A more powerful subvector Anderson and Rubin test in linear instrumental variables regression

Patrik Guggenberger EUI/Pennsylvania State University

Joint work with Frank Kleibergen (University of Amsterdam) and Sophocles Mavroeidis (University of Oxford)

Toulouse - online!

March 2020

Overview

- Robust, powerful, computationally fast inference on a slope coefficient(s) in a linear IV regression
- "Robust" means uniform control of null rejection probability over all "empirically relevant" parameter constellations

"Weak instruments"

- pervasive in applied research (Angrist and Krueger, 1991)
- adverse effect on inference and estimation (Phillips, 1989; Dufour, 1997; Staiger and Stock, 1997): classical tests overreject true null hypothesis; estimators are biased.

- FIRST assume **cond homoskedasticity** (Guggenberger, Mavroeidis, and Kleibergen, 2019 QE; GKM from now on)
 - THEN: relax to general **Kronecker-Product** structure (KPS)
 - FINALLY: allow for arbitrary forms of **cond heteroskedasticity**
- Large literature on "robust inference" for the **full** parameter vector (Kleibergen, 2002, Moreira, 2003/9)

Here: Consider robust **subvector** inference in the linear IV model Relevant!

• Regarding **power**

Cond Homoskedastic case

We focus on the Anderson and Rubin (AR, 1949) subvector test statistic

- "History of critical values":
- Projection of full vector AR test (Dufour and Taamouti, 2005)
- Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, GKMC) provide power improvement:

Using $\chi^2_{k-m_W,1-\alpha}$ as critical value, rather than $\chi^2_{k,1-\alpha}$ still controls asymptotic size

"Worst case" (largest quantile) occurs under strong identification

 In GKM (2019) consider a data-dependent critical value that adapts to strength of identification – GKM has uniformly **higher power** than method in GKMC; Implication: Test in GKMC is "inadmissible"

Cond Heteroskedastic case: use KPS AR subvector test or fully robust test depending on outcome of a "pretest" for KPS; suggested test has non-smaller power than certain other robust tests suggested in recent literature

- One additional main contribution : **computational ease**
- Two related projects: namely GKM (2020) about tests for KPS and GMZ (2020) about optimality properties of a new CLR test

Presentation

- Introduction: \checkmark
- finite sample case (cond homoskedasticity)

a) $m_W = 1$: motivation, correct size, uniform power improvement over GKMC

b) $m_W > 1$: correct size, uniform power improvement

- asymptotic case:
 - a) cond homoskedasticity

- b) general Kronecker-Product structure
- c) general case (arbitrary forms of cond heteroskedasticity)

Model and Objective (finite sample, cond homosk. case)

$$y = Y\beta + W\gamma + \varepsilon,$$

$$Y = Z\Pi_Y + V_Y,$$

$$W = Z\Pi_W + V_W,$$

 $y \in R^n, Y \in R^{n \times m_Y}$ (end or ex), $W \in R^{n \times m_W}$ (end), $Z \in R^{n \times k}$ (IVs)

• Reduced form:

$$(y : Y : W) = Z (\Pi_Y : \Pi_W) \begin{pmatrix} \beta & I_{m_Y} & 0 \\ \gamma & 0 & I_{m_W} \end{pmatrix} + \underbrace{(v_y : V_Y : V_W)}_V,$$

where $v_y := \varepsilon + V_Y \beta + V_W \gamma.$

• **Objective:** test

$$H_0: \beta = \beta_0$$
 versus $H_1: \beta \neq \beta_0$.

s.t. size bounded by nominal size & "good" power

Parameter space:

- 1. $Z \in \mathbb{R}^{n \times k}$ fixed, and Z'Z > 0 $k \times k$ matrix.
- 2. The reduced form error satisfies:

$$V_i \sim \text{i.i.d. } N(0, \Omega), \ i = 1, ..., n,$$

for some $\Omega \in R^{(m+1) \times (m+1)}$ s.t. the variance matrix of $(\overline{Y}_{0i}, V'_{Wi})'$ for
 $\overline{Y}_{0i} = y_i - Y'_i \beta_0 = W'_i \gamma + \varepsilon_i$, namely

$$\Omega\left(eta_0
ight) = egin{pmatrix} 1 & 0 \ -eta_0 & 0 \ 0 & I_{m_W} \end{pmatrix}' \Omegaegin{pmatrix} 1 & 0 \ -eta_0 & 0 \ 0 & I_{m_W} \end{pmatrix}$$

is known and positive definite.

• Note: no restrictions on reduced form parameters Π_Y and $\Pi_W \rightarrow$ allow for weak IV

Full vector inference

 $H_0: \beta = \beta_0, \gamma = \gamma_0 \text{ vs } H_1: \text{not } H_0$

- Robust methods: e.g. AR (Anderson and Rubin, 1949), LM, and CLR tests, see Kleibergen (2002), Moreira (2003, 2009).
- **Optimality properties:** Andrews, Moreira, and Stock (2006), Andrews, Marmer, and Yu (2019), and Chernozhukov, Hansen, and Jansson (2009)
- Also: Guggenberger, Mavroeidis, Zhang (2020, working paper); derives optimality results of a new CLR test in a linear IV model with KPS

Subvector procedures

- Projection: "inf" test statistic over parameter not under test, same critical value → "computationally hard" and "uninformative"
- Bonferroni and related techniques: Staiger and Stock (1997), Chaudhuri and Zivot (2011), Zhu (2015), Andrews (2017), McCloskey (2018), Wang and Tchatoka (2018) ...; often computationally hard, power ranking with projection unclear
- **Plug-in approach:** Kleibergen (2004), Guggenberger and Smith (2005)...Requires strong identification of parameters not under test.

