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Abstract. Panel data models with fixed effects are widely used by economists and other

social scientists to capture the effects of unobserved individual heterogeneity. In this paper, we

propose a new integrated likelihood based approach for estimating panel data models when the

unobserved individual effects enter the model nonlinearly. Unlike existing integrated likelihoods

in the literature, the one we propose is closer to a genuine likelihood. Although the statistical

theory for the proposed estimator is developed in an asymptotic setting where the number of

individuals and the number of time periods both approach infinity, results from a simulation

study suggest that our methodology can work very well even in moderately sized panels of

short duration in both static and dynamic models.

1. introduction

A panel dataset, also known as a longitudinal dataset, consists of observations on indi-

viduals recorded over a period of time. This data structure is rich enough to allow economists

and other social scientists to estimate and test models of economic and social outcomes that

contain as explanatory variables not only individual characteristics observed by the researchers,

but also attributes unobserved to the researchers that vary across individuals but not across

time. Since these unobserved individual characteristics may be correlated with some or all

of the observed individual characteristics, simply ignoring them can lead to severely biased

statistical inference. Time-invariant (at least in the short-run) characteristics such as ability,

productivity, or latent cultural preferences, which vary only at the individual level and cannot

be seen by researchers analyzing the data, are referred to as “unobserved individual hetero-

geneity,” “unobserved individual effects,” or simply as “fixed effects,” in order to distinguish

them from variables such as gender and ethnicity, which are also time-invariant but typically

observed by researchers at the individual level. In this paper, we use the term “fixed effects.”

To justify the time-invariance of fixed effects, panel datasets in microeconometric ap-

plications are often characterized as being “short,” i.e., having the number of individuals (n)

much larger than the number of time periods (T ). It is therefore not surprising that, in many

papers, the asymptotic theory of inference for microeconometric panel data models is developed
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under the assumption that n→∞ and T is held fixed. In this setting, it is well known how to

estimate and test models with fixed effects without making distributional assumptions when

the fixed effects enter the model linearly and additively; cf., e.g., Chamberlain (1982, 1984),

Hsiao (1986), Baltagi (1995), Arellano (2003b), and Wooldridge (2010). By contrast, paramet-

ric distributional assumptions are usually needed to estimate models where the fixed effects

enter nonlinearly. Even then, there is only a limited class of nonlinear models that can be sat-

isfactorily studied in a unified manner due to the well known “incidental parameters problem”

(Lancaster, 2000). For instance, while it is known how to consistently estimate a panel logit

with fixed effects (Andersen, 1970; Chamberlain, 1980), the same approach does not work for

estimating probit models, a closely related specification (Magnac, 2004; Chamberlain, 2010).

The objective of this paper is to develop a unified methodology, based on a new inte-

grated likelihood (IL) approach, for estimating nonlinear panel data models with fixed effects

in a parametric likelihood framework. The IL we propose can be regarded as extending the

IL of Lancaster (2002) and Arellano and Bonhomme (2009). The statistical theory justifying

the proposed methodology is developed in a setting where both n and T are allowed to grow

such that n grows faster than T ; i.e., we also focus on short panels, although the validity of

our approximations is guaranteed only when n, T →∞.

The paper is organized as follows. Section 2 outlines the model. Section 3 compares

our work with Lancaster (2002) and Arellano and Bonhomme (2009). Sections 4–7 describe

our estimation approach and show that our IL possesses some desirable properties. Section 8

develops the asymptotic theory for the proposed estimator. Section 9 illustrates how our

approach works in some familiar settings, and Section 10 investigates its small sample properties

for logit, probit, and AR(1) designs. Section 11 concludes. Implementation details, additional

simulation results, technical assumptions and their justification, and all figures and proofs, are

in Appendices A–J, available as supplementary material for this paper.

2. the model

In this section, we specify our likelihood based model, the basic notation, and the sam-

pling and identification assumptions maintained throughout the paper. Technical assumptions

used to derive the results in this paper are in Appendix C.

Let Yit denote outcomes and Xit a vector of explanatory variables for i = 1, . . . , n and

t = 1, . . . , T . Hereafter, n, T ≥ 2 and “vector” means a column vector. The random variables

Yit and Xit are observed, with i indexing the individual and t the time. The fixed effect αi0 is

an unobserved random variable whose distribution is unknown.

Assumption 2.1 (Fixed effects). For each i, the unobserved random variable αi0 is continu-

ously distributed with support (a, b), where a, b ∈ R ∪ {−∞,+∞}, a < b, and a, b are known.
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Excluding Section 8, where we require (a, b) to be a bounded interval in order to show

consistency of our estimator (cf. Assumption C.5(vi) and the discussion following it), we allow

(a, b) = R in the remainder of the paper. In particular, (a, b) = R is maintained for all examples

in Section 9 and all simulation designs in Section 10. Henceforth, let YiT := (Yi1, . . . , YiT ) denote

the time-series of outcomes, and XiT := (Xi1, . . . , XiT ) the time-series of explanatory variables,

corresponding to the ith individual for the duration of the panel.

The distribution of (XiT , αi0) is unknown, which allows for arbitrary correlation between

the fixed effects and the explanatory variables. Given (XiT , αi0), the time-series YiT is drawn

from the conditional density fYiT |XiT ,αi0;θ0 , which is known up to a parameter θ0 ∈ int(Θ), where

Θ is a known subset of Rdim(θ0) with nonempty interior. It is assumed that fYiT |XiT ,αi0;θ0 is a

density with respect to an appropriate dominating measure (Lebesgue, counting, or a mixture

of both), which does not depend on (XiT , αi0, θ0); the dominating measure is, therefore, not

explicitly specified.

Assumption 2.2 (Identification). θ0 is identified, i.e., uniquely defined.

In particular, as specified in Assumption C.5(vii), θ0 is identified as the well-separated

global maximum of the limit (as n, T →∞) of the expected “target” loglikelihood (defined in

Section 3) for the sample. The presence of αi0 implies that parameters associated with observed

time-invariant explanatory variables are, in general, not identifiable. For instance, suppose

that a vector of observed time-invariant explanatory variables Zi enters the model density as

fYiT |XiT ,bi(Zi,δ0,αi0);θ0 , where the time-invariant function bi takes values in (a, b) and is known up

to a finite dimensional parameter δ0, e.g., bi(Zi, δ0, αi0) = Z ′iδ0 +αi0 provided Z ′iδ0 +αi0 ∈ (a, b).

Then, δ0 is not identified because, for each T , the density fYiT |XiT ,bi(Zi,δ0,αi0);θ0 is observationally

equivalent to the density fYiT |XiT ,α̃i0;θ0 , where α̃i0 := bi(Zi, δ0, αi0) ∈ (a, b) is another fixed effect.

Consequently, Assumption 2.2 rules out time-invariant explanatory variables in XiT that have

a time-invariant relationship with αi0.

Assumption 2.3 (Sampling). (i) For each T , (Y1T ,X1T , α10), . . . , (YnT ,XnT , αn0) are indepen-

dently and identically distributed (i.i.d.); (ii) For each i, conditional on XiT , αi0, the outcomes

Yi1, . . . , YiT are independent ; (iii) For each i, conditional on αi0, the process (Yit, Xit)t∈N is

strictly stationary.

(i), which stipulates that observations across i are i.i.d., is typical in microeconometric

applications and is maintained throughout the paper. (ii) imposes conditional independence

within each i, hereafter referred to as “time-independence,” which rules out lagged outcomes

as explanatory variables, and is maintained everywhere except in Section 9.2. Although some

of the assumptions in Appendix C.2–C.4 are justified under time-independence, it is, in prin-

ciple, not necessary for the methodology developed in this paper to work. To illustrate this,
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we apply our approach to the linear dynamic panel data model in Section 9.2 without impos-

ing time-independence. (iii) rules out the presence of time-varying parameters or time-trends

in the model for the outcomes, i.e., there are no time-varying parameters or time-trends in

fYiT |XiT ,αi0;θ0 . The stationarity assumption is also maintained, e.g., in Hahn and Kuersteiner

(2002, 2011), Hahn and Newey (2004), Arellano and Bonhomme (2009), and Dhaene and

Jochmans (2015). Allowing for time-varying parameters in our approach is, in principle, pos-

sible. For instance, Mikailov (2017) has demonstrated that our approach goes through in the

Neyman-Scott model (Example B.1) in the presence of both time and fixed effects. However,

doing so will significantly increase the technical complexity of the proofs in the n, T → ∞
setting, cf., e.g., Fernández-Val and Weidner (2016), without affecting the raison d’être of the

methodology we propose. Therefore, (iii) is maintained throughout the paper.

Since αi0 is an unobserved random variable, we can talk about the likelihood of a poten-

tial realization. Specifically, if θ ∈ Θ and αi ∈ (a, b) denotes a possible value taken by αi0, then

we define the likelihood of (θ, αi) for the ith individual to be LiT (θ, αi) := fYiT |XiT ,αi;θ(YiT ). The

average loglikelihood for the ith individual is denoted by `iT (θ, αi) := T−1 logLiT (θ, αi). We

will refer to θ as the parameter of interest, and call αi an individual specific nuisance param-

eter. The loglikelihood function (θ, αi) 7→ `iT (θ, αi) is assumed to be sufficiently well-behaved

so that derivatives with respect to (θ, αi), as many as needed in the paper, can be interchanged

with integrals respect to the density fYiT |XiT ,αi;θ, and the mixed partial derivatives are equal.

The score of `iT (θ, αi) with respect to θ is the (column) vector `iT θ(θ, αi) := ∇θ`iT (θ, αi),

where ∇θ := (∂θ)
′ is the gradient and “′” the transpose operator. Similarly, as αi is a scalar,

`iTα(θ, αi) := ∇α`iT (θ, αi) = ∂α`iT (θ, αi) denotes the score with respect to αi. We use fab := ∂b◦
∇af to denote mixed partial derivatives of second order. Consequently, `iT θθ(θ, αi) is a square

matrix, `iT θα(θ, αi) is a column vector, `iTαθ(θ, αi) is a row vector (with `′iTαθ = `iT θα), and

`iTαα(θ, αi) is a scalar. Third (and higher) order partial derivatives, when at most one derivative

with respect to θ is taken, are defined analogously. For instance, `iT θαα(θ, αi) := ∂2
α◦∇θ`iT (θ, αi)

is a column vector, `iTααθ(θ, αi) := ∂θ◦∂α◦∇α`iT (θ, αi) and `iTαθα(θ, αi) := ∂α◦∂θ◦∇α`iT (θ, αi)

are row vectors, and `iTαααα(θ, αi) := ∂3
α ◦ ∇α`iT (θ, αi) is a scalar.

Given (θ̌, α̌) ∈ Θ × (a, b), let E[`iTα(θ, αi); θ̌, α̌] :=
∫

supp(YiT )
`iTα(θ, αi)fYiT |XiT ,α̌;θ̌, where

supp(YiT ) denotes the support of YiT , and integration is with respect to the (unspecified)

dominating measure for f . The integral can be calculated analytically or numerically, de-

pending on the functional form of f . Integration with respect to fYiT |XiT ,αi0;θ0 is denoted by

E0, e.g., E0`iTα(θ, αi) := E[`iTα(θ, αi); θ0, αi0]. Similarly, var0 `iTα(θ, αi) := E0[`iTα(θ, αi) −
E0`iTα(θ, αi)]

2. We usually omit the arguments in functionals of E0`iT (θ, αi) when evaluated

at (θ0, αi0). E.g., we write E0`
2
iTα := E0`

2
iTα(θ0, αi0), E0`iT θα := E0`iT θα(θ0, αi0), E0`iTαα`iTα :=

E0`iTαα(θ0, αi0)`iTα(θ0, αi0), etc.. Since E0 is a conditional expectation and var0 a conditional

variance (both conditional on XiT , αi0), equalities and inequalities involving them hold w.p.1.
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This is the sense in which subsequent statements and assumptions regarding E0 and var0 should

be interpreted even when the “w.p.1” qualifier is missing. To avoid the proliferation of “w.p.1”

qualifiers each time E0 or var0 is mentioned, we do not state them explicitly hereafter.

Henceforth, to allow the number of time periods to grow simultaneously with the number

of individuals, let (Tn) be a sequence of positive integers such that Tn →∞ as n→∞. When

there is no danger of confusion, we do not indicate the dependence of estimators on n and T .

If AiT is an array, then the statement AiT = Op(1) is understood to hold coordinatewise.

3. previous work and our contribution

Since the distribution of YiT |XiT , αi is known up to (θ, αi), it is natural to estimate θ

by maximum likelihood while treating αi as a nuisance parameter. The fixed effects maximum

likelihood estimator (MLE) of θ is given by

θ̃ := argmax
θ∈Θ

max
α1,...,αn∈(a,b)

n−1

n∑
i=1

`iT (θ, αi). (3.1)

Unfortunately, since the number of nuisance parameters grows with the number of individuals,

the MLE of θ may not be consistent when n→∞ and T is fixed. Example B.1 in the supple-

mentary material, due to Neyman and Scott (1948), illustrates this phenomenon beautifully.

Since each individual contributes a single individual specific nuisance parameter, the

MLE in (3.1) can be written as θ̃ = argmaxθ∈Θ n
−1
∑n

i=1 `
p
iT (θ), where `p

iT (θ) := `iT (θ, α̂iT (θ))

is the average profile loglikelihood of θ for individual i after the nuisance parameters have been

concentrated out, and

α̂iT (θ) := argmax
u∈(a,b)

`iT (θ, u), θ ∈ Θ, (3.2)

is the MLE of αi for a given θ. Henceforth, for future reference, we let

α∗iT (θ) := argmax
u∈(a,b)

E0`iT (θ, u), θ ∈ Θ, (3.3)

and refer to it as the “population level MLE” of αi for a given θ. Following Pace and Salvan

(2006, Section 3.2), we refer to `iT (θ, α∗iT (θ)) as the “target” loglikelihood of θ for the ith

individual. The (infeasible) target loglikelihood satisfies all of the Bartlett identities because

it is a genuine loglikelihood.

