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Abstract

We estimate the likelihood of miscarriages of justice by reframing the problem in the context

of misclassified binary choice models. Our estimator is based on new nonparametric identification

results, for which we provide methods to empirically test the key identifying assumptions and

alternative identification schemes for when these checks fail. Using case-level data from Virginia,

we find blacks have both a higher probability of conviction when innocent and a higher probability

of acquittal when guilty, relative to whites. We go on to show that this seemingly contradictory

result is, in fact, consistent with a model where blacks are discriminated against at both the arrest

and the conviction stage of the judicial process.
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1 Introduction

Criminal courts have existed for more than a thousand years, yet still there exists no reliable method

to measure their performance. This is not due to apathy. Miscarriages of justice have been a subject

of debate going back to antiquity (Zalman, 2017) and, in recent years, this topic has seen a surge of

interest. Indeed, the popularity of television shows and podcasts chronicling the (in)famous trials of

O.J. Simpson, Steven Avery, and the ‘Central Park Five’ among others, have thrust the fallibility of

courts further into the spotlight.

Judicial errors are not a matter of mere curiosity though. Since its inception in 1992, the Innocence

Project has aided in the exoneration of 367 innocent people, who had collectively served more than

5000 years in prison.1 Moreover, 21 of those individuals were sentenced to death. This begs the

question: how many people have been wrongfully executed, paying the ultimate price for a type I

error? The financial cost borne by the state through unnecessarily incarcerating innocent inmates is

also not small; a single prisoner costs an average of $31 000 per year to keep behind bars.2 For type

II errors, i.e. failing to punish a guilty defendant, the costs fall predominantly on the victims who

do not find the justice they deserve, as well as on society more generally through releasing criminals

back into the population and through an erosion of belief in the justice system.

In this paper, we estimate these error rates for judges using data on more than five million court

cases from Virginia. Our method is based on reframing the problem in the context of misclassified

binary choice models where the misclassification rates can be interpreted as type I and type II errors,

respectively. In particular, we consider the decision of the judge - to convict or acquit - as a noisy

measure of the true guilt of the defendant. We give new nonparametric identification results for the

misclassified binary choice model which admit simple and intuitive estimators. These estimators are

of independent interest and have potential applications in various contexts, as discussed later in this

section. We also provide methods to empirically test the identifying assumptions and give alternative

estimation schemes for cases which fail these tests.

The key identification condition requires a continuous regressor which affects the true outcome

but which does not affect the misclassification rates. In our justice context, this conditional mean

independence assumption translates to a regressor which affects the probability that the defendant is

guilty but does not affect the probability of a miscarriage of justice. The regressor must also satisfy

a large-support condition similar to that of Lewbel (2000b). A variable of this type is known as a

1The Innocence Project uses DNA evidence to overturn wrongful convictions.
2Vera Institute of Justice.
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‘special regressor’ (Lewbel, 1998).

As our special regressor, we use a measure of future criminality (constructed using gradient boosted

regression trees). First, empirical evidence that this variable satisfies the large-support condition is

provided. We then go on to test the conditional mean independence assumption. Intuitively, if a

judge were informed, for example, that a defendant will be convicted for the same type of crime many

times in the future, this would provide substantial information regarding the defendant’s likelihood

of guilt for the current crime. However, since future criminality does not materialise until after the

trial, there is no means for it to affect the court proceedings.

Nonetheless, there are still two concerns. First, conditional on true guilt and a set of control

variables, unobservable characteristics which are related to future criminality must not be related to

the misclassification rates. Second, the court’s ruling must not affect future criminality.

For the former, by controlling for previous criminality, among other variables, it is hoped that many

potential sources of correlation between the misclassification rates and future criminality are captured.

Furthermore, we argue that if the unobservable variable affects the probability of a miscarriage of

justice through a channel other than true guilt, this variable must represent a bias in the judge’s

decision. Consequently, it is unlikely to be related to the future criminal behaviour of the defendant.

For the latter concern, to mute the effect of conviction on future criminality, the sample is restricted

to non-felony crimes. Although this removes some of the more interesting offences, it is possible that

the less serious cases are likely to be subject to more frequent miscarriages of justice: the conveyor-belt

of defendants passing through the justice system results in judges and lawyers giving less time to each

case.

Having restricted the sample, we test the plausibility of the court decision having no effect on future

criminality. To this end, we use the random assignment of judges to cases as an instrumental variable

to show that the effect of conviction on future criminality is small and statistically insignificant.

Together, these results suggest that the primary identification conditions hold in our setting.

We find that the probability of convicting an innocent defendant is relatively high, ranging from

16% to 28%, depending on race and gender. However, this should not be confused with the probability

of convicting an innocent person. The dataset used contains only individuals who have been arrested

for a given crime. Thus, the results are conditional on having been arrested, which greatly increases the

probability of conviction relative to a member of the general public. For the probability of acquitting

a guilty defendant, the estimates range from 16% to 19%, depending on race and gender.

We also find that males face a higher probability of being convicted when innocent and a lower
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probability of being acquitted when guilty, relative to females. This suggests that the strength of

evidence required to convict a man is lower than that for a woman.

Interestingly, in comparison to whites, blacks are more likely to be convicted for a crime they did

not commit but are also more likely to be acquitted for a crime they did commit. To answer this

seemingly contradictory result, we develop a theoretical model of the decision process of both the

police and judge. By calibrating the parameters of this simple model using the empirical estimates

obtained, we show that both the arrest and conviction thresholds are generally lower for blacks relative

to whites. While this does not prove the existence of racial animus, it shows that our empirical results

are largely consistent with model-based predictions of discrimination against blacks.

Although our focus is on errors in the courtroom, our estimation strategy is applicable more

generally. Whenever a choice is made with incomplete information, a type I or type II error is

possible. However, as with miscarriages of justice, in many cases, it is never known if a mistake has

been made. For example, interviews for prospective employees are designed to gather information

about the applicant to avoid either hiring an inadequate worker or passing on a suitable one. In some

circumstances, it is possible to discover if the wrong person has been hired. However, since no new

information is gathered after the decision, it is almost always impossible to know if the right person

was not hired. This is also true of university admissions, promotions, and lending applications, to

name only a few examples.

In general, our approach is useful for situations where the type I or type II error is either impossible

or expensive to observe directly. As an example of the latter, consider the case of fraudulent insurance

and welfare benefits claims. In this context, it is possible to determine if a claim is dishonest by a

careful examination of the case. However, this can be expensive and time-consuming. Although the

techniques put forward in this paper cannot determine whether an individual claim is fraudulent,

they can be used to predict which claims have a higher probability of being false based on observable

characteristics. This would allow investigators to target their efforts to detect fraud more intelligently.

1.1 Previous Literature

This paper contributes to two main literatures. First, we add to work on estimating the prevalence of

miscarriages of justice. Almost without exception, the existing research in this area has been restricted

to estimating the probability of wrongful conviction - as opposed to wrongful acquittal. Furthermore,

this work has, almost exclusively, used data on exonerations (see, for example, Risinger, 2006; Gross

and O’Brien, 2008; Gross, O’Brien, Hu and Kennedy, 2014). However, an exoneration is not equivalent

4



to innocence.

First, the number of exonerations is likely to represent only a small fraction of the total number

of false convictions. In many cases, the effort to uncover these miscarriages of justice is not made; the

severity of the crime, and hence the punishment, is too low to warrant the use of limited resources.

Moreover, even if an investigation is conducted, it may be that the evidence required to overturn a

previous conviction does not exist.

Second, in the majority of cases, exonerations occur due to misconduct during the arrest or trial.3

Former Supreme Justice Antonin Scalia explains, “most [overturned death sentences] are based on

legal errors that have little or nothing to do with guilt”.4

These limitations of exoneration data are well documented (see, for example, Acker, 2017) and

have resulted in several approaches attempting to mitigate these shortcomings. A notable example

is Gross et al. (2014) who restrict their analysis of exonerations to death row inmates only. It is

reasoned that by considering a subset of convictions for which the majority of mistakes are identified,

the estimate obtained will be more accurate than using the entire population of convictions. They

find the probability of convicting an innocent defendant to be 4.1% but acknowledge that this is likely

to be a lower bound for the actual probability. There are also reservations about extrapolating this

to other cases; the judge may spend more time deliberating the evidence or be more likely to err on

the side of caution when a person’s life is at stake.

To the best of our knowledge, Spencer (2007) is the only other work - together with the present

paper - to estimate the probability of acquitting a guilty defendant and which does not rely on

exoneration data. His method is similar in style to ours and can be viewed in a measurement error

framework. By analysing the rate of agreement between a judge and a jury, he shows that both

the probability of a wrongful conviction and a wrongful acquittal can be estimated. However, he is

transparent regarding the strong assumptions imposed for identification. In particular, judges and

juries are assumed to make mistakes at the same rate. Furthermore, the probability of a correct

decision from the judge is independent of the likelihood of a correct decision from the jury in a given

trial. This seems unrealistic. For example, in a complex case, the probability of a correct decision is

likely to be lower for both judge and jury. In contrast, we only require data on the decision of either

a judge or jury - not both.5

Finally, Bjerk and Helland (2019) take a different approach and concede that while the exact
3National Registry of Exonerations.
4Kansas v Marsh, 548 US 163, 182 (2006).
5Our sample contains only cases heard by judges; however, the approach used in this paper is equally applicable to

jury trials.
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probability of a false conviction may be beyond reach, differences in the exoneration rate can shed

light on racial discrepancies in sentencing. They find that the exoneration rate of white defendants

for rape cases was less than two-thirds of that for corresponding black defendants.

The present paper also adds to the literature on misclassified binary choice models. The first

identification results for this model were given by Hausman, Abrevaya and Scott-Morton (1998);

however, their approach was restricted to a parametric model. Lewbel (2000b) extended their results

to a semiparametric model and used a special regressor approach to estimate the parameters. We also

use a special regressor approach, but in contrast to Lewbel (2000b), we provide weaker conditions

under which the misclassification rates can be identified and propose a simpler estimator. Indeed, in

that paper, he explains that ‘‘the estimators provided here are not likely to be very practical, because

they involve up to third-order derivatives and repeated applications of nonparametric regression’’ (pp.

607-608). In contrast, our estimator uses only a single nonparametric regression and does not require

the estimation of derivatives. Examples of other papers which apply special regressor methods include

Heckman and Navarro (2007) in a dynamic choice model, Berry and Haile (2014) to estimate demand

functions, and Lewbel and Tang (2015) and Khan and Nekipelov (2018) in game-theoretic models.

2 Identification

2.1 Baseline Identification

This section provides details of the general model, the identification strategies, and the required

assumptions. The objects of interest are the type I and type II error probabilities defined as

α1(x) := P [Y = 1|Y ∗ = 0, X = x] and α2(x) := P [Y = 0|Y ∗ = 1, X = x] ,

respectively, where Y and Y ∗ are binary-valued variables. Y ∗ denotes the true unobservable outcome,

Y is an observed but misclassified version of Y ∗, and X represents a vector of observable covariates.

