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11 Outline

References to sections with section numbers less than [T1] refer to sections of the main paper.
Similarly, all theorems and lemmas with section numbers less than [L1]| refer to results in the main
paper. BCS abbreviates Bugni, Canay, and Shi (2015). For ease of reference, the assumptions
used in the paper and this Supplemental Material are listed in the last section of this Supplemental
Material, Section [27]

Section 12| of this Supplemental Material gives lower and upper bounds on the asymptotic power
of SPURI tests for n~'/2-local alternatives and consistency results for these tests. These results
have implications for the asymptotic power of SPUR2 tests as well.

Section shows that when the “max” S function is employed, the SPUR test statistic is
equivalent to a recentered test statistic, as has been considered in Chernozhukov, Hong, and Tamer
(2007) for use with a correctly-specified model.

Section [14] defines the one-sided upper-bound CI C1,,, yp(c) for 2! introduced in Andrews
and Kwon (2019) that is employed by SPUR2 tests and CS’s. It also provides some properties of
this CI.

Section provides explicit expressions for the bootstrap quantities sdfmj(ﬁ) fora=1,...,4 that

are employed by the EGMS critical values arise in ((6.4)) and (6.7)—(6.10]).

Section discusses extensions of the results of the paper to tests with weighted moment
inequalities, to tests without the standard-deviation normalization, and to non-i.i.d. observations.

Section [17] provides additional numerical results concerning the spurious precision of the GMS
CS’s in Andrews and Soares (2010), as well as the proof of Lemma which concerns the spurious
precision of these CS’s.

Section provides some additional simulation results for the lower/upper bound model con-
sidered in Section [8

Section [19| provides derivations for and , which concern the missing data model.

Section [20] states Lemma which gives sufficient conditions for Assumptions NLA and CA,
and proves Lemmas and

Sections [2IH26] prove the main results of the paper. Section 2] proves Theorem [5.3] which gives
the asymptotic distribution of the SPUR test statistic.

Section [22] states Theorem [22.I] which is the key ingredient to the proofs of Theorems [7.1]
and which provide asymptotic size and power results for SPUR1 and SPUR2 tests and CS’s.
Theorem provides asymptotic null rejection probability (NRP) results, asymptotic n~Y2]ocal
power bounds, and consistency results for the nominal level « SPURI1 test ¢,, spprgr1(0n), defined in

(4.4), under drifting subsequences of distributions and parameter values. Section [23|proves Lemmas



[22.2}H22.5] which are used in the proof of Theorem [22.1]
Section [24] proves Theorem [7.1} which shows that the SPUR1 and SPUR2 tests and CS’s have

correct asymptotic size, using Theorem [22.1] Section 25 proves Theorem [12.1] using Theorem [22.1]
Section [26] proves Theorem [9.1] and establishes rate of convergence results for the set estimator
@n of the MR identified set under correct model specification and misspecification.

Let ol(?(l) and OI(?(I) denote quantities that are 0,(1) and O,(1), respectively, uniformly over
0 €o.

12 Asymptotic Power

In this section, we give upper and lower bounds on the asymptotic power of SPURI1 tests for
n~1/2]ocal alternatives. Bounds on asymptotic local power, rather than precise asymptotic local
power, are given due to the complexity of the data-dependent EGMS critical values. Even the
bounds involve fairly complicated expressions. We also provide consistency results for these tests
under fixed and non-n~/2-local alternatives. The results allow for drifting null hypothesis values,
which yield asymptotic false coverage probabilities for SPUR1 CS’s. As discussed below, the results
have implications for the asymptotic power of SPUR2 tests.

For 6 € O, define

jn(0) := arg max b,;(0), where b,;(0) := n'/2([Ep,m;(W,0)]- — rith) (12.1)
i<k

By Lemma [5.2(a),
bnjn(G) ((9) >0Ve e o. (12.2)

We employ the following bootstrap convergence (BC) assumptions, which apply to a drifting

sequence of null values {0, },>1 and distributions {F}, },>1.

Assumption BC.1. supycg [sdy,;(0) — sdajoo ()| —p 0 as n — oo for some nonrandom continuous

real-valued functions sdgjoo(f) on © for j <k and a =1, 3.

Define

N = {0.0,67,6,57) € O] (Fo) x B x {1, k) £ by = nV/2([Bi iy (W, 0)] - — g,

5 n

b = (sdzjoo(0)kn) "'bj, £j = 0> B, iy (W,0) Vj <k, j* = jnw)} : (12.3)

where {7, }n>1 is as in Assumption C.8 and {ky}n>1 is as in (6.4), (6.7), , and . Let

Y9If the arg max is not unique, j,(0) is defined to be the smallest arg max.




S(0 x R[:too x {1,...,k}) denote the space of compact subsets of the metric space (© x Rf’i;ll, d),
where d is defined following ([5.2) with a. = dg + 3k + 1.
Define AU"#} analogously to An ., but without the elements (¢,j*) and with 7y, in place of
. Thus, A nU”n contains points (6,b,b*) € O7V"(F,) x R?*. Let sd1joo 1= 8d1joo(000), Where O

is as in Assumption C.1.

Assumption BC.2. (sdyjootin) ™ 'n'/?(Ep, m;(W,0 )+r11?f) — hj, for some h}, € Riio) Vi < k.
Assumption BC.3. A;?gn —p A} for some non-empty set A} € S(O x Rf’ioo] x {1,...,k}) for
some constants {7, }n>1 that satisfy n,, — oo and n,,/7, — 0 for {7, },>1 as in Assumption A.6(ii).

: 10 2%
Assumption BC.4. Aj7% —p Aj;; for some non-empty set A7, € S(O x R[ﬂ: ]) for constants

{nuntn>1 that satisfy ng;,, — oo and 7y, /0y, — 0 for {7, },>1 as in Assumption A.6(ii).

We employ the following assumption on the GMS function ¢ = (¢4, ..., ¢;)’, which appears in

(6.4) and (6.11)) and is defined following (6.4]).

Assumption A.10. Given the function ¢ : R[+oo} XV — R[Jr ik there is a function ¢** : Rﬁoo] —

R, that takes the form ©™(§) = (¢{*(&1), -, 95" (&))" and Vj < &, (1) ¢°(&) < 9;(6,Q)
V() e R[Jr | x W, (i) 5" is continuous, and (iii) j*(£;) = 0 V&; < 0 and ¢} (o0) = oo.

For example, in the leading case where ¢;(£,Q) = ool(§; > 1) for j < k, Assumption A.10
holds with ¢7*(§;) = 001(§; > L+¢) + ((§; —1)/(1 +e = &;))1(1 <&; < 1+¢) for any € > 0.
For € ©, define a lower bound (wp—1) random variable, S7,, pgrs(0), on the EGMS boot-

strap statistic S} papr5(0) to be

Sinpars(®) =S (Tin pas(0) + Aioarsle, 0u(6) ) , where
TTnjpams(0) = V5;(0) + ¢5(&,;(0)) Vi < k,
Tfn EGMS(Q) = (Tzln,EGMSa "'7Tzlm,EGMS)/7

* inf L . Sk 1/2 ~ . . '
Aln ,EGMS * GGGIﬁf(Fn) %122( (X(an (0),n"*EpR,m;(W,0)) + 1(j # jn(0))bn;(0)

10 = jn(0))55(5,(0))) (12.4)

for 1 := (1,...,1) € R¥ and x(v,c) := [v 4+ - — [d]_.

The asymptotic distribution of the lower bound random variable S7, paass(6n) is

inf
SlooBaMs = S (Tzoo,EGMS + ALoo.Bcms e Qoo) , where
. !/
TL]oo EGMS = G]oo + %(h* ) Vi <k, Tzoo,EGMS = (Tl*,loo,EGMSv "‘aTzkoo,EGMS) , and

Al pears 1=, Il mas (GP70),6) £ 1G £ 70 +16=0085-05) (125)



for A7 as in Assumption BC.3.
For 6 € ©, define an upper bound (wp—1) random variable, S, paass(f), on the EGMS

bootstrap statistic S pare(6) to be

Strn,eams(0) =S (len,EGMS(G) + A*Uil,fEGMslka Qn(e)) , where

T eams(0) := Ui (0) + 5" (€,;(0)) Vi <k,
T, pams(0) = (Tf}m,EcM&---va}kn,EGMs)/v and (12.6)
Aifitseurs = inf min (<[75,(0)]5 + ¢ (€5,(0)))

90U (F,) i<k

for ¢7* as in Assumption A.10. The asymptotic distribution of 57y, paass(0n) is

* . * * inf
Stroo,EGMS = S (TUoo,EGMS + Apso,Bams e Qoo) , where
* . * * * !/
T joo,pams = Gleo + 05 (hoo) Vi <k, Tioo pams = (L0100, 5GMS5 5 TUkoo, EGMS) s

* inf : : mo *k (1%
Ao, BGMS = (Q’b’bg’rg@a[ min (G} (0)]+ + 5" (8)) (12.7)

for Af;; as in Assumption BC.4.
Let ¢roo,rams(l — @) and cpyoo, rams(l — a) denote the 1 — a quantiles of SZOQEGMS and
oo, EGMS» Tespectively. For some results, we assume that 57, paarg satisfies the following con-

tinuity condition.

Assumption BC.5. The distribution of S pgss is continuous at CUoo,EGMS(1 — ).

Theorem 12.1 For sequences {Fp,}n>1 and {0y }n>1 that satisfy Assumptions A.0-A.4, A.6, BC.1,
BC.2, C.1-C.4, C.7-C.9, and S.1 and for a € (0, 1), the nominal level o« SPURL1 test ¢,, gpirr1(0n)
for testing Hy : 0,, € O1(F,) satisfies

(a) limsup,,_, Pr, (65, spur1(0n) = 1) < P(Sew > CLoo,pams(1 — @)) provided Assumptions
A.5, BC.3, and NLA hold,

(b) liminf,, . PF, (¢y,5puRr1(0n) = 1) > P(Sec > cuco,zams(l — ) provided Assumptions
A.10, BC.4, BC.5, and NLA hold, and

(¢) iminf,, oo Pr, (¢n,spur1(0n) = 1) = 1 provided Assumptions A.10, BC.4, CA, 8.2, and S.3
hold

Comments. (i). Theorem [12.1fa) and (b) provide upper and lower bounds on the asymptotic

power of the SPURL1 test under n~/2-local alternatives.

*Tn Theorem a), the constants {n,},>1 in Assumptions BC.2 and C.9 are assumed to be the same. For
example, one can take 7, = 7'71/2 Vn > 1 given 7, in the definition of ©,, in 1) and in Assumption A.6(iii). In
Theorem [12.1{b) and (c), one can take 7y, := 72 ¥n > 1 to be the constants {1y, }n>1 in Assumption BC.3.



(ii) In Theorem[12.1f(a) and (b), the distribution of S, defined in ([5.11)), and the magnitude of

the asymptotic power of the SPURI test under n~1/2

-local alternatives depends on the “noncentral-
ity parameters” hjo := lim nl/Q(EFnﬁzj(I/V, 0,) + r}?‘f) € Rp1o0) VJ < k that appear in Assumption
C.3. Increasingly negative values of hj lead to greater asymptotic power.

(iii). Theorem c) shows that the SPURI test is consistent against all alternatives that

satisfy Assumption CA.

The results of Theorem [12.1] give the power properties of the SPUR2 test when the model
exhibits “large-local” or “global” model misspecification, i.e., when {F}, },>1 is such that nt/ Zr%f —
oo (which is Assumption MM in Section [14] below). In this case, the upper bound 7, yp(«) of the
CI for T}?j is positive wp—1 by Proposition b) below, the level & SPUR2 test equals the level
ag SPURL test wp—1, and the SPUR2 test has the same asymptotic power properties as the level
as SPURI test.

On the other hand, the asymptotic power of the SPUR2 test is the same as that of the level
az GMS test, see Andrews and Soares (2010), when {F}, },>1 is such that there exists a sequence
{07 € ©1(F,)}n>1 for which n'/2Ep, m;(W,05) — oo Vj < k (which is Assumption IS in Section
below). This occurs when the model is correctly specified and the identified set contains slack
points for which the slackness of the inequalities is of order greater than n~/2. In this case, the
upper bound 7, yp(a) equals zero wp—1 by Proposition m(a) below and the level o SPUR2 test
equals the level g GMS test wp—1.

The SPUR2 test is consistent against all alternatives that satisfy Assumption CA, because both
of the GMS and SPURI tests are.

13 Recentered Test Statistics

An alternative to the SPUR test statistic defined in Section [4.1|is a recentered test statistic,

such as considered in Chernozhukov, Hong, and Tamer (2007), which is defined to be

Sn,Recen(e) = n,Std(e) - }nf Sn,Std(g)a (131)
/e
where S, 5:4(0) := S(n'/?m,(6), ﬁn(H)) is a “standard” test statistic, such as one considered in

Andrews and Soares (2010), see (3.1). The MR identified set corresponding to the recentered
statistic is the set of @ values that minimize the population version of the recentered statistic/1] It

depends on the choice of test statistic.

*'The population version of the recentered statistic is S(Erm(W, 0), Qr(0)) — infzee S(Erm(W,0), Qr(6)), where
QF(Q) = VCL’I“F(7’7),(VVZ‘7 9))



Chernozhukov, Hong, and Tamer (2007) consider recentered test statistics, but they do not
analyze their asymptotic properties under misspecification or under correct specification with drift-
ing sequences of distributions {F}, }»>1. In consequence, it is not clear whether the application of
subsampling to recentered test statistics provides critical values that are uniformly asymptotically
valid under misspecification or correct speciﬁcation@

When S, s1q(0) is a test statistic from Andrews and Soares (2010) with the function S equal
to Sy, see , we denote the recentered test statistic by Sin recen (). It is easy to show that the
MR identified set corresponding to San recen(#) is the same as the MR identified set in Section
On the other hand, if one employs a different S function in Sgecenn(#), the MR identified set is
different.

