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Overview

Robust, powerful, computationally fast inference on a slope coeffi-
cient(s) in a linear IV regression

"Robust" means uniform control of null rejection probability over all "em-
pirically relevant" parameter constellations

"Weak instruments"”
— pervasive in applied research (Angrist and Krueger, 1991)

— adverse effect on inference and estimation (Phillips, 1989; Dufour,
1997; Staiger and Stock, 1997): classical tests overreject true null
hypothesis; estimators are biased.



e FIRST assume cond homoskedasticity (Guggenberger, Mavroeidis, and
Kleibergen, 2019 QE; GKM from now on)

— THEN: relax to general Kronecker-Product structure (KPS)
— FINALLY: allow for arbitrary forms of cond heteroskedasticity

e Large literature on "robust inference" for the full parameter vector (Kleiber-
gen, 2002, Moreira, 2003/9)

Here: Consider robust subvector inference in the linear IV model

Relevant!

e Regarding power



Cond Homoskedastic case

We focus on the Anderson and Rubin (AR, 1949) subvector test sta-
tistic

— "History of critical values":
— Projection of full vector AR test (Dufour and Taamouti, 2005)

— Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, GKMC) pro-
vide power improvement:

Using X%_—mw,l—a as critical value, rather than X%,l—a still controls
asymptotic size

"Worst case" (largest quantile) occurs under strong identification

— In GKM (2019) consider a data-dependent critical value that adapts
to strength of identification



— GKM has uniformly higher power than method in GKMC; Implication:
Test in GKMC is "inadmissible"

Cond Heteroskedastic case: use KPS AR subvector test or fully robust
test depending on outcome of a "pretest" for KPS; suggested test has non-
smaller power than certain other robust tests suggested in recent literature

e One additional main contribution : computational ease

e Two related projects: namely GKM (2020) about tests for KPS and GMZ
(2020) about optimality properties of a new CLR test



Presentation

e Introduction: V'

e finite sample case (cond homoskedasticity)

a) myy = 1 : motivation, correct size, uniform power improvement over
GKMC

b) my > 1 : correct size, uniform power improvement

e asymptotic case:

a) cond homoskedasticity



b) general Kronecker-Product structure

c) general case (arbitrary forms of cond heteroskedasticity)



Model and Objective (finite sample, cond homosk. case)
y = YB+ Wy +e,
Y = ZNy + Vy,
W = Zlyw + Vi,

y € R",Y € R™™ (end or ex), W € R™™W (end), Z € R"*F (IVs)

e Reduced form:

(steW):Z(I'IysI'IW)< —l—\(vysVysVW)/,

~

e

8. Imy 0O )
V0

where vy := ¢ + V3-8 + Viyy.

e Objective: test
Hg : B = B versus Hy : B # Bp-



s.t. size bounded by nominal size & "good" power

Parameter space:

1. Z € R*"*k fixed. and Z'Z > 0 k x k matrix.

2. The reduced form error satisfies:

Vi ~iid. N(0,Q), i=1,....n,

for some Q € R(M+1)x(m+1) gt the variance matrix of (Y;, Vi) for
Yoi =y — Y] Bo = Wy + &, namely

/

1 0 1 0
QBo)=|-Bo 0 | Q2|-By O
0 Iy 0 Imy

is known and positive definite.



e Note: no restrictions on reduced form parameters Iy and Iy, — allow
for weak IV



Full vector inference

Ho : = Bg,7 = 7o vs Hy : not Hy

e Robust methods: e.g. AR (Anderson and Rubin, 1949), LM, and CLR
tests, see Kleibergen (2002), Moreira (2003, 2009).

e Optimality properties: Andrews, Moreira, and Stock (2006), Andrews,
Marmer, and Yu (2019), and Chernozhukov, Hansen, and Jansson (2009)

e Also: Guggenberger, Mavroeidis, Zhang (2020, working paper); derives
optimality results of a new CLR test in a linear IV model with KPS



Subvector procedures

e Projection: "inf" test statistic over parameter not under test, same critical
value — "computationally hard" and "uninformative"

e Bonferroni and related techniques: Staiger and Stock (1997), Chaud-
huri and Zivot (2011), Zhu (2015), Andrews (2017), McCloskey (2018),
Wang and Tchatoka (2018) ...; often computationally hard, power ranking
with projection unclear

e Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Re-
quires strong identification of parameters not under test.



