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Abstract

We use a local (in time) expansion of the characteristic function of the equity process in
continuous time to derive short-maturity option prices. The prices, along with data on short-
maturity options, are employed to jointly identify equity characteristics (spot volatility, spot
leverage and spot volatility of volatility) which have been the focus of separate strands of the
literature. We show that the proposed identification method yields measurements which are
statistically accurate and economically revealing. Interpreting equity as a call option on asset
values, all equity characteristics should depend on fundamental state variables, such as the vari-
ance of the firm’s assets and the extent of the firm’s financial leverage. Among other findings,
consistent with economic logic, we document a strong link between spot leverage (the generally-
negative correlation between equity returns and spot volatility) and financial leverage (the firm’s
debt-to-equity ratio), a relation invariably found to be elusive in the data. We conclude that the
economic content of option-implied measurements can be put to work to study the structural
drivers of equity (and debt) return dynamics from a novel vantage point.
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1 Introduction

Reduced-form stochastic volatility models are ubiquitous in the vast asset pricing literature (see,

e.g., Andersen and Benzoni, 2014, for a review). Such models (for instance, the “affine” specification

of Duffie, Pan, and Singleton, 2000) generally rely on parametric specifications of the equity return

dynamics.1 The adopted parametrizations are intended to make the model easy to specify, estimate,

and deploy in the pricing of structured products. In spite of the usefulness of reduced-form models,

however, the economic interpretation of the processes governing equity return dynamics continues

to be elusive. The economics of stochastic volatility and, by extension, of the equity dynamics is

the subject of this paper.

We make four contributions. First, we employ a local expansion of the characteristic function

of a general Brownian semi-martingale recently suggested by Bandi and Renò (2019) to derive a

novel closed-form pricing formula for short-maturity options. As documented by Andersen, Fusari,

and Todorov (2017), short-maturity options have seen an ever increasing interest from investors

since the introduction by the Chicago Board Options Exchange (CBOE) of the so-called “weekly

options” in 2005. We exploit the increased liquidity of this new market for the effective identification

of equity characteristics. Specifically, the proposed pricing formula, coupled with the estimation

technique recently developed by Andersen, Fusari, and Todorov (2015a) and Andersen, Fusari,

Todorov, and Varneskov (2019), allows us to jointly recover the option-implied dynamics of the

equity spot volatility, the spot volatility of volatility, and spot leverage. Identification relies on the

above quantities not varying under measure change (from statistical to risk-adjusted). In essence,

not only do option prices contain information about the prices of risk, they are also informative

about the risks themselves, as emphasized by Andersen, Fusari, and Todorov (2015b) in other

contexts.

It is well-known that identifying time-varying spot (or local, in time) quantities is a nuanced

econometric problem with a well-defined bias/variance trade-off. Localization in time is critical

to avoid biases and capture genuine time variation. Excessive localization will, however, lead to

noisy estimates due to a necessarily reduced sample size. Yet, the measurement of spot quantities

is helpful for risk assessments and proper risk management in that it amounts to the identification

of the time series of potentially-priced quantities of risk. Not surprisingly, separate interest in spot

volatility, spot volatility of volatility and spot leverage has lead to three separate strands of the

literature (which we review in Section 2). In our first contribution, we address the three strands of

1Nonparametric exceptions are contained in the work of Kanaya and Kristensen (2016) and Bandi and Renò
(2018).
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the literature in a cohesive methodological framework. Specifically, exploiting the available cross

section of short-maturity options at every point in time and the newly-proposed short-maturity

option prices, we jointly identify the three quantities for all time periods of interest. Joint option-

based identification will be shown to be particularly beneficial for spot volatility of volatility and

spot leverage in that it does not rely on the first-stage estimation of spot volatility, a necessary

input in the implementation of high-frequency sample counterparts. As a consequence, we show

that the informational content of short-term options, when suitably extracted, translates into es-

timates with favorable statistical properties as compared to sample analogues constructed using

high-frequency equity prices only. It will also be shown to yield economically revealing measure-

ments. The economic drivers of reduced-form equity characteristics represent the substantive core

of the remainder of the paper, to which we now turn.

In our second contribution, consistent with the original intuition in Merton (1974), we view

equity as a call option written on the firm’s assets with strike price given by the firm’s debt.

Within a generalized Merton model which (differently from the original specification in Merton,

1974) allows for time-varying asset volatility (correlated with asset returns) and jumps in asset

values, we derive the implied dynamics of the processes driving both the firms’ equity returns and

their volatility. Specifically, we make explicit the mapping between the reduced-form characteristic

of the equity process (i.e., spot volatility, spot volatility of volatility and spot leverage) and the

structural state variables of the model (e.g., asset value and volatility of the asset values). In

particular, because the “moneyness” of equity, viewed as a call option on the assets, is one-to-one

with the debt-to-equity ratio (i.e., financial leverage), the model provides clear implications for the

relation between reduced-form risk quantities and structural sources of risk, as captured by the

firm’s relative (to assets) debt.

Third, we study the empirical validity of the model’s predictions using the reduced-form (option-

implied) estimates of the equity characteristics along with accounting data on corporate debt for

a rich cross section of companies representing an array of industries (from financials, to energy,

to health care and so on). Unconditionally (i.e., across firms), we find a strong relation between

financial leverage and option-implied estimates with signs which are consistent with the model’s pre-

dictions (positive for spot volatility and spot volatility of volatility and negative for spot leverage).

Time-series findings (averaged across firms) confirm and reinforce these predictions. So does a more

detailed sectorial analysis. Because the model predicts that, in low financial leverage firms, the

dependence between characteristics of the equity process and financial leverage should be milder,

we also investigate companies in the bottom 25th percentile of the cross-sectional distribution of
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financial leverage. The data, along with the option-implied estimates, support this model impli-

cation as well. Importantly, we show that the use of spot estimates obtained from high-frequency

nonparametric sample analogues would be - particularly in the case of volatility of volatility and

spot leverage - excessively noisy and, therefore, less revealing about their structural drivers. This

observation explains the elusive nature of, e.g., the relation between spot leverage and financial

leverage in the existing literature (see, e.g., Figlewski and Wang, 2000, Hens and Steude, 2009,

Hasanhodzic and Lo, 2019, and the references therein) and justifies our emphasis on the discipline

imposed by semi-parametric option-implied identification.

Our fourth contribution is an alternative take on the study of the integration between equity

and bond markets and their relative pricing. Just like equity may be viewed as a call option on the

firm’s assets, the value of debt is naturally interpreted as that of a zero-coupon bond net of of the

value of the corresponding put option on asset values. Thus, credit spreads should be a function

of the same state variables which drive reduced-form equity characteristics like spot volatility,

spot volatility of volatility and spot leverage. In particular, even though the equity characteristics

depend on the firm’s structural riskiness (as represented by its financial leverage), they should

contain information about the model’s state variables that goes beyond that in financial leverage.

In this sense, they should also play a role in explaining corporate bond pricing beyond financial

leverage. This is, again, what the data suggests. Both cross-sectionally and in the time series, we

find that credit spreads are jointly explained by financial leverage and equity characteristics. As

found previously, the use of nonparametric high-frequency measurements in place of the proposed

option-implied estimates would obfuscate considerably the reported findings.

Fig. 1 offers a visualization of our approach. In a nutshell, we exploit a new market of liquid

exchange-traded derivatives (short-term options) to estimate equity characteristics (Sections 3, 4

and 5). Because equity can be viewed as a claim on the firm’s assets, the equity characteristics

can be mapped into the fundamentals of the firm (Sections 6 and 8). This map justifies further

validating the structural drivers of the equity characteristics by examining the integration between

liquid, exchange-traded, claims (equity) and illiquid, over-the-counter, claims (corporate debt) on

the same assets (Section 9).

The paper proceeds as follows. Section 2 discusses the existing literature and clarifies the pa-

per’s positioning. In Section 3 we introduce a new pricing formula for short-maturity options.

Section 4 is about identification of the equity characteristics by means of short-maturity option

data. For each day in the sample, the equity characteristics are inferred by matching the empirical

Black-Scholes implied volatilities for a cross-section of options with limited time-to-maturity to the
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Figure 1: A diagram of the paper’s structure.

theoretical implied volatilities from the model proposed in Section 3. Section 5 studies the accuracy

of the procedure and compares it to that of methods of inference based on sample counterparts con-

structed using high-frequency price data. In Section 6 we derive theoretical implications for equity

dynamics from a Merton’s style structural model with stochastic volatility in the unobservable asset

process and jumps in asset values. The model leads to explicit functional forms mapping the equity

characteristics into structural state variables. These relations are at the core of our empirical work.

Section 7 presents the data and provides details about the merging of short-maturity option price

information and necessary (for the purposes of our analysis) accounting information. Empirical

findings supporting structural interpretations of the equity characteristics are reported in Sections

8 and 9. Section 10 concludes by providing directions for future work. The Appendix contains tech-

nical details (including additional simulations and supporting empirical analysis regarding specific

corporate sectors).

2 Positioning in the existing literature

A burgeoning literature has focused on the identification of a variety of measures of “variation”

using high-frequency price data (a rich discussion is provided by Aı̈t-Sahalia and Jacod, 2014).
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The literature has studied the identification of volatility measures (like spot volatility)2 as well

as the identification of quantities which depend on (innovations to) volatility (like spot leverage3

and spot volatility of volatility4).

While spot volatility can be rather successfully identified using nonparametric high-frequency

sample analogues, quantities which depend on estimates of spot volatility (like estimates of spot

leverage and estimates of spot volatility of volatility) are more delicate. Aı̈t-Sahalia, Fan, and Li

(2013) are emphatic about this observation in the case of spot leverage. They write: “ ... even in

idealized situations, the bias (in leverage estimation) is large, and attempts to correct for the latency

of the volatility, or for the presence of market microstructure noise, do not improve matters.”

A natural solution, one which we adopt in this paper, is to use methods of identification which do

not require preliminary estimates of spot volatility and instead hinge on the joint estimation of all

quantities of interest. To this extent, we follow the logic in Andersen, Fusari, and Todorov (2015a)

and Andersen, Fusari, and Todorov (2015b), whose focus is on spot volatility estimation,5 and use

panels of option over each day to jointly identify the relevant state variables. In agreement with

our desire for robustness in the estimation of quantities which depend on spot volatility estimates,

we show that the use of option information is particularly suitable for the purpose of identifying

spot leverage and spot volatility of volatility. Their option-based estimation, in fact, dispenses with

the first-stage evaluation of spot volatility as a necessary input to define sample analogues.

While the computation of sample counterparts based on high-frequency asset prices amounts

to a fully nonparametric procedure, the method we suggest is semi-parametric in nature because of

its reliance on parametric assumptions on the jump sizes. The usefulness of parametric restrictions

on the jump sizes for the identification of otherwise unrestricted (i.e., nonparametric) stochastic

volatility models for equity returns has been highlighted in other contexts (Bandi and Renò, 2016,

and Bandi and Renò, 2018)

The literature on option pricing and related inferential issues is broad and well-established (see,

e.g., Garcia, Ghysels, and Renault, 2010). Interesting recent work has exploited expansions of the

implied volatility surface either in the maturity dimension (Medvedev and Scaillet, 2007) or in

the maturity and long-moneyness dimension (Aı̈t-Sahalia, Li, and Li, 2019) in order to calibrate

2See, e.g., Fan and Wang, 2008, Mykland and Zhang, 2008, Kristensen, 2010, Zu and Boswijk, 2014, Mancini,
Mattiussi, and Renò, 2015, Bandi and Renò, 2018, Bibinger, Hautsch, Malec, and Reiss, 2019, and the references
therein.

3See, e.g., Bandi and Renò, 2012, Aı̈t-Sahalia, Fan, and Li, 2013, Wang and Mykland, 2014, Wang, Mykland, and
Zhang, 2017, Kalnina and Xiu, 2017, Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang, 2017, and the references therein

4See, e.g., Vetter et al., 2015, Sanfelici, Curato, and Mancino, 2015, Barndorff-Nielsen and Veraart, 2012, and the
references therein.

