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Abstract

One of the most important empirical findings in microeconometrics is the pervasive-

ness of heterogeneity in economic behaviour (cf. Heckman 2001). This paper shows that

distribution functions and quantiles of the nonparametric unobserved heterogeneity have

an infinite effi ciency bound in many structural economic models of interest. The paper

presents a novel and relatively simple check of this fact. The usefulness of the theory is

demonstrated by showing irregular identification in several relevant examples in economics,

including, among others, the proportion of individuals with severe long term unemploy-

ment duration, Average Marginal Effects (AME) in a correlated random coeffi cient model,

bounds on average equivalent variation under endogeneity, and the distribution and quan-

tiles of random coeffi cients in linear, binary and the semiparametric Mixed Logit models.

In particular, it is shown that the commonly used monotonicity assumption is necessary

for regular identification of the AME in a model with heterogenous effects.
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1 Introduction

A tenet in empirical microeconometrics research is the pervasiveness of heterogeneity in behav-

iour of otherwise observationally equivalent individuals (cf. Heckman 2001). This paper shows

that, for a large class of structural economic models, regular identification of functionals of

nonparametric unobserved heterogeneity (UH), that is, identification of these functionals with a

finite effi ciency bound, implies certain necessary smoothness conditions on the functional, lead-

ing to a novel and practically simple check for regularity (or lack thereof). In particular, this

paper uses these implications to show that cumulative distribution functions (CDFs) and quan-

tiles of UH often have infinite effi ciency bounds in many empirically relevant economic models

with nonparametric UH. These results have important practical implications, as these parame-

ters are relevant for policy analysis, and they explain why any inferences on such parameters are

expected to be unstable in empirical work. In particular, if a parameter is irregularly identified,

then no regular estimator with a parametric rate of convergence exists (see Chamberlain 1986).

The parameters (functionals) we consider are of interest in their own. For example, labour

economists are interested in the proportion of individuals at risk of severe long term unemploy-

ment, and more generally, social scientists are interested in evaluating the effects of treatments

and policy interventions (e.g. average marginal effects and average signs). The functionals

that we entertain, such as CDFs and quantiles of UH, are also used as inputs in subsequent

counterfactual exercises. Our research limits the kind of inferences that are attainable on these

parameters by any method in models where UH is nonparametric.

These observations are applicable to a wide class of models with nonparametric UH. We

consider first continuous mixtures, which have been commonly employed as a modeling device to

account for UH in a variety of economic settings ranging from labour to industrial organization;

see Compiani and Kitamura (2016) for a recent review. The canonical example is a tightly

specified structural parametric model that is made flexible by allowing all (or a subset) of

parameters to be individual specific, thereby accounting for UH. We show that if the mapping

from the individual specific parameters to the conditional likelihood is smooth, then there will

be many functionals of UH that will not be regularly identified. Heuristically, smoothness of the

conditional likelihood translates into a multicollinearity problem, as we further explain below.

There are important economic applications that fall under this setting, see, e.g., Heckman and

Singer (1984a, 1984b) for the study of unemployment duration. We illustrate the usefulness of

these results in the context of duration data by establishing an infinite effi ciency bound for the

distribution and quantiles of UH in the structural model of unemployment duration with two

spells and nonparametric UH recently proposed by Alvarez, Borovicková and Shimer (2016).

Duration models with nonparametric UH are often specified with conditional likelihoods that

are very smooth as a function of UH (see, e.g., mixed proportional hazard models). The results

on the model in Alvarez et al. (2016) are thus illustrative of a wide class of problems giving rise
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to “smooth”models for which our impossibility results apply.

Extending the effi ciency bound results from “smooth”models to Random Coeffi cients (RC)

models poses some significant technical challenges, because these models have discontinuous

conditional likelihoods given UH. The most interesting result we provide is for the linear RC

model, which forms the basis for the irregular identification of the Average Marginal Effect

(AME) and the proportion of individuals with a positive marginal effect in a correlated RC

model. We show that the well-known monotonicity assumption of first stages is necessary for

the regular identification of the AME with nonparametric UH. These results are expected to

hold in more complex models, such as simultaneous equation models, using the same methods

proposed here.

The models treated up to this point are indexed by the distribution of UH, and only by that

distribution. However, a simple and powerful observation of this paper is that our analysis can

be trivially extended to more complex semiparametric models indexed by UH and additional

(possibly infinite-dimensional) parameters. We illustrate this point with several examples, in-

cluding semiparametric mixture models where some parameters are fixed and others are random.

A leading example is the popular RC Logit or Mixed Logit model, which is one of the most

commonly used models in applied choice analysis. This model was introduced by Boyd and

Mellman (1980) and Cardell and Dunbar (1980), and it is widely used in environmental eco-

nomics, industrial economics, marketing, public economics, transportation economics and other

fields. Applying our results to this model we obtain an infinite effi ciency bound for CDFs and

quantiles of the RC. The Mixed Logit example nicely illustrates the simplicity of our method

of proof. This should be contrasted with direct effi ciency bounds calculations, which are the

standard approach in the literature and are particularly challenging for this model (or for any of

the models we consider for that matter). These results have practical implications for proposed

estimators of the Mixed Logit model (see, e.g., Bajari, Fox and Ryan, 2007).

Another example of semiparametric model that we provide is to a bound on average equiva-

lent variation, as in Hausman and Newey (2016). Existing results have focused on regular iden-

tification for this functional, see, e.g., Santos (2011) and Chernozhukov, Escanciano, Ichimura,

Newey, and Robins (2018). When prices are endogenous and the demand is estimated by

nonparametric instrumental variables methods, we show that the bound on average equivalent

variation becomes an irregular functional under mild conditions. Further illustrations demon-

strating the utility of our results in semiparametric settings are gathered in an Appendix and

include a canonical model of infectious diseases with UH and measurement error models with

two measurements identified by means of Kotlarski’s lemma.

What can be done to obtain regular identification of CDFs and quantiles of UH in these

models? We show that functional form assumptions that restrict the conditional likelihood of

observables given heterogeneity do not generally help for the purpose of achieving regularity
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of quantiles and CDFs if UH is still nonparametric and the conditional likelihood is smooth

in UH. Thus, our results show that restricting UH is somewhat necessary to attain finite effi -

ciency bounds for the distribution and quantiles of UH in many of the aforementioned models.

Commonly used strategies in practice, such as the use of parametric distributions for UH or

considering discrete heterogeneity, indeed restore the regular identification of functionals of UH

but they rely on assumptions that can be deemed too strong. Semiparametric restrictions are

preferable, and we find necessary conditions for regular identification under semiparametric re-

strictions on UH, although we recognize that giving general primitive assumptions for regularity

seems diffi cult. Our recommendation for inference on CDFs and quantiles of UH is to use flex-

ible semiparametric specifications such as sieve methods; see, e.g., Shen (1997), Chen (2007),

Bajari, Fox and Ryan (2007), Hu and Schennach (2008), Bester and Hansen (2007), Chen and

Liao (2014), Fox, Kim and Yang (2016) and references therein, coupled with regularization (pe-

nalization) to reduce the high variance of estimates of functionals of UH when the conditional

likelihood is a very smooth function of UH (as in e.g. the Mixed logit model).

The rest of the paper is organized as follows. After a literature review, Section 3 sets notation

and considers the class of continuous mixtures, where the method is most transparent. This

section illustrates the theoretical results in the structural model of Alvarez, Borovicková and

Shimer (2016). Section 4 extends the analysis to several classes of RC models. Section 5 extends

further the analysis to semiparametric models, illustrating the theory with the Mixed Logit

model and the bound on average equivalent variation. Section 6 discusses different strategies,

some of them considered in the literature, to regularize the estimation of CDFs and quantiles of

UH. Section 7 concludes. An Appendix contains proofs of the main results, further results on

nonlinear RC models and further examples.

2 Literature Review

Our paper relates to a number of studies providing suffi cient conditions for nonparametric iden-

tification for the distribution of UH in the aforementioned models. See, among many others,

Elbers and Ridder (1982), Heckman and Singer (1984a, 1984b) and Alvarez, Borovicková and

Shimer (2016) for structural models of unemployment duration, Beran and Hall (1992), Be-

ran, Feuerverger and Hall (1996), and Hoderlein, Klemela and Mammen (2010) for linear RC,

Ichimura and Thompson (1998), Gautier and Kitamura (2013) and Hoderlein and Sherman

(2015) for binary RC, Briesch, Chintagunta and Matzkin (2010) and Fox, Kim, Ryan and Ba-

jari (2012) for RC multinomial choice models, Hoderlein, Holzmann and Meister (2017) for

triangular RC models, Masten (2017) for simultaneous RC models, and Lewbel and Pendakur

(2017) for nonlinear RC models. For a review of nonparametric identification results see Matzkin

(2007, 2013) and Lewbel (2019). What differentiates our paper from these and other related
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studies is our focus on establishing whether identification is regular or not.

Establishing an infinite effi ciency bound for functionals of UH in these models is a priori

a rather challenging task and was much unexplored prior to this paper, with the exception of

the classical deconvolution problem for which rates (e.g. Fan 1991, Dattner et al. 2011) and

information bounds (Trabs 2015) have been derived. Parametric rates of convergence for CDFs,

and even functional weak convergence, have been established in Söhl and Trabs (2012). As

shown in Dattner et al. (2011), the attainability of parametric rates depends on a delicate trade

off between smoothness of the error’s distribution and the smoothness of the parameter space.

Nonparametric rates for CDFs are often obtained when the error’s distribution is unknown, see

e.g. Adusumilli et al. (2020), although presumably, by limiting the smoothness of the error’s

distribution parametric rates might be attainable. Beyond the classical deconvolution not much

is known about effi ciency bounds for CDFs and quantiles of UH in RC and related models.

The standard approach in the literature for obtaining effi ciency bounds consists in charac-

terizing the so-called tangent space of the model, the effi cient score and the Fisher information,

see Newey (1990) for an accessible review of effi ciency bounds and some of the related concepts,

and see, e.g., Chamberlain (1986), Severini and Tripathi (2001) and Khan and Tamer (2010) for

further illustrations. Fisher informations are hard to compute in RC and related models, which

explains the lack of theoretical work on semiparametric effi ciency bounds in these models. Our

method of proof avoids the complications in directly computing the tangent space and the Fisher

information, and it is relatively much simpler to apply. The basic tool is a dominated conver-

gence theorem, with regularity conditions that are easy to check in many models (although not

in all models).