e GMM models: e.g. Andrews and Cheng (2012), Andrews, I. and Miku-
sheva (2016), Andrews (2017), Han and McCloskey (2019)

e Models defined by moment inequalities: e.g. Gafarov (2016), Bugni,
Canay, and Shi (2017), and Kaido, Molinari, and Stoye (2019)



The Anderson and Rubin (1949) test

AR test stat for full vector hypothesis

Ho: B = B,y =0 vs Hy : not Hy
AR statistic exploits EZ;e; = 0
AR test stat:

(y = YBg — Wno)'Pz(y — YBg — Wro)
(15 — Bp : —76)Q(15 — Bp : —76>

ARn(Bo,v0) =

AR stat is distri. as X% under null hypothesis; critical value X% 1—a



Subvector AR statistic for testing Hg is given by

- (Yo — Wr)'Pz(Yo — W)
AR'n, — y
(Po) ygnélﬂqw(le—ﬁaz—7’)9(15—565—7’)

where again Yo =y — Y 3.

Alternative representation (using kmin(A) = ming \,—1 2’ Az):

AR” (/80) — I%pa

where &; for 2 = 1,...,p = 1 4+ myy are roots of characteristic polynomial

in K
klp — Q(Bo) /2 (70 5 W)/PZ (70 5 W> Q (50)_1/2' =0,

ordered non-increasingly



e For par space above, the roots &; solve

, 1=1..,p=14+my,

0= ’%73[1+mw — ==
where
ENN(M7[k®Ip)7

and M is a k X p matrix.

e Under Hp, the noncentrality matrix becomes M = (Ok, @W) , 1.e. rank
deficient, where

—1/2
Vva.8’

)1/2

Ow = (2'2)" " Nyx

which measures the strength of the IVs



e Summarizing: AR statistic is the minimum eigenvalue of a non-central
Wishart matrix

Under Hp the p X p matrix
U 74 (k Ip, M’M) ,

has non-central Wishart with noncentrality matrix

, {0 0
MM_<0 @’w@vv>

and

ARp (50) — """min(E/E

e The distribution of the eigenvalues of a noncentral Wishart matrix only
depends on the eigenvalues of the noncentrality matrix M’'M.



e Hence, distribution of &; only depends on the eigenvalues of @W@W7

K;, say 1 =1,..., my .

e When myy =1, k1 = @W@W is a measure of strength of identification
of ~; one dimensional nuisance parameter

Theorem: (Perlman and Olkin, 1980). Suppose my; = 1. Then, under the
null hypothesis Hgy : B = [, the distribution function of the subvector AR
statistic, ARy (Bg) , is monotonically decreasing in the parameter k1.
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Figure 1: The cdf of the subset AR statistic with £ = 3 instruments, for
different values of k1 = 5,10, 15,100



New critical value for subvector Anderson and Rubin test: my;y =1

e Relevance: If we knew 1 we could implement the subvector AR test with
a smaller critical value than X%—mw,l—a which is the critical value in the

case when k1 is "large".

e Muirhead (1978): Under null, when 1 "is large", the larger root K1 (which
measures strength of identification) is a sufficient statistic for x1

e More precisely: the conditional density of ARy, (Bg) = Rp given k1 can
be approximated by

Faoliy (@) ~ fra (2) (R —2)1/2 g (A1),



where fxg is the density of a X%—l and g is a function that does not
k—1
depend on k1.

e Analytical formula for g; confluent hypergeometric function.

e The new critical value for the subvector AR-test at significance level 1 —a
Is given by

1 — « quantile of (approximation of ARy, given K1)

e Denote cv by

Cl—oz(l%la k— mW)

Depends only on a, k — myy, and &1



Conditional quantiles can be computed by numerical integration

Conditional critical values can be tabulated — implementation of new test
is trivial and fast

They are increasing in A1 and converging to quantiles of X%—l

We find, by simulations over fine grid of values of x1, that new test

1(ARn (Bo) > c1—a(R1, k — myy))

controls size

It improves on the GKMC procedure in terms of power



e Theorem (GKM): Suppose myy = 1. The new conditional subvector
Anderson Rubin test has correct size under the assumptions above.

e Proof partly based on simulations; Verified for e.g. o € {1%,5%,10%}
and k — myy € {1,...,20}.

e Summary my = 1: the cond’l test rejects when
Ro > c1-alR1,k — 1),
where (A1, Ro) are the eigenvalues of 2x2 matrix ='= ~ W (k, Ip, M'M) ;

