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Abstract

We propose a novel approximate fixed effects (AFE) estimator that employs inter-
polation in the computation of its criterion function. This feature greatly reduces
the number of times the underlying economic model needs to be solved. In the case
of dynamic programming models this can reduce the estimation time from days to
minutes. We study the asymptotic behavior of the AFE estimator and derive the
leading additional biases due to approximations under mild regularity conditions.
We demonstrate that the Jackknife removes both the usual incidental parameter
bias and biases due to approximations. Monte Carlo results highlights the attrac-
tive features of the AFE which is much faster than the exact FE estimator and with
only small additional estimation errors. We apply the AFE to fit the buffer-stock
consumption-saving model with unrestricted heterogeneity in the discount factor on
Danish register data.
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1 Introduction

Economic agents are typically heterogeneous in terms of ex ante characteristics. Exper-
iments, for example, repeatedly provide evidence of substantial heterogeneity in prefer-
ences, abilities and beliefs.1 Such heterogeneity furthermore have important positive and
normative implications. In terms of economic modelling and estimation, it is therefore
pivotal to allow for flexible forms of heterogeneity.

In a parametric setting unobserved heterogeneity can be modelled by treating (some of)
the parameters as random effects (RE’s) or fixed effects (FE’s) that vary across individuals.
However, most applied structural work assume ex ante homogeneity or impose strong
parametric restrictions on the variation, e.g., restrict heterogeneity to be from discrete
districution; see, e.g., French and Jones (2011); Ciliberto and Tamer (2009); Bonhomme
and Manresa (2015) These strong parametric restrictions on heterogeneity comes with a
significant risk of misspecification with biases in results and conclusions as consequence.
When panel data is available, it is well-known that this risk can be removed by treating the
individual-specific parameter values as FE’s to be estimated together with any common
parameters.

But very few empirical studies impement structural models with flexible RE’s or FE’s.
One of the main reasons for this is computation time; it is often not computationally
feasible to allow such features. Many structural models cannot be solved on closed form
and so their estimation normally involve an outer and inner loop where in the outer one
we search over the parameter space and in the inner loop, for a given candidate value of
the parameter, numerical dynamic programming is used to solve the model. If the support
of the random coefficients or fixed effects is large, the model has to be solved many times
and so estimation time becomes prohibitively large.

We propose a general numerical algorithm that resolves this computational issue. As
an example, our proposal allows us to estimate the canonical buffer-stock consumption
model with discount rates treated as FE’s in a matter of minutes for a sample of more
than 250,000 households observed over 8 time periods. In comparison, the standard FE
estimator takes hours to deliver similar estimates. The basic idea of our approximate
estimator is to reduce the time spent in the inner loop of the estimation procedure. This
is achieved by precomputing the solution to the economic model on a grid spanning
the relevant domain of the heterogeneous parameters and the model’s state space. In
the subsequent estimation procedure, the model can then be evaluated by interpolation

1 Examples include Barsky, Juster, Kimball and Shapiro (1997), Coller and Williams (1999), Beetsma
and Schotman (2001), Holt and Laury (2005), Andersen, Harrison, Lau and Rutström (2008), Guiso
and Paiella (2008), Dohmen, Falk, Huffman, Sunde, Schupp and Wagner (2011), Andreoni and Sprenger
(2012) and Finke and Huston (2013).
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instead of computing a new solution to the model, which computationally is orders of
magnitude more expensive due to use of e.g. dynamic programming or the need to find
fixed points. Moreover, partial derivatives of the objective function w.r.t. the variables
that interpolation is employed on are available on closed form and can be computed
very fast. This means that derivative-based numerical optimizers can be applied without
relying on numerical derivatives. Our algorithm proves to be particularly powerful when
estimating FE models but we expect it to also be useful in estimation of RE models
and, more generally, models with a large number of homogeneous parameters and/or
observations.

We provide a general asymptotic theory for approximate estimation in FE and RE panel
data models. We apply the general theory to our interpolation method which allows us
to derive the additional biases due to interpolation being used in the estimation. We
furthermore demonstrate that these biases (together with biases due to FE’s) can be
removed by Jackknife. The theory is general enough that it can also be used to analyze
the effects of other numerical tools, such as simulation-based methods, on estimation of
FE and RE models.

We investigate the performance of our method in practice through a set of Monte Carlo
experiments. These show that only a modest number of grid points is needed in order
for the AFE to be close to identical to the exact estimator. We additionally suggest a
simple data driven approach to choose the bounds and density of the grid, where the
model solutions are pre-computed.

To illustrate the empirical applicability of our proposed estimator, we estimate the buffer-
stock consumption model on Danish administrative register data allowing for heteroge-
neous discount factors. This model was first structurally estimated in Gourinchas and
Parker (2002) and Cagetti (2003) assuming homogeneous preferences. We are the first
to estimate the model without making any distributional assumptions on the form of
heterogeneity. Our results suggest that there is substantial preference heterogeneity. The
importance of allowing for preference heterogeneity to explain wealth inequality is noted
by De Nardi and Fella (2017), while Krueger, Mitman and Perri (2016), Carroll, Slacalek,
Tokuoka and White (2017) and Alan, Browning and Ejrnæs (2017) study its importance
for consumption dynamics. After discussing the related literature below, the paper pro-
ceeds as follows. Sections 2 and 5 present the approximate FE (AFE) and approximate
RE (ARE) estimators, while Section A contains the asymptotic theory. Section 4 presents
the Monte Carlo estimation results. In Section 7, we report the estimation results from
our empirical application. Finally, we conclude in Section 8. All proofs and lemmas have
been relegated to Appendix A.
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1.1 Existing Literature

Interpolation has been used in elsewhere in structural empirical work to obtain a smoothed
model solution from a discretized version; see, e.g., Keane and Wolpin (1994) and Low,
Meghir and Pistaferri (2010). However, they only interpolate over the state variables while
we also use interpolation for the unknown parameters leading to substantial computational
savings compared to their method when used in estimation.

Similarly, the idea of pre-computing the model solution on a fixed grid of parameters before
estimation goes back to at least the histogram method of Kamakura (1991). Bajari, Fox
and Ryan (2007) and Fox, Kim, Ryan and Bajari (2011) use this for simple estimation
of static discrete choice models with nonparametric RE’s. Fox, Kim and Yang (2016)
provide formal justification for this approach. Unfortunately, the procedure becomes
much more complex for structural dynamic models because it generally requires solving
a high-dimensional non-linear optimization problem with all the population weights as
parameters to be estimated.2 Dynamic models with RE’s, furthermore, face the initial
condition problem where the researcher must specify how the RE distribution depends on
the intial values of the state variables (see e.g. Heckman, 1981). The FE version of our
approximate estimator does not face these problems. Finally, Han (????) also proposes an
estimator that employs interpolation. He focuses on cross-sectional applications without
fixed effects.

In a similar vein, Hahn and Moon (2010); Bonhomme and Manresa (2015) and Bester
and Hansen (2015) developed grouped fixed effect (GFE) estimators where the FE’s are
assumed to have finite support. When applied to structural models, this means that the
model only has to be estimated at the support points and so appear to come with similar
computational advantages. In fact, in the special case of interpolation being done using
step functions, our estimator becomes computationally equivalent to their estimator with
our grid point corresponding to the placements of the groups. However, while Bonhomme
and Manresa (2015) assume that the finite FE model is the data generating mechanism,
we treat it as an approximation to an underlying continuous distribution of the FE’s
and our theory takes into account the biases due to this. Bonhomme, Lamadon and
Manresa (2017) consider the extension to the case where unobserved heterogeneity is not
necessarily discrete in the population, and the number of groups therefore is required to
grow with the sample size. However, if indeed the underlying distribution is continuous,
we recommend using a higher-order (smooth) interpolation scheme since this comes with
smaller numerical errors as demonstrated in our theory.

2 The constrained least squares formulation of the estimator can, as shown by Nevo, Turner and Williams
(2016), be recovered for continuous choices in a method of moment version where all the moments are
restricted to be linear in the population weights.
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The above cited papers belong to a large literature on estimation of mixture models. A
particularly popular estimator in this class is the non-parametric maximum likelihood
estimator (NPMLE) proposed by Heckman and Singer (1984), among others. These
types of estimators often formulate an expected likelihood function where both the groups
placement and weights are to be estimated. In terms of computation, these estimators can
be numerically unstable due to the simultaneous estimation of weights and nodes which
can result in multiple local optima and problems of convergence. Empirical applications
have therefore been restricted to cases with a few (e.g. 3) distinct groups.

From a methodological perspective, there is a large literature that analyzes the effect
of approximations on estimators based on cross-sectional or time series data; see, e.g.,
Fernández-Villaverde, Rubio-Ramírez and Santos (2006), Kristensen and Salanié (2017)
and Kristensen and Shin (2012). To our knowledge, this is the first paper that provide a
theory for approximate estimators in a panel data setting. Our asymptotic results extend
the ones for FE estimators found in Hahn and Newey (2004) and Hahn and Kuersteiner
(2011) to take into account numerical approximations in the computation of the objective
functions.

2 Estimating FE models using Interpolation

We here first show how our proposal works when applied to a consumption-saving model
in Section 2.1 and then present the general version of our AFE estimator in Section 2.2 and
the proposed Jackknife in Section 2.3. Section 2.4 discusses the practical implementation
of the AFE.

2.1 Illustrative example: Consumption-saving model

To illustrate how our AFE estimator works, we here explain its implementation in the
context of a consumption-saving model where the discount rate is treated as a FE. Specif-
ically, we consider the canonical buffer-stock model of Deaton (1991, 1992) and Carroll
(1992, 1997, 2012) where individual i chooses consumption Cit to mamize expected utility
subject to financial constraints,

Vt(Mi,t, Pi,t) =
C1−ρ
i,t

1− ρ + βiEt[Vt+1(Mi,t+1, Pit+1)] (2.1)

s.t.

Ait = Mit − Cit, Mit+1 = rAit + Yit+1, Pit+1 = gPitψit+1,

Yit+1 =

0 with. prob. π

Pit+1ξit+1 else
,
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and Ait ≥ −λPit+1. Here, the state variables are cash-on-handMit and permanent income
Pit, while the shocks satisfy log ξit+1 ∼ N (−0.5σ2

ξ , σ
2
ξ ) and logψit+1 ∼ N (−0.5σ2

ψ, σ
2
ψ).We

follow Gourinchas and Parker (2002) and model consumption in the retirement period TR
as

C∗TR(MiT , PiT ) = γ
1−R−1(βR)1/ρ

1− [R−1(βR)1/ρ]L−T

[
MiT + 1−R−(L−T )

1−R−1 κPiT

]
(2.2)

where κ is the replacement rate and L is the last period of life. The parameter γ shifts
retirement utility and so affects the propensity to consumer in retirement relative to
during worklife.

To keep exposition simple, we here fix most of the parameters in the model and only treat
the discount rate βi and the consumption preference γ as free parameters to be estimated.
We here assume that γ is common to all inviduals while βi is treated as a FE. The model
can be sold in terms of ci,t = Ci,t/Pi,t and mi,t = Mi,t/Pi,t so that ci,t = c?t (mi,t; γ, βi). We
allow for relative consumption to be observed with error so that

ci,t = c?t (mi,t; γ, βi) + εi,t, εi,t ∼ N (0, σ2
c ),

where εi,t is the measurement error with variance σ2
c , and βi is individual i’s discount

parameter.

The consumption function c?t is not available on closed form but a very good numerical
approximation can be obtained by the endogeneous grid method (EGM) (Carroll, 2006).
EGM takes as input the model parameters (γ, βi) and returns the values of c?t (m; γ, βi)
for m on a set of grid points chosen by us. Thus, interpolation is needed anyway in order
to compute c?t (mi,t; γ, βi) when the observed value mi,t falls between the grid points used
in EGM. This was implemented using 500 grid points for the end-of-period asset grid
and Gauss-Hermite quadrature with 5 nodes for the income shocks. We will here ignore
any numerical errors contained in this approximate solution; but note that our theory
accommodates this feature.

Given observations of consumption and savings for a random sample of N individuals
over T time periods, the exact FE estimator of the common parameters (γ, σ2

c ) and the
FE’s β1, ...., βN then solves

γ̂ = arg min
γ

N∑
i=1

T∑
t=1

(cit − c?t (mit; γ, β̂i(γ)))2

β̂i(γ) = arg min
β

T∑
t=1

(cit − c?(mit; γ, β))2, i = 1, . . . , N,

and σ̂2
c = 1

NT

∑N
i=1

∑T
t=1(cit − c?t (mit; γ̂, β̂i(γ̂)))2. The computation of these estimators is

costly since, for each value of γ, we have to compute β̂1(γ), ...., β̂N(γ), and each of these
require us to recompute c?(mit; γ, β) again and again as we search over β. In practice,
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with N = 1000 and T = 10, it took us around 100 seconds to compute γ̂. This may not
sound like a lot, but the computational burden quickly increases as more parameters are
treated as FE’s and/or as N gets bigger.

Our proposal circumvents the computational bottleneck caused by the repeated numerical
evaluation of c?t (m; γ, β): We choose J grid points for each of the two variables m and β,
say, {m1, ...,mJ} and {β1, ..., βJ}, respectively. For a given value of γ, we then compute
cj,k (γ) = c?t (mj; γ, βk), j, k = 1, ...., J , and use, e.g., tensor B-splines, to compute the
function off the grid,

ĉ?K,t(m; γ, β) =
K∑

j,k=1
cj,k (γ)B′j,k

 K∑
j,k=1

Bj,kB
′
j,k

−1

B (m)⊗B (β) , (2.3)

where Bj,k = B (mj)⊗B (βk) is the tensor B-spline evaluated at the (j, k)th node. Here,
K = J2 is the total number of grid points and so controls the interpolation error and the
computation time – a larger value of K reduces the interpolation error but at the same
time increases the computation time since it involves K evaluations of c?t .

We then replace the consumption function appearing in the FE estimation problem with
ĉ?K,t to obtain our AFE,

γ̂K = arg min
γ

N∑
i=1

T∑
t=1

(cit − ĉ?K,t(mit; γ, β̂i(γ)))2

β̂K,i(γ) = arg min
β

T∑
t=1

(cit − ĉ?K,t(mit; γ, β))2, i = 1, . . . , N.

The central benefit of AFE is that, for a given value of γ, the computation of β̂K,i(γ)
involves an objective function which is avaliable on closed form since ĉ?K,t(m; γ, β) in eq.
(2.3) is on closed form (after pre-computing cj,k (γ)). When estimating the heterogeneous
parameters, the AFE thus interpolates a pre-computed interpolant, which typically is
much faster than solving the underlying economic model, as is done in the FE estimator.
Note in particular that the number of evaluations of c?t is independent of N .