The starting point of our research is a fundamental result by van der Vaart (1991), who

found a necessary condition for regular estimation of a parameter. The main observation and

novel contribution of our paper consists in systematically exploiting the implications that van

der Vaart’s (1991) necessary condition has on the smoothness of certain influence functions.

Prior to our paper, van der Vaart (1991), Groeneboom and Wellner (1992) and Bickel, Klassen,

Ritov and Wellner (1998) have used the necessary condition of van der Vaart (1991) to show

that CDFs are irregularly identified in some specific univariate exponential and uniform mixture

models. See Section 3.2 for a detailed comparison with the irregularity result in van der Vaart

(1991). Relative to this work, our contribution is to derive suffi cient conditions for a general

method of proof, thereby extending the scope of applications to models of economic interest.

In particular, we allow for multidimensional UH, semiparametric models and non-smooth con-

ditional likelihoods such as those that arise with RC models. The general method of proof

and the applicability to RC models are novel to this paper, and have not been studied in the

aforementioned references.

Although not the focus of this paper, a large class of models for which our results are
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applicable are panel data models with fixed effects. Within this setting, Chamberlain (1992)

established regular identification of the AME in a linear RC panel data model, while Arellano and

Bonhomme (2012) showed the identification of the full distribution of UH in a model with limited

serial dependence in errors. Graham and Powell (2012) pointed out the irregular identification

of the AME when regressors exhibit little variation across periods, while Bonhomme (2011)

derived conditions for regular and irregular identification of moments of UH in nonlinear panel

data. Our research is highly complementary to these papers, as we consider different models

and our approach for proving irregular identification is different and exploits the smoothness

implications of regular identification.

Also related are the impossibility results obtained in Hirano and Porter (2012) for non-

differentiable functionals. The settings and problems investigated are, however, quite different.

They study some important limitations on inference derived from non-differentiability, while

we show infinite effi ciency bounds implied by the lack of smoothness in influence functions for

functionals of nonparametric UH. Both papers point out to important limitations on inference

for structural parameters of interest.

3 Basic Setting and Results

Let {(Zi, αi)}ni=1 denote an independent and identically distributed (iid) sample with the same

distribution as (Z, α). The observed data is Z1, ..., Zn, while αi denotes the i-th individual’s UH.

Assume each observation Zi has a probability P and a density with respect to (wrt) a σ−finite
measure µ given by

fη0(z) =

∫
A
fz/α(z)dη0(α), (1)

where fz/α(z) denotes the known conditional density of Z given α, and η0 is the unknown

distribution of α with support on A ⊆ Rdα (the results can potentially be extended to abstract
heterogeneity spaces, but for simplicity of exposition we focus on the Euclidean case). The

assumption of known conditional density fz/α(z) is relaxed in Section 5.

Suppose we are interested in estimating a moment of UH,

φ(η0) = Eη0 [r(α)],

for a measurable function r (·) ∈ L2(η0), where, henceforth, Eη0 denotes the expectation under
the distribution η0 and Lp(ν) denotes the space of (equivalence classes of) real-valued measurable

functions h such that
∫
|h|p dν < ∞, for a generic measure ν. Henceforth, we drop the sets of

integration in integrals and the qualification ν−almost surely for simplicity of notation. So,
for example, a function in L2(ν) is discontinuous when there is no continuous function in its

equivalence class. Also, we drop the reference to the measure ν in L2(ν) when ν = P, and write
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simply L2. We will be concerned with regular identification of φ(η0), i.e. identification of φ(η0)

with a finite effi ciency bound, when UH is nonparametric as formally defined below.

The basic message of this paper is based on two observations. First, from a general result

in van der Vaart (1991), we prove that a necessary condition for regular identification of φ(η0)

when UH is nonparametric is the existence of a measurable function s(Z) with zero mean and

finite variance such that

r(α)− φ(η0) =

∫
s(z)fz/α(z)dµ(z). (2)

Second, if the mapping α→ fz/α is continuous (smooth), then under mild regularity conditions,

(2) implies that r(·) must be also continuous (smooth). The main contribution of this paper is a
formalization of the second observation and its application to some economic models of interest.

The precise sense of UH being nonparametric is the usual one, formalized as follows. Let H

denote a class of distributions on A, and assume η0 ∈ H. Let ηt ∈ H be a parametric submodel

indexed by t ∈ [0, ε), for some ε > 0, such that for a b ∈ L2(η0) the classical mean square

differentiability condition holds,∫ [
dη

1/2
t − dη

1/2
0

t
− 1

2
bdη

1/2
0

]2

→ 0 as t ↓ 0. (3)

Often the score function b can be simply computed as b = ∂ log dηt/∂t, i.e. the score associated

to the parametric submodel ηt at the “truth” t = 0 (corresponding to η0), where, henceforth,

derivatives wrt to t are one-sided and evaluated at zero. Denote by T (η0) the linear span of

the scores b′s in (3) and let L0
2(ν) denote the subspace of functions in L2(ν) with zero ν−mean.

For further discussion on the tangent set T (η0) see Newey (1990). Then, a formal definition of

nonparametric UH is given as follows.

Definition 3.1 UH is nonparametric if T (η0) is dense in L0
2(η0).

This definition is a formalization of the standard assumption in the literature that UH is non-

parametric. Heuristically, it means that UH is essentially unrestricted. Henceforth, we assume,

unless otherwise stated, that UH is nonparametric. The first result in this section shows that

in the presence of nonparametric UH in model (1), regular identification of Eη0 [r(α)] requires

necessarily that (2) holds.

Lemma 3.1 If UH is nonparametric, then (2) is necessary for regular identification of φ(η0).

Severini and Tripathi (2006, 2012) and Bonhomme (2011) have found related results in the

context of nonparametric instrumental variables and nonlinear panel data models, respectively.

These results and Lemma 3.1 are special cases of a more general result in van der Vaart (1991).

Additionally, Escanciano (2020) has shown that (2) is not only necessary but also suffi cient for
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regular identification of φ(η0) in model (1). Note that we are not assuming here that η0 or s

in (2) are identified. This level of generality is important because these functions may not be

identified in many structural economics models under weak assumptions, which does not prevent

us from identifying and estimating certain functionals of them (cf. Hurwicz 1950).1

We now proceed with the main insight of this paper, which is that if the mapping α→ fz/α is

continuous (smooth), then, under regularity conditions, r(·) must be also continuous (smooth).
This simple observation follows by dominated convergence, and it implies non-regularity of

CDFs, signs, quantiles, and other functionals of UH in “smooth models”satisfying the following

assumption. Let N denote an open subset of A ⊂ Rdα .

Assumption 1 (i) α → fz/α(z) is continuous on N a.e-µ; (ii) for all α ∈ N there exists a

neighborhood of α, say Γ0 ⊂ N, such that for all s satisfying (2),∫
|s(z)| sup

α∈Γ0

fz/α(z)dµ(z) <∞. (4)

Assumption 1(i) is easy to check. Assumption 1(ii) is a dominance condition. The main

complication in checking Assumption 1(ii) is that s belongs to L2(P) but not necessarily to

L1(µ) or L2(µ). We verify these conditions in a number of examples below.

Lemma 3.2 Let the conditional density fz/α(z) satisfy Assumption 1. Then, r(α) in (2) is

continuous in α on N.

The following corollary is a direct consequence of the previous two lemmas.

Corollary 3.1 Let Assumption 1 hold. The CDF φ(η0) = Eη0 [1(α ≤ αr)], for αr ∈ N, is not
regularly identified.

Moments in general and CDFs in particular are examples of linear functionals. Quantiles

of UH are, in contrast, nonlinear functionals, and are thus not covered by the previous results.

To extend the theory to a more general setting including nonlinear functionals we need to

introduce some notation. A functional φ(η0) : H → R is said to be differentiable if there exists
an rφ ∈ L0

2(η0) such that for all paths satisfying (3), it holds

lim
t→0

φ(ηt)− φ(η0)

t
= Eη0 [rφ(α)b(α)]. (5)

Under nonparametric UH such rφ is unique, as in Newey (1994). This function rφ is called the

influence function of φ(η0) and plays the role of the preceding moment function r.

1Of course, if η0 is identified, so is φ(η0) (since r is known). Identification of φ(η0) follows from (2) because

we can find an identified function s̃(Z), depending only on fz/α and r, such that r(α) = E [ s̃(Z)|α] holds, and
thus by iterated expectations φ(η0) = Eη0 [r(α)] = Eη0 [E [ s̃(Z)|α]] = E [s̃(Z)] .
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To illustrate with an example, consider the scalar UH case and assume η0 is absolute contin-

uous with a strictly positive Lebesgue density in a neighborhood of φ(η0), where φ(η0) is such

that ∫ φ(η0)

−∞
dη0(α) = τ, τ ∈ (0, 1). (6)

That is, φ(η0) is the τ -quantile of η0. It is well-known that the quantile functional is differentiable

under the conditions above with influence function

rφ(α) =
−{1(α < φ(η0))− τ}

η̇0(φ(η0))
,

where η̇0 is the density pertaining to η0. It follows from our results that the discontinuity of the

influence function rφ(·) implies irregular identification. Next result, formalizes this finding.

Corollary 3.2 Let Assumption 1 hold. Assume η0 is absolute continuous with a strictly positive

Lebesgue density in a neighborhood of φ(η0) satisfying (6). If φ(η0) ∈ N, then the τ -quantile of
the nonparametric UH distribution is not regularly identified.

Remark 3.1 Henceforth, whenever we discuss identification of quantiles, we implicitly assume
that the components of UH have densities that satisfy the conditions in Corollary 3.2.

Remark 3.2 The quantile example illustrates that our results are also applicable to nonlin-
ear differentiable functionals. For other nonlinear functionals the researcher needs to find rφ
satisfying (5) and replace r by rφ in our results below.

We discuss now the technical complications of the more standard approach in the literature of

directly computing the Fisher Information or the effi ciency bound. Define the so-called tangent

space of scores S := {s ∈ L0
2 : s(z) = E [b(α)|Z] for some b ∈ T (η0)}. Then, a standard

result in linear inverse problems is that all solutions s of equation (2) have the same orthogonal

projection onto the closure of S (see Engl, Hanke and Nuebauer, 1996). Denote by s∗ such
orthogonal projection, the so-called effi cient score. The effi ciency bound is given by the variance

of s∗(Z) (see e.g. Newey 1990, van der Vaart 1998, Bickel et al. 1998, and Escanciano 2020).