The inconsistency of θ̃ (when n → ∞, T is fixed, and the profile likelihood is not a

conditional likelihood free of nuisance parameters as in Example 9.2), is due to the fact that

the individual specific nuisance parameters are poorly estimated when T is held fixed. Indeed,

from its definition it is clear that α̂iT (θ0) does not depend on n. Therefore, when α̂iT (θ0) 6= αi0,

α̂iT (θ0) will not converge to αi0 when n → ∞ and T is fixed. This is the sense in which the

individual specific parameters are poorly estimated when n→∞ but T is fixed. This implies

that the profile likelihood scores for each individual do not have zero mean when evaluated at
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the true parameter values (McCullagh and Tibshirani, 1990, Remark 2, p. 329). In fact, it is

shown in Appendix B that

E0∇θ`
p
iT (θ0) = Op(T−1), (3.4)

and that θ̃ is inconsistent, as n→∞ and T -fixed, where ∇θ`
p
iT (θ) = `iT θ(θ, α̂iT (θ)) is the profile

likelihood score of θ for the ith individual.

Since the score function of a genuine loglikelihood has zero mean, (3.4) reveals that the

bias of ∇θ`
p
iT (θ0) is of the order 1/T for each i. Hence, allowing T to grow (along with n) may

enable θ̃ to consistently estimate its true value θ0 as both n, T →∞. However, as is clear from

the Neyman-Scott model in Example B.2, this alone may not be sufficient to ensure that θ̃ is

asymptotically unbiased in the sense that the limiting distribution of
√
nTn(θ̃− θ0) is correctly

centered at the origin.

Research to solve this problem, namely, to construct an estimator whose asymptotic

distribution is correctly centered and whose asymptotic variance equals that of the fixed effects

MLE, has generated a large literature. E.g., Lancaster (2002) has suggested an IL approach

based on orthogonalizing the parameter of interest and the individual specific nuisance param-

eter using the “information orthogonalizing transformation (IOT);” cf. Cox and Reid (1987)

and Severini (2000, Section 3.6.4) on how the IOT is obtained. Lancaster’s approach can be

restrictive because the IOT may not exist when θ is a vector. Important applications where this

can happen include the AR(1) model with covariates (Lancaster, 2002, Section 3.2), and au-

toregressive models of order greater than one (this was conjectured by Lancaster, 2002, p. 663,

who did not provide a proof; a proof can be found in Dhaene and Jochmans, 2016, p. 1208).

It is thus desirable to obtain estimators of θ that do not require the IOT, so that

they are applicable in general situations where θ is a vector. One approach is to employ the

jackknife or analytical bias corrections. Cf., e.g., Hahn and Kuersteiner (2002), Woutersen

(2002), Arellano (2003a), Hahn and Newey (2004), Arellano and Hahn (2007), Carro (2007),

Bester and Hansen (2009), Fernández-Val (2009), Hahn and Kuersteiner (2011), and Dhaene

and Jochmans (2015). Alternatively, Arellano and Bonhomme (2009), henceforth AB, propose

an IL approach that does not require θ and αi to be orthogonal. Their estimator is θ̂AB :=

argmaxθ∈Θ n
−1
∑n

i=1
¯̀AB
iT (θ), where ¯̀AB

iT (θ) := T−1 log
∫
LiT (θ, α)ŵi(θ, α) dα is the log-IL of AB,

and ŵi is an individual specific data-dependent weight-function. The weights ŵ1, . . . , ŵn are

chosen such that the bias of the IL score for each i, when each ŵi is replaced by its population

counterparts and all parameters are evaluated at the truth, is of the order 1/T 2 as T →∞. For

each i, the population scores in AB’s approach can therefore be regarded as being “first-order

unbiased” as compared to the profile likelihood scores, whose bias is only of the order 1/T

(cf. (3.4)). Under the condition that limn→∞ n/Tn ∈ (0,∞),
√
nTn(θ̂AB − θ0) is asymptotically

normal with mean zero and variance equal to that of the fixed effects MLE. Recent works



7

similar to AB include De Bin, Sartori, and Severini (2015) and Pakel (2019), with the latter

allowing for both time-series and cross-sectional dependence.

Our goal is to construct an IL that behaves like the target likelihood for the parameter

of interest. The IL we construct to estimate θ is based on extending the approach in Severini

(2007) to panel data models. Specifically, the maximum integrated likelihood estimator (MILE)

that we propose is based on a certain data-dependent transformation of αi, called the “zero-

score-expectation (ZSE)” transformation, which is used to construct an IL possessing desirable

properties, irrespective of the weight-function used to integrate out the transformed nuisance

parameter. The ZSE transformation ensures that, regardless of the weight-function, our IL is

closer to the target likelihood, i.e., the Bartlett identities for it are closer to being satisfied,

which has positive implications for estimation and inference.

The usual approach to determine whether a random function behaves like a genuine

likelihood is to check if it satisfies the Bartlett identities, particularly score unbiasedness (the

1st Bartlett identity) and information unbiasedness (the 2nd Bartlett identity). In standard

parametric panel data models, the profile likelihood satisfies both identities with error O(1/T ).

The IL of AB and Lancaster satisfy the first identity with error O(1/T 2), whereas the second

holds with error O(1/T ), cf. Section 7.4. In contrast, our IL satisfies both identities with

error O(1/T 2), cf. Sections 7.3 and 7.4; i.e., unlike AB and Lancaster, our IL is simultaneously

first-order score and first-order information unbiased. There is, therefore, an intuitive sense in

which our IL improves upon those of AB and Lancaster. However, a rigorous proof that the

distance (in some metric) between our IL and the target likelihood is smaller than the distance

between the IL of AB or Lancaster and the target likelihood is beyond the scope of this paper.

Note that Pace and Salvan (2006, Section 3.3) have shown that in cross-sectional models the

Cox-Reid adjusted profile likelihood, which is not first-order information unbiased, and the

modified profile likelihood of Barndorff-Nielsen, which is first-order information unbiased, both

approximate the target likelihood to the same order. A Laplace approximation then suggests

that the same is generally true for all related ILs as well. Consequently, it is the higher order

terms that determine which IL better approximates the target likelihood. However, higher

order IL calculations are beyond the scope of this paper.

Before we show how the ZSE transformed IL and the MILE are constructed, we briefly

compare our paper with Severini (2007), AB, and Lancaster. There are no individual specific

parameters in Severini (2007), who studies a pure cross-sectional model with a nuisance pa-

rameter whose dimension does not grow with n. In this context, Severini defines the concept

of strong unrelatedness at the sample level and shows how to construct: (a) the ZSE transfor-

mation to create a nuisance parameter that is strongly unrelated to the parameter of interest,

and, based on this transformation, (b) an integrated likelihood with desirable properties. Un-

like us, Severini does not consider estimation or inference of the parameter of interest. Indeed,
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none of the results obtained in our paper — including the definition of strong unrelatedness at

the population level, the conditions under which the ZSE transformation and its inverse exist,

rigorous derivations of the desirable properties of the ZSE based IL, the relationship between

the ZSE transformation and the weight-functions of AB, the definition of the MILE and its ap-

plication to various panel data models, the consistency and asymptotic normality of the MILE

as n, T →∞, and its behavior in small samples — can be found in Severini (2007).

Compared to our approach, AB construct their IL differently. Namely, instead of trans-

forming αi, they find data-dependent weight-functions to define their IL. The MILE has the

same asymptotic distribution as θ̂AB, even though θ̂AB is motivated and implemented differently.

This is the sense in which our approach is complementary to that of AB (cf. Section 7.5 for more

on this). On the other hand, we also extend the approach of AB as follows: (i) Our IL, unlike

that of AB, is invariant to interest respecting transformations (Section 7.1). As a consequence,

the MILE, unlike θ̂AB, is also invariant to interest respecting transformations. (ii) Unlike the

IL of AB, no special “weight-functions” are needed to construct our IL (Section 7.2). Indeed, a

weight of unity, i.e., an “improper” weight-function, is sufficient for our IL to reduce both score

and information bias. In contrast, the weight-functions proposed by AB are only guaranteed

to reduce the score bias of their IL (Sections 7.3 and 7.4). Moreover, the results in Sections 7.3

and 7.4 can be used to characterize the conditions under which the AB weights can reduce

both score and information bias (Section 7.5). (iii) We show the asymptotic normality of the

MILE under a weaker rate condition than AB and Hahn and Kuersteiner (2011). Namely, they

require limn→∞ n/Tn ∈ (0,∞), whereas we only require limn→∞ n/T
3
n = 0 (Sections 8.2 and

9.2). Note that limn→∞ n/Tn ∈ (0,∞) implies that n and Tn grow at the same rate, whereas

limn→∞ n/T
3
n = 0, which implies that T 3

n grows faster than n, allows for the possibility that Tn
itself can grow much slower than n. Hence, the smallness of T relative to n can be modeled

more flexibly under the second condition. (iv) In finite samples, the MILE outperforms θ̂AB,

especially strikingly when T is small (Section 10). Theoretical justification for this finding is

given in Sections 8.3 and 10.

Our methodology also extends Lancaster’s approach because the ZSE transformation

can exist even when the IOT does not (Section 4). Hence, our approach is applicable to

a wider class of models. Unlike Lancaster, our IL (and estimator) is invariant to interest

respecting reparametrizations of the original likelihood and is simultaneously first-order score

and information unbiased.

4. the zse transformation

The fixed effects MLE of θ is inconsistent because estimation of αi influences the estima-

tion of θ. We propose to fix this problem by transforming αi — using the ZSE transformation

of Severini (2007) defined subsequently — into a new “functional” nuisance parameter that
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is “strongly unrelated” to θ (Definition 4.1).1 This leads to a transformed likelihood, from

which the new nuisance parameter is eliminated by integrating it out. This IL is then used to

construct an estimator of θ having the desired properties. As mentioned earlier, unlike AB, the

choice of weight-functions used to integrate out the nuisance parameter is not critical in our

approach.

We begin by giving some intuition behind the ZSE transformation, which, loosely speak-

ing, is a data-based bijective function αi 7→ g(αi) such that g(α∗iT (θ)), the transformed popula-

tion level MLE of αi, does not depend on θ. How can such a mapping be constructed? Observe

that the first-order condition (FOC) for α∗iT (θ) is E[`iTα(θ, α∗iT (θ)); θ0, αi0] = 0. Hence, if g is

defined as solving E[`iTα(θ, αi); θ0, g(αi))] = 0 for each αi, then g(α∗iT (θ)) = αi0, i.e., g(α∗iT (θ))

does not depend on θ as desired. Although g constructed in this manner depends generally on

θ0 (which is unknown), a feasible version of g can be obtained by replacing θ0 by a preliminary

estimator, e.g., the fixed effects MLE, which is consistent as n, T → ∞. We now make these

notions precise.

Let giT θ0θ : (a, b) → (a, b) denote a function, which depends on i, T, θ0, θ, such that

for all αi ∈ (a, b), giT θ0θ(αi) satisfies the moment condition E[`iTα(θ, αi); θ0, giT θ0θ(αi)] = 0.

Following Severini (2007, p. 532), we will refer to α 7→ giT θ0θ(α) as the ZSE transformation and

φ := giT θ0θ(α) as the ZSE (nuisance) parameter corresponding to α for a given θ. The next

result shows that the existence and uniqueness of α 7→ giT θ0θ(α) and its inverse φ 7→ hiT θ0θ(φ),

which is required to define the transformed likelihood in terms of the ZSE parameter, follows

from the implicit function theorem.

Lemma 4.1. Let E0`
2
iTα(θ0, αi0) > 0. Then: (i) There exist open sets B1 3 θ0, D1i 3 αi0,

and C1i 3 αi0, such that, for each (θ, α) ∈ B1 ×D1i, there is a unique number giT θ0θ(α) ∈ C1i

satisfying E[`iTα(θ, α); θ0, giT θ0θ(α)] = 0. (ii) There exist open sets B2 3 θ0, D2i 3 αi0, and

C2i 3 αi0, such that, for each (θ, φ) ∈ B2 × D2i, there is a unique number hiT θ0θ(φ) ∈ C2i

satisfying E[`iTα(θ, hiT θ0θ(φ)); θ0, φ] = 0. (iii) There exists an open set B ⊂ B1 ∩ B2 with

θ0 ∈ B, and an open set Di ⊂ D1i ∩D2i with αi0 ∈ Di, such that, for each θ ∈ B, hiT θ0θ is the

inverse of giT θ0θ on Di, i.e., for each θ ∈ B, hiT θ0θ ◦ giT θ0θ and giT θ0θ ◦ hiT θ0θ are the identity

map on Di.

Lemma 4.1(ii) implies that the domain of the inverse ZSE transformation hiT θ0θ, denoted

by D(hiT θ0θ) := {φ ∈ (a, b) : the equation E[`iTα(θ, h); θ0, φ] = 0 can be solved for h}, is a

nonempty subset of (a, b) for each θ close enough to θ0. However, if `iT (θ, αi) is sufficiently

well behaved, then the argument in the next paragraph suggests that D(hiT θ0θ) = (a, b) for

1Since αi is individual specific, we are free to transform it provided the transformed value is also individual

specific so that the interpretation of the model is not altered. Strong unrelatedness of the parameters has

several important consequences. Cf. the discussion after Lemma 4.2, and Section 7, for more on this.
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each θ0, θ ∈ Θ, i.e., the inverse ZSE transformation exists globally on (a, b). Indeed, in specific

examples, such as those considered in Section 9, it is easy to see that, for each θ0, θ ∈ Θ, the

inverse ZSE transformation hiT θ0θ exists and D(hiT θ0θ) = (a, b).

