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Overview

• Robust, powerful, computationally fast inference on a slope coeffi -
cient(s) in a linear IV regression

• "Robust" means uniform control of null rejection probability over all "em-
pirically relevant" parameter constellations

• "Weak instruments"

— pervasive in applied research (Angrist and Krueger, 1991)

— adverse effect on inference and estimation (Phillips, 1989; Dufour,
1997; Staiger and Stock, 1997): classical tests overreject true null
hypothesis; estimators are biased.



• FIRST assume cond homoskedasticity (Guggenberger, Mavroeidis, and
Kleibergen, 2019 QE; GKM from now on)

— THEN: relax to general Kronecker-Product structure (KPS)

— FINALLY: allow for arbitrary forms of cond heteroskedasticity

• Large literature on "robust inference" for the full parameter vector (Kleiber-
gen, 2002, Moreira, 2003/9)

Here: Consider robust subvector inference in the linear IV model

Relevant!

• Regarding power



Cond Homoskedastic case

We focus on the Anderson and Rubin (AR, 1949) subvector test sta-
tistic

— "History of critical values":

— Projection of full vector AR test (Dufour and Taamouti, 2005)

— Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, GKMC) pro-
vide power improvement:

Using χ2
k−mW ,1−α as critical value, rather than χ

2
k,1−α still controls

asymptotic size

"Worst case" (largest quantile) occurs under strong identification

— In GKM (2019) consider a data-dependent critical value that adapts
to strength of identification



— GKM has uniformly higher power than method in GKMC; Implication:
Test in GKMC is "inadmissible"

Cond Heteroskedastic case: use KPS AR subvector test or fully robust
test depending on outcome of a "pretest" for KPS; suggested test has non-
smaller power than certain other robust tests suggested in recent literature

• One additional main contribution : computational ease

• Two related projects: namely GKM (2020) about tests for KPS and GMZ
(2020) about optimality properties of a new CLR test



Presentation

• Introduction: X

• finite sample case (cond homoskedasticity)

a) mW = 1 : motivation, correct size, uniform power improvement over
GKMC

b) mW > 1 : correct size, uniform power improvement

• asymptotic case:

a) cond homoskedasticity



b) general Kronecker-Product structure

c) general case (arbitrary forms of cond heteroskedasticity)



Model and Objective (finite sample, cond homosk. case)

y = Y β +Wγ + ε,

Y = ZΠY + VY ,

W = ZΠW + VW ,

y ∈ Rn, Y ∈ Rn×mY (end or ex),W ∈ Rn×mW (end), Z ∈ Rn×k (IVs)

• Reduced form:

(y ... Y ... W ) = Z (ΠY
... ΠW )

(
β

γ
...
ImY

0
...

0

ImW

)
+ (vy

... VY
... VW )︸ ︷︷ ︸

V

,

where vy := ε+ VY β + VWγ.

• Objective: test

H0 : β = β0 versus H1 : β 6= β0.



s.t. size bounded by nominal size & "good" power

Parameter space:

1. Z ∈ Rn×k fixed, and Z′Z > 0 k × k matrix.

2. The reduced form error satisfies:

Vi ∼ i.i.d. N (0,Ω) , i = 1, ..., n,

for some Ω ∈ R(m+1)×(m+1) s.t. the variance matrix of (Y 0i, V
′
Wi)
′ for

Y 0i = yi − Y ′i β0 = W ′iγ + εi, namely

Ω (β0) =

 1 0
−β0 0

0 ImW


′

Ω

 1 0
−β0 0

0 ImW


is known and positive definite.



• Note: no restrictions on reduced form parameters ΠY and ΠW → allow
for weak IV



Full vector inference

H0 : β = β0, γ = γ0 vs H1 : not H0

• Robust methods: e.g. AR (Anderson and Rubin, 1949), LM, and CLR
tests, see Kleibergen (2002), Moreira (2003, 2009).

