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Unilateral climate policies are often accompanied by exemptions for energy-
intensive and trade-exposed industrial firms to avoid leakage from regulated to un-
regulated jurisdictions. This paper investigates the impact of a large electricity
tax exemption on production levels, employment, and input choices in the German
manufacturing industry. For two different policy designs, we show that exempted
plants significantly increase their electricity use. This effect is considerably larger
under a notched exemption policy, where passing an eligibility threshold yields infra-
marginal benefits, compared to a revised policy where these benefits have been
largely removed. We detect no significant impact of the exemptions on production
levels, export shares, and employment. Our results cast doubt on the necessity of
energy tax exemptions to retain domestic production and caution against the use of
notched exemption policies.
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1. Introduction

In the absence of legally binding international agreements, many environmental regulations ap-

ply only in some jurisdictions, but not in others. Policy makers are concerned about incomplete

regulation as it can cause ‘leakage’ of industrial activity and emissions from regulated to unreg-

ulated jurisdictions, which may undermine the effectiveness of domestic climate policies (e.g.,

Fischer and Fox 2012; Fowlie and Reguant 2018). A widespread policy against leakage is the

exemption of the energy-intensive and trade-exposed (EITE) industry from energy or carbon

taxes.1 The introduction of energy tax exemptions in many industrialized countries, such as

France, Germany, Italy, and the United Kingdom, has triggered a controversial policy debate.

While proponents argue that exemptions are necessary to sustain domestic production levels,

critics worry that they might offset incentives for improving energy efficiency and lead to higher

energy uses (OECD, 2001, 2015).

This paper studies the impact of energy tax exemptions in the context of a large levy on

electricity, the German Renewable Energy Levy (REL). The REL was introduced to finance re-

newable energies and accounted for roughly one third of the average industrial electricity price

in 2014. We use rich administrative data covering the universe of German manufacturing plants

to examine how production levels, employment, and the use of energy inputs were affected by

an exemption from the REL under two different policy designs. In the years 2003 to 2012, ex-

emptions were granted based on a ‘notched’ policy design, where passing an eligibility threshold

reduced marginal prices and involved infra-marginal benefits two years later. A policy reform

in 2012 largely removed these infra-marginal benefits and expanded the eligibility criteria to a

larger group of plants. We also contrast the effects of REL exemptions under both policies to

explore how differences in policy design influence production choices.

Our empirical strategy exploits two sources of exogenous variation. First, to estimate the

causal effects under the ‘notched’ policy design, we exploit the fact that eligibility for an ex-

emption was only granted to plants that used more than 10 gigawatt-hour (GWh) of electricity

two years earlier. We provide evidence that the severe financial crisis of 2008 and 2009 prevented

plants from potentially manipulating their electricity use in those years despite the notched ex-

1The OECD Database on Policy Instruments for the Environment lists roughly 2,400 exemptions from environ-
mentally related taxes in all OECD countries (OECD, 2020). In the United Kingdom, Belgium, and Finland,
for example, energy tax exemptions are granted to manufacturing firms in sectors that are defined as EITE.
In other countries, such as France, the Netherlands, and Italy, exemptions are granted to energy-intensive
manufacturing firms with energy use above pre-defined eligibility thresholds.
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emption schedule. This allows us to identify the effect of the exemptions in the years 2010

and 2011 based on a fuzzy regression discontinuity (RD) design for plants around the eligibility

threshold. This approach compares virtually identical plants that barely met or failed to meet

the eligibility threshold of 10 GWh of electricity consumption during the years of the financial

crisis to investigate how REL exemptions change plant-level production two years later, when

the short-lived financial and economic crisis had already ended in Germany.

Second, to identify the effects of an exemption after the 2012 policy change, we exploit the

fact that the eligibility threshold was reduced from 10 to 1 GWh of annual electricity consump-

tion. This reduction more than doubled the number of exempted plants in manufacturing from

roughly 700 to 1,700. We focus on the group of newly eligible plants and estimate the average

treatment effect for plants exempted in 2013 using a matching difference-in-differences (DiD)

estimator. This estimator exploits the longitudinal structure of our dataset and the rich infor-

mation it provides about plant characteristics. It compares how changes in outcomes for newly

exempted plants differ from changes in outcomes for a matched control group of non-exempt

plants that are very similar in terms of their observed characteristics.

Our main results show that the REL exemptions lead to increases in electricity consumption

under both policy designs. We find that exempted plants in the original (notched) schedule

increased their electricity consumption on average by 40-50% compared to the control group,

while the 2012 reform led to an increase of approximately 5-7%, which translates into an own

price elasticity for electricity of about −2 and −0.2, respectively. Based on a stylized model of

firm production, we show that these differences can be rationalized by the distortionary effects

introduced by the notched tax design. By contrast, we do not find statistically significant

impacts of the REL exemption on short-term competitiveness indicators such as sales, export

share, employment, and investment.

We conduct extensive robustness tests for our main findings and present supporting evidence

for the identifying assumptions. For the fuzzy RD design, we test for selection around the

eligibility threshold based on density tests to ensure that the financial crisis prevented plants

from manipulating their electricity consumption in the years 2008 and 2009. This finding is also

supported by placebo treatment effect regressions that show no sign of a discontinuity in baseline

variables around the eligibility threshold prior to the exemption year. We further test for

different bandwidths and limit the sample to single-plant firms to exclude the possibility of intra-

firm spillovers that might arise if firms are partially exempted. For our matching DiD approach,
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we provide evidence of common trends for several important plant-level characteristics. We also

test whether our results are robust to different propensity score specifications and matching

strategies. To investigate whether potential anticipation of the policy reform may matter, we

condition on characteristics in the year prior to its announcement. In addition, we test for the

presence of intra-firm spillovers by restricting our sample to single-plant firms.

This paper makes three main contributions. First, we contribute to the growing literature on

incomplete environmental regulation. Previous studies have shown that leakage is a concern for

environmental regulation in the electricity and cement market (Fowlie, 2009; Fowlie et al., 2016),

for example. One channel is that multinational firms may relocate production to subsidiaries in

unregulated jurisdictions (Hanna, 2010; Borghesi et al., 2020).2 Other studies have focused on

the analysis of policy instruments against leakage, including free allocation of pollution permits,

output-based rebates, and border tax adjustments (see for instance Martin et al., 2014a; Bernard

et al., 2007).3 We contribute to this literature by evaluating a large exemption policy for EITE

plants in the German manufacturing sector. While similar exemptions are employed in many

industrialized countries (OECD, 2020), empirical evidence on their causal effects is scarce. One

exception is Martin et al. (2014b), who evaluate the impact of the climate change levy on

production of manufacturing plants in the UK, using plants that were exempted from the levy

as control group.4 We complement their work by showing that exemption schemes may only

have a limited potential to increase international competitiveness in the short-run, while they

significantly influence fuel input choices and lead to higher energy uses. Similarly, focusing on

a rich empirical setting, we are able to compare two policy settings for exemption rules and

contribute to the ongoing policy discussion on the effective design of exemption rules.

Second, our paper contributes more broadly to the literature on the evaluation of environ-

mental regulations for industrial firms. One focus of this literature has been to investigate how

emission markets, carbon taxes, and the introduction of air pollution standards affect produc-

2Further studies on the European emission trading scheme (ETS) did not detect adverse effects on firm holdings
of fixed assets (Moore et al., 2019) or changes in net trade flows (Naegele and Zaklan, 2019).

3The relative merits of these instruments have been extensively studied based on computable generable equilib-
rium (CGE) models (e.g. Fischer and Fox 2007, Fischer and Fox 2012, Böhringer et al. 2014a, Carbone and
Rivers 2017). In addition, output-based compensation payments for indirect carbon costs in Great-Britain
and Finland are analyzed in (unpublished) work by Basaglia et al. (2019) and a recent government report by
Laukkanen et al. (2019), respectively. As a recent theoretical contribution, Ahlvik and Liski (2019) propose
an optimal compensation mechanism for mobile firms that have private information about both relocation
and abatement cost.

4Further exceptions include CGE simulations by Böhringer et al. (2012), who find that exemptions are inferior
to border tax adjustments and output-based allocation policies in terms of global cost-effectiveness, as well as
Böhringer et al. (2014b), who find that reducing environmental taxes for energy intensive and trade-exposed
firms to mitigate leakage yields only small efficiency gains compared to uniform pricing.
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tion in manufacturing (see, e.g., Fowlie et al. 2012, Greenstone 2002, Greenstone et al. 2012, as

well as Martin et al. 2016 and Dechezleprêtre and Sato 2017 for reviews.) We contribute to this

strand of the literature by showing that design features of tax exemption policies may interact

with firm production choices. Our findings suggest that the increase in electricity use for ex-

empted plants is almost one order of magnitude larger under a ‘notched’ tax design, compared

to a policy design where notches have been largely removed. These results indicate that plants

use exemptions in a given year as a ‘subsidy for bunching’ in order to reach eligibility for an

exemption in future years.

Third, we contribute to a literature that has investigated the role of energy prices for industrial

production. Previous studies have shown that higher prices reduce energy use in manufactur-

ing (Marin and Vona, 2019), but also modestly decrease employment (e.g., Deschenes 2012,

Commins et al. 2011), and co-determine the location of firms (Kahn and Mansur, 2013). We

complement this literature by evaluating how large exogenous variations in electricity prices af-

fect production, employment, and the energy input mix of manufacturing plants. An advantage

of our setting is that we can exploit two natural experiments that induce large variations in

electricity prices for identification. In the absence of such variation, a major empirical challenge

for obtaining unbiased estimates is the isolation of the exogenous component of energy prices.

The remainder of this paper is structured as follows. In Section 2, we describe the institutional

details of the REL exemptions and discuss how differences in policy design influence input

choices. Section 3 introduces our data. The empirical analysis is divided into two parts. In

Section 4, we investigate the impact of REL exemptions under the original policy design, while

we evaluate their impact after the 2012 reform in Section 5. We compare our results from both

settings in Section 6. Section 7 discusses the policy implications of our findings and concludes.

2. Institutional background

2.1. REL exemptions and electricity prices

In 2000, the German Renewable Energy Act introduced one of the world’s most ambitious re-

newable energy support schemes. Its core element is the provision of generous feed-in tariffs

(FiTs) to producers of electricity from renewable sources. FiTs guarantee long-term investment

security by providing a fixed price per kilowatt-hour (kWh) of generated electricity above the

wholesale price of electricity.5 The introduction of FiTs triggered a rapid increase in the share

5We provide evidence on the evolution of FiT rates for the example of solar photovoltaic installations in Germany
together with the average electricity prices in Appendix Figure A.1. FiT policies are a key policy instrument
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Figure 1: Average Industry Electricity Prices in Germany
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Notes: Average industry electricity prices (including taxes) in Germany for plants with an annual elec-
tricity consumption between 160 MWh and 200 GWh (BDEW, 2014).

of renewable energy production from approximately 6% in 2000 to almost 30% in 2014. Conse-

quently, the policy has also led to rapidly rising annual subsidy costs, reaching 22 billion Euros

(EUR) in 2014 alone.

In Germany, FiT payments are financed by the Renewable Energy Levy (REL), a per kWh

surcharge on electricity prices that has to be paid by all households and businesses alike. Figure

1 displays the evolution of the REL together with the average industry electricity prices in

Germany between 2000 and 2014. In this period, average electricity prices for the industry

have risen substantially, from about 6 cents per kWh in 2000 to 15 cent per kWh in 2014. An

important role in this increase is played by the REL, which increased from 0.19 cents per kWh

in 2000 to 6.24 cents per kWh in 2014, accounting for more than a third of the average industry

electricity price in that year.

