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Abstract
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How to plan for catastrophes? As economists, we are increasingly confronting this

question. But when we study climate change, virus outbreaks turning to pandemics, or

the collapse of fisheries and ecosystems, we encounter several approaches with different

assumptions, sometimes yielding opposing conclusions. In particular, a key question is

how these approaches deal with the possibility that a catastrophe may already be under

way, as we now explain.

Consider for example the impact of climate change on the Greenland ice sheet. A

catastrophic melting might well be under way, though no one knows exactly (e.g., Kriegler

et al., 2009). We expect that some temperature increase will lead to a dramatic accel-

eration in melting, but this threshold is unknown, reflecting scientific uncertainty or

stochastic shocks. Was this critical threshold exceeded already in the 70’s, or will it

be reached in the near future? Evidently, we cannot tell the final effect of past actions

because there is a considerable delay between the cause (the CO2 concentration in the

atmosphere) and the effect (melting) (Fitzpatrick and Kelly, 2017; van der Ploeg, 2018).

Similar thresholds are not unheard of in other situations: we do not immediately observe

if a virus outbreak is on its way to pandemic, or if habitat fragmentation will lead to a

collapse of biodiversity.

In this paper, we develop a simple but general model of experimentation where the

decision maker chooses both how much to experiment with an unknown threshold and

how to prepare for the potential impacts from exceeding this threshold. The planner con-

trols a state variable (“stock”) with multiple interpretations (i.e., temperature, infected

population). The stock triggers a catastrophe when it exceeds an unknown threshold.

Once triggered, the catastrophe itself occurs only after a stochastic delay. Reaching

a previously untried level is thus an experiment whose results are only known later on.

This distinction between triggering and occurrence allows for rich patterns of information

arrival.

Going back to the Greenland ice sheet, consider low vs. high rhythms of experimen-

tation in the past, leading to the same current CO2 concentration or temperature level.

Because of the delay between triggering and occurrence, a fast rhythm generates less

information on the safety of the current standing than a slow rhythm. This legacy of

the past is key to our analysis. Accordingly, the planner values the gain from further

experimenting differently. If he is worried enough, he may also want to reduce the expo-

sure to the catastrophe, in case it occurs. Our setting allows to do so, by allowing the
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welfare losses borne when the catastrophe occurs to depend on the level of the stock: for

example, a cooler climate may prevent a cascade of correlated events in case the ice cover

is collapsing. This feature leads to different possibilities for the optimal path.

After a sustained rhythm of experimentation, the planner rationally fears that losses

arrive any time soon. Interestingly, this can justify increasing or reducing the stock,

depending on the properties of the welfare loss. If the loss is independent of the stock,

then there is nothing the planner can do to mitigate the damage: he becomes fatalistic,

which may mean experimenting even more if the instantaneous value of an increased

consumption is high. In contrast, if the loss depends on the stock and is also high

enough, reducing the stock is optimal because the priority is to control the damage.

After a while, the fact that the catastrophe does not occur makes the planner more and

more optimistic, until he chooses to increase the stock because damage control is not the

priority anymore. Therefore, in such a case the optimal policy is non-monotonic. In a

rapidly developing pandemic, the optimal policy might well be to impose first a strict

lockdown, and then to accommodate monotonically increasing levels of infection up to

the levels encountered in the past that triggered the lockdown in the first place: this is

because in between we have learnt that the health system, or our institutions, were able

to cope with these levels without collapsing.1

After a low rhythm, the planner has more precise information, and is more certain

that the current welfare is not threatened by a catastrophe. His behavior is then driven

by a calculation of the pros and cons of experimenting further, i.e., a stronger economic

activity vs. the risk of triggering a catastrophe. Hence, the risk of losing this secured

welfare drives optimal actions, rather than damage control. History thus determines

not only the information available but also the fundamental trade-off to be looked at in

decision-making.

Two applications illustrate the results from the general model. First, our climate

change illustration shows that the models in the literature come primarily from two

opposite camps that emphasize distinct tradeoffs for determining the optimal policies.

Our model unifies these approaches by showing how they follow as limiting cases of our

1The idea of the hammer and the dance as characterization of the optimal policy during pandemic
crises was entertained in an influential posting by Tomas Pueyo, March 19, 2020. https://medium.

com/@tomaspueyo/coronavirus-the-hammer-and-the-dance-be9337092b56. On this topic, a recent
work by Assenza et al. (2020) provides a complete literature review. Our work offers a rationale for the
hammer-and-dance policies based on information and learning.
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setting and how their comparision determines the optimal experimentation policy outside

the limits. Second, the disease control and social distancing application contributes to

the rapidly growing literature on virus outbreaks. We show how non-monotonic paths

naturally emerge when the planner fears that a catastrophe may be under way.

Literature. Catastrophes, broadly interpreted, appear in a wide range of economic

applications, including macroeconomics disasters (e.g., Barro, 2006; Gourio, 2008), tech-

nology breakdowns and demand tipping (e.g., Rob, 1991; Bonatti and Hörner, 2017),

resource consumption (Kemp, 1976), nuclear accidents (Cropper, 1976), and pollution

control (Clarke and Reed, 1994; Polasky et al., 2011; Sakamoto, 2014; van der Ploeg and

de Zeeuw, 2017; Bretschger and Vinogradova, 2019; Cai and Lontzek, 2019).2

Our model does not cover all applications but it is general in the sense that it embeds

two canonical approaches to modeling catastrophes in the literature. In the hazard rate

approach, one may conceptualize the system as a machine that may break down under

pressure. The probability of a catastrophe happening depends only on the current state

of the system, typically through an exogenous hazard rate function. There is thus no

memory of the past, and no learning over time. Moreover, the catastrophe has to happen

sooner or later, just as any machine will ultimately break down. This assumption features

in many important recent applied papers, for example in the quantitative assessments of

the optimal climate-change policies (e.g., Besley and Dixit, 2019).

In the tipping point approach, the catastrophe occurs as soon as the stock exceeds

a tipping point whose exact value is unknown. The formal approach appears in Kemp

(1976), when studying the problem of “eating a cake of unknown size”; and, more closely

in the catastrophe context, in Tsur and Zemel (1994) (see also Tsur and Zemel, 1995 and

1996.) It has also been used in a quantitative policy evaluation (Lemoine and Traeger,

2014). Learning occurs instantaneously over time: the planner is absolutely certain that

the threshold has not been exceeded in the past if no catastrophe has occurred so far.

Beliefs are thus revised through a simple truncation. This feature matches the facts in

most learning environments quite badly. For example, Roe and Baker (2007) argue that

the delays built into the feedback mechanisms governing climate change will prevent us

from learning the true nature of the problem in the coming decades.3

2See Rheinberger and Treich (2017) for bibliometric analysis of the literature on catastrophes.
3Crépin and Nævdal (2019) extend the threshold approach as follows. The stock governs the rate of

change of another state variable which makes the catastrophe to occur when it goes above an unknown
tipping point. This introduces inertia to the path of this second state variable but learning is still
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Our model embeds both approaches as special cases. When the delay in our model

goes to zero, the optimal policy can be shown to converge to that in the tipping point

approach; the latter was derived in Tsur and Zemel (1994), and we provide a more general

study in Appendix B. On the other hand, if past actions are known to have triggered the

event, the catastrophe has to occur, and the planner can only try to mitigate the damage

from it. Hence, the policy in that case is conceptually equivalent to the one from the

hazard rate approach. By introducing a delay, and by relaxing the assumption that the

catastrophe was triggered in the past, we explore a more general case. In particular, in

our model the decision maker remains uncertain if the current standing is safe, even if

he stops experimenting. In fact, the exposure to this final uncertainty is a choice to be

made.

Our approach is also different from the bandit models used to study experimentation

in various economic settings. As in Poisson bandit settings, from not observing the event

the planner updates beliefs on the arrival rate of a catastrophe (Malueg and Tsutsui,

1997; see also Keller, Rady and Cripps, 2005; and Bonatti and Hörner, 2011). In a

sense, in our setting the decision maker runs an endogenous continuum of such bandits

(thresholds tried), so that obtaining the information content of past actions requires

aggregation over the experiments. The belief updating that follows from this aggregation

is new to the experimentation literature.

A few recent papers on experiments are related to our work. Gerlagh and Liski (2017)

consider an explicit climate-economy model with learning on potentially catastrophic

damages to study if the path on carbon emissions is sensitive to the assumption that

such damages are not currently observed but must be learned over time. The objective

of that paper is to study the impact of speed of learning of given hidden state that

determines if damages will ultimately arrive. However, it is not possible to make choices

that impact the value of the hidden state, and therefore there is no experimentation with

tipping in that paper.

Salmi, Laiho and Murto (2020) study “Gradual learning from incremental actions”

which could also be the title of our paper. This model shares with our model the fea-

ture that the chronicle of past actions determines the speed of information arrival, and

further actions have direct payoff consequences. In their model, the direct payoff con-

sequence comes from capacity expansion and contemporaneous sales, running a risk of

instantaneous.
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overcapacity if the state turns out be bad. In our model, the contemporaneous payoff

relates to consumption utility. The main difference is that our contemporaneous choice

of consumption utility is an experiment with the hidden state while in Salmi et al. the

decision maker cannot influence the state.4

Guillouët and Martimort (2019) study the foundations of a precautionary principle

in an environment where a catastrophe may happen after a delay when the stock exceeds

an unknown tipping point, as in our paper. The focus is very different however, as they

do not allow the planner to condition its policy on his beliefs. Hence, a time-consistency

problem arises, and the best policy results from a Nash equilibrium between different

selves. Our question is very different as we focus on the optimal policy only, so that

beliefs inherited from the chronicle of past actions play a key role. We also have a payoff

structure covering multiple planning situations, as illustrated by the applications.

1 The Model

1.1 The No-Catastrophe Problem (NCP)

We introduce the primitives by considering first the problem without catastrophes. The

decision maker chooses a flow action qt ∈ [q, q], with q < 0 < q, to control a stock Q

according to a simple law of motion:

Q̇t = qt.

Hence q is a net flow, that can be positive or negative. The instantaneous payoff u(q,Q)

is allowed to depend both on the stock level Q and on the flow q, and it is discounted at

the rate δ > 0. We assume (subscripts denote partial derivatives):

Assumption 1 Function u is twice continuously differentiable, bounded from above, and

weakly concave in q. Moreover, the function

ν(Q) ≡ uq(0, Q) +
uQ(0, Q)

δ

is weakly decreasing with respect to Q.

4Models for reputation in dynamic games with incomplete information often have the feature that
some agent can influence the hidden state such as the quality of a firm’s product (Faingold and Sannikov,
2011, Board and ter Vehn, 2013, Bohren, 2019). These papers differ significantly in focus but, however,
share the feature that past choices shape key trade-offs of current and future interactions in a capital-
theoretic manner.
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Function ν encapsulates the trade-off between instantaneous gains from an increase

in q, and the long-run effects of the associated increase in Q. ν is decreasing for any

positive δ if uQQ and uqQ are at most zero, but we use the above formulation to highlight

the exact property that is really needed. To avoid multiplicities, we also assume that

there exists a unique solution QN (where N stands for “No catastrophe”) to the equation

ν(Q) = 0, where by convention we let QN = +∞ (resp. −∞) if ν is everywhere positive

(resp. negative.)

Note that the impact of Q on the payoff can be positive or negative, thereby allowing

the model to fit various settings. For example, in Section 4 we shall study a model of

climate change in which q stands for emissions associated to consumption (net of natural

decay), while Q is the stock of greenhouse gases, that impacts the climate and therefore

the production possibilities, and/or the representative agent’s payoff. In Section 5, our

application to the control of a disease interprets q as a measure of the stringency of a

social distancing policy, and Q as a measure of the number of infected people.

The optimal policy (qt, Qt)t>0 in the absence of catastrophes maximizes∫ +∞

0

u(qt, Qt) exp(−δt)dt (1)

under Q̇t = qt, Q0 given. As time enters only through geometric discounting, the problem

is autonomous. Lemma A.4 in the Appendix shows that solutions exist and are mono-

tonic.5 Because ν is decreasing, the planner chooses to gradually increase (if Q0 < QN) or

reduce (if Q0 > QN) the stock until it reaches the level QN . QN is thus to be interpreted

as the long-term target, in the absence of catastrophes.