Under the null M’M is of rank 1: test has size «
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Table of conditional critical values cv=cq_,(R1,k — myy)

a=5%, k—my =4
ki <o | KR c¢cv| Ky | K1 cv k1 cv ki1 v
022 02200 18(392 34610 50| 895 6.6 | 1446 8.2
0.44 04223 201|417 36641 52| 940 68| 15.88 8.4
065 06|246 222|443 38673 54| 989 7.0| 17.85 8.6
087 08270 24469 40|705 561042 7.2 | 20.89 8.8
1.10 1.0{294 26496 42739 58 |11.01 74| 26.42 9.0
1.32 1.2 318 28524 44775 6.0|11.68 7.6 | 39.82 9.2
1.54 141|342 3.0|552 46813 6.2|1244 7.8| 11476 9.4
1.77 16 |3.67 3.2 |581 48852 64|1335 80| +.Inf 95

* For simplicity of implementation we suggest linear interpolation of tabulated
cvs; we verify resulting test has correct size
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Null rejection frequency of subset AR test based on conditional (red) and
Xl%—l (blue) critical values, as function of k7.



Extension to myy > 1

We define a new subvector Anderson Rubin test that rejects when

ARp (Bo) > e1-a(smax (Z'=)  k — m).
Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Theorem (GKM): The test above has i) correct size and ii) has uniformly
larger power than the test in GKMC.



Asymptotic case: a) cond homoskedasticity (GKM)

e Define parameter space F o s under the null hypothesis Hg : 8 = Bp.
Let U; := (¢; + Viyy,7, Viy,;)| and F distribution of (U;, Vy4, Z;).
fHOM — {(77 I_IW7 I_IY>F) s.t.
o c me, I—IW c RkaW, I—IY c Rk)(my’
Ep(||T;]1*1°) < M, for T; € {vec(Z;U;), Zi, Us},
Ep(Zi(ei Vivi, Vv4)) = 0,
Ep(vec(Z;U})(vee(Z;U;))) = (Ep(UU;) ® Ep(Z;Z;)),
kmin(A) > 6 for A € {Ep(Z;Z}), Ep(U;U;)}}
for some § > 0, M < oo
e This particular KPS is slightly less restrictive than cond homoskedasticity

Er(U;U!|Z;) does not depend on Z;



e Note: no restriction is imposed on the variance matrix of vec(ZiV{/Z-)



subvector AR stat equals smallest solution Ky, (slight abuse of notation)
of

Y MyY
zY 172

Y

Y ‘= (y — YB3y : W) c Rnx(l—l—mW)

Y MY
Note: Same as in finite sample case with Q (3() replaced by ~——4—.

critical value is again

Cl—a(’%la k — mW)

where k1 is largest solution of above eqn.



e Theorem (GKM): The new subvector AR test has correct asymptotic size
for parameter space Fgos-

e Proof based on Andrews and Guggenberger (2017) and Andrews, Cheng,
and Guggenberger (2020, JoE, forthcoming)

e As part of the proof relies on the corresponding finite sample result, this
proof too is partly based on simulations.



Asymptotic case: b) general Kronecker Product Structure

o For U; := (g, + Viy.. 7. Vi), p =1+ myy, and m := my + myy let

Frcp = {(v,My, My, F) : v € R™ My, € REX™W My e RF*™MY
Er(||T;|1?T°1) < B, for T; € {vec(Z;U}), vec(Z; Z)},
Ep(Z;V]) = 0" (m¥) B p(vec(Z,Uj) (vee(Z,Uf))) = G18Go,
kmin(A) > 85 for A € {Ep (Z:Z]) ,G1,Ga2}}

for pd G1 € RP*P (whose upper left element is normalized to 1) and
Gy € RFXk and 61,65 > 0, B < oo

e (Covers cond homoskedasticity, but also cases of cond heteroskedasticity;
relevant enlargement of parameter space!



Example. Take (g;, \715[/2)’ € RP i.i.d. zero mean with pd variance matrix,
independent of Z;, and

(€i7 VIﬁV@)/ = f(Z’L)(g’w ‘7{51/7,),

for some scalar valued function f of Z, e.g. f(Z;) = ||Z;||/kY/2. Then

Er(vec(Z;U;)(vee(Z;U7))')

= Ep (U;U} ® 2, 7))

=L ((57: + Vivoy, Viva) (& + Vg, Viv) © Zz’ZQ

=Ef ((57; + Vi Viva) (G + Vi, ‘71%/,1')) ® Ep (f(Zi)zziZz()
has KP structure even though

