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quotes and avoid winner’s curse in subsequent trades. On a multi-dealer platform,

dealers’ incentive of information chasing exactly offsets their fear of adverse selection.

In a more general setting of OTC markets, information chasing can dominate adverse

selection when dealers face differentially informed speculators, while adverse selection

always dominates when dealers face differentially informed trades from a given specula-

tor. These two predictions—which contrast sharply with each other—both find strong

empirical support in the UK government bond market.

JEL Classifications: G14, G18, D82

Keywords: Information chasing, adverse selection, over-the-counter, price efficiency

*Bank of England. Email: gabor.pinter@bankofengland.co.uk
�The Wharton School, University of Pennsylvania. Email: wangchj@wharton.upenn.edu
�Finance Area, INSEAD. Email: junyuan.zou@insead.edu.

1

https://www.dropbox.com/s/lgsj8cldrcg52a7/info_chasing.pdf?dl=0


1 Introduction

The classic adverse selection theory predicts that more informed trades should receive worse

pricing. However, this pattern reverses in over-the-counter (OTC) financial markets—instead

of being deterred by adverse selection risk, dealers aggressively chase informed orders by

offering tighter bid-ask spreads to more informed traders.

We show that dealers chase informed orders to better position their future price quotes

and avoid winner’s curse in subsequent trades. On a multi-dealer trading platform, dealers’

incentive to chase informed orders exactly offsets their fear of adverse selection. Through

information chasing, dealers transform adverse selection by the informed into winner’s curse

when bidding for the uninformed. As a result, the adverse selection cost is entirely passed

on to liquidity traders. More generally, without assuming any specific trading platform, we

show that across differentially informed speculators, information chasing as a component

of the bid-ask spread dominates the adverse selection component if and only if a more

informed speculator receives a tighter bid-ask spread; Within a given speculator, however,

adverse selection always dominates information chasing, so that a more informed trade always

receives worse pricing than a less informed trade from the same speculator. These two

predictions—which contrast sharply with each other—both find strong empirical support

in the UK government bond market. Post-trade transparency reduces information chasing

incentive and thus price efficiency.

The benchmark model works as follows. An asset with uncertain payoff is traded over-the-

counter on a multi-dealer platform. In Stage 0, a speculator exerts costly effort to acquire a

private signal about the asset payoff. In Stage 1, the speculator submits a request-for-market

(RFM) for a selected quantity of the asset, without revealing her desired trade direction, to

a number of dealers simultaneously on the multi-dealer platform. Every dealer quotes a bid

and an ask to the speculator, who then can choose one dealer to buy or sell at that dealer’s

respectively quoted price. The trade is not publicly disclosed. In Stage 2, a mass of liquidity

traders send RFM to the dealers simultaneously on the multi-dealer platform to trade one
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unit of the asset each.

Dealers are incentivized to chase an informed order because executing such a trade allows

a dealer to extract information about the asset payoff, then use this information to more

accurately set quotes to liquidity traders. If, say, the informed speculator chooses to sell

to a given dealer, then the asset payoff is likely to be low and the dealer would lower its

quotes to liquidity traders to attract more buy orders, leaving undesired sell orders to the

other dealers. This subjects the other dealers to winner’s curse when competing for liquidity

traders. While setting quotes to the informed speculator, dealers compete to narrow their

bid-ask spread as long as the cost of being adversely selected does not exceed the expected

gain from being able to more accurately position their subsequent quotes to liquidity traders.

Therefore, through information chasing, dealers transform adverse selection by the informed

into winner’s curse when bidding for the uninformed. In equilibrium, the dealers all quote a

zero bid-ask spread to the speculator in Stage 1, meaning that their incentive to chase the

informed order exactly offsets their fear of adverse selection. When setting quotes to liquidity

traders in Stage 2, dealers employ mixed strategies to mitigate winner’s curse, giving rise

to a new form of price dispersion. This type of price dispersion, induced by winner’s curse,

persists on a multi-dealer platform with simultaneous price competition and does not vanish

even when the number of competing dealers goes to infinity or the signal about the asset

payoff becomes perfectly accurate. Naturally, the dealer who wins the informed orders in

Stage 1 provides the most informed quotes and earns the highest profit in Stage 2.

Direct price competition on a multi-dealer platform is not a prerequisite for informa-

tion chasing. More generally, without assuming any specific trading platform, we show that

across differentially informed speculators, information chasing dominates adverse selection

if and only if a more informed speculator receives a tighter bid-ask spread. Within a given

speculator, however, adverse selection always dominates information chasing, so that a more

informed order always receives a wider bid-ask spread than a less informed order from the

same speculator. The sharp contrast between these two predictions is due to an additional
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incentive compatibility condition required for orders from a given speculator: a more in-

formed speculator cannot pretend to be a less informed one and vice versa, while a given

speculator can pretend to be less informed when she is actually more informed. Within a

given speculator, the resulting incentive compatibility condition is precisely sufficient and

necessary for adverse selection to dominate information chasing. These two predictions si-

multaneously find strong support in the UK government bond market: ceteris paribus, a

more informed trader receives on average 0.3 bps lower execution cost than a less informed

trader, while a 1 bps increase in the execution cost of a trade of a given trader predicts that

the price of the traded bond will move by 0.3 bps more in the opposite direction in 6 days.

Regulators have been promoting post-trade transparency in the traditionally opaque OTC

markets. FINRA and MSRB implemented real-time reporting and public dissemination of

trades in corporate and municipal bonds via TRACE and RTRS since 2002 and 2005 respec-

tively. After the 2008 financial crisis, the Dodd-Frank Act in the US expanded mandatory

trade disclosures to swaps, while the more aggressive MiFID II Transparency Rules in EU

cover a much wider range of fixed-income assets. In our model, trade disclosure after Stage

1 reduces information-chasing incentives and ultimately harms information production and

price efficiency. This prediction is supported by empirical evidence in Lewis and Schwert

(2018).

The most relevant paper is Naik, Neuberger and Viswanathan (1999), which shows that

if a dealer is able to effectively “observe” the informativeness of a trade after executing

the trade, then a more informed trade may receive better pricing. Our theory differs by

explicitly modeling a dealer’s inference of the trade’s informativeness through the trader’s

identity and trade size. This approach yields distinctive predictions for within-trader versus

across-trader comparisons, thus providing empirical guidance on where to locate evidence

of information chasing. Two empirical papers, Ramadorai (2008); Bjønnes, Kathitziotis

and Osler (2015), document a trading pattern that is consistent with information chasing

in the foreign exchange market using independent data sources. However, the empirical
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pattern may also be consistent with non-informational mechanisms. We follow our own

empirical guidance and simultaneously find evidence of information chasing in the cross-

trader comparison, and evidence of adverse selection within trades originated from a given

informed trader in the same UK government bond market. These two opposing trading

patterns provide a natural yet strong identification of the information-chasing mechanism.

There is a large literature on adverse selection in financial markets.1 We show that in

OTC markets, dealers have an additional incentive to chase informed orders, which may

very well dominate their fear of adverse selection. As a further distinction, Lee and Wang

(2018), which shows that when a centralized exchange and an OTC market co-exist, the OTC

dealers cream-skim liquidity traders from the exchange by offering them better pricing. Our

paper considers OTC trading without an exchange in parallel, which is the case for currency

and Treasury bonds. However, our theory would make the same prediction if both markets

co-exist: When an exchange is available where trading prices are common knowledge, dealers

no longer have incentive to chase informed orders in the OTC market. Therefore, adverse

selection induces worse pricing for speculators.

Our paper is related to the literature on information transmission in OTC Markets.2 We

explicitly model a dealer’s incentive to chase informative orders through aggressive pricing,

which is the mechanism through which a dealer can learn and subsequently transmit infor-

mation. The pricing implication of information-chasing incentive is the focus, while learning

and transmission of information are merely natural consequences of information chasing.

The remaining of the paper is organized as follow: Section 2 sets up the benchmark

model, and examines its equilibrium implications on pricing. Section 3 derives conditions

for information chasing to dominate adverse selection in a more general setting, without

1Glosten and Milgrom (1985), Kyle (1985, 1989) and Vives (2011) provide theoretical benchmarks; A
recent empirical paper, Collin-Dufresne, Junge and Trolle (2020), documents trading patterns that are
consistent with adverse selection in the index-CDS market.

2Duffie and Manso (2007), Duffie, Malamud and Manso (2009), Duffie, Giroux and Manso (2010) and
Duffie, Malamud and Manso (2014) show how information percolates in OTC Markets under different set-
tings. Li and Song (2019) shows how a dealer can act as information intermediaries to channel information
from informed to uninformed. These papers assume that information transmits in a reduced form manner.
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assuming any specific trading protocol. Section 4 provides empirical support for the testable

predictions in the UK government bond market. Section 5 concludes.

2 The Benchmark Model

This section sets up a benchmark model, and examines the pricing implications of information

chasing.