5See, also, the work of Todorov (2019) on spot volatility estimation from option data.
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or estimate, respectively, stochastic volatility models. We do not expand the implied volatility

surface. The procedure identifies the state variables by matching (implied volatilities from) traded

prices to (implied volatilities from) new theoretical prices which we derive a from a local (in ma-

turity) expansion of the price process’ characteristic function (c.f. Bandi and Renò, 2019 for the

characteristic function’s expansion). While of independent interest, the local nature of the char-

acteristic function’s expansion makes it particularly suitable for the valuation of short-maturity

derivatives. In this paper, we employ it in order to price short-maturity options and exploit the

recent surge in their trading, as documented by Andersen, Fusari, and Todorov (2017), for the

effective identification of the equity characteristics and their dynamics.

The mapping between reduced-form estimates of the equity characteristics and their structural

drivers is central to our work. Efforts to provide structural interpretations of reduced-form models

for equity and bond returns begin with Merton (1974) and hinge on the idea that the value of

equity is that of a call option written on the firm’s assets with strike price given by the firm’s debt.

Similarly, the value of debt is that of a zero-coupon bond net of the value of the corresponding put

option on asset values. To the best of our knowledge, the existing finance literature has almost

exclusively focused on the latter implication. Because the value of corporate debt net of the value

of a zero-coupon bond can be expressed as an implied put written on asset values, (by simply taking

logs) credit spreads can be linked to asset dynamics through the implied (put) option value. This

observation has spurred a considerable amount of work on the pricing of risk in the corporate bond

market.6

The first implication (i.e., equity is a call on the assets) is less explored. The work of Choi

and Richardson (2016), and Engle and Siriwardane (2017) are relevant exceptions related to the

present paper. Both Choi and Richardson (2016) and Engle and Siriwardane (2017) focus on

the link between volatility and financial leverage using discrete GARCH-type volatility models.

Differently from their work, we operate in the context of a flexible continuous-time model. By a

simple application of Itô’s Lemma, the dynamics of all equity processes (and, in particular, of spot

volatility, spot volatility of volatility and spot leverage, i.e., our objects of interest) are shown to

be functions of the unknown state variables (e.g. volatility of the assets and financial leverage).

This mapping gives us a theoretical framework to evaluate structural relations, like the dependence

between spot leverage and financial leverage (Black, 1976), which have been elusive in the literature

(see, e.g., Figlewski and Wang, 2000, Hens and Steude, 2009, Hasanhodzic and Lo, 2019, and the

6See, e.g., Eom, Helwege, and Huang (2004), Chen, Collin-Dufresne, and Goldstein (2008), Schaefer and Strebulaev
(2008), Huang and Huang (2012), Du, Elkamhi, and Ericsson (2018), Culp, Nozawa, and Veronesi (2018), Huang,
Shi, and Zhou (2019), and the references therein.
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references therein). Empirically, using the proposed option-implied estimates, we suggest that this

dependence is stronger than previously reported.

Finally, regarding the study of the structural determinants of corporate bond returns, our

interest in this paper is not in spanning the space of possible drivers, something which has been

done successfully in existing work, cited above. Our interest is, instead, in using corporate bond

returns has a lens to interpret the economic significance of the option-implied equity characteristics.

Because these characteristics should be a function (like bond returns) of the asset dynamics, our

documented relation between bond returns and equity characteristics speaks to the existence of

common structural drivers. These common drivers are further evidence for hard-to-detect structural

interpretations of equity. Importantly, they are also evidence for a different take on the integration

between the corporate bond market and the more liquid equity market.

3 Pricing short-maturity options

We write the equity value as Et. We begin by expressing the dynamics of the equity log-return

process (d logEt = det) under the statistical measure (P) as

det = dedt + cedN
e
t︸ ︷︷ ︸

dJet

, (1)

where ed is a diffusive component and Je is a discontinuous finite-variation component. The diffusive

dynamics are given by

dedt =

(
µet −

σ2
t

2

)
dt+ σtdW

e
t (2)

dσt = αtdt+ βtdW
σ
t , (3)

where W e and W σ are correlated Brownian motions with corr(dW e
t , dW

σ
t ) = ρtdt. The spot volatil-

ity (σt), the spot volatility of volatility (βt) and spot leverage (ρt) are the equity characteristics

which represent the objects of our interest.

The discontinuous dynamics are modeled by way of an independent (of the Brownian motions)

compound Poisson process, Je, with Gaussian jump sizes, ce.
7 The conditional mean and the

standard deviation of the jump sizes are µj,t and σj,t, respectively. The infinitesimal intensity of

the jumps is λtdt.

7Gaussianity is a classical assumption on the distribution of the jump sizes in log returns, one which can be
very easily relaxed. Any parametric assumption on the density of the jump sizes is, in fact, allowed as long as the
corresponding characteristic function is known.
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Define z = iuσt
√
τ , for notational simplicity. Following Bandi and Renò (2019), the charac-

teristic function (under the risk-adjusted measure (Q)) of the log-return diffusive component, i.e.,

Cd(u, τ) = EQ
t [eiu(logEdt+τ−logEdt )] with u ∈ C and τ = T − t, can be expressed as a (small τ)

expansion given by

Cd(u, τ) = eiu(rt−δt−
σ2t
2

)τe
z2

2

(
1 + z3βtρt

2σt

√
τ +

1

2
z2αt
σt
τ +

1

8

β2
t

σ2
t

z2(2− ρ2
t z

2(−z2 − 4))τ

)
, (4)

c.f. Appendix B, where rt is the risk-free rate and δt is the dividend yield.

We note that the characteristic function’s expansion of the standardized diffusive price process

under the risk-adjusted measure (i.e.,
(logEdt+τ−logEdt )−(rt−δt−

σ2t
2

)τ

σt
√
τ

) is second order in
√
τ . A first-

order expansion would allow us to identify σt and βtρt, but not βt and ρt separately. The reported

second-order expansion permits identification of all equity characteristics.

In light of the Gaussian assumption on the jump sizes, the characteristic function of the jump

component in logEt+τ − logEt (with risk-adjusted parameters) is given by:

Cj(u, τ) = eτλt(e
iuµj,t−

1
2u

2σ2j,t−1−uµ̄j,t), (5)

where µ̄j,t is a jump compensator expressed as eµj,t+
1
2
σ2
j,t − 1.

Following Dubinsky, Johannes, Kaeck, and Seeger (2018), if an earning announcement is sched-

uled before the expiration of the option, we can augment the equity return process with a jump

component associated with the announcement. Scheduled earning announcements are modeled

as deterministic in their arrivals and stochastic in their sizes. Assuming that each earning an-

nouncement generates a Gaussian jump with zero mean and standard deviation σea, the associated

characteristic function over τ = T − t, inclusive of a convexity adjustment, can be expressed as:

Cea(u, τ) = e

∑NdT

i=Ndt +1
−
iuσ2i,ea

2
−
u2σ2i,ea

2
, (6)

where Nd
t counts the earning announcements before time t. Due to our use of short-term instru-

ments, the number of earning announcements over τ , per option, is at most one in our sample. As

a consequence, we only estimate one size variance, i.e., σ2
i,ea = σ2

ea.

Because of the independence between ed and Je (and the sizes of potential earning announce-

ments), an assumption which is standard in the literature, we may write the complete log-return

characteristic function as

EQ
t [eiu(logEt+τ−logEt)] = Cd(u, τ)× Cj(u, τ)× Cea(u, τ), (7)

which is a sort of Lévy-Khintchine representation.
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Short-maturity option prices are now obtained by Fourier inversion of the characteristic function

as in the work of Heston (1993), Bakshi and Madan (2000) and many others.8

4 Identifying time-varying equity characteristics

The diffusive component of the data generating process in Eqs. (2) and (3) is nonparametric in the

sense that no parametric structure is imposed on the equity characteristics of interest, i.e., σt, βt,

and ρt. Because of the imposition of a parametric assumption on the distribution of the jump sizes,

we will define the full model in Eq. (1) as being “semiparametric” in nature. The assumed semi-

parametric model subsumes most of the specifications commonly used in continuous-time finance.

For example, spot leverage, ρt, is allowed to be time-varying (c.f., Bandi and Renò, 2012).

Estimation of the model is based on a panel of short-maturity options written on equity. High-

frequency data on equity prices may - however - be used to regularize the criterion, as we discuss

is Section 8.

We denote the time-t prices of European OTM options on equity by Ot,k,τ . Option prices are

expected discounted payoffs under the risk-adjusted measure:

Ot,k,τ =

 EQ
t

[
e−
∫ t+τ
t rs ds (Et+τ −K)+

]
if K > Ft,t+τ

EQ
t

[
e−
∫ t+τ
t rs ds (K − Et+τ )+

]
if K ≤ Ft,t+τ ,

(8)

where τ is the tenor or time-to-maturity, K is the strike price, Ft,t+τ is the futures price of the

underlying asset at time t for date t + τ and k = log(K/Ft,t+τ ). As is common, we quote option

prices in terms of their Black-Scholes implied volatility (BSIV). The option BSIV is denoted by

κt,k,τ .

Given rt and δt, the theoretical time-t price of an option with tenor τ and log-moneyness k

depends on the value of the state vector St = (σt, ρt, βt, αt, λt, µj,t, σj,t, σea): we denote the implied

BSIV by κ̃t,k,τ (St). Theoretical prices are computed as in Section 3. We estimate the model using

the Mt options with tenor shorter than one month which are available at the end of the trading

day. We employ the following criterion:

{Ŝt}Tt=1 = argmin
{St}Tt=1

{ ∑
j:τj≤31

(
κt,kj ,τj − κ̃kj ,τj (St)

)2
Mt

}
. (9)

As in Andersen, Fusari, and Todorov (2015a), a critical aspect of the objective function in Eq.

(9) is the mean squared distance between theoretical and empirical BSIVs. Minimizing the mean

8We use the Fourier-cosine method of Fang and Oosterlee (2008).
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squared error leads to the joint estimation of the state vector St and, in particular, of the equity

characteristics of interest.

Turning to identification, Fig. 2 shows that options with different levels of moneyness load

in distinct ways on different equity characteristics. Specifically, the left panel documents that at-

the-money options are particularly revealing about the level of spot volatility (i.e., ∂κ
∂σt

> 0, for

K = et). The effect of σt on the implied volatility surface quickly dissipates for strikes progressively

out-of-the-money. From the middle panel, we observe that options that are exactly at-the-money

do not depend on ρt (i.e., ∂κ
∂ρt

= 0, for K = et). However, mildly out-of-the-money puts and calls

load on ρt with opposite signs: it is the slope of the implied volatility (around) at-the-money which

provides identification for spot leverage. Finally, the right panel shows that the identification of

spot volatility of volatility derives from both at-the-money and out-of-the-money options, with the

loading being a function of spot leverage and its sign. In essence, Fig. 2 illustrates that a cross

section of options can jointly identify all equity characteristics.
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Figure 2: Identification of the equity characteristics from options. From the left to the right
panel, we plot the derivative of the implied volatility with respect to spot volatility, spot leverage,
and spot volatility of volatility. We compute option prices with parameters as in Subsection 5.1.
We report results for ρt = −0.46, ρt = 0.46, and ρt = 0. The option maturity is set equal to 12
calendar days, in line with the average maturity used in the empirical analysis (see Table 3). The
vertical line in all three panels corresponds to the spot value of equity, i.e. et.
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5 Option-implied identification: performance

Comparing option-implied estimates to estimates based on high-frequency price data can hardly

be done using asymptotic arguments. While the former rely on cross-sectional information across

levels of option moneyness, the latter hinge on time-series information over high-frequency prices

on the options’ underlying. The result is different asymptotic conceptual frameworks.

Yet, it is important to evaluate the identification potential that the recent surge in the liquidity

of short-maturity options has brought about. In the same vein, it is important to assess the ability

of the proposed (local) pricing expansion to exploit such potential. To this extent, we focus on

finite sample performance in realistic scenarios allowing for frictions in option prices.

Subsection 5.1 focuses on the accuracy of the estimates of the equity characteristics across

different (short) times to maturity. Subsection 5.2 compares the estimated dynamics of the option-

implied equity characteristic to the dynamics implied from nonparametric high-frequency sample

analogues.