Rising electricity prices have spurred concerns about potential adverse effects to the inter-

national competitiveness of the German manufacturing industry. To limit such concerns, the

government has introduced exemptions from the REL for energy-intensive plants from 2003

to support renewable energy deployment in most European countries and many other jurisdictions such as
Australia, California, and Ontario.
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onwards. Eligibility for an exemption is based on two threshold values: first, the total annual

electricity consumption of a plant and, second, the electricity intensity of the respective firm,

defined as the ratio of electricity cost to gross value added.

To be exempted, plants need to apply at the Federal Office for Economic Affairs and Export

Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA). In any given year, plants

apply by submitting verified information on their electricity use, electricity cost, and gross

value added in the previous year. Based on this information, BAFA grants eligible plants an

exemption for the following year. Therefore, this procedure introduces a time gap of two years

between the baseline period, i.e. the year that determines eligibility, and the year for which

the exemption is granted. The large majority of exemptions (about 80%) are granted to plants

in the manufacturing sector, on which we focus in our analysis (for details on the sectorial

composition see Appendix Section A.1).

Under the original exemption scheme, medium-sized and large plants in the manufacturing

sector were eligible for REL exemptions if they used more than 10 GWh of electricity and if the

ratio of electricity cost to gross value added at the firm level exceeded 15%. Exempted plants

paid a drastically reduced REL of 0.05 cents per kWh for all electricity consumption exceeding

10% of their baseline use in the year determining eligibility. Very electricity-intensive plants

with an electricity consumption above 100 GWh and a ratio of electricity cost to gross value

added of more than 20% were fully exempted.

These exemption rules were revised as part of a large policy reform to modernize the German

FiT scheme, effective from 2013 onwards. This revision extended the eligibility criteria for ex-

emptions of manufacturing plants considerably by reducing the consumption threshold from 10

GWh to 1 GWh of annual electricity use. It also marginally lowered the second eligibility crite-

rion concerning the ratio of electricity expenditure to gross value added from 15% to 14%. As

a consequence, the number of exempted plants increased from 683 in 2012 to 1,663 in 2013 (see

Appendix Table A.1).6 While the number of eligible plants in manufacturing increased signifi-

cantly, the total amount of electricity exempted from the REL remained virtually unchanged by

the policy reform. This is mainly due to the fact that large firms in the water supply, recycling,

construction, and public transportation sectors were no longer eligible for an exemption after

6To be eligible for the exemption, plants also have to document that they operate a certified energy management
system. However, this is not a strict requirement as plants can resort to a simplified procedure that only
requires them to ‘judge’ possible energy savings for all energy consuming sites. In 2012, 84% of all plants took
that option (BAFA, 2014). In 2013, generous transitional provisions prevented plants from losing eligibility
for not having a certified energy management system.
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2012.7 Newly eligible plants applied broadly in the first year of its implementation, indicating

that they have been aware of the reformed REL exemption rules. This is also supported by a

sharp increase in application and rejection rates.8

In addition to lowering the eligibility thresholds, the reform affected the REL payment sched-

ule for exempted plants as follows. While all plants pay the full REL for the first GWh of

electricity use, exempted plants pay a reduced rate of 10% of the levy for any additional elec-

tricity consumption between 1 and 10 GWh, and 1% for the consumption above 10 GWh. In the

next subsection, we give details on how the financial incentives for plants changed in response

to the policy reform.

2.2. Incentives under both REL exemption designs

Figure 2 plots the original exemption schedule (Panel a) and the revised schedule after the

policy reform (Panel b), where Tnt and T ext denote the total REL payment for non-exempted

and exempted plants, respectively. Under the original policy design (Panel a), plants can be

exempted in period t if they consumed more than 10 GWh of electricity in the baseline period

t−2, indicated by the vertical dashed line, where xt denotes electricity consumption in period t.

For simplicity, we consider a plant that also passes the second eligibility criterion on electricity

intensity at the firm level.

An exemption under the original policy design has two main implications. First, it reduces

marginal electricity prices, as indicated by the change in the slope of the REL payment function,

which is flatter for T ext . Second, it implies infra-marginal benefits as an exemption applies for all

electricity consumed in excess of 10% of the baseline consumption. To illustrate this, consider

a plant that consumes exactly 10 GWh of electricity in period t − 2. If the plant consumed

slightly less in t − 2, it would not benefit from an exemption and would face REL payments

of Tnt in period t. With an electricity use of at least 10 GWh in period t − 2, it passes the

eligibility threshold and can get exempted in period t. An exemption reduces the total REL

payment in period t by the amount Tnt − T ext . This infra-marginal benefit generates incentives

for plants to locate above the exemption eligibility threshold. Exemption schedules that offer

such infra-marginal benefits are typically referred to as ‘notched’ tax designs (see for instance

7The reform expanded the total amount of exempted electricity by only 3.5% (3.4 terawatt-hours (TWh) in
2013). This contributed to a negligible increase of 0.04 Euro-cents / kWh to the REL in 2013. Source: BAFA
(2013).

8While the rejection rate reported by BAFA typically ranged between 4 and 10% prior to 2013, it increased to
19% in 2013 (BAFA, 2013). Data on rejections are only available at the aggregate level.
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Figure 2: REL payment schedules for exempted plants

(a) REL exemption schedule prior to 2013
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policy designs. The thick lines plot the REL payment in period t as a function of the input use in period t − 2
(assuming, for simplicity, that xt = xt−2 and that passing the eligibility threshold leads to an exemption).

Kleven, 2016; Sallee and Slemrod, 2012). We use this terminology when we refer to the original

REL exemption design.

As shown in Panel (b) of Figure 2, the reform of the REL exemption rules largely eliminated

the tax notch for plants close to the new eligibility threshold of 1 GWh. Only the marginal

REL payments change at this point, providing little incentives for plants to expand electricity

use in order to reach eligibility.

2.3. Production input choices and policy design

To understand the potential impact of REL exemptions on electricity use under both policy

designs, we develop a stylized model of production in the spirit of Lucas (1978) and Almunia

and Lopez-Rodriguez (2018). Let the profit of a (single-plant) firm be given by:

π = y(ψx, z)− qz − px− T (x),

where x represents the main production input, electricity, and z is a composite input good.

Firms have heterogeneous productivity regarding the input x, denoted by parameter ψ ∈
[
ψ, ψ̄

]
,

which is assumed to be distributed in the population of firms with a (continuous) density

function g(·) and cumulative density function G(·). Firms purchase the inputs x and z on

competitive factor markets at prices p and q, respectively, and sell their output on a competitive

output market at a price normalized to one.
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While the composite input z is untaxed, the government implements a notched tax schedule

T (x) for the input x, defined as follows:

T (x) =


tx−Af if x ≥ x̂

tx if x < x̂,

where t denotes a per-unit tax rate of x and A denotes a lump-sum payment that the firm

obtains when its input use exceeds a predefined threshold value x̂ in the current period. In our

setting, A corresponds to the present value of being exempted from the tax two years later in

response to passing the electricity use eligibility threshold today.

In Appendix Section B, we show that the impact of a tax exemption under the notched design

can be decomposed as follows:

∂x∗

∂tex
=

∫ ∞
0

∂xc

∂tex
g(ψ)dψ︸ ︷︷ ︸

Marginal price response

+

∫ ψm

ψm′
(x̂− xc) g(ψ)dψ −

∫ ψx̂

ψm′

∂xc

∂tex
g(ψ)dψ︸ ︷︷ ︸

Net bunching response

, (1)

where x∗ =
∫∞

0 x∗(ψ)dG(ψ) denotes firms’ average input use and tex denotes the reduction

in the tax rate t that is granted by an exemption. Furthermore, xc denotes firms’ optimal

input choice in the hypothetical case without the tax notch (A = 0). The productivity for a

firm that is indifferent between increasing its input use to become eligible for an exemption in

the time period before experiencing the tax reduction is given by ψm, while ψm
′

denotes the

productivity of the marginal firm in the period after the tax reduction. As a tax exemption

reduces the electricity price for the firm, bunching becomes cheaper, so that ψm
′ ≤ ψm.

Equation (1) highlights two distinct mechanisms of how a tax exemption in a given time period

affects the use of the production input under the notched policy design. First, an exemption

reduces marginal tax rates for all exempted firms. This reduction yields a marginal price

response (MPR), which is captured by the first term of Equation (1). Second, an exemption

in a given period works as a ‘subsidy for bunching’. Lower prices make it profitable for more

firms to increase their electricity use in order to obtain the infra-marginal benefits from getting

exempted in the future. In our model, this is captured by a change in the marginal firm from

ψm to ψm
′
. The incremental adjustment of energy inputs for the firms in the interval [ψm, ψm

′
]

is captured by the second term, while the third term gives the hypothetical change in input

use for the same firms in absence of bunching. Hence, we denote the second and third term of

Equation (1) as the net bunching response (BR).
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Our conceptual model provides two theoretical predictions on firm’s electricity input use.

First, we expect that an exemption increases the input use more under a notched exemption

design than under a policy design where the notch is not present. This prediction follows directly

from observing that eliminating the tax notch also eliminates the net bunching response, which

enters additively into Equation (1). Second, we expect that bunching above the eligibility

threshold occurs under the notched policy design when manipulation of the input variable is

not too costly. We test for both these predictions in the empirical section of this paper, where

we use two distinct sources of exogenous variation to provide causal estimates concerning the

impact of the REL exemption on production inputs and plant-level outcomes.

3. Data

Our empirical analysis is based on a rich administrative dataset on the German manufacturing

industry for the period 2007 to 2013 (AFiD, Amtliche Firmendaten in Deutschland). The

dataset is administered by the research data centers of the Statistical Offices of the Federal States

and covers the universe of plants from the manufacturing sector with more than 20 employees. It

contains around 40,000 observations per year and includes a variety of plant-level characteristics,

such as sales, exports, number of employees, as well as average wage levels. It also comprises

detailed plant-level information on 14 different energy inputs, including electricity, gas, coal,

and oil. Based on this information, we calculate CO2 emissions using annual average emission

coefficients of the respective fuel types from the German environmental agency (UBA, 2018a).9

In addition, AFiD provides information on total energy cost and gross value added at the firm

level for a representative sample of firms. Information on electricity cost that would allow us

to calculate the ratio of electricity cost to gross value added is not available.