2.1 Setup

There are three types of risk-neutral agents—one speculator, n dealers, and a mass m of

liquidity traders—trading one common asset in the market. The asset payoff is v, which is

either 1 or −1 with equal probability. Each liquidity trader needs to buy or sell, indepen-

dently and with equal probability, one unit of the asset regardless of the price.3

The trading game has three stages. In Stage 0, the speculator exerts costly effort to

acquire information about the asset value v. Specifically, the speculator pays a cost c(η) to

acquire a binary signal with a selected precision η ∈ [0, 1]. The binary signal s takes the value

of 1 or -1 with equal probability, and the correlation between s and v is η. We assume that

the information acquisition cost function c satisfies c(0) = 0, c(1) = +∞, limη→0 c
′(η) = 0,

limη→1 c
′(η) = +∞, and c′′(η) > 0 to insure a unique interior precision choice. The chosen

precision and the realization of the signal are both private information of the speculator. The

dealers have no additional information about the asset value v, assigning equal probability

to the potential values 1 and −1 .

In this benchmark model, we assume that traders trade with the dealers on a multi-

dealer platform using Request-for-Market as the trading protocol, as follows. In Stage 1, the

speculator simultaneously requests a two-sided quote from the dealers to trade a selected

3Since the asset price will be bounded between -1 and 1, a sufficient condition for a liquidity trader to
be willing to trade at any price is that she values the asset at v + δ, where her liquidity benefit δ satisfies
|δ| > 2.
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size q ≥ 0 of the asset, without indicating her desired trade direction.4 Since purchase

and sale are symmetric in the Stage 1 trading game, we consider the case where each given

dealer j responds with an ask a1,j(q) and a bid −a1,j(q) with a mid price equal to the

unconditional mean of the asset, which is 0. Therefore, the dealer’s pricing strategy in

Stage 1 can be represented by its mid-to-bid spread a1,j(q) as a function of the order size

q. The bid-ask quotes constitute a binding take-it-or-leave-it offer to buy or sell q units of

the asset at the respective prices. The speculator can select one dealer to buy or sell at

that dealer’s respectively quoted price. There is no post-trade transparency, which means

that the liquidity traders and the other dealers do not observe the price and size of the

trade. In Stage 2, each liquidity trader requests a bid-ask quote (a2,j, b2,j) simultaneously

D1

D2

Dn

S

Lm

Stage 1 Stage 2Stage 0

S
Pay cost 𝑐

Get signal 𝑠

L1

Figure 1: The Timeline.

from all dealers to trade 1 unit of asset. Since the liquidity trader’s order is not informed,

it is irrelevant whether she indicates her desired trade direction at the time of her request.

The liquidity trader then trades with the dealer who offers the best quote. At the end of

Stage 2, the common value of the asset is realized and the speculator and the dealers receive

4Such a request is called a “request-for-market” (RFM). In contrast, a “request-for-quote” (RFQ) indicates
a desired trade direction upfront. It is common for traders to use RFM over the phone especially for larger
trades. The trading protocol is also growing very quickly on electronic trading platforms. It is reported in
Becker (2018) that the number of RFM-traded tickets on Tradeweb increases 510% in 2017 across interest
rate swaps as traders try to hide their trading intentions. In the model, the speculator would choose to
submit an RFM instead of an RFQ if she had a choice precisely to conceal her signal and thus incentivize
dealers to chase her order.
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the realized payoff of their asset position plus net payments they received from trades. The

timeline and the market structure is summarized in Figure 1.

2.2 Equilibrium

Using backward induction, we show that there exists a unique perfect Bayesian equilibrium

that satisfies forward induction.

Stage 2: Competing for Liquidity Trades

In Stage 1, the speculator buys upon receiving a positive signal and sells otherwise. Then

at the beginning of Stage 2, one dealer is able to infer the signal realization by trading with

the speculator in Stage 1 while other dealers remain uninformed about the signal realization.

We let a dealer’s belief regarding the signal precision be denoted by η̂, which will be uniquely

pined down by forward induction as a function of the order size q commonly observed by all

the dealers. Therefore, all dealers hold the same belief η̂.

Dealers’ bidding strategies in Stage 2 depend on the number nI of informed dealers.

There are two cases: The speculator may reject all dealers’ quotes in Stage 1, then nI = 0;

otherwise, nI = 1. In equilibrium, it will turn out to be the case that there is nI = 1

informed dealer in Stage 2, so that the Stage-2 game is equivalent to a first-price-sealed-bid

auction with asymmetric information and discrete signals. In the appendix, we show that the

corresponding continuation game in Stage 2 has no pure-strategy equilibrium. Intuitively,

the uninformed dealers use a mixed pricing strategy to avoid being completely outbid by the

informed dealer precisely when the asset is good, mitigating winner’s curse. The informed

dealer also mixes to avoid being completely outbid by the uninformed dealers.

The next proposition summarizes dealers’ unique mixed bidding strategies in Stage 2

constructed from results established in Syrgkanis et al. (2019). We denote the bid-ask quotes

of the informed dealer by (b+
2 , a

+
2 ) when the signal is good, and (b−2 , a

−
2 ) when the signal is

bad. The bid-ask quotes of an uninformed dealer are denoted by (b0
2, a

0
2).
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Proposition 1 If n ≥ 2 and nI = 1, the Stage-2 game has a unique equilibrium in which

(i) for the informed dealer, b−2 = −η̂, a+
2 = η̂, while b+

2 and −a−2 are drawn from a

continuous distribution with CDF

G+(b) =
2

1− b/η̂
− 1, b ∈ [−η̂, 0].

(ii) for the uninformed dealers, b0
2 and −a0

2 are drawn from a hybrid distribution with CDF

Gn(b) =

n−1
√

1

1− b/η̂
, b ∈ [−η̂, 0].

The distribution Gn describes a hybrid bidding strategy, in that an uninformed dealer

bids −η̂ with probability
n−1
√

1/2, and with probability 1 − n−1
√

1/2, it draws its bid from

the distribution with CDF

n−1√
1

1−b/η̂ −
n−1√

1
2

1−
n−1√

1
2

, b ∈ [−η̂, 0].

When n = 2, the distribution G2 of the uninformed dealer’s bid is the same as the uncon-

ditional distribution of the informed dealer’s bid. That is, the uninformed dealer “fakes” a

signal by randomly flipping a coin, and bids according to the fake signal as if it was informed.

When n > 2, the maximum bid of all the n − 1 uninformed dealers is distributed following

the CDF Gn−1
n = G2, which is not affected by n. Consistently, the informed dealer’s bidding

strategy is also not affected by the number n− 1 of competing uninformed dealers.

From dealers’ bidding strategies, we can compute their Stage-2 payoffs.

Proposition 2 When there is one informed dealer in Stage 2, the expected payoff of an

uninformed dealer is 0, and the expected payoff of the informed dealer is mη̂/2.

The uninformed dealers shade their bid-ask offers due to their fear of winner’s curse, allowing
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the informed dealer to earn a positive profit. The value of becoming the only informed dealer

is increasing in the mass of liquidity traders and the precision of the signal.

If nI = 0, no dealer has information. Then all dealers quote the unconditional mean of

the asset, setting b0
2 = a0

2 = 0. Therefore, the Stage-2 bid-ask spread is 0 and all dealers

receive an expected payoff of 0.

Given the prospect of earning a positive payoff in Stage 2 if informed, dealers are incen-

tivized to chase the speculator’s order in Stage 1.

Stage 1: Chasing the Informed Order

While setting quotes to the informed speculator in Stage 1, dealers compete to narrow

their bid-ask spread until the cost of being adversely selected is about to exceed the expected

gain from being able to more accurately position their quotes to liquidity traders in Stage 2.

Bertrand competition implies that at least 2 dealers offer the competitive spread a1(q) such

that the following zero profit condition holds xfor dealers:

q [a1(q)− η̂(q)] +
1

2
mη̂(q) = 0, (1)

where η̂(q) is dealers’ belief about η given an order size q. We will pin down η̂(q) by forward

induction when we solve for the speculator’s choice of information acquisition in stage 0.

Proposition 3 In stage 1, given any order size q from the speculator, two or more dealers

offer the same competitive mid-to-bid spread

a∗1(q) = η̂(q)− mη̂(q)

2q
. (2)

The speculator randomly selects one of the dealers who offer the smallest spread, indepen-

dently from the realization of its signal. Upon selecting the dealer, the speculator buys if she

receives a positive signal, and sells otherwise.

In equilibrium, the speculator’s selection of the dealers cannot be correlated with its
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signal realization. Otherwise, those dealers who offer the smallest spread but fail to trade

with the speculator can partially infer the signal realization, reducing information rent in

stage 2. Thus, a dealer can profitably deviate by narrowing its spread by ε in order to prevent

this information leakage. A formal proof of (2) is provided in the Appendix.