To demonstrate the computational gains of the AFE in this context, report results from
a Monte Carlo experiment. The data-generating parameters was chosen as γ = 1 while
βi = min

{
max

{
β̃i, β

}
, β
}
with β̃i ∼ N (µβ, σ2

β). The remaining parameters of the model
are, as mentioned earlier, treated as known; the values of these can be found in Table 1.
We then simulate N = 1000 individuals who are observed from age 40–49 (T = 10); all
individuals are born with no wealth (Ai0 = 0) and with permanent income normalized to
one (Pi0 = 1).

For the interpolation, we used three different basis functions, cubic splines, linear splines
and step functions to investigate the sensitivity to the type of interpolation. For all
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Table 1: Monte Carlo experiment: Data-generating parameter values
ρ γ r g κ λ σψ σξ π β β µβ σ2

β σ2
c T L

2.0 1.0 1.03 1.02 0.9 0.0 0.1 0.1 0.01 0.90 0.99 0.95 0.01 0.1 40 60

three, we used uniform grids with the bounds of the m-grid chosen as the 1st and 99th
percentile of the data, while the bounds for the α-grid were 0.80 and 1.05.3 We furthermore
investigate how J affects the performance by varying this between 5 and 100.

The results for the homogeneous parameter is shown in Table 2 and Figure 4. Table 2
reports respectively the bias, the standard deviation across Monte Carlo runs, the root
mean squared error, the average estimation time and the number of times c?t had to
be computed for various choices of the interpolant and number of grid points, J . The
rows of Table 1 labelled Ĵ shows Monte Carlo results when choosing J using a data-
driven algorithm described in Section 2.4.3 below, where we also discuss the corresponding
numerical.

We see that, as J increases, our AFE estimator converges to the FE estimator irrespective
of the choice of the interpolation scheme. In terms of estimation time, we see that the
bi-linear interpolation approach is the fastest for a given J . The cubic spline, however,
converges faster implying that the estimation time for the lowest J where convergence to
the FE estimator is ensured are very similar across these two interpolation approaches.
Classification is slower. It should, however, be noted that the computational cost of the
cubic spline for high J increases more than linearly in J , while bi-linear interpolation
increases less than linearly due to the approximate fixed costs of searching for the optimal
heterogeneous parameters given the bi-linear interpolant.4

Comparing computation times, we see that, with J chosen so that the MSE of AFE is
comparable to the MSE of the exact one, our AFE estimators are roughly 16 times faster
than the FE estimator when using splines (J = 50), 40 times faster for linear interpolation
(J = 100), and 15 times faster when using classification (J = 250). This result become
even more stark as N increases, as we will see in our application to Danish register data in
Section 7. The last column shows that our AFE estimator requires much fewer solutions
of the dynamic programming problem. If the model was harder to solve, the speed-up of
our AFE estimator relative to FE would consequently increase.

The results for the heterogeneous parameter is shown in Table 6 and Figure 5. Table 6
reports the average root mean squared error and its standard deviation across Monte Carlo
runs for various J . We again see the same convergence patterns as for the homogeneous

3 These bounds were chosen to ensure that no households were estimated with discount factors outside
these bounds.

4 An additional downside of the cubic spline is that the implementation is more complicated.
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parameter. Figure ?? shows the distributions of heterogeneous parameter pooled across
Monte Carlo runs. We see that the distribution of the heterogeneous parameters for our
AFE estimators converges to that of the FE estimator as J increases, which itself is almost
correctly centered, but have excessive dispersion.

Table 2: Example 2. Homogeneous, γ.
Bias MC std. RMSE Time (secs) Solutions

FE 0.007 0.028 0.029 99.1 91829
AFE, Cubic spline interpolation
J = 5 -0.399 0.132 0.420 2.8 87
J = 10 0.024 0.025 0.034 1.7 97
J = 25 0.009 0.029 0.030 2.3 213
J = 50 0.007 0.028 0.029 5.7 418
J = 100 0.007 0.028 0.029 8.3 832
Ĵ = 43.8 (avg.) 0.007 0.029 0.029 9.7 580

AFE, Linear interpolation
J = 5 -0.605 0.049 0.607 3.9 120
J = 10 -0.111 0.028 0.115 1.4 80
J = 25 -0.022 0.026 0.034 1.4 181
J = 50 0.000 0.028 0.028 1.7 398
J = 100 0.005 0.028 0.029 2.5 820
J = 250 0.006 0.028 0.029 4.8 2084
Ĵ = 87.8 (avg.) 0.004 0.028 0.029 9.0 1552

AFE, Classification
J = 5 0.798 0.047 0.800 5.9 208
J = 10 0.319 0.252 0.406 3.4 234
J = 25 0.047 0.045 0.065 2.2 264
J = 50 0.015 0.031 0.034 2.1 450
J = 100 0.008 0.029 0.030 3.5 892
J = 250 0.007 0.029 0.029 6.5 2153
J = 500 0.006 0.029 0.029 12.4 4248
Ĵ = 94.5 (avg.) 0.008 0.029 0.030 11.0 1781

Notes: Shows Monte Carlo results for Example 2 for the homogeneous parameter,
γ with N = 1000, T = 10. We have used 250 Monte Carlo runs and the parameters
in Table 1.
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Table 3: Example 2. Heterogeneous, βi.
Avg. RMSE MC std.

FE 1.284 0.035
AFE, Cubic spline interpolation
J = 5 11.475 0.075
J = 10 1.352 0.034
J = 25 1.279 0.034
J = 50 1.284 0.035
J = 100 1.284 0.035
Ĵ = 43.8 (avg.) 1.284 0.035

AFE, Linear interpolation
J = 5 14.795 0.029
J = 10 3.353 0.060
J = 25 1.407 0.039
J = 50 1.303 0.036
J = 100 1.288 0.035
J = 250 1.284 0.035
Ĵ = 87.8 (avg.) 1.290 0.035

AFE, Classification
J = 5 2.604 0.029
J = 10 1.527 0.038
J = 25 1.324 0.036
J = 50 1.293 0.035
J = 100 1.286 0.035
J = 250 1.284 0.035
J = 500 1.284 0.035
Ĵ = 94.5 (avg.) 1.286 0.035

Notes: Shows Monte Carlo results for Example
2 for the heterogeneous parameter, βi with N =
1000, T = 10. We have used 250 Monte Carlo runs
and the parameters in Table 1.
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Figure 1: Example 2. Homogeneous, γ.

Cubic spline interpolation

(a) J = 10 (b) J = 25 (c) J = 50 (d) J = 100

Linear interpolation

(e) J = 10 (f) J = 25 (g) J = 50 (h) J = 250

Classification

(i) J = 25 (j) J = 50 (k) J = 250 (l) J = 500

Notes: Shows Monte Carlo results for Example 2 for the homogeneous parameter, γ for selected J with
N = 1000, T = 10.. The dashed black line shows the true value. The remaining dashed lines show
the means of, respectively, the FE and AFE estimators. We have used 250 Monte Carlo runs and the
parameters in Table 1.
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Figure 2: Example 2. Heterogeneous, γ.

Cubic spline interpolation

(a) J = 10 (b) J = 25 (c) J = 50 (d) J = 100

Linear interpolation

(e) J = 10 (f) J = 25 (g) J = 50 (h) J = 250

Classification

(i) J = 25 (j) J = 50 (k) J = 250 (l) J = 500

Notes: Shows Monte Carlo results for Example 2 for the heterogeneous parameter, βi for selected J with
N = 1000, T = 10.. The distributions of the heterogeneous parameter, βi, are pooled across Monte Carlo
runs. We have used 250 Monte Carlo runs and the parameters in Table 1.

2.2 General framework

We now present our proposal in a general setting where we take as given a structural model
characterized by a “solution” ψ (xi,t; θ1, α1,i) where θ1 is a set of common parameters and
α1,i contains the FE’s. In addition to xi,t the researcher also observe a set of output
variables yi,t which we collect in zi,t = (yi,t, xi,t), i = 1, ..., N and t = 1, ...., T .

Given model and data, the researcher has developed an objective function

q(zi,t; θ, αi, ψ) := r(yi,t, ψ (xi,t; θ1, α1,i) ; θ2, α2,i), (2.4)

for some function r and ψi,t (θ1, α1,i) = ψ (xi,t; θ1, α1,i). The solution may depend on ad-
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ditional model parameters and FE’s as captured by (θ2, α2,i). We collect the common
parameters in θ = (θ1, θ2) and the FE’s in αi = (α1,i, α2,i), i = 1, ..., N . The objective
function is application specific; it could, for example, be a non-linear least-squares estima-
tor in which case r(yi,t, ψi,t; θ2, α2,i) = (yi,t − ψi,t)2/σ2, where θ2 = σ2 is the error variance.
But many other types of estimators are allowed for, including maximum-likelihood.

Given q, the “exact” fixed effects estimator (FE) is defined as

θ̂ = arg min
θ∈Θ

N∑
i=1

T∑
t=1

q(zit; θ, αi(θ), ψ) (2.5)

α̂i(θ) = arg min
α∈A

T∑
t=1

q(zit; θ, α, ψ), ∀i = 1, . . . , N,

where by exact we mean that ψ (xi,t; θ1, α1,i) is computed without error. But if the compu-
tation of ψ is costly, our approximate fixed effects estimator (AFE) may be an attractive
alternative; this takes the form

θ̂K = arg min
θ∈Θ

N∑
i=1

T∑
t=1

q(zit; θ, αJ,i(θ), ψ̂K) (2.6)

αK,i(θ) = arg min
α∈A

T∑
t=1

q(zit; θ, α, ψ̂K), ∀i = 1, . . . , N,

where ψ (xi,t; θ1, α1,i) is replaced by its interpolant,

ψ̂K(x; θ1, α1) =
J∑

j,k=1
ψ(xj; θ, α1,k, ψ)B′j,k

 K∑
j,k=1

Bj,kB
′
j,k

−1

B (x)⊗B (α) , (2.7)

based on K = J2 grid points. Here, for simplicity, we assume the same number of grid
points J are used for each of the variables. In practice, one may wish to use different grid
points depending on the curvature of the solution w.r.t. the different variables and the
“size” of the space that is being interpolated over; see Section 2.4.3 for further details.

Instead of first interpolating ψ and the plugging this back into the objective function,
one could employ interpolation on q(z; θ, α, ψ) itself. If, for example, we again interpolate
w.r.t. x and αi, this would take the form

q̂K(z; θ, α, ψ) =
J∑

j,k=1
q(y, xj; θ, α1,k, α2, ψ)B′j,k

 J∑
j,k=1

Bj,kB
′
j,k

−1

B (x)⊗B (α) . (2.8)

This has the same computational cost as ψ̂J(x; θ1, α1) but is linear in the interpolation
error which has certain advantages in terms of the bias it induces in α̂K,i, i = 1, ...., N ,
and θ̂K . In Section 3, we show that the interpolant in (2.8) generally will suffer from
fewer biases compared to the one in (2.7) because the approximation appears linearly in
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the objective function in the former case.

So far we have focused on objective functions on the form (2.4). However, our AFE esti-
mator applies more generally to objective functions q(yit; θ, α, ψ) that depend implicitly
on some underlying function ψ which is costly to compute. For example, it could take the
form q(zi,t, θ, α, ψ) = q(yi,t,mi,t (θ2, αi,2, ψ) ; θ1, αi,1), wheremi,t = m (x1,i,t; θ21, αi,21, ψ (x2,i,t; θ22, αi,22)).
If the functionm is numerically cheap and dim (x2,i,t; θ22, αi,22) is smaller than dim (x1,i,t; θ21, αi,21, ψ) ,it
may be computationally advantageous to interpolate ψ instead of m (or q). However,
again, this solution will tend to generate additional biases in the corresponding objective
function if m exhibits strong non-linearities in ψ. This more general version also allows
for, e.g., latent dynamic variables that have to be integrated out in the computation of
the objective function, and other cases where the computationally expensive component
of the model enters the objective function in a more complex manner.

Observe that the interpolation leads to reduced computation time of the objective function
defining the estimators. It also also for simple computation its partial derivatives w.r.t.
θ and αi,....,αN . For the “direct” interpolator in eq. (2.8), its first-order derivative w.r.t.
α is given by

∂q̂K(z; θ, α)
∂α

=
J∑

j,k=1
q(zj; θ, αk, ψ)B′j,k

 K∑
j,k=1

Bj,kB
′
j,k

−1

B (x)⊗ ∂B (α)
∂α

.

This means that derivative-based optimizers can be used to compute the AFE with high
precision.

2.3 Jackknife

As can be seen from the results for the consumption model, the AFE will generally
suffer from additional biases due to interpolation. We here propose to use the so-called
Jackknife to remove some of these biases. The basic (“half-panel”) Jackknife splits the
panel in two subsamples along the time dimension, {zi,t : t = 1, ...., T/2, i = 1, ...., n} and
{zi,t : t = T/2, ...., T, i = 1, ...., n}, where we for simplicity assume T is even, and then re-
estimate θ and the FE’s based on each of the two subsamples. With θ̂(1) and θ̂(2) denoting
the two additional estimates, the Jackknife estimator then takes the form

θ̃ = 2θ̂ − 1
2
(
θ̂(1) + θ̂(2)

)
. (2.9)

In order for the Jaccknife to work, it is important that θ̂(1) and θ̂(2) are computed using
the exact same interpolation scheme, incl. number and location of gridpoints. This also
means that the computation of the two additional estimators come at a low additional
computationl cost.
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The Jackknife has already been shown to remove the so-called incidental parameter bias
that most FE estimators suffer from; see Hahn and Newey (2004) and Dhaene and
Jochmans (2015). In Section 3, we extend their theory and show that the Jackknife
at the same time also moves any interpolation biases in the AFE.

Similar to Hahn and Newey (2004), one can alternatively attempt to estimate the leading
bias term due to approximation. This requires knowledge of the pointwise interpolation
error (instead of just a bound for it). This is unfortunately not available in general. One
exception of this is when B-splines are being used in which case the interpolation error is
known, c.f. Zhou and Wolfe (2000). Due to its computational simplicity, we here advocate
using Jackknife.

NUMERICAL RESULTS....

2.4 Implementation in practice

2.4.1 Which variables to include in interpolation

The researcher is free to decide which of the variables in (xi,t; θ1, α1,i) that interpolation is
employed. To speed up computation, one may wish to interpolate all variables. However,
this comes at a cost of precision: Keeping the total number of grid points J fixed, the more
variables that are included the bigger the interpolation error will become; see Section 3
for further details. Thus, the choice depends on how the researcher values computation
time over numerical precision.

2.4.2 Choice of interpolation method

The numerical literature offers a wide range of interpolation schemes, but standard choices
are B-splines, Legendre polynomials, Hermite polynomials and Chebyshev polynomials.
We refer to Judd (1998) for an introduction to these. We found that B-splines were
particularly useful, however, since they and their partial derivatives are fast to compute
and come with added degrees of freedom in terms of smoothness. As shown in the Monte
Carlo study, one can use cubic B-splines which are twice differentiable; or first-order
B-splines (linear interpolation) which are continuous but non-differentiable; or “zero-
order” B-splines which correspond to step functions. The last category corresponds to
classification as discussed in the introduction.