5.1 Accuracy of short-tenor identification

We work with the double-jump model popularized by Duffie, Pan, and Singleton (2000) and adopted

by Broadie, Chernov, and Johannes (2007), among many others. The model is able to reproduce

different degrees of skewness and excess kurtosis via stochastic volatility and return/volatility co-

jumps. The risk-adjusted dynamics are given by

det =

(
rt − δt −

σ2
t

2

)
dt+ σtdW

e
t + dJet (10)

dσ2
t = κd (v − σ2

t ) dt+ σd

√
σ2
t dW

σ
t + dJσt ,

where (W e
t ,W

σ
t ) is a two-dimensional Brownian motion with (constant) instantaneous correlation

ρ and (Jet , J
σ
t ) is an independent (of the Brownian motion) bivariate compound Poisson process

with intensity λ. The marginal distribution of the volatility jump sizes, cσ, is exponential with

mean µσ, while the distribution of the jump sizes in the logarithmic prices, ce, is Gaussian with

mean µj + ρjcσ and standard deviation σj , conditional on cσ. The addition of volatility jumps will

be shown not to be critical for our purposes. We return to this observation below.

We use the parameter estimates from Broadie, Chernov, and Johannes (2007). However, differ-

ently from Broadie, Chernov, and Johannes (2007), we allow for correlated jumps in volatility and

returns (i.e., we set ρj = −0.5).9 Finally, for simplicity, we also set rt and δt equal to zero. Table 1

reports the values of all other parameters.

9Bandi and Renò (2018) estimate a strongly negative jump-induced leverage effect.
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Parameter Value Parameter Value

ρ −0.4600 λ 1.0080
v 0.0144 µj −0.0501
κd 4.0320 σj 0.0751
σd 0.2000 µσ 0.0930

ρj −0.5000

Table 1: Parameter values. With the exception of ρj, the numbers are from Broadie, Chernov, and
Johannes (2007).

In order to design simulations that are as close as possible to our data (c.f. Table 3), we

consider N = 11 options on an equi-spaced grid within the log-moneyness range [−4, 2] · σATM√τ ,

where σATM is the at-the-money Black-Scholes implied volatility (ATM-BSIV). Because we are

not interested in dynamics in this subsection, but solely in the accuracy of the estimates as a

function of tenor, we price a single cross section of options over a single day. We choose the spot

volatility as being equal to the long-run mean of the volatility process (i.e., σ2
t = 0.0144 = v). The

model-generated option prices are then transformed into BSIVs (κk,τ ).

We allow for possible observation error in κk,τ . Specifically, we assume that the observed BSIVs

κ̂k,τ are given by:

κ̂k,τ = κk,τ + εk,τ , εk,τ = σk,τ ζk, k = 1, ..., N. (11)

In order to select the volatility of the error term εk,τ , we follow Andersen, Fusari, Todorov, and Var-

neskov (2020) and set σk,τ = 0.25ψk,τ κk,τ , with ψk,τ denoting an estimate from a kernel regression

of the relative bid-ask spreads of the SPX options on their volatility-adjusted log-strikes. Finally,

given the evidence of mild positive error dependence in Andersen, Fusari, Todorov, and Varneskov

(2020), we specify the mean-zero errors {ζk}k=1,...,N as being AR(1) processes with autoregressive

parameter 0.5.

We estimate the model using the objective function in Eq. (9).10 The exercise is conducted by

varying the tenor of the full cross section of options from one day to thirty days.

Fig. 3 provides a visual representation without measurement error in option prices. In the

absence of volatility jumps (i.e., setting µσ = 0), spot volatility and jump variation are almost

perfectly recovered, regardless of the option’s tenor (Panel (a)). The quantities βt and ρt are

estimated rather precisely with only a small positive bias. Adding jumps in volatility (as in Panel

(b)) mainly affects the identification of the jump variation, which is now estimated with a sizable

10The minimization is carried out using the Nelder-Mead simplex algorithm in the NLopt library
(https://nlopt.readthedocs.io).
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upward bias.

We perform the same analysis but add observation error to the options BSIVs, as described

in Eq. (11) (c.f. Fig. 4). In this case, we report the median of the estimates across 1000 Monte

Carlo draws. Spot volatility is estimated almost exactly. Once more, βt and ρt are also estimated

rather precisely, with only a slight positive bias. Similarly to the case without observation error,

the introduction of volatility jumps (in Panel (b)) significantly biases the estimation of the jump

variation.
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Figure 3: Short-tenor identification The left, middle, and right panels show the estimated coef-
ficients as a function of the time-to-maturity of the cross section of options used in the estimation.

The instantaneous jump variation is computed as 2λ(eµj+0.5σ2
j −1−µj). Option prices are generated

according to the model in Eq. (10).
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Figure 4: Short-tenor identification. The left, middle, and right panels show the estimated coef-
ficients as a function of the time-to-maturity of the cross section of options used in the estimation.

The instantaneous jump variation is computed as 2λ(eµj+0.5σ2
j −1−µj). Option prices are generated

according to the model in Eq. (10). Observation error in option prices is added as in Eq. (11).
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5.2 Option-implied estimates versus high-frequency estimates

Because the equity characteristics do not vary under change of measure, they can be estimated

either by using time-series observations on the underlying asset or by using a panel of options. In

this subsection, we compare the estimation accuracy of the aforementioned strategies over time.

We work, again, with the double-jump stochastic volatility model in Eq. (10). Because we are

interested in dynamics, we let both σd (the parameter controlling the independent variation of the

spot volatility of volatility with respect to spot volatility) and ρ be time-varying. We write ρd,t and

σd,t and assume that the evolution of both ρd,t and σd,t is that of an AR(1) process with a half-life

of one year.

For simplicity in comparing alternative inferential methods, we assume that et belongs to the

same parametric model class under the statistical (P) and the risk-adjusted (Q) measures. Table 2

reports the full set of parameter values.

Under P Under Q
Parameter Value Parameter Value Parameter Value Parameter Value

ρd,t - λ 1.0080 ρd,t - λ 1.0080
v 0.0144 µj −0.0284 v 0.0144 µj −0.0501
κd 4.0320 σj 0.0490 κd 4.0320 σj 0.0751
σd,t - µσ 0.0315 σd,t - µσ 0.0930

ρd: AR(1) with half-life 1 year σd: AR(1) with half-life 1 year

ρd,0: -0.46 σd,0: 0.2

Table 2: Parameter values (from Broadie, Chernov, and Johannes, 2007).

Given the parameters in Table 2, we simulate a price trajectory that spans an horizon of

ten years. We generate prices at 5-minute intervals (i.e., M = 85 observations over a 7-hour

trading day). A 5-minute frequency is believed to translate into sufficient reduction in market

microstructure noise for stocks similar to the ones we use in our empirical investigation.

At the end of each day, we price, again, 11 options on an equi-spaced log-moneyness grid

covering the range [−4, 2] ·σATM√τ . We set the maturity of the options to be equal to 12 calendar

days. This results in a time-varying range of moneyness, depending on the level of volatility, which

mimics the features of the option data we use (c.f. Table 3). As in Subsection 5.1, we transform

the model-generated option prices into BSIVs (κt,k,τ ) and allow for observation error.

Finally, we estimate σt, ρd,t and βt using two sets of data: short-maturity option data only and
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high-frequency price data only.

Regarding the first strategy, for which we denote the estimates with a “hat”, we implement the

procedure in Section 4 by estimating the equity characteristics at the end of each trading day. We

then take averages of these (annualized) estimates within a month.

Consider the second strategy, for which we denote the estimates with a “tilde”. Using intra-day

prices, we estimate - over each day - the diffusive variance, i.e., σ2
t , by employing the threshold

bipower variation introduced by Corsi, Pirino, and Renò (2010):

σ̃2
t =

M∑
j=1

|∆t,je|2I{|∆t,je|2≤ϑj}, (12)

where |∆t,je| is the absolute value of a log-price increment on day t over the j-th 5-minute interval

(with j = 1, ...,M), IA is the indicator function over the set A, and ϑj is a threshold which depends

on the value of volatility immediately preceding the j-th time interval (we refer to Corsi, Pirino,

and Renò, 2010, for details on the threshold choice).

Given σ̃2
t , we compute monthly averages of (annualized) high-frequency estimates of the equity

characteristics:

σ̃2
m,t =

252

21

t+21∑
t=1

σ̃2
t , (13)

β̃2
m,t =

252

21

t+21∑
t=1

(
∆tσ̃

2
t

)2
, (14)

ρ̃m,t =
252
21

∑t+21
t=1 (∆tσ̃

2
t −∆tσ̃2

t )(∆tet −∆tet)√
252
21

∑t+21
t=1 (∆tσ̃2

t −∆tσ̃2
t )

2
√

252
21

∑t+21
t=1 (∆tet −∆tet)2

. (15)

Monthly averages will also be used in the empirical work in Section 8. Their calculation is standard

in the asset pricing literature and allows us to better align equity information to accounting informa-

tion (which, as discussed more thoroughly in Section 7, is rendered monthly by linear interpolation

of quarterly observations).

We emphasize that, while the option-implied estimates are genuinely “spot”, the high-frequency

estimates cannot be. The choice of a sampling horizon, say φ, however small, such that high-

frequency price observations are collected over (t−φ, t), is an inevitable aspect of the construction

of high-frequency price-based spot estimators. In this paper, we choose a day (φ = ∆t) in the

construction of the main input, i.e., spot variance (c.f. Eq. (12)). We will see that this choice

results in average high-frequency estimates σ̃2
t close to the true value.

Fig. 5 visualizes our findings. Both options and high-frequency data are able to recover the

trajectory of spot volatility with high precision. However, when focusing on the estimation of spot
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leverage and spot volatility of volatility, the high frequency-based estimates show a sizable positive

bias while the option-based estimates display a remarkable level of accuracy.11

Two observations are in order. First, as mentioned in Section 2, the literature has emphasized

the empirical challenges related to leverage identification using price data (see, e.g., Aı̈t-Sahalia,

Fan, and Li, 2013). The same challenges plague the nonparametric estimation of volatility of volatil-

ity. In both case, the first-stage estimation of spot volatility, and its associated estimation error,

leads to biased and/or excessively noisy second-stage estimates. By not relying on the first-stage

estimation of spot volatility, option-based methods yield a cleaner signal, one which we exploit

below to study the structural drivers of equity. Second, microstructure noise is an additional (to

the first-stage estimation of spot volatility) source of bias in the estimation of spot leverage and

spot volatility of volatility. While the use of 5-minute data would reduce microstructure noise con-

siderably in the data, it would not eliminate it completely (and would lead to enhanced estimation

error). From a bias standpoint, the reported results (which account explicitly for measurement

error in option prices but do not account for microstructure noise in the high-frequency prices of

the underlying) can, therefore, be viewed as being conservative.
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Figure 5: Option-implied vs. high-frequency estimates. We plot mean values of equity
characteristic estimates based on simulated option and price data.

In Fig. 6, we report infeasible high-frequency versions of the estimators in Eqs. (13)-(15) con-

structed by replacing σ̃2
t with the unobservable true spot variance σ2

t sampled both daily and every

5-minutes. Using daily spot variance observations produces estimates of the leverage coefficient

(middle panel) which are significantly biased while the estimates of the volatility of volatility (right

panel) are fairly precise. When using 5-minute spot variance observations, the estimated trajec-

11 Rather than β̃2
m,t, in the third panel we plot estimates of the component of the volatility of variance independent

of the spot variance itself, i.e., σ2
d,t. Each estimated (monthly) value is defined as σ̃2

d,t = 252
21

∑t+21
t=1 ∆2

t σ̃
2
t .
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tories of both leverage and volatility of volatility are close to the true ones. However, they are

affected by a few occasional spikes produced by the jumps in volatility.

As shown in Subsection 5.1, the volatility jumps hardly affect the option-based estimates. In

essence, while the price jump dynamics and the diffusive dynamics have an important impact

on option prices (and option-based identification) for out-of-the-money and at-the-money options

respectively, the impact of volatility jumps is extremely limited for our purposes. For parsimony,

consistent with the specification in Eq. (1), we dispense with them in what follows.
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Figure 6: Infeasible high-frequency estimates. We plot mean values of equity characteristic
estimates based on simulated price data.

6 A structural model of equity

The emphasis of the stochastic volatility literature has been on the estimation of reduced-form

models of equity. Our aim is to use the estimated reduced-form equity characteristics to study the

structural determinants of the equity dynamics. While this objective necessarily requires modeling

the asset dynamics, any empirically-reasonable model specification could be employed to derive

testable theoretical links between equity and its structural drivers (as in Proposition 1).