We link these data with the full list of plants that are exempted from paying the REL. These

data is available for the years 2010 to 2013 from the Federal Office for Economic Affairs and

Export Control (BAFA). To match this dataset to AFiD, we rely on Bureau van Dijk identifiers,

tax identification numbers, and official municipality identifiers. This procedure allows us to

9For electricity, we rely on the average carbon factor of the German electricity fuel mix in each year. Using
data from ENTSO-E (available from 2015), we confirm that the average and marginal emission factors in
Germany are comparable. We find an average marginal emission factor of 555 grams CO2/kWh of electricity
production in 2015, while the German environmental agency (UBA) lists an average of 575 grams CO2/kWh
(not considering imports and exports in both cases). UBA lists comparable values of 550 grams CO2/kWh
for the average emission factor in 2010-11. The high carbon emission intensity of electricity generation in
Germany is mainly due to the large share of coal and lignite plants that can be both infra-marginal and
marginal (the price-setting technology).
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Table 1: Summary statistics, 2013

Not exempt REL exempt: 1-10 GWh REL exempt: all

VARIABLE Mean Std. dev. Obs. Mean Std. dev. Obs. Mean Std. dev. Obs.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Plant-level data
Economic covariates
Sales, in million e 37.265 453.930 39,045 26.527 69.815 641 79.284 219.216 1,458

Export share (of sales) 0.214 0.263 39,045 0.212 0.262 641 0.281 0.286 1,458
Number of employees 136 620 38,422 73 83 645 177 251 1,454
Investments, in million e 1.229 15.275 39,198 0.775 5.563 639 2.339 7.160 1,444
Avg. wage per employee, thd. e 33.695 13.614 38,421 33.577 9.795 645 38.755 14.848 1,454

Energy-related covariates
Electricity use, in GWh 3.652 48.653 38,917 5.474 4.360 630 52.280 164.919 1,429
Electricity use (2011), in GWh 3.768 46.610 36,693 5.135 2.350 608 56.096 192.672 1,431
Other energy use , in GWh 15.939 631.243 39,049 9.574 18.800 638 120.379 602.199 1,443
Own electricity generation, in % 0.089 0.285 40,755 0.085 0.279 659 0.129 0.335 1,482
Electricity share in total energy 0.518 0.259 38,917 0.599 0.310 630 0.558 0.316 1,429
Gas share in total energy 0.297 0.292 38,917 0.281 0.307 630 0.281 0.301 1,429
Oil share in total energy 0.134 0.237 38,917 0.050 0.136 630 0.035 0.115 1,429
Coal share in total energy 0.005 0.063 38,917 0.010 0.086 630 0.031 0.134 1,429
Renewable share in total energy 0.047 0.161 38,917 0.061 0.194 630 0.094 0.229 1,429
Total CO2 emissions, in 1,000 t 5,540 181,444 39,049 4,707 4,983 638 50,328 181,140 1,443
Direct CO2 emissions, in 1,000 t 3,862 175,915 39,049 1,692 4,064 638 22,876 139,819 1,443

Firm-level data
Number of plants per firm 3.124 13.079 40,755 2.088 2.908 659 2.304 3.124 1,482
Gross value added, in million e 118.257 918.299 17,807 19.119 53.772 355 43.443 111.323 1,006
Sales, in million e 172.129 2073.110 40,755 87.524 355.118 659 175.171 512.104 1,482
Total energy cost, in million e 6.094 37.237 17,806 7.068 27.229 355 21.392 44.040 1,006

Notes: Descriptive statistics for the group of exempted and non-exempted plants for the year 2013.
Columns 1-3 refer to all non-exempted plants, while Columns 4-6 refer to the group of newly exempted
plants in 2013 (1-10 GWh annual electricity consumption). Columns 7-9 relate to all REL exempted
plants in 2013, independent of their size. Source: Research Data Centers of the Federal Statistical Offices
and the Statistical Offices of the Länder: AFiD Panel Manufacturing Plants, AFiD Module Energy Use,
and Cost Structure Survey, 2007-2013, own calculations.

match close to 93% of plants (662 out of 715 plants) under the original tax exemption regime

in 2010 and 2011 and close to 80% of the newly exempted plants in 2013.

Table 1 presents summary statistics for three main groups of plants for the year 2013. The

first group (Columns 1 to 3) comprises plants that were not exempted from paying the REL.

On average, plants in that group have 136 employees and sales of about 37 million EUR. The

second group (Columns 4 to 6) focuses on the group of small and medium-sized energy-intensive

plants that consumed between 1 and 10 GWh of electricity and were newly eligible for the REL

exemption in 2013. While the number of employees and sales are slightly smaller than for the

non-exempted plants (73 and 27 Mio. EUR, respectively), these plants use considerably more

electricity on average (5.5 GWh vs. 3.7 GWh). The third group (Columns 7 to 9) captures all

plants that were exempted in 2013, including those that had been exempted prior to the policy

change. This group comprises medium and large manufacturing plants with 177 employees and

79 Mio. EUR of sales on average. The average electricity consumption in that group exceeds 56
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GWh, which reflects the presence of some heavy electricity users. The table further highlights

that the fuel energy mix used in the German manufacturing industry is dominated by electricity

and natural gas and roughly similar for the three groups of plants.

When comparing figures for electricity use in 2013 to their counterparts in 2011, we find an

increase for the group of newly REL exempted plants from 5.1 GWh in 2011 to 5.4 GWh in 2013

(Column 4). On the other hand, we see a decrease for non-exempted plants (Column 1) and

the group of all REL exempted plants (Column 7). This observation provides first suggestive

evidence that the REL exemption might lead to higher electricity consumption. In the following

two sections, we provide details on how we estimate the causal impact of the REL exemption

on electricity use as well as other energy inputs and plant-level outcomes under each of the two

policy designs.

4. REL exemptions under the notched policy design

Our empirical analysis first focuses on the impact of REL exemptions under the original, notched

tax design. Our goal is to estimate the effect of the REL exemption on energy input choices

and competitiveness indicators for German manufacturing plants. Throughout our analysis, we

follow the potential outcomes framework (Rubin, 1974) and define Dit as a treatment indicator

that equals one if plant i in year t is exempted and zero otherwise. The potential outcome of

plant i in case of treatment is denoted by Yit(1), while Yit(0) denotes the potential outcome in

case the plant is not treated, i.e. continues to pay the full REL. We are interested in estimating

the average treatment effect on the treated (ATT), given by ATT = E[Yit(1)−Yit(0) | Dit = 1],

where E[·] denotes the expectation operator.

4.1. Econometric strategy

To overcome the fundamental problem of a missing counterfactual, we conduct a regression

discontinuity (RD) analysis. The central idea of a RD design is to take advantage of institutional

rules that determine the treatment eligibility based on whether a so-called running variable Ri

exceeds a cutoff value c. In our example, Ri corresponds to the baseline electricity use and c

represents the cutoff value of 10 GWh. As REL exemptions are only granted to plants above the

10 GWh threshold that have applied for the exemption and pass the second eligibility criterion,

the design of this policy qualifies for a fuzzy RD, in which the probability of treatment jumps

at the threshold (Imbens and Lemieux, 2008).
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If plants can only imprecisely control the running variable Ri, observations on either side of the

cutoff are similar in both observable and unobservable characteristics. This local randomization

can then be exploited to estimate a local average treatment effects for ‘compliers’ at the cutoff

(Lee and Lemieux, 2010), i.e. for plants that are exempted in response to barely passing the

10 GWh threshold. As RD designs closely mimic a randomized experiment, they allow us to

estimate treatment effects with a particularly high degree of internal validity. For example, RD

designs are robust to business cycle and factor price developments, since they would equally

affect the plants marginally above and below the threshold.

The fuzzy RD approach builds on three main identifying assumptions. First, the treatment

probability needs to jump at the cutoff value c, an assumption that can be easily verified in the

data. Second, passing the threshold is assumed to affect treatment probabilities for all plants in

the same direction, so that no plant would be more likely to receive treatment if it lost eligibility,

which is very plausible in our empirical setting. Third, the conditional expectations of the

potential outcomes, E(Yi(j)|Ri) for j ∈ {0, 1}, are assumed to be continuous at the cutoff. This

assumption reflects the idea that plants have only imprecise control over the running variable. If

manipulation was possible, plants that benefit the most from the exemption would select above

the threshold and the conditional expectations of potential outcomes would be discontinuous

at the cutoff. A concern in our setting might be that plants strategically increase their baseline

consumption in period t to become eligible for the exemption in the future period t + 2. To

circumvent such concerns, we focus on baseline years during the financial crisis, when plants

faced unprecedented cuts in production levels that made such manipulations very costly. This

is especially true as electricity use in manufacturing is highly output dependent. We present

supporting evidence in the next section that plants were in fact unable to precisely control the

running variable during the years 2008 and 2009.

Under these identifying assumptions, the ATT for compliers at the cutoff, which we denote

as ATTRD, is defined by the following expression (see Imbens and Lemieux, 2008):

ATTRD =
limε↓0E(Yi|Ri = c+ ε)− limε↑0E(Yi|Ri = c+ ε)

limε↓0E(Ti|Ri = c+ ε)− limε↑0E(Ti|Ri = c+ ε)
, (2)

which represents the discontinuity in the outcome variable at the threshold, divided by the

discontinuity in the treatment probability. In a setting where the group of treated plants

consists exclusively of compliers, as in our case, the estimated treatment effect corresponds to

the ATT at the cutoff (Battistin and Rettore, 2008).
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The ATTRD can be estimated by replacing the conditional expectations from Equation (2)

by sample counterparts, using either parametric or nonparametric techniques. As proposed by

Hahn et al. (2001), we estimate conditional expectations of the outcome variable by local linear

regressions. This method fits linear regressions separately at each side of the threshold, using

only observations within a certain bandwidth and weighting them by a kernel function. To

decrease sampling variability, extensions of RD designs allow for the inclusion of explanatory

variables that are predetermined relative to the running variable Ri (Lee and Lemieux 2010,

Calonico et al. 2019). Given the limited number of plants at the threshold and to improve

statistical power, we pool the observations for both outcome years 2010 and 2011 and cluster

standard errors at the firm level to account for potential serial correlation in the error terms.

In addition, we further control for lagged outcome variables (in period t − 3) in our fuzzy

RD regressions. Following Calonico et al. (2014) and Calonico et al. (2019), we determine

bandwidths using a fully data-driven selection procedure that minimizes the mean squared

error (MSE) of the estimator. In the main specification, we employ a triangular kernel. As

conventional nonparametric local polynomial estimators tend to over-reject the null hypothesis

of no treatment effect, we conduct inference based on robust bias-adjusted confidence intervals

that have better coverage rates in finite samples (Calonico et al., 2014).

Discussion of identifying assumptions

In line with the discussion in Section 2.3, a key concern for the validity of the fuzzy RD design is

the fact that plants face incentives to increase their electricity consumption in the baseline years

above the eligibility threshold of 10 GWh to benefit from the exemption two years later. Such

selection could violate the core identifying assumption, continuity of conditional expectations at

the threshold. Yet, selection is particularly difficult when plants are hit by unanticipated shocks.

For that reason, we consider for identification only the baseline years that coincide with the

financial crisis in 2008 and 2009, which had an unparalleled impact on German manufacturing.

For example, in 2009, gross value added in the manufacturing sector plummeted by 19% and

many firms resorted to short-term working arrangements for their employees. During times of

extreme economic uncertainty, manipulating electricity consumption to reach eligibility status

is much more difficult and costly compared to times with predictable economic activity.

This conjecture is supported by our data. If plants have only imprecise control over the

running variable, we expect to see a distribution of baseline electricity consumption that is
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Figure 4: Number of Plants in 0.5 GWh
Bins of Electricity Consump-
tion in 2008 and 2009
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Table 2: McCrary’s Test of Continuity

Year 2008 2009 2010 2011 2012
Test statistic -0.02 -0.04 0.35∗∗∗ 0.01 0.15

(0.11) (0.12) (0.14) (0.12) (0.12)
# of obs. 12,161 12,186 12,585 12,849 12,800

Notes for Figure 4: Absolute frequency of plants within 0.5 GWh bins of electricity use in the years 2008
and 2009. Source: AFiD Panel, own calculations. Notes for Table 2: Test statistics from McCrary’s
test of continuity (McCrary, 2008) for electricity use at the 10 GWh threshold, using default bandwidths
calculations (approximately 4 GWh). As the heavy right skew in the electricity consumption distribution
challenges convergence, plants with an electricity consumption of more than 20 or less than 1 GWh are
excluded. Standard errors in parentheses. Source: AFiD Panel, own calculations.

continuous around the threshold value. Otherwise, we would anticipate bunching with more

plants to the right of the threshold. As shown by Figure 4, we do not find any signs of bunching

in the years 2008 and 2009 that determine treatment eligibility for the post crisis years 2010 and

2011, respectively. This finding is supported by formal tests for a discontinuity in the density

function at the threshold, as proposed by McCrary (2008). The test statistics from Table 2

demonstrate that we cannot reject the null hypothesis of a continuously distributed running

variable for these years. Hence, we find no evidence that plants strategically manipulated their

electricity consumption in 2008 and 2009 to become eligible for the REL exemptions in 2010

and 2011.