The pricing function in (2) reflects the combined effect of two countervailing incentives—

the fear of adverse selection and the urge of information-chasing. The first term of the spread

a∗1(q) is a dealer’s expected per-unit value of the asset when she receives an order or size q.

Since the informed speculator always trades in the direction that is adverse to the dealer, the

dealer charges the speculator this expected asset value through the spread to compensate

for its expected loss from the trade. This is the classic adverse selection component of a bid-

ask spread. When the speculator’s information becomes more precise, dealers increase the

bid-ask spread to protect themselves from the increasing adverse selection cost. The second

term in a∗1(q) reflects dealers’ incentive to chase informed orders. A dealer can profit from

its information advantage over other dealers when competing for the orders from liquidity

traders in stage 2. Anticipating this benefit, all dealers narrow their bid-ask spread to

compete for the informed order in stage 1. Given an order size q, the existence of more

liquidity traders in stage 2 gives dealers stronger incentive to chase the informed order in

stage 1 and narrows their bid-ask spread.

From (2), we know the sign of the spread depends the relative strength of the two effects.

If q > m/2, the per unit value of information of the informed order is small relatively to the

adverse selection cost. Thus, The mid-to-bid spread a∗1(q) is positive. The reverse is true

when q < m/2.5 When q = m/2, the two effects exactly offset each other, which will turn

out to be the case in equilibrium. Anticipating the equilibrium, the order size q will reveal

the information acquisition effort of the speculator, and will be pinned down endogenously

when we examine stage 0.

5In this paper, we abstract away from other market-making costs such as inventory and operational
costs. Thus, we only capture the informational component of a bid-ask spread. A negative spread should be
interpreted as a negative informational component in a positive spread.
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Stage 0: Information Acquisition

Given any order size q and pricing strategies (a1,j)j=1,...,n of the dealers, the speculator’s

optimal choice of information precision maximizes its expected payoff

η̂(q) ∈ argmax
η

q ·
[
η −min

j
a1,j(q)

]
− c(η).

In the speculator’s payoff, the first term represents the expected profit of trading q units of

asset in the direction indicated by the signal at the best executable quote. The second term

represents the cost of information acquisition.

The spreads (a1,j(q))j=1,...,n are independent of η since dealers do not observe the specu-

lator’s actual choice η of information precision. Thus, when choosing η, the speculator need

not consider the dealers’ pricing functions. For a given trade size q, it is thus a dominant

strategy for the speculator to choose the precision

η̂(q) = c′−1(q) (3)

that equates the marginal benefit from trading with more precise information and the

marginal cost of acquiring information. Forward induction thus implies that the dealers

hold the same belief η̂(q) regarding the precision when receiving an order of size q. This be-

lief η̂(q) is increasing in q because dealers understand that the speculator must have acquired

a more precise signal if she requests to trade a larger size. From the speculator’s perspective,

she can always credibly communicate her signal precision through her order size.

Although the speculator sends the order size q to the dealers in Stage 1, she effectively

makes a joint decision on η and q together. In Stage 0, the speculator anticipates some

equilibrium pricing function a∗1 by the dealers and solves

(η∗, q∗) = argmax
η,q

q[η − a∗1(q)]− c(η). (4)
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Now we can solve for the equilibrium of the game in Stage 0 and Stage 1, taking the

payoff in the Stage 2 bidding game as given.

Proposition 4 (Equilibrium) In Statge 0 and Stage 1, a PBE satisfying forward induc-

tion consists of (1) the speculator’s strategy (η∗, q∗), (2) the dealers’ pricing strategy a∗1 in

Stage 1, and (3) dealer’s belief η̂(q) that satisfy

1. Dealers’ zero profit condition (2),

2. Speculator’s optimality condition (4),

3. The forward induction condition (3).

Substituting dealers’ equilibrium belief (3) into dealers’ zero profit condition (2), we

obtain dealers’ equilibrium spread quoted to the speculator:

a∗1(q) = c′−1(q)

(
1− m

2q

)
. (5)

Using the one-to-one relationship η = η̂(q) = c′−1(q) between the optimal choices of η

and q, and plugging in the expression (5) of the equilibrium spread a∗1(q), we can simplify

the speculator’s problem (4) into a one dimensional optimization problem over η,

max
η

mη

2
− c(η). (6)

Solving the optimization problem yield

η∗ = c′−1
(m

2

)
, q∗ =

m

2
. (7)

In equilibrium, the size of the informed order and the signal precision both increase in

the mass m of liquidity traders. Intuitively, a larger amount liquidity trades raises the profit

of offering informed quotes, thus intensifies dealers’ incentive to chase the informed order in
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Stage 1. Therefore, dealers shrink their bid-ask spread to the informed order, which in turn

encourages the speculator to acquire more precision information and trade more.

Plugging the equilibrium size q∗ = m/2 of the informed order into the dealer’s Stage-1

pricing strategy (2), the dealers’ equilibrium spread quoted to the speculator thus becomes

a∗1(q∗) = η∗
(

1− m

2q∗

)
= 0. (8)

Lemma 1 The speculator receives a zero bid-ask spread in equilibrium.

This zero spread result holds for any parametric assumption in the benchmark model. With-

out other trading frictions such as search frictions, inventory costs or transaction costs,

Lemma 1 should be interpreted as a zero informational component in the bid-ask spread.

Dealers trade off two opposing incentives when setting quotes to the speculator: their fear

of adverse selection drives up their bid-ask spread, while their urge of information chasing

pushes down the spread. On a multi-dealer trade platform, these two countervailing forces

precisely offset each other, rendering a zero net effect of information on the spread. We will

show, in a generalized model in Section 3, that this is a consequence of the market structure

allowing dealers to compete directly in their pricing for liquidity trades.

2.3 Pricing Implications

The model has several testable implications on trading prices.

Bid-Ask Spreads Since liquidity traders as a whole place the same amount of sell orders

and buy orders, There is no net asset transfer between dealers and liquidity traders. Thus,

the average mid-to-bid spread in Stage 2 is equal to the dealers’ trading profit per unit of

liquidity orders. Liquidity traders face a positive expected mid-to-bid spread given by

1

2
η∗ =

1

2
c′−1

(m
2

)
. (9)
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Comparing the expected bid-ask spread received by the informed trader versus the liq-

uidity traders, we have the following testable implication.

Claim 1 In OTC markets with non-anonymous trading, informed trades receive lower bid-

ask spreads.

We can also calculate the expected bid-ask spread of all trades in both stages, weighted

by their trade sizes:

∆̄ =
q∗∆1 +m∆2

q∗ +m
=

2

3
c′−1

(m
2

)
.

The average bid-ask spread is increasing in the amount of liquidity traders.6

Claim 2 In OTC markets with non-anonymous trading, other things equal, the average bid-

ask spread is larger when there are more liquidity traders.

Claim 3 In OTC markets with non-anonymous trading, other things equal, bid-ask spread

is smaller when the cost of information acquisition is uniformly higher.

Price Dispersions An important feature of the equilibrium is that price dispersion arises

endogenously as a result of winner’s curse. Without any search frictions, both the informed

dealer and the uninformed dealers use mixed pricing strategies when competing for liquidity

trades in Stage 2.

The price dispersion arising from winner’s curse persists even when the liquidity trader

has access to a large number of dealers (n → ∞), and even increases when the signal of

the asset payoff becomes more accurate (η → 1). This is because dealers’ pricing functions

are linearly scalable in the signal precision η (Proposition 1). Letting σ(η) denote some

homothetic measure of price dispersion for trades in Stage 2 with a given signal precision η,

6The comparative static doesn’t change if we use different weights.
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then

σ(η) = ησ(1). (10)

Since the equilibrium signal precision η∗ increases with greater mass m of liquidity traders

and lower margin cost of information acquisition, we obtain the following prediction.

Claim 4 In OTC market with non-anonymous trading, other things equal, price dispersion

is higher when there are more liquidity traders, and when the marginal cost of information

acquisition is lower.

Price Informativeness Since the transaction price in Stage 1 is always 0, it carries no

information about the asset’s common value v. We define price informativeness as the

proportion of variance in the asset value v explained by the observed trading prices in

Stage 2. Depending on the realization of the speculator’s signal s, the best bid and ask

in Stage 2 follow different distributions (Proposition 1). An econ metrician can therefore

precisely estimate the signal s from a large sample of transaction prices in Stage 2. The

price informativeness thus equals the fraction of variance in v explained by the speculator’s

signal s.

τ(η) = 1− Var[v|s]
Var[v]

= η2. (11)

Claim 5 In OTC markets with non-anonymous trading, other things equal, price infor-

mativeness is higher when there are more liquidity traders, and when the marginal cost of

information acquisition is lower.
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3 General Trading Protocols

In the benchmark model with direct price competition among dealers, information chasing

exactly offsets adverse selection, resulting in the zero bid-ask spread received by the spec-

ulator. Further, the speculator’s trade size doesn’t depend on her information acquisition

technology. In this section, we study, in a general setting without assuming any specific

trading platform, how the speculator’s trade size and bid-ask spread vary with the informa-

tiveness of her trade. We give a sufficient and necessary condition under which information

chasing dominates adverse selection and vice versa. When information chasing dominates, a

more informed trader receives a tighter bid-ask spread and trades a smaller size.

