of our model, we aim to match the volatility and excess kurtosis

of innovations to the logarithm of wealth reported in this table.

Forbes 400 Volatility Skewness Excess Kurtosis
1983-2016 0.27 -0.35 4.70

Table 2: Summary statistics on log wealth growth of Forbes 400 from Gomez (2019) table 2.

Two recent papers use more comprehensive panel data on wealth, drawn from

Scandanavian wealth tax files, to study the distribution of innovations to wealth.

Bach et al. (2018) report data on the idiosyncratic volatility of gross wealth for

households in Sweden. They find that the volatility of innovations to wealth for

the very wealthy is considerably higher than for those lower down in the wealth

distribution. They report that the idiosyncratic volatility of returns on gross wealth

range from 1.6% per year in the bottom decile to 6% per year for the top 10%-5%,

13.4% per year for the top 1%-0.5%, and 34.7% per year for the top 0.01%.

Fagereng et al. (2020) report on the volatility of innovations to wealth drawing

from Norwegian data. In their table 3, they report a standard deviation of 22% for

pre-tax returns to wealth of and a standard deviation of 15% for after-tax returns.

Consistent with the findings of Gomez (2019), for both measures of returns, they

report a large kurtosis of the distribution of returns.

Data on the evolution of the idiosyncratic volatility of firm values The

only factor driving changes in top wealth shares in the baseline simulations of our

model is changes in the idiosyncratic volatility in firm value experienced by families

with a concentrated ownership position in a single firm. To calibrate the time path

of this idiosyncratic volatility in firm value, we rely on the estimates reported in

Herskovic et al. (2016) on the evolution of the average idiosyncratic volatility of indi-

vidual publicly traded stocks in the United States since 1926. Figure 2, reproduced

from that paper, shows their result.
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Of particular interest is the observation that the volatility of the idiosyncratic

component of equity returns since 1926 also follows a U -shaped pattern, but the

minimum of this U -shape occurs in the early 1950s, some 25-30 years before the

minimum in top wealth shares reported on above. We show below that our model

reproduces quite well this lag between the dynamics of firm volatility and the dy-

namics of top wealth shares.

Figure 3: Volatility and Correlation of Return Factor Model Residuals

Panel A shows the average pairwise correlation for total and idiosyncratic returns within each calendar year.
Panel B shows the cross-sectional average annualized firm-level volatility each year for total and idiosyncratic
returns. Idiosyncratic volatility is the standard deviation of residuals from the market model, the Fama-
French three-factor model, or a five factor principal components model for daily returns within each calendar
year.
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This common variation in idiosyncratic volatility cannot be explained by comovement

among factor model residuals, for instance due to omitted common factors. Panel A of

Figure 3 shows that raw returns share substantial common variation, with an average pairwise

correlation of 13% over the 1926-2010 sample, and occasionally exceeding 40%. However,

the principal components model captures nearly all of this common variation at the daily

frequency, as average correlations among its residuals are typically less than 0.2%, and are

never above 0.9% in a year. The same is true for the market and Fama-French models.

Moving to a higher number of principal components, such as 10, has no quantitative impact

on these results. Indeed, the Fama-French model and the five principal component model

appear to absorb all of the comovement in returns, making omitted factors an unlikely

explanation for the high degree of commonality in idiosyncratic volatilities.

Despite the absence of comovement among residual return realizations, Panel B of Figure

3 shows that average idiosyncratic volatility from various factor models is nearly the same as

12

Figure 2: Evolution of the average of the volatility of the idiosyncratic component of individual
stock returns since 1926 as reported in Herskovic et al. (2016)

.

Data on the prevalence of large family firms Central to our model is the

assumption that a minority of families hold concentrated stakes in a single firm.
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We refer to these families as owning family firms. Here we review evidence on the

prevalence of family firms among the wealthiest families and largest firms in the

United States over the past 100 years.

In a precursor to the work of Saez and Zucman (2016), Lundberg (1937) used tax

data made public in 1924 to estimate the income and wealth at that date of what he

termed “America’s 60 Families”. He highlights the role of concentrated ownership

in family firms as the source of these large fortunes.5

Further evidence of the importance of family firms in pre-WWII U.S. top fortunes

is available in Goldsmith (1940). In 1937, the U.S. Congress commissioned Ray-

mond Goldsmith to lead a study of the question of who owned the shares of the

top 200 non-financial firms traded on the New York Stock Exchange. In Chapter 7

of this volume, Goldsmith organizes the data on share ownership by family interest

group and reports three striking observations. Of the interest groups represented by

America’s wealthiest families, Goldsmith makes the following observations:

1. “Each interest group shows a strong tendency to keep its holdings concentrated

in the enterprise in which the family fortune originated.”

2. “Only a few of the large fortunes represented among the 20 largest record

shareholdings appear to be on the way to a diversified state.”

3. “None of the three largest family interest groups seem to be in this state [. . .]

the Mellon group is now in the third generation, while the Rockefeller and

Dupont groups are mainly in the second and partly in the third generation.

Most of the other interest groups encountered in the study are also of the

second or third generation”.

We take these observations as motivation for our assumptions regarding undiver-

sified portfolio holdings’ prevalence and persistence across multiple generations for

5Lundberg (1937) also highlights the role of intermarriage between heirs to large fortunes in
concentrating wealth. Consideration of family demographics would be an interesting extension of
our model.
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many of the wealthiest dynasties in our model.

The available evidence suggests that this pattern of concentration of family wealth

in a family firm over multiple generations persists today in the United States even

for some very large, publicly traded firms.6

Anderson and Reeb (2003) report that family firms constitute over 35% of the

S&P 500, with founding families owning on average 18% of the equity of the firm.

Villalonga and Amit (2006) report that family control is prevalent in 37% of the

firms in the Fortune 500.7 More recently, two public lists of the largest family firms

worldwide that corroborate these findings have been created.

Ernst & Young, in cooperation with the University of St. Gallen, has constructed

a family business index.8 This index is a worldwide database of the 500 largest family

owned companies (both public and private) by revenue. To qualify as a family firm,

the family must be in the second generation or more and have ownership of at least

32% of the shares of the firm. This index lists 122 U.S. firms, 82 of which are private

and 40 of which are public.

Credit Suisse has constructed a list of the 1000 largest public family owned firms

worldwide in Klerk, Kersley, Bhatti, and Vair (2018). To qualify as a family firm,

the founding family must have ownership or voting rights totalling over 20%. This

list includes 121 US Firms. Of these 121 U.S. Firms, over 80 are in the second or

greater generation of family ownership.

6See Smith, Yagan, Zidar, and Zwick (2019) for a study of the importance of business income
in top incomes in the U.S. today. Here, we are focused on the prevalence of family ownership even
of very large firms, both private and public, over multiple generations.