• Optimality properties: Andrews, Moreira, and Stock (2006), Andrews,
Marmer, and Yu (2019), and Chernozhukov, Hansen, and Jansson (2009)

• Also: Guggenberger, Mavroeidis, Zhang (2020, working paper); derives
optimality results of a new CLR test in a linear IV model with KPS



Subvector procedures

• Projection: "inf" test statistic over parameter not under test, same critical
value → "computationally hard" and "uninformative"

• Bonferroni and related techniques: Staiger and Stock (1997), Chaud-
huri and Zivot (2011), Zhu (2015), Andrews (2017), McCloskey (2018),
Wang and Tchatoka (2018) ...; often computationally hard, power ranking
with projection unclear

• Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Re-
quires strong identification of parameters not under test.



• GMM models: e.g. Andrews and Cheng (2012), Andrews, I. and Miku-
sheva (2016), Andrews (2017), Han and McCloskey (2019)

• Models defined by moment inequalities: e.g. Gafarov (2016), Bugni,
Canay, and Shi (2017), and Kaido, Molinari, and Stoye (2019)



The Anderson and Rubin (1949) test

• AR test stat for full vector hypothesis

H0 : β = β0, γ = γ0 vs H1 : not H0

• AR statistic exploits EZiεi = 0

• AR test stat:

ARn(β0, γ0) =
(y − Y β0 −Wγ0)′PZ(y − Y β0 −Wγ0)(

1 ... − β′0
... − γ′0

)
Ω
(

1 ... − β′0
... − γ′0

)′

• AR stat is distri. as χ2
k under null hypothesis; critical value χ

2
k,1−α



• Subvector AR statistic for testing H0 is given by

ARn (β0) = min
γ∈RmW

(Y 0 −Wγ)′PZ(Y 0 −Wγ)(
1 ... − β′0

... − γ′
)

Ω
(
1 ... − β′0

... − γ′
),

where again Y 0 = y − Y β0.

• Alternative representation (using κmin(A) = minx,||x||=1 x
′Ax):

ARn (β0) = κ̂p,

where κ̂i for i = 1, ..., p = 1 +mW are roots of characteristic polynomial
in κ ∣∣∣∣κIp − Ω (β0)−1/2

(
Y 0

... W
)′
PZ

(
Y 0

... W
)

Ω (β0)−1/2
∣∣∣∣ = 0,

ordered non-increasingly



• For par space above, the roots κ̂i solve

0 =
∣∣∣κ̂iI1+mW

− Ξ′Ξ
∣∣∣ , i = 1, ..., p = 1 +mW ,

where

Ξ ∼ N (M, Ik ⊗ Ip) ,

and M is a k × p matrix.

• Under H0, the noncentrality matrix becomes M =
(

0k,ΘW

)
, i.e. rank

deficient, where

ΘW =
(
Z′Z

)1/2
ΠWΣ

−1/2
VWVW .ε

,

which measures the strength of the IVs



• Summarizing: AR statistic is the minimum eigenvalue of a non-central
Wishart matrix

Under H0 the p× p matrix

Ξ′Ξ ∼W
(
k, Ip,M

′M
)
,

has non-central Wishart with noncentrality matrix

M ′M =

(
0 0
0 Θ′WΘW

)
and

ARn (β0) = κmin(Ξ′Ξ)

• The distribution of the eigenvalues of a noncentral Wishart matrix only
depends on the eigenvalues of the noncentrality matrix M ′M .



• Hence, distribution of κ̂i only depends on the eigenvalues of Θ′WΘW ,

κi, say i = 1, . . . ,mW .

• When mW = 1, κ1 = Θ′WΘW is a measure of strength of identification
of γ; one dimensional nuisance parameter

Theorem: (Perlman and Olkin, 1980). Suppose mW = 1. Then, under the
null hypothesis H0 : β = β0, the distribution function of the subvector AR
statistic, ARn (β0) , is monotonically decreasing in the parameter κ1.