In the previous section, dealers compete on the multi-dealer platform for liquidity trades

in Stage 2. Direct price competition determines the informed dealer’s profit from its infor-

mation. Now, we generalize the Stage 2 game by assuming that the informed dealer receives

some reduced-form continuation payoff VI(η) from exploiting the information content of the

speculator’s trade. Then, VI(η) is also the total surplus of the trade between the speculator

and the dealer. Also, to generalize the assumption that dealers compete à la Bertrand in

Stage 1, we now assume that a fraction ϕ ∈ [0, 1] of the trading surplus VI(η) goes to the

speculator, while the dealer executing the trade gets the remaining 1−ϕ fraction. The split

of the trading surplus can be viewed as the outcome of bilateral bargaining in a trade between

the dealer and the speculator, with the case ϕ = 1 corresponding to Bertrand competition by

dealers. Since the total trade surplus and the split of the surplus are both given in reduced

form, the number of dealers becomes irrelevant. For simplicity, we will view the generalized

model as one dealer trading with one speculator. In terms of the signal distribution, we

assume that the expected unit value of the asset is v(η) or −v(η) conditional on a positive

or negative signal respectively.
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Therefore, the benchmark model is a special case of the generalized model with

v(η) = η, VI(η) =
1

2
mη, ϕ = 1. (12)

We impose the following regularity conditions on VI(η) and v(η).

Assumption 1 The functions v(·) and VI(·) are both twice differentiable, and

1. v(0) = 0, VI(0) = 0, v′(η) > 0, V ′I (η) > 0,

2. v′′(η) ≤ 0, φV ′′I (η)− c′′(η) < 0.

It follows from (12) that Assumption 1 is a generalized version of the previously assumed

differentiability and convexity of c(·). It guarantees that the model has a unique interior

equilibrium.

The generalized model can be solved in the same way as the benchmark model. Receiving

a trade order of size q, the dealer expects the speculator to have chosen the dominant

information precision η̂(q) that equalizes the marginal change in the total value of the order

and the marginal cost of information acquisition.

qv′(η̂) = c′(η̂). (13)

The speculator receives a total payoff of ϕVI(η̂) in the form of price discount. This replaces

the dealer’s zero-profit condition (2) in the benchmark model. The dealer’s pricing function

then becomes

a∗1(q) = v(η̂(q))− ϕVI(η̂(q))

q
. (14)

Taking the dealer’s belief into consideration, the speculator optimally chooses the information

precision η∗ to equalize her share of the marginal value of information and the marginal cost
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of information acquisition.

ϕV ′I (η
∗) = c′(η∗). (15)

This determines the equilibrium level of information precision η∗. Combining (13), (14) and

(15), we establish the equilibrium relationship among information precision, order size and

the bid-ask spread.

Proposition 5 In the generalized model, there exists a unique equilibrium in which

q∗ = ϕ
dVI
dv

∣∣∣∣
η=η∗

, (16)

a∗1(q∗) = v(η∗)

[
1− 1

ε(η∗)

]
, where ε(η) =

d lnVI
d ln v

. (17)

Here, ε(η) measures how the percentage change in the value v of the asset affects the

value of information VI in percentage. Thus, it is the elasticity of VI with respect to v. The

key to understand the intuition of Proposition 5 is the trade size q. From (14), we know

that the spread is the difference between the value of one unit of asset and the value of

information distributed to each unit of asset. Given the same asset value v, if the speculator

trades a larger quantity q, the value of information per unit of asset will be diluted more,

and the spread will be larger. The tipping point is q = ϕVI(v)/v, when the adverse selection

component and the information chasing component exactly offset each other. How is q

determined in equilibrium? (16) shows that in equilibrium q always equals the marginal

value of information captured by the speculator ϕV ′I (v). Suppose the speculator trades

q > ϕV ′I (v). To make sure the trade is placed in the right direction, the speculator has to

acquire information to the point that the marginal cost of information acquisition equals q,

which exceeds the marginal value of information. This means that the speculator is acquiring

too much information, and at the same time, trading too much. The same reasoning can

be used to show the sub-optimality of q < ϕV ′I (v). Now we only need to compare the
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equilibrium trade size ϕV ′I (v) with the tipping point size ϕVI(v)/v. It turns out that this

comparison is equivalent to comparing ε evaluated at the equilibrium information precision

to 1. The equilibrium bid-ask spread is positive if ε(η∗) > 1, and negative if ε(η∗) < 1.

In the benchmark model, both VI(η) and v(η) are linear function of η, so the elasticity is

exactly equal to 1. Therefore, the bid-ask spread for the speculator always equals 0 in the

benchmark model.

We also gives a graphical illustration of Proposition 5 in panel (a) and (b) of Figure 2.

In each panel, we plot the speculator’s share of the value of information ϕVI and the cost of

information acquisition c as a function of v. The two dashed tangent lines marks the value of

v such that ϕVI(v) and c(v) have the same slope. This is the equilibrium unit cost v(η∗) of

adverse selection, following the speculator’s optimal information acquisition condition (15).

The forward induction condition (13) implies that the common slope of c(v) and ϕVI(v)

at v(η∗) is the equilibrium order size q∗. The equilibrium mid-to-bid spread a∗1(q∗) can be

decomposed into two parts—an adverse selection component and an information chasing

component, as shown by the expression (14) of a∗1(q∗). The adverse selection component

equals v(η∗), the absolute deviation between of the asset value’s ex-post mean and its ex-

ante mean. The information chasing component measures the value of information per unit

captured by the speculator. In panel (a), the elasticity ε of VI with respect to v is greater

than 1 at v(η∗). This is equivalent to say that the instantaneous rate of change of VI(v) at

v = v(η∗) is greater than the average rate of change of VI(v) between v = 0 and v = v(η∗).

Therefore, the speculator trades a large quantity q∗ such that the value of information per

unit is smaller than the asset’s value v(η∗). The adverse selection component dominates

the information chasing component, resulting in a positive bid-ask spread. In panel (b), the

elasticity ε of VI with respect to v is smaller than 1 at v(η∗). In contrast to the first case, the

speculator trades a small quantity q∗ such that the value of information per unit is greater

than the asset’s value v(η∗). As a result, the information chasing component dominates the

adverse selection component, resulting in a negative bid-ask spread.
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Figure 2: Decomposition of the bid-ask spread: information chasing vs adverse selection.

Across-speculator heterogeneity of trade size and bid-ask spread One sufficient

condition for ε to be always greater than 1 is that VI is a convex function of v. In fact,

the convexity of VI in v has important implications for understanding the cross-sectional

pattern of order sizes, bid-ask spreads and information content of trading. Consider two cost

functions of information acquisition c1(·) and c2(·) which satisfy the regularity conditions in

Assumption 1. We say that it is more costly for a speculator to acquire information under

c1(·) if c′1(η) > c′2(η) for any η ∈ [0, 1].

Proposition 6 (Across-speculator trade heterogeneity) A speculator with lower cost

of information acquisition always chooses a higher precision η∗. Moreover,

� If VI is convex in v, a speculator with a lower cost of information acquisition trades a
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higher quantity q∗ and receives a higher half spread a∗1(q∗).

� If VI is concave in v, a speculator with a lower cost of information acquisition trade a

lower quantity q∗ and receives a lower half spread a∗1(q∗).

� If VI is linear in v, all speculators trade the same quantity q∗ and receives a zero bid-ask

spread regardless of their cost of information acquisition.

The proof of Proposition 6 can be found in the appendix. It is intuitive that a speculator

with lower marginal cost of information acquisition acquires more information. Why does

the ranking of trade size and bid-ask spread depend on the convexity of VI(v)? Again, we

need to start from understanding the ranking of trade size q. As we have shown previously,

it is optimal for a speculator to trade q which equals the marginal value of information. If

VI(v) is convex, the speculator who acquires more information has higher marginal value

of information, therefore trades higher q. In fact, the trade size is so large such that the

increased value of information, after being diluted by q, is smaller than the increased value

of asset. Thus, the information chasing component becomes relatively weaker compared to

the adverse selection component, and the bid-ask spread increases. The opposite holds when

VI(v) is concave in v.

Here we give a graphic illustration in Figure 2. Panel (c) and (d) depict the equilibrium

when the cost of information acquisition is uniformly lower than that in panel (a) and (b).

No matter whether VI is convex or concave, the speculator increases the level of information

acquisition in response to the decline in the cost of information acquisition to capture more

value of information. However, the change in q∗ and a∗1(q∗) are different in the two cases.