7Note that the Fortune 500 is a ranking of firms by sales. It includes both public and private
firms.

8Available at http://familybusinessindex.com/.
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3 The Model

We present a discrete-time, trinomial model of the evolution of the distribution of

wealth. Time is denoted by t = 0, 1, 2, . . ., and the length of a time period in calendar

time measured in fractions of a year is denoted by ∆t.

The economy is populated by a continuum of infinitely lived dynasties. The gross

assets of an individual dynasty are the product of two components, Wt = Wc,tWi,t,

where Wc,t is a component of assets that is common to all dynasties and Wi,t is a

component of assets that is idiosyncratic to each individual dynasty. We assume that

the support of the idiosyncratic component of assets for a dynasty is on a grid with

nodes indexed by n = 0, 1, 2, . . .. The nodes of this grid are evenly spaced in logs so

that Wi(n) = exp(n∆), where ∆ is the step size of the grid.

The fraction of dynasties with idiosyncratic assets equal to Wi(n) at time t is

denoted by gt(n), and Gt(n) ≡
∑

k≥n gt(k) denotes the complementary cumulative

distribution function (CCDF) of dynasties over nodes of the grid of the idiosyncratic

component of assets at t. Aggregate assets at time t are equal to the common com-

ponent of assets at that date Wc,t times the aggregate of the idiosyncratic component

of assets across dynasties at t given by
∑∞

n=0Wi(n)gt(n).

We assume that all dynasties hold a common and constant level of debt d relative

to the common component of assets, so the net wealth of a dynasty at t is equal to

their assets less their debt Wc,t(Wi,t − d).

The share of aggregate net worth held by agents with net worth greater than or

equal to a given percentile α of the cross-section distribution of net wealth at t is

given by

St(α) =

∑∞
k≥n(α) exp(k∆)gt(k)−Gt(n(α))d∑∞

n≥0 exp(n∆)gt(n)− d
, (1)

where n(α) is the smallest value of n such that Gt(n) ≤ α.

We refer to the tail coefficient of the distribution of assets as the negative of the
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slope of a graph with the logarithm of assets on the x-axis and the logarithm of

the fraction of dynasties with assets at or above this level on the y-axis. This tail

coefficient measured at node n of the grid of the idiosyncratic component of assets

is denoted by

ζt(n) = − logGt(n+ 1)− logGt(n)

∆
.9 (2)

The evolution of assets for a given dynasty from period t to t + 1 is as follows.

A dynasty starts period t with assets Wc,tWi,t and is subject to shocks to both

the common and idiosyncratic components of assets. The evolution of the common

component of assets Wc,t+1 follows an exogenous stochastic process. While the details

of this stochastic process are important for understanding the evolution of aggregate

wealth, they are not important for understanding the evolution of its distribution as

captured by wealth shares as defined in equation (1).

Idiosyncratic innovations to assets The idiosyncratic component of assets evolves

according to the following type-dependent trinomial process. We assume that at each

date t, each dynasty has one of two types j ∈ {D,F}, where the type j indexes the

distribution of changes in the idiosyncratic component of assets from t to t+ 1. For

dynasties of type j at t with idiosyncratic component of assets Wi,t = exp(n∆) for

nodes on the grid n ≥ 1, the probability that the idiosyncratic components of assets

move one step up on the grid (Wi,t+1 = exp((n + 1)∆)) is denoted by pu,j,t, the

probability that this component of assets moves down one step down on the grid

(Wi,t+1 = exp((n − 1)∆) is denoted by pd,j,t, and the probability that this compo-

nent of assets remains at the same node on the grid (Wi,t+1 = exp(n∆)) is given by

1− pu,j,t − pd,j,t.

The dynamics of the idiosyncratic component of assets are modified for dynasties

of type j at t with idiosyncratic component of assets at the lowest node on the grid

9For large values of net wealth, the tail coefficient of the distribution of net wealth across
dynasties is equal to the tail coefficient of assets, since the level of debt d is fixed and small relative
to large levels of assets.
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Wi,t = 1. For such a dynasty, the probability that the idiosyncratic component of

assets moves one step up on the grid to node n = 1 is denoted by pu,j,t, and the

probability that this component of assets remains at node Wi,t = Wi(0) is given by

1 − pu,j,t. It is not possible for the idiosyncratic component of assets to fall below

this lowest node on the grid of assets. This assumption is referred to as a reflecting

barrier for the idiosyncratic component of assets at the lowest level of assets on the

grid.

This lowest level of the idiosyncratic component of assets is positive and normalized

to 1 (since n = 0 at this node). The net worth of dynasties at this lowest level of

grid is given by Wc,t(1− d), which may be negative if d > 1.

Under these assumptions, the expected value at t of the innovations to the log-

arithm of the idiosyncratic component of assets for all dynasties of type j, except

those at the lowest node on the grid, is given by

Et [logWi,t+1 − logWi,t] = (pu,j,t − pd,j,t)∆. (3)

The uncentered second moment of these innovations to the logarithm of the idiosyn-

cratic component of assets is given by

Et [logWi,t+1 − logWi,t]
2 = (pu,j,t + pd,j,t)∆

2. (4)

Transitions over types At the end of period t, after these realizations to the

idiosyncratic component of assets have been realized, each dynasty of type j expe-

riences a shock to its type. It remains of the same type j with probability φj and

transitions to the opposite type with probability 1 − φj. These transitions of types

are independent over time and of dynastic wealth. We assume that at each date t,

the fraction of dynasties of type j is equal to the fraction νj corresponding to the

stationary distribution induced by this Markov process over types.
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The forward equation for the distribution of wealth The notation gj,t(n)

denotes the fraction of dynasties of type j at time t with idiosyncratic component

of assets equal to Wi(n). The overall fraction of dynasties with this level of assets

is given by gt(n) =
∑

j=D,F gj,tνj. With our assumption that νj is given by the

stationary distribution over types, the evolution through time of these conditional

distributions of the idiosyncratic component of assets by type is given by the following

second order difference equation for all n ≥ 1:

gj,t+1(n) = φj [pu,j,tgj,t(n− 1) + pd,j,tgj,t(n+ 1) + (1− pu,j,t − pd,j,t)gj,t(n)] + (5)

(1− φj) [pu,−j,tg−j,t(n− 1) + pd,−j,tg−j,t(n+ 1) + (1− pu,−j,t − pd,−j,t)g−j,t(n)] ,

where −j denotes the type opposite to j. For n = 0, this evolution is given by

gj,t+1(0) = φj [pd,j,tgj,t(1) + (1− pu,j,t)gj,t(0)] + (6)

(1− φj) [pd,−j,tg−j,t(1) + (1− pu,−j,t)g−j,t(0)] .