Finally, let supp (Z) denote the support of a random vector Z.

We also suppose the availability of an additional (scalar) variable, V , which we describe as a special

regressor. This regressor is assumed to satisfy some conditions that are distinct from the set of other

covariates X. In particular, we assume the following:
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Assumption 1 [Exclusion Restriction] There exists a scalar-valued, continuously distributed vari-

able V which satisfies

E [Y |Y ∗, X, V ] = E [Y |Y ∗, X] almost surely.

Assumption 2 [Single-Index Structure] The true outcome Y ∗ and regressors (X,V ) are related

through

Y ∗ = I (V + h(X)− U ≥ 0) , (1)

where I (·) is the indicator function, h (·) is an unknown scalar-valued function on the support of

X, U is an unobservable random variable with U ⊥ V |X, and U |X = x is continuously distrib-

uted for each x, i.e. the conditional cumulative distribution function (CDF) of U , FU |X (u|x),

has a corresponding density fU |X (u|x).

In our empirical application, Y ∗ denotes whether the defendant is factually guilty (= 1) or innocent

(= 0), Y indicates whether the defendant was convicted (= 1) or acquitted (= 0), and X includes

information on both the case and the defendant. Hence, α1(x) gives the probability of convicting an

innocent defendant with characteristics x, and α2(x) is the corresponding probability of acquitting a

guilty defendant. Finally, future criminality of the defendant (defined in detail in Section 3.1) is used

as the special regressor, V .

In this setup, an error made by the court is given by (Y − Y ∗) and, under Assumption 1, its

conditional expectation can be written as

E [Y − Y ∗|Y ∗, X, V ] = E [Y − Y ∗|Y ∗, X] .

This says that, on average, the error depends on whether the defendant is factually guilty and on

the characteristics of the case and the defendant, respectively. However, future criminality does not

affect the error. In Section 4.1, we provide a thorough investigation of the validity of Assumption 1,

including an instrumental variable analysis using the leniency of quasi-randomly assigned judges to

cases as an instrument for conviction status.

The conditional independence condition U ⊥ V |X in Assumption 2 resembles that of Lewbel

(2000b, Assumption A2). This, together with the single index structure of Y ∗ in equation (1), leads
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to the following expression for the ‘conditional predictive probability’ (CPP):

P [Y ∗ = 1| (X,V ) = (x, v)] = FU |X (v + h(x)|x) . (2)

While Assumption 2 may look restrictive, it does not impose any significant restriction on the func-

tional form of the CPP except for monotonicity in v. That is, any CPP that is monotone in v can

be represented by the model in Assumption 2 under mild regularity conditions (cf. Theorem 3 of

Magnac and Maurin, 2007, which gives a representation result for monotone binary choice models; see

Appendix A for a detailed discussion). Note that this single-index model is not a structural model,

i.e. it does not attempt to explain a defendant’s criminal behaviour. It is merely a tool for the

researcher to predict such behaviour retrospectively. This stands in contrast to previous work which

uses similar single-index specifications and conditional independence assumptions to create structural

models (see, for example, Berry and Haile, 2014), where careful consideration must be given to the

underlying behavioural mechanisms which could result in such a model.

Together, Assumptions 1 and 2 allow us to write

P [Y = 1| (X,V ) = x, v] = P [Y = 1|Y ∗ = 0, (X,V ) = x, v]P [Y ∗ = 0| (X,V ) = x, v]

+P [Y = 1|Y ∗ = 1, (X,V ) = x, v]P [Y ∗ = 1| (X,V ) = x, v]

= α1(x) [1− P [Y ∗ = 1| (X,V ) = x, v]]

+ [1− α2(x)]P [Y ∗ = 1| (X,V ) = x, v]

= α1(x) + [1− α1(x)− α2(x)]P [Y ∗ = 1| (X,V ) = x, v] . (3)

Note that the objects of interest, α1(x) and α2(x), are independent of v, while the left-hand side and

the CPP depend on v. This expression forms the basis of our identification argument. However, one

further assumption is required.

For clarity of exposition, we assume that the support of V |X = x is given by a bounded and closed

interval [lxV , r
x
V ] for each x ∈ supp (X).6

6Note that all subsequent results carry over to other cases (with only slight modifications) which allow for an
unbounded or (semi-) open interval, including (−∞,∞).
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Assumption 3 [Large Support Condition] For each x ∈ supp (X),

lim
v→lxV

P [Y ∗ = 1| (X,V ) = (x, v)] = 0, (4)

lim
v→rxV

P [Y ∗ = 1| (X,V ) = (x, v)] = 1. (5)

Assumption 3 states that being factually guilty or not can be perfectly predicted by future criminality

in its tail region. In other words, the support of V is sufficiently large: [lxU , r
x
U ] ⊆[lxV , r

x
V ], where [lxU , r

x
U ]

is the support of U |X = x.7

From equation (3) and Assumption 3, we obtain

lim
v→lxV

P [Y = 1| (X,V ) = (x, v)] = α1(x), (6)

lim
v→rxV

P [Y = 1| (X,V ) = (x, v)] = 1− α2(x), (7)

which establish the identification of α1(x) and α2(x), respectively. This type of identification is

typically referred to as ‘identification at infinity’, particularly if the support of V |X = x is (−∞,∞)

where v → lxV and v → rxV are replaced by v → −∞ and v →∞ in equations (6) and (7), respectively.

2.2 Testing the Large Support Condition

It is clear that the large support condition is critical to achieving identification. Thus, it is important

to provide a method to empirically check the validity of this assumption.

The partial derivative of equation (3) with respect to v is given by

∂

∂v
E [Y |V = v,X = x] = [1− α1(x)− α2(x)] fU |X(v + h(x)|x). (8)

Note that the left-hand side of equation (8) is easily estimated from the data. Furthermore, for a given

x, this partial derivative is a constant multiple of fU |X(v + h(x)|x). Thus, it is possible to evaluate

this derivative in the interval [lxV , r
x
V ] to determine whether the tail condition is satisfied for a given

x. If the derivative falls to zero in the upper tail, this suggests FU |X(rxV +h(x)|x) = 1, providing that

fU |X (·|x) has no zero-probability intervals in the interior of its support. Equally, a zero derivative

at the lower tail indicates FU |X(lxV + h(x)|x) = 0. Consequently, the validity of the large support

assumption can be easily checked for each tail condition and for each point of interest x.
7Assumption 3 is written using limit notation such that the conditions hold for unbounded or open settings. This

reduces to P
[
Y ∗ = 1| (X,V ) = (x, lxV )

]
= 0 and P

[
Y ∗ = 1| (X,V ) = (x, rxV )

]
= 1 when the support of V |X = x is[

lxV , rxV
]
.
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2.3 Relaxation of the Large Support Condition

Unfortunately, it may be difficult to satisfy the large support condition in many empirical settings.

For example, in Section 4.2, the testing approach put forward in Section 2.2 is used to show that

equation (5) of Assumption 3 is satisfied in our justice context, but equation (4) is not. Intuitively,

there are defendants in the sample with high enough future criminality that it is possible to conclude

they are guilty of the current crime. However, even for the most law-abiding citizens in the future,

we cannot claim with any certainty that they are innocent of the current crime. Thus, only half of

the large support assumption is satisfied.

As a result, it is worthwhile to pursue alternative identification mechanisms which do not require

equations (4) and (5) to hold simultaneously. Without loss of generality, we proceed without the

lower-bound condition (4) and impose the following assumptions:

Assumption 3′ [Alternative Large Support Condition] For each x ∈ supp (X),

lim
v→rxV

P [Y ∗ = 1| (X,V ) = (x, v)] = 1. (9)

Assumption 4 [Mode-Median Coincidence/Limited Predictability] The conditional CDF

FU |X (·|x) is differentiable on the entire support of U |X = x and has derivative fU |X (·|x).

There exists a unique maximum point (conditional mode) mx
U of fU |X (·|x) on [lxV + h(x), rxU ]

which coincides with the conditional median of U |X = x, where rxU is the upper limit of the

support of U |X = x.

Assumption 3′ is a weakening of Assumption 3 in that it removes the lower tail condition but maintains

the upper (i.e. it is only supposed that rxU≤ rxV ). Under Assumptions 1, 2, and 3′ it is possible to

identify α2(x) but not α1(x).

However, Assumption 4 can be used to recover α1(x). While a condition involving the condi-

tional mode may look unusual for latent-variable discrete choice models, this assumption is satisfied

by commonly-used parametric distributions. Its simplest sufficient condition is that U |X = x is sym-

metric and single-peaked, as in the case of the Gaussian or logistic distributions; however, it does not

exclude non-symmetric distributions.

It is also worthwhile to note that the maximum point mx
U

need not necessarily be the mode of

U |X = x. That is, the true mode may exist outside of [lxV + h(x), rxU ]. We simply require that the

unique maximum point inside [lxV + h(x), rxU ] is equal to the median; nonetheless, we maintain the
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mode interpretation for ease of understanding.

We interpret Assumption 4 as a limited predictability condition in the following way. From the

form of the CPP in equation (2), the median value of U |X = x occurs where the probability of the

defendant being guilty is 0.5. Since we require Mode [U |X = x] = Median [U |X = x], it must be that

there is a significant proportion of defendants who are as likely to be guilty as they are to be innocent

and, consequently, whose guilt is difficult for the researcher to predict.

It is also possible to interpret Assumption 4 as a type of location normalisation; Manski (1998)

imposes a location normalisation through a conditional median restriction to identify h(x) = x′β.

In the present context, his assumption corresponds to Median [U |X] = 0. While Mode [U |X] = 0

can play the same role, it is important to note that Manski (1998) considers an observable binary

outcome. If Y ∗ were observable in our setting, either Mode [U |X] = 0 or Median [U |X] = 0 could

be used to identify h(x).8,9 In this respect, Assumption 4 is stronger than necessary when Y ∗ is

observable. Theorem 2 in Appendix A gives a representation result for the CPP and clarifies that

indeed Mode [U |X] = Median [U |X] imposes more structure on the CPP in equation (2) than either

Mode [U |X] = 0 or Median [U |X] = 0. However, it appears that when Y ∗ is unobservable, some

additional restriction, such as Assumption 4, must be imposed for identification.

We now illustrate how Assumption 4 can be used to restore the identification of α1(x) when

Assumption 3′ holds but Assumption 3 does not, i.e. when only the upper tail condition is satisfied.

Recall that

P [Y = 1| (X,V ) = (x, v)] = α1(x) + [1− α1(x)− α2(x)]FU |X (v + h(x)|x) .

