
Inference with Many Weak Instruments

Anna Mikusheva1 Liyang Sun2

1,2MIT

May, 2020

1 / 41



Introduction

We are interested in Instrumental Variables models where the
instruments are:

1 Many
2 Potentially Weak

Example 1: Angrist and Krueger (1991) interacts quarter of birth
with:

year of birth (30)
year and state of birth (180)
year and state of birth, and their interactions (1530)

Example 2: ‘Judges design’: assignment to judge is an instrument.
Sample size (number of cases) is roughly proportional to the number
of judges. Maestas et al. (2013), Sampat and Williams (2015),
Dobbie et al. (2018)
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Introduction

Example 3: Factor Pricing

Erit = λβi , where βi = Σ−1
F cov(Ft , rit),

where λ is the risk premia, while βi is risk exposure.

Common estimation procedure is Fama-MacBeth:
1 For each i estimate β̂i by OLS of rit on Ft .
2 Estimate λ̂ by OLS of 1

T

∑
t rit on β̂i .

The problem can be re-formulated as TSLS with the number of
instruments proportional to the number of stocks/portfolios.

In applications many factors are only weakly correlated with all the
returns, that results in weak IV.
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IV with Many Weak Instruments

Linear IV model with one endogenous variable, (a small number of)
exogenous variables partialled out

{
Yi = βXi + ei ,
Xi = π′Zi + vi ,

where Zi ∈ R
K is conditioned upon.

Weak instruments: π is close to zero.

Many instruments K → ∞ as N → ∞ (up to K = λN).

The errors are heteroscedastic (but independent).

Many of our results hold for more general non-linear first stage
Xi = Πi + vi with Πi = E [Xi |Zi ]
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IV with Many Weak Instruments

When K is fixed, weak identification is defined as π = C√
N
, no

consistent estimator exists.

If K → ∞ and each instrument is weak, then in totality there is a lot
of information π′Z ′Zπ ≍ K .

Literature on “many weak” mostly concentrated on estimation: TSLS
is inconsistent, but consistent estimation is possible.
Consistent estimators under some conditions are LIML (Newey, mimeo,
2004), JIVE (Chao et al, ET, 2012), Jackknife LIML (Hausman et al,
QE, 2012), CUE (Newey and Windmeijer, ECMA, 2009).

Where is the knife-edge, below which there is no consistent estimator?
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Goals of This Project

1 Define weak identification when K → ∞.

2 Find tests robust to weak identification and to heteroscedasticity.

3 Create a pre-test for weak instruments (à la first stage F ).

4 Bonus: power of robust tests. Optimal tests?
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Overview

1 What is Weak Identification?

2 Weak IV- Robust Testing
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4 Other tests: Power considerations



What is Weak Identification?

What is Weak Identification?

Model again: {
Yi = βXi + ei ,
Xi = π′Zi + vi ,

where Zi ∈ R
K

Our answer: if the direction of π is unknown, then π′Z ′Zπ√
K

≍ const is

the knife-edge case for consistency.

Negative statement: in the best possible scenario – only π and β are
unknown, if π

′Z ′Zπ√
K

≍ const, there exists no asymptotically consistent

robust test.

Positive statement: we construct robust tests that are consistent
when π′Z ′Zπ√

K
→ ∞.
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What is Weak Identification?

What is Weak Identification?

We consider gaussian model with homoscedasticity and known
covariance matrix for the reduced-form errors.

Let Ψ be a class of tests for H0 : β = β0 that has correct size
uniformly over nuisance parameter π.

Statement: for any fixed β∗ 6= β0

lim sup
n→∞

max
ψ∈Ψ


 min
π:π

′Z ′Zπ√
K

=const

Eπ,β∗ψ


 < 1.
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What is Weak Identification?

What is Weak Identification?

lim sup
n→∞

max
ψ∈Ψ


 min
π:π

′Z ′Zπ√
K

=const

Eπ,β∗ψ


 < 1.

No fixed alternative β∗ can be consistently distinguished from β0 if
the direction of π is unknown and π′Z ′Zπ√

K
= const.

If K is fixed – it is the usual weak iv embedding.