The financial crisis was short-lived in Germany and led to a quick rebound of economic activity

by 2010, when gross value added in manufacturing increased by 18%. In line with our prior, in

that year we find evidence that some plants might have increased their electricity consumption

to become eligible for the exemption in 2012 (Table 2). For later years, 2011 and 2012, we do

not detect any signs of strategic manipulations of electricity use. This is in line with the change

in exemption rules that was announced in the summer of 2011. Under the reformed schedule,

plants did no longer face incentives to select above the 10 GWh eligibility threshold in 2011 and

2012 to become eligible two years later. The fact that we observe bunching in the year 2010
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does not speak against the validity of our empirical strategy as it occurs in an outcome year

rather than baseline year.

4.2. Main results

We turn to the estimation of treatment effects for all outcome variables next. To improve

the precision of the fuzzy RD estimates, our preferred specification excludes all firms with an

energy cost to gross value added ratio below 15%. These firms certainly do not meet the second

eligibility criterion that the ratio of electricity cost to gross value added had to be at least 15%

under the original exemption policy. Furthermore, we drop as outliers the 1% of observations

with the highest or lowest relative changes in electricity consumption between the baseline

period (2008 and 2009) and the outcome years (2010 and 2011). We also drop plants with own

electricity generation capacities because electricity from own-generation facilities is not subject

to the REL. We provide robustness checks concerning the treatment of outliers in Section 4.3.

Figure 5 presents graphical evidence on the effect of the REL exemption on electricity use. The

left panel of the figure shows that the share of exempted plants, i.e. the treatment probability,

jumps from 0 to about 18% when electricity consumption in the baseline period (2008 and

2009) crosses the eligibility threshold of 10 GWh. All plants above the threshold that are not

exempted either did not satisfy the second eligibility criterion in terms of the ratio of electricity

cost to gross value added or did not apply for the exemption.

The right panel of Figure 5 plots the electricity consumption in the years of an exemption

against the electricity consumption in the baseline period that determines eligibility, superim-

posing fitted lines from third order polynomials. The figure shows that plants that slightly ex-

ceed the eligibility threshold in the baseline period consume more electricity than those slightly

below that threshold two years later. As plants above and below the threshold have virtually

identical characteristics, and only differ in their probability of receiving the exemption, this

finding indicates that REL exemptions increase plants’ electricity use.

The fuzzy RD estimates in Table 3 show that REL exemptions increased electricity consump-

tion on average by approximately 4 GWh for exempted plants, an effect that is statistically

significant at the 5% level. More specifically, and given the local nature of the RD design, this

effect implies that compliers at the cutoff, i.e. exempted plants that consumed around 10 GWh

during 2008 and 2009, increase their electricity consumption by about 40% in 2010 and 2011.
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Figure 5: Exemption Shares in 2010 and 2011 (left panel) and Electricity Consump-
tion in 2010 and 2011 (right panel)
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Notes: REL exemption shares (2010 and 2011) correspond to averages within 1 GWh bins of electricity
consumption two years prior to the treatment period. For reasons of data confidentiality, the minimum
bin width for this plot is 1 GWh. Electricity consumption in the years 2010 and 2011 correspond to
averages within 0.5 GWh bins of electricity consumption two years prior. The lines represent fitted
values from third order polynomials, estimated separately for both sides of the threshold. Source: AFiD
Panel, own calculations.

This magnitude is consistent with estimates of relative treatment effect in a log specification,

where we find an average treatment effect of about 50% for electricity consumption.

To investigate the channels that underlie the large increase in electricity use, we test whether

plants reduced their consumption of other fuels, which could explain part of the large observed

increase in electricity consumption. These results are shown in Panel A of Table 3. We do not

find direct evidence of fuel switching, as shown by the positive, yet statistically insignificant

point estimate on (log of) fossil fuel consumption. Yet, when analyzing the shares of different

fuels in total energy use, we detect that the REL exemption significantly decreased the share

of fossil fuels, while increasing the electricity share by a similar magnitude. These findings

show that the positive effect on electricity use cannot be explained by a mere scale effect,

i.e., an increase in production levels based on the current input mix, which should leave fuel

shares largely unaffected. Rather, it supports the fact that REL exemptions increase the use of

electricity.

To investigate how the increase in energy consumption translates into carbon emissions, we

report two measures of CO2 emissions in Panel B of Table 3. The first measure corresponds
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Table 3: Results Fuzzy RD Estimates (at the Cutoff)

ATTRD Standard errors n
(1) (2) (3)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 4.037∗∗ 1.756 33,032
Log electricity consumption 0.526∗ 0.301 33,407
Log fossil fuel consumption 0.086 0.500 29,945

Share of total energy mix:
Electricity [%] 0.187 0.122 33,102
Fossil fuel [%] −0.232∗∗ 0.118 33,077

Panel B: CO2 emissions
Log CO2, direct 0.175 0.506 29,960
Log CO2, total 0.685∗ 0.377 33,268

Panel C: Competitiveness indicators
Log employment 0.153 0.181 32,639
Log sales 0.394 0.299 34,119
Export share −0.137∗ 0.081 33,957
Indicator variable for investment −0.166 0.206 35,861
Indicator variable for investment in machinery −0.130 0.183 35,861
Log investment 0.847 1.178 25,736

Notes: Observations from non-eligible firms with an energy cost share below 15% in 2008 and 2009
are excluded from the analysis. Each line represents a separate estimation, based on the MSE-optimal
bandwidth selector (Calonico et al., 2019). The number of effective observations is approximately 1,400
for electricity and fossil fuel consumption. Standard errors clustered at the firm level. * p<.1, ** p<.05,
and *** p<.01. Source: AFiD Panel, own calculations.

to direct CO2 emissions that stem from on-site fuel consumption (log CO2, direct). The sec-

ond measure also takes into account the indirect emissions embodied in the use of electricity

purchased from utilities (log CO2, total). Our results show that the increase in electricity con-

sumption led to a surge in total CO2 emissions by almost 69%, which is statistically significant

at the 10% level. By contrast, we do not find any evidence that direct emissions changed. These

findings closely mirror our result of a strong increase in the use of electricity, which is associated

with a high average carbon emission factor of about 550 g C02 per kWh in the years 2010-2011

in Germany (UBA, 2018b).10

Our main estimates imply an own price elasticity of electricity of about negative 1.9-2.5,

which is large compared to other studies that aim at short-run elasticities in the manufacturing

industry.11 One reason for such a large response is that REL exemptions under a notched

10As electricity generation in Germany is covered by the European Union Emissions Trading Scheme (EU ETS),
an increase in total emissions by the manufacturing plants does not necessarily imply that emissions at the
economy-level have increased as well. Yet, in response to low permit prices during the end of Phase 2 of the
EU ETS (2010-2012) and the beginning of Phase 3 (2013-2020), the European Union has decided to introduce
a market stability mechanism and to withdraw excessive permits from the market from 2024 onwards (e.g.,
Perino 2018). An increase in the demand for emission permits prior to that year reduces the amount of
excessive permits that are withdrawn. Hence, total carbon emission may have actually increased in response
to the exemption policy.

11Much of this literature relies on sectoral data and uses time-series variation in energy prices for identification,
finding price elasticities of about −0.15 to −0.2 (see for instance Bernstein and Madlener, 2015; Hyland and
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design can work as a ‘subsidy for bunching’, as discussed in Section 2.2. Furthermore, plants

may be able to expand their competitive position and expand their production, leading to larger

electricity use. In this case, we would expect to see an increase in sales and employment, which

we investigate in Panel C of Table 3.

For sales and employment, we estimate positive, yet statistically insignificant effects, which

does not allow us to draw strong conclusions about the extent to which higher electricity con-

sumption has been used for productive purposes. In addition, we do not find evidence that the

international competitiveness improved for exempted plants. Rather, we find a negative and

statistically significant effect on the export share, which, however, can be partially explained

by an increase in national sales. In addition, we show that the REL exemptions did not trigger

additional investment in machinery or otherwise, which speaks against an expansion of produc-

tion capacities in response to the exemption that might lead to long-run effects. We conduct

robustness checks of our main findings and the identifying assumptions in the next subsection.

4.3. Robustness

To investigate the validity of our findings, we first provide supportive evidence for two im-

portant identifying assumptions: the stable unit treatment value assumption (SUTVA) and the

assumption of local randomization around the eligibility threshold. SUTVA requires the absence

of treatment spillovers to non-exempted plants. In our context, SUTVA might be violated for

two reasons. First, as plants interact on product and factor markets, exemptions could trigger

general equilibrium effects that also influence non-exempted plants. However, general equilib-

rium effects are unlikely to be substantial in our context, as the only variation in exemptions

stems from a limited number of plants that change eligibility status during the study period.

In addition, we do not find any significant effects on competitiveness indicators for treated

plants, which further reduces concerns about such spillovers. Second, multi-plant firms might

shift production from non-exempted plants to exempted plants. We test for the presence of

such intra-firm spillovers by restricting our analysis to single-plant firms. As the first column

of Table 4 shows, the point estimates for electricity and fuel variables remain comparable to

Haller, 2018; Neenan and Eom, 2008; Paul et al., 2009). On the other hand, (Martin et al., 2014b) estimate
elasticities of a similar magnitude compared to our study when focusing on the introduction of the climate
change levy in the UK relying on detailed firm level data.
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the main results. However, the estimates lose their statistical significance, which is likely due

to the smaller sample size.12

The identifying assumption of local randomization implies that all variables measured in the

base period are balanced around the cutoff. As a consequence, placebo fuzzy RD regressions on

baseline variables should not indicate any discontinuity at the cutoff. This provides us with a

powerful test to check whether plants were able to select above the eligibility threshold during

the financial crisis. The second panel of Table 4 shows that we do not detect any statistically

significant effect for variables determined prior to the exemption. This evidence supports local

randomization and also speaks against the concern that the financial crisis affected plants above

the threshold differently than plants below the threshold. In that case, we would expect to

observe a discontinuity at the threshold for covariates related to these shocks (e.g. sales or

employment).

In Online Appendix C.1, we further show that our findings are robust to the choice of the

bandwidth used and potential outliers in the estimation. For a variety of outcome variables,

we report estimates for different percent of the MSE-optimal bandwidth and show that they

remain largely unchanged, except when bandwidths are very small or large. Moreover, we test

for the exclusion of potential outliers (Figure C.1). Compared to our main results, all point

estimates show the same sign and similar magnitudes.

5. REL exemptions under the revised policy design

In a subsequent step, we investigate the impact of REL exemptions after the 2012 reform that

eliminated the tax notch and considerably expanded the group of plants eligible for exemptions.

We evaluate the impact of the REL exemption under the revised policy in the first year after

its implementation in 2013 based on a matching difference-in-differences (DiD) approach that

allows us to compare newly exempted plants to highly similar control plants that share a common

economic history.