Er(UiUj|Z;) = £(Z:)°EpEi + iy Vi) Gi + Viv.ors Vivs)

depends on Z;.



e Modified AR subvector statistic. Estimate Ep(U;U; ® Z;Z!) by

AN

n
Rn:=n"1Y fifl € Rkpka, where
1=1

fi = ((Mz(y — YBo))i, (MzgW);) ® Z; € R,

o |et
(G1,G2) = argmin||G1 ® G2 — Rul|F,

where the minimum is taken over (G, Gp) for G1 € RPXP, G, € RF*F
being pd, symmetric matrices, normalized such that the upper left element
of G equals 1. Estimators are unique and given in closed form.

e The subvector AR statistic, ARk p,(8Bp) is defined as the smallest root
~pn of the roots R;y,, ¢ = 1, ..., p (ordered nonincreasingly) of the charac-



teristic polynomial

—1/2

Rl —ntGy Y3 (Yo, W)’ 272Gyt 7 (Yo, W) Gy ‘ —0.

Note: Relative to previous definition,

AN _, N AN
(G'1 replaces Yn]\{iy and G5 replaces

Z'Z
g

The conditional subvector ARy p test, py p say, rejects Hy at nominal

size o if

ARk pn(Bo) > c1—a(Rin, kK — myy),

where c1_,, (+,-) is defined as above.



Theorem: The conditional subvector AR p test ¢y p implemented at nomi-
nal size o has asymptotic size, i.e.

lim sup sup Py, Ny, F)(ARK Pn(Bo) > c1—alRin, k—mw))
oo (fYaI_IWarIYJF)EFKP

equal to a.

e In order to make the procedure invariant to transformations Z; — AZ; for

nonrandom and nonsingular A € RFEXk e implement the above procedure
replacing Z; by (Z2'2)~1/22Z,.

e Same disclaimer as above.



Asymptotic case: c) General forms of cond heteroskedasticity

o Let Fyy.; be the parameter space F i p above without the condition Rp =
G1 ® Go, where

Rp = Ep(vec(Z;U;)(vec(Z;U;))")

e There are tests that have correct asymptotic size for that parameter space,
see e.g. Andrews (2017); the objective is to improve on the power.

e ldea: use ¢y p if data suggests that KPS holds and use a test robust to
general forms of cond heteroskedasticity, @R, say, otherwise



e Implementation: For some sequence of constants ¢, such that

cn, — oo and cn/n1/2 — 0

define the new suggested test o, by

I(k\n > Cn)PRob + I(k\n < cn)eKrp,
where

1/2

_ 12 oA~ Al1)D
Kn = n?||Ry, " *(G1 ® Go — Rn)Rn / IFa

1/

nonsingular transformations of the IV vector

: ~—1/2 : : )
e Note: we use transformation by R,, */ ~ to make procedure invariant against

e "Pretesting" is akin to Andrews and Soares (2010); and used in many
papers since



Asymptotic size?

Assume @ p,p, Is a test has has correct asymptotic size for the parameter
space Fpjer and satisfies Py (¢prop < @i p) — 1 where Ap is a "local
to KPS" sequence

Under the above assumptions, . has correct asymptotic size

Reasons:

— Under sequences ("far from KPS") for which

n'/? min ||R;Y?(G1 © Gy — Rp,) Ry 2| — o0

G1,G2



one can show that I(Ky > ¢n) = 1 wpal. Thus @ g,y is chosen wpal
which has limiting null rejection probability bounded by «

— Under sequences ("local to KPS") for which

: —1/2 ,— - —1/2
a2 min ||k %G1 © Ga — Ry, )Ry, *l| = O(1)
G1,G2
@ p has limiting null rejection probability bounded by « and given

Py (¢rob < @i p) — 1 the same is true for

e We take ¢p,, as a certain implementation of an AR/AR type test in
Andrews (2017)

e We currently do finite sample experiments to determine good choices for
cn, and compare power/size of new test to the ones in Andrews (2017).



Alternatively, one could implement the test by GKM (2020) for KPS in
the first stage.

The role of ¢n, would then be played by 8 = 3,,, the pretest nominal size.

We can let 3,, = c/nl/2 and still prove correct asymptotic size of the two
step procedure.