We consider specifications of the model in which the type-specific moments of the

innovations to the logarithm of the idiosyncratic component of assets for dynasties

are constant over time. For these specifications of the model, we refer to the steady-

state distribution of the idiosyncratic component of wealth across dynasties as the

stationary solution to the transition equations (5) and (6).

To summarize, the full set of parameters of our model are the grid step size ∆, the

probabilities for wealth innovations of both types {pu,j,t, pd,j,t}Tt=0, the unconditional

fractions of each type νj, the transition probabilities for types φj, the level of debt

d, and the initial distributions gj,0(n). We compute the evolution of the distribution

of assets across types using equations (5) and (6) and the implied evolution of top

wealth shares for T periods corresponding to 100 years using equation (1). We use

the notation ηj,t ≡ pu,j,t/pd,j,t.
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Parameterization for comparison with continuous time results To compare

results in our discrete time model with closely related results in continuous time

versions of the model as presented in Luttmer (2016), Gabaix et al. (2016), and

elsewhere, we use the following procedure to adjust the parameters of our model as

we change the length of the time period ∆t. This is done to consider the limiting

implications of our model as the time period gets short. We set pd,j,t and ηj,t to

match annualized date- and time-specific means µj,t and variances σ2
j,t of innovations

to the logarithm of the idiosyncratic component of assets. Specifically, we set the

grid step size ∆ as a function of the length of a time period ∆t as

∆ = σmax
√

2∆t,

where σmax is the largest annualized standard deviation of innovations to the loga-

rithm of assets that we consider. We then choose the parameters pd,j,t and ηj,t so

that the expression in equation (3) is equal to the implied per period mean ∆tµj,t,

and the expression in equation (4) is equal to the implied per period uncentered

second moment ∆tσ
2
j,t + ∆2

tµ
2
j,t. We set the transition probabilities over types as

1− φj = κj∆t for fixed values of κj.

In the transition experiments that we conduct, we specify the initial distributions

of the idiosyncratic component of assets by type gj,0(n), the parameters κj governing

the Markov process over types for dynasties, and sequences of type-specific moments

{µj,t, σj,t}Tt=0 governing the innovations to the logarithm of the idiosyncratic compo-

nent of assets for dynasties. Using the equations above, we compute the correspond-

ing per-period switching probabilities φj and the per period transition probabilities

{pu,j,t, pd,j,t}Tt=0.
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4 Steady-State, Wealth Mobility, and Transitions

in the One-Type Model

The steady-state and transitions in the version of the model in which all dynasties

are of a single type j can be solved analytically. These analytical formulas extend

results in Luttmer (2016), Gabaix et al. (2016), and Gomez (2019). We present these

analytical formulas to offer intuition for the mechanics of our model with two types.

We show that our model implies a tight link between the speed of convergence of

the distribution of assets to steady-state and the degree of wealth mobility in the

steady-state for dynasties starting out with the lowest level of assets on our grid.

We show in turn that this speed of wealth mobility starting from the bottom is also

intimately linked to the speed with which dynasties starting out very high up in the

distribution of assets dissipate their fortunes.

In the one-type version of our model, we assume that j = F for all dynasties (so

νF = 1 and φF = 1). To simplify the notation, we suppress reference to types j for

the remainder of this section on the one-type model.

Steady-State In the one-type model, there is a steady-state distribution of the

idiosyncratic component of assets across dynasties that solves equations (5) and (6)

if pu < pd. This steady-state distribution of dynastic assets over asset nodes is given

by

gss(n) = (1− λss)λnss, (7)

where λss = pu/pd. The CCDF of this distribution is given by Gss(n) = λnss.

Aggregate assets are defined in steady-state if exp(∆)λss < 1. In this case, the

steady-state tail coefficient of the distribution of assets across dynasties as defined

in equation (2) is given by

ζss = − 1

∆
log(λss).
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Note that holding the grid step size ∆ fixed, all versions of the one-type model that

have the same steady-state tail coefficient ζss have the same ratio of probabilities

λss = pu/pd and hence, from equations (3) and (4), the same ratio of first and

second moments of innovations to the logarithm of the idiosyncratic component of

assets. Different specifications of the one-type model with the same steady-state tail

coefficient vary in the magnitude of these moments, as indexed by the level of the

probability pd.
10

We use the procedure described above to set parameters of the model as a func-

tion of the length of a time period ∆t to consider the implications of our model as

the time period becomes short. With this procedure for setting parameters, it is

straightforward to show that

lim
∆t→0

ζss = −2µ

σ2
, (8)

which is the standard formula in continuous time for the tail coefficient of the steady-

state distribution of assets in this model.

Thus, as we said before, there is a family of specifications of the one-type model

that all share the same ratio of moments of innovations to the idiosyncratic com-

ponent of assets 2µ/σ2. Thus, they all share the same steady-state tail coefficient

of assets. Members of this family of model specifications differ in the magnitude of

these moments.

We now show that these different specifications of the one-type model differ in the

speed with which the distribution of assets transitions to steady-state from a given

initial distribution of assets different from steady-state. The larger the magnitude of

the moments µ and σ2 is, the faster the transition.

10Note that this result does not hold in the binomial specification of innovations to the logarithm
of the idiosyncratic component of assets. In the binomial specification of this model, the steady-
state distribution is given by equation (7). But in the binomial model, the probabilities pu,t and
pd,t are restricted to satisfy pu,t +pd,t = 1 since assets must move either up or down one step on the
grid. Thus, in the binomial specification of this model, there is a unique choice of pd consistent with
a given tail coefficient ζss. In the trinomial specification of the model we consider, the probabilities
need only satisfy the restriction pu,t + pd,t ≤ 1.
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Transitions We now consider the speed with which the distribution of assets

transitions to steady-state from a given initial distribution of assets different from

steady-state in the one-type model. Specifically, we study the transition experiment

considered in Gabaix et al. (2016). We assume that the initial distribution of the

idiosyncratic component of assets across dynasties is given by

g0(n) = (1− λ0)λn0 ,

for some λ0 6= λss. We provide an analytical formula for the transition of the dis-

tribution {gt(n)}∞t=0 in the one-type model implied by the transition law given in

equations (5) and (6) given this initial distribution.

To develop this analytical formula, we use the following notation. Let T be the

operator mapping distributions over nodes n of our grid to new distributions defined

by equations (5) and (6) for the one-type model. Let Λ0 be a vector corresponding

to the initial distribution g0(n) = (1 − λ0)λn0 . Let Λss be the distribution to which

the economy converges, gss(n) = (1−λss)λnss. Let 1 denote a distribution that places

weight 1 on the node n = 0 and weight 0 on every node n ≥ 1. That is, 1 corresponds

to the distribution of assets for a cohort of dynasties all starting with the minimum

level of assets. With this notation, we have the following result.