Taking the partial derivative with respect to v gives

∂

∂v
P [Y = 1| (X,V ) = (x, v)] = [1− α1(x)− α2(x)] fU |X (v + h(x)|x) .

Since the right-hand side is a constant multiple of fU |X (v + h(x)|x) for a given x, if α1(x)+α2(x) < 1,

8It is not necessary to assume that these conditional measures are equal to 0. It is possible to use any known number
cx ∈ R for each x normalisation instead (see Theorem 2 in Appendix A).

9In this case, an additional condition would be required for identification: for the former mode condition, there
must exist some v such that P [Y ∗ = 1|(X,V ) = (x, v)] = 1/2 for each x; and for the latter median condition,
(∂/∂v)P [Y ∗ = 1|(X,V ) = (x, v)] must have a unique maximiser v in the support of V for each x (see Theorem 2
in Appendix A).
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we can write

v̄(x) := argmaxv∈[lxV ,rxV ]
∂

∂v
P [Y = 1| (X,V ) = (x, v)]

= argmaxv∈[lxV ,rxV ]fU |X (v + h(x)|x) . (10)

The restriction α1(x) +α2(x) < 1 is what Hausman et al. (1998) call the monotonicity condition and

is standard in the literature on misclassified binary variables. In our empirical setting, this states that

the court’s ruling is informative of the guilt of the defendant. If this did not hold, the court would

make fewer mistakes if all those who were convicted were acquitted instead, and all those originally

acquitted were now convicted; this seems an unlikely situation to occur.

Under Assumption 4, [v̄(x) + h(x)] is the median of U |X = x, so FU |X (v̄(x) + h(x)|x) = 1/2.

Therefore,

P [Y = 1| (X,V ) = (x, v̄(x))] = α1(x) + [1− α1(x)− α2(x)] /2

= [1 + α1(x)− α2(x)] /2.

This, together with equation (9) of Assumption 3′, allows for the identification of α1(x) and α2(x).

We summarise this result in the following theorem.

Theorem 1 Suppose that Assumptions 1, 2, 3′, and 4 hold. If α1(x)+α2(x) < 1 for each x ∈ supp (X),

then α1(x) and α2(x) are identified as

α1(x) = 2P [Y = 1| (X,V ) = (x, v̄(x))]− lim
v→rxV

P [Y = 1| (X,V ) = (x, v)] ,

α2(x) = 1− lim
v→rxV

P [Y = 1| (X,V ) = (x, v)] ,

where v̄(x) is defined in equation (10).

In principle, estimators for α1(x) and α2(x) can be constructed using empirical analogues of the

expressions in Theorem 1. However, the following integral-based formula (derived in Appendix A)

may be more practical:

α2(x) = 1− P [Y = 1|X = x]

−
∫ rxV

lxV

(∂/∂v)P [Y = 1| (X,V ) = (x, v)]FV |X(v|x)dv. (11)
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An estimator based on this object is likely to be more robust and allow an easier analysis of the

asymptotic properties of the resulting estimator (cf. Goh, 2018).

3 Data

3.1 The Special Regressor

We open this section with a discussion of the choice of the special regressor: future criminal behaviour

(defined in detail in Section 3.2). In Section 4.2, evidence is provided that this variable is highly

correlated with the true guilt of the defendant and satisfies the large support condition. Crucially,

we must also ensure that future criminality satisfies the conditional mean independence assumption.

Since future criminality only becomes apparent after the judge’s decision, there is no means for it to

influence the outcome of the trial. Nonetheless, there are two concerns.

First, conditional on true guilt and a set of control variables, future criminality must be unrelated

to unobservables which affect the probability of misclassification. Focussing on incorrect acquittal,

recall that, essentially, our estimation strategy uses the release rate of individuals with very high

future criminality as the false acquittal rate. To extrapolate this rate to individuals with lower levels

of future criminality requires that all individuals share the same misclassification rate conditional on

observable characteristics. We believe that by nonparametrically controlling for key variables such as

race, gender, and previous criminality, we close off any potential channels through which unobserved

characteristics could lead to different misclassification rates.

However, if there is still concern regarding a particular unobserved variable, the interpretation of

the misclassification rate must be altered; the misclassification rate becomes specific to the group of

individuals who have high future criminality. For example, if those with visible gang tattoos, which

are not observed by the researcher, are more likely to have high future criminality and also have

a different wrongful acquittal rate (conditional on control variables), then the misclassification rate

becomes specific to those with visible gang tattoos.

A second issue is whether the judge’s decision can affect the future criminality of the individual.

If this is the case, future criminal behaviour and the court ruling will not be mean independent.

For example, suppose that a conviction causes an individual to commit many crimes in the future.

Our results would show that the court never convicts an innocent defendant because the convicted

defendants have very high future criminality suggesting they are guilty of the current crime.

To mitigate concerns of this nature, the sample is first restricted to infractions and misdemeanours,
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i.e. felonies are excluded, in order to reduce the potential effect of a conviction. In Virginia, infractions

carry no prison sentence and a maximum fine of $250, while misdemeanours can be punished by a

maximum prison sentence of one year. The mean prison sentence for those convicted in our sample is

14 days, and the median is no prison time at all. Nonetheless, we go on to formally test whether this

assumption is satisfied in our data.

There is an abundance of previous work on the effects of incarceration on future criminality which

is somewhat contradictory. For example, Aizer and Doyle (2015) and Mueller-Smith (2015) find

that incarceration increases recidivism; while Mitchell, Cochran, Mears and Bales (2017) and Dobbie,

Goldin and Yang (2018) find no effect; and Bhuller, Dahl, Løken and Mogstad (2020) suggest that

prison time even reduces future criminality. In contrast, there is relatively little research on the impact

of merely being convicted (not necessarily serving prison time) on future criminal behaviour. However,

as with the work on incarceration, this research is also contradictory. For example, Ventura and Davis

(2005) find that convictions reduce the likelihood of recidivism, while Chiricos, Barrick, Bales and

Bontrager (2007) show the opposite effect.

As such, it is hard to appeal to the previous literature to defend the conditional mean independence

assumption in our setting. Consequently, to test this assumption, we employ the popular approach

of using the conviction tendency of quasi-randomly-assigned judges as an instrumental variable to

uncover the causal effect of conviction on future criminality. To do this, a subsample of the primary

dataset is taken for which we have confirmation that the assignment of judges to cases is quasi-random.

Details of the sample used are provided in Section 3.2, and a full discussion of the regression analysis

and results is given in Section 4.1. However, the results indicate that there is a small and insignificant

effect of conviction on future criminality.

3.2 Sample and Variable Construction

Court case data from Virginia’s 32 general district courts are used. The Virginia trial court system is

broadly split between general district courts and circuit courts. General district courts make rulings on

misdemeanours and infractions but only hold preliminary hearings on felony cases before transferring

them to a circuit court. Circuit courts are the highest trial courts with general jurisdiction in Virginia;

they hear more serious crimes and appeals from the general district courts.

The unit of observation is a single charge, and the data covers all arrests for which charges were

filed for the years 2009-2018. Each observation provides information on the defendant’s gender, race,

and address, as well as details of the charge and the outcome of the criminal proceedings. The initial
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dataset contains more than 20 million observations.

As discussed in Section 3.1, future criminality is used as the special regressor. This variable is

constructed from several different measures of future criminal behaviour which must be individually

calculated from the sample. To this end, a unique identifier for each individual based on their full

name, gender, race, and day and month of birth is used to create the following variables: the number of

arrests (including parole violations), the number of arrests for the same type of crime as the defendant

is currently on trial,10 the number of convictions, the number of convictions for the same type of crime,

the dollar amount of fines charged, the number of days sentenced to prison, and the number of days

for suspended sentences. Since data are only observed until the end of 2018, these measures of future

criminal behaviour are averaged over the number of years between the date of the current trial (or the

date of release if the defendant was convicted) and the end of the sample period.11 We also construct

these same seven measures for previous criminality using an analogous procedure. Having calculated

these past and future variables, the first and last year of the data are dropped as ‘burn-in periods’

(losing 20% of observations).

At this stage, the sample is further restricted in several ways. Only those observations for which the

defendant’s race is categorised as black or white, respectively, are kept; there are too few observations

on other race groups to obtain accurate estimates (6% loss of observations). We remove any individuals

who are not residents of Virginia (13% loss of observations). This avoids the possibility that non-

residents are treated differently to locals. Also, observations for which there is a guilty plea are

removed (21% loss of observations). If a defendant pleads guilty, the decision is taken out of the

hands of the court and the individual is convicted. If the defendant was guilty, a mistake would never

be made, and if the defendant was innocent, a mistake would always be made. We are not interested

in such scenarios in this paper, interesting as they no doubt are.

As discussed in Section 3.1, only infractions and misdemeanours are considered (11% loss of ob-

servations). This limits the severity of the potential punishment and thus mitigates the impact of

the court decision on future criminal behaviour. Occasionally, a single trial will contain multiple

charges against the defendant; this introduces a complex degree of dependence between observations.

Recall that each observation represents a single charge. Thus, one trial may produce several obser-

vations in our data. To avoid issues of dependence, all observations for which the individual faces

multiple charges (possibly multiple counts of the same charge) in a single trial are removed (23% loss

10The crime type is defined by the Virginia Crime Codes Statute Order. There are 1080 unique crime types in the
sample.

11Unfortunately, we do not have information regarding parole, thus cannot adjust our measures to account for this.
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of observations). Having made these restrictions, the sample contains 7.3 million observations.

Each of the seven aforementioned measures of future criminality is a viable choice for the special

regressor. However, our method requires only a single variable. As such, we follow the increasingly

popular path of using machine learning techniques to combine the measures of future criminality to

create a single instrument which captures as much information as possible (see, for example, Lee,

Lessler, and Stuart, 2010; Belloni, Chen, Chernozhukov and Hansen, 2012; Hartford, Lewis, Leyton-

Brown and Taddy, 2017). In particular, gradient boosted regression trees are used.12 Ideally, the

outcome of interest in this first stage would be true guilt, but this is unobservable. Instead, we use

conviction. Under the conditional mean independence assumption, the best linear predictor of guilt

is also the best linear predictor of conviction. However, this is no longer true when using nonlinear

prediction techniques, as we do. Nonetheless, the approach still yields a strong predictor for guilt,

and evidence to this fact is given in Section 4.2. Recall that the goal is not to determine the true

conditional mean of guilt, only to create a measure which is highly predictive of this guilt.

The data are randomly split into a training set (30%) and a hold-out set (70%). With the training

data, 5-fold cross-validation and a grid search is used to find optimal choices for tuning parameters.