Figure 1: The cdf of the subset AR statistic with k = 3 instruments, for
different values of κ1 = 5, 10, 15, 100



New critical value for subvector Anderson and Rubin test: mW = 1

• Relevance: If we knew κ1 we could implement the subvector AR test with
a smaller critical value than χ2

k−mW ,1−α which is the critical value in the
case when κ1 is "large".

• Muirhead (1978): Under null, when κ1 "is large", the larger root κ̂1 (which
measures strength of identification) is a suffi cient statistic for κ1

• More precisely: the conditional density of ARn (β0) = κ̂2 given κ̂1 can
be approximated by

fκ̂2|κ̂1
(x) ∼ fχ2

k−1
(x) (κ̂1 − x)1/2 g (κ̂1) ,



where fχ2
k−1

is the density of a χ2
k−1 and g is a function that does not

depend on κ1.

• Analytical formula for g; confluent hypergeometric function.

• The new critical value for the subvector AR-test at significance level 1−α
is given by

1− α quantile of (approximation of ARn given κ̂1)

• Denote cv by

c1−α(κ̂1, k −mW )

Depends only on α, k −mW , and κ̂1



• Conditional quantiles can be computed by numerical integration

• Conditional critical values can be tabulated→ implementation of new test
is trivial and fast

• They are increasing in κ̂1 and converging to quantiles of χ2
k−1

• We find, by simulations over fine grid of values of κ1, that new test

1(ARn (β0) > c1−α(κ̂1, k −mW ))

controls size

• It improves on the GKMC procedure in terms of power



• Theorem (GKM): Suppose mW = 1. The new conditional subvector
Anderson Rubin test has correct size under the assumptions above.

• Proof partly based on simulations; Verified for e.g. α ∈ {1%, 5%, 10%}
and k −mW ∈ {1, ..., 20} .

• Summary mW = 1: the cond’l test rejects when

κ̂2 > c1−α(κ̂1, k − 1),

where (κ̂1, κ̂2) are the eigenvalues of 2×2matrix Ξ′Ξ ∼W
(
k, Ip,M ′M

)
;

Under the null M ′M is of rank 1; test has size α
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Table of conditional critical values cv=c1−α(κ̂1, k −mW )

α = 5%, k −mW = 4
κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv
0.22 0.2 2.00 1.8 3.92 3.4 6.10 5.0 8.95 6.6 14.46 8.2
0.44 0.4 2.23 2.0 4.17 3.6 6.41 5.2 9.40 6.8 15.88 8.4
0.65 0.6 2.46 2.2 4.43 3.8 6.73 5.4 9.89 7.0 17.85 8.6
0.87 0.8 2.70 2.4 4.69 4.0 7.05 5.6 10.42 7.2 20.89 8.8
1.10 1.0 2.94 2.6 4.96 4.2 7.39 5.8 11.01 7.4 26.42 9.0
1.32 1.2 3.18 2.8 5.24 4.4 7.75 6.0 11.68 7.6 39.82 9.2
1.54 1.4 3.42 3.0 5.52 4.6 8.13 6.2 12.44 7.8 114.76 9.4
1.77 1.6 3.67 3.2 5.81 4.8 8.52 6.4 13.35 8.0 +.Inf 9.5

* For simplicity of implementation we suggest linear interpolation of tabulated
cvs; we verify resulting test has correct size
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k−1 (blue) critical values, as function of κ1.



Extension to mW > 1

We define a new subvector Anderson Rubin test that rejects when

ARn (β0) > c1−α(κmax

(
Ξ′Ξ

)
, k −mW ).

Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Theorem (GKM): The test above has i) correct size and ii) has uniformly
larger power than the test in GKMC.



Asymptotic case: a) cond homoskedasticity (GKM)

• Define parameter space FHOM under the null hypothesis H0 : β = β0.