When the function S employed by the SPUR test statistic S, (#) defined in is Sy, we denote
the SPUR statistic by S4,(0). The following lemma shows that the recentered statistic Sap, recen (6)
is identical to the S4,(0) SPUR statistic. That is, for the Sy function, the recentered statistic is

not an alternative to the SPUR statistic—it is the same.

Lemma 13.1 For any 0 € ©, Sip recen(0) = San(0).

Proof of Lemma By (4.1), 70t := infpeq max;j<j[,;(6)] - . Hence, for S = Sy, infg_ g Sn,sta(0)

= nt/ 2ﬂlnf. In consequence,

Sin,Recen () = max [nl/ zﬁnj(f?)] — /2700 and
S _
Sin(0) = mex |21 (0) + 2750 (13.2)

We claim: Su, gecen(0) > 0 iff S4p,(6) > 0. This clearly holds if 7inf — 0, so suppose 7™ > 0. In this
case, San Recen(0) > 0 iff —n1/2ﬁ1nj(0) — n!/27t > 0 for some j < k iff Sy,(6) > 0, which proves

the claim. In addition, S4,(6) > 0 because [z]— > 0 for all =, and Sip recen() > 0 because pinf jg

the infgcg of max;j<y[my;(6)]—, which completes the proof. [

For recentered tests based on S not equal to Sy, one can determine the asymptotic distribution
of Sp.Recen(6n) under suitable drifting sequences {6, },>1 and {F,},>1 by altering the proof of
Theorem b). However, the resulting asymptotic distribution seems problematic because it is
not apparent how one can construct a critical value in an EGMS fashion that exploits the analogue

of the condition max;<j b; > 0, which appears when S = 5j.

22The reason is that, even under correct specification, the recentering term infgeg Sn.sta(f) has a complicated
asymptotic distribution under drifting sequences of distributions (given by AZf(A) in Theorem b) when the re-
centered test is based on S5 in ) In consequence, the argument for the correct asymptotic size of the subsampling
test based on a test statistic without recentering that is given in Andrews and Guggenberger (2009) does not extend
to the case of the subsampling recentered test.



14 Confidence Interval for rililf
In this section, we define the one-sided upper-bound CI C1,, , yp(c) for r'}?f that is introduced

in Andrews and Kwon (2019) and employed by the SPUR2 test and CI in Section Define

Api(0) := —Ermj(W,0) for j <k, Ap(h):= max Api(f), and AlRf .= inf Ap(f).  (14.1)

The parameter Ailflf is the minimum over © of the maximum inequality violation over the k mo-

ments, where a slack moment inequality yields a negative violation value. We refer to Ail?f as the
minimax violation parameter.

If the model is correctly specified, Ail?f < 0 because there exists some 6 € © for which all of the
moment inequalities are satisfied, i.e., max;<y A}flﬁ(@) < 0. If the model is misspecified, AlRf > 0
because for all # € © some moment inequality is violated, i.e., Ap;(0) > O@ When AlRf > 0,

T?f = Ai}lf. When Ailf—,lf <0, Ti}‘f = 0. Thus,

it = max{AlRf 0} (14.2)
and Ai}lf provides more information than rilf-?f. For this reason, the CI for ril?f is obtained from a
CI for Aiﬁf. This yields a CI for r%lf that has the feature that it equals {0} wp—1 when the model
is correctly specified and the identified set contains slack points 6 for which the slackness of the
inequalities is of order greater than n~1/2. In turn, this yields the highly desirable feature of the
SPUR2 test that under these circumstances it has the same asymptotic properties as a standard

test that assumes correct model specification.

We estimate Ap;(6), Ar(0), and Al by

~ ~

Api(0) := —7in;(0), An(f) := max A,;(), and AR .= inf An(6) (14.3)
S

J<k
for j < k, respectively. The nominal level 1 — « one-sided upper-bound CI for AilfJf is

Cn,aup(@)

Clyaup(a) = (_00>3in7fA7Up(Oz)], where A$R7Up(a) = ﬁglf _ s

n

(14.4)

and ¢, A yp(a) is a data-dependent EGMS critical value defined below. The nominal 1—« one-sided

upper-bound CI for ri}?f is

Clyyup(@) = (0,7, up(@)], where 7 yp(a) := max{A 1 (a),0}. (14.5)

*3This statement relies on continuity of Ap;(6) and compactness of © by Assumption A.0.



As defined, C1,, . yp(a) = {0} whenever the CI for Al indicates the model is correctly specified,

inf

i.e., whenever ﬁn,A,UP(a) <0.
We have A}?j € Clyaup(o) iff nt/2(Ainf _ A‘}f) < Cpaup(e). Hence, the critical value

Cn,A,uP(e) is determined using the asymptotic distribution of
AR /2 (&?f - Ai;j) . (14.6)
The upper-bound EGMS bootstrap critical value ¢, o yp(«) is defined as follows. Let
80 (0) := 12 (ﬁnj(e) - &f;f) — sl (0) i, (14.7)

where sd3,;(0) := max{Var* (n1/2(3nj () — Ain1))1/2 1} for j < k, Var*(-) denotes the bootstrap
variance defined in (6.1, and Oy, is defined in (BC.5). Let

€65(0) 1= (55, (0)n) /2 (B,5(0) — Al Wj < k and £5,(0) = (€51(6), ., €6,(0))',  (14.8)
where x, and sd;, ;(0) are as above. Define
Tne(0) = {5 € {1, 0.k} + Dpj(0) = Ay (0) — sdg,;(0)n %k}, (14.9)

where ﬁnj () and A, (6) are defined in and sdg,,;(0) = max{Var*(nlﬂ(ﬁnj (0)—An(0)))1/2,1}
for j < k. Explicit expressions for sdy, () and sdg,,;(f) are given in Section [L5| below.

The asymptotic distribution of Agth depends on the set of minimizers of Ar(0) over ©, which
is defined by Omin(F) := {0 € © : Ap(§) = AR} Under Assumption A.0, Opiy(F) is non-empty.

The critical value ¢, A yp(a) employs the following estimator of ©min (F):
Ominn :={0 € ©: A, (0) < A 4 7 /n1/?}, (14.10)

where {7, }n>1 is a sequence of positive constants that satisfies 7,, — oo (and typically 7,/ n'/? —

0), such as the BIC choice 7, = (In n)1/2
The upper-bound EGMS bootstrap statistic, A;fZ{UP, is defined to be

ARyp = inf min max (<90,(0)+ 10 # )8 (0)+1G = j1)e;(€5(0), 2 (9))) . (14.11)
0€Omin,n j1€Tne(0) I<k

The upper-bound critical value ¢, o yp(a) is the o conditional quantile of AZ?Z{U p given {W;}ti<n

24More precisely, @min,n is (and needs to be) an estimator of an asymptotically small expansion of the minimizer
set Omin(F), see Andrews and Kwon (2019) for details.



* inf

for a € (0,1). This quantile can be computed by simulation. The form of A}"\';;p is similar to
that of A;‘ll%fG mss but it is not the same. See Andrews and Kwon (2019) for the details behind its
specific form.

Proposition below shows that CI,, ,p(«) has correct asymptotic level in a uniform sense
with i.i.d. observations under a set of relatively primitive conditions. This result relies on the
asymptotic distribution of Agth for a certain subsequence {ay, }n>1 of {n}p>1.

There always exists a sequence { Fj, }n>1 and a subsequence {gy },>1 of {n},>1 such that

lim inf in}; Pp (Ailfﬂlf € (*OO,AEI’%P(OZ)]> = liminf Pp, (n1/2(£iﬁlf - A}?E) > En,A,Up(a))

n—oo Fe n—oo

= lim P, (A \ > €, aup(a)), (14.12)

where the first and second equalities use (14.4) and (14.6]), respectively. For the subsequence

{an}n>1in (14.12), let {a, }n>1 be a subsequence of {gy }n>1 for which Ag, A F,, —H Aa asn — oo
for some Ap € S(O x Rfioo]

of statistics {A‘ar;f A :n > 1} has asymptotic distribution Ai:f A(Aa) defined by

). Such a subsequence always exists. The corresponding subsequence

. 1
f ,_ : . .
A a(Aa) = (9,;§1€fAA max <—G}”(0) + 57@(9)6‘?(9) + ej> . (14.13)
Let ¢ a(a) denote the o quantile of Agf A(Aa). We impose the following continuity condition on

the distribution function of AﬁfA(AA) at Coo,A ().

Assumption A.7x. P(AzfA(AA) = Co,n (@) = 0.
*inf

Assumption A.7a can be avoided by defining ¢, A rp(a) to be the a conditional quantile of An, AUP

given {W;};<, minus a very small constant ¢, such as ¢ = 1076,

Proposition 14.1 Under Assumptions A.0-A.6, A.Ta, and A.8, for a € (0,1), the nominal 1 — «
CI ClI, ,uvp(c) satisfies

lim inf ingp PF<T%15 €Cly,vp(e)) >1—a.

n—oo Fe

Comment. Proposition follows from Theorem 6.1(a) in Andrews and Kwon (2019), which
concerns CI, Ao yp(a), using the definition of CI,,, yp(c) in 1) because A}?j € Clyavup(a)
implies that 7'}?5 € Cly,up(@).

Next, we show that when the model is correctly specified and the sequence of MR identified
sets {O7(Fy)}n>1 contains slack points with slackness of order greater than n~'/2, defined precisely

in Assumption IS below, then CI,, ,yp(e) = {0} wp—1. This demonstrates that it is possible to

10



provide evidence that the model is not identifiably misspecified, which is the reverse of evidence
provided by a model misspecification test.

We employ the following assumption concerning the MR identified set (IS).

Assumption IS. The sequence {F,},>1 is such that there exists a sequence {#% € O7(F,)}n>1
for which n'/2Ep, m;(W,0L) — oo Vj < k.

We also show that if the model exhibits “large-local” or “global” model misspecification (MM),
then 7, yp(a) > 0 wp—1.

1/2,.inf
TFn — Q.

Assumption MM. The sequence {F},},>1 is such that n
Proposition 14.2 Suppose Assumptions A.0-A.6 and A.8 hold.
(a) For sequences {Fy}n>1 that satisfy Assumption IS, liminf,, .. Pr, (7hup(a) =0) = 1.

(b) For sequences {Fy,}n>1 that satisfy Assumption MM, liminf,_ .« Pp, (Fn,up(e) > 0) = 1.

Comments. (i). Proposition [14.2fa) is a consequence of Theorem 7.1 in Andrews and Kwon
(2019) and 7, yp(a) := max{ﬁg"fA?UP(a), 0}. Proposition b) is a consequence of Theorem 16.1
in the Supplemental Material to Andrews and Kwon (2019) and 7, yp(a) := max{ﬁi,ﬁfA’UP(a), 0}.

(ii). Proposition [14.2fa) implies that the level a misspecification-robust adaptive SPUR2 test
has the same power properties as a level as standard GMS test that is designed for correct model
specification when the model is correctly specified and Assumption IS holds, where a = a1 + as
and a1, a9 > 0, such as a = .05 and as = .045.

(iii). Proposition b) implies that the level o adaptive SPUR2 test has the same power

properties as the level g SPURI1 test when the model is misspecified and Assumption MM holds.

15 Explicit Expressions for sd .(0) fora=1,...,6

anj

Here we provide explicit expressions for the bootstrap quantities sdy, ;(0) for a = 1,...,6 that

arise in (6.4), (6.7)—(6.10), (14.7), and (14.9), based on b = 1,..., B bootstrap samples, which

*
anjB

{S:Lb,EGMS(e) . b — 1, ...,B}.

Given the definitions of sdy,, ;

we denote by sd (@) for a = 1,...,6. We also provide expressions for the bootstrap statistics

(0) for a =1, ..., 6, it suffices to provide explicit expressions for

Vini(0) := Var*(n2(ii, () + 7(0))), Vi (0) := Var*(n'/?mu,;(0)),
Vi (0) := Var*(n? ([ (0)] - — 7i05)), Vit (0) := Var* (n!/3(7,5(0) — 7 (6))),

n

Vi (0) := Var*(n'/2(A,,;(0) — AM)) and Vg,,;(0) == Var*(n**(An;(0) — A,(0))). (15.1)

n
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Based on the nonparametric i.i.d. bootstrap in ., let {W}}i<n denote the b-th bootstrap
sample for b = 1,..., B. Then, Vlnj(ﬁn) and Van (0,,) are simulated using B bootstrap samples via

the formulae:

an 0 Onjc

0 = a5 (0 g [0] 3" (ot [] )'
0

~ mr .. (0
Vornip(0) == nB™! Z (6;‘3:((9)) - B! 221 ::jcc((e))) ,

n n

* ~x — * — 2
m; (Wi, 0), and O-n?'b(e) =n! Z (mj(Wib7 0) — mnjb(e)) . (15.2)
i=1 i=1

The quantity YA@‘;LJ (0) is simulated using B bootstrap samples via the formula:

2
~ (0) (0) )
Vanjp(0) := nB~ 12([ n]bg ] _A*mf 12([ njcg)] _ﬁénf)) , where
njb o njc _
My, ()
T jo(0)

et = inf 7,(0) := inf max[ (15.3)

0€0,, 0c6,, i<k

The quantity 174*;1]- (0) is simulated using B bootstrap samples via the formula:
B _
~ (9) m* , (6)
Vi .— nB~ 1 n]b _ nJb
mip(0) ==n Z <[ G0 | T 5,00 ]

-B- 1%([ "”0] — max [Tflk(e)} ))2 (15.4)
- Onjc0) ] J<k [ G5.(00) | _

The quantities ‘75*71] (#) and ‘7(;;7«3' (0) are simulated using B bootstrap samples via the formulae:

Vayip(0) := nB~

(A:me) Anpt - 12( B:;;nf)f and
2
(A:ij(e) - A* ! Z ( niel 3;(9))) , where

Vép(0) := nB™t

b=1
Ax L (6) = M) 3. (0) := max A* ., (0), AxiMf.— inf A* (6) (15.5)
b 37*”‘1)(9)’ oA sk T h " co, '
m:,jb(e) = _1ij Wllﬂg) and o Unjb 12 m; Wzbae njb(g))
=1

By definition, sd, ;;(6) := (V5 5(0))/2 for a =1,...,6.
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The bootstrap statistic 7 paag(0) is simulated for b =1, ..., B by

Shvecms(0) == 8 (T:fb,EGMS(e) + A e, ﬁn@)) , where

Triveams(0) == Up(0) + @j(EnB(Q),ﬁn(e)),
. mya(0)
Pl = v (6:;;:@ - m”j(9)> |

Arons = inf  min  max (anb ecms(0)+1(j # j1)bnj,EcMs(0)
0€0,, j1ed,p(h) i<k

10 = 31)¢;(€h5(0), 2u(6))) (15.6)

€,p(0) is defined in 1’ with sdj, ;5(0) in place of sdj, . (6), jnB(H) is defined in with
sdy,;p(0) in place of sdy, . (0), Xnjb,ams(0) is defined in with 77,5, (6) and sd,,;5(0) in place
of U,,;(0) and sd3,;(0), respectively, ZMB’EGMS(G) is defined in with sd3, ;5(0) in place of
sds,,;(0), and €% 5(0) is defined in . ) with sd3,, . 5(0) in place of sdj, (6).