1.2 Introducing catastrophes and delays

We build on the primitives above to add the possibility of a catastrophe. The planning

date is t = 0, but the full past history will be relevant and thus we let t ∈ (−∞,∞). We

say that a catastrophe is triggered when the stock Q exceeds a given threshold value S.

Given a path (Qt)t∈(−∞,+∞), the triggering time is a function of the threshold S:

T (S) ≡ inf{t : Qt > S}. (2)

Note that T (S) is infinite if the stock never exceeds S, and that QT (S) = S otherwise.

5The Appendix actually studies a more general problem and presents results used in a later stage.
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We also define the record stock at time t:

Qt ≡ max
t′≤t

Qt′

so that T (S) < t if and only if S < Qt. The catastrophe itself occurs only after a delay

τ ≥ 0, thus at date κ = T (S) + τ . Before κ, the instantaneous utility is just u(q,Q). At

time κ, the catastrophe occurs, and the game stops, with the planner receiving a stopping

payoff V (Qκ) that depends on the value of the stock at the catastrophe date. This means

that the planner can mitigate the impact of a catastrophe by changing the level of the

stock after the catastrophe was triggered, but before it occurs. Making the stopping

payoff V instead depend on the threshold S, or on the maximum level tried in the past

Qκ, would eliminate this possibility by assumption. To illustrate, one may imagine a

skater on thin ice. Instantaneous utility flow increases with the distance from the shore,

but the ice gets thinner and thinner. Once the first crack in the ice has appeared, the

skater may turn back as long as the ice is still holding. When the ice finally breaks, the

damage to the skater depends on the remaining distance to the shore, as assumed in the

model.

Catastrophes are costly, irreversible events. Irreversibility means that the continua-

tion value V is fixed.6 The catastrophe is costly if V is less than the value of forever

stabilizing the stock at a safe level. We therefore define the damage function D as

D(Q) ≡ u(0, Q)

δ
− V (Q).

Assumption 2 The damage function D(Q) is twice continuously differentiable, weakly

positive, weakly increasing, and such that ν(Q)−D′(Q) is weakly decreasing with respect

to Q.

The last part of the assumption is a regularity condition that ensures that higher

levels of the stocks reduce the value of increasing the flow, once the marginal damages

associated to a catastrophe are taken into account. The assumption is strong enough to

imply that ν − kD′ is decreasing, for k ∈ [0, 1], and thus accommodates easily the case

when the catastrophe is discounted, or occurs with a probability below one.7

6Although we take this stopping payoff as a given and thus beyond the control of the social planner,
the applications to climate change and disease control provide micro-foundations for V as the value
function of the post-catastrophe problem.

7Indeed, ν − kD′ = (1 − k)ν + k(ν −D′), and both terms are decreasing by assumption. The early
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Overall, given S, τ , and a path (Qt)t∈(−∞,+∞), one can apply (2) to compute T (S)

and κ = T (S) + τ , so that the planner’s payoff from date t = 0 onward equals∫ κ

0

u(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ).

We now introduce uncertainty. First, the threshold value S is uncertain to the planner,

who entertains prior beliefs characterized by a cumulative distribution function F on the

interval [S, S]. At this point, it is important to realize that prior beliefs refer to beliefs

held at the beginning of times, i.e. at t = −∞, before any experimentation takes place.

These prior beliefs are then revised continuously over time to take into account the fact

that no catastrophe has occurred yet. Assume that F is continuously differentiable on

its support, with density f . We adopt a monotone hazard rate assumption:

Assumption 3 The hazard rate ρ(Q) ≡ f
1−F (Q) is weakly increasing.

Second, the delay τ is also uncertain, and drawn from a Poisson distribution with

parameter α > 0, independently from S. Hence the planner is not only unsure of the

location of the tipping point, but also about whether the threshold has already been

passed. This captures the idea that a catastrophe might well be under way, though no

one knows. This ignorance precludes a precise adoption of preventive measures, possibly

making the catastrophe even worse. In the biology literature, concepts like the extinction

debt correspond to this idea (Tilman et al., 1994).

Beliefs at time zero obtain by conditioning the prior beliefs by the event “no catas-

trophe happened until time zero”, or equivalently κ = T (S)+τ ≥ 0. Such a conditioning

is an original feature of our model: at any date, one has to take into account the various

experimentations that took place in the past, and the possibility that they might have

triggered a catastrophe that did not happen yet. Therefore, given (Qt)t≤0, the planner’s

problem is as follows:

max
(qt,Qt)t>0

E
ï∫ κ

0

u(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ)

∣∣∣∣ κ ≥ 0

ò
(3)

Q̇t = qt ∈ [q, q], T (S) = inf{t : Qt > S}, κ = T (S) + τ. (4)

literature on catastrophes often relies on much more complicated assumptions. For example, the seminal
study in Tsur and Zemel (1994) relies on two assumptions U1 and U2 that involve the solution to a
constrained dynamic program. Our contribution in Appendix B is to provide general proofs of their
results relying on our simple assumptions, together with a solid connection to our main analysis.
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While Q is continuous by construction, we allow for a countable number of jumps in

q. We say that a solution (Qt)t≥0 is monotonic if Qt is everywhere weakly decreasing,

or everywhere weakly increasing, with respect to time. For any path (Qt)t∈(−∞,+∞), we

define Q∞ ≤ +∞ as the supremum value for the stock. We say that Q∞ is reached in

finite time if there exists T < +∞ such that QT = Q∞, and otherwise we say that Q∞

is reached asymptotically; in that case, one has Qt ≤ Qt < Q∞ for all t.

2 Beliefs

To study the above problem, we first examine how to deal with the planner’s beliefs.

Recall that it is the premise of planning that no catastrophe has happened at time t = 0.

Given a path (Qt)t∈(−∞,+∞), let us define the survival probability at time t, computed at

the beginning of times using the prior beliefs F :

pt ≡ Prob(κ ≥ t).

One may distinguish two possibilities. Either S is above Qt, and in that case a

catastrophe cannot happen before time t. Or S is below Qt: for each such S, survival

means that though the catastrophe was triggered at time T (S) < t, it did not happen

before time t because the delay τ is above t−T (S). Because τ follows a Poisson process,

the corresponding probability is exp(−α(t− T (S))). Overall, we obtain

pt = 1− F (Qt) +

∫
S<Qt

exp(−α(t− T (S)))dF (S). (5)

The second term thus measures the possibility that a catastrophe was triggered in the

past, but did not happen yet. It is high if the record stock has been increasing quickly

in the recent past, and low otherwise. The share πt of this term in pt can be interpreted

as measuring the legacy from the past, compared to potential threats from the future:

1− 1− F (Qt)

pt
≡ πt ∈ [0, F (Qt)]. (6)

The survival probability can also be expressed as follows. At time 0, the initial value

for the survival probability is a function of the past trajectory:

p0 = 1− F (Q0) +

∫
S<Q0

exp(αT (S))dF (S).

We complement this initial value by the law of motion:

ṗt = α[1− F (Qt)− pt]
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which indeed gives (5). Hence, pt is above 1 − F (Qt) and, without a surprise, it is

nonincreasing as pt is a survival probability. One important limit case is when delays

are nil (α goes to infinity), so that catastrophes occur as soon as they are triggered.

Then pt is everywhere equal to 1 − F (Qt), and the legacy from the past πt is zero

everywhere. Otherwise, if delays exist (α < +∞), then either planning starts with no

past experimentation: Q0 ≤ S, π0 = 0, and p0 = 1. Or the planner inherits some

experiments from the past: Q0 > S, and then one has πt > 0 and pt > 1−F (Qt) forever,

as it is always possible that a catastrophe was triggered in the past but did not occur

yet.

We now know the cumulative density function (1 − pt) of the catastrophe date κ.

Conditioning on the event κ ≥ 0 amounts to divide this cdf by p0, and therefore the

expected payoff (3) is proportional to:

E
ï∫

t≥0

1κ≥tu(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ)

ò
=

∫
t≥0

[E1κ≥t]u(qt, Qt) exp(−δt)dt+

∫
κ≥0

exp(−δκ)V (Qκ)d(1− pκ).

By relabelling κ into t in the second term, we end up with the following problem:

max

∫ ∞
0

[ptu(qt, Qt)− ṗtV (Qt)] exp(−δt)dt (7)

Q̇t = qt ∈ [q, q], Q0 given (8)

Qt = max( max
0≤t′≤t

Qt′ , Q0) Q0 given (9)

ṗt = α(1− F (Qt)− pt) p0 given (10)

where Q0 ≥ Q0 and p0 ≥ 1 − F (Q0). Notice that the problem is autonomous: time

enters only through geometric discounting. There are three state variables: the stock

Q, the maximum stock recorded so far Q, and the survival probability p. Their initial

values (Q0, Q0, p0) provide a sufficient summary of the past trajectory (Q)t<0, thanks

to the assumption that τ follows a Poisson process, although for later interpretations it

should be borne in mind that p0 depends on (Q)t<0. Note that p0 may equivalently be

replaced by the legacy of the past, π0 = 1 − 1−F (Q0)
p0

, that measures the possibility that

a catastrophe was triggered in the past.

Though the structure of the program is quite simple, the existence of solutions does

not follow immediately from standard results. The difficulty lies with the maximum in

(9), that creates non-convexities. We will be able to establish transparent conditions
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under which the optimal paths must be monotonic, and the existence of solutions will

then be easily proven.

However, due to the multiplicity of state variables not all relevant solutions are mono-

tonic.8 This allows for scenarios where the planner may first experiment by increasing

the stock variable, and then switch to reducing this variable so as to mitigate the loss in

case a catastrophe occurs; after a while, the planner might become optimistic enough to

experiment further, and so on. One interesting question is whether such policies might

be optimal, which we will establish as well.

3 Searching for optimal policies

We begin by analyzing two extreme cases that provide important foundations.

3.1 Extremes: inherited catastrophe (π0 = 1)

Let us begin with the case where a catastrophe was triggered with certainty in the past.

Formally, this means that the stock has exceeded the maximum value for the tipping

point before the planning date: Q0 ≥ S. Then the planner knows a catastrophe is going

to occur, but he does not know when. Referring to (10), we immediately get that the

survival probability is going to zero after time 0:

pt = p0 exp(−αt). (11)

Plugging this expression into (7), the optimal policy maximizes∫ +∞

0

[u(qt, Qt) + αV (Qt)] exp(−(α + δ)t)dt (12)

under the constraint Q̇t = qt. The planner thus takes into account the trade-off between

the payoff u before the occurrence of the catastrophe, and the continuation value V when

the catastrophe occurs. As observed for example in Kemp (1976), the possibility of a

catastrophe occurring modifies the apparent discount factor.

Notice the formal similarity with the NCP objective defined in (1). Here, the past

triggering of a catastrophe modifies the payoffs and the discount factor, but we can use

essentially the same proofs as in Lemma A.4 to prove similar results. In particular, this

problem is autonomous, and it admits a monotonic solution. Moreover, the behavior of

8As observed in, e.g., Benhabib and Nishimura (1979).
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the solution in the long-run is governed by the following function of Q, built from the

objective function exactly as ν = uq + 1
δ
uQ was built from u exp(−δt) in our NCP case:

uq(0, Q) +
uQ(0, Q) + αV ′(Q)

α + δ
.

This turns out to be equal to:

ν(Q)− α

α + δ
D′(Q). (13)

From Assumptions 1-2, this function is weakly decreasing in Q, and is below ν(Q).

Therefore, it may reach zero only at a value QD ≤ QN .

Definition 1 QD (where D stands for “Damages”) is the stock level at which (13) is

zero, and for simplicity we assume it is unique. By convention, we set QD = +∞ if (13)

is positive for all Q, and similarly we set QD = −∞ if (13) is negative for all Q.