- GMM models: e.g. Andrews and Cheng (2012), Andrews, I. and Mikusheva (2016), Andrews (2017), Han and McCloskey (2019)
- Models defined by moment inequalities: e.g. Gafarov (2016), Bugni, Canay, and Shi (2017), and Kaido, Molinari, and Stoye (2019)

The Anderson and Rubin (1949) test

• AR test stat for full vector hypothesis

$$H_0: \beta = \beta_0, \gamma = \gamma_0 \ vs \ H_1:$$
 not H_0

- AR statistic exploits $EZ_i \varepsilon_i = 0$
- AR test stat:

$$AR_n(\beta_0,\gamma_0) = \frac{(y - Y\beta_0 - W\gamma_0)' P_Z(y - Y\beta_0 - W\gamma_0)}{\left(1 : -\beta'_0 : -\gamma'_0\right) \Omega \left(1 : -\beta'_0 : -\gamma'_0\right)'}$$

- AR stat is distri. as χ^2_k under null hypothesis; critical value $\chi^2_{k,1-\alpha}$

• Subvector AR statistic for testing H_0 is given by

$$AR_n(\beta_0) = \min_{\gamma \in R^m W} \frac{(\overline{Y}_0 - W\gamma)' P_Z(\overline{Y}_0 - W\gamma)}{(1 : -\beta'_0 : -\gamma') \Omega (1 : -\beta'_0 : -\gamma')},$$

where again $\overline{Y}_0 = y - Y\beta_0$.

• Alternative representation (using $\kappa_{\min}(A) = \min_{x,||x||=1} x'Ax$):

$$AR_n\left(\beta_0\right) = \hat{\kappa}_p,$$

where $\hat{\kappa}_i$ for $i=1,...,p=1+m_W$ are roots of characteristic polynomial in κ

$$\left|\kappa I_p - \Omega\left(\beta_0\right)^{-1/2} \left(\overline{Y}_0 : W\right)' P_Z\left(\overline{Y}_0 : W\right) \Omega\left(\beta_0\right)^{-1/2} \right| = 0,$$

ordered non-increasingly

• For par space above, the roots $\hat{\kappa}_i$ solve

$$\mathbf{0} = \left| \hat{\kappa}_i I_{1+m_W} - \Xi' \Xi \right|, \quad i = 1, ..., p = 1 + m_W,$$

where

$$\Xi \sim N\left(M, I_k \otimes I_p\right),\,$$

and M is a $k \times p$ matrix.

• Under H_0 , the noncentrality matrix becomes $M = (\mathbf{0}^k, \Theta_W)$, i.e. rank deficient, where

$$\Theta_W = \left(Z'Z \right)^{1/2} \Pi_W \Sigma_{V_W V_W \cdot \varepsilon}^{-1/2},$$

which measures the strength of the IVs

• **Summarizing**: AR statistic is the minimum eigenvalue of a non-central Wishart matrix

Under H_0 the $p \times p$ matrix

$$\Xi' \Xi \sim W(k, I_p, M'M),$$

has non-central Wishart with noncentrality matrix

$$M'M = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Theta}'_W \mathbf{\Theta}_W \end{pmatrix}$$

and

$$AR_n\left(\beta_0\right) = \kappa_{\min}(\Xi'\Xi)$$

• The distribution of the eigenvalues of a noncentral Wishart matrix only depends on the eigenvalues of the noncentrality matrix M'M.

• Hence, distribution of $\hat{\kappa}_i$ only depends on the eigenvalues of $\Theta'_W \Theta_W$,

$$\kappa_i,\,\,$$
say $i=1,\ldots,m_W.$

• When $m_W = 1$, $\kappa_1 = \Theta'_W \Theta_W$ is a measure of strength of identification of γ ; one dimensional nuisance parameter

Theorem: (Perlman and Olkin, 1980). Suppose $m_W = 1$. Then, under the null hypothesis H_0 : $\beta = \beta_0$, the distribution function of the subvector AR statistic, $AR_n(\beta_0)$, is monotonically decreasing in the parameter κ_1 .

Figure 1: The cdf of the subset AR statistic with k=3 instruments, for different values of $\kappa_1 = 5, 10, 15, 100$

New critical value for subvector Anderson and Rubin test: $m_W = 1$

- **Relevance:** If we knew κ_1 we could implement the subvector AR test with a smaller critical value than $\chi^2_{k-m_W,1-\alpha}$ which is the critical value in the case when κ_1 is "large".
- Muirhead (1978): Under null, when κ_1 "is large", the larger root $\hat{\kappa}_1$ (which measures strength of identification) is a sufficient statistic for κ_1
- More precisely: the conditional density of $AR_n(\beta_0) = \hat{\kappa}_2$ given $\hat{\kappa}_1$ can be approximated by

$$f_{\hat{\kappa}_2|\hat{\kappa}_1}(x) \sim f_{\chi^2_{k-1}}(x) (\hat{\kappa}_1 - x)^{1/2} g(\hat{\kappa}_1),$$

where $f_{\chi^2_{k-1}}$ is the density of a χ^2_{k-1} and g is a function that does not depend on $\kappa_1.$