In what follows, we use a specification which has proved successful in recent work focused on the

term structure of credit spreads (c.f. Du, Elkamhi, and Ericsson (2018)). Specifically, we assume

the firm’s asset dynamics are given by the following affine stochastic volatility model with jumps:

dAt = µAtdt+At

√
V A
t dW

A
t + JAt AtdNt (16)

dV A
t = κ(θ − V A

t )dt+ η
√
V A
t dW

V
t , (17)
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where WA
t and W V

t are correlated Brownian motions with

corr(dWA
t , dW

V
t ) = ρAdt,

Nt is a Poisson counting process with intensity λA and JAt is a jump size in asset values. The

assumed specification adds stochastic volatility and jumps to the Merton (1974) model. Both

features are warranted. In the absence of stochastic volatility, equity’s spot leverage is constant

and equal to 1,12 which is at odds with its time-variation and negativity in equity data.13 Without

jumps in assets, equity would not have jumps in returns, which is - again - contrary to empirical

evidence. It is, for instance, contrary to the importance of return jumps in the valuation of out-of-

the-money options.

Equity is a residual interest in the (asset) value of the firm. Following Merton (1974), the equity

value is, therefore, modeled as the value of a call option on the firm’s asset value with strike price

given by the face value of debt, i.e., Bt: Et := E(At, V
A
t ). We may write

Et := E(At, V
A
t ) = AtF1 −BtF2, (18)

where F1 and F2 are Heston-style (Heston, 1993) probabilities for call pricing and Bt is the face

value of debt.

We now use the “physicist” notation and write, e.g., EA to represent the derivative of Et with

respect to At. In other words, we remove the subscript t from all sensitivities.

Proposition 1. The model in Eq. (16) and Eq. (17) implies that:

1. Equity spot volatility can be expressed as:

σt =

√
V A
t

E2
t

(
A2
tE

2
A + η2E2

V + 2ρAηEAEVAt
)
. (19)

2. Equity spot volatility of volatility can be expressed as:

βt =

√
V A
t

4σ2
t

(
A2
tΛ

2
A + η2Λ2

V + 2AtηρAΛAΛV
)
, (20)

where ΛA and ΛV are defined in Appendix C as functions of EA, EV , EAA, EV A, EV V and

the model parameters.

12This is easily seen by setting η equal to zero in Eq. (21) of Proposition 1. More generally, all implied values of
the equity characteristics in Merton (1974) model can be found by setting η equal to zero in Proposition 1.

13The importance of stochastic volatility in asset values for capturing credit risk has been emphasized by, e.g.,
Huang, Shi, and Zhou (2019).
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3. Spot leverage can be expressed as:

ρt =
V A
t

2Etσ2
t βt

(
ΛAEAA

2
t + ΛVEV η

2 + ρAηAt (ΛAEV + ΛVEA)
)
. (21)

Proof. See Appendix C.

Given Eq. (19), Eq. (20) and Eq. (21), it is apparent that the equity characteristics depend on

the Greeks (delta, EA, vega, EV , gamma, EAA, vanna, EV A, and volga, EV V ) of the implied call

option on asset values.

In order to visualize the relation between the equity characteristics and the state variables of

the structural model (namely, asset value and asset volatility), we implement Eqs. (19), (20), and

(21) with parameter values taken from Du, Elkamhi, and Ericsson (2018).14 It is clear from Eq.

(18) that the equity “moneyness” is a one-to-one function of financial leverage. Because we are

interested in the link between equity characteristics and financial leverage, we do not report graphs

with respect to At but, rather, with respect to Lt = Bt/At, where Bt denotes, as earlier, the face

value of the firm’s debt (c.f., Fig. 7)

The top left panel displays a non-linear, positive relation between the firm’s financial leverage

and spot volatility: as financial leverage increases, the riskiness of equity - as represented by spot

volatility - increases too. We recall that, while the positive link between spot volatility and financial

leverage is a textbook implication of a Modigliani and Miller economy, its empirical validation (on

which we focus in Section 8) has resulted in mixed findings.15 The second and the third top panels

document two findings which appear to be less understood: both spot leverage and spot volatility

of volatility increase, in absolute value, when financial leverage increases. The relation between

spot leverage (resp. spot volatility of volatility) and financial leverage is negative (resp. positive).

The bottom panels show the maps between σt, ρt, βt and asset volatility.

In essence, Fig. 7 illustrates that financial leverage and asset volatility (and their variation over

time) should affect the dynamics of the processes driving stochastic volatility models of equity.

In turn, the dependence on underlying state variables is expected to generate strong correlations

between the equity characteristics, something which is coherent with our empirical findings, to

which we now turn.

14In their specification, the jump sizes, JAt , are Gaussian. We use the parameter values corresponding to the 50th
percentile in their Table VII.

15Choi and Richardson (2016) have recently been successful at linking financial leverage to volatility. Chun, Kim,
Morck, and Yeung (2008) and Brandt, Brav, Graham, and Kumar (2009), inter alia, provide negative results.
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Figure 7: The map between structural and reduced-form quantities. The figure shows the
relation between financial leverage (Lt) and asset volatility (V A

t ) and the reduced-form character-
istics of the stochastic volatility model in Eq. (1). The asset volatility and the correlation between
asset returns and asset volatility are set equal to 0.2 and -0.5, respectively.

7 The data

We use data from four sources. Daily option data come from OptionMetrics’ IvyDB. Intra-day

price observations are from TickData. We use Compustat to gather firms’ accounting information.

Finally, we collect CDS data from Markit from January 2006 to December 2014.16

For each ticker of the S&P500 constituents between 2006 and 2015, we obtained all of the

available options in the OptionMetrics database. For each option contract, OptionMetrics provides

the strike price, the time-to-maturity, the best ask and the best bid price at settlement, among other

contract characteristics. The BSIV is computed by OptionMetrics using the binomial model.17

16As in Kelly, Manzo, and Palhares, 2019, we retain the contracts with the most common default definition at
each point in time: the MR clause from January 1, 2002 to March 15, 2009, the XR clause from March 15, 2009
to September 22, 2014, and the XR14 clause from September 23, 2014 onward. For each firm, we create monthly
observations by averaging the available quotes over each month.

17Even if options on single names are American options, given that our analysis relies on short-maturity contracts,
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We apply the following filters. First, we only retain options with time-to-maturity less than or

equal to 31 calendar days. Second, we discard options without positive open interest and positive

volume. Also, we discard all the options for which the ratio of the ask price over the bid price

exceeds ten. Third, we remove observations with missing values for implied volatility. Fourth,

for each day and for each option’s time-to-maturity, we infer the underlying forward price using

put-call parity. Fifth, for each available strike, we keep only either the corresponding put or the

corresponding call, with a preference for out-of-the-money contracts, if available. We only retain

a given cross section if it has at least five different strike prices. Finally, for each contract, we

re-compute the BSIV.

Because the BSIV of equity options is greatly affected by the timing of the earning announce-

ments (as shown by Dubinsky, Johannes, Kaeck, and Seeger, 2018), we collect the scheduled an-

nouncement dates from Compustat (variable name: rdq) and price the announcements by virtue

of Cea(u, τ) (which is defined in Section 3).

Q05 Q25 Q50 Q75 Q95

Panel A: Average implied volatility
2006-2015 0.23 0.29 0.34 0.43 0.54
2006-2010 0.32 0.39 0.46 0.53 0.75
2011-2015 0.21 0.26 0.30 0.36 0.43

Panel B: Average maturity (in days)
2006-2015 10.11 11.13 11.95 12.76 15.21
2006-2010 16.52 17.05 17.44 17.76 18.38
2011-2015 9.04 11.33 12.34 13.94 15.83

Panel C: Average number of options
2006-2015 8.25 9.80 10.91 11.56 12.33
2006-2010 7.95 8.53 9.32 10.03 11.14
2011-2015 8.31 9.35 10.07 10.94 13.12

Table 3: Summary statistics for the options data. The table reports the average implied
volatility, the average maturity, and the average number of options over the sub-samples 2006-2010
and 2011-2015. Q05, Q25, Q50, Q75, Q95 are the 5th, 25th, 50th, 75th, and 95th percentiles,
respectively. We compute the percentiles for each underlying over the specific sub-sample and we
average them.

Table 3 reports summary statistics for the available option data. From Panel A, we gauge

that the implied volatility of equity options is usually around 30% but varies significantly across

different firms and different time periods. This can be inferred by looking at two sub-samples. The

we treat them as European. The early exercise premium in known to be negligible over short horizons.
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first one ranges from 2006 to 2010. This time period includes the 2008/2009 financial crisis and is

associated with average implied volatilities as high as 75%. The second time period, spanning the

years 2011-2015, displays more moderate implied volatility values. Regarding the available strike

prices, we have an average of 11 contracts for each cross section (c.f. Panel C). This figure does

not change significantly across the two sub-samples.

In terms of the options time-to-maturity, the average tenor is around 12 calendar days (c.f. Panel

B). The second sub-sample has generally shorter maturity options thanks to the introduction of

weekly options (in 2005) on some of the firms considered in our study. Fig. 8 is explicit in

representing the drastic increase in the liquidity of short-term options since 2005. Such an increase

is a key source of identification for our purposes. Section 5 showed that the short-tenor expansion

in Section 3 is effective in leading to accurate prices over the average time to maturity in our data

(i.e., 12 days) when using a number of options similar to the average figure in the data (i.e., 11).

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0

50

100

150

200

250
Monthly number of short-maturity options

Figure 8: Short-maturity options. The figure reports the average monthly number of options
with less than 12 days to maturity across the 130 firms used in our empirical work.

For each ticker, we also collect information about the capital structure of the corresponding

firm from Compustat. Specifically, we construct a quarterly measure of financial leverage as the

ratio between total debt and total assets. Total debt is computed as the sum of current liabilities

(dlcq) and long-term debt (dlttq) while total asses are computed as the sum of total debt and

the value of equity (given by the product of the number of common shares outstanding (cshoq)

and the price per share (prccq)):
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Lt =
dlcq + dlttq

(dlcq + dlttq) + (prccq× cshoq)
. (22)

This definition of financial leverage is standard (see, e.g., Kelly, Manzo, and Palhares, 2019). Fig.

9 reports the cross-sectional empirical distribution of (average) financial leverage for our firms.

Financial Leverage
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Figure 9: Unconditional distribution of financial leverage. Leverage is defined in Eq. (22).
The figure shows the distribution of financial leverage across firms. For each firm, we compute the
average of Lt over the same horizon for which we have option data.

.

Importantly, we linearly interpolate the quarterly data from Compustat in order to obtain

monthly financial leverage series. The monthly financial leverage series are, for each firm, associated

with monthly averages of option-implied and high-frequency estimates of the equity characteristics,

whose construction is detailed in Subsection 5.2.

After matching the four data sources, we obtain a final sample which comprises 130 companies

over the 2006-2015 period. Table 14 in the Appendix reports the full list of firms included in the

final sample.

8 The map between equity characteristics and financial leverage

For each firm in our sample, we estimate the equity characteristics following a slight modification

of the procedure described in Section 4. Specifically, we minimize the same criterion as in Section
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4 but add to it a term penalizing deviations between the option-implied spot volatility estimates

and their nonparametric high-frequency counterparts. The criterion is:

{Ŝt}Tt=1 = argmin
{St}Tt=1

{ ∑
j:τj≤31

(
κt,kj ,τj − κ̃kj ,τj (St)

)2
Mt

+ γ
(√

σ̃2
t − σt

)2}
, (23)

where σ̃2
t is defined in Eq. (12). We set γ = 0.05.