To understand the definition of QD, recall that we are in the case where a catastrophe

has been triggered, and will occur with certainty in the future. Then any increase in the

stock yields an increase in future damages, discounted by a coefficient α
α+δ

that takes

into account the stochastic delay before the catastrophe occurs.9 Thus, QD measures the

sensitivity of the expected damage to the stock level. If the damage D does not depend

on Q, then QD will be high, and in fact equal to QN . In that case, the planner should

behave in a fatalistic manner, since he cannot mitigate the damage. Conversely, if the

damage is very dependent on the stock at the occurrence date, then the planner should

actively mitigate the damage by targeting a low value QD for the stock. These intuitions

are readily verified, as follows:

Lemma 1 Suppose Q0 ≥ S. Then there exists an optimal path (Qt)t≥0. Moreover, all

such optimal paths are monotonic, and converge to QD.

This extreme case study shares some similarity with the hazard rate approach used

in Clarke and Reed (1994), Polasky et al. (2011), Sakamoto (2014), van der Ploeg and

de Zeeuw (2017), or Besley and Dixit (2019). In those works, the catastrophe happens at

time t with hazard rate h(Qt), where h is a given function, so that the survival probability

writes:

pt = p0 exp(−
∫ t

0

h(Qτ )dτ).

9Recall that the delay τ follows a Poisson process with parameter α, so that this coefficient is indeed
E exp(−δτ) = α

α+δ .
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Comparing with (11), we see that these works can be interpreted as assuming that a

catastrophe has been triggered in the past. They then focus on how to best manage two

distinct elements. First, the delay before the catastrophe can be controlled by reducing

the stock because h is assumed to be an increasing function of Q, which is an element

absent from our model as, by assumption, the delay follows a process with a constant

hazard rate α. Second, the damage from the catastrophe, as in our model V (Q), is

allowed to depend on Q. By assuming exogenous (random) delays our setting is thus less

general but, on the other hand, it allows to deal with the question of whether to trigger

a catastrophe in the first place.

3.2 Extremes: no legacy of the past (π0 = 0)

The opposite extreme case posits that the legacy of the past is negligible, either because

experimentation stopped a long time ago, or because it did not begin at all yet. So

assume S ≤ Q0 = Q0 < S, and π0 = 0. Then beliefs on S are truncated at Q0, and

the interval [Q0, S] is terra incognita. In such a situation, one may stabilize the stock

by playing q = 0 forever. One may also experiment a bit more before stabilizing the

stock. To compare these policy options, one computes the instantaneous utility gain

from experimenting, and subtract the expected damage of triggering a catastrophe, to

obtain:

ν(Q)− α

α + δ
ρ(Q)D(Q). (14)

Noticeably, the second term involves the level of damage D, not its derivative as

in the Poisson arrival rate model, and the hazard rate ρ measures the probability of

triggering a catastrophe at this point. This expression is weakly decreasing in Q, under

our assumptions.

Definition 2 QE (where E stands for “Experimentation”) is the stock level at which

(14) is zero, and for simplicity we assume it is unique. By convention, we set QE = S if

(14) is negative at S, and similarly we set QE = S if (14) is positive at S.

One consequence of this definition is that, if one prefers to stabilize the stock forever

at some level Q, then it must be that Q ≥ QE; otherwise, it would be strictly profitable

to experiment a bit more. This effect is already present in the tipping point approach

that we have mentioned in the Introduction (e.g., Lemoine and Traeger, 2014), and that
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we study in Appendix B. We extend this approach by introducing a delay, so that the

definition of QE includes a discounting term α
α+δ

.

3.3 Leaving extremes (0 < π0 < 1)

We proceed next to a few general results on which our main analysis is based. Let us

begin by asking whether one would want to trigger a catastrophe with probability one,

so that the legacy of the past reaches its maximum (π = 1). We can show that this is

not the case if QD is low enough, as follows:

Lemma 2 Suppose QD ≤ S and Q0 ≤ S. Then every optimal path is such that Q∞ ≤ S.

The idea here is that as soon as S is reached, Lemma 1 implies that the path must

converge to QD ≤ S in a monotonic way, and thus this path cannot strictly exceed S.

Let us however underline that our focus in this study is on cases in which planning begins

at low levels of the stock, a focus that preserves diverse possibilities.

To study this diversity of cases, we rely on the targets QE and QD. We know that

both targets must lie below QN , but they cannot be ranked in general. In fact, we shall

soon see that the comparison of these two values plays a key role for the characteristics of

an optimal policy. Proofs rely on two methods. One method performs a simple calculus of

variations: we replace part of a path by a constant value for the stock. This stabilization

can be performed on a finite interval [t1, t2], but one has to take care of the continuous

pasting to the original path: here, this requires Qt1 = Qt2 , and also Qt1 = Qt2 , so that

beliefs at time t2 are not affected by the stabilization. These conditions disappear when

one performs the stabilization on the whole future [t1,+∞[, and we use both cases in the

proofs given in Appendix. The following result obtains using this technique:

Lemma 3 Suppose (Q) is an optimal path. Then Q is weakly increasing when it is

strictly below QD.

Intuitively, when the legacy of the past is maximum (π0 = 1), we know from Lemma

1 that the planner wants to increase the stock until it reaches QD, even though this

means experimenting more. With a lower legacy from the past, the planner should be

even more eager to increase the stock, because the associated increase in damages D′(Q)

is now weighted by a lower probability.
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The second method is tailored to asymptotic studies. As time goes to infinity, the

legacy of the past (i.e., the probability that a catastrophe was triggered in the past)

goes to zero. This means that the asymptotic behavior of the stock is determined by

the incentives to experiment further (the location of Q in comparision to QE), and not

by the control of damages (whose importance is measured by QD). The following result

relies on such an asymptotic reasoning:

Lemma 4 Suppose an optimal path is such that Q∞ < min(QN , S). Then Qt is weakly

increasing, for t high enough. Moreover, Qt converges to Q∞, and Q∞ ≥ QE.

Indeed, stabilizing the stock strictly below QE would be bad policy, as it becomes

strictly beneficial to experiment further, at least asymptotically. Interestingly, the Lemma

also shows that the stock must ultimately be increasing with respect to time. Hence, the

possibility of non-monotonic fluctuations in the stock seems to be linked to the interplay

between experimentation on one hand, and the fear of the legacy of the past on the other

hand. This interplay disappears asymptotically because the legacy of the past vanishes

in the limit.

3.4 Monotonic paths

In this section and the following, we present the main results. Let us begin by a case

where the initial level is low, and the various benchmarks are ranked as follows:

Q0 < QE < QD < min(QN , S).

This ranking of QE and QD is associated to two features. Firstly, the damage D

associated to a catastrophe is high, or the hazard rate is high, so that experimenting

is risky; hence QE is low. Secondly, the damage does not depend much on the stock

level at the time of occurrence: D′(Q) is low, so that QD is high. One may think for

example to the sudden collapse of a productive ecosystem, that occurs after total catch

has exceeded some threshold. The damage from the collapse is the existence value of the

ecosystem, assumed high, but it does not depend on the aggregate catch. The following

result characterizes the optimal policy:

Theorem 1 Suppose Q0 < QE < QD < min(QN , S). Then there exists an optimal path.

Moreover, all optimal paths are weakly increasing, and reach Q∞ at some time T ≤ +∞,
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with QT ∈ [QE, QD) such that

ν(QT ) =
α

α + δ

(
πTD

′(QT ) + (1− πT )ρ(QT )D(QT )
)
. (15)

Formula (15) allows for two possibilities: either experiments stop in infinite or finite

time. In the first situation the planner stops experimenting asymptotically, T = +∞, πT

goes to zero, and the formula implies that the stock converges to QE (see Definition 2).

This is a case in which the legacy of the past is small, it remains small over time because

the planner experiments very slowly, and thus the planner is quite certain on path that

the followed policy secures the welfare against losses.

In the second situation, in contrast, T is finite and the planner stops experimenting

while still worrying about the catastrophe that may be under way, πT > 0. This second

case highlights the role of the legacy of the past. If it is initially high, or if the planner

decides to experiment intensively, then at any point in time the planner attributes a high

probability to the fact that a catastrophe may be under way. Because by assumption the

damage does not depend much on the stock level at the time of occurrence, otherwise we

would not have QE < QD, the planner has incentives to reap as much instantaneous gains

as possible before the catastrophe happens. This pushes the stock up in the direction

of QD, as indicated by the first term on the right-hand side of the formula. For this to

happen, it must be that πT is high enough, and therefore QT is reached in finite time.

After the stopping time T , πt vanishes over time, and the planner becomes more and

more optimistic; but because QT > QE is already reached, there are no welfare gains

to be made by reducing the stock, and stabilization continues to be optimal. Finally,

and somewhat paradoxically, higher initial values of the legacy of the past encourages

this fatalistic behavior and promotes even more experimentation, and the final value QT

further increases. We offer next a simple example in which these insights are shown to

hold quite generally.

Before proceeding to the example, we emphasize that in the situation with finite T

experiments may stop under uncertainty which fits neither of the approaches in the liter-

ature: in the hazard rate approach, the planner knows that the catastrophe is pending;

in the tipping point approach, the planner knows that the catastrophe is avoided by

stopping. As already observed, the formula itself is a nice synthesis of the hazard rate

approach (corresponding to the first term) and of the tipping point approach (associated

to the second term in (15)). The formula includes in addition a delay that is responsible
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for the factor α
α+δ

.

Consumption example: consider a consumer that consumes at each date a quantity

qt ∈ [q, q]. As in our model, a catastrophe is triggered when total cumulative consumption

Qt exceeds an unknown threshold S, and the catastrophe occurs after a stochastic delay.

This simple example generalizes the analysis of how to eat a cake of unknown size (Kemp,

1976), but could as well be applied to the collapse of a productive ecosystem, or even

to stochastic defaults in corporate finance when total borrowing exceeds some unknown

tolerance level set by the lender. Our key assumptions here are, first, that instantaneous

utility is a linear function of q only: u(q,Q) = u0 + u1q, where u1 > 0, and u0 > 0.

Second, when the catastrophe occurs the activity simply disappears, and the consumer

ends up with a zero continuation payoff: V (Q) = 0.

When applied to this simple case, our definitions yield ν(Q) = u1 > 0, so that

QN = +∞: the consumer would consume over time without bounds in the absence of

catastrophes. Then the damage associated to the occurrence of a catastrophe is simply

D(Q) = u0
δ

, the loss of safe utility flow. Because the damage does not depend on the

level of the stock at the occurrence date, we immediately obtain QD = +∞, meaning

that the planner chooses to consume without limits over time if a catastrophe is known

to have been triggered. Finally, the target QE is implicitly defined by the equality

u1 =
α

α + δ
ρ(QE)

u0

δ
,

assuming that a solution QE ∈ [S, S] exists. One easily checks that Assumptions 1-2-3

hold.

Assume now that at date zero, planning begins with S ≤ Q0 = Q0 < QE, and

some initial survival probability p0 ≥ 1− F (Q0). Because QD = +∞, Lemma 3 implies

that optimal policies are weakly increasing. Consequently, in the problem in (7)-(10)

simplifies because Q equals Q everywhere, and constraint (9) has disappeared. Thanks

to the assumption that utility and constraints are linear in q, the Pontryagin’s principle

becomes easy to follow: the optimal policy consist of setting q at its maximum level q up

to some time T , and then to stabilize the stock forever by setting q = 0. The associated

payoff is thus a function of T only:

W (T ) = (u0 + u1q)

∫ T

0

pt exp(−δt)dt+ u0

∫ +∞

T

pt exp(−δt)dt,
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where the survival probability is computed by solving (10):

pt = p0 exp(−αt) + α exp(−αt)
∫ t

0

(1− F (Q0 + qmin(τ, T ))) exp(ατ)dτ.

One can check that the first-order condition W ′(T ) = 0 is equivalent to formula (15):

u1 =
α

α + δ
(1− πT )

u0

δ
,

so that we get the value of πT . But finding a maximizer of W (T ) raises an additional

difficulty. Because QD = +∞, the planner may find it profitable to trigger a catastrophe

with certainty by choosing T = +∞. Fortunately, we can prove the following results

without having to fully characterize the maximum of W .