- Analytical formula for g; confluent hypergeometric function.
- The **new critical value** for the subvector AR-test at significance level $1-\alpha$ is given by

 $1 - \alpha$ quantile of (approximation of AR_n given $\hat{\kappa}_1$)

• Denote cv by

$$c_{1-\alpha}(\hat{\kappa}_1, k-m_W)$$

Depends only on $\alpha, k - m_W$, and $\hat{\kappa}_1$

- Conditional quantiles can be computed by numerical integration
- Conditional critical values can be tabulated \rightarrow implementation of new test is trivial and fast
- They are increasing in $\hat{\kappa}_1$ and converging to quantiles of χ^2_{k-1}
- We find, by simulations over fine grid of values of κ_1 , that new test

$$1(AR_n(\beta_0) > c_{1-\alpha}(\hat{\kappa}_1, k - m_W))$$

controls size

• It improves on the GKMC procedure in terms of power

- Theorem (GKM): Suppose $m_W = 1$. The new conditional subvector Anderson Rubin test has correct size under the assumptions above.
- Proof partly based on simulations; Verified for e.g. $\alpha \in \{1\%, 5\%, 10\%\}$ and $k - m_W \in \{1, ..., 20\}$.
- Summary $m_W = 1$: the cond'l test rejects when

$$\hat{\kappa}_2 > c_{1-\alpha}(\hat{\kappa}_1, k-1),$$

where $(\hat{\kappa}_1, \hat{\kappa}_2)$ are the eigenvalues of 2×2 matrix $\Xi' \Xi \sim W(k, I_p, M'M)$;

Under the null M'M is of rank 1; test has size α

Critical value function $c_{1-\alpha}(\hat{\kappa}_1, k-1)$ for $\alpha = 0.05$.

Table of conditional critical values $cv=c_{1-\alpha}(\hat{\kappa}_1,k-m_W)$

$\alpha = 5\%,$							$k - m_W = 4$					
$\hat{\kappa}_1$	CV	$\hat{\kappa}_1$	CV	$\hat{\kappa}_1$	CV	$\hat{\kappa}_1$	CV	$\hat{\kappa}_1$	CV	$\hat{\kappa}_1$	CV	
0.22	0.2	2.00	1.8	3.92	3.4	6.10	5.0	8.95	6.6	14.46	8.2	
0.44	0.4	2.23	2.0	4.17	3.6	6.41	5.2	9.40	6.8	15.88	8.4	
0.65	0.6	2.46	2.2	4.43	3.8	6.73	5.4	9.89	7.0	17.85	8.6	
0.87	0.8	2.70	2.4	4.69	4.0	7.05	5.6	10.42	7.2	20.89	8.8	
1.10	1.0	2.94	2.6	4.96	4.2	7.39	5.8	11.01	7.4	26.42	9.0	
1.32	1.2	3.18	2.8	5.24	4.4	7.75	6.0	11.68	7.6	39.82	9.2	
1.54	1.4	3.42	3.0	5.52	4.6	8.13	6.2	12.44	7.8	114.76	9.4	
1.77	1.6	3.67	3.2	5.81	4.8	8.52	6.4	13.35	8.0	+.Inf	9.5	

* For simplicity of implementation we suggest linear interpolation of tabulated cvs; we verify resulting test has correct size

Null rejection frequency of subset AR test based on conditional (red) and χ^2_{k-1} (blue) critical values, as function of κ_1 .

Extension to $m_W > 1$

We define a new subvector Anderson Rubin test that rejects when

$$AR_n(\beta_0) > c_{1-\alpha}(\kappa_{\max}(\Xi'\Xi), k-m_W).$$

Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Theorem (GKM): The test above has i) correct size and ii) has uniformly larger power than the test in GKMC.

Asymptotic case: a) cond homoskedasticity (GKM)

• Define parameter space \mathcal{F}_{HOM} under the null hypothesis $H_0: \beta = \beta_0$.

Let
$$U_i := (\varepsilon_i + V'_{W,i}\gamma, V'_{W,i})'$$
 and F distribution of (U_i, V_{Yi}, Z_i) .
 $\mathcal{F}_{HOM} = \{(\gamma, \Pi_W, \Pi_Y, F) \ s.t.$
 $\gamma \in R^{m_W}, \Pi_W \in R^{k \times m_W}, \Pi_Y \in R^{k \times m_Y},$
 $E_F(||T_i||^{2+\delta}) \leq M, \text{ for } T_i \in \{vec(Z_iU_i), Z_i, U_i\},$
 $E_F(Z_i(\varepsilon_i, V'_{Wi}, V'_{Yi})) = 0,$
 $E_F(vec(Z_iU'_i)(vec(Z_iU'_i))') = (E_F(U_iU'_i) \otimes E_F(Z_iZ'_i)),$
 $\kappa_{\min}(A) \geq \delta \text{ for } A \in \{E_F(Z_iZ'_i), E_F(U_iU'_i)\}\}$

for some $\delta > 0$, $M < \infty$

• This particular KPS is slightly less restrictive than cond homoskedasticity $E_{\rm e}(UUU'|Z)$ does not depend on Z