2.4.3 Choosing the Grid

In order to implement our AFE estimator it is necessary for the econometrician to chose
a grid, which we denote GK , on which we pre-compute the solution to the model. We
propose to make this choice by a simple data driven approach. We first choose the bounds
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of the grid heuristically, and then choose the number of grid points in each dimension by
a simple algorithm. For simplicity, we restrict attention to equally spaced tensor product
grids with the same number of grid points, J , in each dimension, though nothing in the
AFE estimator requires this.5

In choosing the bounds of the grid, we can firstly use that in the data dimensions (the
z dimension), we ex ante know where we will need to evaluate the interpolant. For
the heterogeneous parameters (the α dimension) we instead propose to choose the grid
bounds to ensure that no or very few units are estimated to be on the boundary of the grid.
For preference parameters in particular, the econometrician typically has valuable prior
information about the domain, but otherwise a trial-and-error approach can be used.6

Given the grid bounds and the assumption of equally spaced tensor product grids with J
grid points in each dimension, we can write the criterion function for a given guess θ as
a function of J ,

Q̂N,J(θ) = 1
N

N∑
i=1

T∑
t=1

q(zit, α̂J,i(θ); θ, ψ̂J), (2.10)

where we index the interpolator ψ̂J as a function of J . We propose to determine J using
that our AFE estimator converge to the FE estimator as J is increased (see Section A).
This in particular implies that the change in the estimated objective function should go
towards zero when increasing J . Hence, we propose to choose J as the smallest J where
the objective function does not change any more.

To be specific, define the maximum change in the objective function over an l step window,
with a step size of ∆, as

δ(J, l,∆) = max
k∈{1,2,...,l}

∣∣∣∣∣∣Q̂N,J−(k−1)∆(θ)− Q̂N,J−k∆(θ)
∆

∣∣∣∣∣∣
We then propose to determine J as the smallest J where this maximum change is below
some tolerance

Ĵ = arg min {J : δ(J, l,∆) < η, J = k∆, k ∈ {l + 1, l + 2, . . . }} , (2.11)

The termination tolerance, η, is similar to termination tolerances employed when per-
forming numerical optimization in general. We suggest setting η to either 10−4 or 10−5.

Note that all of the above is done for a single guess of θ. If the non-linearity of the model

5 It is, for example, possible to use non-tensor non-equally spaced grids such as adaptive sparse grids.
This might in particular be interesting in high-dimensional settings.

6 If there are local minima with respect to α, choosing too narrow bounds could result in the estimator
returning a local rather than global minimum even if there is no observations on the boundary of the
fixed parameter space.
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vary drastically with θ it might be beneficial to try different guesses and pick the highest
Ĵ . Alternatively, it can be checked that the Ĵ implied by the estimated θ̂ is in line with
the Ĵ chosen based on the initial guess.7

The performance of the method for the consumption model can be found in Table 1 in
the rows labelled Ĵ . With the cubic spline this procedure results in no difference between
the FE and AFE estimator at the third decimal place, while it for linear interpolation
and the classification approach results in very small deviations. At convergence, and
including the time to determine Ĵ , our AFE estimators are roughly 10 times faster than
the FE estimator when using spline or linear interpolation, and 8 times faster when using
classification.

Figure 3 shows the distribution of Ĵ based on our Monte Carlo study of the consumption
model. For the cubic spline the choice is almost always 45, while for linear interpolation
and classification it fluctuates around 60–120 and 80–115, respectively.

Figure 3: Example 2. Histogram of Ĵ by interpolation method.

Notes: Shows Monte Carlo results for Example 2 for estimated J with N = 1000, T = 10. We have used
250 Monte Carlo runs and the parameters in Table 1. The length of the moving average is l = 3, the step
size ∆ = 5 and the tolerance η = 10−5.

7 Finally, one could replace θ with the estimated value θ̂J in (2.10). This would lead to re-estimation of
all model parameters for each guess of J .
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3 Asymptotic Theory

We here develop a general asymptotic theory for fixed effects (FE) estimators where
an functional component of the model of interest is either approximated or estimated.
As a special case, the theory covers the proposed interpolation method. We first in-
troduce some notation: For any given N -dimensional vector a = (a1, ...., aN), we write
‖a‖∞ = maxi=1,...,N ‖ai‖. For any given (N × T )-matrix (ai,t), i = 1, ..., N and t = 1, ..., T ,
we write āi = ∑T

t=1 ai,t/T . For any given function a (zi,t, θ, αi, ψ) , we write a0,i,t (ψ) =
a (zi,t, θ0, αi (θ0) , ψ) , āi (θ, ψ) = ∑T

t=1 a (zi,t, θ, αi (θ) , ψ) /T , ā0,i (ψ) = āi (θ0, ψ), Ai (θ, ψ) =
E[āi (θ, ψ)], A0,i (ψ) = Ai (θ0, ψ), and A0 (ψ)= limN→∞

1
N

∑N
i=1A0,i (ψ) .

3.1 Framework

We first consider a class of standard FE estimators without any approximations. We are
given a criterion function qi,t(θ, α, ψ) = q(zi,t; θ, α, ψ) that identifies the parameters of
interest in the sense that

θ0 = arg min
θ∈Θ

Q (θ, ψ0) , (3.1)

where ψ0 is the “true” value of some underlying component and, using the notation
introduced earlier,

Q (θ, ψ0) = lim
N→∞

1
N

N∑
i=1

Qi (θ, α0,i (θ, ψ0) , ψ0) ,

with Qi (θ, α, ψ) = E [qi,t(θ, α, ψ)], i = 1, ..., N , and

α0,i (θ, ψ0) = arg min
α∈A

Qi (θ, α, ψ0) . (3.2)

Suppose that the true value of the nuisance parameter, ψ0, is unknown but we are given
an approximation of it, ψ̂. This may be the interpolator described in the previous section
but we allow for other types of approximations due to, e.g., simulation, discretization, etc.
Then the following fixed-effects (FE) extremum estimator is the natural sample analogue
to the above population quantities,

θ̂ = arg min
θ∈Θ

1
N

N∑
i=1

q̄i
(
θ, α̂i

(
θ, ψ̂

)
, ψ̂
)
, (3.3)

where, for i = 1, ..., N ,

α̂i
(
θ, ψ̂

)
= arg min

αi∈A
q̄i
(
θ, α, ψ̂

)
, q̄i (θ, α, ψ) := 1

T

T∑
t=1

qi,t(θ, α, ψ). (3.4)
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Note here that, for notational convenience, we neither index the approximator ψ̂ nor
the AFE’s by J , where now J should be thought of more generally as the degree of
approximation being used in the computation of ψ̂.
We extend the asymptotic theory of Hahn and Newey (2004) and Hahn and Kuersteiner
(2011) [HK, henceforth] to take into account the presence of ψ̂; this could be a function,
a finite-dimensional parameter of fixed dimension, or a set of pre-estimated fixed effects
in which case its dimension grows with N . We assume that ψ̂ and ψ0 are situated in a
normed space (Ψ, ‖·‖) and will then require that qi,t(θ, α, ψ) and relevant derivatives of
this function are Lispchitz w.r.t. ψ:

Definition 3.1. We say that a given function f(z; θ, α, ψ) is Lp-Lipshitz continuous w.r.t.
ψ for p ≥ 1 if it satisfies ‖f(z; θ, α, ψ)− f(z; θ, α, ψ0)‖ ≤ Bf (z) ‖ψ − ψ0‖ for some func-
tion Bf (z) with maxi=1,...,N E

[
Bp
f (zit)

]
<∞ and for all ψ in a (small) neighbourhood of

ψ0.

Assumption 1. (i) {zi,t : t = 1, 2, ...T, i = 1, ..., N} satisfy Condition 3 in HK; (ii) qi,t(θ, α, ψ0)
satisfies Conditions 1 and 4-7 in HK; (iii) for all ψ ∈ Ψ in a small neighborhood of ψ0,
q and its partial derivatives up to order 3 are all Lp-Lipshitz continuity w.r.t. ψ with
p > 10 (1 + p0) / (1− 10v), where p0 ≥ (dθ + dα + 4) /2.

We refer to HK for a detailed discussion of the conditions imposed there. The main re-
quirements are that, for each i = 1, ..., N , {zi,t : t = 1, 2, ...}is stationary and geometrically
α-mixing; that (θ, α) 7→ qi,t(θ, α, ψ0) and its partial derivatives satisfy suitable moments;
and that the it identifies θ0 and αi (θ0), i = 1, ..., N , as N, T → ∞, c.f. eqs. (3.1)-(3.2).
Importantly, HK’s conditions imply a set of limit results as found in HK; for convenience,
these can be found in Lemma A.2
Note that Assumption 1(ii)-(iiii) implicitly imposes smoothness conditions on ψ̂ and ψ0:
If these are functions of (α, θ), then they must necessarily be three times continuously
differentiable w.r.t. (α, θ) in order for Assumption 1 to hold. Next, we require the
approximator to converge sufficiently fast:

Assumption 2. (i)
∥∥∥ψ̂ − ψ0

∥∥∥ = oP (1); (ii)
∥∥∥ψ̂ − ψ0

∥∥∥ = OP (T−ρ) with ρ := 4/10− v for
some 0 < v < 1/10.

The assumption is a high-level one in order to allow for a wide range of approximation
schemes. It will have to be verified for the particular scheme being used; see Section X
for examples of this. The assumption allows the approximator to be potentially random,
which is the case if simulation-based approximation methods are employed. This combined
with the Lipschitz condition in Assumption 1 allow us to generalize some of the limit
results in HK to allow for the presence of ψ̂; see Lemmas A.1. Lemmas A.1 and A.2
will be used in the following to establish the asymptotic properties of the above class of
approximate estimators.
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We first show consistency of the approximate estimators and develop a higher-order ex-
pansion of the FE estimators:

Theorem 3.1. Under Assumptons 1-2, the following hold, i = 1, ..., N :

α̂0,i
(
ψ̂
)

= α0,i (ψ0) + ūi
(
ψ̂
)

+ v̄i
(
ψ̂
)
ūi
(
ψ̂
)

+ r
(α)
i , (3.5)

where ū
(
ψ̂
)
and v̄

(
ψ̂
)
are defined in eqs. (A.8)-(A.9). They satisfy

∥∥∥ū (ψ̂)∥∥∥
∞

= OP (T−ρ),∥∥∥v̄ (ψ̂)∥∥∥
∞

= OP (T−ρ) and
∥∥∥r(α)

∥∥∥
∞

= OP (T−3ρ) with ρ > 0 defined in Assumption 2.

As can be seen from the rate results, ūi
(
ψ̂
)
and v̄i

(
ψ̂
)
ūi
(
ψ̂
)
are the first- and second-

order terms corresponding to the leading variance and bias term of α̂0,i
(
ψ̂
)
. This higher-

order expansion generalizes the one derived in HK to allow for the presence of a first-step
estimator/approximator ψ̂; see also p. 1303 in Hahn and Newey (2004). The leading
terms are identical to the ones in HK, except that they now are functionals of ψ̂.

We then use this expansion of the FE estimators to obtain one for θ̂. As a first step, we
follow HK and expand θ̂ w.r.t. α̂i (θ0); see Theorem A.2. Next, we wish toexpand θ̂ w.r.t.
ψ̂. To do so, we need the relevant components of the expansion in Theorem A.2 to be
smooth functionals of ψ. Formally, we introduce the following concept:

Definition 3.2. A functionf(z; θ, α, ψ) is twice Lp-differentiable, p ≥ 1, w.r.t. ψ at ψ0

if there exits functionals ∇f(z; θ, α) [dψ] and ∇2f(z; θ, α) [dψ, dψ] which are linear and
bi-linear w.r.t. dψ, respectively, and both Lp-Lipschitz w.r.t. dψ so that for any ψ in a
neighbourhood of ψ0, with dψ = ψ − ψ0,∥∥∥∥f(z; θ, α, ψ)− f(z; θ, α, ψ0)−∇f(z; θ, α) [dψ]− 1

2∇
2f(z; θ, α) [dψ, dψ]

∥∥∥∥ ≤ Bf (z) ‖dψ‖2

for some function Bf (z) with maxi=1,...,N E
[
Bp
f (zit)

]
<∞.

Similar conditions can be found in the asymptotic theory for semi- and nonparametric
estimators; see, e.g., Chen (2007). We then impose the following additional assumption
where s(θ)

0,i,t (ψ) and s(α)
0,i,t (ψ) denote the partial derivative of q w.r.t. θ and αi, respectively.

Assumption 3. The functions s(θ)
0,i,t (ψ) and s(α)

0,i,t (ψ) are twice Lp-differentiable w.r.t. ψ.

This allows us to obtain our first main result:

Theorem 3.2. Under Assumptions 1-3,

θ̂− θ0 = ΦN (ψ0) +BN (ψ0) /T +∇ΦN

[
ψ̂ − ψ0

]
+ 1

2∇
2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
+OP

(
T−3ρ

)
,

(3.6)
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where the four leading terms are defined in eqs. (A.11), (A.12), (A.17) and (A.18),
respectively. These satisfy:

√
NTΦN (ψ0) →D N

(
0, H(θ,θ)

0 (ψ0)−1 Ω (ψ0)H(θ,θ)
0 (ψ0)−1

)
, (3.7)

BN (ψ0) →P B (ψ0) , (3.8)

∇ΦN

[
ψ̂ − ψ0

]
= OP

(
T−ρ

)
, ∇2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
= OP

(
T−2ρ

)
, (3.9)

where the limits can be found in (A.20) and (A.21).

The two terms ΦN (ψ0) and BN (ψ0) /T , are identical to the leading variance and bias
terms derived in HK for the exact FE estimator (ψ̂ = ψ0). The two additional terms,
∇ΦN

[
ψ̂ − ψ0

]
and ∇2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
, contain the leading bias and variance terms

due to approximation. The behavior of these depend on the particular type of approxi-
mation being used and how the approximated term enter q.

If interpolation is employed, ∇ΦN

[
ψ̂ − ψ0

]
and ∇2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
will contain the

first and second order interpolation biases; the second order term can therefore be ig-
nored if only the leading bias component is of interest. If simulations are employed so that
E
[
ψ̂
]

= ψ0,∇ΦN

[
ψ̂ − ψ0

]
will contain the leading variance term while∇2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
will contain the leading bias term. If ψ enters the score function linearly, ∇2ΦN [dψ] = 0
and no second-order effect will be present.