Thus, an alternative to our approach is to compute s∗(Z) and check that it has infinite variance.

However, computing s∗(Z) can be cumbersome, particularly because characterizing the mean

squared closure of S can be a rather diffi cult task in the models we analyze here. In fact, to
the best of our knowledge, the analytical expression for s∗ remains unknown for the functionals

and models we study. In passing, we note that these arguments show that it suffi ces to check

the dominance condition (4) for s in the closure of S. This additional information will turn out
to be quite useful in some of our applications, such as the linear RC model.
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3.1 An Application To A Structural Model of Unemployment

We illustrate the applicability of the previous results in the context of a structural model of

unemployment with nonparametric UH. Nonparametric heterogeneity has played a critical role

in rationalizing unemployment duration ever since the seminal contributions by Elbers and

Ridder (1982) and Heckman and Singer (1984a, 1984b). Recent work by Alvarez et al. (2016) is

motivated from this perspective. These authors have shown nonparametric identification of the

distribution of UH in their nonparametric structural model for unemployment with two spells.

Specifically, Alvarez, Borovicková and Shimer (2016) propose a structural model for transitions in

and out of employment that implies a duration of unemployment given by the first passage time

of a Brownian motion with drift, a random variable with an inverse Gaussian distribution. The

parameters of the inverse Gaussian distribution are allowed to vary in arbitrary ways to account

for UH in workers. These authors investigate nonparametric identification of the distribution of

UH, η0, when two unemployment spells Zi = (ti1, ti2) are observed on the set T 2, T ⊆ [0,∞).

The reduced form parameters α = (α1, α2)′ ∈ R× [0,∞) are functions of structural parameters.

The distribution of Zi is absolutely continuous with Lebesgue density fη0(t1, t2) given, up to a

normalizing constant, by

fη0(t1, t2) =

∫
R×[0,∞)

α2
2

t
3/2
1 t

3/2
2

e
− (α1t1−α2)

2

2t1
− (α1t2−α2)

2

2t2 dη0(α1, α2). (7)

Alvarez, Borovicková and Shimer (2016) show that η0 is nonparametrically identified up to the

sign of α1, but they do not investigate if specific functionals of this distribution are regularly or

irregularly identified, which is the focus of study here. Specifically, we show that the CDF of η0

at a point, and other functionals of η0 with discontinuous influence functions, such as quantiles,

have infinite effi ciency bounds. These functionals are important parameters. For example,

φ(η0) = Eη0 [1 (α1 ≤ α10) 1 (α2 ≤ α20)] , for a fixed α10 < 0 < α20 and large absolute values of

α10 and α20, quantifies the proportion of individuals at risk of severe long term unemployment

(an individual with parameters α1 and α2, α1 ≤ α10 and α2 ≤ α20, has a probability larger or

equal than 1 − exp(2α10α20) of remaining unemployed forever). We apply our previous results

to this example for a generic moment φ(η0) = Eη0 [r(α1, α2)], under the following mild condition.

Assumption 2 (i) Let the set T ⊆ [0,∞) be a convex set with a non-empty interior; (ii) the

moment function r is locally bounded.

Proposition 3.1 Under Assumption 2, if φ(η0) = Eη0 [r(α1, α2)] is regularly identified, then

r(·) ∈
{
b(α1, α2) ∈ L0

2(η0) : b(α1, α2) = C1 + C2α
2
2e

2α1α2h(α2
1, α

2
2)
}
,

for constants C1 and C2 and a continuous function h(u, v) defined on (0,∞)2 that, if T is

bounded, is an infinite number of times differentiable at u ∈ (0,∞), for all v ∈ (0,∞).
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For the purpose of proving an infinite effi ciency bound for CDFs and quantiles only the continuity

part of Proposition 3.1 suffi ces. Thus, an implication of Proposition 3.1 is that the CDF of UH

at the fixed point (α10, α20), i.e. φ(η0) = E [1(α1 ≤ α10)1(α2 ≤ α20)] , is not regularly identified

because rφ(α1, α2) = 1(α1 ≤ α10)1(α2 ≤ α20) is not continuous when (α10, α20) is in the interior

of the support of η0.

Corollary 3.3 Under Assumption 2(i), the CDFs and quantiles of UH in the model (7) are not
regularly identified.

The high smoothness of the mapping α→ fz/α(z) in the model of Alvarez et al. (2016) makes

inference on functionals of UH hard, and Corollary 3.3 is one way to formalize this statement

for CDFs and quantiles of UH.

3.2 A comparison with van der Vaart (1991)

It is useful to compare these irregularity results for CDFs with those obtained in van der Vaart

(1991). He specifically studied regular estimation of the CDF in the univariate exponential

mixture model with conditional density

fz/α(z) = h(z)c(α)ezα, (8)

for a scalar α. He argued that “from the completeness of the exponential family, it follows readily

that (with our notation) ∫
s(z)fz/α(z)dz

cannot be constant in an open interval, unless it is constant everywhere” (cf. van der Vaart,

1991, p. 191). Since the indicator function is constant in an open interval, it follows that (2) is

not satisfied, and thus, the CDF of η0 is not regularly estimable.

The argument used in van der Vaart (1991) to establish irregularity is thus quite different

from the argument used in our paper. We exploit the lack of smoothness of the influence function,

rather than the completeness of the exponential family. Additionally, it should be noted that

van der Vaart’s (1991) irregularity argument is specific to the univariate exponential mixture

model in (8) and it does not apply to the models we focus here, including the application to

Alvarez et al. (2016) or the RC models that we study next.

4 Random Coeffi cient Models

Random coeffi cient models have long been used in economics to model nonparametric UH. There

is by now an extensive literature on nonparametric identification of UH in these models, see,
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e.g., Lewbel (2019). In this paper we focus on establishing irregular identification of CDFs

and quantiles of the distributions of RC (or more generally of any other functional with a

discontinuous influence function). To the best of our knowledge, this is the first paper to do so.

A general class of random coeffi cient models, including nonlinear models, is given by

Yi = m (Xi, αi) , (9)

where Zi = (Yi, Xi) are observed, but αi is unobserved and independent of Xi with support A.
Assumem : X×A → Rr is a measurable map, where X is the support ofX. The functional form
of m is known, and the nonparametric part is given by the distribution of αi. The assumptions

of known m and the independence of αi and Xi are relaxed below. The density of the data is

fη0(y, x) =

∫
A

1 (y = m(x, α)) dη0(α),

where 1(A) denotes the indicator function of the eventA. In this setting, the dominating measure

µ is defined on Z = Y ×X as µ (B1 ×B2) = νY (B1) νX(B2), where B1 and B2 are Borel sets of

Y and X , respectively, νY is either the counting measure for discrete outcomes or the Lebesgue
measure λ(·) for continuous outcomes, and νX(·) is the probability measure for X. The main
challenge we face with RC models is that fz/α(z) = 1 (y = m(x, α)) is not continuous, and thus

the previous results need to be generalized. The generalization is non-trivial, particularly so for

continuous outcomes. The discontinuity of α→ fz/α makes regularity of functionals of UH more

likely. With a decreasing level of “smoothness”, and hence an increasing level of diffi culty, we

consider first the binary choice RC model and next the linear RC. Section 9.1 in the Appendix

contains some generic results for nonlinear RC.

4.1 Binary Choice Random Coeffi cient

The binary choice random coeffi cient model is given by

Yi = 1 (X ′iαi ≥ 0) ,

where we observe Zi = (Yi, Xi) but αi is unobservable. The random vector αi is independent

of Xi, normalized to |αi| = 1 and satisfies P (αi = 0) = 0. As in the existing literature, we

assume η0 is absolutely continuous wrt the uniform spherical measure σ (·) in Sdα−1, where

Sdα−1 = {b ∈ Rdα : |b| = 1} denotes the unit sphere in Rdα . The density of the data for a
positive outcome (i.e. the choice probability function) is given by

fη0(x) =

∫
Sdα−1

1 (x′s ≥ 0) dη0(s). (10)

Ichimura and Thompson (1998) and Gautier and Kitamura (2013) have found suffi cient con-

ditions for nonparametric identification of η0. These authors, however, have not investigated

whether identification is regular or irregular, which is the focus here.
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By (10) and Lemma 3.1 a necessary condition for regular identification of φ(η0) = Eη0 [r(α)]

under nonparametric UH is

r(α)− φ(η0) =

∫
1 (x′α ≥ 0) s(1, x)dvX(x), (11)

for some s ∈ L0
2. The following result provides necessary conditions for regular identification.

Write α = (α1, α
′
2)′.

Proposition 4.1 If the distribution of X/ |X| is absolutely continuous, then r(·) in (11) must be
uniformly continuous on Sdα−1. If X = (1, X̃) and α′2X̃ is absolutely continuous, then r(α1, α2)

must be an absolutely continuous function of α1.

An implication of this proposition is that functionals such as the CDF and quantiles of random

coeffi cients are not regularly identified in the binary RC model. To the best of our knowledge,

this result is new in the literature.

Corollary 4.1 Under the conditions of Proposition 4.1, the CDFs and quantiles of UH in the
binary RC model are not regularly identified.

This result is hardly surprising given the fact that in the simpler model Yi = 1 (X ′iβ0 − αi ≥ 0)

with a scalar αi independent ofXi, the distribution of αi is identified as η0(α) = E [Yi|X ′iβ0 = α] .

The full independence of αi of Xi provide further overidentifying restrictions on η0, but they do

not lead to regular identification of η0.

The situation in the linear RC is different and cannot be reduced to well-known irregular

functionals, such as conditional means. For one thing, simpler specifications such as Yi =

X ′iβ0 + αi do lead to regular identification of η0. As we will see, the linear RC model is less

“smooth”than the binary RC model, in a precise sense defined below, which makes regularity

of functionals of UH more likely in the linear model than in the binary choice model.