When VI is a convex function of v, lower information acquisition induces the speculator to

aggressively improve the information precision and signal this information precision with a

higher q∗. The increase in q∗ further spreads out the value of information and enlarges the

difference between the dominating adverse selection component and the information chasing

component, resulting in a larger bid-ask spread. On the contrary, when VI is a concave

22



function of v, the same level of decline in the cost of information acquisition only leads to a

mild increase in the optimal information precision η∗. Because the information acquisition

cost is lower, the speculator can signal this higher information precision with a lower q∗.

Therefore, value of information becomes more concentrated in a smaller amount of traded

asset and further dominates the adverse selection components. In equilibrium, the speculator

receives a more negative bid-ask spread compared with panel (b).

Lemma 6 has important implications for identifying informed orders in OTC markets.

Conventional wisdom generally believes that better informed traders trade larger quantity in

financial markets. We show that this conventional wisdom can be reversed when information

chasing effect dominates the classical adverse selection effect. This is indeed relevant in

opaque markets without post-trade transparency where dealers can profit from their private

information gathered from informed orders.

Within-speculator heterogeneity of order size and bid-ask spread Up till now we

have focused on the heterogeneity of order size and bid-ask spread originated from specula-

tor’s heterogeneity. In fact, in the data it is quite usual to observe that the same speculator

trades different quantities at different spreads. Now we relax the binary signal structure to

account for this within-client trade heterogeneity.

Suppose the speculator observes a private signal x with a symmetric c.d.f F (x) after

incurring the information acquisition cost c(η). The ex-post value of the asset not only

depends on the precision η, but also depends on the signal x. Without loss of generality, we

assume the value of asset v(η, x) is an increasing function of both η and x. To understand

this assumption intuitively, we can think of η as the preditive power of the speculator’s

quantitative model, and x as the predictied value based on the model. The deviation of the

speculator’s value from the market expectation increases in the quality of the speculator’s

model and the innovation predicted by the model. For the value of information, we maintain

the same assumption that VI is an increasing function of v(η, x).
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Here the speculator has two dimensions of private information, the precision η and the

signal x. However, after the speculator has choosen η, the only unobservable variable that

matters for the trading profit for both the speculator and the dealers is the value of the

asset v(η, x). The trading game is essentially a Bayesian game with one-dimentional private

information on v. By the revelation principle, the Bayes-Nash equilbrium can be described by

a quantity fundtion q(v) and half-spread function a(v). The trading payoff of the speculator,

gross of the cost of information acquisition, is given by

VS(v) = [v − a(v)]q(v). (18)

Lemma 2 (Myerson and Satterthwaite 1983) In a symmetric Bayes-Nash equilibrium,

q(v) must be non-negative and weakly increasing in v for any v > 0, and

a(v) = v −
VS(0) +

∫ v
0
q(z)dz

q(v)
. (19)

Lemma 2 immmediately implies that the speculator trades weakly more when having

more private information represented by a higher absolute value of v. Also, from (19) we

know that the trading profit of the speculator VS(v), which equals VS(0) +
∫ v

0
q(z)dz, must

be a convex and increasing function of v for v > 0. VS(0) must also be non-negative since the

individual rationality constraint must hold when the speculator has v = 0. Given that VS(v)

is a non-negative, increasing convex funciton of v, we can show that a(v) is an increasing

function of v using the same steps as in the proof of Proposition 6. We formally state this

relationship in the proposition below.

Proposition 7 (Within-speculator trade heteogeneity) A speculator trades more at a

higher spread when receiving higher private signal x.

Recall that the across-client relationship among trade sizes, bid-ask spreads and trade

informativeness depend on the convexity of VI(v), the value of information function. In
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contrast, Proposition 7 shows that the within-client variation is independent of the shape

of VI(v). Why is there a disconnection between within-client variation and across-client

variation? This is because with non-binary signals the speculator does not always capture a

fixed fraction of the realized value of information. The surplus captured by the speculator

with private informaiton v, which is now represented by VS(v), can deviate from VI(v), the

value of inforamtion v to the dealer. In fact, IC constraint forces VS(v) to be weakly convex,

independent of the convexity of VI(v). In the appendix, we solve a synthetic model that

features both within-client and across-client variation in trade size, bid-ask spread and trade

informativeness. We show that VS(v) and VI(v) only equal to each other in expectation

with respect to the private signal x. In the synthetic model, all the previous results in

Proposition 6 and 7 hold with slight modifications.

4 Empirical Evidence

4.1 Data and Client Classification

To test the predictions of the theoretical model of order chasing, one needs a detailed

transaction-level dataset together with a classification scheme whereby informed and un-

informed traders could be identified. To that end, we use the proprietary ZEN database

maintained by the UK Financial Conduct Authority (FCA), which covers virtually the uni-

verse of secondary-market transactions in the UK government bond market. Importantly,

the dataset contains information on the identity of both sides of a trade (unlike other datasets

on OTC markets, such as the TRACE database). This allows us to identify informed and

uninformed clients, and to keep track of the time-variation in the fraction of trading volume

initiated by informed and uninformed clients at each individual dealer.

To test the predictions of our theory, we are therefore able to exploit (i) the cross-

sectional variation in client types, and (ii) the time-variation in the client composition at the

dealer-level. Our sample covers the period between October 2011 and June 2017. During
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this period, there are 21 primary dealers and 486 clients that we have identified. In our

baseline classification, sophisticated clients include hedge funds and asset managers; whereas

uninformed clients include insurance companies, pension funds, government entities (e.g.

central banks) and non-financial corporations. We end up with 252 sophisticated clients and

234 unsophisticated clients, accounting for approximately two thirds and one third of the

total trading volume, respectively.

In addition, we apply a classification scheme that is based on clients’ realised trading

performance in our sample. The idea is to estimate the profit and loss (P&L) account for

each client i using the realised transactions as well as evaluating any inventory outstanding

at an appropriate market price. Specifically, we compute for each client i the following

measure:

P&Li =

Ai∑
a


JS
i,a∑

jSi,a=1

QS
jSi,a
P S
jSi,a
−

JB
i,a∑

jBi,a=1

QB
jBi,a
PB
jBi,a︸ ︷︷ ︸

Realised Cash−flow

+

 JB
i,a∑

jBi,a=1

QB
jBi,a
−

JS
i,a∑

jSi,a=1

QS
jSi,a

 1

Ni,a

Mi,a∑
mi,a=1

Pmi,a︸ ︷︷ ︸
V aluation of Inventories


(20)

where JSi,a and JBi,a denote the total number of sell and buy transactions of client i in bond a,

and Q and P denote the quantity and price of a given transaction of client i. The first term in

(20) denote the realised cash-flows from buying and selling bond a, and the remaining term

captures the valuation effect corresponding to any negative or positive inventory the client

may accumulate during the sample period. To valuate inventories, we take a conservative

approach and use the average transaction price faced by given client i. If the client buys

the same quantity in bond a as she sells, then this inventory term would be zero. We then

sum across all the bonds that client i has traded, to arrive at the client-specific performance

measure P&Li.

We use our measure P&Li to split our sophisticated clients into two groups: one with

P&Li values below median and the remaining group with P&Li values above the median.
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We will refer to this latter group, consisting of 126 traders, as informed sophisticated clients

in the remainder of the analysis.

4.2 Testing the Theory

4.2.1 Claim 1: Informed traders receive lower bid-ask spreads

To test the first claim predicted by the theory, we first construct a measure of execution costs

for each trade. While trade-specific bid-ask quotes are not observed, our approximation is

based on the realised price deviation of the given trade from a benchmark price in the

corresponding bond (in the spirit of O’Hara et al. (2018) and O’Hara and Zhou (2020)).

Formally, for each trade j, on day t and bond k, we construct the measure ExCostj,k,t as

follows:

ExCostj,k,t =
[
ln
(
P ?
j,k,t

)
− ln (Pk,t)

]
× 1B,Sj , (21)

where P ?
j,k,t is the transaction price, Pk,t is the benchmark price of the corresponding bond,

and 1B,Sj is an indicator function equal to 1 when transaction j is a buy trade, and equal to

−1 when it is a sell trade. As benchmark price, we follow O’Hara and Zhou (2020) and use

the average transaction price in the inter-dealer market around the time of the trade. As a

robustness check, we also use the daily closing quoted mid-price of the corresponding bond,

obtained from Datastream. The higher the measure ExCostj,k,t in (21), the less favourable

the given client’s execution costs are.

Given our measure of execution costs (21), which proxies the bid-ask spread, we estimate

the following transaction-level regression for client i, asset k, dealer m and day t:

ExCosti,k,m,t = β ×DInf
i + γ × TradeSizei,k,m,t + µk,t + δm,t + εi,k,m,t, (22)

where DInf
i is a dummy taking value 1 if the client i is sophisticated and informed and 0

if the client is unsophisticated. The terms µk,t and δm,t are bond-day and dealer-day fixed
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effects, respectively. The key object of interest in (22) is β which captures how much more

favourable the execution cost is on the trade of an informed client compared to the trade of an

unsophisticated client who is trading at the same dealer on the same day (this interpretation

is possible because of the inclusion of the fixed effect δm,t).