Let (θ, φ) ∈ B2 × D2i. If the optimization problem maxu∈D2i
E[`iT (θ, u); θ0, φ] has a

unique solution then, by Lemma 4.1(ii), that solution must be hiT θ0θ(φ). In other words,

hiT θ0θ(φ) is the population level MLE of αi ∈ D2i when the true value of (θ, αi) is (θ0, φ) ∈
B2 × D2i. Extending this analogy, if the population level MLE of αi ∈ (a, b) exists for all

true values of (θ, αi) in Θ× (a, b), i.e., if the optimization problem maxu∈(a,b) E[`iT (θ, u); θ0, φ]

has a unique solution for each (θ, θ0, φ) ∈ Θ × Θ × (a, b) — which, e.g., is the case if u 7→
E[`iT (θ, u); θ0, φ] is strictly concave on (a, b) for each (θ, θ0, φ) ∈ Θ×Θ×(a, b) — then, for each

θ0, θ ∈ Θ, the inverse ZSE transformation hiT θ0θ exists and D(hiT θ0θ) = (a, b). In addition to

providing a statistical interpretation to hiT θ0θ, this argument also helps explain why the inverse

ZSE transformation can exist even when the IOT does not.2

The population level MLE interpretation of hiT θ0θ justifies its global, i.e., for all θ0, θ ∈ Θ,

existence as compared to Lemma 4.1, which only gives the conditions for its local, i.e., for θ

close to θ0, existence. This is the motivation for Assumption C.1, which ensures that the ZSE

transformation exists globally as a bijection from (a, b)→ (a, b). Under Assumption C.1, which

strengthens Lemma 4.1, the inverse ZSE transformation hiT θ0θ exists globally as a function from

(a, b)→ (a, b), i.e., for each (i, T, θ0, θ) ∈ N×N×Θ×Θ, E[`iTα(θ, hiT θ0θ(φ)); θ0, φ] = 0 for φ ∈
(a, b). The inverse ZSE transformation is used to construct L̃0

iT (θ, φ) := LiT (θ, hiT θ0θ(φ)), the

infeasible (it depends upon θ0) ZSE transformed likelihood of (θ, φ) for the ith individual. The

usefulness of the corresponding loglikelihood ˜̀0
iT (θ, φ) := T−1 log L̃0

iT (θ, φ) = `iT (θ, hiT θ0θ(φ))

stems from a remarkable property of

φ∗iT (θ) := argmax
φ∈(a,b)

E0
˜̀0
iT (θ, φ), θ ∈ Θ,

the population level MLE of the ZSE parameter. This property, described in Lemma 4.2, is

the reason why the ZSE transformation is useful. But we first need the following definition.

Definition 4.1 (Strong unrelatedness). In the loglikelihood `iT (θ, αi), the individual specific

nuisance parameter αi is said to be strongly unrelated at the population level to the parameter

of interest θ if α∗iT (θ) = αi0 for each θ ∈ Θ.

In other words, αi is strongly unrelated to θ at the population level if its population level

MLE (for fixed θ) does not depend on θ. Severini (2007, p. 530) defines the strong unrelatedness

2The differential equations that define the IOT may not be solvable if dim(θ) > 1 (Cox and Reid, Section 2.3).

Hence, the IOT is not guaranteed to exist if θ is a vector. However, as the inverse ZSE transformation is

characterized differently, it can exist even when the IOT does not. For instance, although the IOT does not

exist for an AR(1) model with covariates (Lancaster, 2002, Section 3.2), the calculations in Example 9.5 can

be straightforwardly extended to show that hiTθ0θ does exist in this model.
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property in terms of estimators. Definition 4.1 is the analogous version in terms of population

level parameters.

Lemma 4.2. Under Assumption C.1, θ 7→ φ∗iT (θ) is constant on Θ. In particular, φ∗iT (θ) = αi0
for each θ ∈ Θ.

Lemma 4.2 reveals that, in the infeasible ZSE transformed loglikelihood ˜̀0
iT (θ, φ), the

ZSE parameter φ is strongly unrelated to the parameter of interest θ at the population level.

In asymptotic expansions, strong unrelatedness of φ and θ allows φ∗iT (θ) to be replaced by αi0
without creating bias. For instance, this is used to justify Assumptions C.3(vi, vii), which

are required to simplify the form of the individual log-IL (cf. (F.1)), and to show that it is

insensitive to the choice of the weight-function (Section 7.2). The strong unrelatedness property

also suggests that eliminating φ from ˜̀0
iT (θ, φ) will not affect the estimation of θ. Indeed, as

demonstrated subsequently, it is the strong unrelatedness of φ and θ that reduces both score

and information bias for the ZSE transformed IL.

A consequence of φ and θ being strongly unrelated is that they are information orthog-

onal,3 i.e., as shown in Appendix D,

E0∇2
θφ

˜̀0
iT (θ0, αi0) = 0, (4.1)

where ∇2
ab := ∂b ◦ ∇a and ∇2

θφ
˜̀0
iT (θ0, αi0) := ∇2

θφ
˜̀0
iT (θ, φ)

∣∣
θ=θ0,φ=αi0

. This shows that the ZSE

transformation makes θ and φ information orthogonal, even though it is not the IOT because it

is characterized differently. Indeed, since a nuisance parameter can be information orthogonal

to the parameter of interest without being strongly unrelated to it (cf. Example D.1), it follows

that the ZSE transformation and the IOT are different objects.

5. the mile

We are now ready to define our estimator. Although the inverse ZSE transformation

can be determined analytically in certain cases, cf. Examples 9.1, 9.2, and 9.5, it is typically

obtained numerically as in Examples 9.3 and 9.4 (cf. Appendix A.1 for details). In principle,

this is straightforward to do by fixing θ and then, for each given φ, finding a number h that

numerically solves the equation E[`iTα(θ, h); θ0, φ] = 0. In practice, however, θ0 is first replaced

by a preliminary estimator, e.g., the fixed effects MLE θ̃, which is consistent as n, T → ∞.

Then, given φ, the equation E[`iTα(θ, h); θ̃, φ] = 0 is solved numerically for h. The solution is

the function φ 7→ hiT θ̃θ(φ), the estimator of the inverse ZSE transformation φ 7→ hiT θ0θ(φ).

3The ZSE transformation is not just another device to orthogonalize the parameters. Indeed, it achieves

much more than simply orthogonalizing the parameters of the transformed likelihood, namely, it makes them

strongly unrelated. It is the strong unrelatedness of the parameters (and not the fact that they are information

orthogonal) that reduces both score and information bias for the ZSE transformed IL.
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Let L̃iT (θ, φ) := LiT (θ, hiT θ̃θ(φ)) denote the feasible version of L̃0
iT (θ, φ). Similarly,

˜̀
iT (θ, φ) := T−1 log L̃iT (θ, φ) = `iT (θ, hiT θ̃θ(φ)) is the feasible version of ˜̀0

iT (θ, φ). The feasible

ZSE transformed IL for θ ∈ Θ for the ith individual is defined to be

L̄iT (θ) :=

∫
(a,b)

L̃iT (θ, φ)πi(φ) dφ =

∫
(a,b)

LiT (θ, hiT θ̃θ(φ))πi(φ) dφ, (5.1)

where πi : (a, b)→ (0,∞) is a weight-function that does not depend on θ, and it is assumed that

the integral in (5.1) is finite for each θ ∈ Θ (the necessary condition that LiT (θ, hiT θ̃θ(·)) exists

for all θ ∈ Θ follows from Assumption C.1). Unlike AB, the choice of πi here is not critical.

Indeed, since ∇θL̄iT (θ) can be shown to be approximately independent of πi (Section 7.2),

which is why we do not indicate the dependence of L̄iT on πi, it is perfectly acceptable to let

πi := 1, which is what we do in the examples (Section 9) and the simulations (Section 10).

Let ¯̀
iT (θ) := T−1 log L̄iT (θ) denote the ZSE transformed log-IL for individual i. The

MILE of θ is defined to be θ̂ := argmaxθ∈Θ n
−1
∑n

i=1
¯̀
iT (θ), i.e.,4

θ̂ := argmax
θ∈Θ

n−1

n∑
i=1

T−1 log

∫
(a,b)

LiT (θ, hiT θ̃θ(φ))πi(φ) dφ. (5.2)

The definition of the MILE makes clear the difference between θ̂ and θ̂AB. Namely, we use the

data-dependent ZSE transformation of the nuisance parameter to define our IL, whereas AB

find a data-dependent weight-function for the nuisance parameter to define their IL.

The MILE can be iterated to remove its dependence on the preliminary estimator θ̃, and

perhaps even improve its finite sample properties: Once θ̂ becomes available, it is used to obtain

hiT θ̂θ, which is then employed to recompute the MILE as defined in (5.2). This yields the single-

iteration MILE θ̂(1) := argmaxθ∈Θ n
−1
∑n

i=1 T
−1 log

∫
(a,b)

LiT (θ, hiT θ̂θ(φ))πi(φ) dφ. Repeating

this process until convergence leads to the estimator denoted by θ̂(∞).

Remark 5.1. As with any interest respecting transformation (Section 7.1), the profile loglike-

lihood of the ZSE transformed loglikelihood ˜̀
iT (θ, φ), given by ˜̀

iT (θ, φ̂iT θ̃(θ)), where

φ̂iT θ̃(θ) := argmax
φ∈(a,b)

`iT (θ, hiT θ̃θ(φ)), θ ∈ Θ, (5.3)

is identical to the profile loglikelihood in the original parameterization, i.e., cf. Appendix D,

˜̀
iT (θ, φ̂iT θ̃(θ)) = `iT (θ, α̂iT (θ)), θ ∈ Θ. (5.4)

4Although the ZSE transformed IL is constructed using the fixed effects MLE, whose asymptotic distribution

is biased as n, T →∞, it is shown in Section 8.2 that the limiting distribution of the MILE is correctly centered

as n, T → ∞. Consequently, the MILE is not hindered by the fact that the preliminary estimator used to

construct hiT θ̃θ, namely, the fixed effects MLE, is asymptotically biased.
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Consequently, in the definition of the MILE, integrating out the ZSE parameter, instead max-

imizing it out, is critical because the optimization problem argmaxθ∈Θ

∑n
i=1 maxφ∈(a,b)

˜̀
iT (θ, φ)

simply yields the fixed effects MLE. �

6. approximating the zse transformed il

To show the properties of the ZSE transformed IL in Section 7, and to demonstrate the

consistency and asymptotic normality of θ̂ in Section 8, we require the Laplace approximation

of ¯̀
iT (θ). Lemma 6.1, proved in Appendix E, provides a uniform (in θ) Laplace approximation

of ¯̀
iT (θ). Henceforth, let cT := (2T )−1 log(2π/T ). Throughout this section, if not stated

explicitly, limits are taken as T →∞.

Lemma 6.1 (Laplace approximation). Let Assumptions 2.1–C.2 hold and θ̃ ∈M. Then,

¯̀
iT (θ) = cT + `iT (θ, α̂iT (θ))− 1

2T
log(−˜̀

iTφφ(θ, φ̂iT θ̃(θ))) +
1

T
log πi(φ̂iT θ̃(θ)) +RiT (θ) (6.1)

for θ ∈ Θ, where ˜̀
iTφφ(θ, φ) := ∂2

φ
˜̀
iT (θ, φ) and supθ∈Θ |RiT (θ)| = Op(T−2) as T →∞.

Assumption C.2 strengthens the conditions in Kass, Tierney, and Kadane (1990) to

ensure that T 2RiT (θ) is, uniformly in θ, bounded in probability. Uniformity in θ is needed to

show the consistency of the MILE (Section 8.1). The event θ̃ ∈M occurs w.p.a.1 as n, T →∞
because the fixed effects MLE is consistent as n, T →∞ (Assumption C.6).

It is clear from Lemma 6.1 that ¯̀
iT (θ), modulo a constant and an Op(T−2) remainder

term, is the sum of the profile loglikelihood, a term log(−˜̀
iTφφ(θ, φ̂iT θ̃(θ))) that reflects how

the ZSE transformation “additively corrects” the profile loglikelihood, and the weight-function

log πi(φ̂iT θ̃(θ)). It is the correction term log(−˜̀
iTφφ(θ, φ̂iT θ̃(θ))), which includes a contribution

from the inverse ZSE transformation (cf. (E.29)), that causes the IL, hence, the MILE, to

possess the desired properties. In contrast, the weight-function has no real effect on the MILE.

The correction term log(−˜̀
iTφφ(θ, φ̂iT θ̃(θ))) can be contrasted with the adjustment to

the profile loglikelihood in Cox and Reid (1987, Equation 10). Whereas Cox and Reid use

the IOT to transform the nuisance parameter, we use the ZSE transformation, which has the

advantage, relative to the IOT, that it can exist even when the IOT does not, and that it is

invariant to interest respecting reparametrizations (Section 7.1).

Lemma 6.1 has a useful corollary that can be used to gain intuition behind the form of

the ZSE transformed IL. Cf. Example 9.3 for an illustration.

Corollary 6.1. Under the assumptions of Lemma 6.1,

L̄iT (θ) =

√
2π

T

LiT (θ, α̂iT (θ))√
−`iTαα(θ, α̂iT (θ))

πi(φ̂iT θ̃(θ))

|∂φhiT θ̃θ(φ̂iT θ̃(θ))|
(1 +Op(T−1)), θ ∈ Θ,

where the Op(T−1) term holds uniformly in θ ∈ Θ.
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A closed-form expression for ∂φhiT θ̃θ(φ̂iT θ̃(θ)) can be obtained from (I.4), although it

is often easier to obtain ∂φhiT θ̃θ(φ̂iT θ̃(θ)), and φ̂iT θ̃(θ), directly from the equation defining the

inverse ZSE transformation; cf. Example 9.3 for details.

7. properties of the zse transformed il

In this section, we show that the infeasible ZSE transformed IL, defined as L̄0
iT (θ) :=∫

(a,b)
L̃0
iT (θ, φ)πi(φ) dφ =

∫
(a,b)

LiT (θ, hiT θ0θ(φ))πi(φ) dφ, and the corresponding log-infeasible-IL,

given by ¯̀0
iT (θ) := T−1 log L̄0

iT (θ), possess some desirable properties, which provide the intuition

behind why the MILE is robust to the choice of the weight-functions and behaves very well

in finite samples. Specifically, it is shown that: (1) L̄0
iT (θ) is invariant to interest respecting

reparametrizations of LiT (θ, αi); (2) the weight-function πi is irrelevant in the sense that the

mean and variance of the IL score are (approximately) independent of πi; (3) the IL score is

first-order unbiased (in some cases, e.g., the Neyman-Scott model in Example 9.1 and the linear

AR(1) model in Example 9.5, the score of the IL defined with πi := 1 can be exactly unbiased).

(4) the information bias is also of the order 1/T 2; and (5) there is a connection between the

ZSE transformed IL and the IL of AB. This is used to characterize the conditions under which

the AB weights can reduce both score and information bias. Throughout this section, limits

are taken as T →∞.