Currently do finite sample experiments to determine which "pretest" per-
forms better

THE END



Proof of correct size in finite sample case and general myy,

Lemma: Under the null Hy : 8 = B, there exists a random matrix O € O(p),
such that for

~

=:==0 ¢ RkXp, and its upper left submatrix 211 c RE—mw+1x2

~ ~

=11=11 is a non-central Wishart 2 x 2 matrix of order kK — my + 1 (cond'l

on O), whose noncentrality matrix, M{Ml say, is of rank 1:
Proof of Theorem:

(i) Note that
ARn (Bo)

|
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S
N\
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n
|zv
|
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7~ N\
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N~

IA TN
X X
3 3
§<’ S5
A/~ D
IR
[
[ =
~ |
| =
~_
T A
)
X
X
/\03)
[l x
|||/\
— I
[
—
[1]2
[t
[t
~_
=



by inclusion principle, and thus

P(ARn (60) > C1— a(/ﬁ?max (E :) k — mW))

< P(%min( 1= 11) >cyo a(ﬁ?max( =11= 11>ak—mW))
= P(r2 (211Z11) > c1-a(s1 (211211)  k — mw))
<

where first inequality follows from (1) and last inequality from correct size for
myy = 1 (by conditioning on O) and the lemma

Recall summary when my;r = 1: new test rejects when

Ro > c1—o(R1,k —1)

where (R1, Rp) are the eigenvalues of ='= ~ W (k, I, M'M) and M'M is of
rank 1 under the null



(ii) new conditional test is uniformly more powerful than test in GKMC (because
c1—al+ k — myy)) is increasing and converging to X%—mw 1_ o 23S argument
goes to infinity), i.e. the test in GKMC is inadmissible



Power analysis of tests based on (&1, ..., Rp)

o For A=FE[Z'(y — YBg: W)] € RFXP, consider

H):p(A) < myy versus Hy : p(A) =p=my + 1

o Hy: [ = implies H), but the converse is not true:
0 0 0

— Hj holds iff [p (Myy) < myy or Ny (8 — Bg) € span(My)]

e Under Hj, (A1, ..., Rp) are distributed as eigenvalues of Wishart W (k, I, M'M)
with rank deficient noncentrality matrix - a distribution that appears also
under Hy



e Thus, every test ¢(R1,...,kp) € [0, 1] that has size o under Hy must
also have size o under H(’) - so cannot have power exceeding size under
alternatives H)\ Hp.

e |n other words, size o tests (K71, ..., Ap) under Hg can only have nontrivial
power under alternatives p (A) = p.

e We use this insight to derive a power envelope for tests of H6 of the form
SO (/%]_, ceey /%p) .



Power bounds

e Consider only the case my = 1.

e Can write hyp equivalently as: H| : kp = 0, k1 > ko against Hj :
Ko > 0,k1 > Ko.

e Obtain point-optimal power bounds using approximately least favorable
distribution ALY over nuisance parameter k1 based on algorithm in Elliott,
Miiller, and Watson (2015)



Power of | c minus power bound 10 r Power curves when k 1= k )
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bound (left) and power of v, varrmc (k) =1, 5 — 1{/’%2>c1_a(oo,k—1)}
K2>Xk—1,1—a}

and bound at k1 = ko (right) for K = 5. Computed using 10000 MC replications.



e Little scope for power improvement over proposed test. But not no scope
at all...:

e.g. Refinement: For the case k = 5, myy = 1, and a = 5%, let p,q; be
the test that uses the critical values in Table above where the smallest 8 critical
values are divided by 5. Then this test still has correct size.



Details on proof of asymptotic size result

We use results in Andrews, Cheng, and Guggenberger (2019, JoE, forth-
coming) that show that is enough to verify that the limiting null rejection
probability of the test is bounded by « under certain drifting sequences

>‘n,h
Specification of )\ for subvector Anderson and Rubin test

Given F' let

Wg = (EpZ;Z)Y? and Up := Q(By) /2.



e Consider a singular value decomposition
CrApBR
of
WMy, Nw)Up

e i.e. Bp denote a p X p orthogonal matrix of eigenvectors of
Up(Mwy, My ) WeWe(Myy, My )Urp
and C'r denote a k X k orthogonal matrix of eigenvectors of

WMy, My )UpUp(Myy, Ny ) W

e A denotes a k X p diagonal matrix with singular values (71 p, ..., TpF)
on diagonal, ordered nonincreasingly



e Note 7),p =0



e Define the elements of Ag to be

)\LF = (71F, ---anF)/ € RP,
>‘2,F:: BFERpo,
>‘3,F: = CFERka,
M p:= Wpe RFF
)‘S,F:: UFERpo,
Ao, p+ = F,