When K → ∞ this result is new

Stronger statement than Chao and Swanson (2005) where they prove
this is the knife-edge case for B2SLS and LIML.
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Weak IV- Robust Testing

Weak IV-Robust Tests: Refresher, Fixed K

H0 : β = β0. Define e(β0) = Y − β0X .

AR (Anderson-Rubin) statistics:

e(β0)
′ZΣ−1Z ′e(β0) ∼ χ2

K .

Σ is a covariance matrix of e′Z or a good estimate of it.

Size is robust to weak IV.
Loss of power if identification is strong.
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Weak IV- Robust Testing

What Changes with K → ∞?

Think about AR (Anderson-Rubin) statistics:

e(β0)
′ZΣ−1Z ′e(β0) ∼ χ2

K .

CLT may not work well when K is growing.
χ2
K is a diverging distribution.

Σ is a covariance matrix of e ′Z – it is K × K , not well estimated.
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Weak IV- Robust Testing

What Changes with K → ∞?

Even under homoscedasticity (need to estimate a scalar σ2e ), variance
estimation mistakes change the limit distribution for K = λN.

AR statistics for fixed K

AR(β0) =
e(β0)

′PZ e(β0)

e(β0)′MZe(β0)/(N − K )
⇒ χ2

K ,

χ2
K − K√
2K

⇒ N(0, 1) as K → ∞.

However, if K = λN, Anatolyev and Gospodinov (ET, 2011) show
under the null

AR(β0)− K√
2K

⇒ N

(
0,

1

1− λ

)
.
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Weak IV- Robust Testing

Our Proposed Ideas

We wish to construct weak identification robust test for
heteroscedastic model.

We have several concerns:

Estimation of Σ, covariance matrix for e ′Z , is impossible.
Need to re-center statistics such as AR.
CLT may not work.
Estimation of variances.

Ideas:

Use default Σ (= (Z ′Z )−1 as for homoscedastic case).
Re-center and re-normalize the statistics.
Use CLT for quadratic forms.
Use cross-fit variance estimation.
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Weak IV- Robust Testing

Our Proposed Ideas

Proposed AR uses default homoscedastic weighting (Z ′Z )−1 and is
proportional to e(β0)

′PZe(β0) =
∑

i ,j Pijei(β0)ej(β0).

Re-centering: in heteroscedastic case Ee′PZ e =
∑N

i=1 PiiEe
2
i .

The obvious way to re-center:

e(β0)
′PZe(β0)−

N∑

i=1

Piie
2
i (β0) =

∑

i 6=j

Pijei (β0)ej (β0).

This is the leave-one-out (jackknife) approach! See Angrist et al
(JAE, 1999), Chao et al (ET, 2012) and Hausman et al (QE, 2012).

Similar proposal of AR test- Crudu, Mellace and Sandor (2020)
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Weak IV- Robust Testing

Central Limit Theorem for Quadratic Forms

Theorem 1 (Chao et al, 2012).

Assume that P is N × N symmetric idempotent matrix of rank K with

K → ∞ as N → ∞, and Pii < C < 1. Let (U1, e1), ..., (UN , eN) be
independent, mean-zero with bounded fourth moments. Then

1

BN

√
K

∑

i 6=j

UiPijej ⇒ N(0, 1)

here

B2
N =

1

K

∑

i 6=j

P2
ij (E [UiU

′
i ]E [e

2
j ] + E [Uiei ]E [U

′
j ej ]).

Alternative CLT is in Sølvsten (2017).
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Weak IV- Robust Testing Variance Estimation

AR: Variance Estimation

The infeasible leave-one-out AR is

AR0(β0) =
1√
KΦ0

∑

i 6=j

ei (β0)Pijej (β0),

for Φ0 =
2
K

∑
i 6=j P

2
ijσ

2
i σ

2
j .

Rejects for large values of AR.

Need to estimate the variance.

16 / 41



Weak IV- Robust Testing Variance Estimation

AR: Variance Estimation

Φ0 =
2

K

∑

i 6=j

P2
ijσ

2
i σ

2
j

Idea 1: σ̂2i = e2i (β0). Crudu, Mellace and Sandor (2020). It gives
correct size, robust toward heteroscedasticity, but power is
problematic at distant alternatives.

Idea 2: Residualizing e(β0) with respect to Z (M = I − PZ )

σ̂2i = (Mie(β0))
2 , E [σ̂2i ] 6= σ2i

estimates the wrong quantity.