Let Ui := (εi + V ′W,iγ, V
′
W,i)

′ and F distribution of (Ui, VY i, Zi).

FHOM = {(γ,ΠW ,ΠY , F ) s.t.

γ ∈ RmW ,ΠW ∈ Rk×mW ,ΠY ∈ Rk×mY ,

EF (||Ti||2+δ) ≤M, for Ti ∈ {vec(ZiUi), Zi, Ui},
EF (Zi(εi, V

′
Wi, V

′
Y i)) = 0,

EF (vec(ZiU
′
i)(vec(ZiU

′
i))′) = (EF (UiU

′
i)⊗ EF (ZiZ

′
i)),

κmin(A) ≥ δ for A ∈ {EF (ZiZ
′
i), EF (UiU

′
i)}}

for some δ > 0, M <∞

• This particular KPS is slightly less restrictive than cond homoskedasticity

EF (UiU
′
i|Zi) does not depend on Zi



• Note: no restriction is imposed on the variance matrix of vec(ZiV ′Y i)



• subvector AR stat equals smallest solution κ̂p (slight abuse of notation)
of ∣∣∣∣∣∣κ̂I1+mW

− (
Y
′
MZY

n− k
)−1/2(Y

′
PZY )(

Y
′
MZY

n− k
)−1/2

∣∣∣∣∣∣ = 0,

where

Y := (y − Y β0
... W ) ∈ Rn×(1+mW )

• Note: Same as in finite sample case with Ω (β0) replaced by Y
′
MZY
n−k .

• critical value is again

c1−α(κ̂1, k −mW )

where κ̂1 is largest solution of above eqn.



• Theorem (GKM): The new subvector AR test has correct asymptotic size
for parameter space FHOM .

• Proof based on Andrews and Guggenberger (2017) and Andrews, Cheng,
and Guggenberger (2020, JoE, forthcoming)

• As part of the proof relies on the corresponding finite sample result, this
proof too is partly based on simulations.



Asymptotic case: b) general Kronecker Product Structure

• For Ui := (εi + V ′W,iγ, V
′
W,i)

′, p := 1 +mW , and m := mY +mW let

FKP = {(γ,ΠW ,ΠY , F ) : γ ∈ RmW ,ΠW ∈ Rk×mW ,ΠY ∈ Rk×mY ,

EF (||Ti||2+δ1) ≤ B, for Ti ∈ {vec(ZiU ′i), vec(ZiZ′i)},
EF (ZiV

′
i ) = 0k×(m+1), EF (vec(ZiU

′
i)(vec(ZiU

′
i))′) = G1⊗G2,

κmin(A) ≥ δ2 for A ∈ {EF
(
ZiZ

′
i

)
, G1, G2}}

for pd G1 ∈ Rp×p (whose upper left element is normalized to 1) and
G2 ∈ Rk×k and δ1, δ2 > 0, B <∞

• Covers cond homoskedasticity, but also cases of cond heteroskedasticity;
relevant enlargement of parameter space!



Example. Take (ε̃i, Ṽ
′
Wi)
′ ∈ Rp i.i.d. zero mean with pd variance matrix,

independent of Zi, and

(εi, V
′
Wi)
′ := f(Zi)(ε̃i, Ṽ

′
Wi)
′

for some scalar valued function f of Z, e.g. f(Zi) = ||Zi||/k1/2. Then

EF (vec(ZiU
′
i)(vec(ZiU

′
i))′)

=EF
(
UiU

′
i ⊗ ZiZ′i

)
=EF

(
(εi + V ′W,iγ, V

′
W,i)

′(εi + V ′W,iγ, V
′
W,i)⊗ ZiZ

′
i

)
=EF

(
(ε̃i + Ṽ ′W,iγ, Ṽ

′
W,i)

′(ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)

)
⊗ EF

(
f(Zi)

2ZiZ
′
i

)
has KP structure even though

EF (UiU
′
i|Zi) = f(Zi)

2EF (ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)

′(ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)

depends on Zi.