7.1. Invariance. An interest respecting transformation, i.e., a map of the form (θ, αi) 7→
(θ, b(αi)), where b is a bijection from (a, b) → (a, b), does not change the ZSE transformed

likelihood. In other words, LiT (θ, ·) and LiT (θ, b−1(·)) both yield the same L̃0
iT (θ, ·). To see

this, recall that if the true value of (θ, αi) is (θ0, φ), then the population level MLE of αi using

the likelihood LiT (θ, αi) is hiT θ0θ(φ). Thus, by the equivariance of optimizers (Lemma D.1), the

population level MLE of βi using the likelihood LiT (θ, b−1(βi)), when the true value of (θ, βi)

is (θ0, φ), is b(hiT θ0θ(φ)). Hence, L̃0
iT (θ, φ) does not change, which implies that L̄0

iT (θ) remains

invariant to interest respecting transformations. Since the same argument applies to the feasible

integrated likelihood L̄iT (θ), it follows that the MILE remains invariant to interesting respecting

transformations, a property not shared by the estimators of AB and Lancaster.

Henceforth, the second argument in functionals of `iT (θ, αi) is omitted when αi is eval-

uated at α∗iT (θ), the population level MLE of αi. E.g., we write the target loglikelihood as

`iT (θ) := `iT (θ, α∗iT (θ)), and `iTα(θ) := `iTα(θ, α∗iT (θ)). Similarly, the second argument in func-

tionals of ˜̀0
iT (θ, φ) is omitted when φ is evaluated at αi0, which, by Lemma 4.2, is the population

level MLE of φ in the ZSE transformed likelihood. E.g., we write ˜̀0
iTφ(θ) := ˜̀0

iTφ(θ, φ)|φ=αi0

and ˜̀0
iTφφ(θ) := ˜̀0

iTφφ(θ, φ)|φ=αi0 . Properties 2, 3, and 4, which involve taking expectations and

derivatives of ¯̀0
iT , are shown under Assumption C.4. Such an assumption is also used in Hahn
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and Newey (2004, p. 1303) and, implicitly, in AB. The derivatives of ¯̀0
iT , which are functions

of the derivatives of hiT θ0θ, are well defined under Assumption C.13.

7.2. Irrelevance of πi. Let φ̂iT θ0(θ) = argmaxφ∈(a,b) `iT (θ, hiT θ0θ(φ)) denote the infeasible (it

depends on θ0) sample analog of φ∗iT (θ). Since θ0 ∈M, by Lemma 6.1 we have

¯̀0
iT (θ) = cT + `iT (θ, α̂iT (θ))− 1

2T
log(−˜̀0

iTφφ(θ, φ̂iT θ0(θ))) +
1

T
log πi(φ̂iT θ0(θ)) +R0

iT (θ), (7.1)

where supθ∈Θ |R0
iT (θ)| = Op(T−2), and the remainder R0

iT is obtained from Lemma 6.1 upon

replacing θ̃ with θ0. Further expanding the terms log(−˜̀0
iTφφ(θ, φ̂iT θ0(θ))) and log πi(φ̂iT θ0(θ)),

it is shown in Appendix F that5

¯̀0
iT (θ) = cT + `iT (θ, α̂iT (θ))− 1

2T
log(−E0

˜̀0
iTφφ(θ))− 1

2T
CiT (θ)

+
1

T
log πi(αi0)− π̇i(αi0)

1

T
PiT (θ) +Op(

1

T 2
), θ ∈ Θ, (7.2)

where CiT (θ) defined in (F.4) satisfies E0CiT (θ) = 0 for each θ, PiT (θ) defined in (F.19) satisfies

E0PiT (θ) = 0 for each θ (CiT and PiT do not depend on πi), and π̇i(φ) := ∂φ log πi(φ).

Let ¯̀0
iT θ(θ) := ∇θ

¯̀0
iT (θ) denote the score corresponding to ¯̀0

iT (θ). We demonstrate that

E0
¯̀0
iT θ(θ0) and var0

¯̀0
iT θ(θ0) are approximately independent of πi in the sense that they do

not depend on πi, up to a term of order 1/T 2. Indeed, (7.2) reveals that ¯̀0
iT θ(θ) depends on

πi through multiplication with T−1∇θPiT (θ) and the derivative of remainder term. However,

E0∇θPiT (θ0) = 0 by differentiating the identify E0PiT (θ) = 0, cf. (F.20), and the expecta-

tion (E0) of the derivative of remainder term is Op(T−2) by Assumption C.4. It follows that

E0
¯̀0
iT θ(θ0) does not depend on πi, up to a term of order 1/T 2. Furthermore, it is shown in

Appendix F (cf. p. 75 of the supplement) that elements of the matrix var0
¯̀0
iT θ(θ0) also do not

depend on πi, up to a term of order 1/T 2.

Remark 7.1 (Why n/T 3 → 0?). The fact that the mean and variance of the IL score are

independent of the weight-function πi up to a term of order 1/T 2, implies that πi will not

affect the limiting distribution of the IL score, hence, that of the MILE, if n/T 3 → 0. Indeed,

any term on the right-hand side of (7.2) whose derivatives with respect to θ have means and

variances (evaluated at θ0) of order 1/T 2 or smaller, will not affect the limiting distribution

of the MILE if n/T 3 → 0. To see the intuition behind this claim, without being distracted

by the presence of θ̃ in (5.2), consider the infeasible MILE θ̂0 := argmaxθ∈Θ n
−1
∑n

i=1
¯̀0
iT (θ),

which satisfies the FOC
∑n

i=1
¯̀0
iT θ(θ̂

0) = 0. Expanding each coordinate of ¯̀0
iT θ(θ̂

0) about θ0, we

5Equation (7.2) uses the fact that the ZSE parameter is strongly unrelated to θ at the population level.

Indeed, without the strong unrelatedness property, the Op(T−2) term in (7.2) would only be Op(T−1); cf. the

proof of (7.2) and Footnote 39 in the supplementary material.
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have that
√
nT (θ̂0 − θ0) = (− 1

n

n∑
i=1

∇2
θθ

¯̀0
iT (θ̄))−1

√
T

n

n∑
i=1

¯̀0
iT θ(θ0), where θ̄ lies between θ̂0 and

θ0.6 Hence, terms on the right-hand side of (7.2) whose derivatives have means and variances

of order 1/T 2 or smaller are asymptotically negligible and, thus, do not affect the limiting

distribution of the MILE if n/T 3 → 0. �

7.3. First-order score unbiasedness. It is shown in Lemma F.2 that the score of the infea-

sible ZSE transformed IL is first-order unbiased. Namely, for each i, the score of the infeasible

ZSE transformed IL satisfies the first Bartlett identity up to a term of order T−2, i.e.,

E0
¯̀0
iT θ(θ0) = Op(T−2). (7.3)

To get some intuition behind this result, note that7

E0
¯̀0
iT (θ)

(7.2)
= cT + E0`iT (θ, α̂iT (θ)) +BiT1(θ) + T−1 log πi(αi0) +Op(T−2), θ ∈ Θ,

where the CiT (θ) and PiT (θ) terms drop out because they have mean (E0) zero, BiT1(θ) is defined

in the proof of (7.3), and taking the expectation (E0) of the Op(T−2) remainder does not change

its rate (Assumption C.4). Differentiating with respect to θ, and using that ∇θE0
¯̀0
iT (θ) =

E0
¯̀0
iT θ(θ), it can be seen that the bias of the IL score has two sources: (a) the bias of the

profile likelihood score, i.e., ∇θE0`iT (θ, α̂iT (θ)); and (b) the gradient of the correction term,

i.e., ∇θBiT1(θ). It is shown in the proof of (7.3) that, evaluated at θ0, (a) and (b) cancel each

other out modulo a term of order T−2, thereby leaving E0
¯̀0
iT θ(θ0) of order T−2.

7.4. First-order information unbiasedness. It is shown in Lemma F.3 that, for each i, the

information equality for the infeasible ZSE transformed IL holds up to an Op(T−2) term, i.e.,8

TE0∇θ
¯̀0
iT (θ0)∂θ ¯̀0

iT (θ0) + E0∇2
θθ

¯̀0
iT (θ0) = Op(T−2). (7.4)

In other words, for each individual, the information of the infeasible ZSE transformed IL is first-

order unbiased. By contrast, as demonstrated in Appendix F (cf. page 84 of the supplementary

material), the weight-functions of AB do not, in general, reduce the information bias. The

result that Lancaster’s IL does not generally reduce the information bias follows from DiCiccio,

Martin, Stern, and Young (1996, Section 3.1, p. 194).

Information unbiasedness, i.e., the 2nd Bartlett identity, is useful for at least two impor-

tant reasons. First, information unbiasedness guarantees the asymptotic efficiency of the MLE

6Since the expansion is coordinatewise, the mean value θ̄ differs across the coordinates. However, in order

to avoid overloading the notation, this dependence is suppressed throughout the paper.
7The expression for E0

¯̀0
iT (θ) uses the fact that the ZSE parameter and θ are strongly unrelated at the

population level (because it follows from (F.1) and (F.3), and the latter are based on this property).
8The proof of (7.4) also uses the fact that the ZSE parameter and θ are strongly unrelated at the population

level (because it also requires (F.1) and (F.3), cf. (F.50)).
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(which is an M -estimator) by ensuring that the “sandwich form” of its asymptotic variance

equals the inverse of the Fisher information. Since the infeasible ZSE transformed IL is always

first-order information unbiased (read: close to being information unbiased), whereas the IL

of AB or Lancaster is not always first-order information unbiased (read: not close to being

information unbiased), this suggests that in finite samples the variance of the MILE may be

smaller than the variance of θ̂AB, at least when T is small.9 Second, information unbiasedness

is useful because it is fundamental for testing model specification. In panel data models with

fixed effects, it is not possible to directly test the specification of fYiT |XiT ,αi0;θ0 because αi0 is

unobserved. Instead, once the individual specific nuisance parameters have been eliminated,

an information matrix (IM) test can be applied to the ZSE transformed IL n−1
∑n

i=1
¯̀
iT (θ).

Equation 7.4 suggests that an IM test based on the ZSE transformed IL should have better

size properties than an IM test based on the IL of AB or Lancaster, because the information

equality is easier to reject using the IL of AB or Lancaster due to the fact that they have higher

information bias, namely, of order Op(T−1). However, investigating misspecification issues is

beyond the scope of our paper.

The fact that the score and information of the ZSE transformed IL are both first-order

unbiased suggests (as mentioned earlier in Section 3) that our IL is, at least in an intuitive

sense, closer to the target likelihood than the IL of AB or Lancaster.10

7.5. Relationship between the ZSE transformation and AB weight-functions. Unlike

the weight-functions in equations (12) and (14) of AB that only reduce score bias, the derivative

of the ZSE transformation can be characterized as a weight-function that reduces both score

and information bias. To see this, observe that

πi := 1 =⇒ L̄0
iT (θ) =

∫
(a,b)

LiT (θ, hiT θ0θ(φ)) dφ =

∫
(a,b)

LiT (θ, α)|∂αgiT θ0θ(α)| dα

by a change of variables. In other words, L̄0
iT (θ) (with πi := 1) can be interpreted as an IL based

on LiT (θ, ·) using the weight-function |∂αgiT θ0θ(·)|. Since we have already shown that L̄0
iT (θ) is

first-order score and information unbiased, it follows that |∂αgiT θ0θ(·)| is a weight-function for

LiT (θ, ·) that reduces both score and information bias.

9This is best seen from Table 2, which reveals that for the probit model — where the infeasible ZSE trans-

formed IL is first-order information unbiased, but the IL of AB and Lancaster are not — the variance of the

MILE is smaller than the variance of θ̂AB and Lancaster’s estimator for T = 5. Theoretical justification for this

is given in Section 10.2.
10The profile likelihood is, in general, also not first-order information unbiased (DiCiccio et al., p. 190). For

instance, it can be shown that in logit and probit models the information bias of the profile likelihood is of the

order T−1, whereas in the AR(1) model of Example 9.5 it is of order T−2 (Appendix H, p. 123). This suggests

that our IL is closer to the target likelihood than the profile likelihood as well.
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Since the weight-function |∂αgiT θ0θ(·)| reduces both score and information bias, we could

have used it to define the MILE as argmaxθ n
−1
∑n

i=1 T
−1 log

∫
(a,b)

LiT (θ, α)|∂αgiT θ̃θ(α)| dα.

However, given that giT θ̃θ is typically determined numerically, its derivative ∂αgiT θ̃θ will have

to be obtained numerically as well and this will increase the computational complexity of this

estimator. In contrast, θ̂ (with πi := 1) does not require the computation of derivatives of

hiT θ0θ and, hence, it is more stable to implement than the former. Of course, if giT θ0θ and hiT θ0θ
are known analytically, as in Example 9.5, then the two estimators will coincide.

Note that |∂αgiT θ0θ(·)| does not coincide with any of the specific members of the “robust”

class of weight-functions emphasized in AB and used in their simulations. Indeed, using (I.4),

it is straightforward to show that

∂αgiT θ0θ(α) = − 1

T

E[`iTαα(θ, α); θ0, giT θ0θ(α)]

E[`iTα(θ, α)`iTα(θ0, giT θ0θ(α)); θ0, giT θ0θ(α)]
. (7.5)

Comparing this expression with the weight-functions given in equations (12) and (14) of AB,

it is clear that |∂αgiT θ0θ(·)| is different from both of them.

A useful consequence of our results on information bias reduction is that we can provide

necessary and sufficient conditions for the weight-functions of AB to be both first-order score

and information bias reducing. Let wi(θ, ·) denote the infeasible weight-function in the IL of

AB. Then, as shown in Appendix F:

Proposition 7.1. wi(θ, ·) is first-order score and information bias reducing if and only if

(i) ∇θ[logwi(θ, α
∗
iT (θ))− log(

−E0`iTαα(θ)

TE0`iTα(θ)`iTα
)]
∣∣
θ=θ0

= Op(T−1) and

(ii) ∇2
θθ[logwi(θ, α

∗
iT (θ))− log(

−E0`iTαα(θ)

TE0`iTα(θ)`iTα
)]
∣∣
θ=θ0

= Op(T−1).