4.2 Linear Random Coeffi cient

The linear RC model has a long history in econometrics, see, e.g., Hildreth and Huock (1968)

and Swamy (1970). This model is given by

Yi = X ′iαi,

where we observe a dz−dimensional vector Zi = (Yi, Xi), but αi is unobservable and independent

ofXi. The dimension ofXi and αi is dα, so dz = dα+1. Like in Hoderlein, Klemelä and Mammen

(2010), we normalize Xi so that |Xi| = 1. The density of the data is

fη0(z) =

∫
Rdα

1 (y = x′α) dη0(α). (12)
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Nonparametric identification and estimation of η0 has been studied by Beran and Hall (1992),

Beran, Feuerverger and Hall (1996), and Hoderlein, Klemelä andMammen (2010), among others.

These authors exploit the relation between (12) and the Radon transform. In this paper we study

necessary conditions for regular identification of φ(η0) = Eη0 [r(α)], for a measurable function

r (·) with Eη0 [r2(α)] <∞, and regular identification of quantiles of the components of α. To the
best of our knowledge, no effi ciency bounds calculations for functionals of UH are available in

the literature for this model.

The discontinuity of 1 (y = x′α) may a priori suggest that many functionals of UH are regu-

larly identified in this model. By Lemma 3.1 a necessary condition for regular identification of

φ(η0) = Eη0 [r(α)] under nonparametric UH is

r(α)− φ(η0) =

∫
s(x′α, x)dvX(x), (13)

for some s ∈ L0
2. Under suitable conditions scores in the tangent space S = {s ∈ L0

2 : s(z) =

E [b(α)|Z] for some b ∈ T (η0)} are continuous, but providing conditions under which elements of
the closure of S are continuous is a much harder task. In fact, without additional restrictions,
elements in the closure of S can be potentially very discontinuous (cf. Smith, Solmon and
Wagner 1977). We shall provide regularity conditions below that guarantee that any element of

the closure of S can be written as
s(z) =

g(z)

fη0(z)
, (14)

where g(z) has an squared integrable weak derivative with respect to the first argument y in

z = (y, x). As we show below, the representation in (14) will be instrumental for checking the

suffi cient conditions for the dominated convergence theorem in Lemma 3.2.

Let η0,x denote the Lebesgue density of x′α when α has distribution η0. The set η0T (η0)

is defined as η0T (η0) := {η0b : b ∈ T (η0)}, while the definition of a Sobolev space Hρ0(A) is

provided after (26) in the Appendix. The index ρ0 quantifies the degree of smoothness (with

higher ρ0 corresponding to higher smoothness).

Assumption 3 For dα > 1 and N as in Assumption 1: (i) the density of the distribution η0 is

bounded, has bounded support, with a corresponding density η0,x that is continuous and satisfies

infα∈N η0,x(x
′α) ≥ 1/l(x) for a positive measurable function l(·) such that EX [l2(X)] < ∞;

(ii) X is absolutely continuous with a bounded density fX(·); (iii) η0T (η0) ⊆ Hρ0(A), where

ρ0 + (dα − 1)/2 > 2; (iv) r belongs to the closure of T (η0).

The bounded support of Assumption 3(i) is often considered in the literature, see, e.g.,

Hoderlein, Klemelä and Mammen (2010). If the infinite effi ciency bound holds in a model with

bounded support of α it also holds in the more general model where the support is unrestricted.

A suffi cient condition for the continuity of η0,x is that the Fourier transform of the density of η0
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is integrable, which was also assumed in Hoderlein, Klemelä and Mammen (2010). Assumptions

3(i-ii) establish a link between the tails of η0 and fX(·). Assumption 3(iii) imposes a mild
smoothness condition on the tangent space of UH. This assumption and Assumption 3(iv) allow

but do not require nonparametric UH.

Proposition 4.2 Under Assumption 3 and if r satisfies (13), then it must be continuous on N.

Corollary 4.2 Under the conditions of Proposition 4.2, the CDFs and quantiles of UH are not
regularly identified in the linear RC model.

Without exploiting the specific structure of the closure of the tangent space (i.e. 14) Propo-

sition 4.2 and Corollary 4.2 may not hold. This stands in contrast to other RC models, such as

the binary RC model, where the continuity of the integral in (2) holds for any s in L2.

4.3 Correlated Random Coeffi cients: AME

The independence assumption between regressors and UH rules out important models and pa-

rameters in economics, such as the Average Marginal Effect (AME) φ(η0) = Eη0 [γi] and the

Proportion of individuals with a Positive AME (PPAME), φ(η0) = Eη0 [1 (γi > 0)] , where γi
is the coeffi cient of an endogenous continuous variable in a RC triangular system. We extend

our previous results to these cases. We will show that under nonparametric UH these impor-

tant parameters are not regularly identified. These results appear to be new in the literature

under this generality. For simplicity, we focus on a triangular model, but the same arguments

are potentially applicable to a wide class of random coeffi cient models, including simultaneous

equation models, nonlinear models with endogeneity, or variations of these models that include

covariates, multiple endogenous variables, and mixed random and non-random coeffi cients.

Consider the triangular model:

Y1 = γY2 + U1, Y2 = δX + U2, (15)

where γ, U1, δ and U2 are RC, and we observe Z = (Y1, Y2, X)′. The variable Y2 is a continuous

treatment variable, possibly endogenous, in the sense that U1 and U2 are correlated, and X is

an instrument, independent of all the random coeffi cients. Suppose, the researcher is interested

in the AME φ(η0) = Eη0 [γ] or the PPAME φ(η0) = Eη0 [1(γ > 0)] . We will provide conditions

under which both parameters have an infinite effi ciency bound. To see this, we obtain the

reduced forms

Y1 = γδX + γU2 + U1 ≡ π1X + π0,

Y2 = δX + U2,
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which, with some abuse of notation, are jointly written as Y = α0 + α1X, where Y = (Y1, Y2)′,

α = (α0, α1), α0 = (π0, U2)′ and α1 = (π1, δ)
′. Proposition 4.2 can then be applied to the

reduced form. Because the corresponding influence functions for the AME and PPAME are

rAME(α) = π1/δ and rPPAME(α) = 1(π1 > 0)1(δ > 0) + 1(π1 < 0)1(δ < 0), respectively, and

they are discontinuous functions of α1 = (π1, δ)
′, non-regularity follows from Proposition 4.2.

Consider the following assumption. Let N be an open set in the interior of A, the support of
the vector of reduced form random coeffi cients α.

Assumption 4 (i) Assumption 3 holds for the reduced form Y = α0 +α1X; (ii) X is indepen-

dent of the random coeffi cients (γ, U1, δ, U2); (iii) (p0, u2, 0, d0) ∈ N for some (p0, u2, d0); (iv)

(p0, u2, p1, 0) ∈ N for some (p0, u2, p1).

Assumption 4(iv) means that zero is an interior point in the support for the first stage effect δ,

i.e. a lack of monotonicity.

Proposition 4.3 Suppose (15) and Assumption 4(i-ii) holds. If in addition Assumption 4(iii)
or Assumption 4(iv) holds, then the PPAME is not regularly identified. If Assumption 4(iv)

holds and E [γ2] <∞, then the AME is not regularly identified.

Proposition 4.3 proves non-regularity for the AME and the PPAME. The condition E [γ2] <∞
ensures that the AME is a continuous functional in L2(η0). If fδ2 denotes the (Lebesgue)

density of δ2 and h(u) = E [π2
1| δ2 = u] fδ2(u), then a suffi cient condition for E [γ2] < ∞ is

limu→0+ h(u)/uρ <∞ for some ρ > 0 and E [π2
1] <∞; see Khuri and Casella (2002, pg. 45).

Intuitively, non-regularity of the AME comes from the presence of a set of individuals with

near-zero first-stage effects (Assumption 4(iv)), although P (δ = 0) = 0. When the instrument

satisfies a monotonicity restriction, in the sense that P(δ > 0) = 1 or P(δ < 0) = 1, then regular

identification of the AME might be possible. An interpretation of Proposition 4.3 is that the

monotonicity condition is necessary for regular identification of the AME with nonparametric

UH. Indeed, Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) show that with

homogenous first-stage effects regular estimation by IV methods holds. See also Florens et

al. (2008), Masten and Torgovitsky (2016), and the extensive literature following the seminal

contributions by Imbens and Angrist (1994) and Heckman and Vytlacil (2005) for identification

results on conditional and weighted AME or their discrete versions.

The PPAME is non-regular under more general conditions than the AME. The diffi culty of

identification of the PPAME is well recognized in the literature. Heckman, Smith and Clements

(1997) provide bounds for the analog to PPAME in the binary treatment case, and identification

when gains are not anticipated at the time of the program.

The literature on nonparametric identification in the model (15) is relatively scarce. In

important work, Masten (2017, Proposition 4) gives conditions for nonparametric identification
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of the distribution of γ, but he did not discuss effi ciency bounds for the AME or the PPAME

under his conditions. For different models, Khan and Tamer (2010) and Graham and Powell

(2012) show irregularity of the AME when E [γ2] = ∞. The nature of irregularity of the

AME documented here is different and it holds in a setting where E [γ2] < ∞. The lack of
monotonicity of first stages results in a discontinuity at zero for the influence function of the

AME. This result formalizes the importance of monotonicity assumptions in reliable estimation

of the AME in models with nonparametric heterogenous effects.

4.4 Are CDFs and quantiles of UH always irregular in RC models?

Whether CDFs and quantiles of UH are regular or irregularly identified depends in a very delicate

way on the model m and the distribution of regressors. To illustrate these issues, we discuss two

examples where regular identification for CDFs is expected. Consider the canonical monotonic,

possibly nonseparable, model

Yi = m(Xi, αi)

with scalar UH αi and where α → m(x, α) is strictly increasing with inverse m−1(y, x). Then,

if we define s(Yi, Xi) = 1(m−1(Yi, Xi) ≤ 0), then the regularity condition of Lemma 3.1 is

satisfied with r(α) = 1(α ≤ 0), provided both s and r have certain finite moments, proving

that the necessary condition for regular identification of the CDF at 0 (or at any other point

in fact) holds. In invertible models like this, regular identification of CDFs and quantiles is

satisfied under mild conditions. See the Appendix for a specific example showing which one of

our suffi cient conditions for irregularity are not satisfied in this setting.