3.2 Jackknife Correction

We here analyze the Jackknife of the AFE that we proposed in eq. (2.9). Hahn and
Newey (2004) and Dhaene and Jochmans (2015) showed that the Jackknife for the exact
FE estimator removes the leading bias term due to the fixed effects, BN (ψ0) /T . We here
extend their result and show that it will in fact also remove the first-order effect due to
approximations. The reason for this is quite intuitive: We can write the adjustment term
for θ̂ as ∇ΦN [dψ] = ∑T

t=1 bN,t [dψ] /T where

bN,t [dψ] = H
(θ,θ)
0 (ψ0)−1 1

N

N∑
i=1

{
∇s(θ)

0,i,t [dψ] +H
(θ,α)
0,i (ψ0)∇ui,t [dψ]

}
,

c.f. eq. (A.17). Importantly, if the Jackknife estimator is implemented with the same
ψ̂ being used to compute θ̂, θ̂1 and θ̂2, we have that the leading adjustment terms
for θ̂1 and θ̂2 are given by ∇Φ(1)

N

[
ψ̂ − ψ0

]
= 2∑T/2

t=1 bN,t [dψ] /T and ∇Φ(2)
N

[
ψ̂ − ψ0

]
=

2∑T
t=T/2 bN,t [dψ] /T , respectively. Importantly, we have the following identity,

2∇ΦN [dψ]− 1
2
(
∇Φ(1)

N

[
ψ̂ − ψ0

]
+∇Φ(2)

N

[
ψ̂ − ψ0

])
= 0.
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Thus, θ̃ will not contain any first-order term due to the approximation:

Corollary 3.1. Suppose that Assumptions 1 and 3 hold and
∥∥∥ψ̂ − ψ0

∥∥∥2
= oP

(
1/
√
NT

)
.

Then the Jackknife applied to the approximate FE estimator yields:

√
NT

{
θ̃ − θ0

}
→D N

(
0, H(θ,θ)

0 (ψ0)−1 Ω (ψ0)H(θ,θ)
0 (ψ0)−1

)
. (3.10)

The added rate requirement imposed on ψ̂ in the corollary ensures that the second-order
term ∇2ΦN is negiglible. If ∇2ΦN = 0, the requirement can be dropped.

3.3 Grid selection

TBC

3.4 Applications

We here apply the general theory to our interpolation-based AFE. We first consider the
case where we “directly” interpolate q and then the “indirect” version. We also demon-
strate how our theory is more generally applicable by applying it to simulation-based FE
estimators.

3.4.1 “Direct” AFE

We here analyze the AFE when interpolation is employed directly on q leading to q̂K

in (2.8). In this case, ψ(zi,t; θ, α) := q(zi,t; θ, α, ψ) so that ψ̂(zi,t; θ, α) = q̂K(zi,t; θ, α)
is the interpolated objective function based on a total of J grid points. In order to
apply our general theory, we need to objective function and its interpolated version to be
sufficiently smooth in (θ, α). Formally, we will assume that q and its approximation belong
to a so-called Hölder space. Let f : X 7→ R, X ⊆ Rdx , be β ≥ 0 times differentiable.
For any vector b = (b1, ..., bdZ ) ∈ NdX

0 with |b| = b1 + · · · + bdz ≤ β, let Dbf (x) =
∂|b|f (x) /

(
∂xb1

1 · · · ∂x
bdx
dx

)
be the corresponding partial derivative. For a given β ≤ β <

β + 1, we then define

‖f‖β,∞ = max
|b|≤β

∥∥∥Dbf
∥∥∥∞ + max

|b|=β
sup
x1 6=x2

∣∣∣Dbf (x1)−Dbf (x2)
∣∣∣

‖x1 − x2‖β−β
, (3.11)

where
∥∥∥Dbf

∥∥∥∞ = supx∈X
∣∣∣Dbf (x)

∣∣∣, and let Cβ,r (X ) be the Hölder space containing all
β ≥ 0 times continuously differentiable functions f : X 7→ R with ‖f‖β,∞ < r, where
r ≤ +∞. To allow for a wide range of interpolation schemes, we then impose the following
high-level assumption on the particular interpolation method in use:
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Assumption 4. With q0 (z; θ, αi) = q (z; θ, αi, ψ0) being the exact objective function, the
interpolation error satisfies ‖q̂K − q0‖ 1,∞ = O (K−γ0) and ‖q̂K − q0‖ 3,∞ = O (K−γ1)for
some γ0, γ1 > 0.

This assumption implicity requires the objective function to be bounded. This is a strong
assumption. One can weaken this by using weighted versions of the sup-norm in eq.
(3.11),

∥∥∥Dbf
∥∥∥∞ = supx∈X

∣∣∣w (x)Dbf (x)
∣∣∣. Here, w should then be chosen such that q and

its derivatives are bounded in this norm and E [1/w (zi,t)] <∞.

The rate with which the interpolation error goes to zero is governed by γ0 and γ1; ideally
these should be large so that the error vanishes quickly as we increase the total number of
interpolation points K. Generally, we have γ0 > γ1 since they govern the error rates for
the interpolated first-order and the second+third-order partial derivatives, respectively,
of q w.r.t. (θ, α). This condition is satisfied for a wide range of finite-dimensional func-
tion approximators, including interpolation based on higher-order B-splines (Zhou and
Wolfe, 2000), Lagrange polynomials (Howell, 1991) and Hermite polynomials (Birkhoff
and Priver, 1967). Suppose that the objective function q and its interpolant q̂J belong
to Cβ,r (Z ×Θ×A), β ≥ 3 and r < ∞, and interpolation is done with either of these
choices of bases where we use J polynomial terms in each dimension. Then Assumption
4 holds with K = JdI , where dI is the number of variables that we interpolate over,
γ0 = (β − 2) /dI and γ1 = (β − 3) /dI . Observe that γ0 and γ1 increase with the degree
of smoothness β; the more smooth q is, the smaller the interpolation error. Reversely,
γ0 and γ1 decrease as we increase the number of variables that we interpolate over, dI .
Thus, interpolation suffers from a computationaly curse-of-dimensionality: To reach a
given level of error tolerance, we need to increase K exponentially with dI .

Next, we need expressions of the differentials of s̄(α)
0,i (q) = ∂q/ (∂α) and s̄(θ)

0,i (q) = ∂q/ (∂θ)
since these enter eqs. (A.17)-(A.19). The first order term is obtained by plugging
∇s̄(α)

0,i [dq] = dq̄
(α)
i and ∇s̄(θ)

0,i [dq] = dq̄
(θ)
i , where dq(α) = ∂ (dq) / (∂α) and similar for the

other terms, into the expression of ∇ΦN , while the second-order term is zero, ∇2ΨN = 0
. Thus, there no remainder term in the expansion in eq. (A.16) and so Assumption 3 is
trivially satisfied. Moreover, there is no second-order bias term due to interpolation.

Assumption 4 implies Assumption 2 if we restrict K = KT → ∞ sufficiently fast as
T →∞. That is, we require Kγ1 = O (T ρ) . We conclude:

Corollary 3.2. Suppose that Assumptions 1(i)-(ii) and 4 hold where K−γ1T ρ → 0 and
J−γ0 ' T−1. Then

θ̂ − θ0 = ΦN (q0) +∇ΦN [q̂K − q0] +BN (q0) /T +OP

(
T−3ρ

)
, (3.12)
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where, with ŝ(θ)
K,i,t and ûK,i,t denoting the interpolated versions of s(θ)

0,i,t and ui,t,

∇ΦN [q̂K − q0] = H
(θ,θ)
0 (ψ0)−1 1

N

N∑
i=1

{(
ˆ̄s(θ)
K,i − s̄

(θ)
i

)
+H

(θ,α)
0,i (ψ0) (ūK,i − ūi)

}
= OP

(
T−1

)
.

Furthermore, the Jackknife version in (2.9) satisfies (3.10).

3.4.2 “Indirect” AFE

Consider now instead the case where the ARE is based on interpolation of the solution
which is then plugged into the objective function. While our theory applies to a broad
class of objective functions, we here focus on the case where q is on the form of (2.4) to
avoid complicated notation and assumptions.
First, observe here that the requirement of HK that q is thrice differentiable w.r.t. (θ, αi)
entails that r in (2.4) is thrice differentiable w.r.t. ψ. Similarly, the Lp-Lipschitz condition
imposed on q and its partial derivatives w.r.t. (θ, αi) is satisfied as long as r and its partial
derivatives are Lipschitz w.r.t. ψ.
Next, we impose the following high-level assumption on the interpolated solution:

Assumption 5. The interpolated model solution satisfies
∥∥∥ψ̂K − ψ0

∥∥∥ 1,∞ = O (K−γ0) and∥∥∥ψ̂K − ψ0

∥∥∥ 3,∞ = O (K−γ1) for some γ0, γ1 > 0.

The discussion of Assumption 4 carries over with obvious modification. In particular, we
require for simplicity that the solution and interpolator are bounded functions, but this
can be weakened by using weighted norms.
Finally, we need expressions of the differentials of s̄(α)

0,i (ψ) and s̄(θ)
0,i (ψ) appearing in eqs.

(A.17)-(A.19). For notational simplicity, suppose that ψ is a scalar function here. We
only present the ones for the FE component since the ones for the common parameters
are on a similar form. First note that

s
(α1)
0,i,t (ψ) = r

(ψ)
0,i,t (ψ)ψ(α1)

i,t , s
(α2)
0,i,t (ψ) = r

(α2)
0,i,t (ψ) ,

where r(ψ)
0,i,t (ψ) = ∂r(yi,t, ψi,t; θ0,2, α2,i)/(∂ψ) and ψi,t := ψi,t (θ0,1, α0,1,i), and similar for

other partial derivatives. The corresponding differentials become

∇s(α1)
0,i,t [dψ] = r

(ψ)
0,i,t (ψ0) dψ(α1)

i,t + r
(ψ,ψ)
0,i,t (ψ0)ψ(α1)

0,i,t dψi,t,

∇s(α2)
0,i,t [dψ] = r

(α2,ψ)
0,i,t dψi,t, (3.13)

and

∇2s
(α1)
0,i,t [dψ, dψ] = 2r(ψ,ψ)

0,i,t (ψ0) dψ(α1)
i,t dψi,t + r

(ψ,ψ,ψ)
0,i,t (ψ0)ψ(α1)

0,i,t (dψi,t)2 ,

∇2s
(α2)
0,i,t [dψ] = r

(α2,ψ,ψ)
0,i,t (dψi,t)2 , (3.14)
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We then impose the following regularity conditions in order for Assumption 3 to hold:

Assumption 6. r (y, ψ; θ1, α1,i) and its partial derivatives w.r.t. (ψ, θ1, α1,i) up to order
3 are bounded uniformly in (ψ; θ1, α1,i) by some function B(y) which has pth moment.

This condition will hold under great generality as long as the solution mapping ψ (·) is
bounded. As in the previous section, we expect that the following result will also hold for
unbounded solution mappings; this will however require us to work with weighted norms
and involvr more complicated assumptions:

Corollary 3.3. Suppose that Assumptions Assumptions 1(i)-(ii) and 5-6 hold where
K−γ1T ρ → 0 and J−γ0 ' T−1. Then (3.6) holds with the differentials ∇ΦN and ∇2ΦN

given in terms of the differentials in (3.13)-(3.14). Furthermore, the Jackknife version in
(2.9) satisfies (3.10).

Importantly, the indirect interpolator will suffer from additional bias terms due to∇2ΦN 6=
0 in general unless r is linear w.r.t. ψ, c.f. (3.14).

3.4.3 Simulated ARE with “direct” interpolation

We could in principle here employ the general theory developed in Section 3 to the ARE.
However, RE estimators generally do not need T →∞ in order for a regular asymptotic
theory to hold. Specifically, the incidental parameter biases will not be present when
heterogeneity is modelled parameterically. We here instead develop a fixed T asymptotic
theory for the simulated ARE in (??) that takes into account the joint effect of simulations
and interpolation.
To simplify notation in our asymptotic analysis, we relabel the components entering the
simulated ARE. First, without loss of generality, rewrite the RE’s as αi = a (ui; z0,i, θ2)
for some mapping a and where ui is drawn from a parameter independent distribution
Fu (u), for example, the uniform distribution. Here, θ2 contains any shape parameters of
the RE distribution. Next, let

fZ|α (Zi, ui; θ) :=
T∏
t=1

fz|α(zit; θ1, a (ui; z0,i, θ2) , ψ),

where Zi = (zi,0, ...., zi,T ), θ = (θ1, θ2) and we suppress dependence on the solution ψ to
the underlying model, denote the conditional likelihood of the ith observational unit, so
that the simulated and interpolated version of the unconditional likelihood of Zi,

fZ (Zi; θ, β) =
∫
fZ|α (Zi, u; θ) dFu (u) ,

takes the form
f̂Z (Zi; θ, β) = 1

S

S∑
s=1

f̂Z|α (Zi, us; θ) ,
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where f̂Z|α is an interpolated version of fZ|α. Thus, f̂Z contains both a bias and variance
component. Furthermore define

q
(1)
i (θ) = ∂ log fZ (Zi; θ)

∂θ
, q

(2)
i (θ) = ∂2 log fZ (Zi; θ)

∂θ∂θ′
.

We impose the following regularity conditions on the model and simulator:

Assumption 7. (i) For all ψ in a neighbourhood of ψ0, fZ|α (Zi, us; θ) is twice contin-
uously differentiable w.r.t. θ; (ii) Θ × B is compact with (θ0, β0) situated in the interior
with E[log fZ (Zi; θ0)]> E [log fZ (Zi; θ)] for all θ 6= θ0; (iii)

∣∣∣log fZ|α (Zi; θ)
∣∣∣ ≤ B (Zi)

where E [B (Zi)] < ∞; (iv) E
[
q

(1)
i (θ0)

]
= 0 and Ω = E

[
q

(1)
i (θ0) q(1)

i (θ0)′
]
exists; (v)∥∥∥q(1)

i (θ)
∥∥∥ ≤ B (Zi) for all θ in a neighbourhood of θ0 and H0 = E

[
q

(2)
i (θ0)

]
has full rank;

(vii) Zi has compact support and fZ (Zi; θ) > 0 for all (Zi, θ).

Parts (i)-(vi) are quite standard for the analysis of standard MLE’s. Part (vii) will allow
us to control the effects of simulation and interpolation with the main restriction is the
compact support assumption; this is used to ensure that the functional derivatives of the
log-likelihood w.r.t. f̂Z are regular. This restriction could be removed if we introduce
trimming in the simulated likelihood, c.f. Kristensen and Shin (2012), but this would
lead to more complicated arguments and conditions.

To distinguish between the bias and variance component in f̂Z , we introduce the interpo-
lation operator

ΠK (f) (z, u, θ) =
K∑
k=1

f(zk, uk, θk)B′k

 K∑
j,k=1

BkB
′
k

−1

B (z, u, θ) ,

where Bk = B(zk, uk, θk).