(i) ensures that wi eliminates the first-order score bias, and (ii) ensures that wi eliminates

the first-order information bias. (i) is similar, but not the same, to the condition in AB (Theo-

rem 2). The class of weight-functions satisfying (i) and (ii) is not empty. Indeed, using the fact

that giT θ0θ(α
∗
iT (θ)) = αi0, which follows from (D.9) and the strong unrelatedness of the ZSE pa-

rameter and θ at the population level (Lemma 4.2), it is straightforward to verify that ∂αgiT θ0θ
in (7.5) satisfies both (i) and (ii) exactly, i.e., with their Op(T−1) terms replaced by zero. In

fact, any weight-function of the form miT (θ, ·)∂αgiT θ0θ(·), where miT is a positive data based

function satisfying E0∇θ logmiT (θ, α∗iT (θ)) = Op(T−1) and E0∇2
θθ logmiT (θ, α∗iT (θ)) = Op(T−1),

will satisfy (i) and (ii).

8. asymptotic properties

In this section, we show that the MILE is consistent (Section 8.1), and asymptotically

normal with correct centering (Section 8.2). These results are used to compare the asymptotic
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behavior of the likelihood ratio statistics constructed using the ZSE transformed IL and the IL

of AB (Section 8.3). Let ¯̀·T (θ) := n−1
∑n

i=1
¯̀
iT (θ) denote the average integrated loglikelihood,

and Q∗·T (θ) := n−1
∑n

i=1 `iT (θ, α∗iT (θ)) the average target loglikelihood, for the entire sample.

Throughout this section, even when not mentioned explicitly, limits are taken as n, Tn →∞.

8.1. Consistency. It is shown in Appendix G that θ̂ is consistent for θ0 without imposing a

rate on Tn, i.e., Tn can grow faster or slower than n.

Theorem 8.1. Let Assumptions 2.1–C.2 and C.5 hold. Then, θ̂
p−→ θ0 as n, Tn →∞.

Assumption C.5 is standard in the literature in consistency arguments. The first few

conditions in Assumption C.5, e.g., compactness of Θ, boundedness of (a, b), well behavior of the

remainder term in Lemma 6.1, ensure that supθ∈Θ |¯̀·Tn(θ)−EQ∗·Tn(θ)| = op(1). The remaining

conditions in Assumption C.5, namely, the uniform convergence of Q∗·Tn(·) − EQ∗·Tn(·) on Θ

and the identification of θ0 as the well-separated maximum of EQ∗·Tn(·) for all n, Tn sufficiently

large, then lead to a straightforward proof of the consistency of θ̂.

8.2. Normality. It is shown in Appendix G that, for each i, the information equality holds

for the target likelihood, and that FiT := TE0[∇θ`iT (θ0)∂θ`iT (θ0)] is the partial information for

θ in the presence of αi, i.e.,

TE0[∇θ`iT (θ0)∂θ`iT (θ0)] + E0∇2
θθ`iT (θ0) = 0

FiT = FiT θθ −
F ′iTαθFiTαθ
FiTαα

,
(8.1)

where FiT θθ := −E0`iT θθ, FiTαθ := −E0`iTαθ, and FiTαα := −E0`iTαα. The following result,

where F := limn→∞ n
−1
∑n

i=1 EFiTn
Ass. 2.3(i)

= limn→∞ EF1Tn = limT→∞ EF1T denotes the limit

of the average expected partial information for θ, is proved in Appendix G.

Theorem 8.2. Let Assumptions 2.1–C.3 and C.5–C.12 hold. Then,
√
nTn(θ̂−θ0)

d−→ N(0, F−1)

as n, Tn →∞ and n/T 3
n → 0.

Assumptions C.3 and C.5–C.12 collectively ensure that, in a series of approximations,

replacing∇θ
¯̀
iTn ,∇2

θθ
¯̀
iTn in the FOC of the MILE with∇θ

¯̀0
iTn
,∇2

θθ
¯̀0
iTn

, and the latter with their

target loglikelihood versions ∇θ`iTn(θ0),∇2
θθ`iTn(θ0), does not affect the limiting distribution of√

nTn(θ̂−θ0), i.e., the MILE has the same asymptotic distribution as the maximizer of the target

likelihood for the entire sample. Assumption C.3 is used to simplify the right-hand side of (7.1),

and Assumption C.10 ensures that the infeasible IL influence function
√
Tn/n

∑n
i=1

¯̀0
iTnθ

(θ0)

can be replaced by the target likelihood influence function
√
Tn/n

∑n
i=1∇θ`iTn(θ0) by incurring

an Op(T
−1/2
n ) term. Assumption C.6 is maintained to ensure that the fixed effects MLE is

consistent. Assumption C.7 ensures that the inverse ZSE transformation is well behaved so

that the ZSE transformed IL is well approximated by the target likelihood. Assumption C.8
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ensures that twice differentiating the remainder in the Laplace approximation of the ZSE

transformed IL does not alter its rate of convergence, and Assumption C.9 guarantees the

same when the derivatives are averaged across the individuals. Assumption C.11 enables the

application of a central limit theorem (CLT) for triangular arrays, and Assumption C.12 allows

us to handle the hessian term in the FOC of the MILE. In Appendix C.6, we demonstrate how

these assumptions can be verified for the panel logit model in Example 9.3.

The standard error of θ̂ is easily obtained from the hessian of the integrated loglikelihood.

Indeed, the proof of (G.8) reveals that −n−1
∑n

i=1∇2
θθ

¯̀
iTn(θ̂)

p−→ F as n, Tn → ∞. Hence, the

variance of θ̂ is consistently estimated by F̂−1 with F̂ := −n−1
∑n

i=1∇2
θθ

¯̀
iTn(θ̂).

8.3. Inference. Since the ZSE transformed IL behaves like the target likelihood, inference for

θ0 can be based on the likelihood ratio (LR) statistic LRnT (θ) := 2nT [¯̀·T (θ̂) − ¯̀·T (θ)], θ ∈ Θ,

constructed using the MILE. It is shown in Appendix G that, under the conditions maintained

in Theorem 8.2,

LRnTn(θ0)
d−→ χ2

dim(θ0) as n, Tn →∞. (8.2)

This result can be used to test hypotheses and construct confidence regions for θ0. E.g., (8.2)

can be used to show that the lower-level random set {θ ∈ Θ : LRnTn(θ) ≤ kτ}, where τ ∈ (0, 1)

and kτ denotes the 1 − τ quantile of a χ2
dim(θ0) random variable, is a confidence region for θ0

whose coverage probability approaches 1− τ as n, Tn →∞.

Schumann, Severini, and Tripathi (2020), henceforth SST, show that the LR statistic

based on the ZSE transformed IL, which is first-order score and information unbiased, satisfies

E0LRnT (θ0) = dim(θ0) +Op(
n

T 3
) +Op(

1

T 2
) as n, T →∞, (8.3)

where, abusing notation, E0 now denotes expectation with respect to
∏n

i=1 fYiT |XiT ,αi0;θ0 , the

joint density of outcomes, given the explanatory variables, for the entire sample. In contrast,

LRAB
nT (·), the LR statistic based on θ̂AB and the IL of AB, which is only first-order score (but

not information) unbiased, satisfies

E0LRAB
nT (θ0) = dim(θ0) +Op(

n

T 3
) +Op(

1

T
) as n, T →∞. (8.4)

The right-hand side of (8.3) contains the remainder Op(T−2), whereas the right-hand side of

(8.4) contains the remainderOp(T−1). As explained in SST, this is because the ZSE transformed

IL is first-order information unbiased, whereas the IL of AB is not. It follows that E0LRnT (θ0)

is closer to its limiting value than E0LRAB
nT (θ0) due to the first-order information unbiasedness

of the ZSE transformed IL. The fact that the ZSE transformed IL is first-order information

unbiased thus helps explain why estimators that may have a similar mean squared error (MSE)

as the MILE can do worse in terms of the empirical coverage of the corresponding LR statistics

when T is small; cf. Section 10 for more on this.
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The performance of the LR statistic worsens for likelihoods that are neither first-order

score, nor first-order information, unbiased. For instance, SST show that LRp
nT (·), the LR

statistic based on the fixed effects MLE and the profile likelihood, which is neither first-order

score nor first-order information unbiased, satisfies

E0LRp
nT (θ0) = dim(θ0) +Op(

n

T
) +Op(

1

T
) as n, T →∞. (8.5)

Asymptotic unbiasedness of LRp
nT (θ0) requires T to grow faster than n, which explains why

the empirical size of the LR statistic based on the profile likelihood can be far from its nominal

level in short panels, as is evident from the simulation results in Section 10.

9. examples

We now demonstrate how the ZSE approach works in some familiar settings. Henceforth,

Λ(u) := eu/(1 + eu), u ∈ R, is the logistic cdf, λ(u) := dΛ(u)/du the logistic density, N denotes

the standard normal cdf, and n(u) := dN(u)/du the standard normal density. Throughout this

section, the ZSE transformed IL is constructed using πi := 1 and (a, b) = R.

9.1. Static models. The static models we consider are the Neyman-Scott model, panel pois-

son, panel logit, and panel probit.

Example 9.1 (Example B.1 contd.). In the Neyman-Scott model, the parameter of interest is

θ := σ2 and the likelihood for the ith individual is LiT (θ, αi) = (2π)−T/2θ−T/2e−
∑T
t=1(Yit−αi)2/2θ.

Hence, `iTα(θ, αi) =
∑T

t=1(Yit − αi)/Tθ and

E[`iTα(θ, αi); θ̌, α̌] =
1

Tθ

T∑
t=1

(E[Yit; θ̌, α̌]− αi) =
α̌− αi
θ

,

which implies that the ZSE transformation and its inverse are the identity mapping on R, i.e.,

giT θ0θ(αi) = αi and hiT θ0θ(φ) = φ. Thus, L̃iT (θ, φ) = LiT (θ, φ) because hiT θ0θ does not depend

upon θ0. Hence, letting Ȳi· :=
∑T

t=1 Yit/T , the ZSE transformed IL for the ith individual is

given by (modulo a factor that does not depend on θ)

L̄iT (θ) =

∫
R
L̃iT (θ, φ) dφ =

∫
R
LiT (θ, φ) dφ

= (2π)−(T−1)/2T−1/2θ−(T−1)/2e−
∑T
t=1(Yit−Ȳi·)2/2θ

∝
pdfYiT |αi;θ(YiT )

pdf∑T
t=1 Yit|αi;θ

(
∑T

t=1 Yit)
.

Thus, L̄iT (θ) is equal to the conditional likelihood, which does not depend upon αi because∑T
t=1 Yit is sufficient for αi. Therefore, the MILE coincides with the conditional maximum
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likelihood estimator (CMLE), i.e.,

σ̂2 =
1

n(T − 1)

n∑
i=1

T∑
t=1

(Yit − Ȳi·)2.

As shown in Appendix H, as n→∞ but T is held fixed,

σ̂2 − σ2
0 = Op(

√
1

nT
) +Op(

√
1

nT 2
)√

n(T − 1)(σ̂2 − σ2
0)

d−→ N(0, 2σ4
0).

(9.1)

Hence, unlike the fixed effects MLE, the MILE is consistent as n→∞, T -fixed. The asymptotic

normality of the MILE, as n→∞ and T is held fixed, is also a much more robust result than

the one demonstrated for the fixed effects MLE in (B.2). Letting ¯̀
iT θ(θ) := ∇θ

¯̀
iT (θ), note that

¯̀
iT θ(θ) = −(T − 1)

T

1

2θ2
[θ − 1

T − 1

T∑
t=1

(Yit − Ȳi·)2] =⇒ E0
¯̀
iT θ(θ0) = 0.

Therefore, the individual integrated loglikelihood scores are exactly unbiased for zero. Hence,

the MILE is just the generalized method of moments (GMM) estimator of σ2 based on the

moment condition E0[θ0 − 1
T−1

∑T
t=1(Yit − Ȳi·)2] = 0, and the limiting distribution in (9.1) can

also be obtained by applying GMM theory to this moment condition. �

Example 9.2 (Panel poisson). Let Yit
∣∣XiT , αi0; θ0

d
= Poisson(eX

′
itθ0+αi0), so that the likeli-

hood for the ith individual is LiT (θ, αi) = (
∏T

t=1 Yit!)
−1e−

∑T
t=1 e

X′itθ+αie
∑T
t=1 Yit(X

′
itθ+αi). Hence,

`iTα(θ, αi) = T−1(−
∑T

t=1 e
X′itθ+αi +

∑T
t=1 Yit) and

E[`iTα(θ, αi); θ̌, α̌] = T−1(−
T∑
t=1

eX
′
itθ+αi +

T∑
t=1

eX
′
itθ̌+α̌).

Consequently, the ZSE transformation and its inverse in the panel poisson model are

giT θ0θ(αi) = αi + log(

∑T
t=1 e

X′itθ∑T
t=1 e

X′itθ0
) & hiT θ0θ(φ) = φ+ log(

∑T
t=1 e

X′itθ0∑T
t=1 e

X′itθ
).

It follows that L̃0
iT (θ, φ) = CiT (φ, θ0)

e
∑T
t=1 YitX

′
itθ

(
∑T

t=1 e
X′itθ)

∑T
t=1 Yit

, where the constant CiT (φ, θ0) does

not depend upon θ. Hence, modulo a factor that does not depend on θ, we have that

L̄iT (θ) =
e
∑T
t=1 YitX

′
itθ

(
∑T

t=1 e
X′itθ)

∑T
t=1 Yit

∝ pmfYiT |XiT ,
∑T
t=1 Yit;θ

(YiT );

i.e., the ZSE transformed IL for individual i is just the conditional density of YiT given XiT and

the statistic
∑T

t=1 Yit, which is sufficient for αi. The MILE therefore coincides with the CMLE,

which is the fixed effects MLE for the Poisson family (Lancaster, 2002, p. 650). �
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Example 9.3 (Panel logit). Let Yit = 1(X ′itθ0 + αi0 + Uit > 0), where Ui1, . . . , UiT
∣∣XiT , αi0

d
=

LogisticIID. Since Pr(Yit = y|XiT , αi0; θ0) = (Λ(X ′itθ0 + αi0))y(1 − Λ(X ′itθ0 + αi0))1−y
1{0,1}(y),

y ∈ R, and the observations are independent across t, the likelihood for the ith individual

is LiT (θ, αi) =
∏T

t=1(Λ(X ′itθ + αi))
Yit(1 − Λ(X ′itθ + αi))

1−Yit . Consequently, `iTα(θ, αi) =

T−1
∑T

t=1(Yit − Λ(X ′itθ + αi)) and

E[`iTα(θ, αi); θ̌, α̌] = T−1

T∑
t=1

[Λ(X ′itθ̌ + α̌)− Λ(X ′itθ + αi)].