• Modified AR subvector statistic. Estimate EF (UiU
′
i ⊗ ZiZ′i) by

R̂n := n−1
n∑
i=1

fif
′
i ∈ Rkp×kp, where

fi := ((MZ(y − Y β0))i, (MZW )′i)
′ ⊗ Zi ∈ Rkp.

• Let

(Ĝ1, Ĝ2) = arg min ||G1 ⊗G2 − R̂n||F ,

where the minimum is taken over (G1, G2) for G1 ∈ Rp×p, G2 ∈ Rk×k
being pd, symmetric matrices, normalized such that the upper left element
of G1 equals 1. Estimators are unique and given in closed form.

• The subvector AR statistic, ARKP,n(β0) is defined as the smallest root
κ̂pn of the roots κ̂in, i = 1, ..., p (ordered nonincreasingly) of the charac-



teristic polynomial∣∣∣∣κ̂Ip − n−1Ĝ
−1/2
1

(
Y 0,W

)′
ZĜ−1

2 Z′
(
Y 0,W

)
Ĝ
−1/2
1

∣∣∣∣ = 0.

• Note: Relative to previous definition,

Ĝ1 replaces
Y
′
MZY
n−k and Ĝ2 replaces

Z′Z
n .

• The conditional subvector ARKP test, ϕKP say, rejects H0 at nominal
size α if

ARKP,n(β0) > c1−α(κ̂1n, k −mW ),

where c1−α (·, ·) is defined as above.



Theorem: The conditional subvector ARKP test ϕKP implemented at nomi-
nal size α has asymptotic size, i.e.

lim sup
n→∞

sup
(γ,ΠW ,ΠY ,F )∈FKP

P(β0,γ,ΠW ,ΠY ,F )(ARKP,n(β0) > c1−α(κ̂1n, k−mW ))

equal to α.

• In order to make the procedure invariant to transformations Zi → AZi for
nonrandom and nonsingular A ∈ Rk×k we implement the above procedure
replacing Zi by (Z′Z)−1/2Zi.

• Same disclaimer as above.



Asymptotic case: c) General forms of cond heteroskedasticity

• Let FHet be the parameter space FKP above without the condition RF =

G1 ⊗G2, where

RF := EF (vec(ZiU
′
i)(vec(ZiU

′
i))′)

• There are tests that have correct asymptotic size for that parameter space,
see e.g. Andrews (2017); the objective is to improve on the power.

• Idea: use ϕKP if data suggests that KPS holds and use a test robust to
general forms of cond heteroskedasticity, ϕRob say, otherwise



• Implementation: For some sequence of constants cn such that

cn →∞ and cn/n1/2 → 0

define the new suggested test ϕcn by

I(K̂n > cn)ϕRob + I(K̂n ≤ cn)ϕKP ,

where

K̂n := n1/2||R̂−1/2
n (Ĝ1 ⊗ Ĝ2 − R̂n)R̂

−1/2
n ||F

• Note: we use transformation by R̂−1/2
n to make procedure invariant against

nonsingular transformations of the IV vector

• "Pretesting" is akin to Andrews and Soares (2010); and used in many
papers since



• Asymptotic size?

• Assume ϕRob is a test has has correct asymptotic size for the parameter
space FHet and satisfies Pλn(ϕRob ≤ ϕKP ) → 1 where λn is a "local
to KPS" sequence

• Under the above assumptions, ϕcn has correct asymptotic size

• Reasons:

— Under sequences ("far from KPS") for which

n1/2 min
G1,G2

||R−1/2
Fn

(G1 ⊗G2 −RFn)R
−1/2
Fn
|| → ∞



one can show that I(K̂n > cn) = 1 wpa1. Thus ϕRob is chosen wpa1
which has limiting null rejection probability bounded by α

— Under sequences ("local to KPS") for which

n1/2 min
G1,G2

||R−1/2
Fn

(G1 ⊗G2 −RFn)R
−1/2
Fn
|| = O(1)

ϕKP has limiting null rejection probability bounded by α and given
Pλn(ϕRob ≤ ϕKP )→ 1 the same is true for ϕcn

• We take ϕRob as a certain implementation of an AR/AR type test in
Andrews (2017)

• We currently do finite sample experiments to determine good choices for
cn and compare power/size of new test to the ones in Andrews (2017).