Theorem 3.3. Under Assumption 7,

θ̂ − θ0 = ΦN +∇ΦN

[
ψ̂ − ψ0

]
+ 1

2∇
2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
+OP

(
T−3ρ

)
, (3.15)

where

√
NΦN = H−1

0
1√
N

N∑
i=1

q
(1)
i (θ0)→D N (0,Ω) ,

∇ΦN

[
ψ̂ − ψ0

]
= H

(θ,θ)
0 (ψ0)−1 1

N

N∑
i=1

1
fZ,i

{
Eu

[
q

(θ)
i,s (θ0)

]
−
}
,

the four leading terms are defined in eqs. (A.11), (A.12), (A.17) and (A.18), respectively.
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These satisfy:

√
NΦN (ψ0) →D N

(
0, H(θ,θ)

0 (ψ0)−1 Ω (ψ0)H(θ,θ)
0 (ψ0)−1

)
, (3.16)

BN (ψ0) →P B (ψ0) , (3.17)

∇ΦN

[
ψ̂ − ψ0

]
= OP

(
T−ρ

)
, ∇2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
= OP

(
T−2ρ

)
, (3.18)

where the limits can be found in (A.20) and (A.21).

4 More Monte Carlo Experiments

In the following Monte Carlo experiments, we examine the performance of AFE when
applied to a simple dynamic panel regression model with heterogeneous slopes,

yit = θα2
i + αiyit−1 + εit, εit ∼ N (0, σ2

ε). (4.1)

The non-standard parametrization of the constant term, θα2
i , ensures that the model

function is non-linear in the heterogeneous parameter, which allows us to discuss the
choice of smoothness of the interpolation approach. We wish to estimate the homogeneous
and the heterogeneous parameters using a least squares criteria, q (zi,t; θ, αi, ψ) = (yit −
ψ(yit−1, α̂i(θ), θ))2 with ψ(yit−1, αi, θ) = θα2

i + αiyit−1.

The chosen parameters are shown in Table 4. In the simulations we use data after a 1, 000
period burn-in, and draw the heterogeneous parameter from a mixture of two truncated
normal distributions, αi = min {max {α̃i, 0} , α} where α̃i = I {ui ≤ π}N (µα1, σ

2
α1) +

I {ui > π}N (µα2, σ
2
α2) and ui ∼ U [0, 1]. We set N = 1000 and T = 10 and the bounds

of the yi,t−1-grid are chosen as the 1st and 99th percentile of the data, while the bounds
for the α-grid are 0 and 1.

The results for the homogeneous parameter is shown in Table ?? and Figure ??. Table
?? reports respectively the bias, the standard deviation across Monte Carlo runs, and the
root mean squared error for various choices of interpolant and the number of grid points,
J . We see that the AFE estimator based on a cubic spline has already converged to the FE
estimator with J = 3 (because the model function is quadratic in the parameters). With
bi-linear interpolation we instead need J = 50 for convergence, and with classification
we need at least J = 500. As expected, convergence is thus faster for more smooth
interpolation approaches.

The bias for the AFE estimator is the sum of the well-known incidental parameter bias
of the FE estimator and an additional approximation bias, which disappears as J is
increased. We see that the approximation bias for the current example is of the opposite
sign of the incidental parameter bias. The bias is thus coincidentally lowest for small
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J . Figure ?? also shows that the distribution of the AFE estimates of the homogeneous
parameter converges to that of the FE estimator as J is increased for all three interpolation
approaches. Table 9 and 10 in the Supplemental Material show that for high enough T the
half-panel jack-knife of Dhaene and Jochmans (2015) reduce the bias of the FE estimator
and the AFE estimator when it has converged to the FE estimator (before convergence
the bias can both decrease and increase from applying the half-panel Jackknife).

The results for the heterogeneous parameter are shown in Table ?? and Figure ??. Table
?? reports respectively the average root mean squared error and its standard deviation
across Monte Carlo runs for the various interpolants and J ’s. We see the same convergence
patterns as for the homogeneous parameter. Figure ?? shows the distributions of the
heterogeneous parameter pooled across Monte Carlo runs. We see that the distributions of
the heterogeneous parameter for our AFE estimators converge to that of the FE estimator,
which itself is downward biased due the incidental parameter bias.

Table 4: Example 1. Parameters.
θ σε π α µα1 σ2

α1 µα2 σ2
α2

0.1 0.02 0.6 0.95 0.65 0.03 0.40 0.03
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Table 5: Example 2. Homogeneous, γ.
Bias MC std. RMSE

FE 0.007 0.028 0.029
AFE, Cubic spline interpolation
J = 5 -0.399 0.132 0.420
J = 10 0.024 0.025 0.034
J = 25 0.009 0.029 0.030
J = 50 0.007 0.028 0.029
J = 100 0.007 0.028 0.029
Ĵ = 43.8 (avg.) 0.007 0.029 0.029

AFE, Linear interpolation
J = 5 -0.605 0.049 0.607
J = 10 -0.111 0.028 0.115
J = 25 -0.022 0.026 0.034
J = 50 0.000 0.028 0.028
J = 100 0.005 0.028 0.029
J = 250 0.006 0.028 0.029
Ĵ = 87.8 (avg.) 0.004 0.028 0.029

AFE, Classification
J = 5 0.798 0.047 0.800
J = 10 0.319 0.252 0.406
J = 25 0.047 0.045 0.065
J = 50 0.015 0.031 0.034
J = 100 0.008 0.029 0.030
J = 250 0.007 0.029 0.029
J = 500 0.006 0.029 0.029
Ĵ = 94.5 (avg.) 0.008 0.029 0.030

Notes: Shows Monte Carlo results for Example 2 for
the homogeneous parameter, γ with N = 1000, T =
10. We have used 250 Monte Carlo runs and the
parameters in Table 1.
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Table 6: Example 2. Heterogeneous, βi.
Avg. RMSE MC std.

FE 1.284 0.035
AFE, Cubic spline interpolation
J = 5 11.475 0.075
J = 10 1.352 0.034
J = 25 1.279 0.034
J = 50 1.284 0.035
J = 100 1.284 0.035
Ĵ = 43.8 (avg.) 1.284 0.035

AFE, Linear interpolation
J = 5 14.795 0.029
J = 10 3.353 0.060
J = 25 1.407 0.039
J = 50 1.303 0.036
J = 100 1.288 0.035
J = 250 1.284 0.035
Ĵ = 87.8 (avg.) 1.290 0.035

AFE, Classification
J = 5 2.604 0.029
J = 10 1.527 0.038
J = 25 1.324 0.036
J = 50 1.293 0.035
J = 100 1.286 0.035
J = 250 1.284 0.035
J = 500 1.284 0.035
Ĵ = 94.5 (avg.) 1.286 0.035

Notes: Shows Monte Carlo results for Example
2for the heterogeneous parameter, βi with N =
1000, T = 10. We have used 250 Monte Carlo
runs and the parameters in Table 1.
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Figure 4: Example 2. Homogeneous, γ.

Cubic spline interpolation

(a)
J =
2

(b)
J =
3

(c)
J =
4 (d) J = 5

Linear interpolation

(e)
J =
3

(f)
J =
4 (g) J = 5 (h) J = 25

Classification

(i) J = 25 (j) J = 50 (k) J = 100 (l) J = 500

Notes: Shows Monte Carlo results for Example 2 for the homogeneous parameter, γ for selected J with
N = 1000, T = 10. The dashed black line shows the true value. The remaining dashed lines show
the means of, respectively, the FE and AFE estimators. We have used 250 Monte Carlo runs and the
parameters in Table 1.
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Figure 5: Example 2. Heterogeneous, γ.

Cubic spline interpolation

(a)
J =
2

(b)
J =
3

(c)
J =
4 (d) J = 5

Linear interpolation

(e)
J =
3

(f)
J =
4 (g) J = 5 (h) J = 25

Classification

(i) J = 25 (j) J = 50 (k) J = 100 (l) J = 500

Notes: Shows Monte Carlo results for Example 2 for the heterogeneous parameter, βi for selected J with
N = 1000, T = 10. The distributions of the heterogeneous parameter, βi, are pooled across Monte Carlo
runs. We have used 250 Monte Carlo runs and the parameters in Table 1.

5 Approximate Random Effects (ARE)

We here show how the interpolation method also has uses in estimation of RE models. We
here only present the method for the case of simulated maximum-likelihood estimation
(SMLE); it should be obvious how to adjust our proposal to handle, e.g., simulated method
of moments and other estimation methods for RE models [REFERENCES.....].

We start with a likelihood function of data fz|α(zit; θ, αi, ψ), but now treat αi ∈ A as a
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RE with known distribution Fα (αi|zi0; β), where β ∈ B are unknown shape parameters
to be estimated together with θ. The “exact” RE estimator then takes the form

(
θ̂, β̂

)
= arg min

(θ,β)∈Θ×B

N∑
i=1

log
(∫
A

T∏
t=1

fz|α(zit; θ, αi, ψ)dFα (αi|zi0; β)
)
. (5.1)

In practice, the integral is not available on closed form and so is approximated using MC
methods,

(
θ̂S, β̂S

)
= arg min

(θ,β)∈Θ×B

N∑
i=1

log
(

1
S

S∑
s=1

T∏
t=1

fz|α(zit; θ, αs(β), ψ)
)
, (5.2)

where αs(β), s = 1, ..., S, are i.i.d. draws from G (·|zi0; β). This is the standard simulated
MLE (SMLE).

As in the FE case, the SMLE is costly to compute if ψ is so: For a given value of (θ, β),
the computation of the simulated likelihood requires NTS evaluations of ψ. Thus, unless
NTS is “small”, (θ, β) is low-dimensional, or ψ is fast to compute, the computation
of the SMLE will be infeasible. Our interpolation scheme will also lead to substantial
computational savings in an RE setting; the “indirect” ARE, where we first interpolate
ψ and then plug it into the likelihood function, takes the form

(
θ̂S,K , β̂S,K

)
= arg min

(θ,β)∈Θ×B

N∑
i=1

log
(

1
S

S∑
s=1

T∏
t=1

fz|α(zit; θ, αs(β), ψ̂K)
)
, (5.3)

while the “direct” version is given by

(
θ̂S,K , β̂S,K

)
= arg min

(θ,β)∈Θ×B

N∑
i=1

log
(

1
S

S∑
s=1

T∏
t=1

f̂K,z|α(zit; θ, αs(β), ψ)
)
, (5.4)

where f̂K,z|α denotes the interpolated version of fK,z|α. The discussion of the AFE carries
over to the ARE with obvious modifications. In particular, derivatives of the simulated
likelihood are easily computed due to interpolation thereby allowing for fast numerical
computation of the optimization problems in (5.3) and (5.4).

Similar to the AFE, the ARE will suffer from additional biases due to interpolation and
simulations. We propose to remove these by the split-panel Jackknife which is imple-
mented the exact same way as for the ARE; in particular, we use the exact same draws
α1(β), ...., αS(β) when computing θ̂(1) and θ̂(2). The validity of this procedure is shown
below.
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5.1 Asymptotic Theory

5.2 Illustration: Buffer Stock Model

6 Higher Dimensional FE

1. Tensor product grids

2. Sparse grids

7 An Empirical Application to Danish Data

In this section, we fit the consumption model described in Section 2.1 to Danish adminis-
trative longitudinal register data using AFE. The empirical application is motivated by the
increasing interest in allowing for ex ante heterogeneous agents in the standard work horse
model of intertemporal consumption and wealth allocation. See, e.g., Alan and Browning
(2010); Carroll, Slacalek, Tokuoka and White (2017); De Nardi and Fella (2017); Alan,
Browning and Ejrnæs (2017); and Krueger, Mitman and Perri (2016). For simplicity
and clarity of exposition, we focus on discount factor heterogeneity although such hetero-
geneity might capture heterogeneity across households in other dimensions. The degree of
heterogeneity across households is of extreme importance for not only empirical work, but
also for policy evaluations and recommendations. The empirical application of AFE is in
turn an illustration of how flexible heterogeneity can be feasibly estimated in rich dynamic
economic models using more than 200,000 households and almost 2,000,000 observations.

7.1 Data

We use high quality Danish administrative registers covering the entire population in the
period 1987-1996.8 All information is based on third party reports with little additional
self-reporting. All self-reporting are moreover subject to possible auditing giving reliable
longitudinal information on household characteristics, assets, liabilities and income.

Household income includes all monetary income net of all taxes, except any income related
to ownership of financial assets. Transfers, such as child benefits and unemployment
benefits, are also included to ensure that disposable income accurately measures the flow of
resources available for consumption. Net wealth consists of stocks, bonds, bank deposits,

8 We begin in 1987 to be able to consistently match individuals into couples, and we end with 1996
because the Danish wealth tax was abolished in this year. Information on, e.g., cars and boats where
not collected in subsequent years leading to a break in the wealth measure from 1996 to 1997.
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cars, boats, house value for home owners and mortgage deeds net of total liabilities. The
house value is assessed by the tax authorities for tax purposes. Pension wealth is not
observed in the registers and thus not included in the wealth measure.

Household consumption is not observed in the registers and is instead imputed using a
simple budget approach, Ct = Ỹt−∆At, where Ỹt = Yt + r ·At is disposable income, At is
end-of-period net wealth, r is the real rate of return, and ∆At thus proxies savings. A very
similar imputation method is evaluated on Danish data in Browning and Leth-Petersen
(2003) and found to produce a reasonable approximation. The resulting consumption
measure will, however, e.g. include some durables such as home appliances. All variables
are deflated with the official consumer price index.

We restrict attention to stable married or cohabiting couples in which the husband is
between age 25 and 59. This is to mitigate issues regarding educational and retirement
choices. To increase homogeneity of households, we restrict the spousal age difference
to be no more than five years, and require that no one in the household ever becomes
self-employed or are out of the labor market, and are neither a student nor retired. To
limit the effect of errors in the imputation procedure on our estimates of time preference
heterogeneity, we trim our sample from extreme observations and require that we have
data for at least 5 years.9 In total this leaves us with an unbalanced panel of 261,725
households observed in at most 9 time periods with a total of 1,966,741 household-time
observations.

7.2 Calibrations

We fix some parameters of the model before turning to estimation of θ = (γ, β). These
parameters are all reported in Table 7. Particularly, we choose an interest of R = 1.03
similar to the long run real return on 10 year Danish government bonds which over the
period 1987-2007 was 3.8 percent. The same interest rate is used in e.g. Gourinchas and
Parker (2002). Informally looking into the observed consumption behavior of households
in debt we furthermore set the borrowing constraint to be binding at 30 percent of per-
manent income (λ = 0.30). Kaplan (2012) estimates an almost identical placement of the
credit constraint using the PSID. Finally, we set the replacement rate in retirement to 90
percent (κ = 0.9) based on Danish Finance Ministry (2003) and assume that households
retire at age 60 (T = 59 − 25 + 1 = 35) and dies at age 80 (L = 55). We fix the CRRA
coefficient to ρ = 1.5 .