12The number of effective observations, i.e. of observations within the bandwidth used for the fuzzy RD estima-
tion, drops from 1,411 to 953.

20



Table 4: Test of Identifying Assumptions: SUTVA and Local Randomization

SUTVA Pre-determined outcomes

ATTRD Std. Er. n ATTRD Std. Er. n
(1) (2) (3) (4) (5) (6)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 3.851 6.329 27, 868 - - -
Log electricity consumption 0.468 0.387 27, 868 0.0001 0.0001 34, 250
Log fossil fuel consumption −0.123 0.916 25, 447 0.204 0.426 31, 034

Share of total energy mix:
Electricity [%] 0.018 0.113 27, 868 0.004 0.080 33, 945
Fossil fuel [%] −0.161 0.114 27, 868 −0.070 0.083 33, 920

Panel B: CO2 emissions
Log CO2, direct 0.061 0.998 25, 456 0.382 0.426 31, 065
Log CO2, total 0.677 0.508 27, 874 0.357 0.269 34, 116

Panel C: Competitiveness indicators
Log employment −0.114 0.345 28, 671 −0.110 0.093 33, 152
Log sales 0.199 0.474 28, 980 −0.337 0.214 34, 525
Export share −0.076 0.101 28, 980 −0.079 0.050 34, 363
Indicator variable for investment −0.192 0.269 29, 575 −0.063 0.129 35, 861
Indicator for investment in machinery −0.266 0.243 29, 575 −0.162 0.171 35, 861
Log investment 1.391 1.539 22, 006 0.008 0.817 27, 004

Notes: Observations from non-eligible firms with an energy cost share below 15% in 2008 and 2009
are excluded from the analysis. Each line represents a separate estimation, based on the MSE-optimal
bandwidth selector (Calonico et al., 2019). The effect on electricity use in Columns 4-6 is not defined as
it corresponds to the running variable we use in the main RD specification. Standard errors clustered at
the firm level. * p<.1, ** p<.05, and *** p<.01. Source: AFiD Panel, own calculations.

5.1. Econometric strategy

The matching DiD approach allows us to exploit both the longitudinal structure of our dataset

and to use the rich information on plant-level characteristics. In this setting the ATT can be

expressed as follows:

ATTDiD =
1

N1

∑
iεI1

(Yit(1)− Yi0(0))−
∑
kεI0

WN0,N1(i, k)(Ykt(0)− Yk0(0))

 , (3)

where Yit refers to the outcome of plant i in the outcome year, t = 2013 and Yi0 represents the

outcome variable in the base year (2011), determining treatment status. I1 denotes the set of

N1 exempted plants, while I0 and N0 refer to the control group. Furthermore, the term WN0,N1

with
∑

kεI0
WN0,N1(i, k) = 1 determines the weighting of counterfactual observation k.

The validity of the matching DiD estimator depends on three main identifying assumptions:

conditional independence, overlapping support, and SUTVA (Heckman et al., 1997). First,

conditional independence requires that the (counterfactual) change in the outcome variable in

the absence of treatment, Yit(0)−Yi0(0), is independent of the treatment status, conditional on a
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set of covariates Xit. This identifying assumption is weaker than the common trend assumption

from standard DiD models as it only has to hold for a subset of control plants that are similar to

treated plants in terms of observable plant characteristics. Second, overlapping support requires

that the support of the distribution of the conditioning covariates in the control group overlaps

with the respective support for the treatment group. This ensures that, for every treated plant,

we can find a similar control plant that serves as counterfactual. This assumption can easily

be verified graphically and is met in our setting (see Appendix Figure A.4). Third, SUTVA

requires that potential outcomes at one plant are independent of the treatment status of other

plants. We provide indirect evidence in the next subsection that both SUTVA and conditional

independence are credible assumptions in our empirical setting.

For the matching DiD estimation, we restrict our sample to energy intensive manufacturing

plants with an annual electricity consumption in the base year 2011 between 1 and 10 GWh.

These are the plants that pass the electricity use threshold after the 2012 reform, but not before.

We also exclude observations with an energy cost to gross value added ratio of less than 14% as

these plants cannot pass the second eligibility criterion, which requires that the electricity cost to

gross value added ratio is at least 14%. Our data trimming keeps all newly eligible plants, while

ensuring that control plants have a similar size and energy intensity. We then employ propensity

score matching to construct a control group of non-exempted plants that closely match treated

plants in terms of pre-treatment covariates for the year 2011. We condition on the following pre-

determined variables that directly influence the treatment status and plants’ potential outcomes

in 2013: (log of) electricity consumption, sales, employment, wages, and export share. To allow

for a flexible relationship, our main propensity score specification includes both linear and

quadratic terms of these variables. In addition, we exploit the longitudinal structure of our

data by including sector fixed effects and lagged values for electricity use for up to three years

prior to 2011, which helps us to match treated and control plants that share a similar economic

history.

For matching, we use different algorithms based on nearest neighbor (NN) matching, NN

matching with caliper and replacement, and one-to-many matching with caliper and replace-

ment. Using caliper matching ensures that the characteristics of all nearest neighbors are close

to those of the treated plants. Following Rosenbaum and Rubin (1985), we set the caliper to

25% of the standard deviation of the estimated propensity score. To obtain consistent estimates
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for the standard errors, we conduct post-matching inference as suggested by Abadie and Spiess

(2019).

Discussion of identifying assumptions

Conditional independence requires that changes in outcome variables are independent of the

treatment status, conditional on covariates. This assumption is equivalent to the common

trends assumption of the standard DiD model and is particularly plausible when conditioning

on a rich set of covariates is possible. While untestable in principle, the assumption is more

plausible if outcome trends are parallel prior to the policy intervention. For the years 2007 to

2013, Figure 6 plots the evolution of key outcome variables, which we demean with respect to

the year 2011. These graphs provide visual evidence that the trends of treated and matched

control plants are parallel in the years leading up to the REL exemption. We also observe

parallel pre-trends for variables which we did not specifically include in our propensity score

specification, such as natural gas consumption. These findings imply that our specification

balances treated and control plants in terms of other covariates that might otherwise confound

our estimates, as well as potentially unobserved ones. The common trends assumption is also

supported by t-tests, which do not show any statistically significant differences in trends and

levels for the treatment and control group prior to 2011 (for details, see Appendix Table A.5).

Similar to the fuzzy RD design, SUTVA assumes that only treated plants are affected by the

treatment. To exclude the possibility of intra-firm spillovers, we estimate our main treatment

effect using only the subset of single-plant firms. Another concern might be that the exemption

of additional plants can lead to a higher levy for the remaining contributors as the REL is

constructed to raise a pre-determined level of public funds. However, while the 2012 reform

increased the number of exempted plants in manufacturing, it removed exemptions for some

energy-intensive sectors outside of manufacturing, such as water supply, recycling, and public

transportation, which nearly offset the total amount of newly exempted electricity. In addition,

spillovers through competition in factor and product markets may be relevant in case exempted

firms could strongly improve their competitiveness, which is ultimately an empirical question.

We test for these effects formally in the next subsection. As for the RD design, we do not find

any short-term competitiveness impacts of the exemptions, which mitigates such concerns.
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Figure 6: Common trends: Main Matching Specification

Notes: Analysis of parallel pre-treatment trends for treated plants (REL exempted in 2013) and matched
control plants based on nearest neighbor matching. The figure plots growth rate of the respective
variables with respect to 2011, the year determining treatment status. The vertical line indicates the
reform in 2012. Standard deviations not defined for 2011.

5.2. Main results

Table 5 presents the results for the ATTDiD, using the main propensity score specification

and three different matching algorithms. Column 1 reports the ATTDiD from one-to-one near-

est neighbor (NN) matching, Column 3 from NN matching with caliper and replacement, and

Column 5 from one-to-many matching with caliper and replacement, where we allow for up

to 20 matched control plants for each treated plant. We calculate standard errors based on

post-matching inference (Abadie and Spiess, 2019) for NN matching without replacement, and

robust standard errors following Abadie and Imbens (2006) otherwise.13 We express our out-

13In the matching literature, there exists a clear trade-off between bias and efficiency of the estimates. While
the inference in Column 2 is correct, we need to rely on a smaller pool of control plants. The estimates in
Columns 3 to 6 therefore provide important robustness checks.
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Table 5: Results Matching DiD Estimates

Matching algorithm 1:1 1:1 caliper 1:20 caliper

ATTDiD SE ATTDiD SE ATTDiD SE
∆ 2013-2011 (1) (2) (3) (4) (5) (6)

Panel A: Electricity & fuel usage
Log electricity consumption 0.057∗∗∗ 0.018 0.067∗∗ 0.029 0.051∗∗∗ 0.016
Log fossil fuel consumption −0.039 0.046 0.001 0.049 −0.046 0.039

Share of total energy mix:
Electricity [%] 0.005 0.006 0.003 0.008 0.010∗ 0.006
Fossil fuel [%] −0.005 0.006 −0.007 0.007 −0.007 0.006

Panel B: CO2 emissions
Log CO2, direct −0.026 0.046 0.02 0.05 −0.042 0.039
Log CO2, total 0.053∗∗∗ 0.018 0.07∗∗ 0.027 0.039∗∗ 0.015

Panel C: Competitiveness indicators
Log employment −0.015 0.013 −0.011 0.017 −0.013 0.012
Log sales 0.018 0.020 0.036 0.022 0.019 0.017
Export share −0.006 0.006 −0.009 0.012 −0.008 0.008
Indicator variable for investment −0.011 0.021 0.004 0.028 −0.023 0.02
Indicator for investment in machinery −0.011 0.017 −0.035 0.022 −0.009 0.017
Log investment 0.028 0.129 −0.012 0.139 −0.003 0.105
# of observations 916 770 2,359
# of treated plants 458 458 458

Notes: Outcome variables defined in differences 2013-2011. The table presents the ATTDiD and standard
errors (SE) from nearest neighbor (NN) matching without replacement (Columns 1 and 2), NN matching
with caliper and replacement (Columns 3 and 4), and one-to-many matching with caliper and replacement
(Columns 5 and 6) following Specification (3). Inference in Column 2 follows Abadie and Spiess (2019).
Robust standard errors Abadie and Imbens (2006) in Columns 4 and 6. * p<.1, ** p<.05, and ***
p<.01.

come variables as differences between the treatment year (2013) and the year that determines

treatment eligibility (2011).14

Panel A shows estimates that the REL exemption under the reformed policy schedule led

to an increase in electricity consumption by about 5.1 – 6.7%. This effect is very similar

across specifications. For an average ‘treated plant’ in this group, with 5.5 GWh electricity

consumption in 2013, the levy exemption represents an reduction of about 23% in electricity

input costs.15 Hence, our estimates imply a short-run price elasticity for electricity in the

range between −0.22 and −0.29. In addition, we do not find evidence that plants change

their consumption of fossil fuels. Our point estimates are mostly negative, but not statistically

different from zero.

In Panel B, we focus on changes in CO2 emissions. Our estimates suggest that the average

total fuel emissions increased by approximately 4-7%, representing a carbon elasticity of −0.17

14When using the difference in levels as the outcome variable, we obtain an ATTDiD of 0.249 GWh for the
1:1 matching algorithm, which is statistically significant at the 1% level. Dividing this value by the average
electricity consumption of exempted plants (5.5 GWh), we obtain a very similar treatment effect of 4.5%.