Proposition 1. Assume that the initial distribution at t = 0 of the idiosyncratic

component of assets across dynasties is given by Λ0 and that the transition probabili-

ties in equations (5) and (6) are constant at pd and pu = λsspd so that the stationary

distribution of the idiosyncratic component of assets across dynasties is given by Λss.

Then the distribution at date t implied by equations (5) and (6) is given recursively

by

(gt+1 − Λss) = A (gt − Λss) + (1− A)
(
Tt(1)− Λss

)
, (9)

where A is a scalar given by

A ≡
(
pd(1− λ0)(

λss
λ0

− 1) + 1

)
,
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Proof. Direct calculation gives that

T(Λ0) = AΛ0 + (1− A)1.

The operator T is linear, and T(Λss) = Λss. Repeated application of this operator

to gt+1 = T(gt) starting from g0 = Λ0 then gives the result (9).

We provide an extension of this result for the two-type version of our model in the

appendix in section 7.

Note that since λ0 < 1, A 6= 1 when λss 6= λ0. We have A < 1 when λss < λ0,

that is, when the the distribution of the idiosyncratic component of assets to which

the economy is converging is more equal than the initial distribution, and we have

A > 1 when the opposite is true.

Consider now the implications of this result for the connections between the tran-

sition dynamics of the distribution of wealth and wealth mobility. Note that the term

Tt(1) in equation (9) corresponds to the distribution of the idiosyncratic component

of assets in period t of a cohort of dynasties that all started with idiosyncratic assets

at the bottom of our grid at date 0. With this observation, we see that equation

(9) implies an intimate link between the speed of convergence of the distribution of

the idiosyncratic component of assets in our transition experiment and the extent of

wealth mobility starting from the bottom in the new economy that we are consider-

ing. That is, at any node n, the gap between gt(n) and gss(n) stops changing when

the conditional distribution of assets for a cohort of dynasties starting at the bottom

at that node n converges to the unconditional distribution of assets at that node in

the new steady-state.

Which parameters govern the degree of wealth mobility from the bottom implied

by our model? Given that we have fixed λss, only the single parameter pd remains

to influence the speed with which the distribution of the idiosyncratic component

of assets for a cohort of agents starting at the bottom of the support of our grid

converges to the steady-state distribution Tt(1)→ Λss. The speed of this convergence
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is our measure of the degree of wealth mobility from the bottom. From equations (3)

and (4), we see that the larger pd is the larger the mean and variance of innovations to

the logarithm of the idiosyncratic component of assets. Below,, we show numerically

that the larger these moments are, the faster this measure of wealth mobility from

the bottom is.

Wealth mobility from the bottom We now consider our model’s quantitative

implications for the extent of wealth mobility from the bottom of the distribution of

assets, depending on the magnitude of the first and second moments of innovations

to the logarithm of the idiosyncratic component of assets. We proceed as follows.

We hold fixed the tail coefficient ζss of the steady-state distribution of assets. In

the experiments below, we set this tail coefficient to ζss = 1.5, which is a value

consistent with current estimates of that tail coefficient in the United States. We set

the time period ∆t to a small value and choose the grid step size ∆ accordingly. This

procedure thus pins down λss, leaving only the single parameter pd to be chosen.

We consider two values for pd. The first corresponds to a standard deviation of

innovations to the logarithm of the idiosyncratic component of assets of σ = 0.5.

The second corresponds to the smaller value of σ = 0.25 of this standard deviation.

To illustrate the speed of wealth mobility from the bottom for these two specifica-

tions of our model, we compute time paths for Gt(n(α))/α, where Gt is the CCDF of

the distribution of assets of the distribution Tt(1) evaluated at the node n(α) on the

grid of the idiosyncratic component of assets consistent with the percentile α of the

steady-state distribution of assets. This statistic converges to one as the distribution

of assets for a cohort of dynasties starting at the bottom converges to the uncon-

ditional distribution of assets. We are particularly interested in the convergence of

this statistic for top percentiles of the distribution of wealth. In our plots, we show

the convergence of this statistic for percentiles α = 1%; 0.1%; 0.01%; 0.001%; and

α = 0.0003%, which Gomez (2019) selects as the percentile corresponding to the

Forbes 400. We compute this process of convergence over 100 years.
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In figure 3a, we show this measure of wealth mobility from the bottom in our

economy with the standard deviation of the logarithm of the idiosyncratic component

of assets set to σ = 0.5. In this figure, we see that it takes roughly 50-60 years for

the upper percentiles of the distribution of assets for a cohort starting from the

bottom of the support of assets to converge to levels close to those in the steady-

state distribution. This convergence is complete, even for the highest wealth levels

in 100 years.

In figure 3b, we show this measure of wealth mobility from the bottom in our

economy in which we set σ = 0.25 the standard deviation of the logarithm of the

idiosyncratic component of assets. In this figure, we see that wealth mobility from

the bottom is much slower when σ is lower. In particular, the convergence of this

distribution for the highest wealth levels has barely begun, even after 100 years.
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Figure 3: Time paths for Gt(n(α))/α at top wealth percentiles α, for a cohort starting at the
bottom of the asset distribution. α = 1%, 0.1%, 0.01%, 0.001%, 0.0003%. We see that the speed of
the transition is much slower when σ is low.

This computational experiment indicates that the extent of wealth mobility from
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the bottom is dramatically affected by the magnitude of the volatility of innovations

to the idiosyncratic component of wealth.

The transition of the tail coefficient We now illustrate quantitatively the con-

nection between the extent of wealth mobility from the bottom and the speed of

transition of the distribution of assets to steady-state. To do so, we revisit the tran-

sition experiment considered in Gabaix et al. (2016) and described in proposition 1.

Note that our results from proposition 1 and in figure 3 indicate that the transition

of the distribution of assets in this experiment is slowest at top wealth percentiles,

as the time it takes for Tk(1) to converge to steady-state is longest at these top

wealth percentiles. As a result, we focus on the transition of the tail coefficient of

the distribution of assets at top wealth percentiles.

Specifically, in our transition experiment, we start the economy with an initial

distribution of assets Λ0 with an initial tail coefficient of ζ = 2, and we compute the

transition of this distribution to the new steady-state distribution Λss in which the

steady-state tail coefficient is ζ = 1.5. We display the evolution of the tail coefficient

of wealth at top wealth percentiles over a 100 year period of this transition. When

the distribution of assets has an exact Pareto tail, the slope of this graph is constant.