• Alternatively, one could implement the test by GKM (2020) for KPS in
the first stage.

• The role of cn would then be played by β = βn, the pretest nominal size.

• We can let βn = c/n1/2 and still prove correct asymptotic size of the two
step procedure.

• Currently do finite sample experiments to determine which "pretest" per-
forms better

THE END



Proof of correct size in finite sample case and general mW

Lemma: Under the nullH0 : β = β0, there exists a random matrix O ∈ O(p),

such that for

Ξ̃ := ΞO ∈ Rk×p, and its upper left submatrix Ξ̃11 ∈ Rk−mW+1×2

Ξ̃′11Ξ̃11 is a non-central Wishart 2 × 2 matrix of order k −mW + 1 (cond’l
on O), whose noncentrality matrix, M̃ ′1M̃1 say, is of rank 1;

Proof of Theorem:

(i) Note that

ARn (β0) = κmin

(
Ξ′Ξ

)
= κmin

(
Ξ̃′Ξ̃

)
≤ κmin

(
Ξ̃′11Ξ̃11

)
≤ κmax

(
Ξ̃′11Ξ̃11

)
≤ κmax

(
Ξ̃′Ξ̃

)
= κmax

(
Ξ′Ξ

)
(1)



by inclusion principle, and thus

P (ARn (β0) > c1−α(κmax

(
Ξ′Ξ

)
, k −mW ))

≤ P (κmin

(
Ξ̃′11Ξ̃11

)
> c1−α(κmax

(
Ξ̃′11Ξ̃11

)
, k −mW ))

= P (κ2

(
Ξ̃′11Ξ̃11

)
> c1−α(κ1

(
Ξ̃′11Ξ̃11

)
, k −mW ))

≤ α,

where first inequality follows from (1) and last inequality from correct size for
mW = 1 (by conditioning on O) and the lemma

Recall summary when mW = 1: new test rejects when

κ̂2 > c1−α(κ̂1, k − 1)

where (κ̂1, κ̂2) are the eigenvalues of Ξ′Ξ ∼W
(
k, I2,M

′M
)
and M ′M is of

rank 1 under the null



(ii) new conditional test is uniformly more powerful than test in GKMC (because
c1−α(·, k −mW )) is increasing and converging to χ2

k−mW ,1−α as argument
goes to infinity), i.e. the test in GKMC is inadmissible



Power analysis of tests based on (κ̂1, ..., κ̂p)

• For A = E
[
Z′ (y − Y β0

... W )
]
∈ Rk×p, consider

H ′0 : ρ (A) ≤ mW versus H ′1 : ρ (A) = p = mW + 1

• H0 : β = β0 implies H
′
0 but the converse is not true:

— H ′0 holds iff [ρ (ΠW ) < mW or ΠY (β − β0) ∈ span(ΠW )]

• UnderH ′0, (κ̂1, ..., κ̂p) are distributed as eigenvalues of WishartW
(
k, Ip,M ′M

)
with rank deficient noncentrality matrix - a distribution that appears also
under H0



• Thus, every test ϕ(κ̂1, ..., κ̂p) ∈ [0, 1] that has size α under H0 must
also have size α under H ′0 - so cannot have power exceeding size under
alternatives H ′0\H0.

• In other words, size α tests ϕ(κ̂1, ..., κ̂p) underH0 can only have nontrivial
power under alternatives ρ (A) = p.