We stressed previously that, differently from (spot leverage and spot volatility of volatility)

estimates based on nonparametric sample analogues, the option-based criterion does not require

preliminary first-stage estimates of (innovations in) spot volatility as a necessary input. The pres-

ence of a regularization term (constructed using high-frequency estimates of spot volatility) does

not invalidate this argument. As in Section 4, the term is - in fact - not needed. In order to provide

a clean comparison between nonparametric estimates obtained from high-frequency price data and

option-implied estimates, it was not used in the simulations reported in Section 5. The term is

solely added here for increased robustness in empirical work. We discuss two instances in which

its presence may be beneficial. First, around scheduled earning announcements, the at-the-money

implied volatility is known to diverge (c.f., Dubinsky, Johannes, Kaeck, and Seeger, 2018). While

the penalization term would regularize our estimates in this case, the explicit presence of a term

capturing scheduled announcements in the proposed pricing formula (c.f., Cea(u, τ) in Section 3),

reduces the need for regularization. The second example of a situation in which regularization may

help is more relevant for the current paper. There are two parameters which control the implied

volatility term structure, namely spot volatility (σ2
t ) and the volatility mean reversion (αt). The

latter can be well identified by using multiple cross sections. Using only one cross section per day,

as in this paper, may require additional information to identify αt, which we provide through the

penalty.18

In Fig. 10, we report the monthly time series of estimated equity characteristics for our selected

130 S&P500 firms. Fig. 10 plots the median values of the three estimated processes, along with the

Q3-Q1 interquartile range.19

In agreement with the implications of the structural model, spot volatility, spot leverage, and

spot volatility show persistent time variation and are highly correlated. While spot volatility and

spot volatility of volatility increase during the financial crisis, the correlation between diffusive

18The simulations in Section 4, which did not contain a penalty, resulted in inaccurate αt estimates (c.f., Fig. 3
and 4). While αt is not our focus, we are opting here for superior robustness in the empirical work.

19The monthly option characteristics are obtained as in Subsection 5.2. We retain only firms-month observations
if there are at least 5 days of estimation over the month (i.e., if there are at least 5 days that passed the data filtering
procedure, thereby resulting in a sufficient number of options to perform estimation).
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shocks to equity and shocks to volatility (i.e., spot leverage) becomes more negative. The negative

correlation between spot volatility and spot leverage supports the market-based evidence in Bandi

and Renò (2012) and extends it to individual stocks.

Figure 10: Estimated equity characteristics. The top, middle, and bottom panels show the
monthly time series of the estimated option-implied spot volatility, spot leverage, and spot volatility
of volatility. The solid lines represent median values across the selected 130 firms. The three shaded
areas are Q3-Q1 interquartile ranges.

In Fig. 11, we display scatter plots of the median values of Lt with respect to the corresponding

median values of the three equity characteristics. The dependencies we document are consistent

with the theoretical implications of the model in Section 3: both spot volatility and spot volatility

of volatility correlate positively with financial leverage, the spot leverage process being, instead,

inversely related to financial leverage. We note that, even in the absence of measurement error

in financial leverage and in the estimates of the equity characteristics, the structural model in

Eq. (16) and Eq. (17) implies that the relation between the equity characteristics and financial

leverage should not be exact. Because of the presence of an additional (empirically-warranted)

state variable, i.e., the variance of the assets, we should expect to report dispersion of the data

27



around solid lines like in the four panels of Fig. 11 (c.f. Appendix D).
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Figure 11: Scatter plots of financial leverage vs. the option-implied measures. Each dot
in the panels corresponds to one firm. For each firm we consider the median value of Lt, σt, ρt,
and βt over the 2007-2015 sample period.

We expand on these results by regressing financial leverage on the equity characteristics.20 The

findings are in Table 4. Once more, all equity characteristics relate to financial leverage in ways

that are consistent with a structural justification of equity as a call option on an unobservable

asset process with stochastic volatility. The cross-sectional t-statistics from regressions of financial

leverage on spot volatility, spot volatility of volatility and spot leverage are 4.45, 5.22 and -3.58,

respectively, with R2 values of 0.13, 0.18 and 0.09.

The association between spot leverage and financial leverage, in particular, is strongly negative.

This association has long been hypothesized (hence, the terminology “leverage effect” to define ρt)

but has turned out to be empirically rather elusive (see, e.g., the negative views in Figlewski and

Wang, 2000, Hens and Steude, 2009, and Hasanhodzic and Lo, 2019). We are able to uncover it

because of the precision with which spot leverage is identified from short-maturity option prices.

20In the regressions we only consider firms for which we have at least 60 monthly observations (i.e., 5 years - not
necessary consecutive, as we do not do any prediction, but just contemporaneous). Changing (i.e., increasing or
decreasing) this threshold, however, does not modify the reported results.
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This is in contrast with the information that one would derive from the noisier (and generally more

biased) estimates that one would obtain from using high frequency asset prices. We will return to

this observation below.

Financial Leverage
σ 4.45 - - 3.05 0.63 - 0.55 - 1.63
ρ - -3.58 - -1.69 - -0.96 -0.90 - -
β - - 5.22 - 2.62 3.75 2.17 - -
β x ρ - - - - - - - -5.17 -2.96
R2 0.13 0.09 0.18 0.15 0.18 0.18 0.18 0.17 0.19

Table 4: Cross-sectional regressions. Financial leverage is regressed on option-implied measures
of spot volatility, spot leverage and spot volatility of volatility. For each firm, we use the median
value of each quantity over the available sample. The table reports regressions t-statistics and R2s.

Financial Leverage
σ 3.47 - - 2.67 2.71 - 2.20 - 2.42
ρ - -1.76 - -0.36 - -1.30 -0.36 - -
β - - 1.71 - 0.13 1.30 0.18 - -
β x ρ - - - - - - - -2.04 -0.07
R2 0.25 0.08 0.08 0.28 0.26 0.13 0.29 0.10 0.29

Table 5: Time-series regressions. For each firm in the sample, financial leverage is regressed
on contemporaneous option-implied measures of spot volatility, spot leverage and spot volatility of
volatility. The table reports t-statistics and R2s. Reported numbers are averages across the available
firms.

When regressing cross-sectionally financial leverage on all equity characteristics jointly, the signs

do not change but spot volatility and spot leverage lose some of their statistical power. This is not

surprising in light of the strong dependence between alternative equity characteristics.

We now turn to the time-series relation between financial leverage and the option-implied mea-

sures. Table 5 reports the average results of 130 individual monthly time-series regressions in which

Lt is regressed on contemporaneous values of the equity characteristics. The time-series findings

continue to confirm the implications of the structural model, with spot volatility and spot volatility

of volatility positively correlated with financial leverage and spot leverage negatively correlated with

financial leverage. The significance of spot leverage and spot volatility of volatility (and, to some

extent, of spot volatility as well) is, in these regressions, slightly reduced. Because of time-series
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correlation, it is now spot volatility which dominates in a specification in which financial leverage

is regressed on all equity characteristics jointly.

In Appendix D we simulate from the structural model in Eq. (16) and Eq. (17) in order

to reproduce empirically-realistic heterogeneity in the level of financial leverage across 130 firms.

Appendix D further supports our findings regarding the cross-sectional and time-series dependence

between equity characteristics and financial leverage. Among other issues, it confirms the lower

signal in time-series regressions

Next, we divide the companies by sector. Detailed results are provided in Appendix E. Consumer

Discretionary (20 companies) and Health Care (18 companies) companies broadly confirm our

findings both cross-sectionally and in the time series. For Financials (19 companies) and Industrials

(7 companies), the reported results are weaker cross-sectionally but are strong in the time series.

Information Technology (11 companies), Consumer Staple (9 companies), Energy (21 companies),

and Materials (18 companies), taken as separate groups, behave in ways which are, along some

dimension, less consistent with the model. The small sample size of single sectors, however, suggest

caution.21

Finally, adopting the logic in Hasanhodzic and Lo (2019), we consider companies with either no

financial leverage or very limited levels of it. We choose the bottom 25th percentile of the financial

leverage distribution, as reported in Fig. 9. We note that the model specification in Section 6

implies a rather flat relation between equity characteristics and financial leverage for low values of

financial leverage (Fig. 7). The data are consistent with this implication. Table 6 and Table 7 show

that, both cross-sectionally and in the time series, the dependence between equity characteristics

and financial leverage is considerably muted and, often, of the wrong sign.

Financial Leverage
σ -0.53 - - -0.53 -0.54 - -0.58 - -0.53
ρ - 1.07 - 0.91 - 1.11 0.99 - -
β - - 0.49 - 1.46 1.77 2.38 - -
β x ρ - - - - - - - 1.13 0.97
R2 0.01 0.04 0.01 0.04 0.09 0.15 0.23 0.05 0.05

Table 6: Cross-sectional regressions (low leverage firms). For firms in the bottom 25th
percentile of the financial leverage distribution, financial leverage is regressed on contemporaneous
option-implied measures measures of spot volatility, spot leverage and spot volatility of volatility.
The table reports t-statistics and R2s.

21We do not report sector specific results for the Communication Services (1 company), Utilities (3 companies),
and Real Estate (3 companies) sectors because of the extremely limited sample.
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Financial Leverage
σ -0.88 - - -0.89 -0.89 - -0.89 - -0.59
ρ - -0.14 - -0.73 - -0.16 -0.74 - -
β - - -0.07 - 0.47 0.14 0.47 - -
β x ρ - - - - - - - 0.04 -0.85
R2 0.16 0.04 0.04 0.21 0.18 0.08 0.23 0.04 0.21

Table 7: Time-series regressions (low leverage firms). For firms in the bottom 25th percentile
of the financial leverage distribution, financial leverage is regressed on contemporaneous option-
implied measures of spot volatility, spot leverage and spot volatility of volatility. The table reports
t-statistics and R2s. Reported numbers are the averages across firms.

8.1 Using high-frequency price data: are the structural implications supported?

In light of the evidence reported in Section 5 regarding bias and noise in high-frequency estimates of

spot volatility of volatility and spot leverage, it is now informative to evaluate the relation between

financial leverage and equity characteristics using high-frequency estimates.

We begin with a visual representation of the equity characteristics estimates for individual

stocks. In Fig. 12, Panels (a)-(c), we report results for Microsoft (MSFT), Caterpillar (CAT),

and General Electric (GE). Consistent with our discussion in Section 5, while the spot volatility

estimates are rather similar (in spite of being less noisy using options), the spot leverage estimates

and the spot volatility of volatility estimates are considerably different across identification meth-

ods. In particular, as documented previously using simulations (see Fig. 5), the spot volatility of

volatility estimates obtained from high-frequency prices tend to closely mirror the corresponding

spot volatility estimates (as evidenced, e.g., by the run up around the financial crisis). Given the

simulations in Section 5, it is hard to view this phenomenon - which is bound to blur the inde-

pendent (from spot volatility) information in spot volatility of volatility regarding dependence on

structural drivers - as being genuine. The spot volatility of volatility estimates implied from option

prices are not affected by this issue.
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Figure 12: Option-implied vs. high-frequency estimates. We plot mean values of equity
characteristic estimates based on option data and high-frequency price data.
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We conclude by reporting the equivalent of Tables 4 and 5 using high-frequency estimates in

the regressions in place of estimates extracted from option prices.

Financial Leverage
σ 0.64 - - 0.58 -0.19 - -0.19 - 0.53
ρ - 0.48 - 0.39 - 0.26 0.27 - -
β - - 1.19 - 1.02 1.12 0.97 - -
β x ρ - - - - - - - 1.19 1.13
R2 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01

Table 8: Cross-sectional regressions (high-frequency data). Financial leverage is regressed
on option-implied measures of spot volatility, spot leverage and spot volatility of volatility. For
each firm we use the median value of each quantity over the available sample. The table reports
regressions t-statistics and R2s.

Financial Leverage
σ 2.89 - - 2.88 1.63 - 1.62 - 2.85
ρ - 0.07 - -0.00 - -0.03 -0.01 - -
β - - 2.12 - 0.25 2.11 0.25 - -
β x ρ - - - - - - - -0.05 -0.03
R2 0.22 0.01 0.15 0.22 0.23 0.16 0.24 0.02 0.22

Table 9: Time-series regressions (high-frequency data). For each firm in the sample, fi-
nancial leverage is regressed on contemporaneous option-implied measures of spot volatility, spot
leverage and spot volatility of volatility. The table reports t-statistics and R2s. Reported numbers
are averages across the available firms.

The cross-sectional relation between the quantities of interest is now obfuscated by the presence

of estimation noise. None of the equity characteristics is statistically significant and the sign on

spot leverage is inconsistent with theory. In the time series, we still find a positive and significant

association between financial leverage and spot volatility and between financial leverage and spot

volatility of volatility. The latter result, however, is an immediate by-product of the fact that

the spot volatility of volatility is spuriously estimated to be very similar to spot volatility. Once

we control for spot volatility, the significance of spot volatility of volatility decreases considerably.