However, during the transition, the asset distribution will not be exactly Pareto, and

hence the slope will depend on the wealth node at which it is computed. We therefore

compute this wealth-level dependent slope, ζt(n), in accordance with equation 2 for

nodes n(α) corresponding to the top wealth percentiles α = 1%, 0.1%, 0.01%, 0.001%,

and 0.0003%.

We plot the results of this computation in figure 4.
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Figure 4: Time paths for the tail coefficient of the asset distribution, ζt(n(α)). The tail coefficient
is computed at α corresponding to various top wealth percentiles.

We see in figure 4a that when the standard deviation of innovations to the log

of the idiosyncratic component of assets is set to σ = 0.5, the transition of the tail

coefficient for top wealth percentiles is fairly rapid. It takes roughly 50-60 years to

transition from a tail coefficient of 2 to a coefficient of 1.5. The transition is slower

the further up in the distribution we look when computing the tail coefficient. In

contrast, we see in figure 4b that when the standard deviation is set to a smaller

level, σ = 0.25, after a 100 years, the evolution of the tail coefficient has barely

begun.

The dissipation of great wealth The computational experiments on wealth mo-

bility from the bottom that we have considered also have direct implications for the

speed with which dynasties that start with great wealth dissipate their fortunes. Con-

sider in particular the implications of equation (8). This relates the tail coefficient

of the steady-state distribution of wealth to the annualized moments of innovations

to the idiosyncratic component of assets. As the time period in our model becomes

small, the distribution of changes in the logarithm of the idiosyncratic component

of assets over a year for wealthy dynasties becomes Gaussian. Thus, the expected
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change in the level of the idiosyncratic component of assets for wealthy dynasties

over the course of a year is given by exp(gW ), where gW = µ + σ2/2. Equation (8)

implies that

gW =
σ2

2
(−ζ + 1).

Thus, with a tail coefficient of the distribution of assets in the steady-state of ζ = 1.5

and σ = 0.5, we have that gW = −0.0625. That is, with these parameters, wealthy

dynasties decrease assets in relative terms at over 6% per year. In contrast, when

σ = 0.25, we have gW = −0.015625, so this dissipation of the relative wealth of great

dynasties is much slower.

This dissipation of great wealth is illustrated in figure 5. For different values of

σ, this figure depicts the evolution over time of the ratio of assets held by a cohort

of dynasties all starting with idiosyncratic component of assets at the node on our

grid corresponding to various top percentiles compared to average wealth. The speed

with which this ratio converges to one indicates the rate at which dynasties starting

out at top percentiles of the distribution of assets dissipate their wealth in relative

terms. We see in figure 5a that top wealth is dissipated relatively rapidly when

σ = 0.5, compared with what we find in Figure 5b when σ = 0.25.
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Figure 5: Time paths for the ratio of wealth held by cohorts starting at top percentiles relative
to average wealth.
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These results for the one-type version of our model establish that if the standard

deviation of innovations to the log of the idiosyncratic component of wealth is high

(on the order of σ = 0.5), then our model can produce rapid transitions of top

wealth shares. This specification of our model necessarily also predicts a high degree

of wealth mobility from the bottom and relatively rapid dissipation of the relative

fortunes of cohorts of families starting out at top wealth percentiles.11

This one-type model fails on two important grounds, however, as a full quantitative

explanation of the evolution of top wealth shares. First, it is obviously not the case

that every family runs its own business. Second, the evidence available in Gomez

(2019) on the standard deviation of log changes in wealth for the Forbes 400 indicates

that it is not the case that the standard deviation of innovations to the idiosyncratic

component of assets in recent years is equal to 50%, even for the very wealthy.

To address these shortcomings of our one-type model, we now turn to an analysis of

a two-type model in which only a small minority of dynasties derive their wealth from

concentrated ownership of a single firm. We use this two-type model to reproduce

the transition of top wealth shares in the United States over the past 100 years.

5 Steady-State, Wealth Mobility and Transitions

in The Two Type Model

We now consider the quantitative implications of our model with two types of dy-

nasties, j ∈ {D,F}. We use the index j = F to denote a dynasty that currently

has its assets concentrated in the equity of one firm, which we term the family firm.

We assume that for this type of dynasty, the standard deviation of innovations to

the logarithm of the idiosyncratic component of assets, denoted by σF,t, is large.

The index j = D denotes a dynasty that currently has its assets diversified across a

11Gabaix et al. (2016) considered the implications of this model for transitions for much lower
values of σ than 0.5. This accounts for their conclusions that this model fails to account for the
transitions of top income shares.
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broader range of investments. We assume that for this type of dynasty, the standard

deviation σD,t is small. We choose parameters so that the fraction of dynasties with

a concentrated investment in a single firm is only a small minority of the overall

population.

We now discuss the quantitative implications of this two-type model for the distri-

bution of assets in the steady-state, the volatility of innovations to log wealth, wealth

mobility from the bottom, the dissipation rate of great fortunes, and the evolution of

top wealth shares over the past 100 years in response to a change in the volatility σF,t

consistent with the data on idiosyncratic equity volatility in Herskovic et al. (2016).

Steady-State In the two-type model, the steady-state distributions of the idiosyn-

cratic component of assets by type are given by

gj(n) = aj(1− λa)λna + bj(1− λb)λnb

for j ∈ {D,F}, where aj and bj are non-negative constants and λa and λb are the

two stable eigenvalues of the difference equation (5) stacked as a first order system

and imposing steady-state. By convention, we assume that λa is the larger of the two

stable eigenvalues. Under this assumption, the tail coefficient for the distribution of

assets for high levels of assets converges to

ζss = − 1

∆
log(λa).

Consider the fraction of dynasties of each type at the top end of the distribution of

wealth. The fraction of the population of each type at node n of the grid is denoted

by νj(h). At very high levels of wealth, these fractions of the population of each type

converge to

νj(n)→ νjaj
νFaF + νDaD

(10)

as n grows large.

27



There is a sense in which there are dynasties of type D with low volatility at the

top of the wealth distribution only because these dynasties were of type F with high

volatility in the recent past. To illustrate this point, consider the implications of

the model as the rate at which type F dynasties switch type gets small (κF → 0).

We refer to this limiting case as the non-communicating types model. In this limit,

the two stable eigenvalues of the model are given, as in the one-type model, by

λj = pu,j/pd,j, and the weights aj and bj put weight on only one of the two eigenvalues

for each type. Since aD = 0 in this limiting case, we have that νD(n) goes to zero as

n gets large.

Parameter choices: Initial steady-state We choose the parameters of the ini-

tial steady-state of our two-type model (corresponding to 1920) as follows. In the

Appendix, we discuss how we map these calibration moments to the parameters of

the model.