Table 1: Relative Execution Costs of Informed Clients

(1) (2) (3) (4) (5) (6) (7)

Informed Sophisticated -0.388** -0.367*** -0.327** -0.309** -0.226* -0.252** -0.275**

(-2.45) (-2.80) (-2.21) (-2.16) (-1.84) (-1.99) (-2.22)

Client Intensity -0.037 0.061 0.173** 0.347*** 0.350***

(-1.12) (1.12) (2.50) (4.63) (4.83)

Client Size -0.092** -0.053 -0.226*** -0.261***

(-2.22) (-1.44) (-5.07) (-5.59)

Dealer-Connections -0.064*** -0.055*** -0.028*

(-3.21) (-2.70) (-1.72)

Trade Size 0.147*** 0.142***

(5.52) (5.40)

N 872763 870892 870892 870892 870892 870892 623850

r2 0.012 0.121 0.121 0.121 0.122 0.122 0.346

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses execution costs (computed by (21) using average inter-dealer transaction price as the benchmark
price) on an informed sophisticated client dummy, various controls and various fixed effects. “Client Intensity” is the log of
the average monthly number of transactions of a given client. “Client Size” is the log of the average monthly trading volume
of a given client. “Dealer-Connections” is the total number of unique dealers (averaged across months) that a given client
trades with in a given month. “Trade Size” is the log of the trade size in pounds. Informed sophisticated clients include those
asset managers and hedge funds whose average P&L measure (20) is above the median. To reduce noise, we exclude client-day
observations where client trades only once; and we winsorise the sample at the 2-98%-level. T-statistics in parentheses are
based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (*
p<0.1, ** p<0.05, *** p<0.01).

Table 1 shows the results from regression (22) using various specifications. In column (1)

we include the day-, bond- and dealer-level fixed effects separately (without interactions),

whereas columns (2)-(6) include day-dealer and day-bond fixed effects that aim to control

for the linear effect of any dealer- and bond-level shocks that might hit on a given trading

day. Column (7) corresponds to the tightest specification with day-dealer-bond fixed effects,

which enables the comparison of the execution costs of different types of clients who trade
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the same bond, at the same dealer on the same day.

Overall, the results suggest that the execution costs on trades initiated by informed clients

are about 0.3bp lower compared to trades initiated by unsophisticated clients.This is robust

to the inclusion of a number of additional regressors that aim to control for mechanisms

related to search and bargaining power. To show that our baseline is not simply picking up

these mechanisms we first include “client intensity” which is the total number of transactions

a client carries out in a given month averaged over the sample. This control is motivated

by O’Hara et al. (2018) who used a subset of the US corporate bond market to analyse the

execution costs of insurance companies.7 Next, we include “client size” which is the average

monthly trading volume of clients. Third, we compute the total number of dealers that

a client trades with in a given month. This measure of clients’ “dealer-connections” aims

to control for the client’s position in the trading network which could be correlated with

her execution costs as well as her type.8 The inclusion of “dealer-connections” (column (5))

makes the largest difference to the estimated β coefficient. While this suggests that informed

clients tend to have more dealer-connections, and clients with more connections tend to face

more favourable execution costs9, the informedness of clients seems to matter over and above

what is captured by their trading network.

To show that our results are not simply picking up the effect of trade size (Edwards et

al., 2007; Bernhardt et al., 2005), column (6) includes trade size as an additional control,

with little effect on the baseline results.10

In our baseline, we used a benchmark price for our measure of execution costs that is

7They build on the search-theoretic literature (Duffie et al., 2005), and show that more active traders
receive more favourable transaction prices than less active traders.

8This is motivated by recent papers that explored the cross-sectional variation of dealers’ network central-
ity as well as dealers’ relationships with clients in driving execution costs in the US corporate bond market
(Maggio et al., 2017; Hendershott et al., 2020).

9These results are consistent with Kondor and Pinter (2019).
10Note that the results on trade size are suggestive of evidence against the size discount, with larger

trades receiving less favourable execution costs. In a related paper (Pinter et al., 2020), we show that this
evidence for the size penalty is driven by the fact that client characteristics are controlled for, i.e. in a pooled
regression without client-specific controls we find evidence for the size discount, consistent with the previous
literature (Edwards et al., 2007; Bernhardt et al., 2005).
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based on realised inter-dealer transaction prices. Table 6 in the Appendix shows the results

for the case where we use the end-of-day mid-quote (from Datastream) as the benchmark

price in (21). The results continue to hold up in this alternative specification.

4.2.2 Claim 2: the dealer anticipates larger gains against uninformed clients

when the dealer gives tighter bid-ask spreads to informed clients

The heart of the mechanism in our theoretical model is the idea that dealers actively shape

execution costs to attract trades with informed clients. Trading with informed clients al-

lows dealers to learn from them, which can be used to make profits when the given dealer

trades with less informed traders. To test this mechanism, we first construct a measure of

profitability at the trade-level, in the spirit of Di Maggio et al. (2019), based on the given

trade’s ability to predict future prices over a given horizon. Formally, for each trade j, on

day t, bond k and horizon T , we construct the measure PerfTj,k,t as follows:

PerfTj,k,t = [ln (Pk,t+T )− ln (Pk,t)]× 1B,Sj , (23)

where Pk,t is the benchmark price of bond k on day t, Pk,t+T is the benchmark price T days

later, and 1B,Sj is an indicator function equal to 1 when transaction j is a buy trade, and

equal to −1 when it is a sell trade. We then aggregate the performance measure (23) for

each dealer i, month t, and horizon T , based on all the transactions against unsophisticated

clients as well as inter-dealer-brokers.11 For aggregation, we take size-weighted averages

using transaction size as weights. Similarly, we aggregate the transaction performance (21)

for each dealer i and month t against informed sophisticated clients, by taking size-weighted

averages. We then estimate the following panel regression at the dealer-month level:

PerfT,ui,t = β × InfExCostsi,t + V oli,t + αi + µt + εi,t, (24)

11Inter-dealer-brokers (IDB) provide an important platform for inter-dealer-trades in the UK government
bond market. Over 90% of inter-dealer trading volume is done through IDBs and only a small fraction
directly between dealers.
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where PerfT,ui,t is the trading performance of a group of clients u against dealer i on day t at

horizon T . Group u includes unsophisticated clients as well as IDBs. The term InfExCostsi,t

is the average execution cost of group s, that includes informed sophisticated clients, against

dealer i on day t. The term V oli,t denotes trading volume and αi and µt are dealer and

month fixed effects.

Table 2: The relationship between execution costs of informed clients and trading perfor-
mance of unsophisticated clients

(1) (2) (3) (4) (5) (6)

1-day 2-day 3-day 4-day 5-day 6-day

Informed Execution Cost 0.079 0.134* 0.234** 0.234** 0.242*** 0.262***

(0.99) (2.01) (2.38) (2.75) (3.32) (6.27)

Volume 0.606* 0.631 0.501 -0.346 -0.297 -0.537

(1.84) (1.41) (1.14) (-0.52) (-0.30) (-0.46)

N 1439 1438 1438 1438 1438 1438

R2 0.084 0.098 0.080 0.071 0.066 0.071

Dealer FE Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes

Notes: This table shows the estimation results for regression (24). To reduce noise, we winsorise the sample at the 1%-level. T-
statistics in parentheses are based on robust standard errors, using two-way clustering at the month and dealer level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

The coefficient of interest in (24) is β which we expect to be positive if our theoretical

mechanism is at play: when informed sophisticated clients receive more favourable execution

prices (i.e. the dealer charging lower execution costs on these trades), then the dealer is

entering into trades against unsophisticated clients that turn out to generate capital gains

over future horizon T for the dealer (and capital losses for those clients).

As shown in Table 2, a dealer’s trading performance against unsophisticated clients over

the 2-6 day horizon is higher when the given dealer offers more favourable execution prices

to informed clients. It is important to note that the inclusion of dealer fixed effects αi means

that we primarily identify the effect from the time-series, i.e. we compare months when a

dealer gives more favourable execution prices to informed clients to other months when the

same dealer gives less favourable prices.
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4.2.3 Claim 3: an informed client has larger execution costs when she is more

informed compared to when she is less informed

To test this claim, we exploit the within-client variation in average execution costs and in the

level of informativeness of the given client. If the adverse selection channel dominates, we

would expect execution costs of a client to be higher when the given client is more informed,

i.e. when her trades are better at predicting future price movements. To test this prediction,

we estimate the following panel regression model for each client i and month t:

PerfTi,t = β × ExCosti,t + µi + δt + εi, (25)

where PerfTi,t is the average anticipation component (23) of client i over horizon T in month t.