Estimation error is a large part of the residual; squaring messes up
estimation of variance.
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Weak IV- Robust Testing Variance Estimation

AR: Variance Estimation

Φ0 =
2

K

∑

i 6=j

P2
ijσ

2
i σ

2
j

Idea 3 is to estimate σ2i = E [e2i ] by a “cross-fit” variance estimator
(Newey and Robins (2018), Kline et al (2018)):

σ̂2i =
1

1− Pii

ei (β0)Mie(β0).

Challenge is that we need a double sum:

E [(eiMie)(ejMje)] = (MiiMjj +M2
ij )σ

2
i σ

2
j .

Our suggested estimator:

Φ̂ =
2

K

∑

i 6=j

P2
ij

MiiMjj +M2
ij

[ei (β0)Mie(β0)] [ej(β0)Mje(β0)] .
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Weak IV- Robust Testing Variance Estimation

Feasible AR

Feasible AR(β0) =
1√
K Φ̂

∑
i 6=j ei (β0)Pijej (β0) uses

Φ̂ =
2

K

∑

i 6=j

P2
ij

MiiMjj +M2
ij

[ei (β0)Mie(β0)] [ej (β0)Mje(β0)] .

Φ̂ is consistent for Φ0 under the null.

Feasible test achieves the same local power as the infeasible AR.

If non-linear first stage (Xi = Πi + vi , Πi = E [Xi |Zi ]) for consistency
of Φ̂ we need additional assumption Π′MΠ ≤ C

K
Π′Π

Feasible AR is consistent for distant alternatives (though Φ̂ is not
consistent there).
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Weak IV- Robust Testing Variance Estimation

Power of AR

The leave-one-out AR is

AR(β0) =
1√
K Φ̂

∑

i 6=j

ei (β0)Pijej (β0).

Under the alternative β = β0 +∆, we have ei (β0) = ∆Πi + ηi .

Define a leave-one-out concentration parameter:

µ2 =
∑

i 6=j

PijΠiΠj .

Power statement: uniformly over set of local alternative and
(reasonably restricted) set of µ2 :

AR(β0) ⇒ ∆2 µ2√
KΦ0

+N (0, 1).

As soon as µ2/
√
K → ∞, AR is consistent for fixed alternatives.
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Weak IV- Robust Testing Variance Estimation

Summary

If π
′Z ′Zπ√

K
≍ const, then we cannot consistently distinguish two values

of β. Thus, weak identification.

We constructed a test (Leave-one-out AR), that is robust to weak
identification (and heteroscedasticity). It becomes consistent as soon
as µ2/

√
K → ∞.

The suggested AR is probably not very powerful if identification is
strong.

How can we distinguish empirically if identification is weak?
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Pre-test for weak identification

F test under fixed K

To measure the identification strength, it is common practice to
conduct a pretest based on the first-stage F statistic.

Researchers compare their F statistic to some cut-off (10?) to gauge
the degree of weak identification (defined as Wald test has actual size
up to 10% for a nominal 5% test).
If the F statistic is greater than the cut-off, report the usual TSLS-Wald
confidence set. Otherwise, report a robust confidence set (i.e., AR).
The resulting two-step test has size at most 15%.

Huge problem: valid only under homoscedasticity

Our goal: create two-step procedure robust to heteroscedasticity and
weak identification under K → ∞.
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Pre-test for weak identification

F test under fixed K

First stage F - pre-test may be conservative for large K for properly
selected estimator (EF = π′Z ′Zπ

σ2vK
+ 1):

2
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JIVE

Figure: Stock, Wright, Yogo (JBES, 2002)
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Pre-test for weak identification

Estimation with many instruments

Different estimators have distinct convergence properties when K is
large:

TSLS is consistent whenever π
′Z ′Zπ

K
→ ∞. (Chao and Swanson

(2005), Newey (2004))
Under homoscedasticity LIML, BTSLS, JIVE are consistent whenever
π
′Z ′Zπ√

K
→ ∞. (Newey(2004),Hausman et al (2007))

Under heteroscedasticity LIML and BTSLS are consistent whenever
π
′Z ′Zπ

K
→ ∞, while JIVE is consistent whenever π

′Z ′Zπ√
K

→ ∞ (Chao et

al (2012))

First stage F - measures EF = π′Z ′Zπ
σ2vK

+ 1.
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Pre-test for weak identification

Our pre-test for weak identification

The goal of a pre-test is to control the size of a test for H0 : β = β0.