Using the MLE θ̃ as the preliminary estimator, the inverse ZSE transformation hiT θ̃θ solves11

T∑
t=1

[Λ(X ′itθ̃ + φ)− Λ(X ′itθ + hiT θ̃θ(φ))] = 0, φ ∈ R. (9.2)

Unlike the previous examples, there is no closed form solution for hiT θ̃θ. Consequently, there

is also no closed form expression for the ZSE transformed IL L̄iT (θ) =
∫
R(
∏T

t=1(Λ(X ′itθ +

hiT θ̃θ(φ)))Yit(1− Λ(X ′itθ + hiT θ̃θ(φ)))1−Yit dφ, which has to be obtained numerically as well.

In this example, we can use Corollary 6.1 to get some intuition behind the form of

the ZSE transformed IL. Begin by observing that here `iTαα(θ, αi) = −T−1
∑T

t=1 λ(X ′itθ + αi).

Moreover, differentiating (9.2) with respect to φ, we get that ∂φhiT θ̃θ(φ) =
∑T

t=1 λ(X ′itθ̃ +

φ)/
∑T

t=1 λ(X ′itθ+hiT θ̃θ(φ)). Hence, since hiT θ̃θ(φ̂iT θ̃(θ)) = α̂iT (θ) by (D.14), from Corollary 6.1

we have that

L̄iT (θ) =

√
2π

T
LiT (θ, α̂iT (θ))(

1

T

T∑
t=1

λ(X ′itθ+α̂iT (θ)))1/2 1

T−1
∑T

t=1 λ(X ′itθ̃ + φ̂iT θ̃(θ))
(1+Op(

1

T
))

for θ ∈ Θ. It is shown in Appendix H that φ̂iT θ̃(θ) is constant in θ, in particular,

φ̂iT θ̃(θ) = α̂iT (θ̃), θ ∈ Θ, (9.3)

which can interpreted as meaning that strong unrelatedness holds in the panel logit model at

the sample level as well. Consequently, the expression for L̄iT (θ) simplifies to

L̄iT (θ) = MiTLiT (θ, α̂iT (θ))(T−1

T∑
t=1

λ(X ′itθ + α̂iT (θ)))1/2(1 +Op(T−1)), θ ∈ Θ, (9.4)

where MiT :=
√

2π/T/T−1
∑T

t=1 λ(X ′itθ̃ + α̂iT (θ̃)) does not depend on θ. As noted in Arellano

(2003a, p. 443), the leading term in (9.4) is the modified profile likelihood for panel logit. It

is also a saddlepoint approximation to the density of YiT given XiT and the statistic
∑T

t=1 Yit,

11In this example, a direct argument can be used to show that D(hiT θ̃θ) = R for each θ̃, θ ∈ Θ, even

though there is no closed form solution for hiT θ̃θ. Indeed, given θ̃, θ ∈ Θ, let A(h) :=
∑T
t=1 Λ(X ′itθ + h) and

rφ :=
∑T
t=1 Λ(X ′itθ̃ + φ). The equation A(h) = rφ can be solved for all φ ∈ R, because h 7→ A(h) is strictly

increasing on R due to the fact dA(h)/dh =
∑T
t=1 λ(X ′itθ + h) > 0.
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which is sufficient for αi (Levin, 1990, p. 278). This suggests that θ̂ is a good approximation

of the CMLE. The approximation property of the MILE appears to hold even for small T

(cf. Table 1), although it is obtained using the fixed effects MLE (which is inconsistent as

n→∞, T -fixed) as the preliminary estimator.

We end this example by explicitly demonstrating that the ZSE parameter is strongly

unrelated to θ at the population level. Since hiT θ0θ satisfies (9.2) when θ̃ is replaced by θ0, it

follows that φ∗iT (θ) satisfies

T∑
t=1

Λ(X ′itθ0 + φ∗iT (θ)) =
T∑
t=1

Λ(X ′itθ + hiT θ0θ(φ
∗
iT (θ))) (θ ∈ Θ)

(D.10)
=

T∑
t=1

Λ(X ′itθ + α∗iT (θ))

=
T∑
t=1

Λ(X ′itθ0 + αi0). (FOC of α∗iT (θ))

Hence, φ∗iT (θ) is constant in θ, with φ∗iT (θ) = φ∗iT (θ0) = αi0 for each θ. In other words, the ZSE

parameter is strongly unrelated to θ at the population level (compare this with (9.3)). �

Example 9.4 (Panel probit). Let Yit = 1(X ′itθ0 +αi0 +Uit > 0), where Ui1, . . . , UiT
∣∣XiT , αi0

d
=

NIID(0, 1). Since the observations are independent across t, the likelihood for the ith individual

is LiT (θ, αi) =
∏T

t=1(N(X ′itθ + αi))
Yit(1−N(X ′itθ + αi))

1−Yit . Hence,

E[`iTα(θ, αi); θ̌, α̌] = T−1

T∑
t=1

(N(X ′itθ̌ + α̌)−N(X ′itθ + αi))G(X ′itθ + αi),

where G := n/N(1 − N) > 0 is the probit weight-function. Therefore, using the fixed effects

MLE as the preliminary estimator, the inverse ZSE transformation hiT θ̃θ solves12

T∑
t=1

(N(X ′itθ̃ + φ)−N(X ′itθ + hiT θ̃θ(φ)))G(X ′itθ + hiT θ̃θ(φ)) = 0, φ ∈ R. (9.5)

There is no closed form solution for hiT θ̃θ. As in Example 9.3, hiT θ̃θ and the ZSE transformed

IL L̄iT (θ) =
∫
R(
∏T

t=1(N(X ′itθ + hiT θ̃θ(φ)))Yit(1 −N(X ′itθ + hiT θ̃θ(φ)))1−Yit dφ must be obtained

numerically. A simple approximation of L̄iT (θ) as in (9.4) is not available in this example

because θ 7→ φ̂iT θ̃(θ) is not constant for panel probit. �

12As with panel logit, a direct argument can be used to show that D(hiTθ0θ) = R for each θ0, θ ∈ Θ. Let

φ ∈ R and note that a unique solution to the optimization problem maxu∈R E[`iT (θ, u); θ0, φ] exists for each

θ0, θ ∈ Θ because u 7→ E[`iT (θ, u); θ0, φ] is strictly concave on R, which follows from the strict concavity of the

probit loglikelihood (Amemiya, 1985, Section 9.2.3) and the monotonicity of integrals. Hence, following the

discussion after Lemma 4.1, hiTθ0θ : R→ R exists for each θ0, θ ∈ Θ.
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9.2. Dynamic model. In this section, we illustrate how our approach applies to a dynamic

version of the Neyman-Scott model, namely, a stationary Gaussian AR(1) panel data model,

without imposing time-independence on the response variables. The proofs of the results in this

section are independent from the rest of the paper, and do not require the assumptions made

in Appendix C.2–C.4. Using a direct approach, it is shown that the individual scores for the

parameter of interest in the infeasible ZSE transformed IL are exactly unbiased, the information

in the ZSE transformed IL is first-order unbiased, the MILE is consistent as n, Tn → ∞, and

its distribution is correctly centered as n/T 3
n → 0.

Example 9.5 (Dynamic Neyman-Scott model). Let Yit = µ0Yi,t−1 + αi0 + Uit, t = 1, . . . , T ,

where µ0 ∈ (−1, 1), Yi0 is assumed to be observed (AB, p. 514), and

(Ui1, . . . , UiT )
∣∣Yi0, αi0 d

= NIID(0, σ2
0). (9.6)

Here, XiT = Yi0. Hence, the likelihood for the ith individual, conditional on Yi0, is

LiT (µ, σ2, αi) = (2πσ2)−T/2 exp(− 1

2σ2

T∑
t=1

(Yit − µYi,t−1 − αi)2), (9.7)

which implies that `iTα(µ, σ2, αi) =
1

T
[−Tαi

σ2
− µ

σ2
Yi0 +

1

σ2
YiT +

1− µ
σ2

T−1∑
t=1

Yit]. Hence,

E[`iTα(µ, σ2, αi); µ̌, σ̌
2, α̌] =

1

T
[−Tαi

σ2
− µ

σ2
Yi0 +

1

σ2
βT +

1− µ
σ2

T−1∑
s=1

βs], (9.8)

where βs :=
∫
RT yis pdfN(µ̌Yi0+α̌,σ̌2)(yi1)

∏T
t=2 pdfN(µ̌yi,t−1+α̌,σ̌2)(yit) dyiT . . . dyi1. It is shown in

Appendix H that

βs = α̌
s−1∑
l=0

µ̌l + µ̌sYi0, s = 1, . . . , T. (9.9)

Plugging (9.9) in (9.8), we get E[`iTα(µ, σ2, αi); µ̌, σ̌
2, α̌] = 1

Tσ2 [−Tαi − a(µ, µ̌)Yi0 + α̌c(µ, µ̌)],

where a(µ, µ̌) := µ−µ̌T−(1−µ) µ̌−µ̌
T

1−µ̌ , c(µ, µ̌) := 1−µ̌T
1−µ̌ +(1−µ)κ(µ̌), and κ(µ̌) := 1

1−µ̌(T− 1−µ̌T
1−µ̌ ).

Thus, letting θ := (µ, σ2), the ZSE transformation and its inverse are

giT θ0θ(αi) = (Tαi + a(µ, µ0)Yi0)/c(µ, µ0) & hiT θ0θ(φ) = (φc(µ, µ0)− a(µ, µ0)Yi0)/T. (9.10)

Using the expression for hiT θ0θ, it is shown in Appendix H that

L̄0
iT (µ, σ2) =

√
T (σ2)−(T−1)/2 exp(− 1

2σ2

T∑
t=1

(Ÿit − µŸi,t−1)2)/c(µ, µ0), (9.11)

where Ÿit := Yit− Ȳi·, Ÿi,t−1 := Yi,t−1− Ȳi,−1, and Ȳi,−1 :=
∑T

t=1 Yi,t−1/T . Replacing µ0 in (9.11)

by the fixed effects MLE µ̃ :=
∑n

i=1

∑T
t=1 ŸitŸi,t−1/

∑n
i=1

∑T
t=1 Ÿ

2
i,t−1, it follows that the feasible
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ZSE transformed IL for the ith individual is given by

L̄iT (µ, σ2) =
√
T (σ2)−(T−1)/2 exp(− 1

2σ2

T∑
t=1

(Ÿit − µŸi,t−1)2)/c(µ, µ̃) (9.12)

= Lp
iT (µ, σ2)

√
Tσ/c(µ, µ̃), (9.13)

where (9.13) follows because α̂iT (µ, σ2) = Ȳi· − µȲi,−1 and the profile likelihood Lp
iT (µ, σ2) :=

LiT (µ, σ2, α̂iT (µ, σ2)) = (2πσ2)−T/2 exp(− 1
2σ2

∑T
t=1(Ÿit − µŸi,t−1)2). Hence, our IL can be re-

garded as a “modified” version of the profile likelihood with correction factor
√
Tσ/c(µ, µ̃).

The MILE (µ̂, σ̂2) solves ∇(µ,σ2)

∑n
i=1 log L̄iT (µ̂, σ̂2) = 0, i.e., µ̂ and σ̂2 jointly solve

1

σ̂2

n∑
i=1

T∑
t=1

Ÿi,t−1(Ÿit − µ̂Ÿi,t−1) +
nκ(µ̃)

c(µ̂, µ̃)
= 0

σ̂2 − 1

n(T − 1)

n∑
i=1

T∑
t=1

(Ÿit − µ̂Ÿi,t−1)2 = 0.

(9.14)

In the AR(1) example, as we now demonstrate, a direct approach can be used to show

that the individual scores for µ in the infeasible IL are exactly unbiased compared to the

individual scores for µ in the profile likelihood. This helps explain why µ̂ outperforms the

fixed effects MLE µ̃ markedly in the simulations. Begin by observing that since c(µ, µ0) > 0

(cf. Footnote 50 in the supplementary material),

¯̀0
iT (µ, σ2) =

1

T
[−(T − 1)

2
log σ2 − 1

2σ2

T∑
t=1

(Ÿit − µŸi,t−1)2 − log c(µ, µ0)]. (9.15)

Hence, since c(µ0, µ0) = T ,

E0
¯̀0
iTµ(µ0, σ

2
0) =

1

T
[

1

σ2
0

T∑
t=1

E0(Ÿit − µ0Ÿi,t−1)Ÿi,t−1 +
κ(µ0)

T
]. (9.16)

It is shown in Appendix H that

T∑
t=1

E0(Ÿit − µ0Ÿi,t−1)Ÿi,t−1 = − σ2
0

1− µ0

(1− 1

T

1− µT0
1− µ0

) = −σ2
0

κ(µ0)

T
, (9.17)

where the last equality follows from the definition of κ. Therefore, by (9.16),

E0
¯̀0
iTµ(µ0, σ

2
0) = 0 ⇐⇒ E0[

1

σ2
0

T∑
t=1

(Ÿit − µ0Ÿi,t−1)Ÿi,t−1 +
κ(µ0)

T
] = 0, (9.18)

i.e., the IL score for individual i is unbiased for zero. In contrast, it can be shown that the bias

of the profile likelihood score E0`
p
iTµ(µ0, σ

2
0) = O(1/T ) as T →∞. It follows that the individual

scores for µ in the ZSE transformed IL are exactly unbiased compared to the individual scores

for µ in the profile likelihood.
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A direct approach can also be used to demonstrate that, for each individual, the infor-

mation for µ in the ZSE transformed IL is first-order unbiased in the sense that the information

equality for µ holds up to an error of order T−2, i.e., as shown in Appendix H,

TE0[¯̀0
iTµ(µ0, σ

2
0)]2 + E0

¯̀0
iTµµ(µ0, σ

2
0) = O(T−2). (9.19)

The asymptotic behavior of µ̂ and σ̂2 as n, T → ∞ can also be obtained from first

principles. To demonstrate this, we focus on µ̂. Let â := (nT )−1
∑n

i=1

∑T
t=1 Ÿ

2
i,t−1, v̂(µ) :=

(n(T − 1))−1
∑n

i=1

∑T
t=1(Ÿit − µŸi,t−1)2, bT (µ1, µ2) := (

1−µT2
1−µ1 + T − 1−µT2

1−µ2 )−1(T − 1−µT2
1−µ2 ), and

γ̂(µ̂, µ̃) := v̂(µ̂)bT (µ̂, µ̃)/â. The following result shows that µ̂ is consistent for µ0 as n, Tn →∞,

by showing that µ̂ is a fixed point of a simple function.