 $E_F(U_iU_i'|Z_i)$ does not depend on Z_i

• Note: no restriction is imposed on the variance matrix of $vec(Z_iV'_{Yi})$

• subvector AR stat equals smallest solution $\hat{\kappa}_p$ (slight abuse of notation) of

$$\left|\widehat{\kappa}I_{1+m_W} - (\frac{\overline{Y}'M_Z\overline{Y}}{n-k})^{-1/2}(\overline{Y}'P_Z\overline{Y})(\frac{\overline{Y}'M_Z\overline{Y}}{n-k})^{-1/2}\right| = 0,$$

where

$$\overline{Y} := (y - Y\beta_0 : W) \in R^{n \times (1+m_W)}$$

- Note: Same as in finite sample case with $\Omega(\beta_0)$ replaced by $\frac{\overline{Y}'M_Z\overline{Y}}{n-k}$.
- critical value is again

$$c_{1-\alpha}(\hat{\kappa}_1, k-m_W)$$

where $\hat{\kappa}_1$ is largest solution of above eqn.

- Theorem (GKM): The new subvector AR test has correct asymptotic size for parameter space \mathcal{F}_{HOM} .
- Proof based on Andrews and Guggenberger (2017) and Andrews, Cheng, and Guggenberger (2020, JoE, forthcoming)
- As part of the proof relies on the corresponding finite sample result, this proof too is partly based on simulations.

Asymptotic case: b) general Kronecker Product Structure

• For
$$U_i := (\varepsilon_i + V'_{W,i}\gamma, V'_{W,i})'$$
, $p := 1 + m_W$, and $m := m_Y + m_W$ let

$$\begin{aligned} \mathcal{F}_{KP} &= \{ (\gamma, \Pi_W, \Pi_Y, F) : \gamma \in R^{m_W}, \Pi_W \in R^{k \times m_W}, \Pi_Y \in R^{k \times m_Y}, \\ & E_F(||T_i||^{2+\delta_1}) \leq B, \text{ for } T_i \in \{ vec(Z_iU_i'), vec(Z_iZ_i') \}, \\ & E_F(Z_iV_i') = \mathbf{0}^{k \times (m+1)}, \ \mathbf{E}_F(\mathbf{vec}(\mathbf{Z}_i\mathbf{U}_i')(\mathbf{vec}(\mathbf{Z}_i\mathbf{U}_i'))') = \mathbf{G}_1 \otimes \mathbf{G}_2, \\ & \kappa_{\min}(A) \geq \delta_2 \text{ for } A \in \{ E_F\left(Z_iZ_i'\right), G_1, G_2 \} \} \end{aligned}$$

for pd $G_1 \in R^{p \times p}$ (whose upper left element is normalized to 1) and $G_2 \in R^{k \times k}$ and $\delta_1, \delta_2 > 0, B < \infty$

• Covers cond homoskedasticity, but also cases of cond heteroskedasticity; relevant enlargement of parameter space!

Example. Take $(\tilde{\varepsilon}_i, \tilde{V}'_{Wi})' \in R^p$ i.i.d. zero mean with pd variance matrix, independent of Z_i , and

$$(\varepsilon_i, V'_{Wi})' := f(Z_i)(\widetilde{\varepsilon}_i, \widetilde{V}'_{Wi})'$$

for some scalar valued function f of Z, e.g. $f(Z_i) = ||Z_i||/k^{1/2}$. Then

$$E_{F}(vec(Z_{i}U_{i}')(vec(Z_{i}U_{i}'))')$$

$$= E_{F}\left(U_{i}U_{i}'\otimes Z_{i}Z_{i}'\right)$$

$$= E_{F}\left((\varepsilon_{i} + V_{W,i}'\gamma, V_{W,i}')'(\varepsilon_{i} + V_{W,i}'\gamma, V_{W,i}')\otimes Z_{i}Z_{i}'\right)$$

$$= E_{F}\left((\widetilde{\varepsilon}_{i} + \widetilde{V}_{W,i}'\gamma, \widetilde{V}_{W,i}')'(\widetilde{\varepsilon}_{i} + \widetilde{V}_{W,i}'\gamma, \widetilde{V}_{W,i}')\right)\otimes E_{F}\left(f(Z_{i})^{2}Z_{i}Z_{i}'\right)$$

has KP structure even though

d

$$E_F(U_iU_i'|Z_i) = f(Z_i)^2 E_F(\widetilde{\varepsilon}_i + \widetilde{V}_{W,i}'\gamma, \widetilde{V}_{W,i}')'(\widetilde{\varepsilon}_i + \widetilde{V}_{W,i}'\gamma, \widetilde{V}_{W,i}')$$
epends on Z_i .

• Modified AR subvector statistic. Estimate $E_F(U_iU'_i\otimes Z_iZ'_i)$ by

$$\widehat{R}_n := n^{-1} \sum_{i=1}^n f_i f'_i \in R^{kp imes kp}, \text{ where}$$

 $f_i := ((M_Z(y - Y\beta_0))_i, (M_Z W)'_i)' \otimes Z_i \in R^{kp}.$

• Let

$$(\widehat{G}_1, \widehat{G}_2) = \arg \min ||\overline{G}_1 \otimes \overline{G}_2 - \widehat{R}_n||_F,$$

where the minimum is taken over $(\overline{G}_1, \overline{G}_2)$ for $\overline{G}_1 \in \mathbb{R}^{p \times p}, \overline{G}_2 \in \mathbb{R}^{k \times k}$ being pd, symmetric matrices, normalized such that the upper left element of \overline{G}_1 equals 1. Estimators are unique and given in closed form.