Proposition 1 Assume S ≤ Q0 = Q0 < QE and V = 0 in the consumption example.

Then, experiments stop at finite T > 0 if and only if

u0

∫ +∞

T

Pt exp(−δt)dt ≥ (u0 + u1q)

∫ +∞

T

pt exp(−δt)dt,

where Pt on the left-hand side is survival probability pt for which experimentation has

stopped. Moreover, QT is strictly above QE, and T and QT are strictly increasing in the

legacy π0.

Intuitively, the planner prefers stabilizing in finite time if safe utility u0 is high enough,

or if marginal utility u1 is low enough. Low legacy, perhaps because the current stock

standing was reached slowly, makes the planner cautious and experimentation stops early.

We prove this result here in the text.

First, Lemma 4 implies that QT is at least equal to QE. Since we have assumed

Q0 < QE, this shows that T must be strictly positive. In other words, it is always

profitable to increase the stock at least up to QE.

Second, by playing q > 0 at each period one must reach QE in finite time. At that

point, there must exist a strictly positive legacy of the past. As a consequence, an optimal

path must increase the stock strictly above QE.

Third, an increase in p0 has a very simple effect on survival probabilities:

∂pt
∂p0

= exp(−αt).

This makes it easy to compute the derivative of W (T ) with respect to p0, and to show

that this derivative is itself increasing with respect to T .10 Hence, by a supermodularity

10Indeed, we get (α+ δ)∂W (T )
∂p0

= u0 + u1q − u1q exp(−(α+ δ)T ), which is increasing wrt T .
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argument we immediately obtain that the set of maximizers of W is increasing with p0

in the strong set order. Now, recall the definition (6) of π: π0 = 1− (1−F (Q0))/p0. We

thus have shown that when the legacy of the past π0 increases, for example because the

rhythm of experimentation before reaching Q0 at time zero is higher, then the planner’s

optimal response is to increase experimentation. Once more, this paradoxical effect occurs

because the best way to adapt to a looming catastrophe is to behave fatalistically, by

reaping as much consumption as possible before the date of occurrence.

Finally, one can check W (T ) is above W (+∞) if and only if the condition in the

Proposition holds: the two policies are identical before time T .

3.5 Non-monotonic paths

In this Section, we turn to the case where the damage strongly depends on the stock

level at the date of occurrence. Formally, this means that we reverse the key ranking of

the target values, so that we assume QD < QE. In this case, damage control becomes

an important priority when the legacy of the past is high. However, asymptotically

this legacy vanishes, and the limit value of optimal policies is entirely determined by

experimentation. A general result follows:

Theorem 2 Suppose QD < QE < min(QN , S). If an optimal path is such that Q∞ <

min(QN , S), then it converges to Q∞, and Q∞ = max(Q0, Q
E).

An important remark is that there is every reason to believe that optimal paths should

remain below min(QN , S), because one does not want to experiment further above QE,

and one would rather reduce the stock in case a catastrophe was triggered in the past, as

QD is even lower. While we acknowledge that this intuition does not constitute a proof,

we shall carry on however.

The Theorem leads to two possibilities, depending on the size of the legacy of the

past at the planning date. If this legacy is small, then the main target is QE. Starting

from Q0 < QE, the planner should aim at QE in a monotonic way. If on the other hand

Q0 > QE, then the target is modified into max(Q0, Q
E), but monotonicity should remain

unaffected.

By contrast, when the legacy of the past is high, the first priority is to control the

damage, by reducing the level of the stock. This is only after some time that the planner

becomes optimistic enough to switch to a new phase in which he will increase the stock
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level. We are then back to the above phase, in which a monotonic path is likely to be

used until the target max(Q0, Q
E) is reached.

Therefore, non-monotonic paths may be optimal. But in any case, the asymptotic

value of the stock remains the same, because it is set by the experimentation trade-off

when the legacy of the past vanishes. We verify below these results in a variant of the

consumption example.

A variant of the consumption example: we stick to the linear utility u0 + u1q

with u0 = 0 and u1 > 0, but we now assume that the continuation value in case of a

catastrophe is decreasing with Q with a sufficient slope, namely

V (Q) = −v0Q v0 >
α + δ

α
u1.

Thus, the function ν(Q) = u1 is unaffected, QN is still infinite, but the damage

function becomes D(Q) = v0Q. Because of the condition on v0, QD is now −∞: one

should reduce the stock as much as possible when it is known that a catastrophe has

been triggered for sure. Finally, QE is given implicitly by the equality

u1 =
α

α + δ
ρ(QE)v0Q

E,

assuming an interior solution in (S, S). Now suppose that we start at time 0 after having

experimented intensively in the recent past; the level of the stock is equal to the highest

level on record (Q0 = Q0), the level itself is quite high (Q0 > QE), and so is the legacy

from the past. Then one would like to reduce the stock so as to mitigate the damage in

case a catastrophe was triggered in the past. After some time, the fact that a catastrophe

did not occur makes the planner more optimistic, and he will switch to increasing the

stock level again. We therefore expect that in this situation non-monotonic policies are

optimal, and this is proven in the following proposition:

Proposition 2 In the variant of the consumption example, suppose QE < Q0 = Q0 <

min(QN , S). If the legacy of the past is low enough:

u1 ≥ π0
α

α + δ
v0, (16)

then the optimal policy consists in stabilizing the stock forever: qt = 0 for all t. Otherwise,

there exists an optimal path, and it is such that, for some t1, t2, with 0 < t1 < t2 < +∞:
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• qt = q < 0 for t < t1;

• qt = q > 0 for t1 < t < t2;

• qt = 0 for t > t2.

With low legacy, (16) holds and the planner could consider experimenting further but

the inherited stock standing Q0 is already to high for such a policy: from Theorem 2, we

must have Q∞ = max(Q0, Q
E). Therefore, and because the same reasoning holds at any

later date, it is optimal to freeze for good at the current stock standing.

However, with high legacy, condition (16) fails at the outset of planning and the

planner turns to mitigation in the fear of damages arriving soon. But such fears must

ultimately fade away, justifying the non-monotonic policy stated.

3.6 A simple comparison

One may summarize the above results by saying that a lot depends on the ranking of

QE and QD. From their respective definitions, one can easily derive sufficient conditions

to order these two targets. In particular, the function Q 7→ D(Q)(1− F (Q)) plays a key

role.

Suppose first that this function is decreasing at Q = QD. This corresponds to a

situation in which the damage does not depend much on the stock level at the date

of occurrence, or the hazard rate is high. Then we immediately obtain QE < QD.11

Consequently Theorem 1 applies: if one begins planning at a low initial level of the

stock, then optimal paths are monotonic, and converge to a limit in [QE, QD]. Moreover

(but this intuition was only verified in a simple example), the legacy of the past should

intuitively determine how much to experiment, with low final stock level associated with

low legacy and high final level with high legacy. The legacy thus determines if the planner

adopts a cautious or fatalistic experimentation strategy.

Suppose now that this function is increasing at Q = QD. This corresponds to a

situation in which the damage depends a lot on the stock level at the date of occurrence,

or the hazard rate is low. Then we immediately obtainQD < QE. Consequently, Theorem

2 applies: if one begins planning at a low initial level of the stock, and the legacy of the

past is small, then optimal paths are monotonic, and converge to a limit in QE. By

contrast, if the legacy of the past is high, a first phase appears in which one may want

11Indeed, by Definition 1 we have ν(QD) = α
α+δD

′(QD) > α
α+δρ(QD)D(QD) since D(1 − F ) is

decreasing at QD. From Definition 2, QE must then be above QD.
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to reduce the stock, until the legacy of the past is sufficiently reduced, before switching

to the monotonic phase.

We now propose two applications in which this ranking can be studied more precisely.

4 Climate change

The two basic approaches to modeling climate catastrophes are the threshold approach

(e.g., Lemoine and Traeger, 2014) and the hazard rate approach (e.g., Besley and Dixit,

2019). Lessons for policies depend crucially on the approach chosen, which we now

demonstrate with a simple climate-change model inspired by Golosov et al. (2014). We

let Q denote the CO2 stock in the atmosphere, that follows a simple low of motion:

Q̇t = Et − γQt, (17)

where E are total emissions, and γ > 0 is the constant decay rate.12 In the absence of

catastrophes, total output, denoted by Yt, is

Yt = exp(−θQ)K1−βEβ
t (18)

where K stands for capital, which we shall set to 1 in this illustration, Et is the fossil-

fuel energy use, and β ∈ (0, 1) is its factor share. The first term corresponds to the

productive damages due to the accumulation of carbon in the atmosphere. Production

is entirely consumed at each date, so that Ct = Yt. Instantaneous utility of consumption

is U(C) = lnC.13

We are back to our model if we set q = E − γQ. Then the instantaneous utility is

u(q,Q) = β log(q + γQ)− θQ,

and we obtain

ν(Q) =
β

Q

γ + δ

γδ
− θ

δ
.

Then the target in the absence of catastrophes is

QN =
β

θ

γ + δ

γ
.

12The precise measure is the atmospheric temperature. We cut short the details of the emissions-
temperature response of Golosov et al. (2014) and Gerlagh and Liski (2018). Some papers argue that
focusing on cumulative emissions is enough for the essence of policy analysis. See Dietz and Venmans
(2019).

13The analytical climate-economy papers often make this assumption; Traeger (2019) studies more
general functional forms. We could also include a utility loss linear in Q, without affecting the results.
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As with our general model, when Q exceeds the unknown threshold S, this triggers a

catastrophe that occurs after a stochastic delay. In the climate change literature, there are

numerous components of the Earth system that are susceptible to experiencing tipping

events leading to irreversible processes (Lenton et al., 2008), with considerable variation in

how long the catastrophes may be pending before they actually occur (van der Ploeg and

de Zeeuw, 2017). Greenland ice-sheet is such a component for which the melting, after

a critical temperature, is the irreversible process. As, for example, in Cai and Lontzek

(2019), when occurring the catastrophe irreversibly changes the production possibility

frontier. In our model, we model this impact by making θ increase by a factor k, and we

assume that this shock is important enough:

k >
γ + δ

δ
.

After the catastrophe has occurred, planning goes on, and we can endogeneize the

continuation value V (Q) as follows:

V (Q0) = max

∫ ∞
0

lnCt exp(−δt)dt (19)

subject to Ct = Yt = exp(−kθQt)(qt + γQt)
β, and Q̇ = q, Q0 given. This is a simple

exercise in optimal control, whose solution leads to:

V (Q) =
−kθ
δ + γ

Q+
β

δ
[log(γQN)− log k − 1]. (20)

Then the damage D(Q) = u(0,Q)
δ
− V (Q) equals:

D(Q) = θQ(
k

γ + δ
− 1

δ
) +

β

δ

Å
log

Q

QN
+ log k + 1

ã
.

We can now recall the approaches in the literature. Firstly, van der Ploeg and

de Zeeuw (2017) provides a thoughtful analysis of how to prepare for catastrophes that

are pending. The paper is explicit about the idea that the ultimate arrival of tipping

is evident. In our setting, the assumption implies that the event was triggered in the

past (Q0 > S, π0 = 1) but did not yet occur. From Definition 1, the optimal stock level

converges monotonically to the long-run target QD:

QD = QN γ + δ + α

γ + δ + kα
,

which indeed is less than QN .
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Secondly, the alternative approach assumes there is no delay between triggering and

occurrence, so that there is no legacy from the past. Then experimentation determines

the optimal policy, and the relevant target can be computed thanks to Definition 2, at

least implicitly:

QN = QE

ï
1 +

α

α + δ
ρ(QE)

Å
QE(

δk

γ + δ
− 1) +

β

θ
(log

QE

QN
+ log k + 1)

ãò
. (21)

Increasing Q is optimal if Q < QE. Any such increase may trigger tipping and if

this happens without a delay, we arrive at the threshold model with immediate learning:

Expression (21) continues to hold but with α
α+δ

= 1. Then, this climate-economy model

of ours has an information structure that is no different from that in Lemoine and Traeger

(2014).