If identification seems weak, we will use our new AR test.

If identification seems strong, we will use the JIVE-Wald test.

We want asymptotic size of this two step procedure to be not larger
than 10%.

Motivation for pre-test: under strong instruments it gives

A simpler procedure
A more powerful test
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Pre-test for weak identification

Wald test based on JIVE

We use what is called JIV2 estimator and Wald statistics ( Chao et al
(2012)):

β̂JIVE =

∑
i

∑
j 6=i PijYiXj∑

i

∑
j 6=i PijXiXj

,

Wald(β0) =

(
β̂JIV − β0

)2

V̂
,

V̂ =

∑N
i=1

(∑
j 6=i PijXj

)2
êiMi ê
Mii

+
∑N

i=1

∑
j 6=i P̃

2
ijMiX êiMjX êj

(∑N
i=1

∑
j 6=i PijXiXj

)2 ,

where êi = Yi − Xi β̂JIV .
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Pre-test for weak identification

Pre-test for weak identification

Our pre-test is based on empirical measure:

F̃ =
1

√
K
√

Υ̂

N∑

i=1

∑

j 6=i

PijXiXj ,

here Υ̂ = 2
K

∑
i

∑
j 6=i

P2
ij

MiiMjj+M2
ij

XiMiXXjMjX is an estimate of

uncertainty in the first stage

It has signal-to-noise form normalized by
√
K
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Pre-test for weak identification

Pre-test for weak identification

Theorem 2.

If Π′MΠ ≤ CΠ′Π
K

and Π′Π
K 2/3 → 0 as N → ∞, then under H0 : β = β0,

(
Wald(β0), F̃

)
⇒
(

ξ2

1− 2̺ ξν + ξ2

ν2

, ν

)
,

where

(
ξ
ν

)
∼ N

((
0
µ2√
K
√
Υ

)
,

(
1 ̺
̺ 1

))
and ̺ is a correlation

parameter.

Notice that when µ2√
K
√
Υ

is large then Wald(β0) ≈ ξ2 = χ2
1
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Pre-test for weak identification

Pre-test for weak identification

For different values of µ2√
K
√
Υ

we may simulate

(
ξ
ν

)
∼ N

((
0
µ2√
K
√
Υ

)
,

(
1 ̺
̺ 1

))

and the worst-case asymptotic size of the Wald test

max
̺∈[−1,1]

Pr

{
ξ2

1− 2̺ ξν + ξ2

ν2

≥ χ2
1,α

}
,

which is maximized at ̺ = 1.
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Pre-test for weak identification

Worst case asymptotic size of JIVE-Wald
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This gives us a definition of (cut-off for) many weak instrument in

terms of µ2√
K
√
Υ
< 2.5, which implies the pre-test: reject many weak

instruments if F̃ > 4.14.
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Pre-test for weak identification

Re-visiting Angrist and Krueger (1991)

Research question: return to education. Yi is the log weekly wage, Xi

is education.

Instruments: quarter of birth. Justification is related to compulsory
education laws:

180 instruments: 30 quarter and year of birth interactions (QOB-YOB)
and 150 quarter and state of birth interactions (QOB-POB)
1530 instruments: full interactions among QOB-YOB-POB

The sample contains 329,509 men born 1930-39 from the 1980
census.

This paper sparked the weak IV literature. It is a running example for
multiple papers.
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Pre-test for weak identification

Re-visiting Angrist and Krueger(1991)

FF F̃ JIVE-Wald Jackknife AR

180 instruments 2.428 13.422 [0.066,0.132] [0.008,0.201]

1530 instruments 1.27 6.173 [0.024,0.121] [-0.047, 0.202]

Table: Angrist and Krueger (1992) Pre-test Results

Notes: Results on pre-tests for weak identification and confidence sets for IV

specification underlying Table VII Column (6) of Angrist and Krueger (1991). The

confidence set based on jackknife AR is constructed via analytical test inversion.
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Other tests: Power considerations

Weak IV-Robust Tests: Refresher, Fixed K

Problem: AR is not efficient if identification is strong

LM intends to test a “powerful” combination of instruments e′Zπ,
but π̂ is correlated with e′Z .