>‘F . = ()‘1,F7°°°7)‘9,F)°

e Asequence A, j, denotes a sequence Ap, such that (nl/z)\l,Fn, ey A5 ) —
h = (hi,..., hg)

o Let g =q; € {0,...,p — 1} be such that
hij=ocofor1<j<gpandhy;j<ooforgy+1<j<p-1



Roughly speaking, need to compute asy null rej probs under seq's with (i)
strong ident’'n,(ii) semi-strong ident'n, (iii) std weak ident'n (all parameters
weakly ident'd) & (iv) nonstd weak ident'n

strong identification: limy,_ Ty, Fn > 0

semi-strong ident’n: limp 0o Ty, B, = 0 & limp 0o nl/szW,Fn —
00

weak ident’'n: lim,_ n1/2TmW7Fn < 00

— standard (of all parameters): limy—oo n1/27-1,pn < oo as in Staiger
& Stock (1997)
oo includes some weakly /some strongly ident'd parameters, as in Stock
& Wright (2000); also includes joint weak ident’'n



Andrews and Guggenberger (2017): Limit distribution of eigenvalues of
quadratic forms

e Consider a singular value decomposition CF/\FB% of WrpDrpUp

e Define Ap, h, Ay, p,... as above

Let K, Vj = 1,...,p denote jth eigenval of

Fa — /\//\ — AN

nU], Dy, W, Wy, DpUnp,



where under A, p,
nl/2(Dp, — D) — 4Dy, € RE*P,
Wn_WFn N poka,
ﬁn — UFn — pOPXp,

WEk

n

— hag, UFn — hg

with hg, hg nonsingular
Theorem (AG): under {\, j, : n > 1},

(a) Kjp, —p oo forall j <gq

converges in dist'n to p — q vector of eigenvals of random matrix M (h, D},) €
R(—9)x(p—q)



e complicated proof;
— eigenvalues can diverge at any rate or converge to any number
— can become close to each other or close to 0 as n — oo



e We apply this result with

Wp = (EFZz'Zé)l/z, Wn =1y Zizé)l/za

v, v\ Y
Up = QBo) /%, Un = ( n—Zk ) ,

DF — (I_IW/% I_IW)7 En — (Z/Z)_]'Z/?

to obtain the joint limiting distribution of all eigenvalues



Joint asymptotic dist’n of eigenvalues

e Recall: test statistic and critical value are functions of p = 1 4 myy roots
of

R Y MzY 15—t — Y MzY 1/
Fltemy, — () A PEY)(— 2 )T =0

e To obtain joint limiting distribution of eigenvalues, we use general result
in AG about joint limiting distribution of eigenvalues of quadratic forms

Results:

e the joint limit depends only on localization parameters hy 1, ..., b1 my;



e asymptotic cases replicate finite sample, normal, fixed IV, known variance
matrix setup

e together with above proposition, correct asymptotic size then follows from
correct finite sample size



Statistical Lemma:

Recall that = ~ N (M,Ik(mw+1)) , with M nonstochastic and p (M) <
myy under the null.

Partition = as

_ (=11 =12
=21 =22/

where =11 is (k —mpy +1) X 2, =12 is (k—mpy + 1) X (my — 1), =21
is (mpy — 1) X 2,and =pp is (myy — 1) X (my — 1).

Partition M conformably with =. Let u;, ¢+ = 1, ..., myy, denote the possibly
nonzero singular values of M. We can set

M My ok—mw+1xmy —1
T OmW—1><2 M22 )



Ok—mwxl Ok—mel .
My = 0 iy, , and Moo := diag <,u1, ---MmW—l) :
Finally, let
-/ —=—1/=—1= —1/2 = =—1 ——1—
O — (12 + =555, 505 =21) =152 (Im—1 + 55 =215, 5,

) 1/2

——1—= - =—1/=—1= =—1= =/ =—17\"
—=9p =21 (12+—21 =25 =22 =21 (Imw 1+ =95 =21=31=27 )

and
My = (M = Mp=3=0) (I + 23535 =) 2

Cy— 1 \—1/2
= M1 (12 + =5,= 221/—221—21) 2

Theorem 1 Suppose that Assumption A holds with my, > 1. Denote by
=11 € RE—mw+IX2 the ypper left submatrix of = := ZO € RFXP. Then,



under the null hypothesis Hg : 8 = By
é{l_lélﬂO ~ WZ (k — mW —|_ ]-7 127 M{l_l'/\h/’ll].) y
where p(M{lMll) S 1.