The illustration helps in interpreting the literature. When k is low and the prior ρ

is high even for low Q, we get QD > QE. This means that the planner is prepared to

increase emissions further if the “ice breaks”. In the literature, there are models where

emissions increase after tipping occurrence (Bretschger and Vinogradova, 2019; van der

Ploeg and de Zeeuw, 2017).14 In such models, past emissions do not have to be “undone”

after tipping so one may say that priority is put to ex ante damage control. When k is

large and the prior ρ remains low even for large Q, we get QD < QE. This seems to be

the main case in the literature (Gerlagh and Liski, 2017; Lemoine and Traeger, 2014).

One may say the planner puts priority to post-tip damage control in such models.

Proposition 3 It holds for optimal climate policies with α < ∞, Q0 = Q0 < QE and

π0 ∈ (0, 1) that

(i) Priority to ex ante damage control (low k, ρ high): Emissions continually increase

until stopping in [QE, QD).

(ii) Priority to post-tip damage control (high k, ρ low): Emissions may first decline but

ultimately converge to QE.

The first part of the result is an application of Theorem 1. The overall emissions

increase may depend on the legacy of the past. The second part follows from Theorem 2

where the total increase in Q does not depend on the legacy. The planner may be initially

14In the latter model, the outcome arises in the case where the damage from the event is a one-time
time drop of output.
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almost certain that the calamity is pending if π0 is close to unity. Then, in contrast with

the benchmarks from the literature, where the planner returns to low emissions after

the tipping occurrence, our planner may reduce emissions before the event occurrence if

QD < Q0 < QE and finally chooses come back with Q and reach QE conditional on not

observing the event.

5 Disease control and social distancing

We consider a population of agents whose mass is normalized to 1, facing a pandemic at

its early stages. The proportion of infected at time t is It, with I0 given, and it follows a

simple law of motion:

İt = (Rt − (r + d))It.

The recovery rate r and the death rate d are given. We normalize the time unit so

that parameters r and d add up to 1. Hence, from now on d is the proportion of deaths

among those agents that exit the set of infected agents at every period. Thus,

r = 1− d, 0 < d < 1.

Rt ∈ [0, R0] is the random matching rate, and thanks to the above normalization it

is also the reproduction rate, that measures how many agents are infected by a single

agent. Its maximum value R0 > 1 obtains when people behave as in the absence of the

pandemic. By mandating social distancing, the social planner can reduce the value of R

at each period. This comes at an economic cost, because the social monetary value of

production at time t is an increasing and concave function Y (R) of R. On the other hand,

by reducing the growth of infections one can eventually reduce the number of deaths,

each evaluated using a value of statistical life w > 0.

We can now define

Q = log I q = R− 1,

and we are back to our model, with

u(q,Q) = Y (q + 1)− wd exp(Q), Q̇ = q ∈ [−1, R0 − 1],

and an initial value I0 > 0. One important assumption is that the stock of infected

is never zero, for example because some infections occur due to foreign travels, or the

existence of a natural reservoir. Hence, there is no absorbing state here. As we have
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seen, in the absence of a catastrophe the control of the disease is characterized by the

function

ν(Q) = uq(0, Q) +
uQ(0, Q)

δ
= Y ′(1)− wd

δ
exp(Q).

In particular, we get that the optimal number of final infections is

IN = exp(QN) =
δY ′(1)

wd
.

For example, if I0 < IN , then the optimal path has Rt > 1, and asymptotically Rt

goes to 1. The stock of infected grows monotonically until it reaches IN . The production

is below the level Y (R0) that it would reach in the absence of the disease, and decreases

until it reaches Y (1). The situation we model here is thus one in which the society

accommodates a permanent level of infections, together with some social distancing.

This corresponds to the idea of flattening the curve, hoping that in the long run some

(unmodeled) discovery of a vaccine will allow a return to a “normal” situation.

Nevertheless, the scenario with the above smooth trade-offs assumes that society is

able to withstand a permanent pressure on the health system, on the institutions in

charge of imposing social distancing, or simply on the population’s morale. One might

also want to take into account a possibility that these measures break down, or even that

the infectious agent mutates into something more dangerous. We assume here that these

events are triggered by a high enough number of infected J , and that this number is

uncertain. We thus let FJ denote the cdf of the distribution of J , on the support [0, J ].

Equivalently, there is an uncertain threshold for Q = log I, with a distribution F for the

threshold S = log J . If the hazard rate for J is ρJ , the corresponding functions for S are:

F (S) = FJ(exp(S)), ρ(S) =
f(S)

1− F (S)
= exp(S)ρJ(exp(S)).

Hence, ρ is increasing wrt S when JρJ(J) is increasing wrt J . When the catastrophe

eventually occurs, the death rate increases from d to d′, while the recovery rate becomes

r′. Society looses control, and the matching rate is set at some given value R′. Overall,

we assume the following property on the rate of increase γ′ of the number of infected:

0 < γ′ ≡ R′ − (r′ + d′) < δ.

The second inequality allows to compute a meaningful welfare after the catastrophe starts
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with an initial stock of infected I = exp(Q). We have15

V (Q) =

∫ +∞

0

[Y (R′)− wd′It] exp(−δt)dt

where It = I0 exp(γ′t), and therefore,

V (Q) =
Y (R′)

δ
− wd′

δ − γ′
exp(Q).

Consequently, the damage function is

D(Q) =
u(0, Q)

δ
− V (Q) =

Y (1)− Y (R′)

δ
+ wµ

d

δ
exp(Q).

The first term is the actualized production loss, and the second term is associated to

the increased mortality, with a dimensionless, multiplicative factor

µ ≡
d′

δ−γ′ −
d
δ

d
δ

> 0.

Production loss Y (1)− Y (R′) > 0 may be interpreted as the cost of a lockdown or other

tough measures: the society must push R′ down below one when the epidemic transmutes.

This concludes the exposition of the model. We can now turn to determining the optimal

management of this infectious disease.

Our method requires to compute two benchmark values. Firstly, QD is the social

target when one knows that a catastrophe has been triggered in the past; for example,

the disease has been uncontrolled and the tipping of healthcare is a question of time. We

have

ν(QD) =
α

α + δ
D′(QD)

and we get, after some calculus:

ID = exp(QD) = IN
1

1 + α
δ+α

µ
< IN . (22)

Secondly, QE is the value of Q that balances the cost and benefits of further experi-

mentation, in the absence of legacy from the past. We have

ν(QE) =
α

α + δ
ρ(QE)D(QE)

15Alternatively, one could assume that a vaccine is discovered after some (possibly stochastic) date T ,
independently from all other choices. Implicitly, the discount rate captures these ending considerations
of the calamity.
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and we now get an implicit expression:

IN =
α

α + δ
ρ(QE)

Y (1)− Y (R′)

wd
+ exp(QE)

ï
1 +

α

α + δ
µρ(QE)

ò
.

This defines a unique value IE < IN , such that:

IN = IE
ï
1 +

α

α + δ
ρJ(IE)

Å
Y (1)− Y (R′)

wd
+ µIE

ãò
.

Comparing to (22), we immediately get that ID is above IE if and only if

µwd
(
1− IEρJ(IE)

)
< ρJ(IE)

(
Y (1)− Y (R′)

)
. (23)

Recall that µwd measures the increase in mortality after the catastrophe, while the

term on the right-hand side measures the loss in production. As in the climate change

application, we have now a simple measure of the loss, µwd, which together with the

planner’s beliefs as captured by ρJ determine the ranking of ID and IE.

Proposition 4 It holds for optimal disease control policies with current infections record

at I0 < IE and some legacy from the past π0 ∈ (0, 1) that

(i) For IE < ID (µwd low, ρJ high), the planner chooses R > 1 for all I until reaching

a value in [IE, ID] and stops infections growth by choosing R = 1 thereafter;

(ii) For IE > ID (µwd high, ρJ low), the planner may choose early containment R < 1

but finally chooses R > 1 so that infections converge to IE > ID.

As in the climate change application, results (i) and (ii) are immediate consequences

of Theorems 1 and 2, respectively. We illustrate next a policy path with a period of

containment followed by relaxed distancing measures, consistent with the second result

of the Theorem. Assume linear a relationship between R and output: Y (1+q) = Y0(1+q)

with Y0 > 0. Moreover, for the sake of illustration, assume that planning starts so late

that I0 > IN . In the Appendix we compute the payoff for any feasible path qt, t ∈ [0,∞),

under It ≤ I0. This payoff turns out be linear in our distancing measure q:∫ ∞
0

qt

[
Gt +Ht

]
dt+ constant
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Figure 1

The virus outbreak with linear production Y (q) = Y0(1 + q). The figure depicts the optimal
time path of log of infections, starting with logI0 = 10. The parameters are: δ = .1, γ =
.02, w = 1, d = .1, d′ = .15, α = .2, Y0 = 1000,m0 = .5

where

Gt = m0

(
Y0 −

wd exp(Qt)

δ

)
exp(−δt),

Ht = (1−m0)
(
Y0 − (

αwd′

δ − γ
+ wd)

exp(Qt)

α + δ

)
exp(−(δ + α)t),

and m0 = 1−F (Q0)
p0

. Importantly, G = 0 gives the optimal level of infections in absence

of catastrophes, IN = exp(QN). Because I0 > IN , both terms G0 and H0 are strictly

negative when the planning starts.16 It follows that complete lockdown q = −1, R = 0, is

optimal at t = 0 and in fact for all t ≥ 0 with Gt +Ht < 0. But the lockdown must end:

it can be readily verified that Gt + Ht turns positive at some finite t′ > 0 when policy

q = −1 is followed for all t < t′. The optimal policy after t′ is to relax social distancing

so that I = exp(Q) grows back to IN . In the end, the planner knows that path is safe,

as if tipping was absent.

In Figs. 1-2, we show the optimal path for the parameters reported. The first figure

shows the path of infections and the second depicts the implemented Rt. When infections

grow we must have [Gt + Ht]qt ≥ 0 which, in this illustration, holds as equality. In the

16For H0 < 0, we may write:
(
Y0 − (αwd

′

δ−γ +wd) exp(Q0)
α+δ

)
<
(
wdIN
δ − (αwd

′

δ−γ +wd) exp(Q0)
α+δ

)
<
(
wdIN
δ −

(αwd
′

δ−γ + wd) IN
α+δ

)
<
(

1
δ −

1
(δ−γ)

)
α
α+δwd

′IN < 0.
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Figure 2

The virus outbreak with linear production Y (q) = Y0(1 + q). The figure depicts the optimal
time path of reproduction rate Rt, associated with figure 1. The parameters are: δ = .1, γ =
.02, w = 1, d = .1, d′ = .15, α = .2, Y0 = 1000,m0 = .5

long-run, infections approach IN and R = 1. The illustration confirms the optimality of

early containment followed by increasing infections, as in hammer-and-dance policies for

Covid-19 (e.g., Assenza et al., 2020). We believe that ours is the first work to rationalize

the hammer-and-dance approach to disease control by learning.

6 Conclusion

Inferences about catastrophes are difficult before they actually happen. This paper devel-

oped a novel approach for understanding optimal experimentation with a tipping point

that comes with delay and severity depending on past actions. The model interprets

historical data for beliefs on the gains and losses of further experiments: it highlights the

importance of timing of past actions. Slow histories generate more information than fast

histories, so the same current stock standing can come with different information con-

tents and different immediate actions forward. In Covid-19 crises, late planning starting

after an explosion of infections can justify the optimality of a lockdown, but the same

infection level can justify further steps forward if the current level was approached slowly.
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The lessons carry over to climate change: the “lockdown of emissions” may be optimal

until unknowns can be ruled out.