• The subvector AR statistic, $AR_{KP,n}(\beta_0)$ is defined as the smallest root $\hat{\kappa}_{pn}$ of the roots $\hat{\kappa}_{in}$, i = 1, ..., p (ordered nonincreasingly) of the charac-

teristic polynomial

$$\left|\hat{\kappa}I_p - n^{-1}\hat{G}_1^{-1/2}\left(\overline{Y}_0, W\right)' Z\hat{G}_2^{-1}Z'\left(\overline{Y}_0, W\right)\hat{G}_1^{-1/2}\right| = 0.$$

• Note: Relative to previous definition,

$$\widehat{G}_1$$
 replaces $\frac{\overline{Y}'M_Z\overline{Y}}{n-k}$ and \widehat{G}_2 replaces $\frac{Z'Z}{n}$.

• The conditional subvector ${\sf AR}_{KP}$ test, φ_{KP} say, rejects H_0 at nominal size α if

$$AR_{KP,n}(\beta_0) > c_{1-\alpha}(\hat{\kappa}_{1n}, k - m_W),$$

where $c_{1-\alpha}(\cdot, \cdot)$ is defined as above.

Theorem: The conditional subvector AR_{KP} test φ_{KP} implemented at nominal size α has asymptotic size, i.e.

 $\lim \sup_{n \to \infty} \sup_{(\gamma, \Pi_W, \Pi_Y, F) \in \mathcal{F}_{KP}} P_{(\beta_0, \gamma, \Pi_W, \Pi_Y, F)}(AR_{KP, n}(\beta_0) > c_{1-\alpha}(\hat{\kappa}_{1n}, k-m_W))$ equal to α .

- In order to make the procedure invariant to transformations Z_i → AZ_i for nonrandom and nonsingular A ∈ R^{k×k} we implement the above procedure replacing Z_i by (Z'Z)^{-1/2}Z_i.
- Same disclaimer as above.

Asymptotic case: c) General forms of cond heteroskedasticity

• Let \mathcal{F}_{Het} be the parameter space \mathcal{F}_{KP} above without the condition $R_F = G_1 \otimes G_2$, where

$$R_F := E_F(vec(Z_iU'_i)(vec(Z_iU'_i))')$$

- There are tests that have correct asymptotic size for that parameter space, see e.g. Andrews (2017); the objective is to improve on the power.
- Idea: use φ_{KP} if data suggests that KPS holds and use a test robust to general forms of cond heteroskedasticity, φ_{Rob} say, otherwise

• Implementation: For some sequence of constants c_n such that

$$c_n \to \infty$$
 and $c_n/n^{1/2} \to 0$

define the **new suggested test** φ_{c_n} by

$$I(\widehat{K}_n > c_n)\varphi_{Rob} + I(\widehat{K}_n \le c_n)\varphi_{KP},$$

where

$$\widehat{K}_n := n^{1/2} ||\widehat{R}_n^{-1/2} (\widehat{G}_1 \otimes \widehat{G}_2 - \widehat{R}_n) \widehat{R}_n^{-1/2} ||_F$$

- Note: we use transformation by $\hat{R}_n^{-1/2}$ to make procedure invariant against nonsingular transformations of the IV vector
- "Pretesting" is akin to Andrews and Soares (2010); and used in many papers since

- Asymptotic size?
- Assume φ_{Rob} is a test has has correct asymptotic size for the parameter space F_{Het} and satisfies P_{λn}(φ_{Rob} ≤ φ_{KP}) → 1 where λ_n is a "local to KPS" sequence
- \bullet Under the above assumptions, φ_{c_n} has correct asymptotic size
- Reasons:
 - Under sequences ("far from KPS") for which

$$n^{1/2}\min_{\overline{G}_1,\overline{G}_2}||R_{F_n}^{-1/2}(\overline{G}_1\otimes\overline{G}_2-R_{F_n})R_{F_n}^{-1/2}||\to\infty$$

one can show that $I(\widehat{K}_n > c_n) = 1$ wpa1. Thus φ_{Rob} is chosen wpa1 which has limiting null rejection probability bounded by α

- Under sequences ("local to KPS") for which

$$n^{1/2} \min_{\overline{G}_1, \overline{G}_2} ||R_{F_n}^{-1/2}(\overline{G}_1 \otimes \overline{G}_2 - R_{F_n})R_{F_n}^{-1/2}|| = O(1)$$

 φ_{KP} has limiting null rejection probability bounded by α and given $P_{\lambda_n}(\varphi_{Rob} \leq \varphi_{KP}) \rightarrow 1$ the same is true for φ_{c_n}

- We take φ_{Rob} as a certain implementation of an AR/AR type test in Andrews (2017)
- We currently do finite sample experiments to determine good choices for c_n and compare power/size of new test to the ones in Andrews (2017).