Alternatively, if the regressors are discrete, then identification will be regular. By way of

example, consider the binary choice RC model. We note that the necessary condition for regular

estimation (11) is valid whether or not the distribution of X is continuous, discrete or mixed,

although Proposition 4.1 focuses on the continuous case. Suppose now that X is discrete with

finite support X = {x1, ..., xJ}. Then, φ(η0) = Eη0 [r(α)] is identified in the binary choice RC if

r(α) belongs to the span of
{

1
(
x′jα ≥ 0

)}J
j=1

, and if so, identification is regular. For example,

if the the k − th canonical vector ek = (0, ..., 1, ...0)′ with a 1 in the k − th component belongs
to the support of X , then the average survival function of the k − th component of α at zero,
i.e. Eη0 [1 (αk ≥ 0)], will be regularly identified (indeed Eη0 [1 (αk ≥ 0)] = E [Yi|Xi = ek]). Thus,

discrete regressors make regular identification of CDFs and quantiles more likely.

On the contrary, if X is continuous and the mapping α → fz/α(z) is suffi ciently smooth,

regular identification of CDFs and quantiles may not be possible unless we impose strong as-

sumptions on UH. For example, for the RC binary choice model, Gautier and Kitamura (2013,

Proposition 3.1) have shown that the right hand side of (2) necessarily belongs to Hρ(A) for

ρ = dα/2, and by Sobolev embedding (since ρ > (dα − 1)/2), the moment function r(·) must
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be a continuous function. They use this feature to show that the RC binary model imposes

restrictions on the density of observables, while we use it here to show irregularity of CDFs and

quantiles.

More generally, regular identification of CDFs and quantiles can be obtained when the map-

ping α → fz/α(z) is not very smooth and the distribution of UH satisfies a certain level of

smoothness, as illustrated by Dattner et al. (2011) and Söhl and Trabs (2012) for the classical

convolution problem. The situation is more involved for other models such as the linear RC

model, as we discuss now. Smith, Solmon and Wagner (1977) have shown that the closure of

the range of the Radom transform operator

Rb(z) =

∫
1 (y = x′α) b(α)dα,

as a mapping in L2(λ) contains any even function of the Sobolev space Hρ(Z), where Z is the
support of Z = (Y,X) and ρ = (dα − 1)/2. For the binary RC model ρ = dα/2 for densities

on a (dα − 1)−dimensional space (cf. Gautier and Kitamura, 2013), while for the linear RC
ρ = (dα − 1)/2, for densities on a dα−dimensional argument Z. It is in this precise sense
that we say the binary RC model is smoother than the linear RC model. These arguments

imply fundamental differences between the binary and linear RC models when it comes to

regular identification of functionals of UH. In Proposition 4.2 we provide suffi cient conditions

for irregular identification, but we leave open the possibility of regular identification of CDFs

and quantiles when these conditions are not satisfied. Such analysis is beyond the scope of this

paper and is deferred to future research.

5 Extension to Semiparametric Models

This section extends our results to semiparametric models. The main point is as follows, if a

functional is irregular in a model, it will be irregular in a larger model that nests the original

model as a special case. Information can only decrease (or remain the same) when we know less.

This basic observation has important implications, and it widens substantially the applicability

of our previous results, as we illustrate with two examples and with further examples in the

Appendix.

5.1 The Mixed Logit Model

Consider first a conditional semiparametric mixture model with density

fη0,θ0(y, x) =

∫
fy/x,α(y; θ0)dη0(α),
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where θ0 is an additional unknown parameter, finite or infinite-dimensional. The basic idea here

is that irregularity of φ(η0) = Eη0 [r(α)] in the model where θ0 is known implies irregularity in

the model where θ0 is unknown.

We illustrate our point with the random coeffi cients Logit model, also known as the Mixed

Logit– one of the most commonly used models in applied choice analysis. Fox, Kim, Ryan and

Bajari (2012) have recently shown nonparametric identification for the semiparametric Mixed

Logit model. Here, we show that the identification of the CDF and quantiles of the distribution

of RC is necessarily irregular when UH is nonparametric. The CDF and quantiles of this

distribution are important parameters in applications of discrete choice.

The data Zi = (Yi, Xi) is a random sample from the density (wrt µ below),

fλ0(y, x) =

∫
fy/x,α(y; θ0)dη0(α),

where λ0 = (θ0, η0) ∈ Θ×H, θ0 = (θ01, ..., θ0J)′,

fy/x,α(y; θ0) =
exp

(
θ0y + x′yα

)
1 +

∑J
j=1 exp

(
θ0j + x′jα

) ,
for x = (x0, x1, ..., xJ) ∈ X and y ∈ Y = {0, 1, ..., J}. The consumer can choose between
j = 1, ..., J, J < ∞, mutually exclusive inside goods and one outside good (y = 0). The utility

for the inside good is normalized so that θ00 = 0 and x0 = 0. The random coeffi cients α are

independent of the regressors X, and have a distribution η0. The main result below also applies

to the correlated random coeffi cient case. Moreover, non-regular identification for CDFs and

quantiles is proved even when θ0 is known. This will imply non-regularity when θ0 is unknown

and/or when random coeffi cients are dependent of the characteristics.

The measure µ is defined on Z = Y × X as µ (B1 ×B2) = τ (B1) νX(B2), where B1 ⊂ Y,
B2 is a Borel set of X , τ(·) is the counting measure and νX(·) is the probability measure for X.
The vector α and covariates xy are K−dimensional. The parameter space Θ is an open set of

RJ . The set H consists of measurable functions η : RK → R whose support A has a non-empty
interior and

∫
A dη(α) = 1.

Applying the necessary condition for regular identification to a continuous linear functional

φ(η) ∈ R with influence function rφ in the model where θ0 is known, it must be true that for

some s ∈ L2,

rφ(α)− φ(η0) =

∫
fy/x,α(y; θ0)s(y, x)dµ(y, x). (16)

It is straightforward to show that the right hand side in (16) is continuous in α in the interior

of its support. In fact, more is true in general: it is an analytic function of α (a function that

is infinitely differentiable with a convergent power series expansion). But continuity suffi ces for

proving the non-regularity of CDFs and quantiles of η0. This follows without computing least
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favorable distributions, simply by dominated convergence. We gather the proof here to illustrate

the simplicity of our method of proof.

Proposition 5.1 rφ in (16) is continuous in the interior of A.

Proof of Proposition 5.1: Write∫
fy/x,α(y; θ0)s(y, x)dµ(y, x) =

J∑
j=0

∫
fy/x,α(j; θ0)s(j, x)vX(dx).

Each of the summands in the last expression is continuous in α in the interior of its support, by

continuity and boundedness of fy/x,α(j; θ0) and the dominated convergence theorem. �
Proposition 5.1 implies that identification of the CDF and quantiles of the distribution of

η0 under the conditions specified in Fox et al. (2012) must be irregular. Bajari, Fox and Ryan

(2007) propose a simple estimator of the CDF of η0, and Fox, Kim and Yang (2016) show its

consistency (in the weak topology) and obtain its rates of convergence. Proposition 5.1 implies

that the estimator in Fox et al. (2016), or any other estimator for that matter, cannot achieve

regular parametric rates of convergence. The lack of regularity is not evident from the rates

established in Fox et al. (2016). Let F0 be the CDF pertaining to η0 and F̂η the “fixed grid”

estimator of Bajari et al. (2007), Fox et al. (2011) and Fox et al. (2016) based on D grid points

(D ≡ D(n), where n is the sample size). The order of the bias established in Fox et al. (2016) is

D−s̄/K where s̄ is the smoothness of the mapping α → fy/x,α (here s̄ = ∞). This suggests that

parametric rates might be attainable, but our results show that this is not possible (at least in

a local uniform sense). The order of the variance for F̂η is inversely related to the minimum

eigenvalue of the D ×D matrix ΨD with (d1, d2)− th element, 1 ≤ d1, d2 ≤ D, given by

E [g′(X,αd1)g(X,αd2)] , (17)

where g(x, αd) = (fy/x,αd(0; θ0), ..., fy/x,αd(J ; θ0))′ are conditional choice probabilities when UH is

evaluated at the d− th grid point αd, d = 1, ..., D. This minimum eigenvalue quantifies the level

of multicollinearity in the least squares regression of Fox et al. (2016), and we conjecture that

given the high smoothness of the mapping α → fy/x,α this term will go to zero exponentially

fast, so it will be the main determinant in the (slow) rate of convergence of F̂η. A detailed

theoretical analysis of this issue is beyond the scope of this paper, but see the discussion in

Section 6. We stress that these arguments are not a criticism of “fixed grid”estimators per se,

but rather represent a limitation that any estimation method would have due to the statistical

diffi culty of the problem.

5.2 Bound on of exact consumer surplus

Another new example of irregular identification in a semiparametric setting is for a weighted

average over income values of an average (across heterogenous individuals) of exact consumer
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surplus bounds, as in Hausman and Newey (2016). Here Y is quantity consumed, X = (X1, X2)′,

X1 is price, X2 is income, η0(x) is the demand function, price is changing between x̆1 and x̄1,

and B is a bound on the income effect. Let w(x2) be some weight function and v(x1) = 1(x̆1 ≤
x1 ≤ x̄1)e−B(x1−x̆1). Consider the functional

φ(η0) = Eη0
[
w(X2)

∫
v(u)η0(u,X2)du

]
,

which corresponds to a bound on the average of equivalent variation over unobserved individual

heterogeneity and income (see Hausman and Newey, 2016). Santos (2011) and Chernozhukov

et al. (2016) have investigated regular identification and estimation of related quantities when

the demand function satisfies the instrumental variables restriction

Eη0 [Yi − η0(Xi)|Wi] = 0,

for an instrument Wi. In this paper we will discuss conditions under which φ(η0) is irregularly

identified. To the best of our knowledge, this result is new in the literature.

Let f0(x1|x2) denote the conditional pdf of X1 given X2, and let

r(x) = f0(x1|x2)−1v(x1)w(x2).

Consider a submodel where r(·) is known and has finite variance, and note the moment repre-
sentation

φ(η0) = Eη0 [η0(X)r(X)] .

Severini and Tripathi (2012, Lemma 4.1) have shown that a necessary condition for regular

identification of moments such as φ(η0) is the existence of s(W ) with finite variance such that

r(x) = E[s(Wi)|Xi = x]. (18)

We apply our results to obtain irregular identification under the following mild assumptions.

Let f(w|x) denote the conditional pdf of W given X wrt µ. Fix x2 in the support of X2.

Assumption 5 (i) The conditions of Severini and Tripathi (2012, Lemma 4.1) hold; (ii) the
densities f0(x1|x2) and f(w|x) and continuous in a neighborhood of x̄1, say Γ0; (ii)∫

|s(w)| sup
x1∈Γ0

f(w|x1, x2)dµ(w) <∞. (19)

The conditions of Severini and Tripathi (2012, Lemma 4.1) are standard in the literature of

nonparametric instrumental variables.