The bootstrap critical value is the 1 — a sample quantile of {S* b, poms(@) :b=1,... B}

16 Extensions

16.1 Weighted Moments

The weights used in the definition of the MR identified set ©;(F') in are uniform weights.
This follows from the 1; vector that appears in and . Non-uniform weights w :=
(w1, ...,wy)’, where w; € [0, 00) for j < k, can be introduced by replacing 1; by w = (1/w1, ..., 1/wg)’
in these equations, where 1/0 := oco. Equivalently, one can define 7;(0) := [w; Erpm;(W,0)]- and
rr(0) = maxj<irr;j(f) (analogously to ) The larger is w;, the more weight is placed on in-
equality j and the less inequality j is relaxed in the MR identified set under misspecification. For
example, if one believes that some key moment inequalities are correctly specified and one does
not want these inequalities to be relaxed under misspecification, then one can set the weights w;
corresponding to these inequalities to be very large relative to the other weights, such as 1000
versus 1. If w; = 0, the jth moment inequality is ignored.

The SPURI and SPUR2 tests can be constructed with weights w. In the definition of 7,;(6) in
(@3], mn;(0) is replaced by w;mn;(0), i.e., 7,;(0) := [wjmn;(0)]-. In the definition of the SPUR
statistic S, (fp) in (4.2) and (5.2 . 7inf1, is replaced by 7M. In the definition of the EGMS critical
value, (i) 7,(0) is replaced by w;Tn(f) in the definitions of &, ;(6) in and sdj,,;(0) following
, (ii) () + 70F is replaced by i (0) + w; 7 in the definition of O, in 1} (iii) 7inf is
replaced by w;7f in the definitions of EMEGMS(G) in , sd,,;(0) following , and {f’w(@)

13



in , and (iv) 7,,;(0) is defined by [w;min;(0)]—, 7,(0) = max;<k|w;min;(0)]-, and sdy,;(0) is
defined using these updated definitions in the definition of J,(6) in , and (v) A;‘Z%fG wslk
replaced by A%, s@ in the definition of S5 peyrs(0) in (6.3).

For the SPUR2 test, the definition of the CI CI, o yp(a) is altered as follows to take account
of the weights w. The definition of the population quantity Ap;(0) := —Erm;(W,0) in is
replaced by Ap;(0) := —w;jEpm;(W,0). Correspondingly, the definition of the sample quantity
ﬁnj(e) = —Mp;(0) in is replaced by ﬁnj(H) = —w;My;(0). Given this change, CI, A yp(a)
is defined as in , and the critical value ¢, A yp(c) is defined as in f. With the
updated definitions of the SPURL1 test and CI, o yp(a), the SPUR2 test with weights w is defined
just as in Section [£.2]

The above changes to the definition of the SPUR test statistic to take account of weights w
affect its asymptotic distribution as follows. In the definition of A, r in and A:]u r, defined
following , b; is defined with wjr%“f in place of r}?f. And because A, r and AZ7 F, appear in
Assumptions C.7 and C.8, respectively, this affects these assumptions and the sets A and A;. In
the definition of @?(F ) in and in Assumption C.3, ri}?f is replaced by wjrilflf. This change in
Assumption C.3 effects the definition of 1. In Lemma (a), by () is defined with 7“‘}?: replaced
by wjv"}%f. The changes above affect the definitions of AM(A,, ) and ARI(A) in , but do not
require any changes in their expressions given in (|5.10)).

Provided w; € [0, 00) for all j < k and w; > 0 for some j < k, all of the results above concerning
the SPUR1 and SPUR2 tests, namely, Theorems and as well as Propositions
and go through for the weighted versions of these tests given the changes above. The tests

are invariant to the scale of w.

16.2 Tests without the Standard-Deviation Normalization

In some scenarios, it may be desirable to define the MR identified set O7(F) in without
the standard deviation normalization of the moment functions—i.e., to define O;(F) with m(W,0)
in place of m(W,0). For example, in their study of demand based on quasilinear utility, Allen
and Rehbeck (2018) do not renormalize their moment inequality functions because the moment
functions are denominated in dollars, which makes the interpretation simple. In this paper, a
notationally-convenient equivalent way to describe non-normalized moments is to redefine 0%(9)
in to equal 1 Vj < k, VO € ©. Then, m(W,0) = m(W, 0). One forms a “non-normalized” test
statistic by redefining Eij(é?) in to equal 1 Vj < k, V6 € ©. In this case, Q,(0) = ,(6) in
and ﬁn(ﬁ) is a variance matrix, rather than a correlation matrix. Denote the resulting test

statistic by Sy non(6), where “non” stands for non-normalized.
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The asymptotic distributions of Sy, non := Spnon(0r) and its components, denoted by T3, ron (61)
and Ai,ﬁfmn, are as in Theorem with all of its assumptions defined with a%j(ﬂ) = aij(a) =1,
which yields m(W,0) = m(W,0), and with Assumption C.5 redefined with v7(0) = G7(6) = 0
V0 € O, which yields G}’oo =0and G;”og = GTOO. Thus, the asymptotic distribution of Sy, 50, differs
from that of S,, because there is no effect of estimation of the standard deviations, but otherwise
is unchanged.

Given this, one defines the EGMS critical values for Sy non as in Section @ and the CI
CIl,,up(e) as in Section but with 3;‘3(0) = 1, which yields v7%(¢) = 0 and v;;(0) =
nl/? (m;:j(e) - mnj(e)) ,and 0%,(6) = 1, which yields ,,;(0) = m,;(0) Vj < k, V0 € ©.

The results of Theorem and hold for the SPUR1 and SPUR2 tests based on Sy, non
provided the assumptions imposed in the theorems are modified by taking 0%(9) = Eij @) =1
and the number of moments finite in Assumption A.3 is reduced to 2 + a from 4 4 a. Finally, the
results of Theorem for the set estimator ©,, also hold in the non-normalized case with the same
modifications.

Note that weighted moments also can be employed with non-normalized moments. In this case,

the changes outlined above for both of these scenarios need to be employed.

16.3 Non-I.I.D. Observations

The basic results in this paper are given under high-level conditions that allow for non-identically
distributed and/or clustered observations, as well as time series observations. For example, this
is true of Theorem and of Theorem below, which is the key ingredient to the proofs of
Theorems[7.I]and[I2.1] In particular, provided the distributions F' of the observations are restricted
such that Assumptions C.5, C.6, and BC.6 can be verified for suitable subsequences {py,}n>1 of
{n}n>1, the rest of the proofs of the asymptotic size results go through.

For non-i.i.d. observations, the following changes are needed: the nonparametric i.i.d. bootstrap
defined in needs to be changed (a) for clustered observations to a cluster-level nonparametric
ii.d. bootstrap and (b) for time series observations to a block bootstrap or Markov bootstrap, but
(c) for independent non-identically distributed observations does not need to be changed. With
these changes, the SPUR1 and SPUR2 tests have correct asymptotic size (under conditions such
that Assumptions C.5, C.6, and BC.6 can be verified).
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(a) Test Function Si(-) (equivalently Sa(-)) (b) Test Function S4(-)

Figure 17.1: Maximum Coverage Probabilities for any 6 € O for a Standard 95% GMS Confidence
Set under Model Misspecification Indexed by 7: Jx = 1,2,...,15, p = 0, and (a) Test Function
S1(+) (equivalently Sa(+)) and (b) Test Function S4(-)

17 Spurious Precision of GMS CS’s

This section provides numerical results regarding the spurious precision of GMS CS’s that
augment those in Figure 3.1. In addition, it provides the asymptotic spurious precision results

upon which Figure 3.1 is based.

17.1 Numerical Results

Figures 16.1, 16.2, and 16.3 compare the spurious precision of GMS CS’s based on different
S functions, viz., S1, S2, and Sy, for different numbers Jy of violated moment inequalities and
different values of the common correlation p between the moment functions. Figure 16.1 considers
Jy =1,2,3,5,10,15 with p = 0 (in which case S; = S). Figure 16.2 considers the same Jy4 values
with p = .75 (in which case S; # S). Figure 16.3 considers Jx = 2 and p =0, .2, .4, .6, .8, .95.

Figure 16.1 shows higher levels of spurious precision for S; (and S2) than Sy when Jy is large,
but little difference for small J. This is to be expected because the magnitude of spurious precision
under model misspecification is inversely related to power under correct model specification. Figure
16.2 exhibits the same patterns as in Figure 16.1, but the differences between the S functions and

across Jy values are much smaller when p = .75 than when p = 0. The results for the S7 and Sy
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Figure 17.2: Maximum Coverage Probabilities for any 6 € O for a Standard 95% GMS Confidence
Set under Model Misspecification Indexed by r: Jy =1,2,...,15, p = .75, (a) Test Function S;(-),
(b) Test Function Sa(-), and (c) Test Function S4(-)
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Figure 17.3: Maximum Coverage Probabilities for any 6 € © for a Standard 95% GMS Confidence
Set under Model Misspecification Indexed by r: Jx =2, p =0,.2,...,.95, and (a) Test Function
S1(+), (b) Test Function Sa(-), and (c¢) Test Function Sa(-)
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functions are quite similar. Figure 16.3 shows that, for all three S functions, spurious precision is
greatest for p = 0 and least for p = .95, but the differences across p values are not huge in the case

considered where Jy = 2.

17.2 Asymptotic Results for Spurious Precision

Here, we provide an expression for the maximum asymptotic coverage probability for any 8 € ©

for a standard GMS CS. The standard test statistic is of the form
Sn.sta(0) = S (nl/an(e), ﬁn(e)) , (17.1)

where S(m, Q) is a test function defined as in Andrews and Soares (2010) with m € R* and
Q € ¥, and ¥ is a specified closed set of k x k correlation matrices. We assume S(m, 2) satisfies
Assumptions S.1-S.4. Examples of S(m, Q) functions that satisfy these assumptions are given in
[E3).

Let ¢,(0,1 — «) denote the GMS critical value defined in Andrews and Soares (2010) using a
constant k,, such as k, = (In n)1/2, where k,, — oo and /in/nl/2 — 0

We consider a set P,, of distributions F' for which one or more moment inequalities is violated

1/2

by at least r/n'/“, and the other moment inequalities are slack by at least d,, /nl/ 2 for all € O,

where d, k! — 0o. Let Qp(0) := Varp(m(W;,0)) € R*** denote the variance/correlation matrix
of m(W;,0) under F. Let J := {1,...,k}.
Define

Pn:=A{F:¥0 € ©,3J(0) C J with J(0) # & such that

Epm; (Wi, 0) < —r/n'/?if j € J(0) and

Epmj(W;,0) > dn/nY? if j € T\ J(0), and Qp(f) € U}, and
LY :={((,Q) € Rﬁ:oo} x U : for some subsequence {ay,},>1 of {n} with

(Oars Far) € © X Pu,, al/*Er, m(W,0,,) — ¢ and QF, (0a,) — Q}. (17.2)

By the definition of Py, for (¢,Q2) € LV, ¢; < —r or {; = 0o Vj < k, where £ = ({1, ..., {x)".
For { € Rﬁ:oo}v let ¢,(€, 1—a) denote the 1—a quantile of S(QY/2Z*+¢,Q), where Z* ~ N (0, I;).
For ¢ € Rfioo], define 7(¢) := (mw1(€), ..., m,(€)) by m;(¢) := 00l(¢; = o0) for j < k, where c0-0 := 0.
An upper bound on the maximum asymptotic coverage probability for any 8 € © for GMS CS’s

?We assume that the GMS function @(€, Q) satisfies Assumption A.4 of Bugni, Canay, and Guggenberger (2012)
with & = 0 replaced with £ < 0 in part (b).
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under {P,},>1 misspecification is given in the following lemma, which is proved using results in
Bugni, Canay, and Guggenberger (2012). For example, if the upper bound for a nominal .95 CS
is .70, then the asymptotic coverage probability for any potential pseudo-true value is at most .70,

which indicates spurious precision of the CS.

Lemma 17.1 Suppose the observations {W,}i<, are i.i.d under each F € P, and 0 < o < 1/2.
Under Assumptions S.1, S.3, and S.4 (stated in the Appendiz),

limsup sup  Pr(Spst(f) <cu(0,1—a)) < sup P (S(Ql/ZZ* +£,9) < crp (2,1~ a)) .
n—oo (9,F)eOxPy, £,Q)eLw

Comments. (i). For the test functions S(-) = S1(+) and S4(+), we show in the following subsection
that the upper bound in Lemma is strictly less than 1 — « for all r > OE Hence, these GMS
CS’s exhibit spurious precision under misspecification.