Lemma 9.1. Let Eα2
i0 +EY 2

i0 <∞. Then, µ̂ solves µ̂ = [(1+ µ̃)−
√

(1− µ̃)2 − 4T−1γ̂(µ̂, µ̃)]/2,

and is a consistent estimator of µ0 as n, Tn →∞.

Since plimn→∞ γ̂(µ̂, µ̃)/Tn = 0 by Lemma H.1, the square-root term is well defined

w.p.a.1. It is evident from Lemma 9.1 that consistency of µ̂ holds irrespective of whether

Tn →∞ faster or slower than n→∞. Similarly, consistency of σ̂2 can be shown from (H.25)

and Lemma H.3. Next, we describe the distribution of µ̂ as n, Tn →∞. In what follows, keep

in mind that, in the AR(1) model, α∗iT (µ, σ2) = [−a(µ, µ0)Yi0 + αi0c(µ, µ0)]/T =: α∗iT (µ).

Lemma 9.2. Let Eα2
i0 + EY 2

i0 <∞. Then,

(â−Op(T−1
n ))

√
nTn(µ̂− µ0)

=
1√
nTn

n∑
i=1

Tn∑
t=1

Uit(Yi,t−1 + ∂µα
∗
iT (µ0)) +Op(

1√
Tn

) +Op(

√
n

T 3
n

). (9.20)

Furthermore, if Eα4
i0 + EY 4

i0 <∞, and n/T 3
n → 0 as n, Tn →∞, then√

nTn(µ̂− µ0)
d−→ N(0, 1− µ2

0). (9.21)

Existence of the fourth moments Eα4
i0,EY 4

i0 is used to show that Lindeberg’s condition

holds for (nTn)−1/2
∑n

i=1

∑Tn
t=1 Uit(Yi,t−1 + ∂µα

∗
iT (µ0)). Lemma 9.2 reveals that the asymptotic

variance of
√
nTn(µ̂ − µ0) equals that of the bias corrected estimator of Hahn and Kuer-

steiner (2002, Section 3, p. 1645), which coincides with the asymptotic variance of the fixed

effects MLE (Hahn and Kuersteiner, Theorem 1). Unlike Hahn and Kuersteiner, who use

limn→∞ n/Tn ∈ (0,∞) to prove their result, cf. their Condition 4, we only need the weaker

condition limn→∞ n/T
3
n = 0. Although Hahn and Kuersteiner derive their bias correction for

AR(1) models under a much weaker assumption on the model errors (compare (9.6) with Con-

dition 1(i) on p. 1641 of their paper), their Gaussian special case is the same as Example 9.5

(compare (9.6) and the assumption Eα2
i0 + EY 2

i0 <∞ with their Condition 4).
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Remark 9.1. (i) It is instructive to examine the moment conditions solved by the MILE in

this example. From (9.15), it is clear that

¯̀0
iTµ(µ, σ2) =

1

T
[

1

σ2

T∑
t=1

(Ÿit − µŸi,t−1)Ÿi,t−1 +
κ(µ0)

c(µ, µ0)
]

¯̀0
iTσ2(µ, σ2) = −(T − 1)

T

1

2σ4
[σ2 − 1

T − 1

T∑
t=1

(Ÿit − µŸi,t−1)2].

(9.22)

Note that ¯̀0
iTµ(µ, σ2) depends upon µ0, which is estimated by a preliminary estimator. To

allow for this, let γ0 := µ0 and assume that γ0 is identified via the single moment condition

E0m(YiT0, γ0) = 0, where YiT0 := (Yi0, Yi1, . . . , YiT ); e.g., if γ0 is estimated by the fixed effects

MLE, then m(YiT0, γ) :=
∑T

t=1(Ÿit − γŸi,t−1)Ÿi,t−1. Comparing (9.14) and (9.22), the MILE of

(µ0, σ
2
0) solves the exactly-identified system of moment conditions E0ρ(YiT0, µ0, σ

2
0, γ0) = 03×1,

where ρ(YiT0, µ, σ
2, γ) := (ρ1(YiT0, µ, σ

2, γ), ρ2(YiT0, µ, σ
2), ρ3(YiT0, γ))3×1 and

ρ1(YiT0, µ, σ
2, γ) :=

1

σ2

T∑
t=1

(Ÿit − µŸi,t−1)Ÿi,t−1 +
κ(γ)

c(µ, γ)

ρ2(YiT0, µ, σ
2) := σ2 − 1

T − 1

T∑
t=1

(Ÿit − µŸi,t−1)2

ρ3(YiT0, γ) := m(YiT0, γ).

Hence, the MILE (µ̂, σ̂2) is obtained by solving n−1
∑n

i=1 ρ(YiT0, µ̂, σ̂
2, γ̂) = 03×1. This suggests

that the MILE of (µ0, σ
2
0) may be consistent and asymptotically normal as n → ∞, T -fixed,

provided the preliminary estimator γ̂ is also consistent and asymptotically normal as n→∞,

T -fixed. This rules out γ̂ being the fixed effects MLE, because it well known that the fixed

effects MLE is inconsistent (as n → ∞, T -fixed) in this example (Nickell, 1981). However, if,

say, γ̂ is the instrumental-variables (IV) estimator of Anderson and Hsiao (1981), obtained by

letting m(YiT0, γ) :=
∑T

t=2(∆Yit−γ∆Yi,t−1)Yi,t−2, where ∆Yit := Yit−Yi,t−1, then γ̂ is consistent

as n → ∞, T -fixed, and GMM theory can be used to show consistency and obtain the joint

distribution of n1/2(µ̂− µ0) and n1/2(σ̂2 − σ2
0) as n→∞, T -fixed.

(ii) The MILE µ̂ differs from the estimator in Lancaster (2002, Equation 3.20) because

the MILE solves the FOC σ−2
∑n

i=1

∑T
t=1 Ÿi,t−1(Ÿit − µŸi,t−1) + nκ(µ̃)/c(µ, µ̃) = 0, whereas

Lancaster’s estimator solves the FOC σ−2
∑n

i=1

∑T
t=1 Ÿi,t−1(Ÿit−µŸi,t−1)+nκ(µ)/T = 0. Indeed,

Lancaster’s estimator of µ is just the GMM estimator based on the moment condition (9.18).

The limiting (n → ∞, T -fixed) distribution of Lancaster’s estimator of (µ, σ2), which is not

given in his paper, can therefore be easily obtained by applying GMM theory to (9.18) and the

moment condition for σ2, i.e., E0[σ2
0 − (T − 1)−1

∑T
t=1(Ÿit − µ0Ÿi,t−1)2] = 0. �
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10. simulation study

We now examine the small sample behavior of the MILE (θ̂), and its iterated versions

θ̂(1) and θ̂(∞), in the logit, probit, and AR(1) models. The results in this section are based

on 1000 Monte Carlo replications, and we use πi := 1 and (a, b) = R to compute the ZSE

transformed IL. To ensure a fair comparison between estimators based on the three different

integrated likelihoods available in the literature — namely, Lancaster’s IOT based IL, AB’s

weighted IL, and our ZSE transformed IL — the performance of the MILE is compared with

Lancaster’s estimator, two versions of θ̂AB (“observed” and “expected”), the fixed effects MLE,

and some other estimators, for n = 100, 500 and T = 5, 10, 20. Results for n = 100 (Tables 1–6)

are in the paper. Results for n = 500 (Tables 7–12), and all figures relating to the simulation

results, can be found in Appendix A of the supplementary material.

In the context of AB, “observed” refers to the IL of AB using the “robust” weight-

function, defined in their Equation 12, with expectations replaced by time-averages, whereas

“expected” is the IL of AB where their robust weight-function is estimated using expected

quantities with the true θ0 replaced by the MLE θ̃ and the true αi0 replaced by α̂iT (θ̃). Note

that, in their simulations, AB report θ̂AB(observed) and θ̂AB(infeasible), the latter being the

oracle estimator based on expected quantities and the true values of (θ0, αi0); cf. the discussion

on p. 519 of their paper.

10.1. Designs. The following designs are implemented in our simulation study.

10.1.1. Logit. We use the design in AB (Section 7.1), so that we can compare the MILE with

their estimator. In other words, Yit := 1(Xitθ0+αi0+Uit > 0), where Ui1, . . . , UiT
d
= LogisticIID

and independent of (XiT , αi0), the regressors XiT
d
= NIID(0, 1), αi0

d
= N(X̄i·, 1), and θ0 = 1.

The MILE is compared with the fixed effects MLE, which is inconsistent as n → ∞, T -fixed

(Chamberlain, 1980, p. 228); the CMLE (obtained using the clogit function in the survival

package), which is the benchmark for the panel logit model because it is consistent as n→∞,

T -fixed (Andersen, 1970, Section 4); the IOT based estimator of Lancaster (2000, Section 6.6);

and θ̂AB(observed) and θ̂AB(expected), implemented using Equations 36 and 37, respectively, of

AB. Unlike AB, we also report results for n = 500. The empirical coverage of the LR confidence

region constructed using the MILE and its iterated versions is compared with that based on

θ̂AB(observed, expected), Lancaster’s estimator, and the MLE.

10.1.2. Probit. Here, Yit := 1(Xitθ0 + αi0 + Uit > 0), where Ui1, . . . , UiT
d
= NIID(0, 1) and are

independent of (XiT , αi0), the regressors XiT
d
= NIID(0, 1), αi0

d
= N(X̄i·, 1), and θ0 = 1. The

MILE is compared with the fixed effects MLE, which is inconsistent in the n → ∞, T -fixed

setting, θ̂AB(observed, expected) implemented using Equation 12 of AB, and the IOT based

estimator of Lancaster (2000, Section 6.7). Note that AB do not report simulation results
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for panel probit in their paper. Also reported are the empirical coverage probabilities of the

LR confidence regions based on the MILE and its iterated versions, θ̂AB(observed, expected),

Lancaster’s estimator, and the MLE.

10.1.3. AR(1). Again, we use the design in AB (Section 7.2) so that we can compare the MILE

with their estimator; i.e., Yit := µ0Yi,t−1 + αi0 + Uit, where Ui1, . . . , UiT
∣∣Yi0, αi0 d

= NIID(0, σ2
0).

The initial condition is drawn from the stationary distribution of Yit, i.e., Yi0
d
= N(αi0/(1 −

µ0), σ2
0/(1 − µ2

0)), αi0
d
= N(0, 1), µ0 = 0.5, and σ2

0 = 1. The variance of the error term σ2
0 is

treated as known; the objective is to estimate µ0. The MILE µ̂ is compared with the fixed

effects MLE µ̃, which is inconsistent as n → ∞ and T is fixed; the IV estimator of Anderson

and Hsiao, the GMM estimator of Arellano and Bond (1991) based on the sequential moment

conditions EYi,t−k(∆Yit−µ∆Yi,t−1) = 0, t = 2, . . . , T , k = 2, . . . , t; the GMM estimator obtained

by pooling these T (T − 1)/2 moment conditions (the IV and GMM estimators are consistent

as n→∞, T -fixed); the IOT based estimator of Lancaster (2000, Section 6.5); µ̂AB(observed)

implemented using Equation 14 of AB, µ̂AB(expected) implemented using Equation 31 of AB,

and the iterated version of µ̂AB(expected).

The weight-function for θ̂AB(observed) requires an estimator of the long-run (T → ∞)

variance of `iTα. Since the observations in the AR(1) model are serially correlated, this was

obtained using the HAC estimator described in Equations 8 and 9 of Arellano and Hahn (2016)

constructed with the Bartlett kernel (note the typo in the expression for the Bartlett kernel

given on p. 257 of their paper) and bandwidth = 2. We set the bandwidth parameter, referred

to as the “degree of trimming” in Section 7.2 of AB, equal to 2 because, as reported by AB in

their Table II (p. 523), that value produced the smallest MSE for µ̂AB(observed).

In addition, we also report the empirical coverage probabilities of LR confidence regions

based on the MILE and its iterated versions, µ̂AB(observed, expected), the iterated version of

µ̂AB(expected), Lancaster’s estimator, and the MLE.

10.2. Results. The main findings of our simulation study, which follow our theoretical results

fairly closely, can be summarized as follows (a detailed discussion is in Appendix A.2):

(i) The bias of the MILE, Lancaster’s estimator, θ̂AB(observed, expected), and the fixed

effects MLE, is driven primarily by T , i.e., in each model, the biases of these estimators

for T = 5, 10, 20 are roughly the same for n = 100 and n = 500.

(ii) In the logit and probit designs, the MILE outperforms θ̂AB(observed, expected) and the

fixed effects MLE, and narrowly beats the MSE of Lancaster’s estimator, when T =

5. Indeed, for T = 5, there appears to be little difference between the distribution of

θ̂AB(observed) and the fixed effects MLE. Although the distribution of θ̂AB(observed)

approaches the distribution of the MILE as T grows, its bias is still large compared to

the MILE when T = 20. θ̂AB(expected) exhibits significantly less bias than θ̂AB(observed)
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for small T , although its bias is much larger than that of the MILE in the probit design

even when T = 20. The performance of Lancaster’s estimator is quite comparable to the

MILE and better than θ̂AB(expected). When T is small, the coverage probability of the

MILE-based LR confidence region is much closer to its nominal value (95%) than those

based on θ̂AB(observed, expected), Lancaster’s estimator, and the fixed effects MLE. A

comparison of the simulation results for the logit and probit designs suggests that the

MILE and Lancaster’s estimator work well for both with stable performance in terms

of bias. In contrast, θ̂AB(observed, expected) appears to work better for logit than for

probit, with higher bias for the probit design. The fixed effects MLE performs poorly in

both designs, though its bias is worse for probit.