Proposition 5.2 Suppose Assumption 5 holds. Then, φ(η0) is irregularly identified.
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The source of irregularity is the discontinuity of v(x1) at x̄1. The continuity of f0(x1|x2)

at x̄1 is just a simplifying assumption, while the continuity f(w|x) is important for the result.

We only need this continuity to hold for a submodel of the larger semiparametric model. The

dominance condition will hold if, for example, the mapping x1 → f(w|x1, x2) is quasi-convex,

since in that case and for Γ0 = (α1, α2), the left hand side of (19) is bounded by

max

{∫
|s(w)| f(w|α1, x2)dµ(w),

∫
|s(w)| f(w|α2, x2)dµ(w)

}
<∞.

Alternative identification strategies that assume exogeneity of prices or a control function ap-

proach lead to regular identification under mild conditions, as shown in Hausman and Newey

(1995, 2016). Our results have important implications for the analysis in Santos (2011) and

Chernozhukov et al. (2016).

6 Regularization

The previous examples show that regular identification of CDFs and quantiles of UH in the

models considered may require restricting the nature of heterogeneity. In this section we in-

vestigate how common approaches considered in the literature address the lack of regularity of

these functionals. Additionally, we provide a necessary condition for CDFs and quantiles to be

regularly identified when UH is semiparametric and a discussion on how smoothness of α→ fz/α

translates into a multicollinearity problem for sieve and related estimators.

Our first observation is derived from the main idea in the previous section: functional form

assumptions that restrict the conditional likelihood may not help with the irregular identification

of CDFs and quantiles if still the mapping α→ fz/α is smooth, while UH is nonparametric. For

example, knowing the finite dimensional parameters of a semiparametric mixture, knowing the

functional forms of the idiosyncratic error terms in Kotlarski’s lemma, or knowing the functional

form of the baseline hazard in the mixed proportional hazard model do not help in restoring

regular identification of CDFs and quantiles of UH when UH is nonparametric.

We discuss how restrictions on UH translate into regularity of functionals of UH. Denote

by T (η0) the mean squared closure of T (η0) in L2(η0). That UH is semiparametric (rather than

nonparametric) formally means that T (η0) is a strict subset of L0
2(η0). The extension of the

necessary condition for regular identification of φ(η0) = Eη0 [r(α)], for a measurable function

r (·) with Eη0 [r2(α)] < ∞, is given in the following lemma. Let ΠV denote the orthogonal

projection operator onto V , where V denotes the closure of V in the norm topology.

Lemma 6.1 The necessary condition for regular identification of φ(η0) = Eη0 [r(α)] when UH

is semiparametric is

ΠT (η0)r(α) = ΠT (η0)E [s(Z)|α] , for some s ∈ L0
2. (20)
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The mismatch in smoothness between r(α) and E [s(Z)|α] , which was the source of irregularity

when UH was nonparametric, may now be restored by the projection onto T (η0). The left hand

side of (20) is the influence function for φ(η0) with semiparametric UH. We briefly discuss how

different restrictions on UH translate into regularity of CDFs and quantiles in view of this general

characterization.

A popular approach in practice is to consider a parametric distribution for the UH. A leading

example of parametric model is a finite mixture with known and finite support points. Para-

metric heterogeneity leads to a finite dimensional tangent space T (η0), which is then closed

T (η0) = T (η0), and which is generated by the scores of the specified distribution. Denote by lη
the score of UH, i.e. T (η0) = T (η0) = span(lη), assume Eη0

[
lη(α)l′η(α)

]
is non-singular, and de-

fine the projected score s0(Z) = E [ lη(α)|Z] . Often, lη = ∂ log dηθ/∂θ, where θ is the parameter

indexing UH, and s0(Z) = ∂ log fθ/∂θ, where

fθ(z) =

∫
fz/α(z)dηθ(s).

Then, simple algebra shows that a solution to (20) in s is given by sr defined by

sr(Z) = λ′rs0(Z),

where λr is a solution to

E [s0(Z)s′0(Z)]λr = E
[
r(α)l′η(α)

]
. (21)

If the Fisher information for η0 is positive definite, which means E [s0(Z)s′0(Z)] is non-singular,

then there is a unique solution λr of (21), and φ(η0) is regularly identified. More generally,

φ(η0) may be regularly identified even when η0 is not, and this corresponds to the system in

(21) having some (non-unique) solution in λr. The drawback of the parametric approach is the

high misspecification risk, which can be quantified by the dimension and form of the model’s

tangent space. If the dimension of T (η0) is D, then the tangent space of the model is at most

D−dimensional and given by S := {s ∈ L0
2 : s(z) = λ′s0(z) for some λ ∈ RD}. Estimators for

functionals of UH will be in general inconsistent when the model is misspecified.

As usual, a semiparametric approach is more robust to misspecification than a parametric

one. In Lemma 6.1 we have derived the necessary condition for regular identification of moments

when UH is semiparametric, so T (η0) is a strict subset of L0
2(η0) of infinite dimension. Examples

of semiparametric models include finite mixtures with unknown support points and sieve meth-

ods with incomplete sieve basis. Existing rate results for finite mixtures with unknown support

points suggest irregularity of the CDFs in general (see, e.g., Chen 1995 and Heinrich and Kahn

2018), although we are not aware of any paper investigating semiparametric effi ciency bounds

for finite mixtures with unknown support points. We recognize that, although the suffi cient

condition for semiparametric restrictions in Lemma 6.1 is general, it may be hard to find primi-

tive conditions for it, as computing the closure of T (η0) and the projections onto it may not be

straightforward in applications.
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As a practical approach, we recommend a sieve method where the span of {lη(α)} increases
with the sample size, i.e. D → ∞ as n → ∞. Without loss of generality normalize lη so that
Eη0
[
lη(α)l′η(α)

]
is the identity matrix. A key quantity for sieve estimation is the minimum

eigenvalue of the Fisher information matrix E [s0(Z)s′0(Z)] , denoted by ξmin ≡ ξmin(D); see Fox,

Kim and Yang (2016) and (21). We provide a useful bound for ξmin. To that end, we assume the

score operator Ab = E [b(α)|Z] from L2(η0) to L2 is compact. A well known suffi cient condition

for this is ∫
f 2
z/α(z)

fη0(z)
dη0(α)dµ(z) <∞. (22)

Under this condition, A has a sequence of singular values {µd}∞d=1 (see Engl, Hanke and Nue-

bauer, 1996).

Lemma 6.2 If (22) holds, then ξmin(D) ≤ µ2
D.

It is well known that condition (22) yields µD → 0 as D → ∞. Thus, Lemma 6.2 implies
that also ξmin(D) → 0. This is the multicollinearity problem referred to above. Furthermore,

the score operator A is an integral operator with kernel K(z, α) = fz/α(z)/fη0(z), and it is well

known that the smoother the mapping α → K(z, α), the faster the singular values µD go to

zero. In particular, for analytical kernels the singular values decay exponentially fast to zero

(Hille and Tamarkin 1931). The minimum eigenvalue ξmin(D) is also closely related to the sieve

measure of ill-posedness τD proposed in econometrics (see Chen 2007 and Blundell, Chen and

Kristensen 2007) through the relation

τ 2
D =

1

ξmin(D)
.

Prior to this paper, Blundell, Chen and Kristensen (2007, Lemma 1) obtained the bound τD ≥
1/µD in a nonparametric IV setting. Thus, the modest contribution here is the interpretation

in terms of the minimum eigenvalue of the Fisher information matrix. For applications of sieve

estimators along this line and the important role of τD (or ξmin(D)) see, e.g., Chen (2007),

Bajari, Fox and Ryan (2007), Hu and Schennach (2008), Bester and Hansen (2007), Chen and

Liao (2014), Fox, Kim and Yang (2016) and references therein. These arguments formalize the

idea that the smoother the mapping α → fz/α, the more diffi cult estimation of functionals of

UH is.

7 Conclusions

We have studied irregular identification of CDFs and quantiles (or more generally, function-

als with discontinuous influence functions) of nonparametric UH in some structural economic
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models. Example applications include the structural model of unemployment with two spells

in Alvarez et al. (2015), the binary and linear RC models (possibly with correlated effects),

the AME in a triangular model with near zero first-stage effects, bounds on average equivalent

variation, and the distribution and quantiles of UH in the Mixed Logit model. These are only

some applications, but the results are applicable more widely. Further examples in the Appendix

include a canonical model for heterogenous infectious diseases, and measurement error models

with two measurements identified by means of Kotlarski’s lemma. Furthermore, as we discuss

in the Appendix, we expect our approach to be applicable to the many situations where the

so-called Information Operator (see e.g. Begun, Hall, Huang and Wellner (1983)) is a smoothing

operator.

The most appealing feature of our method of proof is its simplicity, relative to alternative

approaches that directly compute effi ciency bounds, which are particularly diffi cult to compute

in the models we have studied. Instead, we exploit some necessary smoothness conditions that

the influence function of a regularly identified functional must satisfy. The Mixed Logit example

is illustrative of the simplicity of our method of proof. In contrast, directly computing the Fisher

information and the effi ciency bound in this model is rather challenging (and were unknown prior

to this paper).
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8 Appendix A: Proofs of Main Results

Proof of Lemma 3.1: First, the functional η0 → φ(η0) = Eη0 [r(α)] is differentiable with

influence function

χ(α) = ΠT (η0)r(α),

where ΠV denotes the orthogonal projection operator onto the closure of V, V . To see this, note

that by linearity of η0 → φ(η0), for all b ∈ T (η0),

lim
t→0

φ(ηt)− φ(η0)

t
= Eη0 [r(α)b(α)]

= Eη0 [
(

ΠT (η0)r(α)
)
b(α)].

Since UH is nonparametric ΠT (η0)r(α) = r(α) − φ(η0). On the other hand, by Lemma 25.34 in

van der Vaart (1998) the adjoint of the score operator is given by

A∗s = E [s(Z)|α]− E [s(Z)] .

The lemma then follows from Theorem 3.1 and Theorem 4.1 in van der Vaart (1991), which

establish that a necessary condition for positive Fisher information for φ(η0) is

r(α)− φ(η0) = E [s(Z)|α] ,

since E [s(Z)] = 0. �

Proof of Lemma 3.2: Let αn, α ∈ N such that αn → α, and define hn(z) = s(z)fz/αn(z).