Consistent with the cross-sectional analysis, the leverage coefficient is also found to be insignificant

in the time series. As earlier, its sign is incompatible with structural justifications.
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9 Evidence from credit spreads

A mature literature has successfully used structural modeling to justify the use of balance sheet

information in the evaluation of corporate spreads (c.f., Eom, Helwege, and Huang (2004), Chen,

Collin-Dufresne, and Goldstein (2008), Schaefer and Strebulaev (2008), Huang and Huang (2012),

Du, Elkamhi, and Ericsson (2018), Culp, Nozawa, and Veronesi (2018), Huang, Shi, and Zhou

(2019), and the references therein.)

Our interest in this section is not in improving on the modeling of credit spreads, something

which would require a richer treatment better left for future work. Rather, it is to use credit

spreads as an economic lens to further evaluate the informational content of the model-implied

equity characteristics. Our logic is simple. Because of the structural model in Section 6, the

equity characteristics should be a function of all state variables, not only of equity “moneyness”

or financial leverage, something which we explored for a rich cross section of assets in the previous

section. Given this premise, we should expect the equity characteristics to have residual (with

respect to financial leverage) explanatory power for credit spreads (c.f., Fig. 1).

We test this hypothesis (and, as an implication, the validity of structural justifications of eq-

uity) by running regressions of 5-year credit spreads on financial leverage and the option-implied

estimates. Again, we do so both cross-sectionally (Table 10) and in the time series (Table 11).22

Importantly, in bivariate regressions of credit spreads on financial leverage and equity char-

acteristics (considered one-by-one), we find that both financial leverage and the corresponding

characteristic are highly statistically significant. The signs on financial leverage, spot volatility

and spot volatility of volatility are, as expected, positive. The sign on spot leverage is, instead,

negative. While financial leverage is a key driver, the equity characteristics improve model specifi-

cation, particularly in the time-series regressions, thereby providing incremental information about

the unobserved state variables. Not surprisingly, adding equity characteristics to each specification

generally leads to the replication of (structural) information and, therefore, to some characteristics

being driven out. Spot volatility, in particular, appears to be robust to the inclusion of additional

characteristics.

As in the previous section, these findings change drastically when using equity characteristics

estimated using high-frequency sample analogues (c.f. Table 12 and Table 13). In the cross section,

none of the equity characteristics contributes to the explanatory power of financial leverage. In

the time series, high-frequency spot volatility is accurate enough as to provide dynamic signal,

22Because the Markit data is through December 2014, these regressions cover a slightly shorter horizon (2006-2014)
than the horizon covered by the regressions in Section 8 (2006-2015).
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thereby resulting in statistically-significant (positive) partial effects. This is in line with Zhang,

Zhou, and Zhu (2009). The same applies to spot volatility of volatility but, as pointed out earlier,

the dynamics of high-frequency estimates of spot volatility of volatility tend to spuriously mimick

the volatility dynamics. Unsurprisingly, in fact, when controlling for spot volatility, spot volatility

of volatility loses its significance.

If bond and equity are viewed as claims on the assets, we should expect (forms of) integration in

their pricing. The analysis in this section supports this logic by showing how accurately-estimated

features of the equity process can be used as mediating variables (proxying for unobserved state

variables) in the pricing of non-equity claims on the same assets.

5-year credit spreads
L 10.79 9.49 9.69 8.57 9.35 8.95 8.51 8.93 8.62 8.96
σ - 8.89 - - 7.97 4.60 - 4.61 - 6.78
ρ - - -3.17 - -0.01 - 0.09 0.47 - -
β - - - 7.25 - 1.50 6.26 1.57 - -
β x ρ - - - - - - - - -4.99 -0.83
R2 0.48 0.68 0.51 0.63 0.68 0.68 0.63 0.68 0.56 0.68

Table 10: Cross-sectional regressions. The 5-year credit spread is regressed on financial leverage
and option-implied measures of spot volatility, spot leverage and spot volatility of volatility. For
each firm, we use the median value of each quantity over the available sample. The table reports
regressions t-statistics and R2s.

5-year credit spreads
L 7.22 5.95 6.78 6.81 5.79 5.86 6.54 5.71 6.72 5.77
σ - 5.85 - - 4.68 4.82 - 3.99 - 3.84
ρ - - -2.87 - -0.55 - -2.35 -0.56 - -
β - - - 2.59 - 0.31 2.05 0.33 - -
β x ρ - - - - - - - - -3.85 -0.63
R2 0.37 0.56 0.45 0.43 0.58 0.57 0.49 0.59 0.48 0.58

Table 11: Time-series regressions. For each firm in the sample, the 5-year credit spread is re-
gressed on contemporaneous financial leverage and option-implied measures measures of spot volatil-
ity, spot leverage and spot volatility of volatility. The table reports t-statistics and R2s. Reported
numbers are averages across the available firms.
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5-year credit spreads
L 10.79 10.72 10.75 10.64 10.68 10.59 10.61 10.56 10.64 10.58
σ - 0.23 - - 0.09 -0.34 - -0.36 - 0.17
ρ - - 1.08 - 1.06 - 0.96 0.96 - -
β - - - 0.74 - 0.78 0.55 0.65 - -
β x ρ - - - - - - - - 0.61 0.59
R2 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48

Table 12: Cross-sectional regressions (high-frequency data). The 5-year credit spread is
regressed on financial leverage and high-frequency measures of spot volatility, spot leverage and spot
volatility of volatility. For each firm, we use the median value of each quantity over the available
sample. The table reports regressions t-statistics and R2s.

5-year credit spreads
L 7.22 6.33 7.19 6.56 6.32 6.29 6.53 6.28 7.19 6.33
σ - 6.14 - - 6.11 3.74 - 3.73 - 6.06
ρ - - 0.15 - 0.25 - 0.13 0.24 - -
β - - - 4.30 - 0.41 4.28 0.40 - -
β x ρ - - - - - - - - 0.15 0.36
R2 0.37 0.59 0.38 0.51 0.59 0.60 0.52 0.60 0.38 0.60

Table 13: Time-series regressions (high-frequency data). For each firm in the sample, the
5-year credit spread is regressed on contemporaneous financial leverage and high-frequency measures
of spot volatility, spot leverage and spot volatility of volatility. The table reports t-statistics and R2s.
Reported numbers are the averages across the available firms.

10 Conclusions

A rich and insightful body of work has focused on the estimation of continuous-time stochastic

volatility models for equity with an emphasis on specific quantities of risk, such as spot volatility,

spot volatility of volatility and spot leverage.

To the best of our knowledge, this is the first paper that performs joint identification of the

fundamental characteristics of the equity process and maps them to structural determinants of

equity, like the firm’s debt-to-assets ratio.

A key to our method is the recent surge in the liquidity of traded options with a short tenor.

We have shown that the increased availability of daily cross sections of short-maturity options

spanning a spectrum of moneyness levels provides new opportunities for joint identification. We

have also shown that the use of a novel pricing formula for short-maturity contracts is instrumental

in extracting information from recorded (short-maturity) option prices while avoiding the two-stage

estimation that one would typically implement in the case of spot volatility of volatility and spot
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leverage estimation. The proposed formula is explicit in mapping equity characteristics into features

of the implied volatility surface, such as level, slope and convexity, thereby delivering identification

for all three characteristics of interest jointly.

Much remains to be done. Two examples of promising directions are the following. First,

the recent availability of high-frequency option data may permit implementation of the proposed

methods at several instants during the day. Suitable local averages of the resulting estimates

would likely result in even more accurate measurements of the equity characteristics, at every point

in time and over a day. Second, and more interestingly in our view, because the reduced-form

equity dynamics can be readily expressed as functions of the dynamics of the asset values, accurate

identification of the equity characteristics gives us a way to filter out (i) the parameters and (ii)

the states of the underlying asset process. This procedure is economically revealing for two reasons.

First, accounting information provides the book value of assets. While book values are routinely

used as proxies of unobservable market values - a logic which was exploited in this paper as well -

filtering would deliver market values. Second, it would deliver market values at frequencies which

align with those of the estimated equity characteristics. As such, the resulting frequencies would

be considerably higher than those imposed by the accounting standards in the reporting of book-

value financial statements. The end result would be the ability to evaluate quantities which depend

on the availability of market values of assets over short time horizons: from (close to) real-time

probabilities of default to the marking-to-market of securities (among which equity and corporate

bonds) representing claims on the same assets. We leave this line of inquiry for future investigations.
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A Companies

No. Ticker Starting date Ending date N Leverage Name

1 ABT 31-Mar-2006 30-Jun-2015 107 0.14 ABBOTT LABORATORIES
2 ADI 31-Oct-2007 30-Jun-2015 58 0.05 ANALOG DEVICES
3 ADM 30-Apr-2006 30-Jun-2015 92 0.28 ARCHER-DANIELS-MIDLAND CO
4 ADP 31-Mar-2007 30-Jun-2015 70 0.01 AUTOMATIC DATA PROCESSING
5 AEP 31-Mar-2007 28-Feb-2014 60 0.50 AMERICAN ELECTRIC POWER CO
6 AET 31-Jan-2006 30-Jun-2015 98 0.22 AETNA INC
7 AIG 31-Jan-2006 30-Jun-2015 95 0.58 AMERICAN INTERNATIONAL GROUP
8 ALL 31-Jan-2006 30-Jun-2015 103 0.22 ALLSTATE CORP
9 AMAT 31-Jan-2006 30-Jun-2015 110 0.05 APPLIED MATERIALS INC