Specifically, we choose the shrinkage parameter, the number of trees, the tree depth, the minimum

number of observations in the terminal nodes, and the fraction of the sample randomly chosen to

propose the next tree in the expansion. The optimal parameter values are then used to build a

regression tree on the training dataset. At this stage, the training dataset is discarded from all

proceeding analysis. Finally, the measure of future criminality is given as the predicted conviction

probability from this regression tree on the hold-out data. The final sample size of this hold-out set is

5.1 million observations. In Appendix A, we provide a detailed discussion of the implications of using

a special regressor constructed from a regression-type model, and how this can impact the likelihood

of satisfying Assumption 3 or 3′.

Three further control variables are constructed from the data. First, two measures of crime severity

are calculated using the average fine and average prison sentence for each type of crime (again, defined

by the Virginia Crime Codes Statute Order with 1080 unique crimes in our sample). Specifically, we

take a leave-one-out average of the fine charged for all cases where the defendant was found guilty

for the same type of crime. An analogous variable is created for prison sentences. Secondly, to avoid

the need for complicated nonparametric fixed-effects estimators, a ZIP code pseudo-fixed-effect is

12Other machine learning approaches could also be used. However, we found the highest out-of-sample correlation
using this method.
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calculated by taking a leave-one-out average of total arrests per-capita for each ZIP code. There are

902 ZIP code areas in Virginia with a mean population of 9325 and a median of 2940. We hope that

including such a variable controls for some unobserved heterogeneity across neighbourhoods.

Indeed, Altonji and Mansfield (2018) give credibility to this idea. Translated into our context, they

explain that if the decision to convict a defendant is based on both individual and neighbourhood char-

acteristics and that individuals choose their neighbourhood endogenously, a bias can arise. However,

under certain assumptions, controlling for means of observable individual factors at the neighbourhood

level can “absorb all of the between-group variation in both observable and unobservable individual

inputs” (pp. 2903). To achieve this perfect control of unobserved neighbourhood effects, the utility

function of individuals choosing which neighbourhoods to live in must be additively separable in the

amenities of the neighbourhood. Furthermore, the number of amenities which have an effect on court

proceedings must not be larger than the number of neighbourhood averages included. That is, for full

control of unobserved neighbourhood effects, we require judges to use a one-dimensional measure of

neighbourhood quality in their decision to convict or acquit.

The choice to control for average total arrests within each ZIP code rather than other observable

characteristics stems from a desire to avoid controlling for possible biases in the court proceedings.

For example, suppose a bias against black individuals exists, this results in neighbourhoods with a

large black population having a high conviction rate per-capita. If this neighbourhood conviction rate

is included as a control variable, one channel through which racism works is partially closed off. In

other words, we should not include controls which are a function of the outcome. By including a

measure of criminality which is independent of court rulings, this is avoided.

We close this section with a final remark. Since the sample consists of individuals who have been

arrested and subsequently charged, the analysis is conducted conditional on this fact. That is, the

following objects are estimated

α1(x) = P
[
Y = 1

∣∣Y ∗ = 0, X = x,A = 1
]
,

α2(x) = P
[
Y = 0

∣∣Y ∗ = 1, X = x,A = 1
]
,

where A denotes whether the individual has been arrested and charged (= 1) or not (= 0). Through-

out, the notational dependence on A is dropped for convenience; however, the distinction should not

be forgotten. We estimate the likelihood of a defendant - who has already been charged - being wrong-

fully convicted or wrongfully acquitted, respectively. These estimates are likely to be very different
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for a defendant relative to a random member of the public.

3.2.1 Instrumental Variable Analysis

To test the conditional mean independence assumption using the IV approach discussed in Section

3.1, a small subset of the data is used. In particular, we take a subsample of six Virginia circuit

courts from our primary dataset, namely: Chesterfield, Chesapeake, Hampton, Henrico, Newport,

and Portsmouth. It is only for these courts that we have confirmation from the respective county

court clerks that the assignment of judges to cases is random, providing there is not a subsequent

action arising from the initial filing of a case. For example, probation violations are normally assigned

to the judge who heard the original case. As such, judge assignment is taken to be random conditional

on the type of trial.

While the judge is randomly assigned to a case, the courthouse where the case is heard is typically

determined by where the offence occurred. Thus, year × courthouse fixed-effects are also included to

control for the possibility that some courthouses are more lenient on average. Since each courthouse

has several judges, by including these fixed-effects, the instrument is effectively the leniency of each

judge relative to the other judges in the same year and the same courthouse.

For this IV analysis, the dataset is further restricted to cases which reach the final trial. The

identity of the judge is only known in the final trial; therefore, cases which were concluded prior to

the final trial must be dropped from the analysis. Being limited to only final trial cases in six circuit

courts severely reduces the sample size: we are left with 5 656 observations.

The measure of judge leniency is constructed as the leave-one-out residualised average conviction

rate for each judge after controlling for the type of trial and year × courthouse fixed-effects; this

follows the previous literature (see, for example, Dobbie, Goldin and Yang, 2018). In particular, the

following linear regression is first estimated

Cijt = γαjt + βXijt + εijt,

where Cijt denotes whether case i heard at courthouse j in year t resulted in a conviction, αjt represents

year × courthouse fixed-effects, and Xijt is a set of dummy variables capturing the type of trial. ε̂ijt

is used to denote the residual conviction decision. The residual leniency measure for case i heard by
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judge k is then constructed as

ηikt =
1

nk − 1

∑
l 6=i

ε̂ljt,

where the sum is taken over all cases heard by judge k (excluding case i), and nk is the total number

of cases heard by judge k. Summary statistics on this leniency measure are provided in Section 3.3.

3.3 Descriptive Statistics

Table 1 reports the mean of each variable used in the primary analysis for defendants who are convicted

and for those who are acquitted, respectively. There is almost no racial or gender difference in those

who are acquitted versus convicted. Unsurprisingly, males make up the majority of the sample, and

given that the population of Virginia is 62% white (non-Hispanic), it is also unsurprising that the

sample is predominantly white. It is interesting to note that 29% of judges in Virginia are black13,

corresponding almost exactly with the proportion of black defendants. Thus, it is equally likely that

a black defendant faces a white judge, as it is a white defendant is tried by a black judge.

Table 1: Mean Values (Full Sample)

Convicted Acquitted
White 0.71 0.69

Male 0.60 0.58

Future Criminality 0.81 0.79

Previous Arrests 1.46 1.51

Neighbourhood-Effect 0.64 0.67

Infraction 0.84 0.63

Crime Severity (Prison) 6.69 19.5

Crime Severity (Fine) 78.8 75.6

Observations 4,125,691 986,304

Notes: This table displays the means of the variables listed for the final sample of defendants from Virginia (selected
according to the criteria given in Section 3.2) used to estimate the misclassification rates presented in Section 5.

Future criminality is only slightly higher for those who are convicted relative to those who are

acquitted. In addition, there appears to be little difference in the number of previous arrests or the
13American Constitution Society for Law and Policy.
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neighbourhood-effect across convicted and acquitted defendants. This is likely a reflection of the types

of crimes which lead to a conviction. A higher fraction of crimes resulting in conviction are infractions

rather than misdemeanours. This also explains why crime severity (measured by prison sentence) is

lower for convicted crimes. In contrast, the severity of crime variable measured by the fine amount

is similar across the two groups because infractions and misdemeanours typically have similar fine

amounts, despite having different prison sentences.

3.3.1 Descriptive Statistics - Instrumental Variable Analysis

Table 2 presents mean values for the variables used in our IV analysis, again, separated by conviction

status. The racial and gender differences for those convicted and acquitted, respectively, are small.

However, the racial makeup of this subsample is quite different from that of the full sample. The

reason lies in the severity of crimes heard by circuit courts as opposed to general district courts; recall

that the data used for the IV analysis comes from six circuit courts. On average, blacks are on trial

for more serious crimes. In the full sample, the fraction of blacks facing a misdemeanour charge is

27%, compared to only 17% for whites; the average prison sentence for cases against blacks is 13 days,

versus 7.5 days for whites. Hence, blacks are disproportionately represented in circuit courts. This is

also seen in the larger means of the crime severity variables and the smaller proportion of infractions

in comparison to Table 1.

This racial difference may pose a concern for using the IV results of this subsample to extrapolate

to the full sample. However, it seems reasonable to assume that if convictions for more serious

crimes do not impact future criminality, then convictions for lesser crimes should also not affect future

criminality. Nonetheless, perhaps convictions affect blacks differently to whites, and caution should

still be applied in generalising our findings to the full sample. To alleviate concerns of this nature, the

entire IV analysis is also conducted separately for blacks and whites. The results from this analysis are

contained in Appendix B and are consistent with the baseline findings, suggesting that the difference

in racial makeup between the two samples is not a concern.
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Table 2: Mean Values (IV Subsample)

Convicted Acquitted
White 0.34 0.38

Male 0.66 0.63

Future Criminality 0.79 0.77

Previous Convictions 1.53 1.25

Previous Convictions (Same Crime) 0.32 0.21

Previous Arrests 2.27 1.97

Previous Arrests (Same Crime) 0.36 0.24

Previous Prison Time 27.9 21.5

Previous Suspended Prison Time 145 144

Previous Total Fines 96.4 81.5

Infraction 0.39 0.27

Crime Severity (Prison) 52.5 64.2

Crime Severity (Fine) 101 81.7

Observations 4,562 1,094

Notes: This table displays the means of the variables listed for the sample of defendants from six circuit county courts
in Virginia (selected according to the criteria given in Section 3.2) used in the IV analysis to test the conditional mean
independence restriction.

For the construction of the residualised judge leniency measure, there are 28 unique judges with

an average judge hearing 202 cases. The leniency measure ranges from -0.17 to 0.22 with a standard

deviation of 0.07. Moving from a judge at the 25% quantile to the 75% quantile increases the probab-

ility of conviction by 10.6 percentage points. Note that the average conviction rate in the subsample

used for the IV analysis is 80.6%. The estimated distribution of residual judge leniency is given in

Figure B.1 in Appendix B.

21



4 Research Design

4.1 Validity of the Conditional Mean Independence Assumption

In this section, we test whether future criminality satisfies the conditional mean independence condi-

tion. Recall that this condition is given by

E [Y − Y ∗|Y ∗, X, V ] = E [Y − Y ∗|Y ∗, X] ,

or equivalently

E [Y |Y ∗, X, V ] = E [Y |Y ∗, X] .

In Section 3.1, it was argued that the most likely cause of a failure of this assumption is through

conviction status affecting future criminality. To uncover the causal effect of conviction on future

criminality, we use the leniency of quasi-randomly-assigned judges as an instrumental variable. Full

details of the sample and the variables used are given in Section 3.