• We use this insight to derive a power envelope for tests of H ′0 of the form
ϕ (κ̂1, ..., κ̂p) .



Power bounds

• Consider only the case mW = 1.

• Can write hyp equivalently as: H ′0 : κ2 = 0, κ1 ≥ κ2 against H ′1 :

κ2 > 0, κ1 ≥ κ2.

• Obtain point-optimal power bounds using approximately least favorable
distribution ΛLF over nuisance parameter κ1 based on algorithm in Elliott,
Müller, and Watson (2015)
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2
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and bound at κ1 = κ2 (right) for k = 5. Computed using 10000 MC replications.



• Little scope for power improvement over proposed test. But not no scope
at all...:

e.g. Refinement: For the case k = 5, mW = 1, and α = 5%, let ϕadj be
the test that uses the critical values in Table above where the smallest 8 critical
values are divided by 5. Then this test still has correct size.



Details on proof of asymptotic size result

• We use results in Andrews, Cheng, and Guggenberger (2019, JoE, forth-
coming) that show that is enough to verify that the limiting null rejection
probability of the test is bounded by α under certain drifting sequences
λn,h

Specification of λ for subvector Anderson and Rubin test

• Given F let

WF := (EFZiZ
′
i)

1/2 and UF := Ω(β0)−1/2.



• Consider a singular value decomposition

CFΛFB
′
F

of

WF (ΠWγ,ΠW )UF

• i.e. BF denote a p× p orthogonal matrix of eigenvectors of

U ′F (ΠWγ,ΠW )′W ′FWF (ΠWγ,ΠW )UF

and CF denote a k × k orthogonal matrix of eigenvectors of

WF (ΠWγ,ΠW )UFU
′
F (ΠWγ,ΠW )′W ′F

• ΛF denotes a k × p diagonal matrix with singular values (τ1F , ..., τpF )

on diagonal, ordered nonincreasingly



• Note τpF = 0



• Define the elements of λF to be

λ1,F : = (τ1F , ..., τpF )′ ∈ Rp,
λ2,F : = BF ∈ Rp×p,
λ3,F : = CF ∈ Rk×k,
λ4,F : = WF ∈ Rk×k,
λ5,F : = UF ∈ Rp×p,
λ6,F : = F,

λF : = (λ1,F , ..., λ9,F ).

• A sequence λn,h denotes a sequence λFn such that (n1/2λ1,Fn, ..., λ5,Fn)→
h = (h1, ..., h5)

• Let q = qh ∈ {0, ..., p− 1} be such that

h1,j =∞ for 1 ≤ j ≤ qh and h1,j <∞ for qh + 1 ≤ j ≤ p− 1



• Roughly speaking, need to compute asy null rej probs under seq’s with (i)
strong ident’n,(ii) semi-strong ident’n, (iii) std weak ident’n (all parameters
weakly ident’d) & (iv) nonstd weak ident’n

• strong identification: limn→∞ τmW ,Fn > 0

• semi-strong ident’n: limn→∞ τmW ,Fn = 0 & limn→∞ n1/2τmW ,Fn =

∞

• weak ident’n: limn→∞ n1/2τmW ,Fn <∞

— standard (of all parameters): limn→∞ n1/2τ1,Fn < ∞ as in Staiger
& Stock (1997)

— nonstandard: limn→∞ n1/2τmW ,Fn < ∞ & limn→∞ n1/2τ1,Fn =

∞ includes some weakly/some strongly ident’d parameters, as in Stock
& Wright (2000); also includes joint weak ident’n



Andrews and Guggenberger (2017): Limit distribution of eigenvalues of
quadratic forms