10 AMGN 31-Jan-2006 30-Jun-2015 113 0.20 AMGEN INC
11 APA 31-Jan-2006 30-Jun-2015 109 0.18 APACHE CORP
12 APC 31-Jan-2006 30-Jun-2015 107 0.30 ANADARKO PETROLEUM CORP
13 AVB 31-Oct-2006 30-Jun-2015 77 0.30 AVALONBAY COMMUNITIES INC
14 AXP 28-Feb-2006 30-Jun-2015 111 0.51 AMERICAN EXPRESS CO
15 AZO 31-Jan-2006 30-Jun-2015 113 0.22 AUTOZONE INC
16 BA 31-Jan-2006 30-Jun-2015 113 0.15 BOEING CO
17 BAX 31-Mar-2006 30-Jun-2015 97 0.14 BAXTER INTERNATIONAL INC
18 BBT 31-Jul-2007 30-Jun-2015 92 0.57 BB&T CORP
19 BBY 31-Jan-2006 30-Jun-2015 113 0.13 BEST BUY CO INC
20 BEN 31-Jan-2006 31-Jan-2014 86 0.05 FRANKLIN RESOURCES INC
21 BMY 31-Jul-2006 30-Jun-2015 101 0.11 BRISTOL-MYERS SQUIBB CO
22 BSX 31-Jan-2006 31-May-2015 39 0.26 BOSTON SCIENTIFIC CORP
23 C 31-Jan-2006 30-Jun-2015 108 0.81 CITIGROUP INC
24 CAH 31-Mar-2006 30-Jun-2015 53 0.16 CARDINAL HEALTH INC
25 CAT 31-Jan-2006 30-Jun-2015 113 0.41 CATERPILLAR INC
26 CHK 31-Jan-2006 30-Jun-2015 110 0.43 CHESAPEAKE ENERGY CORP
27 CI 31-Jan-2006 30-Jun-2015 104 0.20 CIGNA CORP
28 CL 30-Jun-2006 30-Jun-2015 80 0.09 COLGATE-PALMOLIVE CO
29 CMCSA 30-Apr-2006 30-Jun-2015 85 0.32 COMCAST CORP
30 COF 31-Jan-2006 30-Jun-2015 113 0.57 CAPITAL ONE FINANCIAL CORP
31 COP 31-Jan-2006 30-Jun-2015 112 0.24 CONOCOPHILLIPS
32 COST 31-Jan-2006 30-Jun-2015 113 0.07 COSTCO WHOLESALE CORP
33 CSCO 28-Feb-2006 30-Jun-2015 108 0.10 CISCO SYSTEMS INC
34 CSX 30-Apr-2006 30-Jun-2015 87 0.28 CSX CORP
35 CVX 31-Jan-2006 30-Jun-2015 110 0.07 CHEVRON CORP
36 DE 31-Jan-2006 30-Jun-2015 112 0.49 DEERE & CO
37 DHI 31-May-2006 30-Jun-2015 92 0.37 D R HORTON INC
38 DHR 28-Feb-2007 30-Jun-2015 64 0.10 DANAHER CORP
39 DIS 30-Apr-2006 30-Jun-2015 95 0.16 DISNEY (WALT) CO
40 DO 31-Jan-2006 30-Jun-2015 113 0.14 DIAMOND OFFSHRE DRILLING INC
41 DRI 31-May-2008 30-Jun-2015 79 0.25 DARDEN RESTAURANTS INC
42 DVN 31-Jan-2006 30-Jun-2015 113 0.23 DEVON ENERGY CORP
43 EMR 31-Jan-2006 30-Jun-2015 82 0.13 EMERSON ELECTRIC CO
44 EOG 31-Jan-2006 30-Jun-2015 112 0.11 EOG RESOURCES INC
45 ESRX 31-Jan-2006 30-Jun-2015 112 0.16 EXPRESS SCRIPTS HOLDING CO
46 ESV 31-Jan-2006 30-Jun-2015 101 0.19 ENSCO PLC
47 ETN 30-Apr-2006 30-Jun-2015 87 0.24 EATON CORP PLC
48 EXC 31-Mar-2007 30-Jun-2015 90 0.34 EXELON CORP
49 FCX 31-Jan-2006 30-Jun-2015 113 0.21 FREEPORT-MCMORAN INC
50 FDX 31-Jan-2006 30-Jun-2015 113 0.08 FEDEX CORP
51 FLR 28-Feb-2006 30-Jun-2015 106 0.04 FLUOR CORP
52 GD 31-Jan-2006 30-Jun-2015 80 0.11 GENERAL DYNAMICS CORP
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53 GE 31-May-2006 30-Jun-2015 105 0.66 GENERAL ELECTRIC CO
54 GIS 31-Aug-2008 30-Jun-2015 71 0.23 GENERAL MILLS INC
55 GLW 31-Jan-2006 30-Jun-2015 99 0.09 CORNING INC
56 GPS 31-Dec-2006 30-Jun-2015 77 0.06 GAP INC
57 GS 31-Jan-2006 30-Jun-2015 113 0.88 GOLDMAN SACHS GROUP INC
58 HAL 31-Jan-2006 30-Jun-2015 113 0.12 HALLIBURTON CO
59 HD 31-Jan-2006 30-Jun-2015 112 0.15 HOME DEPOT INC
60 HIG 31-Jan-2006 30-Jun-2015 106 0.35 HARTFORD FINANCIAL SERVICES
61 HON 31-Jan-2006 30-Jun-2015 108 0.16 HONEYWELL INTERNATIONAL INC
62 HPQ 31-Jan-2006 30-Jun-2015 113 0.21 HP INC
63 HUM 31-Mar-2006 30-Jun-2015 104 0.16 HUMANA INC
64 IBM 31-Jan-2006 30-Jun-2015 113 0.16 INTL BUSINESS MACHINES CORP
65 INTC 31-Jan-2006 30-Jun-2015 110 0.04 INTEL CORP
66 IP 31-Mar-2006 30-Jun-2015 92 0.41 INTL PAPER CO
67 JCI 28-Feb-2007 30-Jun-2015 84 0.19 JOHNSON CONTROLS INTL PLC
68 JNJ 31-Jan-2006 30-Jun-2015 92 0.07 JOHNSON & JOHNSON
69 JNPR 31-Jan-2006 30-Jun-2015 111 0.05 JUNIPER NETWORKS INC
70 JPM 31-Jan-2006 30-Jun-2015 110 0.77 JPMORGAN CHASE & CO
71 JWN 28-Feb-2007 30-Jun-2015 91 0.24 NORDSTROM INC
72 KO 31-Jan-2006 30-Jun-2015 106 0.12 COCA-COLA CO
73 KSS 28-Feb-2006 30-Jun-2015 104 0.20 KOHL’S CORP
74 LEN 31-Jan-2006 30-Jun-2015 109 0.47 LENNAR CORP
75 LLL 31-Mar-2006 30-Nov-2014 66 0.31 L3 TECHNOLOGIES INC
76 LLY 30-Nov-2006 30-Jun-2015 84 0.12 LILLY (ELI) & CO
77 LM 31-Jan-2006 31-Jul-2014 91 0.25 LEGG MASON INC
78 LMT 31-Mar-2006 30-Jun-2015 103 0.13 LOCKHEED MARTIN CORP
79 LNC 31-Aug-2007 30-Jun-2015 84 0.40 LINCOLN NATIONAL CORP
80 LOW 31-Jan-2006 30-Jun-2015 107 0.15 LOWE’S COMPANIES INC
81 M 31-Jan-2006 30-Jun-2015 105 0.38 MACY’S INC
82 MAR 31-Aug-2007 30-Jun-2015 88 0.20 MARRIOTT INTL INC
83 MCD 31-Jan-2006 30-Jun-2015 110 0.13 MCDONALD’S CORP
84 MCK 30-Apr-2006 30-Jun-2015 91 0.15 MCKESSON CORP
85 MDT 31-Jan-2006 30-Jun-2015 108 0.17 MEDTRONIC PLC
86 MET 28-Feb-2007 30-Jun-2015 94 0.42 METLIFE INC
87 MLM 31-Jan-2006 30-Jun-2015 83 0.20 MARTIN MARIETTA MATERIALS
88 MMM 31-Jan-2006 30-Jun-2015 105 0.08 3M CO
89 MO 31-Jan-2006 30-Jun-2015 113 0.15 ALTRIA GROUP INC
90 MON 31-Jan-2006 30-Jun-2015 109 0.06 MONSANTO CO
91 MRK 31-Jan-2006 30-Jun-2015 113 0.12 MERCK & CO
92 MRO 31-Jan-2006 30-Jun-2015 112 0.21 MARATHON OIL CORP
93 MSFT 31-Jan-2006 30-Jun-2015 108 0.04 MICROSOFT CORP
94 MUR 30-Jun-2006 28-Feb-2015 74 0.12 MURPHY OIL CORP
95 NBL 31-Jan-2006 31-May-2015 79 0.18 NOBLE ENERGY INC
96 NEM 31-Jan-2006 30-Jun-2015 113 0.19 NEWMONT MINING CORP
97 NKE 31-Jan-2006 30-Jun-2015 108 0.02 NIKE INC
98 NOV 31-Jan-2006 30-Jun-2015 113 0.06 NATIONAL OILWELL VARCO INC
99 NSC 31-Mar-2006 30-Jun-2015 89 0.26 NORFOLK SOUTHERN CORP

100 NUE 31-Jan-2006 30-Jun-2015 113 0.18 NUCOR CORP
101 OXY 31-Jan-2006 30-Jun-2015 112 0.07 OCCIDENTAL PETROLEUM CORP
102 PEP 30-Apr-2006 30-Jun-2015 105 0.14 PEPSICO INC
103 PFE 31-Jan-2006 30-Jun-2015 94 0.18 PFIZER INC
104 PG 30-Jun-2006 30-Jun-2015 99 0.15 PROCTER & GAMBLE CO
105 PHM 31-Jan-2006 30-Jun-2015 93 0.40 PULTEGROUP INC
106 PNC 30-Apr-2006 30-Jun-2015 102 0.56 PNC FINANCIAL SVCS GROUP INC
107 PRU 30-Sep-2006 30-Jun-2015 99 0.55 PRUDENTIAL FINANCIAL INC
108 PXD 31-Jan-2006 30-Jun-2015 82 0.20 PIONEER NATURAL RESOURCES CO

42



109 RTN 31-Mar-2006 30-Jun-2015 99 0.14 RAYTHEON CO
110 SHW 31-Jan-2006 30-Jun-2015 71 0.10 SHERWIN-WILLIAMS CO
111 SO 31-Mar-2009 30-Jun-2015 73 0.39 SOUTHERN CO
112 SPG 31-Dec-2006 30-Jun-2015 101 0.39 SIMON PROPERTY GROUP INC
113 STI 31-Mar-2006 30-Jun-2015 101 0.60 SUNTRUST BANKS INC
114 STT 31-Jul-2007 30-Jun-2015 95 0.54 STATE STREET CORP
115 T 31-Aug-2006 30-Jun-2015 105 0.28 AT&T INC
116 TGT 31-Jan-2006 30-Jun-2015 113 0.28 TARGET CORP
117 TXN 31-Jan-2006 30-Jun-2015 112 0.05 TEXAS INSTRUMENTS INC
118 TXT 30-Apr-2006 30-Jun-2015 101 0.44 TEXTRON INC
119 UNH 31-Jan-2006 30-Jun-2015 104 0.20 UNITEDHEALTH GROUP INC
120 UNP 31-Mar-2006 30-Jun-2015 111 0.18 UNION PACIFIC CORP
121 UPS 31-Jan-2006 30-Jun-2015 111 0.12 UNITED PARCEL SERVICE INC
122 USB 30-Nov-2006 30-Jun-2015 93 0.52 U S BANCORP
123 UTX 30-Apr-2006 30-Jun-2015 98 0.16 UNITED TECHNOLOGIES CORP
124 WFC 30-Apr-2006 30-Jun-2015 98 0.56 WELLS FARGO & CO
125 WHR 31-Jan-2006 30-Jun-2015 113 0.29 WHIRLPOOL CORP
126 WMB 31-Jan-2006 30-Jun-2015 82 0.34 WILLIAMS COS INC
127 WMT 31-Jan-2006 30-Jun-2015 113 0.19 WALMART INC
128 WY 30-Nov-2006 30-Jun-2015 94 0.32 WEYERHAEUSER CO
129 XOM 31-Jan-2006 30-Jun-2015 113 0.04 EXXON MOBIL CORP
130 YUM 31-May-2007 30-Jun-2015 87 0.12 YUM BRANDS INC

Table 14: List of firms in the sample. Each row shows the ticker, the start and the ending date
of our sample, the number of monthly observations, the average value of financial leverage, and the
full name of each company. Financial leverage is computed from Compustat as the ratio between
the total debt (given by the sum of debt in current liabilities (dlcq) and long-term debt (dlttq))
over the sum of total debt and value of the equity (given by the product of the number of common
shares outstanding (cshoq) and the price per share (prccq)).

B The characteristic function of the diffusive process

Define logEdt+τ − logEdt = Xt and µt = rt − δt − 1
2σ

2
t , to simplify the notation. Write

Cd(u, τ) = Et[eiuXt ]

=
1√

2πσ2
t τ

∫
eiuXte

− 1
2
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2
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∫
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√
τZte−

1
2
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t dZt︸ ︷︷ ︸

Et[eivZt ]

.

Now, defining v = uσt
√
τ , the term with an under-brace becomes the characteristic function of the

standardized process (Zt), for which we use the (local, in τ) expansion in Theorem 1 of Bandi and

Renò (2019). In the main text, we use the notation z = iv.
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C Proof of Proposition 1

We recall that equity values depend on two state variables, the value of the assets and their variance,

i.e., Et := E(At, V
A
t ). Using Itô’s Lemma here, and repeatedly below, we have

dEt = driftE + EAAt

√
V A
t dW

A
t + EV η

√
V A
t dW

V
t +

(
E(At(1 + JAt ), V A

t )− Et
)︸ ︷︷ ︸

JEt

dNt.

In terms of logarithmic equity values (or continuously-compounded returns), after defining et =

logEt, we obtain

det = drifte + EA
1

Et
At

√
V A
t dW

A
t + EV

1

Et
η
√
V A
t dW

V
t +

(
log(Et + JEt )− log(Et)

)
dNt,

where drifte = driftE − 1
2V

E
t dt, with V E

t defined next. The continuous equity spot variance V E
t :=

V E(At, V
A
t ) is, now,

V E
t := V E(At, V

A
t ) =

V A
t

E2
t

(
A2
tE

2
A + η2E2

V + 2ρAηEAEVAt
)
.

The term spot volatility naturally refers to the square root of V E
t , i.e., σt := σ(At, V

A
t ) =

√
V E
t .

We can now write

dV E
t = driftV + ΛAAt

√
V A
t dW

A
t + ΛV η

√
V A
t dW

V
t +

(
V (At(1 + JAt ), V A

t )− Vt
)︸ ︷︷ ︸

JVt

dNt,

with

ΛA =2
V A
t

E2
t

(
AtE

2
A +A2

tEAEAA + η2EVEV A + ηρA (EAEV +AtEVEAA +AtEAEV A)
)
− 2

V E
t

Et
EA,

and

ΛV =2
V A
t

E2
t

(
A2
tEAEV A + η2EVEV V + ηρAAt (EVEV A + EAEV V )

)
− 2

V E
t

Et
EV +

V E
t

V A
t

.