We set the time period ∆t = 1/1000, and choose the grid step size ∆ consistent

with the choice of σmax = 0.5.

We set the overall fractions of dynasties of each type in the population to νF = 0.05

and νD = 0.95.12 We set the annualized rate at which dynasties switch from type F

to type D to κF = 1/15, or 6.66% per year.

We set the tail coefficient of the distribution of assets at high levels of wealth to

ζ0 = 1.5.

We set parameters so that 53% of the population of the Forbes 400 in our model

are of type F and 47% are of type D.

We set the initial values of the uncentered second moment of innovations to the

log of the idiosyncratic component of assets by type to 0.452 for type F and 0.152

12Cagetti and De Nardi (2009) find that the fraction of entrepreneurs in the U.S. population
is 7.6%. Hurst and Pugsley (2009) argue that many of these entrepreneurs do not intend to grow
their businesses. We choose to set νF = 5% as a balance between these two papers. Most relevant
for our results are the implications of our model for the fractions of each type at top wealth levels.
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for type D.

To match the level of shares of net wealth held by top wealth percentiles, we choose

the debt parameter d = 1.1. Note that our minimum level of assets is 1, so the net

worth of those at the lowest level of assets is −0.1.

With these parameters, the model implies that in the initial steady-state of the

model (which we use for the distribution of wealth in 1920), the share of net worth

of the top 1% is 44%, while the shares of the top 0.1% and of the Forbes 400 (the

top 0.0003%) are 21% and 2.8%, respectively. At the bottom end of the distribution

of net worth, we have that 37% of the population has negative net worth.

Wealth volatility for the very wealthy The distribution of changes in the

logarithm of the idiosyncratic component of assets for dynasties at node n of our grid

of assets over a one year period is well approximated by a mixture of two normal

distributions with moments µj, σ
2
j and weights νj(n). For dynasties at the cutoff for

the Forbes 400 in our model, the standard deviation of changes in the the log of the

idiosyncratic component of assets is 34%, and the excess kurtosis of this distribution

is 4.65. These numbers are roughly equal to the data shown in Gomez (2019) for the

standard deviation and excess kurtosis of log wealth for the Forbes 400.

Wealth mobility Before conducting our analysis of the transition dynamics of top

wealth shares implied by the model, we consider the implications of our two-type

model for wealth mobility from the bottom and from the top in the initial steady-

state. As we did with the one-type model, we compute time paths for Gt(n(α))/α,

where Gt is the CCDF of the distribution of assets of the distribution Tt(1) evaluated

at the node n(α) on the grid of the idiosyncratic component of assets consistent with

percentile α of the steady-state distribution of assets. In figure 6, we show this

measure of wealth mobility from the bottom over a period of 100 years. As with the

one-type model, in roughly 50-70 years, the upper part of the CCDF of assets for a

cohort of dynasties starting from the bottom converges to the overall CCDF in the
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steady-state.
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Figure 6: Time paths for Gt(n(α))/α at top wealth percentiles α, for a cohort starting at the
bottom of the asset distribution.

In figure 7, we plot the path of the ratio of total wealth of a cohort of dynasties

starting at the cutoff level of wealth for various top wealth percentiles relative to

aggregate wealth over a 100 year period. We see that a great portion of that wealth

is expected to dissipate in relative terms over this time horizon.
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Figure 7: Transition of the ratio of top wealth shares to aggregate wealth.

100 years of top wealth shares with time-varying idiosyncratic volatility

We now turn to our two type model’s the implications for the evolution of top wealth

shares over the past 100 years in the United States when the volatility of innovations

to the value of family firms is assumed to follow the path estimated by Herskovic

et al. (2016) shown in Figure 2.

To do so, we assume that the initial distribution of wealth corresponding to 1920 is

given by the initial steady-state considered above. We assume that the parameters

governing the time interval (∆t), the grid step size (∆), the debt level (d), the

fractions of dynasties of each type (νj), and the rate at which dynasties switch types

(φj) remain constant over time and that the probabilities pu,D,t and pd,D,t governing

the innovations to the idiosyncratic component of wealth for dynasties of type D also

remain constant throughout the 100 year transition considered.
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We set the probabilities pu,F,t and pd,F,t, which govern the innovations to the id-

iosyncratic component of wealth for dynasties with concentrated investments in fam-

ily firms during the 100 year transition, as follows. We assume that the standard

deviation of these innovations to the value of family firms, σF,t, declines linearly

from 0.45 to a low of 0.25 over the course of 30 years (from 1920 to 1950), then

rises linearly from 0.25 back up to 0.5 over the course of the next 50 years (from

1950 to 2000), and then remains constant at 0.5 over the final 20 years (from 2000

to 2020). We choose the path of µF,t so that the expected growth rate of the level

of the idiosyncratic component of assets gW,F,t = µF,t + σ2
F,t/2 remains constant at

its initial value. We then use equations (3) and (4) to compute the corresponding

probabilities {pu,F,t, pd,F,t}.

In figures 8 and 9, we show the transition path for top wealth shares from this

experiment.13 The transitions for the wealth shares of the top 1% and 0.1% are shown

in Figure 8 along with the estimates of these wealth shares from Saez and Zucman

(2016). The transition for wealth shares for the Forbes 400 (the top 0.0003%) is

shown in Figure 9 along with the estimates of these wealth shares from Gomez

(2019) normalized so that the model and data coincide in 1982. For 2017 and 2018,

we complement the Forbes data from Gomez (2019) data with data from Zheng

(2019).

13Note that we compute net worth shares at t using equation (1) at or above fixed nodes n(α)
on our grid, which corespond to wealth cutoffs for wealth percentiles α in the initial steady-state
distribution.
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Figure 8: 100 year transition of top 1% and top 0.1% share of wealth (in %). Model vs. data.
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Figure 9: Cumulative growth of Forbes 400 wealth. Model vs. data.

The model captures the U -shape of the transitions of top wealth shares well.

The fact that the distribution of assets changes, with a delay, from the bottom up

implies that the time-variation in idiosyncratic volatility is reflected in top wealth

shares. In particular, recall that the time-varying idiosyncratic volatility reaches its

minimum around 1950 whereas top wealth shares reach their minimum in the 1970s

or later. The bottom for wealth shares occurs later the higher the percentile of wealth

that is being considered. This delay in the dynamics of top wealth shares emerges

endogenously from the model.