(ii). Under a mild condition, the inequality in Lemma[17.1]holds as an equality. Let ({oo, Qoo) €
LU be a point that achieves the supremum on the right-hand side in Lemma m (Such a
point always exists.) Let Jo C J, denote the set of indices j for which fr; < oo, where
loo = (Looty oy book). Let €(Js, —7) denote the vector in Rﬁ[oo] with jth element equal to —r
for j € Jw and all other elements equal to infinity. The inequality in Lemma holds as an
equality if {(J,—7) € Lo :={l € Rfioo} 1 (0, Q) € LV}

The right-hand side in Lemma equals MaxCPM (r; Qoo Joo) = P(S(Q¥22*+€(JOO, —1), Qo)
< C4(0,0) (oo, 1 — @) for £(Joo, —7) defined in Comment (ii), where MaxCPM abbreviates “max-

imum coverage probability under misspecification”.

17.3 Proof of Lemma and Comment (i) to Lemma [17.1]
Proof of Lemma There always exists a subsequence {g,} of {n} such that
limsup  sup  Pr(Sn,sta(0) <¢u(0,1 — ) =lim Pf, (Sq, sta(0q,) < Cq,(0q,,1 —a)), (17.3)
n—oo (0,F)eOxPy,
where (0,,, Fy,) € © x P, Vn > 1. We can take a further subsequence {wy,} of {g,} such that

w2 Er, m;(Wi,0u,) — oo and Qp, (0u,) — Qoo (17.4)

for some (oo, Qoo) € L.

20For any test function S(-) satisfying the conditions, the upper bound in Lemma is less than or equal to 1 —a.
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Let Jp(6) denote the set J(6) corresponding to F in the definition of P, in (I7.2). The
first convergence result in and the definition of P, (including d,k,' — o) give: (i)
Py, (Ow,) = Joo = {j < k : lsoj < oo} for all n large, where log = (loo1,...s look)’ and (ii)
Kb wn 2 gy, (Wi, 0,) = Eoo = (Esots s Enok)'s Where by definition €y, = 0 if foo; < 00 and
ooj = 00 if logj = 00 (e, §on = (o) and m(€) = €0 )-

We have cr_y(€o0,1 — ) > 0 by the discussion following Assumption A.7 of Bugni, Canay,
and Guggenberger (2012) (using {., # ooly). We have Sy, std(0w,) —d S(QééZZ* + U, Qo) by
Lemma S1.1 in the Supplemental Material of Bugni, Canay, and Guggenberger (2012) using ,
and Cy,, (0w, ,1 — @) —p cre_)(Qoo, 1 — @) by a similar argument to that given in the proof of
Lemma 2 of Andrews and Soares (2010) using and the results in the previous paragraph.
Finally, by applying Lemma 5 of Andrews and Guggenberger (2010) to the right-hand side (rhs) of

(17.3]), we obtain

lim Pr,, (Sun.5ta(0u,) < Cu (0w, 1 — @) = P (5(93,422* ooy o) < Cr(p) (Qoor 1 — a)) .
(17.5)
The left-hand side of equals the rhs of because a subsequence has the same limit as
the original sequence.

For any (¢,Q) € LU, we have {; < —r or {; = 0o Vj < k, where { = ({1, ...,{};)’, by the definition
of P, in (17.2). Thus, ¢; < w(¢;) (:= ool({; = 00)) Vj < k. In consequence, using Assumption
S.1(i), we obtain ¢;(Q2,1 — @) > cr) (2,1 —a) V(¢,Q) € LV.

We have

P (8(9%22* + Loy Qo) < Crt) (Qoor 1 — a))

< sup P (S(QUQZ* +4,9) < cq(e)(Q2,1 — oz))
(£Q)eLy

<l-a (17.6)

where the first inequality holds because ({so, Qoo) € LV by ([17.4) and the second inequality holds
because ¢/(Q,1 — a) is the 1 — a quantile of S(QY2Z* 4+ £,Q) and ¢/(Q,1 —a) > cr(e)(2,1—a) by

the previous paragraph. Equations ((17.3)), (17.5)), and ((17.6) combine to prove the lemma. [J

Now, we prove the result stated in Comment (i) to Lemma “For the test functions S(-) =
S1(+) and Sy(+), the upper bound in Lemma is strictly less than 1 — « for all 7 > 0.” The proof

uses the following lemma.

Lemma 17.2 Suppose X andY are random variables with 1 — a quantiles cx and cy, respectively,
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for some a € (0,1/2), X <Y a.s., and P(X < ¢x) = P(Y <c¢y) =1—a. Then, cx = cy
iff P(X < cx,Y > ex) =0.

Proof of Comment (i) to Lemma If cooy (00, 1 — @) > Cr) (00, 1 — ), then (17.3)),
(17.5)), and Assumptions S.4(i) and (ii) establish the desired result:

limsup sup  Pr(Spsu(f) <c(0,1—0a)) <1—a. (17.7)
n—oo (0,F)cOxPy
We have {o < m({s) with a strict inequality holding for one or more elements, because £ ; <
-1 <0 =7m(lx); for j € Jo :={j <k :lej < 0}, logj = T(lss)j = 00 for j € J\Jso, and
Joo # .

For notational simplicity, let
Sp = S(QPZ" +£,Q0) for £ € RE. . (17.8)

By the discussion following Assumption A.7 of Bugni, Canay, and Guggenberger (2012), ¢p(Qo0, 1 —
a) >0 for { = lo,m(ls) and a € (0,1/2). Hence, by Assumption S.4, we have

P (S <cp(Qoo, 1 —a)) =1—afor l =lo, m(loo). (17.9)

In addition, Sy ) < Se,, a.s. by Assumption S.1(i) because fo, < (£ ). Using these results and
Lemma we have: cri.)(Qoo, 1 — @) = o, (00, 1 — @) if and only if

P (Sﬂ(foo) < Cw(éoo)(Qoo, 1— a), Sgoo > Cﬂ(goo)(Qoo, 1-— a)) =0. (17.10)
Thus, to prove the result of Comment (i), it suffices to show
P (Sr(t) < €S0 >¢) >0 (17.11)

for arbitrary ¢ > 0, for S(-) = Si(-) and Sy(-). In the following, let ¢ > 0 be an arbitrary positive
number.

We consider the case where S(-) = S1(-) first. By the definition of S1(-), Sp = > [w;-Z*+€j]2_

for ¢ = lo,m({s), where w; denotes the jth column of Q2 (because loo; = T(looj) = 00 for
J € J\J). Let v (> 0) denote the number of elements in Jo. We have 3, ;
A ]2 > ¢ (because log; < —1 for j € Ju), and the latter holds if wiZ* <1 —y/cfv

VAR looj]® > ¢
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for all j € Joo. In addition, »_,c; [w;Z*]z <cifw;Z* > —y/c/v for all j € Jx. It follows that

P (Sn(te) <€, 80, >¢) = P | [ {w)jZ* € (—/c/v.r = \/c/v]} | >0, (17.12)
J€Joo

where the last inequality holds because the probability on its left-hand side is the probability that
a multivariate normal v-vector with positive definite variance matrix lies in a set with positive
Lebesgue measure (on R"). This completes the proof of the result of Comment (i) for S(-) = S1(+).
Next, we consider the case where S(-) = S(-). By the definition of S4(-), Sy = maxje . [w; 2" +
)% for £ = loo, (lso) (because looj = m(looj) = 00 for j € J\Joo). Thus, if wiZ* <1 —+/cfor all
J € Joo, then Sy > ¢ (because loj < —r for all j € J). Also, if w}Z* > —y/cfor all j € Jy, then

Sr(ts) < c. Hence, we obtain

P (Su(to) S¢S0, >¢) = P | [ {wZ" € (~Ve,r =V} | >0, (17.13)
€T

where the last inequality holds for the same reason as given for the last inequality in (17.12). This
completes the proof of the result of Comment (i) for S(-) = Su(-). O

Proof of Lemma [I7.2l We have

I—QZP(XSCX) = P(XSCX,Y>C)()—|-P(XSCX,Y§CX)
= P(X <cx,Y > Cx) +P(Y < Cx), (17.14)

where the first equality holds by assumption and the last equality holds because X <Y a.s.

If ¢cx = ¢y, we have
l—-a=PX <cx,Y>cx)+PY <cy)=P(X <cx,Y >cx)+1—a, (17.15)

where the first equality holds by and cx = cy and the second equality holds because
P(Y <c¢y) =1— a. Thus, the “only if” result of the lemma is proved.

If P(X <c¢x,Y >cx) =0, then, by (17.14), 1 —a = P(Y < ¢x). Since ¢y := min{y : P(Y <
y) > 1 — a}, this implies that ¢y < c¢x. But, X <Y a.s. implies cx < cy. Hence, in this case,

(43

cx = cy, which establishes the “if” result of the lemma. I
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18 Additional Simulation Results for the Lower/Upper Bound
Model

Here we provide some additional simulation results for the lower /upper bound model considered
in Section [8] We give results for £k = 4 and 8.

Figure[18.1]shows the rejection probabilities for the misspecified case with k = 4 under the “very
slack” and “slack/almost binding” scenarios that were not reported in the main paper. Figure m
does likewise for the correctly-specified case. The two figures confirm what we have already seen
in the main paper: (i) when the model is misspecified, the SPUR1 and SPUR2 tests perform quite
similarly, with their rejection probabilities reaching 1 fairly quickly as the distance between the
null value and the MR identified set increases, and (ii) when the model is correctly specified, the
SPUR2 test performs similarly to the GMS test when the length of identified set is .5 or larger,
and likewise for the SPURI1 test when the length is 1. Again, we see that the SPUR2 test performs
better than the SPURI1 test when the identified set is small, but not too small.

Next, we consider cases with k = 8. In this case, the moment inequalities are given as

EFWijSQfOI‘lSjSZLaDd

0 S EFWij for 5 S ] S 8. (18.1)

The definition of each scenario is analogous to the k = 4 cases, with each entry repeated twice.
That is, if u* = (i1, po, pi3, i) € R* is the mean vector used under some scenario for k = 4, then
U =y, iy Moy fhos M3, fhs, fg, fy) € R® is the mean vector used in the same scenario for k = 8.
Figures and Figure [18.4] give the simulation results for £ = 8. These results show that the same

qualitative results hold as for k£ = 8 as for k = 4.

19 Details for the Missing Data Model

In this section, we provide additional details for the missing data model considered in Section

Specifically, we provide derivations for (8.5)), (8.6), and the line following (8.6), which gives an
expression for the MR identified set.

Let p; := P(X; = xj) > 0 for j < 3. In the simulations, we take p; = 1/3 for j < 3. Some
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Figure 18.1: Rejection probabilities for (additional) misspecified cases for k = 4. Each plot shows,
under different scenarios, the rejection probabilities of the SPUR1 and SPUR2 tests for the null
hypothesis Hy : 8 = 0 for a range of 0y values, identified set O;(F) = {0}, and two different values

inf
of ri'.

calculations give

Ermy(W,0) = p101,
Erma(W,0) = —p2(01 +7), and
EFmg(VV, 9) = p392. (19.1)

In consequence, the model is misspecified if and only if ¥ > 0, as stated in Section Ifr <0,
r%ﬂlf =0.

Now, suppose 7 > 0. Additional calculations give

Varp (mi(W,0)) = (p1 — p3)67 + p1p-,
Varp (me(W,0)) = (p2 — p3) (01 +7)> +p2 (L +7)*(1/p. — 1) + p.) , and

Varp (m3(W,0)) = (p3 — p3)03 + pap-. (19.2)
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Figure 18.2: Rejection probabilities for (additional) correctly specified cases for k = 4. Each plot
shows, under different scenarios, the rejection probabilities of the SPUR1, SPUR2 and standard
GMS tests for the null hypothesis Hy : 8 = g for a range of 0y values and different lengths £ of the
identified set ©7(F) = [—¢,0].

We relax the (standardized) inequalities by r. Then, by (19.1) and (19.2)), the inequalities are

P16 L,
((p1 —p2)0F + p1p:)/2 =
p2(01 +7)
_ > —r, and
((p2 = p3) (01 +7)2 + pa((1 +7)2(1/p. — 1) +p2))/2 —
P30z > . (19.3)

((ps — p2)03 + p3p-) /2

By definition, 78! is the smallest 7 > 0 such that there exists some 6 € © that satisfies (19.3). The
third inequality does not play a role in determining ri}‘f. Hence, we focus on finding the smallest
r > 0 such that there exists some 0y that satisfies the first two inequalities.

For arbitrary numbers a, b, and ¢ with ¢ > 0 and b > 0, consider the function

01 +c
WO = o —i—lc; e (19.4)
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Calculation of the first derivative of h(-) shows that h(-) is strictly increasing. This implies that
the left-hand sides of the first and second inequalities in are strictly increasing and strictly
decreasing functions of 1, respectively. Hence, if we let 6;(r) and 01(r) denote the #; values that
solve the first and second inequalities as equalities, respectively, then #; satisfies the two inequalities
if and only if 1 lies in [0, (r), 01(7)], where this interval is defined to be empty if 0;(r) > 01(r).

Some algebra gives

B p- 1/2
0,(r) = - <(p1/r2 N 1))> and

/2
S (2 p - D +p L
01(r) = ( Py Bae— T. (19.5)
Hence, if r is such that
- (WP pe 1) 4 p p: 2 (19.6)
7 < 5 — 5 T , .
p2/7% + 2 p1/r?+p1—1)

then the MR identified set under the relaxation r is non-empty. Since the rhs is increasing in r, T}?f
must solve (19.6) as an equality. That is, 713 is the value of 7 that makes 6, (r) = 61 (r). Assuming

p1 = p2, this gives

1/2
. =2
pinf — pir ; : (19.7)
(P22 4+ (47201 /pe = D)+ )12) 4 (1= p1)7?
Taking p1 = p2 = 1/3 gives (8.5).
Plugging the expression for rilf}f in place of r in () gives
. o p1/277

0, (r") = 01(rf") = ——75 = 01 (7). (19.8)

p "+ (L +7)2(1/p. — 1) + p.)/?