- Alternatively, one could implement the test by GKM (2020) for KPS in the first stage.
- The role of c_n would then be played by $\beta = \beta_n$, the pretest nominal size.
- We can let $\beta_n = c/n^{1/2}$ and still prove correct asymptotic size of the two step procedure.
- Currently do finite sample experiments to determine which "pretest" performs better

THE END

Proof of correct size in finite sample case and general m_W

Lemma: Under the null H_0 : $\beta = \beta_0$, there exists a random matrix $O \in O(p)$, such that for

 $\widetilde{\Xi} := \Xi O \in \mathbb{R}^{k \times p}$, and its upper left submatrix $\widetilde{\Xi}_{11} \in \mathbb{R}^{k-m_W+1 \times 2}$ $\widetilde{\Xi}'_{11} \widetilde{\Xi}_{11}$ is a non-central Wishart 2 × 2 matrix of order $k - m_W + 1$ (cond'l on O), whose noncentrality matrix, $\tilde{M}'_1 \tilde{M}_1$ say, is of rank 1;

Proof of Theorem:

(i) Note that

$$AR_{n}(\beta_{0}) = \kappa_{\min}(\Xi'\Xi) = \kappa_{\min}(\Xi'\tilde{\Xi})$$

$$\leq \kappa_{\min}(\Xi'_{11}\tilde{\Xi}_{11}) \leq \kappa_{\max}(\Xi'_{11}\tilde{\Xi}_{11})$$

$$\leq \kappa_{\max}(\Xi'\tilde{\Xi}) = \kappa_{\max}(\Xi'\Xi) \qquad (1)$$

by inclusion principle, and thus

$$P(AR_{n} (\beta_{0}) > c_{1-\alpha}(\kappa_{\max} (\Xi'\Xi), k - m_{W}))$$

$$\leq P(\kappa_{\min} (\tilde{\Xi}_{11}'\tilde{\Xi}_{11}) > c_{1-\alpha}(\kappa_{\max} (\tilde{\Xi}_{11}'\tilde{\Xi}_{11}), k - m_{W}))$$

$$= P(\kappa_{2} (\tilde{\Xi}_{11}'\tilde{\Xi}_{11}) > c_{1-\alpha}(\kappa_{1} (\tilde{\Xi}_{11}'\tilde{\Xi}_{11}), k - m_{W}))$$

$$\leq \alpha,$$

where first inequality follows from (1) and last inequality from correct size for $m_W = 1$ (by conditioning on O) and the lemma

Recall summary when $m_W = 1$: new test rejects when

$$\hat{\kappa}_2 > c_{1-\alpha}(\hat{\kappa}_1, k-1)$$

where $(\hat{\kappa}_1, \hat{\kappa}_2)$ are the eigenvalues of $\Xi' \Xi \sim W(k, I_2, M'M)$ and M'M is of rank 1 under the null

(ii) new conditional test is uniformly more powerful than test in GKMC (because $c_{1-\alpha}(\cdot, k - m_W)$) is increasing and converging to $\chi^2_{k-m_W,1-\alpha}$ as argument goes to infinity), i.e. the test in GKMC is inadmissible

Power analysis of tests based on $(\hat{\kappa}_1, ..., \hat{\kappa}_p)$

• For
$$A = E\left[Z'\left(y - Y\beta_{0} : W\right)\right] \in R^{k \times p}$$
, consider
 $H'_{0}: \rho\left(A\right) \leq m_{W}$ versus $H'_{1}: \rho\left(A\right) = p = m_{W} + 1$

•
$$H_0: \beta = \beta_0$$
 implies H'_0 but the converse is not true:

-
$$H'_0$$
 holds iff $[\rho(\Pi_W) < m_W$ or $\Pi_Y(\beta - \beta_0) \in span(\Pi_W)]$

Under H'₀, (k₁, ..., k_p) are distributed as eigenvalues of Wishart W (k, I_p, M'M) with rank deficient noncentrality matrix - a distribution that appears also under H₀

- Thus, every test $\varphi(\hat{\kappa}_1, ..., \hat{\kappa}_p) \in [0, 1]$ that has size α under H_0 must also have size α under H'_0 so cannot have power exceeding size under alternatives $H'_0 \setminus H_0$.
- In other words, size α tests $\varphi(\hat{\kappa}_1, ..., \hat{\kappa}_p)$ under H_0 can only have nontrivial power under alternatives $\rho(A) = p$.
- We use this insight to derive a power envelope for tests of H'_0 of the form $\varphi(\hat{\kappa}_1, ..., \hat{\kappa}_p)$.

Power bounds

- Consider only the case $m_W = 1$.
- Can write hyp equivalently as: H'_0 : $\kappa_2 = 0$, $\kappa_1 \ge \kappa_2$ against H'_1 : $\kappa_2 > 0, \kappa_1 \ge \kappa_2$.
- Obtain point-optimal power bounds using approximately least favorable distribution Λ^{LF} over nuisance parameter κ₁ based on algorithm in Elliott, Müller, and Watson (2015)

Power of conditional subvector AR test $\varphi_c(\hat{\kappa}) = \mathbf{1}_{\{\hat{\kappa}_2 > c_{1-\alpha}(\hat{\kappa}_1, k-1)\}}$ relative to power bound (left) and power of φ_c , $\varphi_{GKMC}(\hat{\kappa}) = \mathbf{1}_{\{\hat{\kappa}_2 > \chi^2_{k-1,1-\alpha}\}} = \mathbf{1}_{\{\hat{\kappa}_2 > c_{1-\alpha}(\infty, k-1)\}}$ and bound at $\kappa_1 = \kappa_2$ (right) for k = 5. Computed using 10000 MC replications.