Table 3 presents results for the first-stage of the IV regression: a linear probability model of

conviction status on residualised judge leniency. Recall that residualised judge leniency is the leave-

one-out average conviction rate of a judge after controlling for the type of trial and courthouse×year

fixed-effects. Column (1) reports the effect with no controls, column (2) adds the race, gender, and

measures of previous criminality of the defendant. These measures include arrests, arrests for the

same type of crime as they are currently on trial for, convictions, convictions for the same type of

crime, fines charged, prison time, and suspended prison time. Column (3) additionally controls for

case characteristics, including whether the crime is an infraction or misdemeanour and the severity

of the crime (measured in terms of the average fine and prison sentence, respectively). Column (4)

adds ZIP code fixed-effects. Throughout this section, all continuous regressors are standardised to

have zero mean and unit variance, and standard errors for the estimated coefficients (clustered at the

defendant level) are reported in parentheses.
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Table 3: First Stage Regression

Dependent variable:
Convicted

(1) (2) (3) (4)
Judge Leniency 0.07 0.07 0.07 0.07

(0.01) (0.01) (0.01) (0.01)

White −0.02 −0.02 −0.01
(0.01) (0.01) (0.01)

Male 0.06 0.05 0.05
(0.01) (0.01) (0.01)

Previous Criminality 3 3 3

Case Characteristics 3 3

ZIP Code Fixed-Effects 3

Observations 5,656 5,656 5,656 5,656
Adjusted R2 0.03 0.04 0.07 0.08

Notes: This table reports results from first stage regressions using the subsample of six circuit courts from Virginia
as detailed in Section 3.2. The dependent variable is a binary indicator for whether the case resulted in a conviction.
Judge Leniency is the residualised leave-one-out average conviction rate of the judge after controlling for the type of
trial and courthouse×year fixed-effects and is standardised to have unit variance. The other regressors are constructed
as per the discussion in 3.2. Column (1) gives the simple regression of conviction status on judge leniency. Column (2)
adds the defendant’s race, gender, and seven measures of previous criminality. Column (2) includes whether the crime
is an infraction or misdemeanour and the severity of the crime (measured by average fine and average prison sentence,
respectively). Column (4) adds ZIP code fixed-effects. Standard errors for the estimated coefficients are reported in
parentheses and are clustered at the individual level. * indicates significance at 10%, ** indicates significance at 5%,
and *** indicates significance at 1%.

Across all four regressions, judge leniency has a highly significant effect. In particular, a one

standard deviation increase in the judge leniency measure increases the probability of conviction by

seven percentage points. It is also promising to see that this effect is constant irrespective of the

control variables included; this provides good evidence of the quasi-random-assignment of judges to

cases.

Nevertheless, we formally test this randomisation in Table 4. Here, the judge leniency measure

is regressed on all case and defendant characteristics and ZIP code fixed-effects. The p-value for the

joint significance of this regression is 0.2, suggesting that the leniency of the judge is unrelated to the

case or the defendant. This adds further weight to the validity of the exclusion restriction.
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Table 4: Test of Randomisation

Dependent variable:
Judge Leniency

White −0.05
(0.03)

Male 0.02
(0.03)

Previous Criminality 3

Case Characteristics 3

ZIP Code Fixed-Effects 3

Observations 5,656
Adjusted R2 0.01
F Statistic 1.08 (df = 253; 5402)

Notes: This table reports results from a test of the randomisation of judge leniency using the subsample of six circuit
courts from Virginia as detailed in Section 3.2. The dependent variable is judge leniency calculated as the residualised
leave-one-out average conviction rate of the judge after controlling for the type of trial and courthouse×year fixed-
effects and is standardised to have unit variance. The regressors are constructed as per the discussion in 3.2. Previous
criminality includes the seven measures of previous criminality given in Section 3.2. Case characteristics include whether
the crime is an infraction or misdemeanour and the severity of the crime (measured by average fine and average prison
sentence, respectively). Standard errors for the estimated coefficients are reported in parentheses and are clustered at
the individual level. The p-value for the F-test for the joint significance of the whole regression is 0.198. * indicates
significance at 10%, ** indicates significance at 5%, and *** indicates significance at 1%.

Finally, we also check the validity of the monotonicity assumption for IV regressions. In Appendix

B, Figure B.2 plots a univariate nonparametric version of the first stage regression of judge leniency

on conviction. We see the probability of conviction is monotonically increasing in the measure of judge

leniency and is approximately linear.

Table 5 contains the final IV results. In all four regressions, conviction does not have a significant

effect on future criminality. However, this seems to be driven primarily by the large standard errors

of the IV estimate. Nonetheless, the point estimate from the regression with the full set of controls

indicates that the effect of being convicted increases the level of future criminality by 0.08 of a standard

deviation - a small effect. Again, it is encouraging to see that the effect is relatively stable across the

regressions.

The large standard errors corresponding to the effect of conviction on future criminality in Table

5 is a result of the relatively small sample used for this analysis. Thus, caution should be applied

when drawing strong conclusions from these results since IV estimates can suffer from bias in small
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samples. As a result, OLS estimates are also reported in Table B.1 in Appendix B. Interestingly, with

the full set of controls, the effect is still small (0.03 of a standard deviation) and insignificant.

Table 5: IV Regression

Dependent variable:
Future Criminality

(1) (2) (3) (4)
Convicted 0.07 0.05 0.10 0.08

(0.22) (0.22) (0.22) (0.22)

White 0.25∗∗∗ 0.28∗∗∗ 0.24∗∗∗
(0.03) (0.03) (0.03)

Male 0.29∗∗∗ 0.25∗∗∗ 0.27∗∗∗
(0.03) (0.03) (0.03)

Previous Criminality 3 3 3

Case Characteristics 3 3

ZIP Code Fixed-Effects 3

Observations 5,656 5,656 5,656 5,656

Notes: This table reports results from four IV regressions using the subsample of six circuit courts from Virginia as
detailed in Section 3.2. The dependent variable is future criminality calculated using the procedure given in Section 3.1
and is standardised to have unit variance. Conviction is a binary indicator for whether the defendant was convicted, it
is instrumented by judge leniency. Judge Leniency is the residualised leave-one-out average conviction rate of the judge
after controlling for the type of trial and courthouse×year fixed-effects. The other regressors are constructed as per
the discussion in 3.2. Column (1) gives the simple IV regression of future criminality on conviction status. Column (2)
adds the defendant’s race, gender, and seven measures of previous criminality. Column (2) includes whether the crime
is an infraction or misdemeanour and the severity of the crime (measured by average fine and average prison sentence,
respectively). Column (4) adds ZIP code fixed-effects. Standard errors for the estimated coefficients are reported in
parentheses and are clustered at the individual level. * indicates significance at 10%, ** indicates significance at 5%,
and *** indicates significance at 1%.

As a robustness check, as mentioned in Section 3.3, separate estimates for blacks and whites are also

provided in Appendix B. The conclusions in all cases are similar to those of the full sample. Overall,

these findings suggest that the effect of conviction on future criminality is likely to be small and,

consequently, the conditional mean independence assumption is likely to hold, at least approximately.

4.2 Validity of the Large Support Assumption

This section verifies the validity of the large support assumption. Throughout this analysis, the

following set of controls are used: the neighbourhood-effect, the number of previous arrests of the

defendant, the race and gender of the defendant, whether the crime is an infraction or misdemeanour,
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and the severity of the crime measured by the average fine and the average prison sentence, respectively.

To allow for the greatest flexibility, we estimate each model separately for the four race-gender groups.

The choice to control only for previous arrests rather than including other measures of previous

criminality is based on the desire to avoid including variables which can be influenced by bias in the

court proceedings. That is, we do not wish to control for covariates which may be a function of the

outcome.

A local linear likelihood estimator with a logistic link function is used to estimate the nonparametric

functions. Frölich (2006) showed in a series of Monte Carlo simulations that local likelihood logit

estimation is substantially more precise than the Nadaraya-Watson estimator, the local linear kernel

estimator, the semiparametric estimator of Klein and Spady (1993), and the parametric logit estimator

in a binary choice model. A locally adaptive bandwidth is chosen using the intersection of confidence

intervals (ICI) method (see Loader, 2006, for full details). The Epanechnikov kernel is used for all

estimation procedures.

Our goal is to determine whether the large support condition is satisfied for given values of the set

of regressors. Throughout, the neighbourhood-effect and the two measures of crime severity are set

at their respective means, and the type of crime is fixed to be a misdemeanour when evaluating the

estimators. We focus on the relationship between previous arrests and the type I and type II error,

respectively. As such, we investigate the interval of values of the previous arrest measure for which

the large support condition is satisfied.

Figure 4.1 gives representative plots of (∂/∂v)E [Y |V = v,X = x] evaluated over the range of v

(future criminality) with the previous arrests measure set at zero; this corresponds to no previous

arrests within the sample period, i.e. the minimum value. It is clear from these plots that only the

upper tail condition is satisfied. This indicates that there are individuals in the sample with high

enough future criminality that their guilt can be perfectly predicted for the current crime. However,

it is not possible to determine the underlying guilt of defendants with the lowest level of future

criminality.

Nonetheless, in each case, the mode of U |X = x is contained in the support of future criminality.

Furthermore, the distributions appear relatively symmetric, giving hope to the validity of the mode-

median coincidence condition (Assumption 4). Thus, α2(x) is estimated using the procedure laid out

in Section 2.1 and α1(x) is estimated using the slightly more complex arguments of Section 2.3. These

estimates are reported in Section 5.

26



Figure 4.1: Large Support Check (1)

Notes: This figure plots estimates of ∂E [Y |V = v,X = x] /∂v over the range of v (future criminality) with previous
arrests set at zero (corresponding to the minimum value). The previous arrests measure is calculated as the average
number of previous arrests per annum since the start of the sample period and future criminality is constructed as
outlined in Section 3.1. The crime type is set to be a misdemeanour, and the neighbourhood-effect variable and both
measures of crime severity are set at their means. Each nonparametric function is estimated using a local linear logit
estimator using the full dataset as detailed in Section 3.2 split into the respective race-gender groups.

Figure 4.2 displays analogous plots when the previous arrest measure is set to seven, i.e. seven

arrests per annum since the start of the sample period. The choice of seven corresponds to the largest

value of previous arrests for which the mode of U |X = x is contained in the support V |X = x for all

race-gender groups. Note that the mode is deemed to be contained in the support if the maximum

point is not at the boundary of the support.

Figures 4.1 and 4.2 highlight the tradeoff between the tail and the mode conditions; a larger value

of previous arrests increases the chance of satisfying the tail constraint but at the cost of potentially

losing the mode from the support. The intuition is that it is more difficult to predict those who

are truly innocent when they already have a bad previous criminal record. Conversely, it is easier

to predict whether a defendant is truly guilty if they already have a high number of prior arrests.