Thus, the only 67 value that satisfies with r = ri2f is §; = 6 (7). This gives .

Now, plugging in r}?‘f in place of r in the third inequality of and taking p; = p2 = p3 = 1/3,
one can see that any 6, such that 8y > 01(7) satisfies (with 718 in place of 7). This shows
that ©7(F) = {61(7)} x [01(7), o).

20 Lemma and Proofs of Lemmas [5.1], [5.2], and

The following is a sufficient condition for Assumption NLA, which first appears in Section [5.1
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Assumption LA. The null values {6, },>1 and distributions {F},},>1 satisfy: (i) ||0n — O1n]| =
O(n=1/2) for some sequence {01, € O7(F,)}n>1, (i) n'/2(Eg, m; (W, 01,) + r}?nf) — h1joo for some
hrjco € Riio) Vj < k, and (iii) Epm(W,0) is Lipschitz on © uniformly over P, i.e., there exists a
constant K < oo such that ||[Epm(W, 0;) — Epm(W,02)|| < K01 — 02| V01,02 € ©, VF € P.

Under Assumption LA, {60, },>1 is a sequence of n~1/2

-local alternatives to the null hypothesis
Vn > 1. Assumption LA(ii) is the same as Assumption C.3 with {6, },>1 replaced by some sequence
{07n}n>1 in the MR identified set(s). Hence, by Lemma [5.1[a), hzjos > 0 Vj < k.

A sufficient condition for Assumption CA is the following fixed alternative assumption.

Assumption FA. The null values {0, },>1 and distributions {F}, },,>1 satisfy: (i) The distributions
F, = F, € P and the null values 6,, = 6, € © do not depend on n > 1 and (ii) Ep, m;(W, 6,)+rEf <

0 for some j < k.

Lemma 20.1 Under Assumption C.3, (a) Assumption N implies Assumption NLA, (b) Assump-
tion LA implies Assumption NLA, and (c) Assumption FA implies Assumption CA.

Proof of Lemma Part (a) holds because 7'}?5 > 0 by its definition in 1) The first result

in part (b) holds because n'/?

> 1. The second result in part (b) holds because |¢jo| < 0o implies
nY2Ep, m;(W,0,) = O(1), which implies that Moo := M;(0e) = limy, 0o B, m;(W,0,,) = 0, using
Assumptions C.1, C.2, and C.4.

Now, we prove part (c). If § € ©;(F), then rr(0) = ritf (by the definition of ©;(F) in (2.7)),
rp;i(0) < rBf Vi < k (by the definition of 7p;(6) in (2.6)), and rg;(0) = 8 for some j < k. In

consequence,

0 = max(rg;(0) — 72 = max(max{—Epm;(W,0),0} — rih)

i<k i<k
> max(— Epi (W, 0) — ri8t) = — min(Epii; (W, 0) + rith), (20.1)
i<k i<k

where the second equality holds by the definition of rr;(#) and the inequality is trivial.
Using (20.1), if 8,, € O7(F,) for n large, then

0< liminfminnl/z(EFnﬁ@j(VV’ 6,) —l—ri}f)

— n—oo <k

e e 1/2 ~ infy _ . g
_Ijng}clhgggfn (Epnm](ﬂf,en)—i—’r’Fn)—jézlh]oo, (20.2)

where the first equality holds by a subsequence argument and the second equality uses Assumption

C.3. This establishes part (c).
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Lastly, we prove part (d). If § € ©7(F) and the model is correctly specified, then
Til?f = maxrp;(f) = max max{—Erm(W,0),0} =0, (20-3)
Jj<k i<k

where the first two equalities hold by the definitions of r?f and 7r;(0) in and , respectively,
and the last equality holds because Erpm(W,0) > 0 V0 € O;(F) by correct model specification,
see .

Equation implies that under correct model specification, if 6,, € O;(F,) for all n large,
then

hjoo = limn'/2(Ep, m; (W, 0,) + i) = limn'2Ep, (W, 0,) = ljoo Vi < k. (20.4)

We have hjoo, {joo, Mjoo > 0 under correct model specification when 6,, € ©(F},) for all n large,
because the moment inequalities all hold at 6,, € ©7(F,), i.e., Ep,m;(W,0,) > 0, under correct

model specification. This completes the proof of part (d). O

Proof of Lemma Because ri#f := infseq max,<i 7r;(0), see (2.5) and (2.6)), for all F' and
0 € O, we have

max(rp;(0) — ri#t) > 0, (20.5)
J<k

which establishes part (a).

Any (0,b,0) € A is the limit of some sequence (0,,,by,%,) € Ay, because Ay, p, —g A by
Assumption C.7. That is, b, — b and maxj<j b,; — max;<j b;. This and (20.5) applied with
(0,F) = (0n, Fy) give

< 1/2 ) __.inf _ . . .
0< Ijngalz(n (r£,i(0n) —TE) j<alg(bnj — 1§1§a]§<bj, (20.6)

which proves part (b) of the lemma.

Next, we prove part (c¢). The function rg (0) — r}?j is lower semi-continuous on © (since
Epm;(W, ) is upper semi-continuous on © by Assumption A.0(ii)) and [z]- := max{—=x,0}, O is
compact by Assumption A.0(i), and a lower semi-continuous function on a compact set achieves its
infimum. Hence, there exists 6, € © such that r(6,) = 8t ¥p > 1, which establishes part (c).

For part (d), let (En,%’njn) € A, r, be such that 5,1 € O7(F,) Yn > 1. Such (§n,3n,2n) exist
because O(F},) is non-empty Vn > 1 by part (c). There exists a subsequence {gp}n>1 of {n}n>1

and a (0,b,0) € © x R[zioo} such that d((éqn,?{qn,iqn), (0,b,0)) — 0 because (O x R[zioo],d) is a
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compact metric space under Assumption A.0(i). We have (5, Z,Z) € A by the following argument:

0< inf d((6,0,0),(0,,0) < inf d((0,0,0), Og,,bg,: L)) + (B4 by L), (6,0, 0))

(0,b,0)eA (6,b,0)eA
— 0, (20.7)

where the second inequality holds by the triangle inequality and the convergence holds using
Assumption C.7 (i.e., Apg, —a A). Thus, infigypep d((9,0,€), (0,0,€)) = 0. This implies that
(6,b,0) € A, because A is a compact subset of (6 x Rﬁ“oo}, d) by Assumption C.7, d((6,b,0), (6,b,0))
is a continuous function of (6, b, ¢), and a continuous function on a compact set attains its infimum.

Since 0, € O1(F,), 75, (0,) = r}fg Vn > 1. Hence, for all n > 1,

max b,; = maxn'/2([Eg,m;j(W,0,)]- —ritl) = n'2(rp (6,) — r25) = 0, (20.8)
i<k i<k " "

where the first equality holds by the definition of A, r, in (5.3) and the second equality holds by
the definition of rx(6) in (2.6). We obtain

rjngaéc b = nlLH;O r;lgalic bnj =0, (20.9)

which proves part (d) of the lemma since (6,b,¢) € A.
Given any (6%,0%,0*) € A, there exists a sequence {(6,,b},, %) € Ay p, }n>1 such that (6}, b5, 05,)

nyvnr*n n»“nrTn

— (07,0",£) because Ay, r, —n A by Assumption C.7. Hence, if |£7| < oo, we have
[772(0%)| = lim | g, (W, 0;,)] = lim(n™"/2(|€5] + 0(1))) = 0, (20.10)
where the first equality uses Assumption C.4. This establishes part (e). O

Proof of Lemma Under Assumption N, Lemma (a) implies that hjo > 0 Vj < k, which
establishes Assumption NLA and part (a).
Now, we establish part (b). Under Assumption LA, for all j < k, we have

02| Ep, (W, 0,) — Eg,m;(W,01,)] < Kn'/?||0, — 01, = O(1), (20.11)

where the inequality holds by Assumption LA(iii) and the equality holds by Assumption LA(i). In
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consequence, for all 7 < k, we have

hjo = lim n2(Ep,m;(W,0,) + rith)

n—oo

= lim n'2(Ep,m;j(W,01,) + 20 + O(1) = hijeo + O(1) > O(1), (20.12)

n—oo

where the first equality holds by Assumption C.3, the second equality holds by , the third

equality holds by Assumption LA(ii), and the inequality holds by Lemma [5.1a) with 6}, in place

of 6,, using Assumption LA(ii) in place of Assumption C.3. This completes the proof of part (b).
Under Assumption FA, we have

min hjo, = min lim n'/2(Ep, m; (W, 0,) + ritf) = —oo, (20.13)
i<k i<k *

where the second equality holds because Ep, m;(W,60,) + riaf
FA(ii). Thus, Assumption CA holds, which establishes part (c). O

< 0 for some j < k by Assumption

21 Proof of Theorem (5.3
The proof of Theorem [5.3|(b) uses the following lemma.
Lemma 21.1 Suppose Assumptions C.4 and C.5 hold. Under {F,}n>1, we have
At = AT (A F,) + 0p(1)-

Proof of Lemma For a given distribution F, define

vt (0) == n!/? ((%—1) (j%z((‘z; —1))/. (21.1)

Note that v/31() differs from v7(6) (defined in 1) because the former depends on Eij (0), which
is centered at the sample quantity m,;(0), see 1) whereas the latter depends on E%nj(ﬁ),

which is centered at the population quantity Epm;(W;,6). The following calculations show that
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=1
= v7;(0) —n 2 (0))?, and
vih(0) = v5,;(0) + of (1) (21.2)

Vj < k, where the last equality holds by Assumption C.5.
By (21.2), Assumption C.5, and the continuous mapping theorem, for all j < k,

~2
(6

sup Oni(0) —1|= :supn/? VZ;(H) = supn /2 ‘1/‘&-(0)‘ + Oz(?(n*l/z) —p 0, and so,
fcO aFnj(e) 0cO 0ce

o Fj(0) '

— -1 —, 0. 21.3
0co | Tn;(0) 8 (21-3)

We have

R R 1/2
nl/2 <% - 1) = nl/2 ((1 + (;jfj(fe)) — 1)) - 1)

1 ) 52,(0)
=50 + 09 (1)) H2p!/2 (U%W) - 1)
= Lo+ o), (21.4)

2

where the second equality holds by the following mean-value expansion, (14 z)/2 =1+ (1/2)(1 +
T)~12z, where |Z| < |z|, with = := Eij(H)/a%nj(Q) — 1 and supgeg |z| < supgeeo \Eij(Q)/a%nj(H) -
1| = 0p(1) by (21.3)), and the last equality uses (21.2) and Assumption C.5.

For all 7 < k, we have

20 o) B _ 985O (i g /2 (ani(0)
— (1+02(1)) <yg;.(e) - %Epnmj(w,eng(o) + 03(1))

= v (0) + of (1), (21.5)

where v7%(0) = 12 (i (0) — Ep,m;(W,0)), Mn; (0) = (61;(0)/0F,;(0)),;(0) is defined in 1'
the second equality holds by (21.4), and the third equality holds by the definition of Vnmj"(é’) in (5.7)
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and Assumptions C.4 and C.5.

Next, we have

sup ] (V27 (0) + 02(1) + 4] — [V (0) + @-]_\ = 09(1) (21.6)
[jGR
because the function x(v,c) := [v+ c]- — [c]- for v,c € R; satisfies
X(v, o) < |vl. (21.7)

This holds because (i) if ¢ < 0 and v + ¢ < 0, then x(v,c) = |v|, (ii) if ¢ < 0 and v + ¢ > 0, then
v > —cand x(v,c) = |c| < |v|, and (iii) if ¢ > 0, then x(v,c) = [v + |- < [v]= <.
We have

= /2 ([mnj(e)], . r;%f) (21.8)

where s,,;(0, F) := n'/2([Epm;(W,0)]- — i), using (21.5) and (21.6)).
For given (0,b,¢) € Ay, r,, where A, f, is defined in ([5.3), we have

n'2Ep, m(W,0) = ; and s,,;(0, F,,) = b;. (21.9)

Using (21.8)) and (21.9), we obtain

ARt = juf macn!”® (725(6) — )

= o d2h  max (L770) + 4] — [l]- + ;) + 0p(1)

= AN, B )+ op(1), (21.10)

where the first equality holds by the definitions in (4.1)) and (5.2)) and the last equality holds by
the definition in (5.10)). O

Proof of Theorem First, we prove part (a). For j < k, we show that

2 (A (0n) + 7B —a Tjoo (21.11)
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and the convergence holds jointly over j < k. Stacking these results for j = 1, ..., k gives T,,(0,,) —4
T using the definitions of T},(6,) and T\ in (5.2)) and (5.8)), respectively.
We have

~ in M 0 in
nl/2 (mnj(e) -f—rFf) = nl/? <3 j( ) —l—rFf)

nj(0)
or;(0) or;(0) ~
= Kinj 7F =~ Kop; 7F K3p; 7F7 h
3nj(9) 1 ](0 )+ Unj(e) 2 J(Q )+ 3 J(Q ) where
N mp(0)  Epm;(W,0)
KnQ,F = n1/2 (m .7( _ J Y ,
i -9 7e0)  ory(0)
I?an((g,F) = —7’Ll/2 <Unj(9) — 1> 7EFmJ(VV7 9), and
or;i(0) or;(0)
K3;(0, F) := n'/? <EFmJ'(W’ % rgﬁ) : (21.12)
or;(0)
By Assumption C.3,
K (0, Fy) = hjso. (21.13)
By (21.4)) and Assumption C.5,
o-Fn](en)
—Te— 1. 21.14
anj(‘gn) o ( )

Given ([21.14)), to prove part (a), it remains to determine the asymptotic distributions of K 1nj (On, Fr)
and Kgnj(en, Fn)
We have

~2

O—n(en) o o a

n1/2 (UQFJ(G) - 1) - Vn;r'(en) = an(en) + 0?(1) —d Gjoo’ (21'15)
nj "

where the two equalities hold by (21.2) and the convergence holds by Assumption C.5 (which implies
stochastic equicontinuity of {v7(-)},>1) and Assumption C.1. Equation (21.15) and the é-method
applied with the function g(z) = /2, for which ¢'(z)|,—1 = 1/2, give
n <0Fnj(9n) —d 2Gjoo' ( . 6)
By Assumptions C.1 and C.4, Er,m;(W,0,) = m;(0,) + o(1) = m;(0x) := Mjos. This and
(21.16|) give
_ Moo

2

Kan(enan) —d G?OO- (2117)

We have

I?lnj(em Fy) = n'/? (mnjwn) - Eannj(gn)) = VZE’(HR) —q G

m (21.18)
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where 1/%
Combining the results in (21.12)—(21.14)), (21.17)), (21.18) and, for the case where hjo, = F00,
the fact that G7° —m;jG7_/2 = Op(1) (by Assumptions C.4 and C.5), establishes (21.11). The

results in (21.11) for 7 < k hold jointly because they are all based on the convergence result in

(0,,) denotes the jth element of v])'(6,) and the convergence holds by Assumption C.5.