Our results suggest an agenda for the applied quantitative research that evaluates

the optimal climate policies quantitatively with detailed climate-economy descriptions:

The models should quantify the information content of past (unplanned) experiments to

give a structural interpretation to beliefs. Our model and applications illustrate the idea

but remain stylized. Cutting-edge quantitative approaches, including Cai and Lontzek

(2019) and Traeger (2019), offer the frameworks for exploring the question.
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A Proof Appendix

N.B.: to alleviate notations, we often omit arguments when there is no

ambiguity, and we write e for exp(−δt). We also make use of the function

N(Q,Q′) =
∫ Q′

Q
ν(x)dx. N(Q,Q′) is concave in Q′ under Assumption 1, and

N(Q,Q′)−D(Q′) is concave in Q′ under Assumption 2.

For further reference, we state the following result, that follows from computing the

unique solution to the differential equation (10):
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Lemma A.1 For any T and t ≥ T , one has:

pt = pT exp(−α(t− T )) + α exp(−αt)
∫ t

T

(1− F (Qτ )) exp(ατ)dτ. (A.1)

In particular, when Q is a constant on [T, t], we denote the survival probability by P , and

one has:

Pt = 1− F (QT ) + (pT − (1− F (QT ))) exp(−α(t− T )). (A.2)

The following Lemma is also used repeatedly in the proofs below. The result stems

from comparing the candidate path to a constant path, on a bounded or unbounded

interval [t1, t2].

Lemma A.2 If (Q)t≥0 is an optimal path, then∫ t2

t1

[
ṗt(Qt −Qt1)

Å
D′(Qt1)−

α + δ

α
ν(Qt1)

ã
+ δ(1− F (Qt))

Å
(Qt −Qt1)ν(Qt1)−

α

α + δ
ρ(Qt1)D(Qt1)(Qt −Qt1)

ã ]
exp(−δt)dt ≥ 0

(A.3)

for all (t1, t2) such that one of the following two cases holds:

• Case (i): t1 < t2 = +∞.

• Case (ii): t1 < t2 < +∞, Qt1 = Qt2, Qt1 = Qt2.

Proof of Lemma A.2: Recall that by definition V (Q) = u(0, Q)/δ −D(Q), so that

W ≡
∫

[pu− ṗV ]edt =

∫
[pu− ṗu(0, Q)

δ
+ ṗD]edt.

By integrating the planner’s payoff W by parts between t1 and t2, we get:

W = −[p
u(0, Q)

δ
e]t=t2t=t1 +

∫
[p(u− u(0, Q) + q

uQ(0, Q)

δ
) + ṗD]edt.

The concavity of u in q implies:

W ≤ −[p
u(0, Q)

δ
e]t=t2t=t1 +

∫ ï
p(quq(0, Q) + q

uQ(0, Q)

δ
) + ṗD

ò
edt.

In the integral we recognize ν, and this expression can be rewritten as

W ≤ −[p
u(0, Q)

δ
e]t=t2t=t1 +

∫
[pqν + ṗ(D −D(Qt1))] edt+D(Qt1)

∫
ṗedt. (A.4)
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We now compute the payoff W0 associated to a constant Q = Qt1 between t1 and

t2. Because q is zero, the above computations now yield an equality. Notice also that,

though the survival probability P associated to this constant path is initially the same

(Pt1 = pt1), beyond t1 it may differ from p (see Lemma A.1.) We obtain:

W0 = −[P
u(0, Q)

δ
e] +D(Qt1)

∫
Ṗ edt.

If (q,Q) is a solution, then it must be that the inequality W ≥ W0 holds, and therefore

that the right-hand side in (A.4) is above W0. We now study this inequality.

The first bracketed terms are equal at t = t1, and also at t = t2 both in case (i)

(because t2 = +∞ implies that the exponential is zero) and in case (ii) (because Q is the

same constant for both paths, so that P and p are everywhere equal.)

For the factor of D(Qt1), we know that p = P in case (i), and we have in case (ii):∫ +∞

t1

(Ṗ − ṗ)edt = δ

∫ +∞

t1

(P − p)edt.

By applying (A.1) at T = t1 to both p and P , we compute:

Pt − pt = α exp(−αt)
∫ t

t1

(F (Qτ )− F (Qt1)) exp(ατ)dτ.

We get, by integrating by parts once more:∫ +∞

t1

(Ṗ − ṗ)edt =
αδ

α + δ

∫ +∞

t1

(F (Qt)− F (Qt1)) exp(−δt)dt.

Moreover, Assumption 3 implies ρ(Q) ≥ ρ(Q1) ≥ ρ(Q1), and therefore:

F (Q)− F (Q1) =

∫ Q

Q1

f(S)dS =

∫ Q

Q1

ρ(S)(1− F (S))dS

≥ (1− F (Q))

∫ Q

Q1

ρ(S)dS ≥ (1− F (Q))ρ(Q1)(Q−Q1).

We thus have recovered the last term in (A.3). Finally, we study the remaining terms

in (A.4):

K ≡
∫

[pqν + ṗ(D −D(Qt1))] edt.

Let N(Qt1 , Q) =
∫ Q
Qt1

ν(x)dx. We have:∫
pqνedt = [pNe]t=t2t=t1 −

∫
N(ṗ− δp)edt.
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Notice that the bracketed term is zero at t1 (because N = 0) and at t2 (because the

exponential is zero in case (i), or because N = 0 in case (ii)). Therefore:

K =

∫
[δpN + ṗ(D −D(Qt1)−N)] edt.

Assumption 1 implies that N is concave, so that

N ≤ (Q−Q1)ν(Qt1).

Assumption 2 implies that D −N is convex, so that

D −N ≥ D(Qt1) + (Q−Q1)(D′(Qt1)− ν(Qt1)).

Replacing these elements in K yields the remaining terms in (A.3). �

Proof of Lemma 4: For t ≥ t1, define the function

B(t1, t) = ṗt(D
′(Qt1)−

α + δ

α
ν(Qt1)) + δ(1− F (Qt))ν(Qt1).

1 − F and ν are decreasing, and take positive values because Q and Q lie strictly

below S and QN . Therefore, the second term is at least

k0 ≡ δ(1− F (Q∞))ν(Q∞) > 0.

Moreover, ṗ converges to 0. Therefore, there exists T such that, for t ≥ t1 ≥ T ,

B(t1, t) > k0/2 > 0.

Now, let us proceed by contradiction, and suppose that there exists t1 and T2 such

that T ≤ t1 < T2 and Qt1 > QT2 . A first possibility is that Qt is below Qt1 for all t > t1.

Then Q is a constant, and the function under the integral in (A.3) at (t1, t2 = +∞)

equals (Qt − Qt1)B(t1, t), and is everywhere weakly negative, and sometimes strictly

negative by definition of T2. But this contradicts the inequality in (A.3). Therefore, Qt

cannot be below Qt1 for all t > t1, and there must exist t2 such that T ≤ t1 < t2, and

Qt1 = Qt2 ≥ Qt for all t ∈ [t1, t2], and sometimes the last inequality is strict. Then Qt is

a constant on this interval, and once more we get a contradiction with (A.3) at (t1, t2).

We now know that after time T , Qt is weakly increasing and bounded by Q∞. There-

fore, Qt converges to some level Q+ ≤ Q∞. Moreover, p converges to (1−F (Q∞)), and ṗ

goes to zero. As a consequence, when computed at time T the planner’s payoff verifies:

lim
T→+∞

∫
t≥T

(pu− ṗV ) exp(−δ(t− T ))dt = (1− F (Q∞))
u(0, Q+)

δ
,
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so that the planner gets an instantaneous payoff arbitrarily close to u(0, Q+), conditional

on reaching a high enough date T . Suppose that the planner deviates from T onward

by playing a small quantity ∆q > 0 during a small interval of time ∆t, and then zero

afterwards. If Q+ < Q∞, a simple expansion of the planner’s payoff shows that the payoff

from the deviation is at least

u(0, QT )

δ
+

1

2
ν(Q+)∆q∆t.

For T high enough, this is strictly above u(0, Q+)/δ, a contradiction. So we must have

Q+ = Q∞. Then, if Q∞ < QE, by following a similar reasoning we get that the same devi-

ation yields an additional payoff at least equal to 1
2
[ν(Q∞)− α

α+δ
ρ(Q∞)D(Q∞)]∆q∆t > 0,

a contradiction once more. This concludes the proof. �

Lemma A.3 Suppose an optimal path is such that QN < Q∞ < S. Then one of the two

following cases hold:

• For t high enough, Qt is weakly decreasing if Qt is above QN . Moreover, Qt converges

to QN .

• Or Qt fluctuates an infinite number of time, and each fluctuation reaches a higher

stock level than the preceding one by beating the previous record Q, and each fluctuation

reaches either QN or a lower stock level than the preceding one.

Proof of Lemma A.3: For t ≥ t1, define the function

B(t1, t) = ṗt(D
′(Qt1)−

α + δ

α
ν(Qt1)) + δ(1− F (Qt))ν(Qt1).

Suppose QN < Qt1 for some t1. Then ν(Qt1) < 0, and D′(Qt1)− α+δ
α
ν(Qt1) > 0, and

ṗ ≤ 0. Therefore, B(t1, t) < 0 for all t ≥ t1. Now, the expression under the integral in

(A.3) is less than (Qt − Qt1)B(t1, t). A first possibility is that Qt ≥ Qt1 for all t ≥ t1,

the inequality being sometimes strict. But this would contradict the inequality (A.3).

Therefore, if the stock is strictly increasing at t = t1, then there must exist t3 > t1

such that Qt3 < Qt1 . In particular, there must exist t2 such that t1 < t2 < t3, and

Qt ≥ Qt1 = Qt2 for all t ∈ [t1, t2], with sometimes a strict inequality. If Qt1 = Qt2 , then

we obtain a contradiction with (A.3). Therefore, it must be that Qt1 < Qt2 .

Overall, what we have shown is that if the stock is strictly above QN , and is strictly

increasing at t1, then the stock must first go strictly above Qt1 , before going strictly

below Qt1 . Now, there are two possibilities.
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Either there are arbitrarily large dates at which the stock is strictly above QN and

is strictly increasing. But then it must be that the stock fluctuates as we have just

explained, with fluctuations that are increasing in size.

Or there exists a date such that beyond this date, the stock is weakly decreasing when

it is above QN . This implies that Q∞ is reached in finite time, so that afterwards Q is

a constant. Moreover, ṗ goes to zero. Overall, the function in the integral in (A.3) has

the sign of (Q − Qt1)ν(Qt1), and the inequality in (A.3) implies that the stock must be

increasing when it is below QN . Overall, the stock must thus converge, and it is easily

shown that it must converge to QN . This concludes the proof. �

We can now study the No-Catastrophe Problem (NCP), which consists in max-

imizing ∫ +∞

0

u(qt, Qt) exp(−δt)dt

under the constraints Q̇t = qt ∈ [q, q], Q0 given.

Lemma A.4 There exists a solution to the NCP. Moreover, all solutions are monotonic,

and converge to QN .

Proof of Lemma A.4: Existence of a solution to the NCP follows from Theorem 15,

p.237, in Seierstad and Sydsaeter (1987). Consider such a solution. To study it, we

can make use of the above Lemmas, taking into account that by definition catastrophes

cannot happen: hence, we set p = 1, ṗ = 0, and F = f = ρ = 0. In particular, we have

QE = QN (see Definition 2.)

Then (A.3) becomes

ν(Qt1)

∫ t2

t1

(Qt −Qt1) exp(−δt)dt ≥ 0

for all (t1, t2) as in case (i) or case (ii) in Lemma A.2. Now, suppose there exists T < T ′

such that QN > QT > QT ′ . A first possibility is that Q is weakly decreasing forever after

T . Then we have both ν(QT ) > 0, and QT ≥ Qt for all t ≥ T , this inequality being strict

for all t ≥ T ′. But this contradicts the above inequality at (t1 = T, t2 = +∞). Therefore,

the stock must sometimes be increasing after time T , and this implies the existence of

t1 < t2 such that QN > Qt1 = Qt2 ≥ Qt for all t ∈ (t1, t2), the last inequality being

sometimes strict. But we obtain a similar contradiction at (t1, t2), as ν(Qt1) > 0 and

Qt ≤ Qt1 , the last inequality being sometimes strict.
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Therefore, the stock Q is weakly increasing when it is strictly below QN . Symmet-

rically, Q is weakly decreasing when it is strictly above QN . This implies that Q never

crosses QN , and that Q is monotonic, as announced.