In terms of volatility, we have

dσt = driftσ +
1

2
√
V E
t

ΛAAt

√
V A
t dW

A
t +

1

2
√
V E
t

ΛV η
√
V A
t dW

V
t +

(√
V E
t + JVt −

√
V E
t

)
dNt,

where driftσ = driftV − 1

2
√
V Et
β2
t , with β2

t defined next. The variance of volatility can be expressed

as

β2
t := β2(At, V

A
t ) =

V A
t

4V E
t

(
A2
tΛ

2
A + η2Λ2

V + 2AtηρAΛAΛV
)
.
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Hence, the term spot volatility of volatility refers to the square root of β2
t , i.e., βt := β(At, V

A
t ) =√

β2
t . Finally, the leverage effect is defined as the instantaneous correlation between spot volatility

and log returns:

ρt = ρ(At, V
A
t ) =

V A
t

2Et
√
V E
t

ΛAEAA
2
t + ΛVEV η

2 + ρAηAt (ΛAEV + ΛVEA)√
V E
t βt

.

Regarding jumps, we have

λE = λσ = λA.

Thus, the return and variance jumps are joint. For small jumps, using a Taylor expansion, we have

JE = E(At(1 + JAt ), V A
t )− Et = EAAtJ

A
t .

Hence,

Je = log(Et + JE)− log(Et) ≈
1

Et
AtEAJ

A
t .

Similarly,

JV = V (At(1 + JAt ), V A
t )− Vt = VAAtJ

A
t .

Thus,

Jσ =
√
V E
t + JVt −

√
V E
t ≈

1

2σt
AtVAJ

A
t .

D Structural Model: Monte Carlo Evidence

In order to shed more light on our findings, in this Appendix we replicate our empirical analysis

using simulated data from the model in Eq. (16) and Eq. (17).

We set up the Monte Carlo experiment as follow. First, we consider the same number of firms as

in Section 8: 130. Second, we fix the face value of the debt of each firm at $50 and endow each firm

with an initial asset value which is equi-spaced between $100 and $600. As we will show below, the

assumed heterogeneity in initial asset values will lead to a realistic cross-sectional distribution of

financial leverage. Third, we simulate 10 years of daily observations using parameter values taken

from Du, Elkamhi, and Ericsson (2018).23 Fourth, we winsorize each trajectory at $51 in order

to prevent the firm’s assets to go below the face value of debt. Finally, we sample the simulated

data at the monthly frequency. Given simulated trajectories from the structural model, the equity

characteristics are computed as in Proposition 1 in the main text.

Fig. D.1 compares the cross-sectional distribution of (average) financial leverage in the data

(left panel) with the one generated by Monte Carlo simulation (right panel). Along this dimension,

23We use the estimated parameters corresponding to the 50th quantile of the firms’ distribution in their Table VII.
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the simulated data replicates the empirical counterpart rather well. Most of the firms have financial

leverage between zero and 30% and only a few exhibit financial leverage levels in excess of 60%.

Empirical Leverage Ditribution
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Figure D.1: Comparison between the cross-sectional distribution of (average) financial leverage in
the data (left panel) and in Monte Carlo simulations (right panel).

Fig. D displays scatter plots of the equity characteristics with respect to financial leverage.

Because the simulated cross-sectional distribution of financial leverage is realistic, in Fig. D we

focus on empirically-meaningful levels of firm-level riskiness. Importantly, the errors around non-

linear least-squares (solid) lines are simply due to the presence of an additional state variable in

the determination of the equity characteristics, i.e., the volatility of the assets. In essence, the

specification in Eq. (16) and Eq. (17) implies that this second state variable should be expected

to blur the relation between equity characteristics and financial leverage both in the simulations

and in the data. In this sense, Fig. D is directly comparable to, and nicely justifies, Fig. 11 in

the main text. The relations in Fig. 11 should, however, be further contaminated by additional

measurement errors discussed below.

Turning now to regressions, a few observations can be drawn from Tables 15 and 16. First,

consistent with data, all equity characteristics uniquely contribute to explain level and time varia-

tion of financial leverage (with signs that are consistent with data). Second, spot leverage slightly

dominates spot volatility and spot volatility of volatility both in terms of R2 and in terms of

t-statistics.

When comparing these simulation results to the empirical results reported in the main text,

one should notice that, in the data, (1) financial leverage is measured with an error24 and (2) both

spot leverage and spot volatility of volatility are estimated with less precision than spot volatility

24There are two sources of measurement error. Compustat provides book values, rather than market values, and
the monthly measures are obtained by linearly interpolating quarterly measures.
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(c.f., Subsection 5.2).
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Figure D.2: The simulated relation between equity characteristics and financial leverage.

Financial Leverage
σ 18.87 - - 23.31 37.60 - 80.05 - 38.28
ρ - -24.62 - -8.26 - -29.82 -28.38 - -
β - - 28.33 - 19.52 7.80 37.05 - -
β x ρ - - - - - - - -27.46 -19.99
R2 0.74 0.83 0.86 0.83 0.93 0.88 0.99 0.85 0.94

Table 15: Cross-sectional regressions (Monte Carlo). We regress financial leverage on option-
implied measures of spot volatility, spot leverage and spot volatility of volatility. The table reports
t-statistics and R2s.

Financial Leverage
σ 1.83 - - 2.72 2.20 - 3.26 - 2.48
ρ - -3.07 - -10.63 - -3.50 -10.96 - -
β - - 2.81 - 4.03 -0.62 5.87 - -
β x ρ - - - - - - - -2.78 -8.01
R2 0.08 0.11 0.11 0.61 0.21 0.21 0.66 0.11 0.38

Table 16: Time-series regressions (Monte Carlo). We regress financial leverage on option-
implied measures of spot volatility, spot leverage and spot volatility of volatility. The table reports
t-statistics and R2s. Reported numbers are the averages across 130 firms.
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E Analysis by Sector

Financial Leverage

Panel A: Materials
σ 0.97 - - 0.73 1.17 - 0.25 - 0.84
ρ - 0.51 - 0.14 - 4.00 2.90 - -
β - - 1.20 - 1.35 4.52 3.68 - -
β x ρ - - - - - - - 0.23 0.04
R2 0.16 0.05 0.22 0.16 0.42 0.84 0.85 0.01 0.16

Panel B: Industrial
σ 1.01 - - 1.91 1.21 - 2.00 - 2.03
ρ - 0.40 - 1.65 - 0.29 1.59 - -
β - - -0.46 - -0.82 -0.36 -0.76 - -
β x ρ - - - - - - - 0.18 1.73
R2 0.05 0.01 0.01 0.18 0.08 0.02 0.20 0.00 0.19

Panel C: Energy
σ -0.21 - - 1.97 -0.62 - 0.98 - 1.97
ρ - 4.16 - 4.91 - 5.04 5.03 - -
β - - 0.49 - 0.76 2.18 1.28 - -
β x ρ - - - - - - - 3.29 4.07
R2 0.00 0.52 0.01 0.62 0.04 0.63 0.66 0.40 0.53

Panel D: Consumer Discretionary
σ 3.80 - - 2.78 0.65 - 0.41 - 0.95
ρ - -2.09 - -0.19 - -0.62 -0.36 - -
β - - 3.94 - 0.99 3.01 1.01 - -
β x ρ - - - - - - - -3.83 -1.01
R2 0.45 0.19 0.46 0.45 0.48 0.47 0.48 0.45 0.48

Panel E: Consumer Staple
σ 0.82 - - 1.64 -0.63 - -0.11 - 1.47
ρ - 1.50 - 2.12 - 2.27 1.94 - -
β - - 1.42 - 1.23 2.21 1.12 - -
β x ρ - - - - - - - 0.47 1.30
R2 0.09 0.24 0.22 0.48 0.27 0.58 0.58 0.03 0.29

Panel F: Heath Care
σ 4.52 - - 5.59 1.23 - 1.91 - 5.63
ρ - 0.36 - 2.34 - -0.01 1.42 - -
β - - 4.86 - 1.72 4.67 0.22 - -
β x ρ - - - - - - - -0.09 2.35
R2 0.56 0.01 0.60 0.68 0.63 0.60 0.68 0.00 0.68

Panel G: Financials
σ -0.44 - - -0.25 0.98 - 0.97 - 0.30
ρ - 1.53 - 1.44 - 0.46 -0.49 - -
β - - -1.67 - -1.87 -0.76 -1.20 - -
β x ρ - - - - - - - 1.61 1.52
R2 0.01 0.12 0.14 0.12 0.19 0.15 0.20 0.13 0.14

Panel H: Information Technology
σ -0.51 - - -0.52 -0.93 - -1.20 - -0.47
ρ - 0.00 - 0.18 - 0.15 0.79 - -
β - - 0.60 - 0.98 0.58 1.23 - -
β x ρ - - - - - - - -0.26 -0.21
R2 0.03 0.00 0.04 0.03 0.13 0.04 0.20 0.01 0.03

Table 17: Cross-sectional regressions. For each sector we regress financial leverage on option-
implied estimates of spot volatility, spot leverage and spot volatility of volatility. Each panel reports
t-statistics and R2s.
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Financial Leverage

Panel A: Materials
σ 2.33 - - 2.05 1.95 - 1.67 - 1.31
ρ - -0.30 - -0.89 - -0.31 -0.92 - -
β - - 0.88 - 0.66 0.96 0.69 - -
β x ρ - - - - - - - -0.96 -1.10
R2 0.22 0.05 0.05 0.25 0.24 0.08 0.27 0.07 0.27

Panel B: Industrial
σ 4.41 - - 3.63 3.88 - 3.21 - 3.31
ρ - -2.30 - -0.44 - -2.06 -0.47 - -
β - - 1.65 - 0.02 1.38 0.10 - -
β x ρ - - - - - - - -2.68 -0.34
R2 0.23 0.07 0.05 0.25 0.25 0.11 0.27 0.09 0.26

Panel C: Energy
σ -0.13 - - -0.94 -0.26 - -1.10 - -1.29
ρ - -0.96 - -1.71 - -0.99 -1.71 - -
β - - 0.12 - 0.24 0.06 0.53 - -
β x ρ - - - - - - - -0.79 -1.82
R2 0.11 0.06 0.03 0.16 0.12 0.08 0.17 0.05 0.16

Panel D: Consumer Discretionary
σ 6.89 - - 5.87 5.93 - 5.05 - 5.41
ρ - -2.83 - 0.16 - -2.42 0.12 - -
β - - 2.63 - 0.20 2.40 0.27 - -
β x ρ - - - - - - - -3.45 0.54
R2 0.36 0.14 0.09 0.39 0.37 0.20 0.41 0.16 0.39

Panel E: Consumer Staple
σ 0.73 - - 0.57 0.46 - 0.40 - 0.34
ρ - -0.55 - -0.50 - -0.49 -0.56 - -
β - - 0.71 - 0.45 0.61 0.36 - -
β x ρ - - - - - - - -0.53 -0.60
R2 0.13 0.02 0.05 0.14 0.15 0.07 0.16 0.03 0.15

Panel F: Heath Care
σ 0.93 - - 0.94 0.66 - 0.70 - 0.88
ρ - -0.20 - 0.17 - -0.08 0.20 - -
β - - 0.69 - 0.39 0.65 0.41 - -
β x ρ - - - - - - - -0.38 0.05
R2 0.14 0.04 0.03 0.17 0.16 0.06 0.18 0.04 0.18

Panel G: Financials
σ 9.18 - - 7.06 6.77 - 5.98 - 7.18
ρ - -4.20 - 0.59 - -2.18 0.62 - -
β - - 4.96 - -0.65 3.17 -0.58 - -
β x ρ - - - - - - - -4.75 2.15
R2 0.46 0.19 0.22 0.47 0.47 0.28 0.49 0.22 0.50

Panel H: Information Technology
σ -2.69 - - -2.91 -2.90 - -2.98 - -3.00
ρ - 0.15 - -0.89 - 0.17 -0.83 - -
β - - -0.21 - 0.58 -0.34 0.36 - -
β x ρ - - - - - - - 0.43 -0.86
R2 0.16 0.03 0.04 0.22 0.19 0.06 0.24 0.03 0.24

Table 18: Time-series regressions. For each sector we regress financial leverage on option-
implied estimates of spot volatility, spot leverage and spot volatility of volatility. The table reports
t-statistics and R2s. Reported numbers are the averages across firms within each sector.
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