15We obtain these value assuming a plant faces average electricity prices as presented in Figure 1, full payment
for the REL for the 1 GWh of consumption and 10% of the REL for the remaining consumption.
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Table 6: Test of Identifying Assumptions: SUTVA and Anticipation

SUTVA Anticipation

ATTDiD SE ATTDiD SE
(1) (2) (3) (4)

Panel A: Electricity & fuel usage
Log electricity consumption 0.038∗ 0.021 0.042∗∗ 0.016
Log fossil fuel consumption −0.013 0.058 −0.077∗ 0.043

Share of total energy mix:
Electricity [%] 0.017∗∗ 0.008 0.016∗∗∗ 0.006
Fossil fuel [%] −0.007 0.006 −0.012∗∗ 0.005

Panel B: CO2 emissions
Log CO2, direct 0.002 0.059 −0.074∗ 0.043
Log CO2, total 0.022 0.021 0.03∗ 0.016

Panel C: Competitiveness indicators
Log employment −0.004 0.013 −0.018 0.011
Log sales 0.036 0.023 0.009 0.019
Export share −0.001 0.007 −0.003 0.006
Indicator variable for investment 0.022 0.022 −0.011 0.02
Indicator for investment in machinery 0.025 0.021 0.002 0.016
Log investment −0.006 0.158 −0.059 0.123
# of observations 644 908
# of treated plants 322 454

Notes: Outcome variables defined in differences 2013-2011. The table presents
the ATTDiD and standard errors (SE) from nearest neighbor (NN) match-
ing without replacement. Columns 1 and 2 limit the sample to single plant
firms and Columns 3 and 4 condition the propensity score on 2010, the pre-
annoucement year of the policy reform. Robust standard errors following
Abadie and Spiess (2019). * p<.1, ** p<.05, and *** p<.01.

to −0.3. Direct CO2 emissions, on the other hand, show a negative sign in most specifications in

line with fuel substitution, yet these estimates are not statistically significant. Taken together,

both finding shows that the increase in CO2 emissions is again driven by an increase in electricity

consumption in response to the exemptions.

In Panel C, we investigate how the REL exemptions influence competitiveness indicators in

the short-run. We find that the point estimates of these variables are all close to zero and not

statistically significant at any conventional level. The higher degree of precision compared to

the RD design allows us to reject the null hypotheses that employment, sales and the export

share have responded strongly to the REL exemptions. Accordingly, our results cast doubt on

the effectiveness of REL exemptions on the grounds of improving the competitiveness of the

industry.

Robustness

We next conduct robustness checks and additional tests of our identifying assumptions in the

matching DiD setting. First, we provide an indirect test for SUTVA by restricting the anal-

ysis to single-plant firms (Column 1 of Table 6). As the REL reform benefitted mostly small
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and medium-sized manufacturing plants from the levy payment, the majority of our sample

are single-plant firms, so the concerns for direct spillovers are limited.16 The point estimates

presented in Column 1 are aligned with our main results, indicating that intra-firm spillovers

are of limited concerns in this setting. Similarly, as we do not find any significant effects of

the REL exemption on sales or other competitiveness measures in the short-run, we expect no

indirect equilibrium effects invalidating our DiD strategy.

Second, we deal with concerns regarding possible anticipation from the reform announcement

in 2011 by matching on variables from the year 2010 (Column 3 of Table 6). Plants that knew

about the policy change in 2011 may have anticipated future exemptions and adjusted their

production in that year already. To test for this possibility, we match the treatment and control

group based on the pre-announcement year 2010, when plants were not yet informed about

the reform. Again, we detect an increase in electricity consumption, which also implies higher

total carbon emissions that can be attributed to a plant. With this specification, we find some

evidence of reduced fossil fuel consumption, as shown by the negative estimates on fossil fuel

consumption and the share of fossil fuels in total energy, which are statistically significant at

the 5 and 10% level, respectively. Again, we do not find evidence that the REL exemptions had

an impact on employment, sales, and investment.

In Online Appendix C.2, we show that our main results are robust to further sample selection

and the choice of specification for the propensity score. Appendix Table C.4 presents the

main treatment effect for a propensity score specification that matches strictly within economic

sub-sectors.17 In line with the main results, we find an increase of 4.6 to 7.7% in electricity

consumption. We also detect a small negative impact on total employment and fossil fuel

consumption of about 2% and 8%, yet this effect is only significant at the 10% level in some of

our specifications.

6. Discussion of effect sizes

Qualitatively, both of our empirical evaluations in Sections 4 and 5 yield very similar results.

We find that the REL exemption induces plants to increase their electricity consumption, while

we do not find any significant impacts on competitiveness indicators. Yet, quantitatively, the

16We observe a total of 322 single-plant firms (about 70% of our sample) that have been newly exempted in 2013
(see also Appendix Table A.2).

17To guarantee convergence in the propensity score estimation, we group manufacturing sectors into five sub-
sectors according to their average energy intensity (for details, see Table C.3 in the Appendix). Evidence on
parallel pre-treatment trends is presented in Figure C.3 in the Appendix.
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Table 7: Decomposition of Effect Sizes

Policy Regime (Years) Estimand Estimated Term from Model ATT ∆Price Elasticity
(1) (2) (3) (4) (5) (6)

Notch (2010, 2011) ATTRD (10 GWh baseline use) (1): MPR+BR 40.4% 21.1% −1.92
No Notch (2013) ATTDiD (1-10 GWh baseline use) (2): MPR 5.7% 31.4% −0.18

(1)−(2) = BR 34.7% −1.73

Notes: Assuming that the average marginal price response (MPR) is the same for plants in both of our empirical
evaluations, we can identify the average bunching response (BR) as the difference between the ATTRD under the
notched policy design (2010 and 2011) and the ATTDiD estimated after the policy reform (2013). In Column 6,
we take into account the change in the magnitude of the tax exemption over time and express the BR in terms
of elasticities (see Appendix 1 for details).

effect sizes differ substantially, in particular with respect to the increase in plants’ electricity

use. In this section, we use the model introduced in Section 2.3, to recover the marginal price

response (MPR) and the net bunching response (BR) from our empirical estimates.

Our RD design allows us to identify the treatment effect for plants close to the 10 GWh

threshold, denoted by ATTRD. As this treatment effect was estimated under a notched ex-

emption policy, it captures both the marginal prices response and the net bunching response.

Hence, we have ATTRD = MPR + BR. After the policy change, the tax notch was largely

removed, so that the ATT estimate from our DiD estimation, ATTDiD, captures the marginal

price response (ATTDiD = MPR). Under the assumption that the MPR would have been the

same in our fuzzy RD setting, we can infer the magnitude of the BR by taking the difference

of both estimates, BR = ATTRD − ATTDiD. For ATTRD, we use the conservative estimate

of 40.4% (.404 GWh / 10 GWh), which is smaller than the result from the log specification.

Our decomposition shows that the component of ATTRD that can be attributed to a bunching

response amounts to some 35 percentage points and thus accounts for 86% of the ATTRD (see

Column 4 of Table 7).

A first caveat concerning our decomposition is that the REL increased over time, which also

led to an increase in the magnitude of an exemption, from about 21% of electricity prices

in 2010/2011 to 31% in 2013 (see Column 5). A simple extrapolation of our MPR estimate

from 2010/2011 to 2013 does not take into account such changes. To tackle this issue, we

conduct our decomposition in terms of elasticities in Column 6. In Appendix B, we show that

we can similarly decompose firms’ input elasticity ηRD into ηRD = ηMPR + ηBR, where ηMPR

denotes the price elasticity of input consumption in absence of a notch and ηBR denotes the

component of the elasticity that can be attributed to the net bunching response. Again, we

find that the net bunching response expressed as an elasticity (ηBR) amounts to −1.73. These
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extrapolations show that exemptions under a notched policy designs can induce plants to adjust

their production inputs above a level that would have been chosen in the absence of the notch.

A second caveat is that our fuzzy RD and our DiD approach do not estimate treatment effects

for the same group of plants. As all exempted plants need to pass the eligiblity criteria in our

setting, our fuzzy RD and DiD approach both estimate an ATT (Battistin and Rettore, 2008).

Yet, the fuzzy RD approach yields estimates for treated plants at the threshold with a baseline

electricity use 10 GWh, while our DiD setting identifies the ATT for smaller plants with 1-10

GWh of electricity use.18

A third caveat relates to the precision of our estimates, which is lower for the fuzzy RD

than for the DiD estimates. To explore the robustness of our findings, we make conservative

assumptions on the magnitude of the effect size from our fuzzy RD approach. As a lower bound

estimate of the effect, we use an intention-to-treat estimate that disregards the fuzzy nature of

our RD design, where the probability of treatment jumps by 18 percentage points at the cutoff.

This lower bound estimate implies an elasticity ηRDlow = −1.92/(1/0.18) = 0.35, which is still

about twice as large as the elasticity implied by our ATTDiD estimate.

7. Conclusion

This paper analyses the impact of a large electricity tax exemption scheme on German manu-

facturing. We examine how an exemption from the renewable energy levy (REL) affects the use

of energy inputs and production outcomes of manufacturing plants under two policy designs.

Our identifying strategy for evaluating the original, notched, tax exemption design exploits the

fact that the financial crisis of 2008 and 2009 prevented plants from potentially manipulating

their electricity use in order to reach eligibility for an exemption and identifies treatment effects

via a fuzzy RD design. In addition, we employ a matching difference-in-differences approach

to identify the effects of an exemption after a policy reform that eliminated the tax notch and

substantially increased the group of eligible plants.

We find that, under the notched design, exempted plants increased their electricity use on

average by 40-50% compared to the control group. By contrast, after the policy reform that

largely eliminated the tax notch, we find that exempted plants increase their electricity use by

18Holding the estimation sample constant is not feasible as both approaches use different sources of identifying
variation. To test whether smaller plants respond differently to an exemption, we exclude plants with 1-5 GWh
of electricity use in the baseline year from the DiD estimation. Our estimates remain virtually unchanged
(see Appendix Table C.2), which reduces concerns that differences in the estimation sample can explain the
large difference in our ATT estimates.
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about 5-7%. Based on a stylized model of production, we show that these differences can be

rationalized by the incentives introduced by the notched tax design. When the eligibility for

future exemptions depends on current input use and exemptions imply infra-marginal benefits,

a reduction in the price for an input makes it profitable for more firms to increase their input

use in order to reach eligibility for an exemption in subsequent years. The fact that exemptions

can work as a ‘subsidy for bunching’ under a notched tax design highlights how policy design

can co-determine firm production choices. In particular, our results show that notched tax

exemption policies lead to unintended consequences by distorting production input choices.

We do not detect a statistically significant impact of the REL exemption on competitiveness

indicators such as sales, export shares, employment, and investment. This evidence contrasts

with the goal of exemption policies to sustain competitiveness and domestic production of

manufacturing plants. It casts doubt on the effectiveness of a costly exemption policy that

puts an additional burden on all electricity consumers of about 4 billion Euro per year (BAFA,

2013). Reducing the REL exemptions or tightening the eligibility criteria could avoid these costs

and the associated distributional implications (for distributional implications of other climate

policies, see e.g. Reguant 2019). Our evidence implies that such adjustments would not result

in sizable reductions in production levels or employment, at least in the short run.