The main coefficient of interest is β which measures how much the anticipation component of

a client (who is on average informed) changes when the given client’s execution cost increases

by 1bp from one month to the next. Note that this time-series interpretation of the effect is

possible because of the inclusion of the fixed effect µi which controls for any time-invariant

cross-sectional heterogeneity in trading performance and execution costs across clients.

Table 3: The relationship between execution costs and future capital gains of informed clients

(1) (2) (3) (4) (5) (6)

1-day 2-day 3-day 4-day 5-day 6-day

Informed Execution Cost 0.194*** 0.244*** 0.268*** 0.209*** 0.218*** 0.262***

(4.57) (4.17) (4.28) (2.89) (2.98) (6.27)

N 11571 11564 11568 11569 11569 1438

R2 0.036 0.036 0.037 0.035 0.037 0.071

Client FE Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes

Notes: This table shows the estimation results for regression (25). To reduce noise, we winsorise the sample at the 1%-level.
T-statistics in parentheses are based on robust standard errors, using two-way clustering at the month and client level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

Table 3 presents the results, confirming that clients pay higher execution costs when their

trades better predict future price movements over the 1-6 day horizon. One explanation for

this is that clients trade larger amounts when they become more informed (Kyle, 1985).
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Our companion paper (Pinter et al., 2020) provides further empirical evidence on trade size,

execution costs and informativeness of clients.

4.2.4 Claim 4: average bid-ask spread is larger/smaller when there are more

liquidity/informed traders

To test whether bid-ask spreads are smaller when there are more informed traders in the

market, we proceed as follows. We first construct a measure of information ratio for each

bond k on day t as follows:

InfV olk,t =
TradingV olumeinformedk,t

TradingV olumetotalk,t

, (26)

where TradingV olumeinformedk,t is the trading volume generated by informed traders in bond

k on day t and TradingV olumetotalk,t is the total trading daily trading volume in the same

bond. Given our measure, we estimate the following panel regression for bond k and trading

day t:

BidAskk,t = β × InfV olk,t + controlsk,t + µk + δt + εk,t, (27)

where BidAskk,t denotes bid-ask spread quotes (obtained from Thomson Reuters Eikon),

the term controlsk,t includes the natural logarithm of daily trading volume and number of

transactions in the given bond, and the terms µk and δt are bond and day fixed effects.

The results are reported in Table 4 for various specifications of regression (27). We

find that on a trading day when trading volume in a bond consists entirely of transactions

initiated by informed traders, the quoted bid-ask spread in the given bond is around 0.3bp

smaller, compared to trading days when trading volume is generated by uninformed traders.

These results are robust to the inclusion of volume and transaction number controls, i.e. the

regression is not simply picking up informed traders trading different quantities and with

different intensity, which could drive bid-ask spreads.
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Table 4: Bid-Ask Spreads in the Presence of Informed Trading

(1) (2) (3) (4) (5) (6)

InfV ol -0.292*** -0.316*** -0.348*** -0.284*** -0.292*** -0.326***

(-3.05) (-3.21) (-3.51) (-4.17) (-4.29) (-4.80)

Trading Volume -0.083** -0.186*** -0.042*** -0.130***

(-2.26) (-4.47) (-2.78) (-6.80)

Number of Tran. 0.343*** 0.328***

(4.25) (8.09)

N 55605 55605 55605 55602 55602 55602

R2 0.434 0.434 0.435 0.609 0.609 0.610

Bond FE Yes Yes Yes Yes Yes Yes

Day FE No No No Yes Yes Yes

Notes: This table regresses bid-ask spreads on the measure InfV ol, the natural logarithm of trading volume and of number of
transactions and various fixed effects. Informed clients include asset managers and hedge funds. To reduce noise, we exclude
client-day observations where client trades only once; and we winsorise the sample at the 1%-level. T-statistics in parentheses
are based on robust standard errors, using clustering at the day level. Asterisks denote significance levels (* p<0.1, ** p<0.05,
*** p<0.01).

4.2.5 Claim 5: price dispersion is higher when there are more liquidity traders

in the market

To test this prediction, we first build on Jankowitsch et al. (2011) and compute the following

price dispersion measure:

dk,t =

√√√√ 1

Kk,t

×
Kk,t∑
j=1

[
ln (Pk,t)− ln

(
P ?
j,k,t

)]2
, (28)

where dk,t is the price dispersion measure on day t for bond k, and P ?
j,k,t is the transaction

price and Pk,t is the daily closing mid-rice of the corresponding bond, as used in definition

(21) above. Given our measure, we estimate the following panel regression for bond k and

trading day t:

dk,t = β × InfV olk,t + controlsk,t + µk + δt + εk,t, (29)

where the terms on the right-hand-side are the same as in specification (27).

The results are summarised in Table 5 for various specifications. Columns (1)-(3) show

the case when bond fixed effects are included but time fixed effects are excluded in the

regression. In this case, price dispersion is lower by about 2bp when the trading volume
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consists entirely of informed order flow, and the effect is little changed by including total

trading volume and number of transactions as controls in the regression. Columns (4)-

(6) show that the absolute value on the estimated β coefficients halves when we include

time fixed effects. This is suggestive that aggregate shocks, such as the announcement

of macroeconomic news, may affect both price-dispersion and the composition of trading

volume.

Table 5: Price Dispersion in the Presence of Informed Trading

(1) (2) (3) (4) (5) (6)

InfV ol -2.278*** -1.885*** -1.996*** -1.134*** -1.012*** -0.987***

(-7.63) (-6.56) (-6.95) (-5.66) (-5.13) (-5.07)

Trading Volume 1.352*** 0.992*** 0.626*** 0.693***

(16.44) (12.43) (11.99) (11.09)

Number of Tran. 1.197*** -0.249*

(5.02) (-1.67)

N 55605 55605 55605 55602 55602 55602

R2 0.319 0.331 0.332 0.572 0.574 0.574

Bond FE Yes Yes Yes Yes Yes Yes

Day FE No No No Yes Yes Yes

Notes: This table regresses our measure of price dispersion on InfV ol, the natural logarithm of trading volume and of number
of transactions and various fixed effects. Informed clients include asset managers and hedge funds. To reduce noise, we exclude
client-day observations where client trades only once; and we winsorise the sample at the 1%-level. T-statistics in parentheses
are based on robust standard errors, using clustering at the day level. Asterisks denote significance levels (* p<0.1, ** p<0.05,
*** p<0.01).

5 Conclusion

Contrary to the prediction of the classic adverse selection theory, informed trades receive

better pricing relative to uninformed trades in some over-the-counter financial markets. We

show that dealers compete for information by chasing informed orders so as to better position

their future price quotes. On a multi-dealer platform, dealers’ incentive of information

chasing exactly offsets their fear of adverse selection. As a result, the adverse selection

cost is passed on to uninformed traders. Information chasing induces winner’s curse among

dealers, which in turn results in price dispersion and bid-ask spread for uninformed hedgers.

Both price dispersion and price efficiency increase with hedging demand.
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Information chasing is possible only without pre-trade anonymity. Hence, it is absent

on centralized exchanges. It is also absent on a non-anonymous centralized exchange, be-

cause trades are disclosed in real time. Consistently, Theissen (2003) shows that in the

non-anonymous Frankfurt Stock Exchange, trades that are more likely to be motivated by

proprietary information about asset payoff tend to receive wider bid-ask spreads.
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Appendices

A Proofs

The quoting game in stage 2 is equivalent to a common-value first-price sealed bid auction

with discrete signals. First we state a lemma that helps construct an equilibrium of such

auction games without a proof. This lemma is established in Syrgkanis et al. (2019).

Lemma A.1 If n = 2, in a common-value first-price sealed bid auction with discrete signals,

there exists a unique mixed Nash equilibrium, in which

1. Each dealer’s mixed strategy has a common support [x, x̄],

2. For each dealer j, there exists a partition x = xj0 ≤ xj1 < xj2 < · · · < xjSj
= x̄, where

Sj is the number of all of possible realization of dealer j’s signal combination. Each

interval (xjk, x
j
k+1) correspond to dealer j’s signal realization ωjk.

3. There is no gap or atom in (x, x̄].

4. At least one dealer bid x with probability 1 when receiving the worse signal realization.

5. Both dealers get expected payoff 0 when receiving their worst signal.

This lemma has a direct implication.

Corollary A.1 The expected payoff of an uninformed dealer is 0.

Proof of Proposition 1. Since buying and selling are symmetric, −a+
2 , −a−2 , −a0

2 must

follow the same distribution as b+
2 , b−2 and b0

2. Let G+, G− and G0 be the c.d.f. of b+
2 , b−2 and

b0
2. Lemma A.1 implies that

1. The informed dealer bid b−2 = −η with probability 1 if she observes a negative signal.
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2. The mixed strategies of the uninformed dealer and the informed dealer who observes

a positive signal have the same lower bound −η and the same upper bound.