Following the approach in Meghir and Pistaferri (2004), we estimate the transitory and
permanent income shocks variances as, respectively, σ2

ξ = −cov(∆εit,∆εi,t+1) and σ2
ψ =

9 Further details on the data are provided in Appendix C.
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Table 7: Calibrated Parameters.
ρ R G κ σψ σξ π T L

1.5 1.03 Fig. 8 0.90 0.059 0.063 0.0 35 55

cov(∆εit,
∑2
k=0 ∆εi,t−1+k), where εit is the residual for household i in period t from a

regression of log household income on a full set of age and year dummies. The results are
reported in Table 7. The income variances of Danish households are smaller than those
typically estimated for the US. As argued in Jørgensen (2017), this is most likely due to i)
a generous social welfare system, ii) progressive taxation, iii) a relatively high “minimum
wage”, and iv) register data is typically less noise compared to surveys typically used.

The growth in income is estimated for a given age as Gt = exp
(

1
N

∑N
i=1 ∆εit + 1

2σ
2
ψ

)
by re-

arranging the income process. A smoothed growth rate G̃t is obtained using a third degree
polynomial in age. The results are reported in Figure 8 in the Supplemental Material.
Permanent income, Pit, is found by applying the Kalman filter on the time series of log
income for each household.10

In line with the Monte Carlo study above, we use simple equally spaced tensor product
grids for (m,β) when pre-computing the model for use in our AFE estimator. We restrict
the domain of discount factors to the interval [0.5, 1.05] in all estimations.

10We do not handle the inherent difficulties with the use of an estimated state variable in our estimation
here. What ever bias may arise from this should also be present in the standard FE estimator as well
as our AFE.
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Table 8: Estimated Preferences.
γ (homogeneous) β (heterogeneous) Time Number
Est. SE Med.† Std.‡ Obj. (mins.) of sols.

Homogeneous 0.994 (0.001) 0.963 (0.0001) 0.955 0.12 1400
Fixed effects (FE) 0.481 (0.000) 0.935 [0.0517] 0.715 892.24 30811589
AFE, cubic spline interpolation

Ĵ§ = 55 (η = 10−4) 0.483 (0.000) 0.935 [0.0513] 0.716 0.57 990
Ĵ§ = 120 (η = 10−5) 0.481 (0.000) 0.935 [0.0517] 0.715 1.18 2820
J = 5 0.438 (0.000) 0.910 [0.0759] 0.636 0.16 65
J = 10 0.473 (0.000) 0.936 [0.0463] 0.701 0.11 80
J = 15 0.462 (0.000) 0.934 [0.0542] 0.714 0.11 120
J = 20 0.480 (0.000) 0.934 [0.0483] 0.711 0.16 220
J = 25 0.485 (0.000) 0.935 [0.0508] 0.715 0.20 325
J = 50 0.482 (0.000) 0.935 [0.0511] 0.715 0.22 600
J = 200 0.481 (0.000) 0.935 [0.0518] 0.715 1.35 2200
AFE, linear interpolation

Ĵ§ = 70 (η = 10−4) 0.475 (0.000) 0.934 [0.0517] 0.714 0.74 1155
Ĵ§ = 140 (η = 10−5) 0.480 (0.000) 0.935 [0.0519] 0.715 1.31 3710
J = 5 0.418 (0.000) 0.880 [0.1117] 0.615 0.26 65
J = 10 0.440 (0.000) 0.928 [0.0493] 0.682 0.19 90
J = 15 0.448 (0.000) 0.929 [0.0533] 0.698 0.21 150
J = 20 0.458 (0.000) 0.930 [0.0494] 0.701 0.20 200
J = 25 0.475 (0.000) 0.933 [0.0509] 0.707 0.33 450
J = 50 0.475 (0.000) 0.934 [0.0511] 0.713 0.37 850
J = 200 0.480 (0.000) 0.935 [0.0519] 0.715 0.29 2600
AFE, classification

Ĵ§ = 95 (η = 10−4) 0.481 (0.004) 0.933 [0.0530] 0.717 1.61 1520
Ĵ§ = 190 (η = 10−5) 0.481 (0.004) 0.934 [0.0530] 0.716 4.62 4845
J = 5 0.374 (0.004) 0.913 [0.0553] 1.120 0.11 70
J = 10 0.429 (0.004) 0.928 [0.0545] 0.897 0.18 120
J = 15 0.530 (0.004) 0.932 [0.0537] 0.796 0.15 120
J = 20 0.499 (0.004) 0.934 [0.0534] 0.762 0.13 120
J = 25 0.506 (0.004) 0.935 [0.0531] 0.746 0.18 200
J = 50 0.487 (0.004) 0.938 [0.0530] 0.723 0.34 350
J = 200 0.481 (0.004) 0.934 [0.0530] 0.716 0.95 1200

Notes: Estimation results based on N = 261, 725 households with 1, 966, 741 household-year observa-
tions. For model and estimation details see discussion of Example 2 in Section 4. Remaining parameters
are fixed at values in Table 7. Asymptotic standard errors clustered at the household level in brackets.
† Reported are the estimated homogeneous point estimate in the first row and all other rows report the
estimated median (med.) of β̂i.
‡ Reported are the estimated asymptotic standard error (SE) on the homogeneous point estimate in the
first row and all other rows report the estimated standard deviation (std.) of β̂i in square brackets.
§ Denotes the estimated J using the method proposed in sub-section 2.4.3 with l = 3, ∆ = 5, γ = 0.5
and a tolerance of η. Timings reported in these columns are the total estimation time of finding Ĵ and
subsequent estimation of γ using Ĵ nodes.
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7.3 Estimation Results

The estimation results are presented in Table 8. When both parameters are restricted to
be homogeneous, we estimate γ to be around 1 and β to be around 0.96. The discount
factor is well within the range typically found and the retirement parameter, γ, yields a
marginal propensity to consume out of wealth in retirement close to what is estimated
in Gourinchas and Parker (2002). They estimate the marginal propensity to consume
in retirement to be around 7% in the PSID while our homogeneous estimation results
suggest a marginal propensity to consume in retirement of around 6.8%.11

The FE estimate of γ, where we allow βi to be household-specific, reduces to around
0.48 while the median discount factor is estimated to be around 0.935 and the standard
deviation of the distribution is 0.052. The estimated distribution of discount factors are
shown in Figure 6. We note that while the distribution is left skewed, almost all the mass
of the distribution is within 0.80 and 1.00. Furthermore, the estimated distributions are
very similar across educational groups as seen in the right panel of Figure 6.12 Households
with more education tend to be relatively less impatient with the distribution of discount
factors shifted slightly to the right.

Figure 6: Distribution of Estimated Discount Factors, β̂i.

(a) All households. (b) Split by Education.

Notes: The right panel reports the estimated distribution of heterogeneous discount factors split by
educational attainment. Households are classified as high skilled if either member holds at least a bachelor
degree (70.784 households are classified as high skilled).

In Table 8, below the FE estimates, we report the estimation results for various imple-
mentations of our proposed AFE estimator. Particularly, we show results when using i)

11We calculate the marginal propensity to consume in retirement as γ̂ · 1−R−1(β̂R)1/ρ

1−[R−1(β̂R)1/ρ]L−T = 0.068 based
on the formula for consumption in retirement in eq. (??).

12Households are classified as high skilled if either member holds at least a bachelor degree.

37



cubic spline interpolation, ii) linear interpolation, and iii) classification. We show results
both for an a priori chosen number of pre-computation nodes in each dimension, J , and
when choosing the number of pre-computation nodes using the approach proposed in sub-
section 2.4.3. All computations were done on a high-powered computer system using 56
cores of 2.00 GHz.

Across all implementations using as little as 25 nodes seems to give reasonably similar
estimates as the FE. In these cases our AFE estimator is almost or more than 3,000
times faster than the FE estimator. The main explanation is that while the FE estimator
requires more than 30 million solutions of the dynamic programming problem, our AFE
estimators require a few hundred. Figure 7 illustrates how the AFE objective functions
converge towards the FE objective function as J increases. The rate of convergence clearly
increases in the smoothness of the interpolant.

Choosing the number of pre-computation nodes, J , as proposed in sub-section 2.4.3 with
a tolerance of η = 10−4, implies 55 nodes when using spline interpolation, 70 when using
linear interpolation, and 95 when using classification. Across all implementations, the
AFE results are now very close to the FE results when choosing J by this data driven
approach. The speed-ups also remain size-able. With spline interpolation, the fastest of
the three interpolation schemes in our setting, the AFE estimator is more than 1, 500
times faster than the standard FE estimator. To underline the scope of this difference in
speed, note that if it takes 10 minutes to use our AFE estimator, it will take 10 days to
use the standard FE estimator.13

13Lowering the tolerance to η = 10−5 more or less double the required number of nodes cutting the
speed-up factor in half. For a given tolerance, the speed-ups we report here can, however, be seen
as lower bounds as we could further optimize the AFE estimator by both using non-equally spaced
grids and relatively more nodes in the m-dimension, which would not require additional solutions of
the dynamic programming problem, but would increase the precision of the interpolant.
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Figure 7: Convergence of AFE to FE.

Notes: The figure illustrates the convergence of the AFE objective function to the FE objective function.
Each dot represents the objective function when re-estimating all parameters using a given J .

8 Conclusion

To be added.
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A Lemmas and Proofs

A.1 Lemmas

The following limit results will be used in our main proofs:

Lemma A.1. Let ait (φ, ψ) = a (zit;φ, ψ) for φ ∈ Φ where Φ ⊆ Rdφis compact and convex,
where {zi,t} (i) Suppose that ait (φ, ψ) is Lp-Lipshitz continuous w.r.t. (φ, ψ) with p > 4
and

∥∥∥ψ̂ − ψ0

∥∥∥ = oP (1). Then

max
i=1,...,N

sup
φ∈Φ

∥∥∥∥∥ 1
T

T∑
t=1

{
ait
(
φ, ψ̂

)
− E [ait (φ, ψ0)]

}∥∥∥∥∥ = oP (1) .

(ii) Furthermore, if p > 10 (1 + p0) / (1− 10v), where p0 ≥ (dφ + 4) /2, and
∥∥∥ψ̂ − ψ0

∥∥∥ =
OP (T−ρ), with ρ > 0 defined in Assumption 1, then

max
i=1,...,N

sup
φ∈Φ

∥∥∥∥∥ 1
T

T∑
t=1

{
ait
(
φ, ψ̂

)
− E [ait (φ, ψ0)]

}∥∥∥∥∥ = OP

(
T−ρ

)
.

Proof. Write

max
i=1,...,N

sup
φ∈Φ

∥∥∥∥∥ 1
T

T∑
t=1

ait
(
φ, ψ̂

)
− E [ait (φ, ψ0)]

∥∥∥∥∥ ≤ max
i=1,...,N

sup
φ∈Φ

1
T

T∑
t=1

∥∥∥ait (φ, ψ̂)− ait (φ, ψ0)
∥∥∥

(A.1)

+ max
i=1,...,N

sup
φ∈Φ

∥∥∥∥∥ 1
T

T∑
t=1

ait (φ, ψ0)− E [ait (φ, ψ0)]
∥∥∥∥∥ ,

where the first term satisfies, with Bξ (z) denoting the Lipschitz “coefficient” of ξ (z;φ, ψ),

max
i=1,...,N

sup
φ∈Φ

1
T

T∑
t=1

∥∥∥ait (φ, ψ̂)− ait (φ, ψ0)
∥∥∥ ≤ { max

i=1,...,N

∥∥∥∥∥ 1
T

T∑
t=1

Bξ (zit)− E [Bξ (zit)]
∥∥∥∥∥
}
×
∥∥∥ψ̂ − ψ0

∥∥∥
(A.2)

+ max
i=1,...,N

E [Bξ (zit)]
∥∥∥ψ̂ − ψ0

∥∥∥ .
The first part of the lemma now follows by applying Lemma 1 of HK to the second term
of eq. (A.1) and the first term of eq. (A.2) together with the first convergence condition
imposed on ψ̂ in the lemma and the fact that maxi=1,...,N E [Bξ (zit)] = O (1). The second
part is obtained by applying Lemma 2 instead of Lemma 1 of HK together with the
strengthened convergence condition imposed on ψ̂.

Lemma A.2. Let ait (φ, ψ) = a (zit;φ, ψ) and bit (φ, ψ) = b (zit;φ, ψ) for φ ∈ Φ where
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Φ ⊆ Rdφis compact and convex. Then

(i) 1
NT

N∑
i=1

T∑
t=1

ait (φ, ψ0)→p E∞ [ait (φ, ψ0)] ,

(ii) 1√
NT

N∑
i=1

T∑
t=1
{ait (φ, ψ0)− E [ait (φ, ψ0)]} →d N (0, V ar∞ (ait (φ, ψ0)))

(iii) 1
NT

N∑
i=1

T∑
s,t=1
{ais (φ, ψ0)− E [ais (φ, ψ0)]} {bit (φ, ψ0)− E [bit (φ, ψ0)]} →p Cov∞ (ait (φ, ψ0) , bit (φ, ψ0)) ,

where E∞ [ait (φ, ψ0)] := limN→∞
1
N

∑N
i=1E [ait (φ, ψ0)] and similar for the other expecta-

tions.

A.2 Proof of Theorem 3.2

We first show that the estimators are consistent:

Theorem A.1. Under Assumptions 1-2(i),
∥∥∥θ̂ − θ0

∥∥∥ = oP (1). Moreover, w.p.a.1., there
exists functions α̂i

(
θ, ψ̂

)
and α0,i (θ, ψ0) solving

s̄
(α)
i

(
θ, α̂i

(
θ, ψ̂

)
, ψ̂
)

= 0, S(α)
i (θ, α0,i (θ, ψ0) , ψ0) = 0, (A.3)

respectively for θ in a neighbourhood of θ0. The functions are continuously differentiable
and satisfy

sup
‖θ−θ0‖<ε

∥∥∥α̂ (θ, ψ̂)− α0 (θ, ψ0)
∥∥∥
∞

= oP (1) , sup
‖θ−θ0‖<ε

∥∥∥∥∥∥
∂α̂

(
θ, ψ̂

)
∂θ′

− ∂α0 (θ, ψ0)
∂θ′

∥∥∥∥∥∥
∞

= oP (1) .

If furthermore Assumption 2(ii) hold, then sup‖θ−θ0‖<ε

∥∥∥α̂ (θ, ψ̂)− α0 (θ, ψ0)
∥∥∥
∞

= oP (T−ρ)
with ρ defined in Assumption 1-2(ii).