Our estimates exploit variation in exemption status to identify short-run effects on production

in the year of the exemption. The dynamic nature of the REL exemption scheme complicates

the causal evaluation of long-term effects, which we leave to future research. Regarding external

validity, we identify the exemption effects for a group of energy-intensive plants with about 1-10

GWh of electricity use. It would certainly be interesting to know whether these estimates can

be extrapolated to larger plants. Yet, as exogenous variation in exemptions is absent for these

plants, empirical designs to evaluate the causal effect of these exemptions face fundamental

identification problems.

More broadly, our paper offers insights on the effectiveness of widely used exemption policies

for energy-intensive and trade-exposed industries. Our findings highlight that defining eligibility

criteria for exemption policies in terms of production inputs is problematic and that exemptions

may not be justified on the grounds of competitiveness concerns, at least for medium-sized

plants. Both insights allow policy makers to optimize the design of exemption policies in order

to sustain domestic production levels, while minimizing cost and production input distortions.
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A. Appendix

A.1. Additional Tables and Figures

Figure A.1: Evolution of Feed-in Tariffs (FiTs) for Solar Installations

Notes: Evolution of FiT for new solar photovoltaic installations and average electricity prices in Germany.
Source: Fraunhofer ISE (2018).

Figure A.2: Renewable Energy Levy (REL) Exempted Plants
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Notes: Total number of REL exempted plants in railway & mining, manufacturing, as well as electricity
& water and recycling industry for the years 2010 to 2013. Source: Federal Office of Economics and
Export Control (BAFA).
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Table A.1: REL Exempted Plants (by Manufacturing Sub-sector)

2010 2011 2012 2013
ISIC (Rev.4) # Share # Share # Share # Share

Manufacturing:
Food & Beverages 10,11,12 54 7.00% 63 7.70% 78 7.97% 382 16.64%
Textiles & Leather 13,14,15 17 2.20% 15 1.83% 19 1.94% 56 2.44%
Wood, Paper & Print 16, 17, 18 132 17.12% 130 15.89% 152 15.53 238 10.37%
Mineral Oil 19 4 0.52% 4 0.49% 5 0.51% 14 0.61%
Chemicals 20,21 122 15.82% 130 15.89% 144 14.71% 231 10.07%
Rubber & Plastics 22 46 5.97% 55 6.72% 84 8.58% 298 12.98%
Non-metallic minerals 23 100 12.97% 105 12.84% 126 12.87% 244 10.63%
Basic metals 24 111 14.40% 121 14.79% 138 14.10% 222 9.67%
Fabricated Metals 25 20 2.59% 22 2.69% 30 3.06% 222 9.67%
Optics & Electronics 26, 27 10 1.30% 12 1.47% 16 1.63% 38 1.66%
Machinery 28 3 0.39% 3 0.37% 3 0.31% 11 0.48%
Vehicles & Transport 29, 30 2 0.26% 5 0.61% 5 0.51% 24 1.05%
Other manufacturing 31, 32, 33 1 0.13% 1 0.12% 1 0.10% 5 0.22%

Other sectors (excluded from analysis):
Railway 49 49 6.36% 49 5.99% 51 5.21% 53 2.31%
Mining 0 35 4.54% 38 4.65% 45 4.60% 231 10.07%
Recycling 37, 38 8 1.04% 6 0.73% 13 1.33% 26 1.13%
Electricity & Water 35,36 36 4.67% 38 4.65% 45 4.60% 0 0.00%
Construction 43 21 2.72% 21 2.57% 24 2.45% 0 0.00%
# exempted plants 771 818 979 2295

Notes: Number of REL exempted plants by economic sub-sector and year. Source: Federal
Office of Economics and Export Control (BAFA).

Table A.2: Number of Plants per REL Exempted Firm

Number of plants per firm 2010 2011 2012 2013

1 375 400 498 1238
2-3 50 54 69 182
4-5 10 9 12 28
6-10 3 5 3 6
≥ 10 2 2 2 5
# of exempted firms 440 470 584 1459

Notes: Number of REL exempted single-plant firms as
well as multi-plant firms over the years 2010 to 2013.
Source: Federal Office of Economics and Export Control
(BAFA).
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Robustness: Fussy RD Design

Table A.3: Fuzzy RD Estimates, Including Own Electricity Generation

ATTRD Standard errors n

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 7.134∗ 4.009 39,937
Log electricity consumption 0.709 0.474 40,475
Log fossil fuel consumption −0.161 1.822 35,761

Share of total energy mix:
Electricity [%] 0.293 0.321 40,056
Fossil fuel [%] −0.267 0.335 40,041

Panel B: CO2 emissions
Log CO2, direct −0.128 1.761 35,788
Log CO2, total 0.953 0.743 40,292

Panel C: Competitiveness indicators
Log employment −1.657∗∗ 0.692 38,638
Log sales −0.677 0.887 40,161
Export share −0.453∗ 0.263 39,999
Indicator variable for investment −0.464 0.298 41,821
Indicator for investment in machinery −0.098 0.269 41,821
Log investment 0.146 1.447 32,922

Notes: Observations from non-eligible firms with an energy cost share below 15% in 2008 and 2009
are excluded from the analysis. Each line represents a separate estimation, based on the MSE-optimal
bandwidth selector (Calonico et al., 2019). Standard errors clustered at the firm level. * p<.1, ** p<.05,
and *** p<.01. Source: AFiD Panel, own calculations.
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Robustness: Matching DiD

Figure A.3: Overlap - Electricity Consumption
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Notes: Density distribution of log electricity for exempted plants and non-exempted plants, without
adjustment (Panel a), with trimming 1-10 GWh (Panel b), and with trimming and matching (Panel c).

Figure A.4: Overlap - Propensity Score
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Notes: Overlap of the propensity score following our main matching specification and using nearest
neighbor matching without replacement.
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Table A.4: Propensity Score - Logistic Regression (2011)

Exempted 2013 Beta Std. Error

Log electricity 2.785∗∗∗ (0.579)
Log sales -0.49∗∗ (0.247)
Log employees -0.118 (0.991)
Export share -0.738 (0.717)
Log wages 3.102 (3.211)

Log employees × log employees -0.26∗∗ (0.118)
Log sales × log sales 0.004 (0.044)
Log electricity × log electricity -0.433∗∗ (0.182)
Export share × export share 0.229 (0.91)
Log wages × log wages -0.703 (0.473)

Log electricity 2010 0.464 (0.326)
Log electricity 2009 0.324 (0.287)
Log electricity 2008 0.793∗∗∗ (0.263)
Log electricity 2007 0.132 (0.159)

Sub-sector FE Y
Observations 8,522
Pseudo R2 0.422

Notes: Dependent variable: REL exempted in 2013. Logistic
regression. Sample trimmed to plants with 1-10 GWh elec-
tricity consumption in 2011. Explanatory variables measured
in the year 2011, determining treatment status in addition to
lagged electricity. The regression includes two-digit sub-sector
fixed effects (20 manufacturing sub-sectors in total). Stan-
dard errors reported in parentheses. * p<0.1, **p<0.05, and
***p<0.01.
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Table A.5: Test for Parallel Pre-treatment trends - Main Propensity Score

Beta SEM P-value

Levels 2011
Electricity 0.050 0.034 0.147
Sales 0.006 0.061 0.923
Employment -0.033 0.040 0.400
Export share -0.008 0.016 0.596
Wage 0.006 0.018 0.746
Electricity share 0.023 0.020 0.262
Total energy -0.106 0.136 0.435
Gas -0.091 0.165 0.582

∆ 2011-2010
Electricity 0.002 0.015 0.916
Sales 0.021 0.015 0.161
Employment 0.004 0.007 0.605
Export share -0.003 0.005 0.460
Wage -0.003 0.007 0.729
Electricity share -0.002 0.005 0.688
Total energy -0.011 0.036 0.755
Gas -0.021 0.047 0.651

# of observations 916

Notes: Test for parallel pre-treatment trends and level
difference in key outcome variables for matched sample.
Each line represents a separate regression to test for dif-
ferences between the treatment and control group. Main
coefficient (beta) and standard error of the mean (SEM)
reported together with p-values. * p<0.1, **p<0.05, and
***p<0.01.
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B. Appendix: Conceptual model for input tax notch

In this section, we describe how a tax exemption in the context of a notched tax schedule (as

described in Section 2.3) affects production input choices.

Effect of a tax notch on input choices

Let us first consider the impact of the tax notch Af on current input use. Let xc and zc

denote the (hypothetical) optimal input choice for x and z in the absence of the notch (i.e., if

Af = 0). The optimal inputs are implicitly defined by the two first order conditions for profit

maximization, ψyx̃ = p + t, and yz = q, where the subscripts denote first derivatives of the

production function with respect to these variables, respectively. The comparative statics of

the optimal input choices show that ∂xc/∂ψ > 0, i.e. firms with a larger productivity ψ use

more of the input x, irrespective of the substitutability of the inputs x and z.

How does the presence of a notched tax schedule (Af > 0) change the demand for x? Let

us first define a “marginal buncher” as a firm with productivity ψm that would be indifferent

between using the optimal input level in the absence of the notch, xc, and increasing its elec-

tricity consumption to x̂ in order to become eligible for an exemption. This condition holds if

π(ψmx̂, z̄) = π(ψmxc, zc), or, equivalently:

y(ψmx̂, z̄)− qz̄(ψm)− (p+ t)x̂+Af = y(ψmxc, zc)− qzc − (p+ t)xc,

where z̄ denotes a firm’s profit maximizing choice of the input z, conditional on bunching to the

notch threshold (x = x̂). We can now determine the profit maximizing demand for the taxed

input under the notched schedule:

x∗(ψm) =


xc if ψ ≤ ψ < ψm or ψx̂ ≤ ψ < ψ̄

x̂ if ψm ≤ ψ < ψx̂,

(4)

where ψx̂ denotes the productivity of a plant that chooses xc exactly equal to the threshold

value, i.e. xc(ψx̂) = x̂. For simplicity, let xm be the quantity that the marginal buncher would

use as an input, i.e. xm = x∗(ψm).

Figure B.1 illustrates how the presence of the tax notch changes the distribution of observable

input choices x∗. For firms with sufficiently low productivities (ψ < ψm or, equivalently, firms

that choose x∗ < xm) the notch does not change input choices, as increasing the input demand

by ∆x = x̂ − xc would result in profit losses that outweight the gains from obtaining Af . For
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Figure B.1: Bunching in stylized model
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Notes: The figure plots the distribution of input demand x in the absence of an tax notch, its presence,
as well as the distribution when a notch is present and the tax rate is reduced. The notch threshold is
denoted by x̂ and the input use of the marginal buncher before and after the tax reduction is given by
xm and xm

′
, respectively.

more productive firms (ψm ≤ ψ < ψx̂ or, equivalently, xm ≤ x∗ < x̂), bunching is profitable.

Accordingly, these firms will increase their electricity to the threshold, which leads to bunching

at x̂ and missing mass in the interval xm ≤ x∗ < x̂.

Effect of a tax exemption on input use in the presence of a tax notch

We now investigate how exempting plants from paying the tax t changes the demand for the

input x∗ under a notched tax schedule. A tax change has two main effects. First, it changes

the input demand for all firms. Second, it changes the productivity of the marginal buncher

by dψ = ψm
′ − ψm, where ψm

′
denotes the productivity of the marginal buncher after the tax

change.