As a result, in our context, it is not possible to estimate both misclassification rates for all possible

covariate values. However, the upper tail condition is satisfied for all values of previous arrests. Thus,

the probability that a guilty defendant is acquitted, α2 (·), can be estimated over the full range of

previous arrests.
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Figure 4.2: Large Support Check (2)

Notes: This figure plots estimates of ∂E [Y |V = v,X = x] /∂v over the range of v (future criminality) with previous
arrests set at seven (corresponding to the largest value for which the mode of U |X = x is contained in the support
V |X = x for all race-gender groups). The previous arrests measure is calculated as the average number of previous
arrests per annum since the start of the sample period and future criminality is constructed as outlined in Section 3.1.
The crime type is set to be a misdemeanour, and the neighbourhood-effect variable and both measures of crime severity
are set at their means. Each nonparametric function is estimated using a local linear logit estimator using the full
dataset as detailed in Section 3.2 split into the respective race-gender groups.

5 Results

In Figure 5.1, each panel plots the respective race-gender group’s probability of being incorrectly

convicted after being arrested as a function of previous arrests (displayed in bold black) together

with a pointwise 95% confidence band based on a nonparametric bootstrap (displayed as dashed

black lines). Plots of the other race-gender groups’ probabilities are also included in each panel for

comparison (displayed in grey). It should be noted that a theoretical justification for this bootstrap

procedure is not provided; issues of inference are left for future work. The nonparametric functions

themselves are estimated using a local linear logit estimator based on the identification scheme given

in Section 2.3. The bandwidth is adaptive and chosen using the ICI method (see Loader, 2006,

for details). The other control variables include the neighbourhood-effect, whether the crime is a

misdemeanour or infraction, and the severity of the crime measured by the average fine and prison

sentence, respectively (all variables are described in full in Section 3.2). Continuous control variables

are set at their mean, and the crime is set to a misdemeanour (similar results were obtained when

setting the crime to be an infraction).
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Figure 5.1: Probability of Convicting an Innocent Defendant

Notes: This figure plots estimates for the probability of convicting an innocent defendant using the identification scheme
in Section 2.3. The nonparametric function is estimated using a local linear logit estimator with an adaptive bandwidth
chosen using the ‘ICI’ method on the final sample of defendants (separated by race and gender) as detailed in Section
3.2. Previous arrests are calculated as the average number of arrests per annum. Other control variables are the
neighbourhood-effect (defined in Section 3.2), whether the crime is a misdemeanour or infraction, and the severity of
the crime measured by the average fine and the average prison sentence, respectively. Continuous variables are set
at their mean and the crime as a misdemeanour. Each plot displays the respective estimate (solid black), pointwise
95% confidence band constructed using a nonparametric bootstrap (dashed black), and estimates of the other three
race-gender groups (grey).

First, the likelihood of convicting an innocent black defendant is higher than that for an innocent

white defendant, irrespective of gender. In particular, an innocent black male who has been arrested

faces a worryingly high probability of being convicted. Indeed, each demographic group has a high

chance of conviction when innocent. However, recall that the analysis is conducted conditional on being

arrested for the crime. In order for an individual to be arrested, there must be compelling evidence

against them. Thus, these estimates are likely to be quite different from estimates of the probability

of convicting an innocent member of the public. However, the results are no less informative of the

justice system; they merely isolate biases in the judicial process after arrest.

A bias against males relative to females also exists which is consistent across race groups. At the

mean of previous arrests, innocent white males face a conviction probability of 18% in comparison to

16% for white females. Equally, innocent black males have a 28% probability of conviction in contrast

to 21% for black females. Notice also that previous arrests have little effect on conviction probability;

indeed, the 95% confidence band for each group contains a constant effect. As explained in Section

4.2, the probability of a false conviction cannot be identified when previous arrests are above seven

due to a failure of the mode condition for black males. Thus, perhaps the range of average previous

arrests per annum is too small to see a large effect.
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Figure 5.2 plots analogous estimates for the probability of acquitting a guilty defendant. Import-

antly, since the right tail condition is satisfied - as shown in Section 4.2 - these estimates are calculated

using the identification strategy of Section 2.1.

Figure 5.2: Probability of Acquitting a Guilty Defendant

Notes: This figure plots estimates for the probability of acquitting a guilty defendant using the identification scheme in
Section 2.1. The nonparametric function is estimated using a local linear logit estimator with an adaptive bandwidth
chosen using the ‘ICI’ method on the final sample of defendants (separated by race and gender) as detailed in Section
3.2. Previous arrests are calculated as the average number of arrests per annum. Other control variables are the
neighbourhood-effect (defined in Section 3.2), whether the crime is a misdemeanour or infraction, and the severity of
the crime measured by the average fine and the average prison sentence, respectively. Continuous variables are set
at their mean and the crime as a misdemeanour. Each plot displays the respective estimate (solid black), pointwise
95% confidence band constructed using a nonparametric bootstrap (dashed black), and estimates of the other three
race-gender groups (grey).

Again, there is a bias against males in favour of females, although the difference is relatively small.

At the average value of previous arrests, the probability of acquittal for a guilty black male is 18%,

compared to 19% for black females. Equally, guilty white males face a 16% chance of being acquitted,

in comparison to a 17% likelihood for white females. Taken together with the results of Figure 5.1, it

appears that the threshold for convicting a woman is lower than that for a man.

Figure 5.2 also shows that the effect of previous arrests on the probability of acquittal is more

pronounced for men than women, and blacks relative to whites. In particular, across the range of

previous arrests (from zero prior arrests to 20 per year), the acquittal probability for guilty black males

falls from 18% to 15%, while for guilty white males there is a drop from 16% to 14%. Black females see

their probability fall from 19% to 18%, but for white females it stays constant at 17%. It should not be

surprising that the probability of wrongful acquittal falls as the number of previous arrests increases;

this reflects the greater likelihood of convicting a defendant if they have a particularly criminal past.

With respect to the variance of our estimates, the confidence band is much narrower for the
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probability of wrongful acquittal relative to that for wrongful conviction. This follows from the

probability of wrongful conviction being estimated using the more complex identification scheme of

Section 2.3 because the left tail condition is not satisfied. Figure 5.2 also shows that the confidence

band widens for larger values of previous arrests; this is to be expected since the data is more sparse

in the upper tail of previous arrests.

Interestingly, despite the probability of wrongful conviction being higher for blacks than whites,

the probability of wrongful acquittal is, in general, higher for blacks. Furthermore, this is consistent

across genders. It is difficult to pinpoint precisely why such a pattern exists; however, it is constructive

to discuss possible causes.

One potential explanation for this finding relates to the adequacy of the model. It may be that

while the conditional mean independence assumption holds over the whole sample, it may not hold

individually for whites. If conviction has a positive effect on future criminality for whites, this would

result in an under-estimation of the probability of wrongful acquittal for whites. However, Tables

B.2 and B.3 in Appendix B refute such a premise. These tables display results of the IV regression

discussed in Section 4.1 estimated on the subsample of black and white defendants, respectively. The

results are similar in each case and suggest the conditional mean independence assumption holds for

both races.

This contradictory result could instead be explained by black defendants having more procedural

flaws in their cases than white defendants. For example, if officers violate the constitutional rights of

blacks more often than whites, such as through illegal searches, the judge is obliged to dismiss more

cases against blacks despite perhaps believing the defendant to be guilty. Thus, although our method

detects incorrect decisions, it may not necessarily be a result of a judicial error, but rather a policing

error.

In the following section, we delve deeper into this idea and attempt to shed light on the wider

judicial system by developing a simple theoretical model where the parameters are calibrated based

on the empirical findings.

5.1 Calibration-Based Model of Discrimination

Consider the following stylised model. In the first stage, for each individual who comes into contact

with the police regarding a given crime, the police draw a noisy signal of the suspect’s guilt, denoted

e1 (G), where G denotes whether the suspect is guilty (= 1) or innocent (= 0). For simplicity, assume

this ‘strength-of-evidence’ measure is distributed as e1 (G) ∼ N (µG, 1), where we normalise µ0 = 0
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and assume µ1 > 0. Police make arrests according to the following threshold decision rule

A =


1 if e1 (G) ≥ TP (R)

0 if e1 (G) < TP (R) ,

where A denotes an arrest (= 1) or no arrest (= 0), and TP (R) denotes the police decision threshold

for R ∈ {Black,White}.

For each arrested defendant, a second strength-of-evidence variable is drawn, e2 (G), also from

N (µG, 1), which is only observed after the arrest. This captures the fact that a substantial amount

of evidence is likely to be collected post-arrest (this also includes that the case put forward by the

prosecution is constructed post-arrest and can be considered as part of the strength-of-evidence).

Note that to keep the model tractable, it is assumed that the variance of the signal before and after

arrest for both guilty and innocent suspects is the same. Although this is unlikely to be the case

in reality, it prevents the proliferation of parameters and allows the identification of more important

model characteristics.

Similarly to the police, the judge convicts the defendant based on the following threshold decision

rule

C =


1 if e (G) ≥ TJ (R)

0 if e (G) < TJ (R) ,

where e (G) = 1
2 (e1 (G) + e2 (G)), C denotes whether the judge convicts (= 1) or acquits (= 0)

the defendant, and TJ (R) is the judge decision threshold. The form of e (G) can be interpreted

as the judge taking an equally weighted average of both signals, that is, evidence collected pre and

post-arrest. We go on to check the sensitivity of our results to this assumption below.

Based on this model, the type I error for a given race category R is

P [C = 1|G = 0, A = 1] = P
[
e (0) ≥ TJ (R)

∣∣e1 (0) ≥ TP (R)
]

(12)

=
P [Z1 > TJ (R) , Z2 > TP (R)]

1− Φ (TP (R))

where (Z1, Z2) are bivariate standard normal with correlation equal to
√

1/2. In a similar fashion,
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the type II error in this model is written as

P [C = 0|G = 1, A = 1] = P
[
e (1) ≤ TJ (R)

∣∣e1 (1) ≥ TP (R)
]

(13)

= 1− P [Z1 > TJ (R)− µ1, Z2 > TP (R)− µ1]

1− Φ (TP (R)− µ1)
.

These error probabilities do not admit a closed-form solution. However, it is possible to simulate

and calibrate this theoretical model (for a given µ1) using the average empirical estimates for the

type I and type II probabilities for each race group to solve for the values of TP (Black), TJ (Black),

TP (White), and TJ (White) . Figure 5.3 plots the resulting threshold values for both the police and

the judge for both blacks and whites across a range of plausible values for µ1. Recall that µ0 = 0, so

a choice of µ1 = 2 involves considerable overlap between the two distributions (approximately 32%),

while µ2 = 4 leads to less than 5% overlap between the two distributions.

Figure 5.3 shows that the threshold for both arresting and convicting whites is generally higher

than for blacks. Thus, although our empirical results seem contradictory at first sight, they are

largely consistent with a model where there is discrimination against blacks by both police officers

and judges. Only when the distribution of the strength-of-evidence for guilty defendants is very close

to the distribution for innocent defendants, do the results show a conflicting story.