Suppose Q0 < QN . Then Lemma 4 implies that Qt converges to a value at least equal

to QE, which equals QN in the absence of catastrophe. Moreover, we just observed that

Qt cannot cross QN . Therefore, Qt must converge to QN .

Suppose Q0 > QN . Then we know that Qt is weakly decreasing, so that we must be

in the first case of Lemma A.3, and the stock thus converges to QN , as announced. �

Proof of Lemma 1: the proof exactly follows the proof of Lemma A.4, as the two

problems are formally identical, and u and u+ αV share the same properties. �

Proof of Lemma 2: Let us proceed by contradiction. If there exists t such that

Q0 ≤ S < Qt, then S is reached for the first time in finite time. At that time, Lemma

1 applies, and the solution must monotonically converge to QD < S, and thus cannot

exceed S, in contradiction with our assumption. �

Proof of Lemma 3: Let us proceed by contradiction. Consider a path such that

QD > QT > QT ′ at some dates T < T ′. A first possibility is that QD > QT ≥ Qt for

all t > T , the last inequality sometimes being strict. Then we get a contradiction by

applying (A.3) at (t1 = T , t2 = +∞) (case (i)), since the first product in (A.3) is negative

as soon as QD > QT > Qt, and the second product is weakly negative as Q is a constant

and QN > QT ′ .

Therefore, there exists t1 < t2 such that QD ≥ Qt1 = Qt2 ≥ Qt for all t ∈ [t1, t2], the

last inequality being sometimes strict. On this interval, one has Qt = Qt1 = Qt2 , so that

case (ii) holds. But we get a similar contradiction as above by applying (A.3). �

Lemma A.5 Suppose QE ≤ QD and Q0 ≤ QD. Then optimal paths cannot exceed QD.

Proof of Lemma A.5: If QD ≥ S, Lemma 3 implies that if the stock reaches S, it must

converge to QD in a monotonic way, which shows the result.

Suppose now QE ≤ QD < S. Let us proceed by contradiction. Consider a path such

that Q0 ≤ QD < Qt < S for some t > 0. Then there exists t1 such that Qt crosses QD
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from below at t1. Moreover, from Lemma 3 we know that after t1 the path must remain

above QD. Therefore, we have Qt > Qt1 = Qt1 = QD ≥ QE, and we apply (A.3) in

case (i): the first term is zero, and the difference between the second term and the third

term is strictly negative, as 1−F (Q) is positive, Qt−Qt1 ≥ Qt−Qt1 > 0, andQt1 > QE. �

Lemma A.6 Suppose an optimal path is such that QE < Q∞ < min(QN , S). Then Q∞

is reached in finite time.

Proof of Lemma A.6: let us proceed by contradiction, and suppose that Q∞ is reached

only asymptotically, necessarily from below. From Lemma 4, there exists T such that Qt

is weakly increasing for t ≥ T , and converges to Q∞. Moreover, because Q∞ > QE, we

can choose T and Q0 > QE such that Qt > Q0 > QE for t ≥ T . Referring to Lemma

A.2, we now define, for t ≥ t1 ≥ T , the function

B(t1, t) = ṗ(D′(Qt1)−
α + δ

α
ν(Qt1)) + δ(1− F (Qt))(ν(Qt1)−

α

α + δ
ρ(Qt1)D(Qt1)).

Because Qt1 > Q0 > QE, the second term is strictly negative; in fact, it is strictly

less than

k− ≡ δ(1− F (Q∞))(ν(Q0)− α

α + δ
ρ(Q0)D(Q0)) < 0.

Because ṗ goes to zero, the first term becomes negligible compared to the second one

when t is high enough, say when t ≥ t1 ≥ T ′ ≥ T , so that B(t1, t) < k−/2 < 0. Finally,

because the stock is weakly increasing, we have Qt = Qt, and therefore the function in

(A.3) equals (Qt −Qt1)B(t1, t). This function is everywhere weakly negative, and some-

times strictly negative since Q must grow up to Q∞. So its integral in case (i) cannot be

weakly positive, and we have a contradiction. This shows that Q∞ must be reached in

finite time. �

Lemma A.7 Suppose Q∞ is reached in finite time, say T , and that Qt remains constant

after time T . Then the planner’s payoff equals

p0B(0) +

∫ T

0

ptB(t) exp(−δt)dt

where

B(t) ≡ u(qt, Qt)− u(0, Qt)− qtuq(0, Qt) + qtC(t),

42



and

C(t) ≡ ν(Qt)−
α

α + δ
[(1− πt)ρ(Qt)D(Qt) + πtD

′(Qt)] .

Proof of Lemma A.7: the planner’s payoff is

W (T ) ≡
∫ T

0

[pu− ṗV ]edt+

∫ +∞

T

[Ptu(0, QT )− ṖtV (QT )]edt

where the survival probabilities p and P are given in Lemma A.1. The function in the

second integral can be computed as follows. First, we replace PT by 1− F (QT )− ṖT/α
from (10), and then we use (A.2) to compute Ṗ /α. The second integral is thus∫ +∞

T

[(1− F (QT ))u(0, QT ) + (PT − 1 + F (QT )) exp(−α(t− T ))(u(0, QT ) + αV (QT ))]edt

and thus equals exp(−δT ), times

(1− F (QT ))
u(0, QT )

δ
+ (PT − 1 + F (QT ))

u(0, QT ) + αV (QT )

α + δ
.

Using the definition V (Q) = u(0, Q)/δ −D(Q), this can be simplified into

Z(T ) ≡ PT
u(0, QT )

δ
− α

α + δ
(PT − 1 + F (QT ))D(QT ).

The left-derivative of W (T ) is thus exp(−δT ), times

pTu(qT , QT )− ṗTV (QT ) + Z ′(T )− δZ(T ).

Clearly, we have pT = PT , and ṗT = α(1 − F (QT ) − PT ). We obtain, with obvious

notations:

PT [u(qT , QT )− u(0, QT )]− α(1− F − P )(u/δ −D) + α(1− F − P )u/δ + PquQ/δ

− α

α + δ
(α(1− F − P ) + qf)D − α

α + δ
(P − 1 + F )qD′ + δ

α

α + δ
(P − 1 + F )D.

The u terms cancel each other, and so do almost all the D terms. We divide by

PT = pT > 0 to get that the left-derivative of W (T ) is pt exp(−δT ), times

u(qT , QT )− u(0, QT ) + quQ/δ −
α

α + δ
qfD/P − α

α + δ
(1− (1− F )/P )qD′.

We finally use the definitions π = 1− (1− F )/P and ν to get the result. �

Proof of Theorem 1: from Lemma A.5, optimal paths cannot exceed QD; and from

Lemma 4, we obtain Q∞ ∈ [QE, QD]. From Lemma 3, optimal paths are monotonic, so
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that Qt = Qt and qt ≥ 0. Existence of a solution then follows from Theorem 15, p.237,

in Seierstad and Sydsaeter (1987).

If Q∞ = QE, then the Theorem holds, with T = +∞ and πT = 0.

Assume now QE < Q∞. Because Q∞ ≤ QD < min(QN , S), Lemma A.6 applies, and

Q∞ is reached in finite time: there exists T < +∞ such that QT = Q∞. Finally, since

Q0 < QE it must be that T > 0.

We thus have to determine T > 0 to maximize the planner’s payoff W (T ), as com-

puted in Lemma A.7. Two optimality conditions must hold. Firstly, the first-order

condition W ′(T ) = 0 yields B(T ) = 0 at the optimal date T . Second, W (T ) is also

maximized with respect to the path before T , and the value of qT is free; therefore, B(T )

must be maximum with respect to qT . These two conditions are:

u(qT , QT )−u(0, QT )− qTuq(0, QT ) + qTC(T ) = 0 uq(qT , QT )−uq(0, QT ) +C(T ) = 0.

They imply

u(qT , QT ) = u(0, QT ) + qTuq(qT , QT ),

and because u is concave wrt q, the only possibility is that uq(qT , QT ) = uq(0, QT )

(so that smooth pasting occurs if u is strictly concave), and C(T ) = 0. The last equality

gives the formula in the Proposition. �

Proof of Theorem 2: we know from Lemma 4 that every optimal path converges to

Q∞ ≥ QE. Moreover, we have Q∞ ≥ Q0 by definition. Let us proceed by contradiction,

and consider a path such that Q∞ > max(Q0, Q
E). Then the path converges to Q∞,

which is strictly above QE. From Lemma A.6, we get that Q∞ is reached in finite time,

say T , and T is strictly positive because Q∞ > Q0. By the same reasoning as at the end

of Theorem 1, we obtain (15). But this equality implies that QT lies between QE and

QD, and this contradicts the inequalities QD ≤ QE < QT = Q∞. �

Proof of Proposition 1: The proof in the text. �

Proof of Proposition 2: From Theorem 2, we can focus on paths that converge to

Q∞ = Q0 = Q0. Therefore, the planner never experiments after time 0. Then p can be

explicitly computed using (A.2):

Pt = 1− F (Q0) + (p0 − 1 + F (Q0)) exp(−αt).
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Therefore, we have to maximize

W =

∫ +∞

0

[Pt(u1qt) + Ṗ v0Qt] exp(−δt)dt

which is proportional to∫ ∞
0

[(1− π0)(u1qt) exp(−δt) + π0(u1qt − αv0Qt) exp(−(α + δ)t)]dt

where π0 = 1− (1−F (Q0))/p0 ≥ 0 is the legacy of the past, under the constraints Q̇ = q

and Q ≤ Q0. Now we have, for any parameter k > 0:∫ ∞
0

Qt exp(−kt)dt =
Q0

k
+

1

k

∫ ∞
0

qt exp(−kt)dt.

We apply this formula to integrate the objective function. Ignoring constant terms,

we obtain ∫ ∞
0

qtat exp(−δt)dt,

where

at ≡ (1− π0)u1 + π0 exp(−αt)(u1 −
α

α + δ
v0).

Now, if u1 ≥ π0
α
α+δ

v0, then at is positive for all t, and the planner would like to set

q as high as possible, taking into account the constraint that the stock must converge to

Q0. Hence, the solution indeed consists in stabilizing the stock from the start.

Otherwise, if u1 < π0
α
α+δ

v0, then at is initially negative, before becoming positive at

some strictly positive time t1. The solution therefore consists in setting q = q < 0 until

t1, and then setting q = q until the stock is back to Q0, at time t2 such that qt1 +qt2 = 0.

The optimal policy is thus as stated in the claim. �

Proof of Proposition 3: From Theorems 1 and Theorem 2. �

Proof of Proposition 4: From Theorems 1 and Theorem 2. �

Payoff expression in the social distancing illustration: Under constraint It ≤ I0,

we can solve for p explicitly and, as in the proof of Proposition 2, write the general payoff

as ∫ ∞
0

m0ue
−δt + (1−m0)(u+ αV )e−(δ+α)tdt
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where m0 = 1−F (Q0)
p0

. We note that

u = Y0(1 + q)− wd exp(Q)

u+ αV =
(
Y0(1 + q) +

α

δ
Y0R

′
)
−
(αwd′
δ − γ

+ wd
)

exp(Q)

As in the proof of Proposition 2, we apply the following formula: for any parameter

k > 0, we have ∫
Q exp(−kt) =

Q0

k
+

∫
q

1

k
exp(−kt)dt.

After some manipulations, we collect the terms that multiply q and drop the constants

in the expression to obtain∫ ∞
0

q
[
m0

(
Y0 −

wd

δ
exp(Q)

)
e−δt + (1−m0)

(
Y0 − (

αwd′

δ − γ
+ wd)

exp(Q)

α + δ

)
e−(δ+α)t

]
dt

which is the payoff as stated in the text.

B Watch your step: the no-delay case (α→∞)

N.B.: The notice on notations from Appendix A applies.