(iii) In the AR(1) design, the MILE or one of its iterated versions are the best in terms of

the MSE for each T . The MILE exhibits some (upwards) bias when T = 5, but the bias

decreases rapidly as T grows, and for T = 20 it is almost perfectly centered at the truth.

In stark contrast, µ̂AB(observed) and the fixed effects MLE are substantially downwards

biased when T = 5. µ̂AB(expected) has significantly less bias than µ̂AB(observed), and

also less bias than the MILE (but not its iterated versions) when T = 5. Although the

magnitude of their bias decreases as T grows, µ̂AB(observed) and the fixed effects MLE are

still substantially downwards biased even when T = 20. Lancaster’s estimator, which does

not require any preliminary estimator, performs really well, e.g., it has the least bias for

T = 5. In each period, the iterated version of µ̂AB(expected) exhibits significantly less bias

than µ̂AB(expected) itself. Indeed, when T = 5, it is only narrowly beaten by MILE(∞)

in terms of the MSE. For T = 10, 20, the bias and variance of the MILE and its iterated

versions, the iterated version of µ̂AB(expected), and Lancaster’s estimator, are virtually

identical. The coverage probability of the LR confidence regions based on MILE(1) and

Lancaster’s estimator are much closer to the nominal value than their competitors. This

makes sense because MILE(1) and Lancaster’s estimator behave similarly in terms of

their bias and variance. The same reason explains the low coverage probabilities of the

confidence regions based on θ̂AB(observed) and the fixed effects MLE.

As noted in Section 8.3, the finding that the MILE-based LR confidence region has

better empirical coverage than the θ̂AB-based LR can be attributed to the fact that the ZSE

transformed IL is first-order information unbiased, whereas the IL of AB is not. This also

explains why, in the AR(1) design, even though the iterated version of µ̂AB(expected) beats

the iterated version of the MILE narrowly in terms of the MSE when T = 5, the coverage

probability of its LR confidence regions, unlike that of the iterated MILE, is much below

the nominal level. As expected, cf. the discussion following (8.5), the coverage of the profile

likelihood based confidence region is poor for each n, T .
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Let HnT := n−1
∑n

i=1 E0∇2
θθ

¯̀
iT (θ0) denote the expected hessian of the ZSE transformed

IL, and HnT (AB) := n−1
∑n

i=1 E0∇2
θθ

¯̀AB
iT (θ0) the expected hessian matrix of the IL of AB. One

reason why the MILE can have smaller finite sample variance than θ̂AB, at least when T is

small, follows from the results in SST, who show that, under certain conditions, as n, T →∞,

var0

√
nT (θ̂ − θ0) = −H−1

nT +Op(
n

T 3
) +Op(

1

T 2
)

var0

√
nT (θ̂AB − θ0) = −H−1

nT (AB) +Op(
n

T 3
) +Op(

1

T
),

(10.1)

where, abusing notation, var0 is now variance with respect to
∏n

i=1 fYiT |XiT ,αi0;θ0 . The presence

of the Op(T−2) term in the expression for var0

√
nT (θ̂− θ0), which is a consequence of the fact

that the ZSE transformed IL is first-order information unbiased, thus provides mathematical

justification behind why the MILE can have smaller variance than θ̂AB in finite samples when T

is small. However, our simulations reveal that the difference between the finite sample variance

of θ̂AB and the MILE is more pronounced for θ̂AB(observed) than θ̂AB(expected). Moreover, the

finite sample variance of the MILE is smaller than that of θ̂AB(observed) and θ̂AB(expected)

in the logit and probit designs, but not in the AR(1) design. This suggests that (10.1), which

is an asymptotic result, should be used with caution (as with all asymptotic results) to rank

the finite sample variances of the MILE and competing estimators. Indeed, (10.1) reveals that

the variance of the MILE and θ̂AB depend on the hessians and the constants in the Op terms.

Therefore, unless these hessians and constants are comparable across estimators, the ability of

(10.1) to rank finite sample variances can be limited.

Another reason why the MILE performs better than θ̂AB(observed) may be due to the

manner in which the AB weight-functions are constructed. The weight-functions used by

θ̂AB(observed) are obtained by replacing expectations with large-T consistent sample averages

(AB, Section 3.1). In other words, θ̂AB(observed) uses individual-specific time-series when

forming the weight-function so that, in finite samples, each weight-function is based on rel-

atively little data (recall that we are dealing with short panels here). More precisely, for

large-T consistent estimators we expect the difference between the estimator and estimand

to be Op(T−1/2). In contrast, the inverse ZSE transformation used to obtain the MILE de-

pends on the entire sample because we replace θ0 by the fixed effects MLE when construct-

ing the inverse ZSE transformation. However, the fixed effects MLE uses all of the data so

that it tends to be more accurate than individual-specific estimators. Indeed, as n, T → ∞,

θ̃− θ0
Ass. C.6(ii)

= Op((nT )−1/2) +Op(T−1)
( n
T
6→0)
= Op(T−1). Thus, the estimator used to construct

the ZSE transformed IL is more accurate than the estimator used by AB to construct their IL,

which also helps explain why the bias of the MILE is smaller than the bias of θ̂AB(observed).

This also explains why θ̂AB(expected) is less biased than θ̂AB(observed), which agrees with the

results in Schumann (2020).
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11. conclusion

We have demonstrated a new integrated likelihood based approach for estimating panel

data models when the fixed effects enter the model nonlinearly. Unlike existing integrated

likelihoods in the literature, the one we propose appears to be closer to the target likelihood

because it reduces score and information bias simultaneously. Reduction in information bias is

related to better performance of the MILE and the likelihood ratio statistic in panels of small

durations. Results from a simulation study suggest that, in both static and dynamic models,

our methodology can work very well even in moderately sized panels of short duration. One

issue not addressed in this paper is that of estimating marginal effects. Although it is possible

to estimate marginal effects using an integrated likelihood approach, addressing this complex

issue requires a separate treatment. Research on this topic is in progress, and will be reported

in another paper.
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Table 1. Simulation results for the logit model (n = 100).

T Estimator Mean Bias STD MSE MAE Median Bias

5 MILE 0.0885 0.1435 0.0284 0.1336 0.0850

MILE(1) 0.0885 0.1436 0.0285 0.1337 0.0850

MILE(∞) 0.0885 0.1437 0.0285 0.1337 0.0850

AB(observed) 0.2739 0.1879 0.1103 0.2824 0.2648

AB(expected) 0.1418 0.1535 0.0437 0.1685 0.1392

MLE 0.3271 0.1881 0.1423 0.3313 0.3216

Lancaster 0.1002 0.1455 0.0312 0.1403 0.0974

CMLE 0.0166 0.1346 0.0184 0.1081 0.0135

10 MILE 0.0175 0.0961 0.0095 0.0778 0.0151

MILE(1) 0.0175 0.0961 0.0095 0.0777 0.0151

MILE(∞) 0.0174 0.0960 0.0095 0.0777 0.0151

AB(observed) 0.0577 0.1019 0.0137 0.0928 0.0541

AB(expected) 0.0327 0.0981 0.0107 0.0821 0.0302

MLE 0.1310 0.1102 0.0293 0.1420 0.1282

Lancaster 0.0210 0.0966 0.0098 0.0787 0.0185

CMLE 0.0014 0.0948 0.0090 0.0758 −0.0008

20 MILE 0.0060 0.0636 0.0041 0.0505 0.0043

MILE(1) 0.0060 0.0636 0.0041 0.0505 0.0043

MILE(∞) 0.0060 0.0636 0.0041 0.0505 0.0043

AB(observed) 0.0167 0.0646 0.0045 0.0526 0.0150

AB(expected) 0.0109 0.0640 0.0042 0.0512 0.0091

MLE 0.0623 0.0681 0.0085 0.0749 0.0604

Lancaster 0.0075 0.0638 0.0041 0.0507 0.0056

CMLE 0.0026 0.0635 0.0040 0.0503 0.0008
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Table 2. Simulation results for the probit model (n = 100).

T Estimator Mean Bias STD MSE MAE Median Bias

5 MILE 0.0835 0.1119 0.0195 0.1107 0.0793

MILE(1) 0.0931 0.1137 0.0216 0.1171 0.0874

MILE(∞) 0.0928 0.1136 0.0215 0.1169 0.0871

AB(observed) 0.4303 0.2090 0.2288 0.4308 0.4096

AB(expected) 0.1819 0.1283 0.0495 0.1885 0.1738

MLE 0.3968 0.1668 0.1852 0.3970 0.3842

Lancaster 0.1089 0.1146 0.0250 0.1276 0.1031

10 MILE 0.0199 0.0703 0.0053 0.0570 0.0159

MILE(1) 0.0223 0.0704 0.0055 0.0576 0.0185

MILE(∞) 0.0223 0.0704 0.0055 0.0576 0.0185

AB(observed) 0.0924 0.0802 0.0150 0.1003 0.0875

AB(expected) 0.0671 0.0757 0.0102 0.0807 0.0622

MLE 0.1633 0.0860 0.0341 0.1646 0.1582

Lancaster 0.0275 0.0707 0.0058 0.0592 0.0236

20 MILE 0.0063 0.0488 0.0024 0.0393 0.0037

MILE(1) 0.0069 0.0488 0.0024 0.0394 0.0042

MILE(∞) 0.0069 0.0488 0.0024 0.0394 0.0042

AB(observed) 0.0248 0.0505 0.0032 0.0443 0.0219

AB(expected) 0.0269 0.0504 0.0033 0.0451 0.0238

MLE 0.0743 0.0538 0.0084 0.0778 0.0709

Lancaster 0.0085 0.0489 0.0025 0.0396 0.0057



36

Table 3. Simulation results for the AR(1) model (n = 100).

T Estimator Mean Bias STD MSE MAE Median Bias

5 MILE 0.0502 0.1204 0.0170 0.0906 0.0419

MILE(1) −0.0074 0.0701 0.0050 0.0486 −0.0068

MILE(∞) −0.0090 0.0612 0.0038 0.0469 −0.0068

AB(observed) −0.2919 0.0473 0.0874 0.2919 −0.2909

AB(expected) −0.0849 0.0525 0.0100 0.0868 −0.0822

AB(1)(expected) −0.0249 0.0585 0.0040 0.0510 −0.0245

IV 0.0047 0.1446 0.0209 0.1131 0.0043

Lancaster 0.0013 0.0648 0.0042 0.0524 0.0016

Arellano-Bond (GMM) −0.0845 0.1402 0.0268 0.1295 −0.0844

Arellano-Bond (Pooled) −0.0760 0.2359 0.0614 0.1902 −0.0699

MLE −0.3322 0.0467 0.1125 0.3322 −0.3317

10 MILE 0.0036 0.0376 0.0014 0.0303 0.0040

MILE(1) 0.0008 0.0367 0.0013 0.0295 0.0016

MILE(∞) 0.0008 0.0367 0.0013 0.0295 0.0016

AB(observed) −0.1252 0.0356 0.0169 0.1252 −0.1239

AB(expected) −0.0315 0.0343 0.0022 0.0379 −0.0303

AB(1)(expected) −0.0071 0.0364 0.0014 0.0298 −0.0069

IV 0.0048 0.0773 0.0060 0.0611 0.0054

Lancaster 0.0007 0.0376 0.0014 0.0301 0.0009

Arellano-Bond (GMM) −0.1848 0.1177 0.0480 0.1876 −0.1706

Arellano-Bond (Pooled) −0.0493 0.1795 0.0346 0.1433 −0.0385

MLE −0.1617 0.0310 0.0271 0.1617 −0.1606

20 MILE −0.0000 0.0223 0.0005 0.0178 −0.0002

MILE(1) −0.0001 0.0223 0.0005 0.0178 −0.0003

MILE(∞) −0.0001 0.0223 0.0005 0.0178 −0.0003

AB(observed) −0.0534 0.0238 0.0034 0.0535 −0.0534

AB(expected) −0.0095 0.0229 0.0006 0.0198 −0.0093

AB(1)(expected) −0.0014 0.0233 0.0005 0.0187 −0.0006

IV 0.0006 0.0447 0.0020 0.0358 0.0006

Lancaster -0.0001 0.0234 0.0005 0.0187 0.0005

Arellano-Bond (GMM) −0.3174 0.1061 0.1120 0.3174 −0.3057

Arellano-Bond (Pooled) −0.0436 0.1472 0.0235 0.1191 −0.0305

MLE −0.0787 0.0207 0.0066 0.0787 −0.0793
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Table 4. Empirical coverage probability of the LR-based confidence region for

the logit model (n = 100).

T MILE MILE(1) MILE(∞) AB(observed) AB(expected) MLE Lancaster

5 0.9020 0.9010 0.9010 0.5100 0.7830 0.4420 0.8870

10 0.9360 0.9360 0.9360 0.8880 0.9100 0.7220 0.9360

20 0.9400 0.9400 0.9400 0.9280 0.9300 0.8450 0.9400
nominal coverage = 95%

Table 5. Empirical coverage probability of the LR-based confidence region for

the probit model (n = 100).

T MILE MILE(1) MILE(∞) AB(observed) AB(expected) MLE Lancaster

5 0.8850 0.8740 0.8740 0.1230 0.6310 0.1330 0.8380

10 0.9490 0.9470 0.9470 0.7520 0.8600 0.4560 0.9400

20 0.9490 0.9490 0.9490 0.9150 0.9160 0.6930 0.9470
nominal coverage = 95%

Table 6. Empirical coverage probability of the LR-based confidence region for

the AR(1) model (n = 100).

T 5 10 20

MILE 0.8580 0.9460 0.9580

MILE(1) 0.9560 0.9510 0.9600

MILE(∞) 0.9670 0.9510 0.9600

AB(observed) 0.0000 0.0070 0.2430

AB(expected) 0.6190 0.8110 0.9010

AB(1)(expected) 0.8890 0.9080 0.9130

Lancaster 0.9440 0.9370 0.9330

MLE 0.0000 0.0000 0.0310
nominal coverage = 95%
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