Turnover in the Forbes 400 Gomez (2019) studies the turnover rate for the

households on the Forbes 400 list. He documents that less than 10% percent of

the households that were on list in 1983 were still on the list in 2017. We compare

our model with the data in this dimension as follows. We consider the time paths
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of wealth for a cohort of dynasties starting with a wealth level in the top 0.0003%

(which Gomez (2019) takes as the cutoff for the Forbes 400) in the year 1983. We

subject this cohort of dynasties to the transition dynamics of the years 1983-2017

taken from the 100-year experiment above. Finally, we compute how many of them

are still above the top 0.0003% cutoff in 2017, and we find that 9.66% are. Hence,

the model is fairly successful in accounting for the mobility out the Forbes 400, at

least according to this rough measure of turnover.

The economics of family firms In our interpretation of our model and this

transition experiment, the phenomenon of long-lived and highly volatile family firms

is central not only to the highly skewed distribution of wealth in the United States

and many other countries, but also to the rapid evolution of top wealth shares over

time. In our model, family firms facing a large amount of idiosyncratic risk are also

central to high degrees of wealth mobility from the bottom of the wealth distribution.

Moreover, the observation that the wealth distribution is not more skewed suggests

that if family firms are an important part of the wealth distribution, then it must be

the case that great fortunes are also relatively rapidly dissipated.

These features of our model suggest that decisions by owners of family firms to sell

out and diversify their holdings may play a central role in the evolution of the wealth

distribution. To illustrate this point, we use our model to consider the counterfactual

distribution of wealth that would occur if family firm owners were to choose to more

rapidly diversify their portfolios. In the context of the two type model presented

above, changes in the propensity to diversify can be modeled as changes in the type

switching rate κF .

Consider, for instance, the effect of an increase in the rate at which entrepreneurs

diversify their wealth on the steady-state wealth distribution. In particular, take as

a starting point the initial steady-state wealth distribution implied by the dynamics

from the previous transition experiment. How would that distribution change if the

switching rate were increased from our benchmark value of κF = 1/15 to κF = 1/5,

while keeping constant the other parameters governing the evolution of assets for
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both family firms and diversified dynasties? In table 3, we compare the steady-state

wealth shares implied by having dynasties diversify at different rates.

Steady State Wealth Shares
top 1% top 0.1% top 0.0003% (Forbes 400)

κF = 1/15 44% 21% 2.8%
κF = 1/5 35% 10% 0.9%

Table 3: Model implied steady-state wealth shares for different values of the switching rate κF

Increasing the rate at which dynasties diversify dramatically reduces steady state

top wealth shares and does so in a progressive fashion: the fall in the share of wealth

held by the Forbes 400 is more dramatic than the fall for the top 0.1%, which in turn

is more pronounced than the fall for the top 1%.

We interpret this experiment as indicating that the economics of family firms and

the reasons for which wealthy families do or do not more rapidly diversify their

holdings are fruitful for understanding extremes of wealth inequality in the United

States.14

6 Conclusion

In this paper, we have shown that the evolution of top wealth shares in the United

States over the past 100 years can be understood as being driven by the evolution

of the idiosyncratic volatility of firm values as long as one allows “family firms” to

play an important role in the model.

Throughout our paper, we take the moments of innovations to the value of family

firms as a primitive. As discussed in Piketty (2014) and Saez and Zucman (2019),

the moments of after-tax returns for families owning family firms are also affected

14See Peter (2019) for a discussion of differences in the extent of diversification of firm ownership
across European countries and top wealth shares in those countries.
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by tax policies. See also Aoki and Nirei (2017) and Hubmer et al. (Forthcoming).

We have made no effort to disentangle to what extent this evolution of top wealth

shares was driven by changes in the volatility of firm values versus tax rates or some

other aspect of the economy. We leave this for future research.

We do conjecture, however, that it may be fruitful going forward to emphasize the

economics of family firms in the analysis, in order to deepen our understanding of

the drivers of wealth inequality in the United States and likely many other countries.

We have shown in our model that wealth is much more equal if entrepreneurs and

their heirs sell out and diversify shortly after founding their firms. Why do families

maintain their concentrated stakes in family firms over several generations? Why

do these families resolve the tension between control of their firms and access to

broad sources of capital available in public markets in favor of concentrated own-

ership? Could one implement policies that would tilt this choice in favor of rapid

diversification by founding families? Would such a policy intervention result in a

more equal distribution of wealth? We suggest that it would be worthwhile to think

harder about the economics of family firms in considering policies to reduce wealth

inequality in the United States.
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7 Appendix

In this appendix, we present an extension Proposition 1 to the two-type version of

our model. We show in particular that the degree of wealth mobility from the bottom

of the distribution is critical in determining the speed of transition implied by our

model. We then discuss how we map our calibration moments to the parameters of

the two-type model.

As discussed in Section 5 the distribution of assets by type in the steady-state of

our two type model has the form

gj(n) = aj(1− λa)λna + bj(1− λb)λnb

for j = F,D. Using the notation of Proposition 1, we write the distributions Λi(n) =

(1 − λi)λni for i = a, b and n ≥ 0, and we use 1 to denote a distribution that puts

weight one on the node n = 0 and zero on every other node.

In the two-type model, the operator T defined by equations (5) and (6) maps a

pair of distributions by type at t, [gF,t, gD,t]
′ to a pair of distributions by type at

t + 1, [gF,t, gD,t]
′. Define Tj to be the operator which maps pairs of distributions at

t, [gF,t, gD,t]
′ to the distribution for type j at t+ 1. With these definitions

T [gF,t, gD,t]
′ =
[
TF [gF,t, gD,t]

′ ,TD [gF,t, gD,t]
′]′

The transition experiment we consider is as follows. Fix the parameters of the

operator T given by {pu,j, pd,j, φj}. Let the initial distribution of assets by type be

given by

gj,0 = aj,0Λa + bj,0Λb

with aj,0 + bj,0 = 1 for arbitrary nonnegative weights aj,0, bj,0 and arbitrary Λa,Λb

defined by λa, λb ∈ [0, 1). The distributions of assets by type converges over time to

gj,ss = aj,ssΛa,ss + bj,ssΛb,ss
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with new weights aj,ss and bj,ss on new vectors Λa,ss 6= Λa and Λb,ss 6= Λb.