Assumption C.5. This completes the proof of part (a).
Next, we prove part (b). By Lemma it suffices to show

APNA, 1) —a APE(A). (21.19)

Let D be the space of functions from © to R?*. Let Dy be the subset of uniformly continuous
functions in D. For a nonstochastic function v(-) € D, let v(0) = (v™(0)",v°(0)')’, and let v}(0)

and 7 (f) denote the jth elements of v™(0) and v7(0), respectively. Define

()= inf e (0.0.0) +1).
g(v(s)) := (9})%’6/& Ijngalzc [7;(v(:),0,¢) + b;], where
PV, 0,0) i= [W7(0) + 4] — [£;)- and
VT (8) = v(0) — %mj(e)u;.f(a). (21.20)

For the stochastic processes v, () and G(-), we can write
AP (AnF,) = gn(va() and A (A) = g(G()). (21.21)

We want to show that g, (vn(+)) —4 g(G(+)). By Assumption C.5, v,(-) = G(:) for v,(-) € D
a.s. and G(-) € Dy a.s. We use the extended CMT, see van der Vaart and Wellner (1996, Theorem
1.11.1), to establish the desired result, as in the proof of Theorem 3.1 in BCS. The extended CMT
requires showing: for any deterministic sequence {vy(-) € D},>1 and deterministic v(-) € Dy such
that supycg ||vn(0) —v(8)|| — 0, we have g, (v, (-)) — g(v(-)). (For notational simplicity, we abuse
notation here and consider a deterministic v, (-) that differs from the random v, () in Assumption
C.5.) Once we have shown this, the proof of part (b) is complete.

Let {vn(-) € D}p>1 and v(-) € Dy be deterministic and satisfy supycg ||vn(0) — v(0)|] — 0. We

show

(i) Hminf g,(va() > g(v() and (i) limsup go(va()) < g(v()). (21.22)

n—oo n—oo
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First, we establish (i) in (21.22)). There exists a subsequence {ay }n>1 of {n},>1 and there exists

a sequence {(0,,,ba,,la,) € A4, F,, tn>1 such that

lim inf gn(Vn()) = lim gan(yan(')) and

n— o0 n—00
llm gan (Van()) = hm ma'X [Tj(yan(.)7§an7Zan) + Ban]] ) (2123)
n—o0 n—oo j<k

where by, ; denotes the jth element of b, . Also, there exists a subsequence {ey, }n>1 of {an}n>1 and

0,b,0) € © x R?* . such that
[£00]

d((e,,, be,,, Le, ), (0,b,0)) — 0, (21.24)

[£o0]’

sumption A.0(i). We have (0,b,7) € A by the same argument as used to show (6,b,£) € A in (20.7)
(but without the requirement that 0,, € ©(F,,) Vn > 1) using (21.24) and Assumption C.7.
For all j <k,

where d is defined following 1} by compactness of the metric space (© x R?* d) under As-

hm Tj(Ve"('), 05'”726") = T]OO(I/()7 3 ) S R, Where
@+ 2]~ G- iG] < oo
Tjoo(y(')vga Z) = _Vgna(g) if Zj = —0
0 if Zj = +o0

= 7(v(-),0,0), (21.25)

the equality on the first line holds by v, (6) — v(0) = (v™(0)',v?(0)")" uniformly over 6 € © (by
assumption), (21.24), [v, + cp]— — [en]- — —v as (vp,¢n) — (v, —0) for v € R, and [v,, + ¢p]— —
[cn]— — 0 as (vn,cn) — (v, +00) for v € R, the equality on the third line holds using the notational
convention in , the equality on the last line holds by the definition of 7;(v(-),6,£) in ,
and “€ R” in the first line holds using the rhs expression on the second line because " (6) is finite

since v(-) is assumed to be in D, x(v,c) := [v + |- — [c]- for v,¢c € R satisfies |x(v,c)| < |v]| as

shown in (21.7), and m;(6) is finite by Assumption C.4.
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Now, we have

liminf g,(v,(-)) = lim max [Tj(uen('),@en,éen) + benj]

> F f e .
z (97271%)61\ I?fzi( [T (v(+),0,0) + bj]

= g(v(). (21.26)

where the first equality holds by (21.23) and the fact that {e,},>1 is a subsequence of {ay}n>1,
the second equality holds by (21.25) (using the notational convention in 1) if b; = oo for any
j < k), the inequality holds because (#,b,f) € A by the paragraph containing (21.24)), and the last

equality holds by the definition of g(v(-)) in (21.20). This establishes result (i) in (21.22]).
Next, we establish result (i) in (21.22). There exists (67,51, ¢1) € A such that

9(v()) = max [5(v(-), 0, ) + bf] (21.27)

<k

because A is compact under the metric d, defined following (5.2)) (since it is assumed to be an
element of S(O x R%ikoo])) and 7;(v(-),0,€) + b; is a continuous function of (#,0,¢) under d that
takes values in the extended real line. By Assumption C.7, A, ,, — g A. Hence, there is a sequence

{(05,6%, 1) € Ay, Yus1 such that d((05, b5, €4), (67, 6%, £1)) — 0. We obtain

li ) = i inf (Un(),0,0) +b;
im sup In(vn(*)) msup - max [75(va(-),0,£) + bj]

~ (o (.00 ) b
< limsup r;lgé( [TJ<I/n() 0.0 )—i—bm}

_ ). gt ot bt
= max [T](u( ), 07, ¢ )+b]}

=9 ()), (21.28)

where the inequality holds because (HL,bL,@) € Ay F, Vn > 1, the second equality holds using
d((6%, b}, 1), (61, b1, £1)) — 0 and with (vn(-), 65, 1) and (v(-), 67, £1) in place of (ve, (), Be, ,
le,) and (v(-),0,0), respectively, and the last equality holds by . This establishes result (ii)
in and completes the proof of part (b).

Now we prove part (c). We have

ARF(A) = (9’;’%@ max (IG77(0) + £5]— — [¢j]— + bj) > —o0 aus. (21.29)
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because (I) maxj<;b; > 0 V(0,b,¢) € A by Lemma (b) and (II) sup(gp pen [[G77(0) + €5]- —

[¢j]—| < supgee |G (0)] < oo a.s. (because x(v,c) := [v + c|- — [c]- satisfies [x(v,c)| < [v] as
shown in (21.7), |[v +¢]- —[c]-| :=0if v € R and ¢ = 400, |[v + |- — [d]-| := —v if v € R and

¢ = —oo using (5.6), and supgcg |G (#)| < 0o a.s. since G(-) is bounded on © a.s. by Assumption
C.5 and m;(+) is bounded on © by Assumption C.4).
To obtain the other half of part (c), i.e., Af(A) < oo a.s., we use Lemma (d) We have

inf A : mo . _[p. .
A (8) = inf max ([G77(0) + €3] — [45]- + bj)
< max ([Gj 0) +&)— — [6]- + bj) < oo as., (21.30)

where (0,b,0) € A is as in Lemma (d), the first equality holds by the definition of ARf(A)
in , the first inequality holds because (5,5,2) € A, and last inequality holds because (I)
maxj< by = 0 by Lemma [.2d) and (1) sup(pes [[GT2(0) + 4] — [4]-] < o0 as. by (IT)
following . This completes the proof of part (c).

Now we prove part (d). Under Assumption NLA, for all j < k, we have

Tjoo := G270 + hjoo > —00 a.s., (21.31)

where the first equality holds by and the inequality holds because ]G;Z:’] < 00 a.s. by the
definitions in and and Assumptions C.4 and C.5, and hjs > —00 by Assumption NLA.

Part (e) follows from the convergence results for T, (6,) and A in parts (a) and (b), the
convergence result for ﬁn(Qn) in Assumption C.6, the definition of S,, := S,,(6,) in and ,
the continuity of S(m,2) at all m € Rﬁoo] and Q € ¥ by Assumption S.1(iii), and the fact that
Tjoo > —00 Vj < k and AR(A) € R by parts (c) and (d).

Now, we establish part (f). If A = Az, then part (f) holds immediately. So, we suppose that
A\A7 is not empty. We show that for any (6%, b*, ¢*) € A\Aj,

I}lg&]i( [Tj(G(-),G*,K*) + b;‘] = 00 a.s., (21.32)
where 7;(v(:),0,¢) is defined in . Since AZf(A) € R as. by part (c), and AZf(A) =
inf(g pyen max;< [75(G(),0,€) + bs] by , implies that AMf(A) = ARf(A;) a.s., which
establishes the first result in part (f). The second result in part (f) follows from the first result
provided the quantities o, T, and Qo are well defined, which requires Assumptions C.1, C.3,
and C.6.
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For part (f), it remains to show . By Assumption C.8, A; is compact. For any
(0%,b%,0*) € A\Aj, there is a neighborhood of (6*,b*,¢*) that lies in A\A; and there exists a
sequence {(0;,05,0;) € Ay g, tn>1 such that d((6;,05,6;,), (6%,0%, %)) — 0 by Assumption C.7. In
consequence, for n large, (67,b%,05) ¢ AZTFn. In turn, this implies that 6} ¢ ©7"(F,) for n large
using the definition of AZ”Fn following .

Now, 0 ¢ ©7"(F,) for all n large implies

max nY2[Ep, m;(W,0%) + ripf)_ >y, for all n large,
j<

max n1/2(—EFnﬁ1j(W/, o) — r}?j) — o0, and

J<k
1 SR T 1/2 ~ * _ pinfy _
Ijnéali( b; = lim r;lgaéc by, j = lim I?Salz(n ([Ep,m;(W,0,)]- —1R) = oo, (21.33)

where the first line holds by the definition of ©7(F) in , the first line implies that min;<
Ep,m;(W,0;) + T}fﬂf < 0 for all n large, which is used to obtain the second line, the second line
also uses 7,, — oo by Assumption C.8, the first equality in the third line holds by the convergence
result for {(6;,b),0")}n>1 in the previous paragraph, the second equality in the third line holds
by (0;,,05,¢0;) € A, g, and the definition of A, p in (5.3, and the third equality in the third
line follows from the second line because minj<, Eg, m;(W,0;) + r‘ﬁf < 0 for n large implies
min;<, Ep,m;(W,0;) <0 for n large, since r}?j >0 by .

The result max;<y bf = oo in implies that holds because |7;(G(-), 0%, £*)] < oo
a.s. (using Assumptions C.4 and C.5, the definition of 7;(v(-),6,/) in (21.20), and explanation (II)
following ) This completes the proof of part (f).

Part (g) holds because T)jo := G127 + hjoo = —00 for some j < k by , Assumption CA,
and the notational convention in (5.6).

Next, we prove part (h). We have T5,;(0,,) —p hjoo = —00 for some j < k by parts (a) and (g)
and A —; AMF(A) € R by parts (b) and (c). Thus,

Pn = H1<1£(Tnj(9n) + Air?f) —p T 0 (21.34)
i<

Using this, we obtain

S = Su(0n) = S (Tul0n) + A2 1, 00(00)) = [0S (IT(0) + AR 1)/ 10,], 0000 )

> X mi 0 - X [ i ,
> loul¥min (e, 80(6)) =l (i (e 00+ 00(1)) = . (21.35)
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where ¢; is a k-vector of co’s but with —1 as its jth element, the second equality holds by ,
the third equality holds with x > 0 by Assumption S.3, the inequality holds with probability that
goes to one as n — oo (wp—1) because (Tp,;(6,) + A™)/|p,| = —1 for some j < k wp—1 by the
definition of ¢,, and ¢,, —, —o0, S(m, §2) is nonincreasing in m for all Q € ¥ by Assumption S.1(i),
and [Ty, (0,) + A"1,]/|¢,| < 0o Vj < k, the last equality holds by Assumptions C.6 and S.1(iii),
and the convergence holds because min;< S (¢j,{2s) > 0 by Assumption S.2 and the fact that ¢;
has a negative element for all j <k, |p,,| =, co and x > 0.

Lastly, the results in parts (a)—(e) hold jointly because they are all based on the convergence

result in Assumption C.5, which establishes part (i). O

22 Asymptotic Rejection Probabilities of SPURI1 Tests

The first subsection of this section provides a theorem, Theorem that is the key ingredient
to the proofs of Theoremsand It provides asymptotic NRP bounds, asymptotic n~'/2-local
power bounds, and consistency results for the nominal level a SPURL1 test ¢,, spyp1(6n), defined
in , under drifting subsequences of distributions and parameter values. The second subsection
states several lemmas that are used in the proof of Theorem The third subsection provides
the proof of Theorem [22.1] using these lemmas.