Note that in this model, the judge places equal weight on the strength-of-evidence signal drawn pre-

arrest as the signal drawn post-arrest. As a result, this model implicitly imposes that the correlation

between the signal received by the police, e1 (G), and the signal received by the judge, e (G) is equal

to
√

1/2 ≈ 0.71. However, it may be that the judge places more weight on post-arrest evidence than

pre-arrest evidence, or vice versa. In such situations, the correlation between e1 (G) and e (G) will

change. As a robustness check, we report results for correlations of 0.44 (equivalent to the judge

placing twice as much weight on post-arrest evidence) and 0.89 (equivalent to the judge placing twice

as much weight on pre-arrest evidence) in Appendix B. In each case, the results are qualitatively

similar to the results given in Figure 5.3.
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Figure 5.3: Calibrated Threshold Values

Notes: This figure plots the estimated police and judge decision thresholds from the model outlined in Section 5.1
for white and black defendants, respectively. For each race group, the estimated thresholds are obtained by equating
the type I and type II error probabilities given in equations (12) and (13) with their respective empirical estimates
and solving for the values of TP (Black) , TJ (Black) , TP (White) , TJ (White). In particular, the average empirical
estimates of the type I error are 0.25 and 0.17 for blacks and whites, respectively, and 0.18 and 0.16 for the average
empirical type II error for blacks and whites, respectively. The correlation between the strength-of-evidence signal seen
by the police and the signal seen by the judge is

√
1/2.

6 Conclusion

In this paper, we estimate the likelihood of both wrongful conviction and wrongful acquittal using data

on more than five million court cases from Virginia. Our method is based on reframing the problem in

the context of misclassified binary choice models where the misclassification rates can be interpreted

as type I and type II errors, respectively. We give new nonparametric identification results for these

models that admit simple estimators and which are likely to be of independent interest. We also

provide methods to test the identifying assumptions and give alternative estimation schemes for cases

which fail these tests. In our empirical context, a thorough discussion of the identification conditions

is provided along with evidence of their validity. This includes an analysis of the effect of conviction on

future criminality using the quasi-random-assignment of judges to cases as an instrumental variable.

We find that blacks, relative to whites, have a higher probability of conviction when guilty but also

have a higher probability of acquittal when innocent. However, we go on to show that such a result,
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although seemingly contradictory, is, in fact, consistent with a theoretical model where the threshold

for evidence to arrest blacks is lower than for whites and the threshold for evidence to convict blacks is

also lower than for whites. In addition, our results also reveal that males face both a higher probability

of conviction when innocent and a lower probability of acquittal when guilty relative to females.

There is still further work needed in this area that is beyond the scope of this paper. Most notably,

we do not provide inference procedures for our estimator. Bootstrap confidence bands are given in

the empirical analysis; however, no theoretical justification is provided. It would also be worthwhile

to develop a formal test of the large support condition based on our heuristic arguments. Finally, due

to data limitations, we are silent regarding the performance of judges relative to juries. It would be

of great interest to explore if - and when - one type of trial is less prone to error than the other.
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Appendix A

Discussion of Mode-Median Coincidence Restriction

In this section, a discussion of the mode-median coincidence restriction of Assumption 4 is provided.

We begin with the following theorem:

Theorem 2 For each x ∈ supp (X), let cx ∈ R (for some arbitrary choice cx) and let G∗ (·|x) be a

function: [lxV , r
x
V ]→ [0, 1]. Suppose the following conditions hold: (i) G∗ (·|x) is non-decreasing

and continuously differentiable on [lxV , r
x
V ];14 (ii) ∂

∂vG
∗ (v|x) has a unique maximiser v̄(x) on

[lxV , r
x
V ]. Then, for any G∗ satisfying (i) and (ii), there exists a pair (h(x), FU |X(u|x)) such that

a set of random variables (Y ∗, X, V, U) satisfies Assumption 2, Mode [U |X = x] satisfies

Mode [U |X = x] = cx, (14)

and

G∗ (v|x) = P [Y ∗ = 1| (X,V ) = (x, v)]

for each v ∈ [lxV , r
x
V ] and each x ∈ supp (X).

Note that we can set cx = 0 since the choice is arbitrary; however, we consider a non-zero cx when

comparing the conditional mode restriction of equation (14) with Assumption 4 in the main text.

Theorem 2 highlights the role of the conditional mode restriction as a location normalisation in

monotone discrete choice models to identify h(x) and FU |X (u|x). Given the monotonicity of the

model, equation (14) does not impose any significant restriction on the functional form of the CPP,

G∗ (v|x), except for the maximiser condition (ii) which is quite mild.

To compare equation (14) and Assumption 4, suppose that Y were observable and thus G∗ (v|x) is

identifiable. Then, letting cx = Median [U |X = x] gives the restriction in Assumption 4: Mode [U |X = x] =

Median [U |X = x]. In this case, Assumption 4 would be testable since both Mode [U |X = x] and

Median [U |X = x] could be separately identified as v̄(x) and the value v which satisfies G∗(v|x) = 1/2,

respectively; thus, Assumption 4 could be easily rejected unless G∗(v̄(x)|x) = 1/2. However, when

Y ∗ is unobservable - as in our empirical context - Median[U |X = x] is not identifiable. Therefore,

Assumption 4 is not in general testable but imposes a restriction on the form of G∗(v|x), the CPP.

Finally, if P [Y ∗ = 1|(X,V ) = (x, v)] were identifiable, identification of h(x) and FU |X(u|x) could

14We define ∂
∂v

G∗ (v|x) as the one-sided derivative at each end point of the support.
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be established, since they are uniquely determined by G∗(v|x) under (i) and (ii), as argued in the

proof of Theorem 2.15 Thus, this theorem can be seen as analogous to Magnac and Maurin’s (2007)

representation result which is stated under an orthogonality moment condition (corresponding to

E[UX] = 0 in the present context). We close this section with the theorem’s proof:

Proof of Theorem 2 Recall that, given Assumption 2, P [Y ∗| (X,V ) = (x, v)] = FU |X (v + h(x)|x).

Thus, it is sufficient to show that for each G∗ (·|x) which satisfies (i) and (ii), there exists some

(h(x), FU |X(u|x)) such that Mode [U |X = x] = cx and

G∗ (v|x) = FU |X (v + h(x)|x) .

Let v̄(x) := argmaxv∈[lxV , rxV ]
∂
∂vG

∗ (v|x) and define h(x) := cx − v̄(x). Given this h(x), construct

FU |X (·|x) as FU |X (v + h(x)|x) := G∗ (v|x) for each v ∈ [lxV , r
x
V ], or equivalently

FU |X (u|x) := G∗ (u− h(x)|x) (15)

for each u ∈ [lxV + h(x), rxV + h(x)]. By construction, FU |X (u|x) is differentiable and at u = cx,

∂

∂v
FU |X (cx|x) =

∂

∂v
G∗ (cx − h(x)|x) =

∂

∂v
G∗ (v̄(x)|x) .

Thus, if G∗ (lxV |x) = 0 and G∗ (rxV |x) = 1, we can check that the distribution of U |X = x is fully

specified by equation (15) and satisfies equation (14). Otherwise, we can appropriately define the

support of U |X = x, and the values of fU |X (u|x) = ∂
∂uFU |X (u|x) for u < lxV + h(x) or u > rxV +

h(x), so that fU |X(u|x) < ∂
∂vFU |X (v̄(x)|x) for any u 6= v̄(x), FU |X (lxV + h(x)|x) = G∗ (lxV |x), and

FU |X (rxV + h(x)|x) = G∗ (rxV |x). �

Derivation of Integral Form for Limit Object

Here, we outline how to derive the integral form for the limit object as given in equation (11) in the

main text. Note that for each (x, ṽ),

P [Y = 1| (X,V ) = (x, ṽ)] = α1(x) + [1− α1(x)− α2(x)]FU |X (ṽ + h(x)|x)

15Based on this identification result, a new non/semiparametric estimator for latent-variable binary choice models
could be constructed, although this is not pursued in this paper. To the best of our knowledge, there has been no study
that considers the conditional mode restriction as in equation (14) for such models.
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and

∫ rxV

ṽ

(∂/∂v)P [Y = 1| (X,V ) = (x, v)] dv = [1− α1(x)− α2(x)]

∫ rxV

ṽ

fU |X (ṽ + h(x)|x) dv

= [1− α1(x)− α2(x)]
[
1− FU |X (ṽ + h(x)|x)

]
.

These two equations imply

1− α2(x) = P [Y = 1| (X,V ) = (x, v)] +

∫ rxV

ṽ

(∂/∂v)P [Y = 1| (X,V ) = (x, v)] dv.

This provides an alternative estimator for α2(x). However, this equation is based on an arbitrary

choice ṽ. In the hope of providing a more robust estimation procedure, we take the expectation over

ṽ. That is,

1− α2(x)

= P [Y = 1|X = x] +

∫ rxV

lxV

[∫ rxV

ṽ

(∂/∂v)P [Y = 1| (X,V ) = (x, v)] dv

]
fV |X (ṽ|x) dṽ.

Furthermore, by Fubini’s theorem,

∫ rxV

lxV

[∫ rxV

ṽ

(∂/∂v)P [Y = 1| (X,V ) = (x, v)] dv

]
fV |X (ṽ|x) dṽ

=

∫ rxV

lxV

[∫ v

lxV

(∂/∂v)P [Y = 1| (X,V ) = (x, v)] fV |X (ṽ|x) dṽ

]
dv

=

∫ rxV

lxV

(∂/∂v)P [Y = 1| (X,V ) = (x, v)]FV |X (v|x) dv.

Thus,

1− α2(x) = P [Y = 1|X = x] +

∫ rxV

lxV

(∂/∂v)P [Y = 1| (X,V ) = (x, v)]FV |X (v|x) dv,

and the result is obtained. �

Regression-Based Construction of Special Regressor

In this section, we discuss the construction of the special regressor V introduced in Section 2.1. As

detailed in Section 3.2, we use the future criminal behaviour of the defendant as the special regressor

but since there are several measures of future criminality, we construct a scalar V from these measures.
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Denote by W a vector of such criminality measures, where W may include discretely distributed

components. Recall that one of the basic conditions for V is that it is continuously distributed

(supposed in Assumption 2). While V could be simply defined as an average of the components of

W , where the averaging may lead to a smoother distribution function (and thus at least approximate

continuity), we construct V through a (machine-learning-type) regression of Y on (X,W ), where Y is

the observable but misclassified version of Y ∗, and X is the observable characteristic vector introduced

in Section 2.1. Here, we discuss what form the regression should take such that the resulting V is

likely to satisfy Assumption 3 or 3′.

First, consider the following nonparametric regression of Y on (X,W ):

Y = κ (X,W ) + ε, (16)

where E [ε|X,W ] = 0 and κ is the regression (conditional expectation) function. Note that κ (X,W ) ∈

[0, 1] since Y ∈ {0, 1}. In our empirical work, V is an estimated probability from a gradient boosted

regression tree which lies in [0, 1].