Extension of Proposition 1 We then have the following extension of our transi-

tion result in Proposition 1. Specifically, we have that, in this transition experiment

in the two-type model, the distributions of assets by type at date t are given by[
gF,t

gD,t

]
=

[
aF,tΛa

aD,tΛa

]
+

[
bF,tΛb

bD,tΛb

]
+

t−1∑
k=0

Tk
[
cF,t−k1

cD,t−k1

]
. (11)

where aj,0, bj,0 are give by the initial distributions at t = 0,[
aF,t+1

aD,t+1

]
=

[
φFAF (1− φF )AD

(1− φD)AF φDAD

][
aF,t

aD,t

]
(12)

and [
bF,t+1

bD,t+1

]
=

[
φFBF (1− φF )BD

(1− φD)BF φDBD

][
bF,t

bD,t

]
(13)

where

Aj =

[
1 + pu,j

1− λa
λa

− pd,j(1− λa)
]

(14)

Bj =

[
1 + pu,j

1− λb
λb

− pd,j(1− λb)
]

(15)

and cF,0 = cD,0 = 0 and

cF,t+1 = φF (aF,t + bF,t) + (1− φF )(aD,t + bD,t)− (aF,t+1 + bF,t+1)

cD,t+1 = φD(aD,t + bD,t) + (1− φD)(aF,t + bF,t)− (aD,t+1 + bD,t+1)

In comparing this result to that in Proposition 1, we see that the transition dy-

namics of the distribution of assets in the two-type model is similar to those in the

one-type model in that the distribution of assets in the transition at time t is a

weighted average of the initial distributions Λa and Λb and distributions of assets

built up by repeated application of the operator T to cohorts of agents all starting
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at the bottom of the distribution of assets (with initial distribution 1). Thus, the

speed with which the tail coefficient of the distribution of assets depends on how

fast distributions of assets built up from cohorts of agents starting at the bottom

converge to the steady-state distributions based on Λa,ss and Λb,ss.

We prove this result regarding the distribution of assets in the transition as follows.

Note that the operator T is linear in acting on pairs of distributions. Direct

calculation gives that

TF

[
aF,tΛa

aD,tΛa

]
= [φFAFaF,t + (1− φF )ADaD,t] Λa+

[φF (1− AF )aF,t + (1− φF )(1− AD)aD,t] 1 =

aF,t+1Λa + [φFaF,t + (1− φF )aD,t − aF,t+1] 1

TF

[
bF,tΛb

bD,tΛb

]
= bF,t+1Λb + [φF bF,t + (1− φF )bD,t − bF,t+1] 1

TD

[
aF,tΛa

aD,tΛa

]
= aD,t+1Λa + [φDaD,t + (1− φD)aF,t − aD,t+1] 1

TD

[
bF,tΛb

bD,tΛb

]
= bD,t+1Λb + [φDbD,t + (1− φD)bF,t − bD,t+1] 1

These results imply that when the operator T is applied to the initial distribution

at t = 0, the pair of distributions that results at t = 1 is given by[
gF,1

gD,1

]
=

[
aF,1Λa

aD,1Λa

]
+

[
bF,1Λb

bD,1Λb

]
+

[
cF,11

cD,11

]

Now consider applying the operator T to a pair of distributions at t of the form in
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equation (11). We get[
gF,t+1

gD,t+1

]
= T

[
gF,t

gD,t

]
=

[
aF,t+1Λa

aD,t+1Λa

]
+

[
bF,t+1Λb

bD,t+1Λb

]
+

[
cF,t+11

cD,t+11

]
+

t−1∑
k=0

Tk+1

[
cF,t−k1

cD,t−k1

]
=

[
aF,t+1Λa

aD,t+1Λa

]
+

[
bF,t+1Λb

bD,t+1Λb

]
+

t∑
k=0

Tk
[
cF,t+1−k1

cD,t+1−k1

]

This proves the result.

Characterizing the Steady-State Distribution We take as given the parame-

ters of the two-type model φF , φD, pu,F , pd,F , pu,D, pd,D. The steady state distribution

is given by six parameters λa, λb ∈ (0, 1) and aF , aD, bF , bD ∈ [0, 1]. These six pa-

rameters have to satisfy the following conditions. The weights aF , aD, bF , bD have to

satisfy

aF + bF = 1

aD + bD = 1

and be a stationary solution to equations (12) and (13) with the coefficients Aj and

Bj given by equations (14) and (15). These equations imply that

aF
aD

=
(1− φF )AD
(1− φFAF )

=
(1− φDAD)

(1− φD)AF
(16)

The second of these equations implies

0 = 1− (1− φF − φD)AFAD − φDAD − φFAF (17)

Since AF and AD are both quadratic in λ (powers −1, 0, and 1), equation (17) is

a fourth order polynomial when (1 − φF − φD) 6= 0. To have a unique stationary

distribution, one must check that only two of the roots of this polynomial lie in the
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interval (0, 1). By convention, λa is the largest root of this polynomial that lies in

the interval (0, 1) and λb is the smaller of the two roots in this interval. We have

that bF and bD solve the analogous equation to (16) with λb being the smaller root

in (0, 1) of the analog to equation (17) defined by BF and BD in place of AF and

AD.

Calibrating the Two-Type Model We calibrate the parameters of the two-type

model as follows.

We fix the time interval ∆t = 1/1000 representing 1/1000 of a year and σmax = 0.5.

The step size of the grid of assets is given by

∆ = σmax
√

2∆t

We have the following calibration moments for the initial steady-state distribution

of assets.

1. The unconditional fractions of each type in the population are given by νj for

j = F,D. This sets these parameters directly at νF = 0.05 and νD = 0.95.

2. The switching rate per unit time from F to D given by κF = 1/15 or 6.66%

per year. This condition and the unconditional fractions of each type in the

population give us

φF = 1− κF∆t

φD = 1− νF
νD

(1− φF )

3. Let ν400
j denote the fractions of each type in the limit as wealth gets large.

The superscript 400 here refers to the Forbes 400. We set ν400
F = 53% and

ν400
D = 47%. To match these fractions, from equation (10) the ratio of the

parameters aF/aD must satisfy

aD/aF =
νF − νFν400

F

νDν400
F
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Note that with this solution for aF/aD, the equations (16) can then be solved

for AF and AD.

4. The limiting tail coefficient for the Pareto distribution of assets is denoted by

ζa. We set ζa = 1.5. To match this limiting tail coefficient, we must have

λa = exp(−∆ζa)

5. We set the two uncentered second moments of innovations to the log of assets

by type to

(pu,F + pd,F )∆2 = 0.452∆t

and

(pu,D + pd,D)∆2 = 0.152∆t

Given our solutions for Aj in step 3 together with our calibrated value of

λa, these equations together with the equations (14) imply solutions for these

probabilities pu,j, pd,j for j = F,D.

We finish solving for the parameters of the model as follows.

The second stable eigenvalue λb has to be a root of

0 = 1− (1− φF − φD)BFBD − φDBD − φFBF

with Bj given from equations (15) using the probabilities solved for in step 5. Once

we find this second stable eigenvalue, we have that bF/bD must satisfy the analog to

equation (16), which, together with the restrictions that aj + bj = 1 for j = F,D,

gives us the four coefficients aj, bj.

Finally, we choose the level of debt d = 1.1 to match the share of net worth held

by the top 0.1% using equation (1).
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