Note (i) implies hn(z) → h(z) := s(z)fz/α(z) a.e-µ. Also, by the dominance condition, for a

suffi ciently large n, ∫
|hn(z)| dµ(z) <∞.

We conclude by dominated convergence that∫
s(z)fz/αn(z)dµ(z)→

∫
s(z)fz/α(z)dµ(z).

�

Proof of Corollary 3.1: By Lemma 3.2 if the influence function of the functional is discontin-
uous then the functional is not regularly identified. Since the indicator is not continuous, this

proves the lemma. �

Proof of Corollary 3.2: Lemma 21.3 in van der Vaart (1998) shows the pathwise differentia-
bility of the quantile functional with an influence function

rφ(α) =
−{1(α < φ(η0))− τ}

η̇0(φ(η0))
.
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That is, under the regularity conditions of the corollary, the quantile functional η0 → φ(η0)

satisfies, for all b ∈ T (η0),

lim
t→0

φ(ηt)− φ(η0)

t
= Eη0 [rφ(α)b(α)].

From Van der Vaart (1991) it follows that a necessary condition for the quantile functional to

be differentiable is

rφ(α)− φ(η0) =

∫
s(z)fz/α(z)dµ(z).

By Lemma 3.2 if the influence function of the functional is discontinuous then the functional

is not regularly identified. Since the influence function of the quantile is not continuous, this

proves the lemma. �

Proof of Proposition 3.1: By substitution of fz/α(t1, t2) we obtain

E [s(Z)|α] =

∫
T 2
s(t1, t2)fz/α(t1, t2)dt1dt2

= Cβ2e2αβh(α2
1, α

2
2),

where

h(u, v) =

∫
T 2
s(t1, t2)

1

t
3/2
1 t

3/2
2

s(u, v; t1)s(u, v; t2)dt1dt2

and

s(u, v; t) = exp

(
−ut

2
− v

2t

)
, t ∈ T , (u, v) ∈ (0,∞).

We check that the conditions for an application of the Leibniz’s rule hold. These conditions are

1. The partial derivative ∂ms(u, v; t1)s(u, v; t2)/∂mu exists and is a continuous function on an

open neighborhood B of (u, v), for a.s. (t1, t2) ∈ T 2.

2. There is a positive function hm(t1, t2) such that

sup
(u,v)∈B

∣∣∣∣∂ms(u, v; t1)s(u, v; t2)

∂mu

∣∣∣∣ ≤ hm(t1, t2) (23)

and ∫
T 2
s(t1, t2)

1

t
3/2
1 t

3/2
2

hm(t1, t2)dt1dt2 <∞. (24)

Simple differentiation and induction show that for any integer m ≥ 0

∂ms(u, v; t1)s(u, v; t2)

∂mu
= 2−m(−1)m(t1 + t2)ms(u, v; t1)s(u, v; t2).

Therefore, by monotonicity we can find u∗ and v∗ such that (23) holds with

hm(t1, t2) = 2−m(t1 + t2)ms(u∗, v∗; t1)s(u∗, v∗; t2).
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Furthermore, by E [s(Z)|α] <∞ for all α in a local neighborhood (by local boundedness of r),

and the boundedness of T , condition (24) holds. The continuity of h(u, v) is a special case of

the previous arguments with m = 0 (note the term (t1 + t2)m is one and the boundedness of T
is not needed in this case). �

Proof of Proposition 4.1: Define

b(α) = E [s(Yi = 1, Xi)|αi = α]

=

∫
1 (x′α ≥ 0) s(1, x)dvX(x).

We prove that b is continuous and by compactness of the sphere is therefore uniformly continuous.

Since the halfspaces 1 (x′α ≥ 0) and 1 (x′α0 ≥ 0) intersect in sets having surface measure of order

|α− α0| , it follows from the absolutely continuity of the angular component of X that

|b(α)− b(α0)| = O (|α− α0|) .

When x = (1, x̃), then

b(α) =

∫
1 (x̃′α2 ≥ −α1) s(1, 1, x̃)dvX(x̃),

=

∫
1 (u ≥ −α1) sα2(u)fα2(u)du,

where sα2(u) = E
[
s(Yi = 1, 1, X̃i)

∣∣∣α′2X̃i = u
]
and fα2 denotes the density of α

′
2X̃i. The absolute

continuity in α1 follows from the integrability of sα2(u)fα2(u) and Royden (1968, Chapter 5). �

Proof of Corollary 4.1: The proof follows as in Corollaries 3.1 and 3.2. �

For a function a ∈ L1(λ) ∩ L2(λ), define the Fourier transform â(t) =
∫
eit
′αa(α)dα, where

i =
√
−1. Use the notation

g̃(p, x) =

∫
eipyg(y, x)dy,

for the Fourier transform with respect to just the first argument (for g(·, x) ∈ L1(λ) ∩ L2(λ)).

Define the norms

|g|21,ρ =

∫
Sdα−1

∫
R
|g̃(p, x)|2 (1 + |p|2)ρdpdx (25)

and

|g|2ρ =

∫
|ĝ(t)|2 (1 + |t|2)ρdt. (26)

The Sobolev space Hρ(A) is defined as the set of measurable functions g such that |g|ρ <∞.

Proof of Proposition 4.2: Define the score operator A : T (η0)→ L2

Ab(z) =
Rbη0(z)

fη0(z)
1(fη0(z) > 0),
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where R denotes the Radon transform

Ra(y, x) =

∫
a(α)1(y = x′α)dα.

Define g(z) = s(z)fη0(z) and a(α) = b(α)η0(α). Since fη0(z) and η0 are bounded, it follows that

g and a are in L1(λ) ∩ L2(λ). From the definition of Ra(y, x)

sup
y,x
|Ra(y, x)| ≤

∫
|a(α)| dα <∞, (27)

and since the supports of α and X are bounded, the support of Y is also bounded and Ra ∈
L2(λ), so we can view R : L2(λ)→ L2(λ).

First, we show that if s belongs to the closure of the range of A, then g(z) = s(z)fη0(z)

belongs to the closure of the range of R. Indeed, if sn is a sequence in the range of A converging

to s in L2, then gn = snfη0(z) ≡ Ran and clearly∫
|gn(z)− g(z)|2 dz ≤

∫
|sn(z)− s(z)|2 fη0(z)dz → 0.

Next, we shall show that any function g in the closure of the range of R will have an squared

integrable weak derivative with respect to the first argument (in y). By Theorem 2.4.1 in Ramm

and Katsevich (1996) and Assumption 3(iii) it follows that |g|1,ρ < ∞ for ρ = ρ0 + (dα − 1)/2.

While by well known results in Fourier analysis, with ∂yg denoting the weak derivative with

respect to y ∫
Sdα−1

∫ ∣∣∣∂̃yg(p, x)
∣∣∣2 dpdx ≤ ∫

Sdα−1

∫
|p|2 |g̃(p, x)|2 dpdx

≤
∫
Sdα−1

∫
|g̃(p, x)|2 (1 + |p|2)ρdpdx

<∞,

and similarly, by Cauchy-Schwarz∫
Sdα−1

∫ ∣∣∣∂̃yg(p, x)
∣∣∣ dpdx ≤ ∫

Sdα−1

∫ (
1 + |p|2

)1/2 |g̃(p, x)| dpdx

≤ C

(∫
Sdα−1

∫
(1 + |p|2)1−ρdpdx

)1/2

<∞, because ρ > 2.

Thus ∂̃yg(p, x) ∈ L1(λ) ∩ L2(λ) and by Plancherell’s theorem ∂yg(·) ∈ L2(λ), as we claimed.

Define ϕ(·) = ∂yg(·) ∈ L2(λ). We proceed to verify the conditions of the dominated conver-

gence theorem, see Lemma 3.2. First, we show that g(y, x) is continuous in y. Indeed, by the

bounded support assumption

g(y, x) =

∫ y

−∞
ϕ(u, x)dx
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is absolutely continuous in y (see Royden 1968, Chapter 5).

Next, by independence of αi and Xi,

P [Yi ≤ y|Xi = x] = P [x′αi ≤ y] ,

and taking derivatives we conclude fη0(z) = η0,x(y). Thus, fη0(z) is also continuous in y by

Assumption 3(i). Moreover,

inf
α∈N

η0,x(x
′α) ≥ 1/l(x) > 0,

which yields the continuity of α→ s(x′α, x) in N. Furthermore, by Cauchy-Schwarz and∫
sup
α∈Γ0

|s(x′α, x)| fX(x)dx =

∫
sup
α∈Γ0

|g(x′α, x)| sup
α∈Γ0

∣∣∣∣ fX(x)

fη0(x
′α, x)

∣∣∣∣ dx
≤
(∫
|ϕ(u, x)|2 dudx

)1/2
(∫

sup
α∈Γ0

∣∣∣∣ fX(x)

fη0(x
′α, x)

∣∣∣∣2 dx
)1/2

≤ C

(∫
l2(x)fX(x)dx

)1/2

≤ C.

Thus, by dominated convergence r must be continuous in N . �

Proof of Corollary 4.2: The proof follows as in Corollaries 3.1 and 3.2. �

Proof of Proposition 4.3: A necessary condition for a reduced form functional φ(η0) =

Eη0 [r(α)] to be regularly identified is

r(α)− φ(η0) =

∫
s(α0 + α1x, x)dvX(x), α = (α′0, α

′
1) = (π0, U2, π1, δ)

′.

Thus, by Proposition 4.2 r(α) must be continuous in N. However, the influence function for the

PPAME

rPPAME(α) = 1(π1 > 0)1(δ > 0) + 1(π1 < 0)1(δ < 0)

is discontinuous at the points (p0, u2, 0, d0) or (p0, u2, p1, 0). Conclude that the PPAME is not

regularly identified. As for AME, by E [γ2] <∞ this functional is differentiable in the sense of

van der Vaart (1991) with an influence function rAME(β) = π1/δ. Since there is no continuous

function that is η0−a.s equal to rAME(β) = π1/δ when (p0, u2, p1, 0) is a point in the interior of

the support, we conclude that the AME is not regularly identified. �

Proof of Proposition 5.2: By Severini and Tripathi (2012, Lemma 4.1) condition (18) must
hold under regular identification. The dominated convergence theorem, as in Lemma 6, then im-

plies that r must be continuous at x̄1. This yields irregularity for functionals with discontinuous

r, such as the bound on average equivalent variation. �
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Proof of Lemma 6.1: By Lemma 25.34 in van der Vaart (1998) the so-called score operator
is given by

Ab(z) = E [b(α)|Z] , b ∈ T (η0)

Thus, by the law of iterated expectations

E [Ab(Z)s(Z)] = E [b(α)s(Z)]

= E [b(α)E [s(Z)|α]]

= E
[
b(α)ΠT (η0)E [s(Z)|α]

]
.