While we could define

Vi = κ (Xi,Wi) , (17)

for each individual i, we claim this is not likely to be a sensible choice when W has sufficient pre-

dictability for Y . To this end, suppose the following slightly strengthened version of Assumption

1:

Assumption 1′

E [Y |Y ∗, X,W ] = E [Y |Y ∗, X] almost surely,

which implies Assumption 1 since V is assumed to be defined as a function of (X,W ). This allows

the misclassification error to be written as

E [Y ∗ − Y | (X,W ) = (x,w)] = −α1 (x) + [α1 (x) + α2 (x)]E [Y ∗| (X,W ) = (x,w)] ,

which can be derived analogously to (3) in Section 2.1. Given (17), the law of iterated expectations

leads to

E [Y ∗ − Y | (X,V ) = (x, v)] = −α1 (x) + [α1 (x) + α2 (x)]E [Y ∗| (X,V ) = (x, v)] . (18)

41



Note, by the definition of κ, we can also write

E [Y ∗|X,W ] = κ (X,W ) + E [Y ∗ − Y |X,W ] . (19)

Taking (19), (18), (17), and the law of iterated expectations, we can write

E [Y ∗| (X,V ) = (x, v)] = v − α1 (x) + [α1 (x) + α2 (x)]E [Y ∗| (X,V ) = (x, v)] . (20)

Now, suppose there exists some (x,w) such that κ (x,w) = 0, i.e. Y = 0 can be perfectly predicted.

Since v = κ (x,w), and E [Y ∗| (X,V ) = (x, v)] ≥ 0 we have

−α1 (x) + [α1 (x) + α2 (x)]E [Y ∗| (X,V ) = (x, 0)] ≥ 0.

Therefore,

E [Y ∗| (X,V ) = (x, 0)] ≥ α1 (x)

α1 (x) + α2 (x)
, (21)

provided that 0 < α1 (x) + α2 (x) < 1.

On the other hand, suppose there exists some (x, w̃) such that κ (x, w̃) = 1. Then, using (20), we

have

E [Y ∗| (X,V ) = (x, 1)] = 1− α1 (x) + [α1 (x) + α2 (x)]E [Y ∗| (X,V ) = (x, 1)] .

Since E [Y ∗| (X,V ) = (x, 1)] ≤ 1,

−α1 (x) + [α1 (x) + α2 (x)]E [Y ∗| (X,V ) = (x, 1)] ≤ 0.

Therefore,

E [Y ∗| (X,V ) = (x, 1)] ≤ α1 (x)

α1 (x) + α2 (x)
. (22)

Degeneracy of V

From (21) and (22), E [Y ∗| (X,V ) = (x, v)] is degenerated to α1 (x) / [α1 (x) + α2 (x)] when it is in-

creasing in v (as supposed in Assumption 2). That is, if predictions from the regression in (16) are

used for V , there would be no hope of satisfying the large support condition given Assumptions 1
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and 2 and sufficient predictability of Y from W .16 Thus, it is not sensible to use predictions from a

regression of the form in (16) as the special regressor.

Alternative construction of V

Instead, our special regressor is based on a regression of the form

Y = κ̃(X1,W ) + ε̃,

where E [ε̃|X1,W ] = 0 andX1 is a vector consisting of subcomponents inX, and we let V = κ̃(X1,W ).

For the above regression, the corresponding expression for (19) is now given by

E [Y ∗|X1,W ] = κ̃(X1,W ) + E [Y ∗ − Y |X1,W ] .

This cannot be (directly) combined with (20) and, consequently, does not result in counterparts to

the inequalities in (21) and (22). Thus, the degeneracy result is avoided.

It is worthwhile to note that choosing an X1 that is not sufficiently rich is important. This helps

to ensure that E[Y |Y ∗, X1,W ] 6= E[Y |Y ∗, X1], which is required to avoid the degeneracy problem.

For this reason, choosing X1 = ∅ (i.e., V = κ̃(W ) without X1) appears to be a sensible choice, and is

the choice we make in our empirical setting.

16The case of v = 0 (resp. v = 1) corresponds to the violation of the lower (resp. upper) tail condition of Assumption
3.
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Appendix B

Figure B.1: Distribution of Judge Leniency

Notes: This figure plots the estimated density of the residualised judge leniency measure constructed using the IV
subsample (5656 observations) described in Section 3.2. The residualised judge leniency measure is calculated as the
leave-one-out average conviction rate for each judge after accounting for the type of trial and courthouse×year fixed-
effects.

Figure B.2: First Stage Monotonicity Check

Notes: This figure plots a local-linear-logistic regression of the residualised judge leniency measure on conviction using
the IV subsample (5656 observations) described in Section 3.2. The residualised judge leniency measure is calculated
as the leave-one-out average conviction rate for each judge after accounting for the type of trial and courthouse×year
fixed-effects.
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Figure B.3: Calibrated Threshold Values (0.44 Correlation)

Notes: This figure plots the estimated police and judge decision thresholds from the model outlined in Section 5.1
for white and black defendants, respectively. For each race group, the estimated thresholds are obtained by equating
the type I and type II error probabilities given in equations (12) and (13) with their respective empirical estimates
and solving for the values of TP (Black) , TJ (Black) , TP (White) , TJ (White). In particular, the average empirical
estimates of the type I error are 0.25 and 0.17 for blacks and whites, respectively, and 0.18 and 0.16 for the average
empirical type II error for blacks and whites, respectively. The correlation between the strength-of-evidence signal seen
by the police and the signal seen by the judge is 0.44.
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Figure B.4: Calibrated Threshold Values (0.89 Correlation)

This figure plots the estimated police and judge decision thresholds from the model outlined in Section 5.1 for white
and black defendants, respectively. For each race group, the estimated thresholds are obtained by equating the type I
and type II error probabilities given in equations (12) and (13) with their respective empirical estimates and solving
for the values of TP (Black) , TJ (Black) , TP (White) , TJ (White). In particular, the average empirical estimates of the
type I error are 0.25 and 0.17 for blacks and whites, respectively, and 0.18 and 0.16 for the average empirical type II
error for blacks and whites, respectively. The correlation between the strength-of-evidence signal seen by the police and
the signal seen by the judge is 0.89.
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Table B.1: OLS Regression

Dependent variable:
Future Criminality

(1) (2) (3) (4)
Convicted 0.14∗∗∗ 0.09∗∗ 0.05 0.03

(0.04) (0.04) (0.04) (0.04)

White 0.25∗∗∗ 0.25∗∗∗ 0.24∗∗∗
(0.03) (0.03) (0.03)

Male 0.28∗∗∗ 0.28∗∗∗ 0.28∗∗∗
(0.03) (0.03) (0.03)

Previous Criminality 3 3 3

Case Characteristics 3 3

ZIP Code Fixed-Effects 3

Observations 5,656 5,656 5,656 5,656
Adjusted R2 0.01 0.05 0.06 0.07

Notes: This table reports results from four OLS regressions using the subsample of six circuit courts from Virginia as
detailed in Section 3.2. The dependent variable is future criminality calculated using the procedure given in Section 3.1
and is standardised to have unit variance. Conviction is a binary indicator for whether the defendant was convicted. The
other regressors are constructed as per the discussion in 3.2. Column (1) gives the simple regression of future criminality
on conviction status. Column (2) adds the defendant’s race, gender, and seven measures of previous criminality. Column
(2) includes whether the crime is an infraction or misdemeanour and the severity of the crime (measured by average fine
and average prison sentence, respectively). Column (4) adds ZIP code fixed-effects. Standard errors for the estimated
coefficients are reported in parentheses and are clustered at the individual level. * indicates significance at 10%, **
indicates significance at 5%, and *** indicates significance at 1%.
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Table B.2: IV Regression (Blacks)

Dependent variable:
Future Criminality

(1) (2) (3) (4)
Convicted 0.17 0.09 0.13 0.10

(0.29) (0.29) (0.28) (0.29)

Male 0.34∗∗∗ 0.34∗∗∗ 0.34∗∗∗
(0.04) (0.04) (0.04)

Previous Criminality 3 3 3

Case Characteristics 3 3

ZIP Code Fixed-Effects 3

Observations 3,669 3,669 3,669 3,669

Notes: This table reports results from four IV regressions using the subsample of six circuit courts from Virginia as
detailed in Section 3.2 for black defendants. The dependent variable is future criminality calculated using the procedure
given in Section 3.1 and is standardised to have unit variance. Conviction is a binary indicator for whether the defendant
was convicted, it is instrumented by judge leniency. Judge Leniency is the residualised leave-one-out average conviction
rate of the judge after controlling for the type of trial and courthouse×year fixed-effects. The other regressors are
constructed as per the discussion in 3.2. Column (1) gives the simple IV regression of future criminality on conviction
status. Column (2) adds the defendant’s race, gender, and seven measures of previous criminality. Column (2) includes
whether the crime is an infraction or misdemeanour and the severity of the crime (measured by average fine and average
prison sentence, respectively). Column (4) adds ZIP code fixed-effects. Standard errors for the estimated coefficients are
reported in parentheses and are clustered at the individual level. * indicates significance at 10%, ** indicates significance
at 5%, and *** indicates significance at 1%.
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Table B.3: IV Regression (Whites)

Dependent variable:
Future Criminality

(1) (2) (3) (4)
Convicted 0.01 -0.01 0.02 -0.04

(0.35) (0.34) (0.37) (0.40)

Male 0.20∗∗ 0.18∗∗ 0.16∗∗
(0.06) (0.06) (0.06)

Previous Criminality 3 3 3

Case Characteristics 3 3

ZIP Code Fixed-Effects 3

Observations 1,987 1,987 1,987 1,987

Notes: This table reports results from four IV regressions using the subsample of six circuit courts from Virginia as
detailed in Section 3.2 for white defendants. The dependent variable is future criminality calculated using the procedure
given in Section 3.1 and is standardised to have unit variance. Conviction is a binary indicator for whether the defendant
was convicted, it is instrumented by judge leniency. Judge Leniency is the residualised leave-one-out average conviction
rate of the judge after controlling for the type of trial and courthouse×year fixed-effects. The other regressors are
constructed as per the discussion in 3.2. Column (1) gives the simple IV regression of future criminality on conviction
status. Column (2) adds the defendant’s race, gender, and seven measures of previous criminality. Column (2) includes
whether the crime is an infraction or misdemeanour and the severity of the crime (measured by average fine and average
prison sentence, respectively). Column (4) adds ZIP code fixed-effects. Standard errors for the estimated coefficients are
reported in parentheses and are clustered at the individual level. * indicates significance at 10%, ** indicates significance
at 5%, and *** indicates significance at 1%.
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