Proof of Theorem A.1. By Lemma A.1, sup(θ,α)∈Θ×A

∥∥∥q̄ (θ, α, ψ̂)−Q (θ, α, ψ0)
∥∥∥
∞

= oP (1).
The first part of the theorem now follows by the exact same arguments as the ones in
Theorems 3 and 4 in HK; these arguments also yield

sup
θ∈B(θ0,ε)

∥∥∥α̂ (θ, ψ̂)− α0 (θ, ψ0)
∥∥∥
∞

= oP (1) , (A.4)

for some ε > 0, where B (θ0, ε) = {θ ∈ Θ : ‖θ − θ0‖ < ε}. To show the second part, first
observe that since α0,i (θ0, ψ0) is situated in the interior of A, it must satisfy the second
equation of (A.3). Moreover, by Condition 6 in HK,H(α,α)

i (θ, α, ψ0) exists, has full rank at
(θ0, α0,i (θ0, ψ0)) and is continuous w.r.t. (θ, α) . It then follows by the Implicit Function
Theorem that there exists a function α0,i (θ, ψ0) satisfying S

(α)
i (θ, α0,i (θ, ψ0) , ψ0) = 0
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for θ ∈ B (θ0, ε) (potentially after choosing a smaller value for ε > 0). Given that the
eigenvalues of H(α,α)

i (θ0, ψ0) are assumed to be bounded away from zero uniformly over
i = 1, ..., N , α0,i (θ, ψ0) will be continuously differentiable w.r.t. θ uniformly over i =
1, ..., N . Next, due to (A.4), α̂i

(
θ, ψ̂

)
, θ ∈ B (θ0, ε), will also be situated in the interior of

A w.p.a.1 uniformly over i. Thus, it must satisfy s̄(α)
i

(
θ̂, α̂i

(
θ̂, ψ̂

)
, ψ̂
)

= 0. By another
application of Lemma A.1(i), sup(θ,α)∈Θ×A

∥∥∥h̄(α,α)
(
θ, α, ψ̂

)
−H(α,α) (θ, α, ψ0)

∥∥∥
∞

= oP (1)
where H(α)

i (θ, α, ψ0) is continuous w.r.t. (θ, α) uniformly over i. This combined with the
first part of the theorem yields

∥∥∥h̄(α,α)
(
θ̂, α̂

(
θ̂, ψ̂

)
, ψ̂
)
−H(α,α) (θ0, α0 (θ0, ψ0) , ψ0)

∥∥∥
∞

=
oP (1). It therefore also holds w.p.a.1 that there exists a function α̂i

(
θ, ψ̂

)
so that eq.

(A.3) holds for θ ∈ B (θ0, ε). For any θ ∈ B (θ0, ε), the following arguments are valid:
First, by the mean value theorem,

0 = s̄
(α)
i

(
θ, α0,i (θ, ψ0) , ψ̂

)
+ h̄

(α,α)
i

(
θ, ᾱi (θ) , ψ̂

) {
α̂i
(
θ, ψ̂

)
− α0,i (θ, ψ0)

}
(A.5)

where ᾱi (θ) is situated on the line segment connecting α0,i
(
θ, ψ̂

)
and α0,i (θ, ψ0). By

Lemma A.1(i),
sup

(θ,α)∈Θ×A

∥∥∥s̄(α)
i

(
θ, α0 (θ, ψ0) , ψ̂

)∥∥∥ = oP (1) . (A.6)

Moreover, from the earlier part of the proof, we know that all eigenvalues of h̄(α,α)
i

(
θ, ᾱi (θ) , ψ̂

)
are bounded away from zero uniformly over i w.p.a.1. Thus, there exists c > 0 so that
w.p.a.1,
∥∥∥h̄(α,α)

i

(
θ, α̂i

(
θ, ψ̂

)
, ψ̂
) {
α̂i
(
θ, ψ̂

)
− α0,i (θ, ψ0)

}∥∥∥ ≥ c
∥∥∥α̂i (θ, ψ̂)− α0,i (θ, ψ0)

∥∥∥ . (A.7)

Eqs. (A.5)-(A.7) combined show uniform consistency of α̂i (θ). Next, by taking derivatives
w.r.t. θ on both sides of S(α)

i (θ, αi (θ, ψ0) , ψ0) = 0, the expression for ∂α0,i (θ, ψ0) / (∂θ) is
obtained and similar for ∂α̂i

(
θ, ψ̂

)
/ (∂θ). The proof of uniform consistency of ∂α̂

(
θ, ψ̂

)
/ (∂θ)

now follows along the same lines as the above analysis of α̂
(
θ, ψ̂

)
and so is left out. Fi-

nally, if we impose Assumption 2(ii), we obtain from Lemma A.1(ii) that eq. (A.6) can be
strengthened to sup(θ,α)∈Θ×A

∥∥∥s̄(α)
i

(
θ, α0

(
θ, ψ̂

)
, ψ̂
)∥∥∥ = oP (T−ρ) which together with eqs.

(A.5) and (A.7) yield the final part of the Theorem.

Next, we derive the expansion in Theorem 3.1 where the leading terms are sample averages
of

ui,t (ψ) = −H(α,α)
0,i (ψ0)−1 s

(α)
0,i,t (ψ) ∈ Rdα , (A.8)

vi,t (ψ) = −H(α,α)
0,i (ψ0)−1

h(α,α)
0,i,t (ψ)−H(α,α)

0,i (ψ0) + 1
2

dα∑
k=1

ui,t,k (ψ)G(α,α,αk)
0,i,k (ψ0)

 ∈ Rdα×dα ,

(A.9)
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with ui,t,k (ψ) being the kth element of ui,t (ψ), H(α,α)
0,i (ψ) = H

(α,α)
0,i (θ0, α0,i (θ0, ψ) , ψ) and

similar for other fucntions. Here,

s
(α)
i,t (θ, α, ψ) = ∂qi,t (θ, α, ψ)

∂α
, h

(α,α)
i,t (θ, α, ψ) = ∂2qi,t (θ, α, ψ)

∂α∂α′
,

g
(α,α,αk)
i,t (θ, α, ψ) = ∂3qi,t (θ, α, ψ)

∂α∂α′∂αk
.

Note here that if ψ depends on α, then the above functions involve derivatives of ψ w.r.t.
α. Note that all population moments in the above definitions are evaluated at ψ0 and
only the random terms depend on ψ̂. Setting ψ̂ = ψ0 in the above, it is easily seen that
ui,t (ψ0) and vi,t (ψ0) both have zero mean and so Lemma A.1(ii) can be used to obtain
their uniform rates.

Proof of Theorem 3.1. In the following write α0,i = αi (θ0, ψ0), α̂i = α̂i
(
θ0, ψ̂

)
.We proceed

as in the proof of Lemma A4 of Newey and Smith (2004): First, by a second order Taylor
expansion of the first-order condition (A.3) around α0,i,

0 = s̄
(α)
0,i

(
ψ̂
)

+ h̄
(α,α)
0,i

(
ψ̂
)

(α̂i − α0,i) + 1
2

dα∑
k=1

(α̂i,k − α0,i,k)′ ḡ(α,α,αk)
i

(
ᾱi, ψ̂

)
(α̂i − α0,i)

where ᾱi lies on the line segment connecting α0,i to α̂i. Add and subtractH(α,α)
0,i (ψ0) (α̂i − α0,i),

multiply through with H(α,α)
0,i (ψ0)−1 and then rearrange to obtain

α̂i − α0,i = ūi
(
ψ̂
)
−H(α,α)

0,i (ψ0)−1
{
h̄

(α,α)
0,i

(
ψ̂
)
−H(α,α)

0,i (ψ0)
}

(α̂i − α0,i)

− 1
2

dα∑
k=1

(α̂i,k − α0,i,k)′H(α,α)
0,i (ψ0)−1 ḡ

(α,α,αk)
i

(
ᾱi, ψ̂

)
(α̂i − α0,i) .

Combining the convergence rate result in Theorem A.1 with Lemma A.1,

∥∥∥ḡ(α,α,αk)
i

(
ᾱi, ψ̂

)
−G(α,α,αk)

i,0 (ψ0)
∥∥∥ ≤ { 1

T

T∑
t=1

Bg (zi,t)
}{
‖ᾱ− α0‖∞ +

∥∥∥ψ̂ − ψ0

∥∥∥} = ŌP

(
T−ρ

)
,

and so

1
2

dα∑
k=1

(α̂i,k − α0,i,k)′H(α,α)
0,i (ψ0)−1

{
ḡ

(α,α,αk)
i

(
ᾱi, ψ̂

)
−G(α,α,αk)

i,0 (ψ0)
}

(α̂i − α0,i) = ŌP

(
T−3ρ

)
,

which in turn implies

α̂i − α0,i = ūi
(
ψ̂
)
−H(α,α)

0,i (ψ0)−1
{
h̄

(α,α)
0,i

(
ψ̂
)
−H(α,α)

0,i (ψ0)
}

(α̂i − α0,i)

− 1
2

q∑
k=1

(α̂i,k − α0,i,k)′H(α,α)
0,i (ψ0)−1G

(α,α,αk)
0,i (ψ0) (α̂i − α0,i) + ŌP

(
T−3ρ

)
.
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Repeated use of Theorem A.1 and Lemma A.1 reveals that the two last terms on the
right-hand side are ŌP (T−2ρ), and so α̂i − α0,i = ūi

(
ψ̂
)

+ ŌP (T−2ρ). Substituting the
right-hand side of this last expression into the above display yields eq. (3.5).

We now use Theorem 3.1 to develop an expansion of θ̂ w.r.t. α̂i, i = 1, ...., N . This will
involve the following terms:

s
(θ)
i,t (θ, α, ψ) = ∂qi,t (θ, α, ψ)

∂θ
, h

(θ,θ)
i,t (θ, α, ψ) = ∂2qi,t (θ, α, ψ)

∂θ∂θ′
,

S
(θ)
i (θ, α, ψ) = ∂Qi (θ, α, ψ)

∂θ
, H

(θ,θ)
i (θ, α, ψ) = ∂2Qi (θ, α, ψ)

∂θ∂θ′
,

g
(θ,α,αk)
i,t (θ, α, ψ) = ∂3qi,t (θ, α, ψ)

∂θ∂θ′∂αk
, G

(θ,α,αk)
i (θ, α, ψ) = ∂3Qi (θ, α, ψ)

∂θ∂θ′∂αk
,

and similar for other partial derivatives. Note here that if ψ depends on θ, then the above
functions involve derivatives of ψ w.r.t. θ. With this notation, we obtain the following
expansion of θ̂ w.r.t. the FE estimators:

Theorem A.2. Under Assumptions 1-2,

θ̂ − θ0 = ΦN

(
ψ̂
)

+BN

(
ψ̂
)
/T +OP

(
T−3ρ

)
, (A.10)

where
ΦN

(
ψ̂
)

= H
(θ,θ)
0 (ψ0)−1 1

N

N∑
i=1

{
s̄

(θ)
0,i

(
ψ̂
)

+H
(θ,α)
0,i (ψ0) ūi

(
ψ̂
)}

(A.11)

and

BN

(
ψ̂
)

= H
(θ,θ)
0 (ψ0)−1 T

N

N∑
i=1

{
h̄

(θ,α)
0,i

(
ψ̂
)
−H(θ,α)

0,i (ψ0)
}
ūi
(
ψ̂
)

(A.12)

+H(θ,θ)
0 (ψ0)−1 T

N

N∑
i=1

H
(θ,α)
0,i (ψ0) v̄i

(
ψ̂
)
ūi
(
ψ̂
)

(A.13)

+1
2H

(θ,θ)
0 (ψ0)−1

dα∑
k=1

T

N

N∑
i=1

G
(θ,α,αk)
0,i (ψ0) ūi

(
ψ̂
)
ūi,k

(
ψ̂
)
.

This expansion generalizes the one found in eq. (7) of HK to allow for the presence of a
first-step estimator/approximator ψ̂. The discussion following Theorem 3.1 also applies
here.

Proof of Theorem A.2. By assumption, θ0 lies in the interior of Θ. It then follows from
Theorem A.1, that θ̂ is also situated in the interior w.p.a.1 and so the following first-order
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condition is valid,

0 = 1
N

N∑
i=1

∂q̄i
(
θ, α̂i (θ) , ψ̂

)
∂θ

∣∣∣∣∣∣
θ=θ̂

= 1
N

N∑
i=1

s̄
(θ)
i

(
θ̂, α̂i

(
θ̂
)
, ψ̂
)

+ 1
N

N∑
i=1

s̄
(α)
i

(
θ̂, α̂i

(
θ̂
)
, ψ̂
) ∂α̂i (θ̂, ψ̂)

∂θ

= 1
N

N∑
i=1

s̄
(θ)
i

(
θ̂, α̂i

(
θ̂
)
, ψ̂
)
,

where the second equality uses the chain rule and the third one Theorem A.1. Next, by
the mean-value theorem,

0 = 1
N

N∑
i=1

s̄
(θ)
i

(
θ0, α̂i (θ0) , ψ̂

)
+ 1
N

N∑
i=1

h̄
(θ,θ)
i

(
θ̄, α̂i

(
θ̄
)
, ψ̂
) (
θ̂ − θ0

)
, (A.14)

where, by Lemma A.1(i) and Theorem A.1,
∥∥∥∥∥ 1
N

N∑
i=1

h̄
(θ,θ)
i

(
θ̄, α̂i

(
θ̄
)
, ψ̂
)
−H(θ,θ)

0 (ψ0)
∥∥∥∥∥

≤ sup
θ,α

∥∥∥h̄(θ,θ)
(
θ, α, ψ̂

)
−H(θ,θ) (θ, α, ψ0)

∥∥∥
∞

+
∥∥∥∥∥ 1
N

N∑
i=1

H
(θ,θ)
i

(
θ̄, α̂i

(
θ̄
)
, ψ0

)
−H(θ,θ)

0 (ψ0)
∥∥∥∥∥

= oP (1) + oP (1) .

Next, we expand the first term in eq. (A.14) w.r.t. α̂i (θ0), i = 1, ..., N ,

1
N

N∑
i=1

s̄
(θ)
i

(
θ0, α̂i (θ0) , ψ̂

)
= 1

N

N∑
i=1

s̄
(θ)
0,i

(
ψ̂
)

+ 1
N

N∑
i=1

h̄
(θ,α)
0,i

(
ψ̂
)

(α̂i − α0,i) (A.15)

+ 1
2

dα∑
k=1

1
N

N∑
i=1

ḡ
(θ,α,αk)
0,i

(
ψ̂
)

(α̂i − α0,i) (α̂i,k − α0,i,k) +R
(1)
N ,

where, with ᾱ0,i situated on the line segment connecting ˆ̄αi (θ0) to α0,i (θ0) and applying
Lemma A.1 and Theorem A.1,

∥∥∥R(1)
N

∥∥∥ ≤ 1
2

dα∑
k=1

max
i=1,...,N

∥∥∥{ḡ(θ,α,αk)
(
θ0, ᾱ (θ0) , ψ̂

)
− ḡ(θ,α,αk)

0

(
ψ̂
)}∥∥∥

∞
‖α̂− α0‖2

∞

≤ dα
2
∥∥∥B̄g

∥∥∥
∞
‖α̂− α0‖3

∞ = OP

(
T−3ρ

)
.
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For the first-order term on the right-hand side of eq. (A.15), use (3.5) to write

1
N

N∑
i=1

h̄
(θ,α)
0,i

(
ψ̂
)

(α̂i − α0,i)

= 1
N

N∑
i=1

h̄
(θ,α)
0,i

(
ψ̂
)
ūi
(
ψ̂
)

+ 1
N

N∑
i=1

h̄
(θ,α)
0,i

(
ψ̂
)
v̄i
(
ψ̂
)
ūi
(
ψ̂
)

+R
(2)
N

= 1
N

N∑
i=1

H
(θ,α)
0,i (ψ0) ūi

(
ψ̂
)

+ 1
N

N∑
i=1

{
h̄

(θ,α)
0,i

(
ψ̂
)
−H(θ,α)

0,i (ψ0)
}
ūi
(
ψ̂
)

+ 1
N

N∑
i=1

H
(θ,α)
0,i (ψ0) v̄i

(
ψ̂
)
ūi
(
ψ̂
)

+R
(2)
N +R

(3)
N ,

with R(2)
N = 1

N

∑N
i=1 h̄

(θ,α)
0,i

(
ψ̂
)
r

(α)
i and R(3)

N = 1
N

∑N
i=1

{
h̄

(θ,α)
0,i

(
ψ̂
)
− h̄(θ,α)

0,i (ψ0)
}
v̄iūi. The-

orem A.1 and Lemma A.1 yield
∥∥∥R(2)

N

∥∥∥ ≤ ∥∥∥h̄(θ,α)
0,i

(
ψ̂
)∥∥∥
∞

∥∥∥r(α)
∥∥∥
∞

= OP (1)OP

(
T−3ρ

)
= OP

(
T−3ρ

)
,∥∥∥R(3)

N

∥∥∥ ≤ ∥∥∥h̄(θ,α)
0,i

(
ψ̂
)
− h̄(θ,α)

0,i (ψ0)
∥∥∥
∞
‖v̄‖∞ ‖ū‖∞ = OP

(
T−3ρ

)
.