In Lemma 3.2 we have shown that the functional η0 → φ(η0) = Eη0 [r(α)] is differentiable with

influence function

χ(α) = ΠT (η0)r(α).

The lemma then follows from Theorem 3.1 in van der Vaart (1991). �

Proof of Lemma 6.2: The sieve measure of ill-posedness (cf. Blundell, Chen and Kristensen
2007) is

τD = sup
b∈T (η0),b 6=0

‖b‖
‖Ab‖ .

Since T (η0) = span(lη) and Eη0
[
lη(α)l′η(α)

]
is the identity then b = λ′lη and ‖b‖2 = λ′λ = |λ|2 ,

while ‖Ab‖2 = λ′E [s0(Z)s′0(Z)]λ. Thus,

τ 2
D = sup

λ∈RD,λ 6=0

|λ|2

λ′E [s0(Z)s′0(Z)]λ

=
1

infλ∈RD,|λ|=1 λ′E [s0(Z)s′0(Z)]λ

=
1

ξmin(D)
.

The bound then follows from Lemma 1 in Blundell, Chen and Kristensen (2007). �

9 Appendix B: Further Results

9.1 Nonlinear RC

In this section we describe a generic approach that can be used for generic nonlinear RC models

with continuous outcomes. We also illustrate how certain invertible RC models are ruled out by

our conditions. For the generic RC model in (9), the regularity condition reads

r(α)− φ(η0) = E [s(m(Xi, α), Xi)] . (28)
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Again, the main diffi culty in proving that the right hand side of (28) is continuous is that the

score function s(·) is only known to be in L2 (thus, s is potentially very discontinuous). To

overcome this diffi culty, we resort to Fourier analysis and use the so-called Parseval’s identity

(see Rudin 1987, pg. 187). To describe the method, assume X is absolutely continuous with

density fX(x), and define

g(z) = s(z)fη0(z) and w(z, α) =
1 (y = m(x, α)) fX(x)

fη0(z)
1(fη0(z) > 0).

Note that g ∈ L1(λ), and since fη0 is bounded, also g ∈ L2(λ). Let ηm,x denote the density of

m(x, α) when α has density η0. Under our conditions below, w(·, α) ∈ L1(λ) ∩ L2(λ), and by

Parseval’s identity, if r satisfies (28) then

r(α)− φ(η0) =

∫
ĝ(t)ŵ(t, α)dt, (29)

where, for a generic function h ∈ L1(λ), ĥ(t) = (2π)−dz/2
∫
e−it

′zh(z)dz denotes the Fourier

transform, with i =
√
−1, v denotes the complex conjugate of v and

ŵ(t, α) = (2π)−dz/2
∫

fX(x)

ηm,x(x′α)
ei(t1m(x,α)+t′2x)dx.

This integral representation is now amenable to our Lemma 3.2 under the following assumption.

Assumption 6 (i) The vector X is absolutely continuous with a bounded density fX(·); (ii)
the density ηm,x is continuous and satisfies infα∈N ηm,x(m(x, α)) > 1/l(x) for an a.s. positive

measurable function l(·) such that EX [l2(X)] <∞; (iii) the function α→ m(x, α) is continuous

a.s. in x; (iv) for all ĝ satisfying (29),∫
|ĝ(t)| sup

α∈Γ0

∣∣∣ŵ(t, α)
∣∣∣ dt <∞. (30)

Proposition 9.1 Under Assumption 6 and if r satisfies (13), then r(·) must be continuous on
N.

Proof of Proposition 9.1: First, we need to check that g and w(z, α) are in L1(λ) ∩ L2(λ),

so we can apply Parseval’s identity. From s ∈ L2 and the definition of g(z) = s(z)fη0(z), it is

clear that g ∈ L1(λ). Next, note

fη0(z) ≤
∫
Rd
dη0(α) = 1.

Thus, g also belongs to L2(λ). Furthermore, by independence of αi and Xi,

P [Yi ≤ y|Xi = x] = P [m(x, αi) ≤ y] ,
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and taking derivatives we conclude fη0(z) = ηm,x(y). Then, for p = 1 or 2,∫
|w(z, α)|p dz =

∫ ∣∣∣∣ fX(x)

ηm,x(x′α)

∣∣∣∣p dx
≤
∫
lp(x) |fX(x)|p dx

≤ C

∫
lp(x)fX(x)dx

<∞,

because fX is bounded. Then, we can apply Parseval’s identity and obtain

r(α)− φ(η0) =

∫
ĝ(t)ŵ(t, α)dt.

We now proceed to verify the conditions of Lemma 3.2 with ĝ(·) playing the role of s and ŵ(t, α)

that of the conditional density. Note

ŵ(t, α) = (2π)−dz/2
∫

fX(x)

ηm,x(m(x, α))
ei(t1m(x,α)+t′2x)dx.

Under the conditions of the proposition the function α→ ŵ(t, α) is continuous onN since ηm,x(·)
andm(x, ·) are continuous and ηm,x(m(x, α)) is bounded away from zero on N. Furthermore, the

dominance condition holds from (30). Conclude applying one more time dominated convergence

under the dominance condition Assumption 6(iii). �

We give a specific example where the conditions above are not satisfied. Consider the model

Yi = Xi +αi. Then, s(Yi, Xi) = 1(Yi ≤ Xi) solves (2) with r(α) = 1(α ≤ 0), which is discontinu-

ous at 0. This is of course an unrealistic model, but the idea is simply to illustrate which of our

assumptions is key for the results to hold. In this example, Assumption 6(i-ii) is satisfied under

mild conditions, since ηm,x(m(x, α)) = η0(α), but the integrability condition (30) fails, since for

s(Yi, Xi) = 1(Yi ≤ Xi) ∫
|ĝ(t)| sup

α∈Γ0

∣∣∣ŵ(t, α)
∣∣∣ dt = inf

α∈Γ0
η0(α)

∫
|ĝ(t1)| dt1

=∞,

where ĝ(t1) =
∫

1(α ≤ 0)η0(α)eit1αdα. Note that the discontinuity implies the lack of integra-

bility.

9.2 Identification under Kotlarski’s Assumptions

There is a growing literature in econometrics identifying the distribution of latent variables by

means of Kotlarski’s Lemma (see Prakasa Rao (1983) for a description of the method). In this
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setting we observe Z = (Y1, Y2) satisfying

Y1 = α1 + α2

Y2 = α1 + α3,

where α = (α1, α2, α3)′ is a vector of UH with independent components, and (with some abuse

of notation) Lebesgue densities η0j, for j = 1, 2, 3. The density of the data is given by

fη0(y1, y2) =

∫
1(y1 = α1 + α2)1(y2 = α1 + α3)η01(α1)η02(α2)η03(α3)dα1dα2dα3

=

∫
η02(y1 − α1)η03(y2 − α1)η01(α1)dα1.

Consider a parametric submodel where η02 and η03 are known and continuous. The model reduces

then to our original setting where fz/α(z) = η02(y1 − α)η03(y2 − α) is known and continuous in

α. If the dominance condition of Lemma 3.2 is satisfied, then the CDF and quantiles of η01 will

be irregularly identified.

9.3 A Canonical Model of Infectious Diseases

The canonical Heterogenous Mixing model of infectious diseases, see e.g. Geoffard and Philipson

(1995) and references therein, gives rise to the specification of the conditional hazard

hy/x,α(y) = β(x, α)ψ(y),

where the probability that an infected individual of type (x1, α1) will infect a susceptible indi-

vidual of class (x2, α2) is

β(x1, α1)× β(x2, α2)

(the so called factorized matching assumption) and ψ(y) is a baseline hazard function satisfying

ψ(y) =

∫
β(x, α)Iy/x,α(y)dη0(x, α), (31)

where Iy/x,α is the proportion of infected individuals at time t in class (x, α) with distribution

η0(x, α). It is often assumed that β(x, α) = φ(x)α. This model is then like a Mixed Proportional

Hazard model but with restrictions on the baseline hazard. The conditional density of Y given

X given by

fη0(y, x) =

∫
φ(x)ψ(y)αe−φ(x)Ψ(y)αdη0(α),

where we follow the notation and setting of the main text. In submodel where φ(x) and ψ(y)

are known, with ψ(y) following the restriction (31), the model fits our original formulation with
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fz/α(z) = φ(x)ψ(y)αe−φ(x)Ψ(y)α known and continuous as a function of α. It remains to verify

the dominance condition. By a simple argument, with Γ0 = (α1, α2) and α1 > 0,∫
|s(z)| sup

α∈(α1,α2)

φ(x)ψ(y)αe−φ(x)Ψ(y)αdµ(z) ≤ α2

α1

∫
|s(z)|φ(x)ψ(y)α1e

−φ(x)Ψ(y)α1dµ(z)

<∞.

This shows the irregularity of the CDFs and quantiles of η0. In related research, Horowitz (1999)

has established very slow rates of convergence (logarithmic) for the CDF of α in the standard

Mixed Proportional Hazard model. We note the irregularity holds even when φ(x) is known

and ψ(y) satisfies further restrictions. Our simple proof reveals that this is a generic feature of

heterogeneous mixing models where α→ β(x, α) is smooth.

9.4 Anatomy of the general problem

The necessary condition for regular estimation in van der Vaart (1991) is quite general, and in

its abstract form reads as

ψ̃ ∈ R(A∗),

where ψ̃ is the so-called gradient, which for our original moment functional is ψ̃(α) = r(α)−φ(η0),

and A∗ is the adjoint of the so-called score operator A. In many semiparametric models, A∗ is

a smoothing integral operator, in the sense that

A∗s =

∫
s(z)k(z, α)dµ(z)

is an operator from L2 to L2(η0) with a kernel function k such that α → k(z, α) is smooth, at

least for some submodel. We expect our results to be applicable in this general setting.
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