We now determine the first derivative of x∗ =
∫∞

0 x∗(ψ)dG(ψ) with respect to a reduction in

the tax rate t by tex. Using Equation (4), we take the first derivative of x∗(ψ) with respect to

tex for every ψ. We then integrate ∂x∗(ψ)/∂tex over the entire support of G(ψ) and rearrange

terms, which yields Equation 1 highlighted in the main text.
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∂x∗

∂tex
=

∫ ∞
0

∂xc

∂tex
g(ψ)dψ︸ ︷︷ ︸

Marginal price response

+

∫ ψm

ψm′
(x̂− xc) g(ψ)dψ −

∫ ψx̂

ψm′

∂xc

∂tex
g(ψ)dψ︸ ︷︷ ︸

Net bunching response

,

This equation clarifies that the effect of a tax reduction in the presence of a notched schedule

can be decomposed into two components. The first component equals the change in demand

for all firms under the hypothetical scenario that there was no notch, which we denote as the

marginal price response in the absence of a notch. This effect corresponds to the rightward

shift of the density, as shown by the blue dotted line in Figure B.1 for the interval x < xm
′
, for

example. With a tax reduction, the first term is always positive, as ∂xc/∂t < 0, which reflects

the basic notion that an input is used more when its price decreases.

The second component gives the net bunching response (BR), i.e., the net effect of a tax

reduction on input demand for bunching firms. In Figure B.1, this effect is illustrated by

the change in the input of the “new” bunchers with input demand between xm and xm
′

that

bunch only after the tax reduction, as well as the (counterfactual) effect on firms with input

consumption between xm and x̂ that also bunched prior to the tax change. The intuition of

the BR in response to a tax exemption is as follows. A tax exemption increases the number of

bunching firms (ψm
′
> ψm), yielding a second term that is positive. The third term reflects the

counterfactual change in electricity consumption of all bunchers in response to a tax reduction,

which is always positive. The BR can be calculated as the difference between the two and thus

gives a net effect, which is only positive when the additional input use of new bunchers exceeds

the counterfactual change of all bunchers in the absence of a notch.

When we log-transform the input variable x, we obtain:

η = ηMPR + ηBR,

where η = x∗ =
∫∞

0 (∂x∗/∂t) · (t/x∗)dG(ψ) denotes the average elasticity of the input use

x relative to a tax change, ηMPR =
∫∞

0 (∂xc/∂t)/(t/xc)g(ψ)dψ denotes the average price

elasticity of input in the absence of a notch, and ηBR =
∫ ψm

ψm′ (log(x̂)− log(xc)) tg(ψ)dψ −∫ ψx̂

ψm′ (∂x
c/∂t)(t/xc)g(ψ)dψ gives the BR.
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C. Appendix (for online publication)

C.1. Additional Robustness: RD Design

This section provides additional robustness checks regarding the treatment of outliers, functional

form assumptions, and choice of bandwidths. First, we focus on the bandwidth choice, which

is characterized by a compromise between precision and bias (Lee and Lemieux, 2010). Larger

bandwidths increase the number of observations in local linear regressions, for example, but can

also increase bias due to a worse approximation of the conditional mean of the outcome variable.

To ensure that the results are not due to a specific bandwidth choice, the left panel of Figure

C.1 depicts the ATTRD estimates for a variety of bandwidths ranging from 40 to 200% of the

MSE-optimal bandwidth choice used in the main section, highlighting statistically significant

ATTRD by diamonds. We focus on the main electricity variables in this section. The figure

illustrates that the estimates are robust to specific bandwidth choices and remain statistically

significant at the 10% level throughout.

Next, we investigate whether the results are robust to different ways of excluding outliers.

The right panel of Figure C.1 displays the ATTRD estimates for a variety of excluded per-

centiles, ranging from 0%, i. e. no outlier removed, to excluding the 10% of the sample with the

largest relative changes in electricity use between the period that determines eligibility and the

outcome period two years later. It demonstrates that the size of the estimates remains virtually

unchanged and that statistical significance is only lost for the ATTRD estimate on electricity

use in the extreme case of no outlier removal. Yet, the point estimates are highly aligned.

Another concern might be that the fit from local linear regressions is poor due to some

curvature in the conditional mean that could better be captured by more flexible polynomial

functions. We investigate this issue by estimating local quadratic regressions, using the band-

width of the preferred specification to facilitate comparability. Table C.1 shows that the ATTRD

point estimates are very similar to the estimates from the main specification. Only their pre-

cision deteriorates, which is not surprising as additional parameters need to be estimated and

degrees of freedom are lost.
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Figure C.1: Treatment Effects (ATTRD) under Different Bandwidths (Left Panel) and Alter-
native Outlier Definitions (Right Panel)
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Notes: Optimal bandwidths correspond to the bandwidths from the footnote of Table 3. The share of
outliers gives the percentage of observations that have been removed. For instance, a 2% share of outliers
correspond to a deletion of the top and bottom 1% with regard to relative electricity use changes between
the outcome year t and t− 2. Source: AFiD Panel, own calculations.

Table C.1: Robustness Fuzzy RD Design

Second order polynomials
ATTRD Std. Err. # of Obs.

Electricity use, in GWh 6.54 4.65 36,834
Effects on the fuel mix

Electricity share in total energy 0.34* 0.38 36,834
Oil share in total energy -0.12* 0.08 36,834
CO2 intensity of energy use 215.11* 236.64 36,843

Notes: Standard errors are clustered at the firm level. **,* denote statistical significance at the 5%,
10% level, respectively. The MSE-optimal bandwidth selector (Calonico et al., 2019) yields the following
bandwidths: 2.62, 1.53, 4.16, 1.77 GWh (in order of appearance).
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Figure C.2: Fuzzy RD Estimates for Varying Bandwidths
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Notes: Confidence intervals are calculated as proposed by Calonico et al. (2014). Optimal bandwidths
for the fuzzy RD analyses of all outcome variables are presented in the footnote of Table 3. Source:
AFiD Panel, own calculations.
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C.2. Additional Robustness: Matching DiD

Table C.2: Robustness Matching DiD - Sample Selection

Potential outliers removed 5-10 GWh electricity

ATTDiD SE ATTDiD SE
(1) (2) (3) (4)

Panel A: Electricity & fuel usage
Log electricity consumption 0.028** 0.013 0.038* 0.022
Log fossil fuel consumption -0.037 0.049 -0.05 0.07

Share of total energy mix:
Electricity [%] 0.009 0.006 0.001 0.007
Fossil fuel [%] -0.01 0.006 -0.005 0.007

Panel B: CO2 emissions
Log CO2, direct -0.03 0.049 -0.041 0.07
Log CO2, total 0.009 0.015 0.026 0.023

Panel C: Competitiveness indicators
Log employment -0.018 0.012 0.008 0.017
Log sales 0.009 0.017 0.012 0.033
Export share -0.007 0.007 -0.007 0.01
Indicator variable for investment -0.021 0.022 0.004 0.029
Indicator for investment in machinery -0.002 0.017 0 0.026
Log investment -0.077 0.124 0.026 0.163
# of observations 858 458
# treated plants 429 229

Notes: Outcome variables defined in differences 2013-2011. The table presents the
ATTDiD and standard errors (SE) from nearest neighbor (NN) matching without
replacement. Columns 1 and 2: potential outliers removed in line with RD design.
Columns 3 and 4: Sample limited to 5-10 GWh electricity consumption in base
year 2011. Robust standard errors following Abadie and Spiess (2019). * p<.1, **
p<.05, and *** p<.01.
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Alternative Propensity Score Definition

Table C.3: Propensity score: Strict Sub-sector Matching

Exempt 2013 Sub-sector 1 Sub-sector 2 Sub-sector 3 Sub-sector 4 Sub-sector 5

Electricity 2011 1.897** 3.141*** 1.959* 1.514 1.626***
(0.952) (0.693) (1.143) (1.426) (0.318)

Electricity 2010 0.15 0.282 1.287 0.698 0.817**
(1.187) (0.509) (1.107) (1.853) (0.351)

Electricity 2009 0.079 -0.128 -0.238 -0.376 1.359***
(1.306) (0.481) (0.769) (1.424) (0.433)

Electricity 2008 0.376 -0.144 0.358 1.33 0.317
(1.079) (0.226) (0.87) (0.835) (0.376)

Sales 0.377** -1.139*** -2.229*** -0.456* -1.38***
(0.164) (0.206) (0.349) (0.246) (0.153)

Employment -2.46*** -1.422*** -0.736** -2.542*** -2.063***
(0.209) (0.216) (0.341) (0.327) (0.24)

Observations 1,419 1,881 973 867 4,069
Pseudo R2 0.4 0.3 0.4 0.35 0.51

Notes: Main dependent variable: REL exempt 2013. Logit regression. Sample
trimmed to plants with 1-10 GWh electricity consumption in 2011. All dependent
variables refer to the base year, 2011. Unit of observation: plant. All variables are
in logs, except for shares. Each column refers to a separate logit estimation of the
propensity score (matches forced to be within same sub-sector). Sub-sectors defined
according to the mean energy intensity (original WZ 2008 definition in parenthesis)
sector 1: food (WZ 10,11), sector 2: chemicals & pharmaceuticals (WZ 19,20,21,22),
sector 3: paper & cement (WZ 17,23), sector 4: metal, electrical equipment, ma-
chinery and cars (WZ 24,25,26,27,28,29,30,33), and sector 5: textiles, leather, wood
processing and miscellaneous (WZ 13,14,15,16,18,31,32). BBGG algorithm, boot-
strapped standard errors in parentheses. * p<0.1, **p<0.05, and ***p<0.01.

Table C.4: Robustness: Matching DiD - Strict Sub-sector Matching

Matching algorithm 1:1 1:1 caliper 1:20 caliper

ATTDiD SE ATTDiD SE ATTDiD SE
(1) (2) (3) (4) (5) (6)

Panel A: Electricity & fuel usage
Log electricity consumption 0.046∗ 0.025 0.077∗∗ 0.031 0.046∗∗∗ 0.017
Log fossil fuel consumption −0.042 0.042 −0.084∗ 0.051 −0.011 0.038

Share of total energy mix:
Electricity [%] 0.017∗∗∗ 0.007 0.021∗∗∗ 0.008 0.007 0.005
Fossil fuel [%] −0.009 0.006 −0.024∗∗∗ 0.008 −0.006 0.005

Panel B: CO2 emissions
Log CO2, direct −0.033 0.042 −0.08 0.05 0.003 0.039
Log CO2, total 0.019 0.018 0.023 0.023 0.045∗∗∗ 0.015

Panel C: Competitiveness indicators
Log employment −0.02∗ 0.012 −0.026∗ 0.014 −0.02∗ 0.011
Log sales −0.004 0.019 −0.002 0.023 −0.01 0.018
Export share −0.004 0.006 −0.011 0.009 −0.007 0.006
Indicator variable for investment −0.013 0.021 −0.013 0.028 −0.003 0.02
Indicator for investment in machinery 0.009 0.017 −0.002 0.024 0.001 0.016
Log investment −0.071 0.117 −0.137 0.158 −0.018 0.109
# of observations 912 765 2,245
# treated plants 456 456 456

Notes: Outcome variables defined in differences 2013-2011. The table presents the ATTDiD

and standard errors (SE) from nearest neighbor (NN) matching without replacement. Robust
standard errors following Abadie and Spiess (2019). * p<.1, ** p<.05, and *** p<.01.
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Figure C.3: Common trends: Strict Sub-sector Matching

Notes: Analysis of parallel pre-treatment trends for treated plants (REL exempted in 2013) and matched
control plants based on nearest neighbor matching and relying on strict sector propensity score matching
(Table C.3). The figure plots growth rate of the respective variables with respect to 2011, the year
determining treatment status. The vertical line indicates the reform in 2012.
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