This Appendix consolidates the results from the literature on the tipping point (or

threshold) approach. In this approach, a catastrophe occurs as soon as it is triggered:

learning is immediate after each untried increase in the stock. The situation was first

studied in Tsur and Zemel (1994), Tsur and Zemel (1995), Tsur and Zemel (1996) and,

for example, recently applied in Lemoine and Traeger (2014). Our contribution here is

mainly to provide simple and general proofs.

Because learning is immediate, we have survival probability pt = 1 − F (Qt) at all

dates. We also know that Q0 is below S, since otherwise a catastrophe would already

have occurred. Now, at the planning date exactly two values matter: Q0 and Q0. In spite

of this multiplicity of stocks, we first show that one can focus on monotonic candidates.

Lemma B.1 The value of the problem in the no-delay case is unaffected if one further

imposes the constraint that the stock variable (Qt) is monotonic.

Proof of Lemma B.1: consider a candidate (qt, Qt). Suppose there exist two arbitrary

dates 0 and T > 0, such that for any t ∈ [0, T ], we have Qt ≤ Q0 = QT . In such a case,
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the record stock is a constant (Q0 = QT ), and therefore the problem at time zero and

the problem at time T are identical. This proves that at time zero the planner could as

well adopt the strategy he has planned to apply at time T .

This procedure can be applied to cases when Q is first decreasing, then increasing.

Therefore, we can focus on paths that are first weakly increasing on some interval [0, T ],

and then weakly decreasing on [T,+∞[. If T = 0 or T = +∞, we are done, so suppose 0 <

T < +∞. Then QT is the maximum stock value. Therefore, after time T catastrophes

cannot occur anymore, and one maximizes
∫
t≥T u(qt, Qt) exp(−δt)dt under the constraints

Q̇ = q and Qt ≤ QT . If QT ≤ QN , the best thing to do is to make the last constraint

bind everywhere,17 and therefore we are done, as the candidate path is weakly increasing

on [0, T ] and constant over [T,+∞[, and is thus monotonic.

The only remaining case is when QT > QN . Then the best thing to do after time T

is to behave as in the NCP, and to adopt a path that is decreasing (see Lemma A.4) for

t above T . For t < T , because (Qt) is weakly increasing we have Qt = Qt. Therefore

pt = 1− F (Qt), and the complete payoff from the candidate path is:∫ T

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt+ exp(−δT )W ∗(QT )(1− F (QT )),

where W ∗(Q) denotes the value of the NCP program at stock Q. We can rewrite the

complete payoff as

(1− F (QT ))X∗(T ) +

∫ T

0

[u(qt, Qt)(F (QT )− F (Qt)) + f(Qt)qtV (Qt)]edt (B.1)

where

X∗(T ) ≡
∫ T

0

u(qt, Qt) exp(−δt)dt+ exp(−δT )W ∗(QT ). (B.2)

X∗(T ) is weakly decreasing in T . The other terms are differentiable with respect to T ,

and their derivatives sum to:

qtf(Qt)

ñ
−X∗(T ) + V (QT ) exp(−δT ) +

∫ T

0

uedt

ô
= qtf(QT ) [V (QT )−W ∗(QT )] exp(−δT )

which is below zero because qt ≥ 0 for t < T , and W ∗(QT ) is at least u(0,QT )
δ

(because

one can adopt a constant path), which itself is above V (QT ) from Assumption 2. So

reducing T in the payoff (B.1) is weakly profitable, at least until QT = QN (and then the

17This is easily shown: this problem is autonomous, and therefore admits a monotonic solution.
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candidate becomes weakly increasing everywhere, as already observed), or until T = 0

(this happens when Q0 ≥ QN , and then the candidate is the NCP solution which is

weakly decreasing overall). �

Monotonicity results from two effects. Conjecturing a non-monotonic path as depicted

in Figure 3, we see that Q and the record Q are the same at t1 and t2. For this reason,

if it is optimal to increase Q at t2, the planner cannot gain anything from the detour to

a lower level but rather should behave identically at t1. Note that this reasoning fails

in the presence of delays: at t1 the planner might want to reduce the stock in order to

mitigate losses associated to a past triggering of a catastrophe. This effect is weaker at

t2, since the planner has observed that no catastrophe has occurred so far, which makes

less likely that a catastrophe was triggered in the past.

One further observes that at the left of t1 the planner has chosen to increase the stock,

even though such experimentation may trigger a costly catastrophe. However, this fear

is irrelevant at the right of t1, as one cannot trigger a catastrophe by staying below the

level Qt1 . Therefore the planner should not choose to reduce the stock, in contradiction

to the Figure. And once more, this second reasoning also fails in the presence of delays,

because it might be worthwhile to reduce the stock at the right of t1 in case a catastrophe

was triggered in the past.

Figure 3
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Monotonicity

Monotonicity offers a simple manner to determine the optimal solution. Indeed, either
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(i) the candidate is weakly decreasing: then catastrophes cannot occur, pt is a constant

(1 − F (Q0)) forever, and we are back to the NCP case with the additional constraint

qt ≤ 0, for which existence of a solution is easily proven. Or (ii) the candidate is weakly

increasing. In this latter case, if Q0 < Q0, there is an initial phase without experiment,

and then Qt = Qt everywhere, and pt = 1−F (Qt). After this initial phase, the objective

function is ∫ +∞

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

to be maximized under the constraint Q̇t = qt ≥ 0. This problem is autonomous, and

once more our assumptions ensure the existence of a solution.18 Overall, a solution follows

from the comparison of these two candidates.

We now turn to a characterization as a function of the initial values Q0 and Q0.

One important reasoning is the following. When a path converges to the maximum

value Q∞, the option of experimenting more exists. It yields a gain measured by ν =

uq(0, Q) +
uQ(0,Q)

δ
, but risks triggering a catastrophe with a hazard rate ρ, implying a

damage D. This motivates the following definition. From our assumptions, functions ρ

and D are weakly increasing, and therefore there exists a value QE
0 ≤ QN such that:19

ν(QE
0 ) = ρ(QE

0 )D(QE
0 ). (B.3)

For the sake of simplicity, assume that this value is unique in [−∞,+∞]. Notice that

due to the absence of delays, we have QE
0 ≤ QE ≤ QN , with QE from Definition 2.

Proposition 5 In the absence of delay, for each value of (Q0, Q0) there exists a solution

such that:

(i) If Q0 ≥ QN , then the planner never experiments, and the solution is the decreasing

NCP path, converging to QN .

(ii) If Q0 < QN , then the solution is weakly increasing. Moreover:

(ii.a) If Q0 ≥ QN , the solution is the NCP path, converging to QN .

(ii.b) If QE
0 < Q0 < QN , the solution is first increasing, then it is constant and

equals Q0.

(ii.c) If Q0 ≤ QE
0 , the solution converges to QE

0 .

18In particular, we need that f is bounded; see Theorem 15, p. 237, in Seierstadt and Sydsaeter, 1987.
19The case QE0 =∞ leads to immediate adaptations to the statements that follow.
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Proof of Proposition 5: the problem admits a monotonic solution for each (Q0, Q0).

In case (i), suppose that the path Qt is weakly increasing. Then, as long as Q < Q0

the flow objective function is u(1 − F (Q0)), and above Q0 the flow objective function

is u(1 − F (Q)) + f(Q)qV . By setting p = 1 − F (max(Q,Q0)), we are left with the

maximization of

W ≡
∫

[pu− ṗV ]edt.

Now we use the inequality V (Q) ≤ u(0, Q)/δ (from Assumption 2), and we integrate

by parts to get

W ≤
∫

[pu− ṗu(0, Q)

δ
]edt = p0

u(0, Q0)

δ
+

∫
p[u− u(0, Q) + q

uQ(0, Q)

δ
]edt.

By concavity of u, this is less than

p0
u(0, Q0)

δ
+

∫
pqνedt.

But the second term is negative, as Q ≥ QN and thus ν ≤ 0, and as q ≥ 0. Hence,

the planner would be better off by choosing the constant path, since the latter yields the

payoff p0u(0, Q0)/δ.

We thus have reached a contradiction, and the planner should choose a weakly de-

creasing path. By construction, such a path involves no experiment. The best one is

thus the NCP solution, as stated in the Proposition.

In case (ii), a weakly decreasing path would involve no experiment, and therefore

would maximize
∫
uedt, with the additional constraint qt ≤ 0. But because Q0 < QN ,

the solution to the NCP is weakly increasing, and therefore this additional constraint

would be binding everywhere. Therefore, a weakly decreasing path would in fact be a

constant path, so that we can focus on the case of a weakly increasing path.

Notice that such a path involves no experiment as long as it stays below Q0. In

case (ii.a), Q0 is never reached, since the best thing to do is to adopt the NCP solution,

as stated in the Proposition. Otherwise we have Q0 < QN , and therefore Q0 must be

reached in finite time, say T . At T , one has to maximize∫ +∞

T

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

under the constraints Q̇t = qt ≥ 0, with an initial value Q0. As explained in the main

text, a solution exists. The problem is autonomous, and we can proceed as in Lemma
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A.4 to show that it converges to a value Q such that wq(0, Q) + wQ(0, Q)/δ = 0, where

w is the function in the integral above. Here, this condition translates into

uq(1− F ) + fV +
uQ(1− F )− uf

δ
= 0

or equivalently ν(Q) = ρ(Q)D(Q), which is the definition of QE
0 . This is possible if

QE
0 ≥ Q0 (case (ii.c)). Otherwise, the constraint q ≥ 0 binds, as in case (ii.b). �

To convey some intuition, let us consider that the stock has been increasing in the

past, so that Q0 = Q0 at the planning date t = 0. In case (i), this initial value is high,

so that it is best to reduce the stock, without experimenting. Then catastrophes do not

play any role, and one simply has to follow the NCP solution, which is decreasing and

converges to QN . In case (ii.c), this initial value is low. The best strategy is thus to

increase the stock and to experiment, until one reaches QE
0 . At that value, the gain ν

from increasing the stock is exactly balanced by the loss ρD associated to a possible

triggering of a catastrophe.

Case (ii.b) is remarkable. One begins at a value of the stock that is below QN , and

thus one would like to increase the stock because ν(Q0) > 0. But this would imply

experimenting, and experimenting is too costly because Q0 > QE
0 and therefore ν(Q0) <

ρ(Q0)D(Q0). Then the solution is a constant path, equal to Q0. The apparition of an

optimal constant path is an original feature. In the NCP, a constant path is optimal

only when one begins with a value of the stock exactly equal to QN . In the problem

with catastrophes and no delays, a constant path appears in case (ii.b), corresponding

to a region with non-empty interior. Moreover, this region is relevant even if the stock

was optimally managed in the past. In fact, if at the origin of time the initial stock is

between QE
0 and QN , then the optimal strategy is indeed to follow a constant path, equal

to the initial stock Q0.

As already mentioned, similar results were already obtained in Tsur and Zemel,

Proposition 2.1; 1995, Proposition 5.1; 1996, Proposition 4.1). Their models are slightly

different, essentially because the damage function in case of a catastrophe takes a par-

ticular and different form in each of these papers. They also rely on more demanding

assumptions.20 But the main conclusion is the same.21

20In particular, the proof of monotonicity relies on a complex assumption (1994, Assumption U2) that
we do not need here.

21To quote their 1996 paper, p. 1291:
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Finally, return to the consumption choice example where u(q,Q) = u0 + u1q and

V (Q) = −v0Q. Now, QN = +∞ as ν = u > 0, and QE
0 comes from

u = ρ(QE
0 )
(u
δ

+ v0Q
E
0

)
. (B.4)

Then, by Proposition 5, QN = +∞ implies that one should never reduce the stock.

If Q0 ≤ Q0 ≤ QE
0 , one should increase Q until QE

0 , and then stop experimentation; if

QE
0 < Q0, the stock increases until it becomes a constant at Q0.

”The steady states of the optimal emission process form an interval, the boundaries of
which attract the pollution process from any initial level outside the interval.”
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