KLM: define π̃ = π̂−AZ ′e(β0), orthogonalized version of estimator π̂:

KLM =
(e(β0)

′Z π̃)2

σ2KLM
∼ χ2

1.

Robust size when identification is weak.
Efficient if identification is strong.
Non-monotonic power if identification is weak.

CLR is doing a smooth switch between AR and KLM: AR for weaker
cases, KLM for stronger.
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Other tests: Power considerations

Infeasible leave-one-out LM

Idealistic LM is based on linear combination e′(β0)Z π̂ = e′(β0)PZX .

Leave-one-out gives us LM1/2 ∝∑i 6=j ei (β0)PijXj .

Xj = Z ′
jπ + vj

LM1/2 ∝
∑

i 6=j

ei (β0)Pijvj +
∑

i

ei (β0)



∑

j 6=i

PijZ
′
jπ


 .

We apply both Lindeberg’s CLT and quadratic CLT.

We need each term to be asymptotically negligible:
maxi π

′ZiZ
′
i π/µ

2 → 0.

We do NOT need KLM-correction.
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Other tests: Power considerations

Feasible LM

The feasible leave-one-out LM is

LM1/2(β0) =
1√
K Ψ̂

∑

i 6=j

ei (β0)PijXj ,

with N(0, 1) asymptotic distribution under the null and two-sided
rejection.

Asymptotic variance is somewhat more complicated, though still
makes use of the ideas of double-cross-fit.

Ψ̂ =
1

K

∑

i

eiMie

Mii

(
∑

j 6=i

PijXj)
2 +

1

K

∑

i

∑

j 6=i

P̃2
ijXiMieXjMje.

Variance estimator is consistent uniformly over LM local alternatives.

35 / 41



Other tests: Power considerations

Power of LM

The feasible leave-one-out LM is

LM1/2(β0) =
1√
K Ψ̂

∑

i 6=j

ei (β0)PijXj .

Under the alternative β = β0 +∆, we have ei (β0) = Z ′
i π∆+ ηi :

LM1/2 ⇒ ∆
µ2√
KΨ

+N (0, 1),

uniformly over local alternatives.

LM test has two-sided rejection region.

As soon as µ2/
√
K → ∞, LM is consistent for fixed alternatives.
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Other tests: Power considerations

Power trade-off

Under the alternative β = β0 +∆, we have :

LM1/2 ⇒ ∆
µ2√
KΨ

+N (0, 1),

AR ⇒ ∆2 µ2√
KΦ

+N (0, 1),

When µ2√
K

→ ∞, AR and LM are asymptotically consistent for fixed

alternatives β.

When µ2√
K

→ ∞ but µ2

K
→ 0 local alternatives are:

for AR {∆ : ∆2
µ
2

√
K

≤ C} i.e. |∆| ∝
√√

K
µ2 ,

for LM {∆ : |∆|µ2

√
K

≤ C} i.e. |∆| ∝
√
K

µ2 ,

AR has slower speed of detection.
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Other tests: Power considerations

Conditional Switch Test: CLR

Use F̃ for conditioning:




AR(β0)−∆2 µ2√
KΦ

LM1/2(β0)−∆ µ2√
KΨ

F̃ − µ2√
KΥ


⇒ N (0,Σ) .

To test H0 : ∆ = 0 against H0 : ∆ 6= 0 we use:

LR(AR(β0), LM
1/2(β0), F̃ ) = max

∆,µ
ℓ(∆,

µ2√
K
)−max

µ
ℓ(0,

µ2√
K
),

and simulate critical values conditional on the orthogonalized version
of F̃ .
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Other tests: Power considerations

Preliminary Simulation Evidence: switch by CLR
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Other tests: Power considerations

Preliminary Simulation Evidence: switch by CLR
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Other tests: Power considerations

Conclusions

We found that the knife-edge case for consistency happens when
π′Z ′Zπ√

K
≍ const.

We introduced AR, LM and CLR tests robust to weak id,
heteroscedasticity and many instruments.

Tests use idea of leave-one-out quadratic forms and cross-fit variance
estimation.

We can create a simple pre-test for weak identification robust to
heteroscedasticity when K → ∞.
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