To establish the asymptotic properties of bootstrap critical values for a given sequence of dis-
tributions {F),},>1, it is convenient to have a single probability space (€2, F, Py) on which all of
the random vectors {W;}i<y, for n > 1 and the bootstrap random variables (or vectors) {(;}i<p for
all n > 1 are defined. Since F;, changes with n, this requires that we consider triangular arrays of
random vectors, not sequences. Let {Wy;}i<pn>1 := {Wyi : ¢ < n,n > 1} be a triangular array
of random vectors on (£, F, P) such that, for each n > 1, {W,;}i<,, has the same distribution as
{Witi<n ~ F,. Analogously, let {(,,;}i<nn>1 be a triangular array of bootstrap random variables
(or vectors) on (2, F, Py) such that for each n > 1, {(,;}i<n has the same distribution as {¢;}i<n
and {C,; }i<n.n>1 is independent of {Wp;}i<nn>1-

For notational simplicity, but with some abuse of notation, we let all of the statistics being
considered, including Sy, S} (6,), and ¢,(0,, 1 — ), which are defined as functions of {W;}i<,, ~ F),
and {(,;}i<n, also denote the corresponding statistics defined when using the triangular arrays
{Whiti<nn>1 and {C,;}i<nn>1. For events that only depend on n random vectors for a single n,
such as S} (0,) € B, for some fixed set B, C R, we have P (S;(0,) € B,) = Pr,(S;(0n) € By).
But, for events that depend on statistics for multiple values of n, such as {5} (05)}n>1, we use

the probability space (£, F, Py ). In particular, when we condition on the entire triangular array
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{Whiti<nn>1, we need to use (2, F, Py).

22.1 Statement of Theorem [22.7]
Let {v7(6) € R?* : 6 € ©} be a bootstrap version of the empirical process (v7(-), v (8)")

defined in (2.12)) and (21.1)). It is defined as follows:

vi(0) = (V(9),v5%(0)"), where

n rrn

uﬁj*(e) = nl/2 (m;;](e) — T?Lnj(e)) , TTL;';J-(G) = 3@((0))’ m;;j(e) =nt ij(Wi*,H),
™ i=1
o* . n1/2 6'\:3(9) _ ~%2 a1 - . * e 2\
an(e) =n 52 () ], Unj((g) =n Z(m](Wz ,0) mnj(e)) Vi <k,
nj =1
vt (0) = (a1 (0), ..., v (0))', and v7*(0) = (v71(0), .., v (0))". (22.1)

We employ the following bootstrap convergence (BC) assumption.
Assumption BC.6. {v}(:\){Wyi}i<nn>1} = G(-) a.s.[Py], where G(-) is as in Assumption C.5.

Assumption BC.6 is verified below for i.i.d. observations using Lemma D.2(8) of BCS under
Assumptions A.1-A.4. To allow the general results to apply to non-i.i.d. observations, including
time series observations, we employ Assumption BC.6 here, rather than impose Assumptions A.1—-
A4,

The following theorem uses S, which is defined in . The distribution of Sy is the
asymptotic distribution of the SPUR test statistic, see Theorem The theorem also uses
CLoo,EGMS(1 — @) and cyoo EGms(1 — @), which are defined just below and are the 1 — «
quantiles of the asymptotic distributions of the lower and upper bounds on the EGMS bootstrap

statistic S;’EGMS(H) defined in 1’1'

Theorem 22.1 For o € (0,1) and for sequences {Fy,}n>1 and {0y }n>1 that satisfy Assumptions
A.0, A6, BC.1, BC.2, BC.6, C.1-C.8, and S.1 for a subsequence {pn}n>1 in place of {n}n>1, there
exists a subsequence {anfn>1 of {Pn}n>1 for which the nominal level o SPURL test ¢, gpyp1(0n)
for testing Hy : 0,, € ©1(F,) satisfies

(a) limsup,,_, Pr,, (¢4, spur1(0a,) =1) < P(Soc > croo,pams(1 — ) provided Assumptions
A5, BC.3, and NLA hold for the subsequence {py}n>1 in place of {n}p>1,

(b) liminf,, . Pr,, (¢4, spur1(0a,) =1) = P(Seo > cUco,EaMs(1 — a)) provided Assumptions
A.10, BC.4, BC.5, and NLA hold for the subsequence {py}n>1 in place of {n}n>1,

(c) limsup,, o Pr,, (¢4, spuri(0a,) = 1) < a provided Assumptions A.5, A.7, BC.3, and N

hold for the subsequence {py}n>1 in place of {n}n>1, and
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(d) liminf,, . Pr,, (A4, spuri(0a,) = 1) = 1 provided Assumptions A.10, BC.4, CA, S.2, and
S.3 hold for the subsequence {pn}n>1 in place of {n}p>1.

Comments. (i). Theorem [22.1{a) and (b) provide upper and lower bounds, respectively, on the

—-1/2

asymptotic power of the SPURI test under null and n -local-alternative distributions for certain

subsequences.

(ii). Theorem [22.1]c) shows that the nominal level @ SPURI test has asymptotic NRP’s equal
to a or less for certain subsequences. Theorem (c) also holds without imposing Assumption
BC.1 and with sdjjo0(0) := 1 in Assumption BC.2. The proof of this is given following the proof
of Theorem 22.1]

(iii). Theorem (d) establishes that the SPUR1 test ¢, pyp1(fn) is consistent for certain
subsequences under Assumption CA, which includes all fixed alternatives, as well as (drifting) local

—-1/2

alternatives that deviate from the null by more than n -local alternatives.

(iv). When Theorem is used below to prove Theorems and the subsequences
that are employed are ones in which the limsup,, ., and liminf,, . in Theorem [22.1) are actually

limits as n — oo.

22.2 Lemmas Used in the Proof of Theorem [22.1]

Lemma below provides upper and lower bounds on the asymptotic rejection probabilities
of a test based on the SPUR test statistic and a generic bootstrap critical value under drifting
sequences of distributions and parameters values under high-level conditions, namely, Assumptions
CV.1-CV.3. The method employed is somewhat similar to that of Theorem 4.1 of BCS. Next,
in Lemmas below, we verify these high-level conditions for the EGMS bootstrap critical
value, which is defined in Section [4.1

Let S} () denote a nonnegative generic bootstrap (or some other) statistic that is used to
calculate a critical value, such as S;(0) = S} papg(f) in (6.3). The bootstrap statistic Sy (60)
depends on {W;},<, and on some other independent random variables {(;}i<, that are used to
construct the bootstrap sample. Let ¢,(6,1 — a)) be the 1 — « conditional quantile of S} (6) given

{Wi}i<n for a € (0,1). Let ¢,,(0,,) denote the nominal level « test that rejects Hy : 0, € ©1(F,) if
Sn(0n) > (0,1 — ). (22.2)

Let X >g7 Y denote that X is stochastically greater than or equal to Y. That is, P(Y > z) <
P(X > z) for all xz € R.

To establish the asymptotic rejection probability results, we assume the existence of sequences
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of bounding random variables {S7, (6,)}n>1 for which S}, (6,) < S} (60,) for almost all realizations
of the bootstrap random variables wp—1 with respect to the randomness in the sample and likewise

for some upper-bound random variables {Sf;,,(0r) }n>1.

Assumption CV.1. There exist nonnegative random variables {S}, (6n)}n>1 such that
() Po(ST,(0n) < Sp(0n){Whiticnn>1) = 1 wp—1 and (i) {S7,(0n){Wniticnn>1} —a Sie
a.s.[Py] for some S} € R a.s. that does not depend on the conditioning value of {Wm‘}ismnzlm

Assumption CV.2. ST _ satisfies S7_ >s7 Soo-

Assumption CV.3.  There exist nonnegative random variables {S{, (6n)}n>1 such that
(1) Py(Sp,(0n) = Sp(0n){Whiti<nn>1) = 1 wp—1 and (ii) {Sg,(0n){Whiti<np>1} —d Spoo
a.s.[Pg] for some Sf;,, € R a.s. that does not depend on the conditioning value of {Wy;}i<nn>1.

Assumptions CV.1 and CV.3 are used to obtain upper and lower bounds, respectively, on as-

~1/2_Jocal alternative distributions. For example,

ymptotic rejection probabilities under null and n
when Assumption CV.1 is employed with S;(0,) = S;; paars(0n), we define the statistic S7,,(0n) to
equal ST, pars(On) in , which is defined using inf%@;zn( F,) (where ©7"(F,) is nonrandom),
whereas S} piag(6n) is defined using infy_g (where Oy, is random) and several other simplifica-
tions. These changes lead to simpler asymptotic behavior of 57, (6,) than S} (6,). The same is true
when Assumption CV.3 is employed with Sy (0n) = S}, paas(0n) and Sp,(0n) = S, pears(0n)
(defined in (12.6)).

Assumption CV.2 is only employed in conjunction with Assumption N, i.e., when S, is an
asymptotic null distribution of S,,. Under Assumption LA, the distribution of S, is larger than
under Assumption N and S7_ >s7 S typically fails.

Let ¢r0o(1 — ) and cyoo(l — a) denote the 1 — o quantiles of ST and Sf;, respectively.

Lemma 22.2 Suppose that under {Fy,}n>1 and {0, }n>1, Assumptions A.0, C.1-C.7, and S.1(iii)
hold. For a € (0,1), let ¢,,(0) be the nominal level o test defined in (22.2)). Then,

(a) limsup Pr,(¢,(0n) = 1) < P(Seo > ¢roo(l — ) provided Assumptions CV.1 and NLA
hold,

(b) limsup Pg,(¢,,(0n) = 1) > P(Sx > cuoo(l — @)) provided Assumptions CV.3, BC.5, and
NLA hold,

(c) imsup Pp,(¢,(0n) = 1) < a provided Assumptions A.7, CV.1, CV.2, N, and S.1(ii) hold,

and

(d) limsup Pr, (¢, (0n) =1) = 1 provided Assumptions CA, CV.3, S.2, and S.3 hold.

n—oo

*"Tn Assumption CV.1(ii), {S},(0n){Wniti<nm>1} —d Sieo a.5.[Pg] means Po (St (0n) —d Sheo{Wni}i<n,n>1)
i= Py ({w: 51,(0n) —a SLoo{Wni(w)}icnn>1}) = 1.
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Comment. For any subsequence {ap}n,>1 of {n},>1, Lemma holds with a, in place of n
throughout, including the assumptions. (The proof just needs to be changed by replacing n by a,
throughout.)

The next three lemmas verify Assumptions CV.1-CV.3 for the EGMS critical values employed
by the SPURL tests ¢,, spyp1(0n). More precisely, given any subsequence {py}n>1 of {n},>1, the
lemmas verify Assumptions CV.1-CV.3 when these assumptions are defined for some subsequence
{an}n>1 of {pn}n>1, rather than for {n},>1.

The EGMS critical values are based on the bootstrap random variables Sy ponvs(@n). In the
following lemmas, the “lower bound” random variables S7, paars(0), 7, paars(0), and A*LiTEfEGMS
are defined in l’ the asymptotic distributions of these random variables Szoo’ pomss I 00 EGMS>
and Azggf paums are defined in ; the “upper bound” random variables Sl*fn, sams(@),
T 57”-7 pams(0), and A*Uirrzl,fEG ws are defined in ; and the asymptotic distributions of the latter
random variables SZ‘,OQEGMS, T%OO’EGMS, and A*Uio“ofEGMS are defined in 1' As above, we as-
sume that all of the statistics are functions of the triangular arrays {Wy;}ti<pn>1 and {(,; }i<nn>1
that are defined on a single probability space (2, F, Pg).

The following lemma provides the asymptotic distributions of S7,, paass(0n) and Sfr, penrs(n)-

Lemma 22.3 For sequences {Fp}p>1 and {0y, }n>1 that satisfy Assumptions A.0, A.5, A.6, BC.1-
BC.3, BC.6, C.1, C.2, C.4-C.7, and S.1 for a subsequence {py}n>1 in place of {n},>1, there exists
a subsequence {an}n>1 of {Pntn>1 for which (a) {17, ; parrs(Oa,) {Whiti<nn>1} —d 1700 poms
a.5.[Pg] Vi < k, (b) {ALY panrs{Waitisnmz1}—d ALY paus @-8.[Pg), (©) {Sta, ponrs(0a,)
Whiti<nn>1} —a St poms @-8-[Pyl and ST paus € [0,00) a.s., and (d) parts (a)-(c) hold
with U in place of L throughout and Assumptions A.10 and BC.4 in place of Assumptions A.5 and
BC.3.

Comment. Lemma [22.3|c) and (d) verify the convergence results in Assumptions CV.1(ii) and
CV.3(ii) for the subsequences {S7, raas(0a,)tn>1 and {Sp, pears(ba,)tn>1, respectively.

The following lemma verifies Assumptions CV.1(i) and CV.3(i) for a subsequence {p,}n>1 of
{n}n1.
Lemma 22.4 For sequences {Fy,}n>1 and {0y }n>1 that satisfy Assumptions A.0, A.5, A.6, BC.1,
BC.3, C4, C.5, C.7, and S.1(i) for a subsequence {pntn>1 in place of {n}n>1,
(a) Pr,,, (T7. 5. 5amsOpa) = T s sonrs Op ) {iWaiicnn>1) = 1Y) < k wp—1, (b) Pr,, (A7 pous
2 A;ir,l]fEG’MSHWM}iSn,nEl) =1 wp—1, (¢ PFpn(Szpn,EGMS(en) < S;,L,EGMS(Qn)|{Wni}i§n,n21)
=1 wp—1, and (d) parts (a)—(c) hold with U in place of L throughout, the inequalities reversed
throughout, and Assumptions A.10 and BC.4 in place of Assumptions A.5 and BC.3.
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The following lemma verifies Assumption CV.2 with S} = ST paurs for sequences {0y }n>1

of null parameter values (i.e., under Assumption N).

Lemma 22.5 For sequences {Fp,}n>1 and {0p}n>1 that satisfy Assumptions A5, A.6, BC.1-
BC.3, C.1, C.3-C.5, C.8, N, and S.1(i) for a subsequence {pn}n>1 in place of {n},>1, we have

zoo’EGMS > Sieo for all sample realizations.