Each of the second-order terms in (A.15) satisfies, k = 1, ..., dα,

1
N

N∑
i=1

ḡ
(θ,α,αk)
0,i

(
ψ̂
)

(α̂i − α0,i) (α̂i,k − α0,i,k) = 1
N

N∑
i=1

ḡ
(θ,α,αk)
0,i

(
ψ̂
)
ūiūi,k +R

(4)
N,k

= 1
N

N∑
i=1

G
(θ,α,αk)
0,i (ψ0) ūiūi,k +R

(4)
N,k +R

(5)
N,k,

where, using the same arguments as in the analysis of the first-order term,
∥∥∥R(4)

N,k

∥∥∥ ≤ ∥∥∥ḡ(θ,α,αk)
0

(
ψ̂
)∥∥∥
∞

{
2 ‖v̄‖∞ ‖ū‖

2
∞ +

∥∥∥r(α)
∥∥∥
∞

}
= OP (1)

{
OP

(
T−3ρ

)
+OP

(
T−3ρ

)}
= OP

(
T−3ρ

)
,

∥∥∥R(5)
N,k

∥∥∥ ≤ ∥∥∥ḡ(θ,α,αk)
0

(
ψ̂
)
−G(θ,α,αk)

0 (ψ0)
∥∥∥
∞
‖ū‖2

∞ = OP

(
T−ρ

)
OP

(
T−2ρ

)
= OP

(
T−3ρ

)
.

Collecting terms, the claimed expansion is obtained.

Finally, we expand the leading bias and variance terms in (A.10) w.r.t. ψ̂ around ψ0 to
obtain Theorem 3.2:

Proof of Theorem 3.2. Observe that from the definition of ΦN

(
ψ̂
)
in Theorem A.2 to-

gether with Lemma A.1 and Assumptions 2-3,

ΦN

(
ψ̂
)

= ΦN (ψ0) +∇ΦN

[
ψ̂ − ψ0

]
+ 1

2∇
2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
+OP

(
T−3ρ

)
, (A.16)
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where

∇ΦN [dψ] = H
(θ,θ)
0 (ψ0)−1 1

N

N∑
i=1

{
∇s̄(θ)

0,i [dψ] +H
(θ,α)
0,i (ψ0)∇ūi [dψ]

}
, (A.17)

∇2ΦN [dψ, dψ] = H
(θ,θ)
0 (ψ0)−1 1

N

N∑
i=1

{
∇2s̄

(θ)
0,i [dψ, dψ] +H

(θ,α)
0,i (ψ0)∇2ūi [dψ, dψ]

}
,(A.18)

and

∇ūi [dψ] = −H(α,α)
0,i (ψ0)−1∇s̄(α)

0,i [dψ] , ∇2ūi [dψ, dψ] = −H(α,α)
0,i (ψ0)−1∇2s̄

(α)
0,i [dψ, dψ] .

(A.19)
Here, ∇s̄(α)

0,i [dψ] = ∑T
t=1∇s

(α)
0,i,t [dψ] /T and similar for other average differentials. We do

not need to expand the bias term, on the other hand, since, using that the funtions
entering BN

(
ψ̂
)
are Lipschitz w.r.t. ψ̂,

∥∥∥BN

(
ψ̂
)
/T −BN (ψ0) /T

∥∥∥ = OP

(∥∥∥ψ̂ − ψ0

∥∥∥ /T) = OP

(
T−1−ρ

)
.

where the remainder term is negiglible. Under Assumptions 2 and 3, eq. (A.16) holds
with

∥∥∥∇ΦN

[
ψ̂ − ψ0

]∥∥∥ = OP

(∥∥∥ψ̂ − ψ0

∥∥∥) = OP

(
T−ρ

)
,

∇2ΦN

[
ψ̂ − ψ0, ψ̂ − ψ0

]
= OP

(∥∥∥ψ̂ − ψ0

∥∥∥2
)

= OP

(
T−2ρ

)
.

Finally, applying parts (ii) and (iii) of Lemma A.2 yield (3.7) and (3.8), respectively,
wherewith

Ω (ψ0) = V ar∞
(
s

(θ)
0 (ψ0) + E

[
h

(θ,α)
0 (ψ0)

]
u (ψ0)

)
, (A.20)

B (ψ0) = H
(θ,θ)
0 (ψ0)−1

{
Cov∞

(
h

(θ,α)
0 (ψ0) , u (ψ0)

)
+ Cov∞

(
E
[
h

(θ,α)
0 (ψ0)

]
v (ψ0) , u (ψ0)

)}
(A.21)

+1
2H

(θ,θ)
0 (ψ0)−1

dα∑
k=1

Cov∞
(
E
[
g

(θ,α,αk)
0 (ψ0)

]
u (ψ0) , u (ψ0)

)
.

A.3 Remaining proofs

The following theorem is a generalization of Theorem 3.1 in Dhaene and Jochmans (2015):

Theorem A.3. Suppose that a given estimator θ̂ based on {zi,t : t = 1, ...., T, i = 1, ..., N}satisfies,
as N, T →∞,

√
NT

{
θ̂ − θ0 − BN,T

}
=
√
NTΦN (ψ0) + oP (1)→D N (0, N (0, V )) ,

51



where ΦN (ψ0) = 1
NT

∑N
i=1

∑T
t=1 φ (zi,t) and BN = BN,1/T + BN,2 with BN,1 →P B1 and

BN,2 = 1
T

∑T
t=1 bN,2,t for some possibly N-dependent sequence bN,2,t. Moreover, {zi,t}

satisfies the assumptions of HK. Then the Jackknife estimator in eq. (2.9) satisfies, if√
NT/T = O (1),

√
NT

{
θ̂ − θ0

}
→D N (0, N (0, V )).

Combining Theorems A.2 and A.3, we obtain Corollary 3.1.

Proof of Theorem A.3. With

Φ(1)
N (ψ0) = 2

NT

N∑
i=1

T/2∑
t=1

φ (zi,t) , Φ(2)
N (ψ0) = 2

NT

N∑
i=1

T∑
t=T/2+1

φ (zi,t)

and B(i)
N = 2B(i)

N,1/T + B(i)
N,2, i = 1, 2, where

B(1)
N,2 = 2

T

T/2∑
t=1

bN,2,t, B(2)
N,2 = 2

T

T∑
t=T/2+1

bN,2,t,

the following hold by the CLT in Lemma A.2:

∆N : =
√
NT


θ̂ − θ0 − BN
θ̂(1) − θ0 − B(1)

N

θ̂(2) − θ0 − B(2)
N

 =
√
NT


ΦN (ψ0)
Φ(1)
N (ψ0)

Φ(2)
N (ψ0)

+ oP (1)

→D N

0,


V V V

V 2V 0
V 0 2V


 .

Thus, using that 2BN − 1
2

(
B(1)
N + B(2)

N

)
= oP (1/T ),

√
NT

{
θ̂ − θ0

}
=
√
NT

{
2θ̂ − 1

2
(
θ̂1 + θ̂2

)
− θ0

}
=
√
NT

{
2
(
θ̂ − θ0 − BN

)
− 1

2
(
θ̂1 − θ0 − BN,1 + θ̂1 − θ0 − BN,2

)}
+oP

(√
NT/T

)
= (2Idθ ,−Idθ/2,−Idθ/2) ∆N + oP (1)→D N (0, V ) ,

where we have used that

(2Idθ ,−Idθ/2,−Idθ/2)


V V V

V 2V 0
V 0 2V




2Idθ
−Idθ/2
−Idθ/2

 = V.
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B Tables and Figures

B.1 Jack-knife

Table 9: Example 1. Homogeneous, θ. N = 1000, T = 10.
Baseline Half-panel Jackknife

Bias MC std. RMSE Bias MC std. RMSE
FE 0.204 0.022 0.205 -0.814 0.137 0.826
AFE, Linear interpolation
J = 2 0.027 0.006 0.028 -0.171 0.019 0.172
J = 3 0.134 0.017 0.135 -0.286 0.040 0.289
J = 4 0.159 0.017 0.160 -0.535 0.069 0.540
J = 5 0.185 0.019 0.186 -0.623 0.104 0.632
J = 10 0.200 0.021 0.201 -0.778 0.135 0.790
J = 25 0.203 0.022 0.205 -0.827 0.144 0.839
J = 50 0.204 0.022 0.205 -0.827 0.144 0.840
J = 100 0.204 0.022 0.205 -0.824 0.144 0.836

Notes: Shows Monte Carlo results for Example 1 for the homogeneous pa-
rameter, θ. We have used 500 Monte Carlo runs and the parameters in Table
4.

Table 10: Example 1. Homogeneous, θ. N = 1000, T = 30.
Baseline Half-panel Jackknife

Bias MC std. RMSE Bias MC std. RMSE
FE 0.040 0.004 0.040 -0.023 0.005 0.023
AFE, Linear interpolation
J = 2 -0.028 0.002 0.028 -0.051 0.002 0.051
J = 3 0.013 0.003 0.013 -0.032 0.003 0.032
J = 4 0.032 0.004 0.032 -0.018 0.004 0.019
J = 5 0.032 0.004 0.033 -0.028 0.005 0.028
J = 10 0.038 0.004 0.039 -0.023 0.005 0.024
J = 25 0.039 0.004 0.040 -0.023 0.005 0.023
J = 50 0.039 0.004 0.040 -0.023 0.005 0.023
J = 100 0.040 0.004 0.040 -0.023 0.005 0.023

Notes: Shows Monte Carlo results for Example 1 for the homogeneous pa-
rameter, θ. We have used 500 Monte Carlo runs and the parameters in Table
4.
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C Data

C.1 Income Definitions

In the Danish income registers, we have the following income variables:

DISPON_NY︸ ︷︷ ︸
disposable income

= SAMLINK_NY− SKATMVIALT_NY︸ ︷︷ ︸
taxes

− QRENTUD2︸ ︷︷ ︸
interest payments

− UNDERHOL + TBKONTHJ︸ ︷︷ ︸
alimony+returned benefits

SAMLINK_NY︸ ︷︷ ︸
total income

= PERINDKIALT + OVSKEJD02_NY + OVERSKEJD07︸ ︷︷ ︸
imputed rental value

PERINDKIALT︸ ︷︷ ︸
total monetary income

= RENTEINDK︸ ︷︷ ︸
interest income

+ PEROEVRIGFORMUE︸ ︷︷ ︸
other property income

+

ERHVERVSINDK(_GL)︸ ︷︷ ︸
wages and profits

+ OVERFORSINDK︸ ︷︷ ︸
public transfers

+RESUINK(_GL)︸ ︷︷ ︸
other income

We define nominal income for couple i in year t as

Y nom
it ≡ PERINDKIALT− RENTEINDK-PEROEVRIGFORMUE

−SKATMVIALT_NY− UNDERHOL− TBKONTHJ

C.2 Data Construction

We construct our variables as follows:

1. Couples are constructed using EFALLE (from BEF).

2. Birthyear and gender is based on FOED_DAG and KOEN (from BEF). Couple
age is the age of the male.

3. Wealth Anomit is the total net wealth excluding pensions (FORM from INDH) ad-
justed upwards with 10 percent of the value of any owned properties (KOEJD from
INDH).

4. Self-Employment is coded as PSTILL≤ 20 (from IDAP).

5. Retirement is coded as PSTILL in {50, 55, 92, 93, 94} (from IDAP).

6. Student is coded as PSTILL = 91 (from IDAP).

7. A couple is coded as high-skilled if at least one of them has ≥ 180 months of
education (using HFPRIA from UDDA); otherwise it is coded as low-skilled.
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We additionally calculate nominal cash-on-hand and imputed consumption as

Mnom
it ≡ R · Anomi,t−1 + Y nom

it (C.1)

Cnom
it ≡ Mnom

it − Anomit (C.2)

All variables are subsequently deflated with the consumer price index.

C.3 Sample Selection

We use the following iterative sample selection criteria:

1. Our baseline sample is all couples in the period 1987 and 1996 (both included).

2. Both partners are between age 25 and 59 (both included).

3. The age difference is not larger than 5 years.

4. All observations before and when one is a student is dropped.

5. All observation after and when one is retired is dropped.

6. Neither of them are ever self-employed.

7. Neither of them are ever out of the labor market.

8. Education information is not missing for both partners.

9. We remove all households with fewer than 5 observations satisfying:

(a) Mit

Yit
, Cit
Yit

, and Yit are not below the 1st percentile or above the 99th percentile
by age-year bins.

(b) mit ≡ Mit

Pit
≥ −λ

(c) ait ≡ Ait
Pit
≥ −λ

(d) cit ≡ Cit
Pit

< 0.3

Additionally, we do not use consumption for any of the periods where the above
requirements are not satisfied.

Table 11 shows how the sample size is affected by these choices.
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Table 11: Sample Selection
Unique Couples Observations

1. Baseline 1,933,846 12,852,936
2. Age between 25 and 59 1,460,232 9,127,239
3. Age difference ≤ 5 years 1,102,895 7,209,223
4. Not student 1,078,456 7,002,862
5. Not retired 1,040,114 6,612,273
6. Never self-employed 837,050 5,114,581
7. Never out of the labor market 659,347 4,103,660
8. Some education information 656,522 4,093,567
9. More that 5 observations 406,973 3,558,403
10. More that 5 observations - excluding extremes 261,725 1,966,741

Figure 8: Income Growth Factors, Gt.
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