• Little scope for power improvement over proposed test. But not no scope at all...:

e.g. **Refinement:** For the case k = 5, $m_W = 1$, and $\alpha = 5\%$, let φ_{adj} be the test that uses the critical values in Table above where the smallest 8 critical values are divided by 5. Then this test still has correct size.

Details on proof of asymptotic size result

• We use results in Andrews, Cheng, and Guggenberger (2019, JoE, forthcoming) that show that is enough to verify that the limiting null rejection probability of the test is bounded by α under certain drifting sequences $\lambda_{n,h}$

Specification of λ for subvector Anderson and Rubin test

• Given F let

$$W_F := (E_F Z_i Z'_i)^{1/2}$$
 and $U_F := \Omega(\beta_0)^{-1/2}$.

• Consider a singular value decomposition

$$C_F \Lambda_F B'_F$$

of

$$W_F(\mathsf{\Pi}_W\gamma,\mathsf{\Pi}_W)U_F$$

• i.e. B_F denote a $p \times p$ orthogonal matrix of eigenvectors of $U'_F(\Pi_W\gamma,\Pi_W)'W'_FW_F(\Pi_W\gamma,\Pi_W)U_F$

and C_F denote a $k \times k$ orthogonal matrix of eigenvectors of $W_F(\Pi_W\gamma,\Pi_W)U_FU'_F(\Pi_W\gamma,\Pi_W)'W'_F$

• Λ_F denotes a $k \times p$ diagonal matrix with singular values $(\tau_{1F}, ..., \tau_{pF})$ on diagonal, ordered nonincreasingly • Note $\tau_{pF} = \mathbf{0}$

• Define the elements of λ_F to be

$$\lambda_{1,F} := (\tau_{1F}, ..., \tau_{pF})' \in \mathbb{R}^{p},$$

$$\lambda_{2,F} := B_{F} \in \mathbb{R}^{p \times p},$$

$$\lambda_{3,F} := C_{F} \in \mathbb{R}^{k \times k},$$

$$\lambda_{4,F} := W_{F} \in \mathbb{R}^{k \times k},$$

$$\lambda_{5,F} := U_{F} \in \mathbb{R}^{p \times p},$$

$$\lambda_{6,F} := F,$$

$$\lambda_{F} := (\lambda_{1,F}, ..., \lambda_{9,F}).$$

• A sequence $\lambda_{n,h}$ denotes a sequence λ_{F_n} such that $(n^{1/2}\lambda_{1,F_n}, ..., \lambda_{5,F_n}) \rightarrow h = (h_1, ..., h_5)$

• Let
$$q = q_h \in \{0, ..., p-1\}$$
 be such that
 $h_{1,j} = \infty$ for $1 \le j \le q_h$ and $h_{1,j} < \infty$ for $q_h + 1 \le j \le p-1$

- Roughly speaking, need to compute asy null rej probs under seq's with (i) strong ident'n,(ii) semi-strong ident'n, (iii) std weak ident'n (all parameters weakly ident'd) & (iv) nonstd weak ident'n
- strong identification: $\lim_{n\to\infty} \tau_{m_W,F_n} > 0$
- semi-strong ident'n: $\lim_{n\to\infty}\tau_{m_W,F_n}=$ 0 & $\lim_{n\to\infty}n^{1/2}\tau_{m_W,F_n}=\infty$
- weak ident'n: $\lim_{n\to\infty}n^{1/2}\tau_{m_W,F_n}<\infty$
 - standard (of all parameters): $\lim_{n\to\infty} n^{1/2} \tau_{1,F_n} < \infty$ as in Staiger & Stock (1997)
 - nonstandard: $\lim_{n\to\infty} n^{1/2} \tau_{m_W,F_n} < \infty$ & $\lim_{n\to\infty} n^{1/2} \tau_{1,F_n} = \infty$ includes some weakly/some strongly ident'd parameters, as in Stock & Wright (2000); also includes joint weak ident'n

Andrews and Guggenberger (2017): Limit distribution of eigenvalues of quadratic forms

- Consider a singular value decomposition $C_F \Lambda_F B'_F$ of $W_F D_F U_F$
- Define $\lambda_F, h, \lambda_{n,h}...$ as above

Let $\hat{\kappa}_{jn} \forall j = 1, ..., p$ denote *j*th eigenval of $n \widehat{U}'_n \widehat{D}'_n \widehat{W}'_n \widehat{W}_n \widehat{D}_n \widehat{U}_n,$ where under $\lambda_{n,h}$

$$n^{1/2}(\widehat{D}_n - D_{F_n}) \rightarrow {}_d\overline{D}_h \in R^{k \times p},$$

$$\widehat{W}_n - W_{F_n} \rightarrow {}_p \mathbf{0}^{k \times k},$$

$$\widehat{U}_n - U_{F_n} \rightarrow {}_p \mathbf{0}^{p \times p},$$

$$W_{F_n} \rightarrow h_4, \ U_{F_n} \rightarrow h_5$$

with h_4, h_5 nonsingular

Theorem (AG): under $\{\lambda_{n,h} : n \geq 1\}$,

(a) $\hat{\kappa}_{jn} \rightarrow_p \infty$ for all $j \leq q$

(b) vector of smallest p-q eigenvals of $n\widehat{U}'_n\widehat{D}'_n\widehat{W}'_n\widehat{D}_n\widehat{U}_n$, i.e., $(\widehat{\kappa}_{(q+1)n},...,\widehat{\kappa}_{pn})'$, converges in dist'n to p-q vector of eigenvals of random matrix $M(h,\overline{D}_h) \in R^{(p-q)\times(p-q)}$