3. Both supp G0 and supp G+ are connected sets.

4. The distribution of b+
2 has no mass point. The distribution of b0

2 has no mass point

other than at −η.

Let g0 be the probability that b0
2 = −η. The c.d.f. of b+

2 is denoted by G+, while the c.d.f.

of b0
2 conditional on b0

2 > −η is denoted by G0. An uninformed dealer must be indifferent of

bidding any b ∈ supp G+, therefore

1

2
G+(b)[g0 + (1− g0)G0(b)]n−2(η − b) +

1

2
[g0 + (1− g0)G0(b)]n−2(−η − b) = C0.

Notice C0, the expected value of being an uninformed dealer in the third stage, must equal

to 0. We can solve for G+:

G+ =
2

1− b/η
− 1.

The upper bound of supp G+ is 0. An informed dealer must be indifferent of bidding any

b ∈ supp G0, therefore

(η − b)[g0 + (1− g0)G0(b)]n−1 = C+.

Let b = 0 we have C+ = η. Let b → −η, we have g0 = n−1

√
1
2
. Plugging into the previous

equation, we have

G0(b) =

n−1

√
1

1−b/η −
n−1

√
1
2

1− n−1

√
1
2

.
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Proof of Proposition 6. [To be completed. . . ]

Proof of Proposition 2. From Lemma 1, we know that if the signal is positive an

informed dealer can only profit from buying from but not selling to the liquidity traders.

For each liquidity seller, the expected profit is C+ = η. On the other hand, if the signal is

negative, the informed dealer can only profit from selling to the liquidity traders. Therefore,

the ex-ante expected profit of the informed dealer is η · 1
2
m. It is obvious that uniformed

dealers has zero expected profit from trading.

B A Synthetic Model

Suppose the expected value of asset is v(η, x), a function of the speculator’s effort of infor-

mation acquisition η and her private signal x. The private signal is draw from a continuous

distribution F (x;λ).12 The value of information to the winning dealer is VI(v(η, x)), i.e., v is

a sufficient statistic of η and x in determining the value of information. Each speculator has

a convex cost function of information acquisition c(η;λ), parameterized by λ ∈ Λ. Assume

for any η, c′(η;λ) is strictly decreasing in λ.

Now consider a trading game with ex-ante competition—each dealer offers a menu to the

speculator before the speculator does anything, and the speculator chooses the best menu

and commit to trading with that dealer.13 Notice a speculator with the same v but different

combination of (η, x) combination will trade exactly the same way. Therefore, a direct

mechanism specifies the trading quantity q(v;λ) and the speculator’s total payment to the

dealer P (v;λ). We include λ as a parameter of the contract since λ is observable to all dealers.

Given the menu, the speculator’s payoff is the trading profit VS(v;λ) = vq(v;λ)− VS(v;λ).

12Assumption: x and η are separable, or we can map the signal to a random variable x the distribution of
which does not depend on η.

13The equilibrium is equivalent under the timing assumption that the speculator decides η first
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The half spread is

a(v;λ) = v − VS(v;λ)

q(v;λ)
. (B.1)

Lemma B.1 (IC constraint) A (direct) menu must have q(v;λ) weakly increasing in v,

and

VS(v;λ) = VS(0;λ) +

∫ v

0

q(z;λ)dz. (IC for x)

q(v;λ) is an increasing function of v implies that VS(v;λ) is a convex function of v. Therefore,

the half spread

a(v;λ) = v − VS(v;λ)

V ′S(v;λ)
(B.2)

in increasing in v.

Proposition B.1 (Within-speculator trade heterogeneity) A speculator receives a larger

bid-ask spread when having larger |v|.

Now let’s consider compare speculators with different λ. A speculator solves the following

problem

max
η

ExVS(v(η, x);λ)− c(η;λ). (B.3)

The first order condition is

d

dη
ExVS(v(η, x);λ) = c′(η;λ). (B.4)
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The IC constraint implies that

V ′S(v(η, x);λ) = q(v(η, x);λ). (B.5)

Therefore

Exq(v(η, x);λ)
∂

∂η
v(η, x) = c′(η;λ). (B.6)

Assumption B.1 v(η, x) = ηṽ(x).

Given Assumption B.1, the LHS of (B.6) can be viewed as a weighted average of spec-

ulator λ’s trade size. It equals the speculator’s marginal cost of information acquisition in

equilibrium.

Competitive dealers solve the following problem

max
Vs(0;λ),q(·;λ),η(λ)

ExVs(v(η(λ), x);λ)− c(η(λ);λ), (B.7)

s.t. ExVS(v(η(λ), x);λ) = ExVI(v(η(λ), x)), (B.8)

η(λ) = argmax
η̃

ExVS(v(η̃, x);λ)− c(η̃;λ), (B.9)

VS(v;λ) = VS(0;λ) +

∫ v

0

q(z;λ)dz, (B.10)

q(·;λ) is non-decreasing. (B.11)

Notice that dealers break even in expectation, which implies that the winning dealer might

loss money given certain realizations of x.

We conjecture that constraints (B.9), (B.10) and (B.11) are not binding in the above
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problem. To show this, consider the η∗(λ) which satisfies

d

dη
ExVI(v(η, x)) = c′(η;λ). (B.12)

We want to show that there must exist a Vs(0, λ) and q(·, λ) which satisfies (B.8), (B.9),

(B.10) and (B.11). (B.9) can be replaced by

Exq(v(η, x);λ)ṽ(x) = c′(η;λ). (B.13)

Ex
∂

∂v
q(v(η, x);λ)ṽ(x)2 ≤ c′′(η;λ) (B.14)

We use guess and verify. Let

q(v, λ) =
q̃(λ)

η∗(λ)
v. (B.15)

q̃(λ) must satisfy

q̃(λ) =
c′(η(λ), λ)

Exṽ(x)2
, (B.16)

q̃(λ) ≤ c′′(η(λ), λ)η(λ)

Exṽ(x)2
. (B.17)

The above two equations hold for all λ if and only if c′′(η, λ) ≥ c′(η(λ), λ)η(λ) for any λ. A

sufficient condition for this is that c′′′ ≥ 0.

Notice that (B.8) can be written as

Vs(0, λ) = ExVI(v(η∗(λ), x))− Ex
∫ v

0

q(z;λ)dz (B.18)

= ExVI(v(η∗(λ), x))− 1

2
q̃(λ)η∗(λ)Exṽ(x)2, (B.19)

= ExVI(v(η∗(λ), x))− 1

2
η∗(λ)c′(η∗(λ), λ). (B.20)

The RHS is an increasing function in η. When λ increase, η(λ) always increases. If VI is
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convex in v, LHS is a increasing function. When λ increase, c′(η(λ);λ) increases.14 If VI is

concave in v, LHS is a decreasing function. When λ increase, c′(η(λ);λ) decreases.

Proposition B.2 (Across-speculator trade heterogeneity) A speculator with higher λ

(lower cost of information acquisition) chooses higher η

1. If VI is convex in v, on average a speculator with higher λ trades larger quantity q.

2. If VI is concave in v, on average a speculator with higher λ trades smaller quantity q.

[To be completed. . . ]

C Additional Tables and Figures

14c is more convex in v.
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Table 6: Relative Execution Costs of Informed Clients - Datastream Prices

(1) (2) (3) (4) (5) (6) (7)

Informed Sophisticated -0.583*** -0.573*** -0.559*** -0.532*** -0.415*** -0.432*** -0.465***

(-3.69) (-4.18) (-3.52) (-3.41) (-2.78) (-2.88) (-2.92)

Client Intensity -0.013 0.137** 0.291*** 0.395*** 0.361***

(-0.33) (1.99) (3.80) (4.70) (4.10)

Client Size -0.142** -0.086* -0.189*** -0.184***

(-2.58) (-1.71) (-3.13) (-2.95)

Dealer-Connections -0.088*** -0.083*** -0.062***

(-4.54) (-4.23) (-3.26)

Trade Size 0.087*** 0.073**

(2.70) (2.10)

N 939437 938259 938259 938259 938259 938259 673745

r2 0.009 0.121 0.121 0.121 0.121 0.121 0.365

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses execution costs (computed by 21 using end-of-day Datastream mid-quote as the benchmark price)
on an informed sophisticated client dummy, various controls and various fixed effects. “Client Intensity” is the log of the average
monthly number of transactions of a given client. “Client Size” is the log of the average monthly trading volume of a given
client. “Dealer-Connections” is the total number of unique dealers (averaged across months) that a given client trades with in
a given month. “Trade Size” is the log of the trade size in pounds. Informed sophisticated clients include those asset managers
and hedge funds whose average P&L measure 20 is above the median. To reduce noise, we exclude client-day observations
where client trades only once; and we winsorise the sample at the 2-98%-level. T-statistics in parentheses are based on robust
standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05,
*** p<0.01).
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