• Consider a singular value decomposition CFΛFB
′
F of WFDFUF

• Define λF , h, λn,h... as above

Let κ̂jn ∀j = 1, ..., p denote jth eigenval of

nÛ ′nD̂
′
nŴ

′
nŴnD̂nÛn,



where under λn,h

n1/2(D̂n −DFn) → dDh ∈ Rk×p,
Ŵn −WFn → p0k×k,

Ûn − UFn → p0p×p,

WFn → h4, UFn → h5

with h4, h5 nonsingular

Theorem (AG): under {λn,h : n ≥ 1},

(a) κ̂jn →p ∞ for all j ≤ q

(b) vector of smallest p−q eigenvals of nÛ ′nD̂′nŴ ′nŴnD̂nÛn, i.e., (κ̂(q+1)n, ..., κ̂pn)′,
converges in dist’n to p− q vector of eigenvals of random matrixM(h,Dh) ∈
R(p−q)×(p−q)



• complicated proof;
— eigenvalues can diverge at any rate or converge to any number
— can become close to each other or close to 0 as n→∞



• We apply this result with

WF = (EFZiZ
′
i)

1/2, Ŵn = (n−1∑ZiZ
′
i)

1/2,

UF = Ω(β0)−1/2, Ûn =

Y ′MZY

n− k

−1/2

,

DF = (ΠWγ,ΠW ), D̂n = (Z′Z)−1Z′Y

to obtain the joint limiting distribution of all eigenvalues



Joint asymptotic dist’n of eigenvalues

• Recall: test statistic and critical value are functions of p = 1 +mW roots
of ∣∣∣∣∣∣κ̂I1+mW

− (
Y
′
MZY

n− k
)−1/2(Y

′
PZY )(

Y
′
MZY

n− k
)−1/2

∣∣∣∣∣∣ = 0

• To obtain joint limiting distribution of eigenvalues, we use general result
in AG about joint limiting distribution of eigenvalues of quadratic forms

Results:

• the joint limit depends only on localization parameters h1,1, ..., h1,mW



• asymptotic cases replicate finite sample, normal, fixed IV, known variance
matrix setup

• together with above proposition, correct asymptotic size then follows from
correct finite sample size



Statistical Lemma:

Recall that Ξ ∼ N
(
M, Ik(mW+1)

)
, with M nonstochastic and ρ (M) ≤

mW under the null.

Partition Ξ as

Ξ =

(
Ξ11 Ξ12
Ξ21 Ξ22

)
,

where Ξ11 is (k −mW + 1) × 2, Ξ12 is (k −mW + 1) × (mW − 1) , Ξ21

is (mW − 1)× 2, and Ξ22 is (mW − 1)× (mW − 1) .

Partition M conformably with Ξ. Let µi, i = 1, ...,mW , denote the possibly
nonzero singular values of M . We can set

M =

(
M11 0k−mW+1×mW−1

0mW−1×2 M22

)
,



where

M11 :=

(
0k−mW×1 0k−mW×1

0 µmW

)
, andM22 := diag

(
µ1, ...µmW−1

)
.

Finally, let

O :=


(
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2
Ξ′21Ξ−1′

22

(
ImW−1 + Ξ−1

22 Ξ21Ξ′21Ξ−1′
22

)−1/2

−Ξ−1
22 Ξ21

(
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2 (
ImW−1 + Ξ−1

22 Ξ21Ξ′21Ξ−1′
22

)−1/2

 ∈ Rp×p
and

M̃11 :=
(
M11 −M12Ξ−1

22 Ξ21

) (
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2

= M11

(
I2 + Ξ′21Ξ−1′

22 Ξ−1
22 Ξ21

)−1/2
.

Theorem 1 Suppose that Assumption A holds with mW > 1. Denote by
Ξ̃11 ∈ <k−mW+1×2 the upper left submatrix of Ξ̃ := ΞO ∈ <k×p. Then,



under the null hypothesis H0 : β = β0

Ξ̃′11Ξ̃11|O ∼ W2

(
k −mW + 1, I2,M̃′11M̃11

)
,

where ρ(M̃ ′11M̃11) ≤ 1.