- complicated proof;
 - eigenvalues can diverge at any rate or converge to any number
 - can become close to each other or close to 0 as $n \to \infty$

• We apply this result with

$$W_{F} = (E_{F}Z_{i}Z_{i}')^{1/2}, \widehat{W}_{n} = (n^{-1}\sum Z_{i}Z_{i}')^{1/2},$$
$$U_{F} = \Omega(\beta_{0})^{-1/2}, \widehat{U}_{n} = \left(\frac{\overline{Y}'M_{Z}\overline{Y}}{n-k}\right)^{-1/2},$$
$$D_{F} = (\Pi_{W}\gamma, \Pi_{W}), \widehat{D}_{n} = (Z'Z)^{-1}Z'\overline{Y}$$

to obtain the joint limiting distribution of all eigenvalues

Joint asymptotic dist'n of eigenvalues

• Recall: test statistic and critical value are functions of $p = \mathbf{1} + m_W$ roots of

$$\left|\widehat{\kappa}I_{1+m_W} - \left(\frac{\overline{Y}'M_Z\overline{Y}}{n-k}\right)^{-1/2} (\overline{Y}'P_Z\overline{Y}) \left(\frac{\overline{Y}'M_Z\overline{Y}}{n-k}\right)^{-1/2}\right| = 0$$

• To obtain joint limiting distribution of eigenvalues, we use general result in AG about joint limiting distribution of eigenvalues of quadratic forms

Results:

• the joint limit depends only on localization parameters $h_{1,1},...,h_{1,m_W}$

- asymptotic cases replicate finite sample, normal, fixed IV, known variance matrix setup
- together with above proposition, correct asymptotic size then follows from correct finite sample size

Statistical Lemma:

Recall that $\Xi \sim N\left(\mathcal{M}, I_{k(m_W+1)}\right)$, with M nonstochastic and $\rho\left(\mathcal{M}\right) \leq m_W$ under the null.

Partition Ξ as

$$\Xi = \begin{pmatrix} \Xi_{11} & \Xi_{12} \\ \Xi_{21} & \Xi_{22} \end{pmatrix},$$

where Ξ_{11} is $(k - m_W + 1) \times 2$, Ξ_{12} is $(k - m_W + 1) \times (m_W - 1)$, Ξ_{21} is $(m_W - 1) \times 2$, and Ξ_{22} is $(m_W - 1) \times (m_W - 1)$.

Partition M conformably with Ξ . Let μ_i , $i = 1, ..., m_W$, denote the possibly nonzero singular values of M. We can set

$$\mathcal{M} = \begin{pmatrix} \mathcal{M}_{11} & \mathbf{0}^{k-m_W+1 \times m_W-1} \\ \mathbf{0}^{m_W-1 \times 2} & \mathcal{M}_{22} \end{pmatrix},$$

where

$$\mathcal{M}_{11} := \begin{pmatrix} \mathbf{0}^{k-m_W \times 1} & \mathbf{0}^{k-m_W \times 1} \\ \mathbf{0} & \mu_{m_W} \end{pmatrix}, \text{ and } \mathcal{M}_{22} := diag\left(\mu_1, \dots \mu_{m_W-1}\right).$$

Finally, let

$$O := \begin{pmatrix} \left(I_2 + \Xi_{21}' \Xi_{22}^{-1} \Xi_{22}^{-1} \Xi_{21}\right)^{-1/2} & \Xi_{21}' \Xi_{22}^{-1} \left(I_{m_W-1} + \Xi_{22}^{-1} \Xi_{21} \Xi_{21}' \Xi_{21}$$

and

$$\tilde{M}_{11} := \left(\mathcal{M}_{11} - \mathcal{M}_{12} \Xi_{22}^{-1} \Xi_{21}\right) \left(I_2 + \Xi_{21}' \Xi_{22}^{-1} \Xi_{21}^{-1} \Xi_{21}\right)^{-1/2} = M_{11} \left(I_2 + \Xi_{21}' \Xi_{22}^{-1} \Xi_{21}^{-1} \Xi_{21}\right)^{-1/2}.$$

Theorem 1 Suppose that Assumption A holds with $m_W > 1$. Denote by $\tilde{\Xi}_{11} \in \Re^{k-m_W+1\times 2}$ the upper left submatrix of $\tilde{\Xi} := \Xi O \in \Re^{k\times p}$. Then,

under the null hypothesis $H_0: \beta = \beta_0$

$$\tilde{\Xi}_{11}'\tilde{\Xi}_{11}|O \sim \mathcal{W}_2\left(k - m_W + 1, I_2, \tilde{\mathcal{M}}_{11}'\tilde{\mathcal{M}}_{11}
ight),$$

where $ho(\tilde{M}_{11}'\tilde{M}_{11}) \leq 1.$