22.3 Proof of Theorem [22.1]

Proof of Theorem Given any subsequence {py, }n>1 of {n},>1, we take the subsequence
{an}n>1 of {pn}n>1 as in Lemma We apply Lemma with S5 (6,), S7,,(0n), and S§;,,(0r)
in Lemma and Assumptions CV.1 and CV.3 equal to S} porrs(0n), ST, paus(fn), and
S[*]n’ pams(0n), respectively, and with the subsequence {ay, },>1 in place of {n},>1 (see the Comment
following Lemma [22.2)), which establishes all of the results of the theorem. All of the assumptions
in parts (a)—(d) of Lemma [22.2, which need to hold with {ay}n>1 in place of {n},>1, are imposed
in the corresponding parts (a)—(d) of the theorem based on {n},>1, except Assumptions CV.1-
CV.3. The assumptions based on {n},>; imply those based on {ay}n>1. Thus, it remains to verify
Assumption CV.1 (defined using {an }n>1 in place of {n},>1) in parts (a) and (c) of Theorem [22.1]
Assumption CV.2 in part (c), and Assumption CV.3 (defined using {ay, }»>1 in place of {n},>1) in
parts (b) and (d).

As required by Assumptions CV.1 and CV.3, ST, paars(0n) > 0 and Sfy, porrs(0n) > 0 by
Assumption S.1(ii).

The assumptions of parts (a) and (c) of the theorem include all of the assumptions imposed
in Lemmas [22.3|c) and 22.4c). Lemma [22.3(c) verifies the convergence result of Assumption
CV.1(ii) for the subsequence {an}n>1 with ST = ST  parg and the requirement of Assumption
CV.1(ii) that ST = ST poms € [0,00) as. Lemma (c) verifies Assumption CV.1(i) for the
subsequence {pn, }»>1, and hence, also for its subsequence {ay, },>1. The requirement of Assumption
CV.1(ii) that “S} . = S}EOO?EGMS does not depend on the conditioning value of {Wy;}ti<pn>1"
holds by the definition of ST peass in . Hence, Assumption CV.1 (defined using {an }n>1
in place of {n},>1) holds in parts (a) and (c) of the theorem.

Assumption CV.2 holds in part (c¢) of Theorem with S7 = ST peus Py Lemma
because part (c¢) imposes all of the assumptions of Lemma

The assumptions of parts (b) and (d) of the theorem include all of the assumptions imposed
in Lemmas 22.3(d) and 22.4(d). Lemma [22.3|d) verifies the convergence result of Assumption
CV.3(ii) for the subsequence {an}n>1 With Sf7, = Siro, paars and the requirement of Assumption
CV.3(ii) that Sfj,, = Sfe pems € [0,00) a.s. Lemma (d) verifies Assumption CV.3(i). The
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requirement of Assumption CV.3(ii) that “Sp;., = Siro. paars does not depend on the conditioning
value of {Wy;}i<nn>1" holds by the definition of Stoo.EGMs I . Hence, Assumption CV.3
(defined using {an }n>1 in place of {n},>1) holds in parts (b) and (d) of the theorem. This completes
the proof. (I

Next, we show that Theorem ¢) also holds without imposing Assumption BC.1 and with
5d1joo(f) := 1 in Assumption BC.2, as stated in Comment (ii) to Theorem Consider the

*
anj

bootstrap statistic Sy pae(f) defined using sdy, . (¢) := 1 for a = 1,3 and using ¢} rather than ¢;
(where ¢7 and ¢; are defined in Assumption A.5) for j < k. We claim that this adjusted statistic
is stochastically less than or equal to the original statistic S;;’ sams(0) defined in Section This
implies that the bootstrap critical value based on the adjusted 87*17 sams(0) statistic is less than or
equal to that based on the original S} pq us(0) statistic. In turn this implies that if the test based
on the adjusted S;,EGMS(H) statistic satisfies the result of Theorem c), then the test based on
the original S;, p;(f) statistic also satisfies the result of Theorem (c), which is the desired
result.

The test based on the adjusted statistic S;, pg(0) satisfies the assumptions of Theorem (c)
if the original test does with sdijoo(f) := 1 in Assumption BC.2 and with the exception that the
adjusted test does not require Assumption BC.1 because no statistics sd:‘;nj(ﬁ) for a = 1,3 and
j < k appear in its definition. Hence, under the assumptions of Theorem (c), but without
imposing Assumption BC.1 and with sdijo0(6) := 1 in Assumption BC.2, the adjusted test satisfies
the result of Theorem [22.1c).

To complete the argument above, it remains to show that the adjusted statistic S;y pams(0) is

stochastically less than or equal to the original statistic Sy paay 5(0). This holds if the adjusted ver-

sions of T;7; pers(0) and A7 poprg(0) are greater than or equal to the original statistics 15y, pers(0)
and A7 poy 5(0) statistics, respectively, defined in Section with probability one. The adjusted

version of T perg(0) depends on

©5(€47(0)), where €,;(0) := r, 'n'/?(7in; (0) + 7 (6)), (22.3)

*

whereas the original version of T};; pcr5(0) depends on ¢;(&,,(6), 0, (6)). We have

#5 Enj(0)) = 95(€nj(0)) = ;(6,(0), 2 6)), (22.4)

where the first inequality holds because (i) if §,,;(0) < 0, then ¢7(§,,;(f)) = 0 by Assumption A.5(i)
and (ii) and cp;‘(znj(e)) > 0 by Assumptions A.5(ii) and (iii), and (i) if £,,;(6) > 0, then &,;(0) >
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§ni(0) = (sd*{nj(H)Kn)_lnl/Q(ﬁlnj(G) +7n(0)) (since sdj,;(0) > 1 by its definition following )
and ¢7(-) is nondecreasing by Assumption A.5(ii), and the second inequality holds by Assumption
A.5(i). Equation gives the desired "greater than or equal to" result for the adjusted versus
original T7%; peyy 5(0) statistics. A completely analogous argument gives the desired "greater than

or equal to" result for the adjusted versus original A% p~,,4(0) statistics.

23 Proofs of Lemmas 22.2-22.5

23.1 Proof of Lemma 22.2]

Proof of Lemma For notational simplicity, let S} := Sy(0,), S7,, = S7,,(0n), i, =
Sin(0n), Choo = CLoo(l — @), CUso = CUse(l — ), Ty 1= Cu(On,1 — ), and ¢ 1= coo(l — ).
Let ¢z, and ¢y, denote the 1 — a conditional quantiles of ST, (0,) and S, (0,), respectively,
given {W;}i<nn>1. Note that ¢r,, and ¢y, are random and depend on the conditioning value of
{Whiti<nn>1, whereas cro and cyo denote the 1 — a conditional (or unconditional) quantiles
of S7 . and Sf, respectively, which are nonrandom and do not depend on {Wp;}i<nn>1 by
Assumptions CV.1(ii) and CV.3(ii), respectively.

First, we prove part (a). If S}, (0,) < S;(6,) with probability one (with respect to the bootstrap
randomness) conditional on {W,;}i<nn>1, then the 1 — a conditional quantile of ST, (6,) given
{Whi}ti<nn>1, which is ¢r,, is less than or equal to the 1 — o conditional quantile of S} (6,) given
{Whiti<nn>1, which is ¢, as a consequence of the definition of a quantile. By Assumption CV.1(i),
the “if” condition in the previous sentence holds wp—1 (with respect to the randomness in the
sample, i.e., {Whyi}i<nn>1). Hence, Assumption CV.1(i) implies that ¢z, < ¢, wp—1, which implies

that ¢r,, < ¢, + o0p(1), where the 0p(1) term refers to randomness in the sample. This gives

limsup Pg, (¢,,(0,) = 1) = limsup Prg, (S, > ¢,)

< limsup Pr, (S, + op(1) > CLp). (23.1)

Now, take an arbitrary € > 0. Then, there exists €* € (0,¢) such that cro, — * is a continuity

point of S7_ . We have

limsup Py, (S7,, < ¢roo — el Whiti<nn>1)

n—oo
< limsup Py (ST, < croo — € {Whiti<nn>1) = P(STeo < CLoo —€") <1—a  (23.2)

n—oo

a.s.[Py], where the equality holds by Assumption CV.1(ii) and the second inequality holds by the
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definition of the quantile cf .

Note that
{hmsup Py (ST, < croo — e{Whiti<nn>1) <1 -— a} Climinf{cr00 —€ <Crpn}, (23.3)

because for a sample path w € 2 included in the left-hand side event, we must have that ¢y, —& <

Cry, for large n (where liminf,, .o By, := Ug>1Np>k By, for B, C Q). Taking expectations, we obtain

PV <lim sup PV(SZn < CLoo — 5|{Wm’}i§n,n21) <1-— O[)

n—oo

IN

Py (lim inf {cro0 — < ELn})

< liminf Py (¢roo — € < Crn)

n—oo
= liminf Pr, (¢Loo —€ < CrLn), (23.4)
n—oo

where the second inequality follows from Py (liminf, .. B,) < liminf, o Py (B,) for B, € F
(which holds because Py (liminf, .o By) = limp—.co Po(Mp>eBr) < limyg_oo inf, >4 Py (By)) and
the equality holds because ¢r,, depends only on {W,;}i<n or {W;}i<p, which have the same dis-
tribution. Since the probability on the first line of equals one by , we have shown
that

lim inf PFn (CLoo —e< ELn) =1Ve>0. (23.5)
n—oo
Next, we have
limsup Pr, (S, + op(1) > ¢Ly)
n—od
= limsup Pr, (Sp + 0p(1) > Crn & croo —€ < CLp)
n—oo
< limsup Pr, (Sy + 0p(1) > croo —€ & oo — € < CLn)
n—oo
= limsup Pr, (Sy + 0p(1) > creo — €), (23.6)
n—oo

where the two equalities hold using (23.5) and the inequality is straightforward.
By Theorem [5.3{¢), we have
Sn —d Soo (23.7)

using Assumptions A.0, C.1-C.7, S.1(iii), and NLA. Consider a sequence {&, }m>1 such that coo—em
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is a continuity point of Sy, for all m > 1 and ¢, | 0. Then, we have

limsup Pr, (S, + 0p(1) > 1) < lim limsup Pr, (S, + 0p(1) > ¢roo — €m)

n—00 m—00 n—oo

= lim P(Se > CLoo — Em)

m—00

= P(Soo > cLoo)7 (238)

where the inequality holds by , the first equality holds by and the definition of {&y, }m>1,
and the second equality holds by the monotone convergence theorem. This and complete
the proof of part (a).

Next, we prove part (c). By Assumption S.1(ii), there are two possible cases: (i) co = 0 and

(ii) coo > 0. First, if coo = 0, the result follows immediately because

limsup Pp, (Sn > ¢,) < limsup Pg, (S, >0) < a, (23.9)

n—oo n—oo

where the first inequality holds because ¢, > 0 (since S} is nonnegative by assumption) and the
second holds by Assumption A.7(ii).
Second, we consider the case where ¢, > 0. By ([23.1)), it suffices to show

limsup Pg, (S, + op(1) > ¢Ly) < a. (23.10)

n—oo

By Lemma [20.1] under Assumption C.3, Assumption N implies NLA. Hence, the assumptions of
part (c) imply those of part (a) and (23.8) holds under the assumptions of part (c). Using (23.8)),

we have

limsup Pr, (Sy, + 0p(1) > €rn) < P(Seo > CLoo) < P(Soc > €0) = @, (23.11)

n—00
where the second inequality holds by Assumption CV.2 because S7 . >s7 Soo implies that croo >
€0, and the equality holds by Assumption A.7(i).

Now, we prove part (b). The proof is similar to that of part (a), but there are some differences,
such as the need for Assumption BC.5, and we use parts of the proof of part (c) in the proof of
part (d), so we provide the details. By the same argument as in the paragraph containing ,

but with Assumption CV.3 in place of Assumption CV.1, we obtain ¢y, > ¢, wp—1, which implies
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that

Cun > Cp +o0p(1), and

liminf Pg, (¢,,(0,) =1) = liminf Pg, (S, > ¢,)

> liminf Pp, (S, + 0p(1) > ¢un), (23.12)

where the 0y,(1) terms refer to randomness in the sample, not bootstrap randomness.
Consider an arbitrary € > 0. There exists an * € (0, ¢) such that cyo +¢* is a continuity point

of S7;..- We have

liminf Pg (Sfr, < cvoo + el{Whiti<nn>1)

n—00 -

liminf Pg (57, < cvoo + € {Whiticnn>1)

v

= P(Sg}oo < CUoo +€*)

>1—a (23.13)

a.s.[Py], where the equality holds by Assumption CV.3(ii) and the second inequality holds by
Assumption BC.5 and the definition of the quantile cyso.
Note that

{l%lni)iogf P (St < ctoo + el{ Wi ticnmz1) > 1 — a} Climinf {cye +2 > @}, (23.14)

because for a sample path w € €2 included in the left-hand side event, we must have that cyo +¢ >

cun for large n. Taking expectations, we obtain

PV (hnIE)gf PV(Sl*]n < ClUoco + €|{Wni}i§n,n21) >1- Oé)
< Py (hm inf {cyoo +¢ > EUn})
n—oo
< liminf Py (cyeo + € > Cun)
n—oo

= liminf Pp, (Cuso +€ > Cupn) (23.15)

n—oo

for the same reasons as in ([23.4]). Since the probability on the first line of (23.15) equals one by

(23.13)), we have shown that
liminfPr, (cyoo +€ > Cyn) = 1. (23.16)

n—oo
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Next, we have

liminf Pp,
n—oo

S+ 0p(1) > Cum)

(1)
= liminf Pg, (S, + Op(l) > Cun & cyoo +€ > Cun)
> liminf Ppg, (1)
(1)

n—oo

Sn 4 0p(1) > cyoo +€ & cyoo +€ > Cun)

~—~~ o~ o~

= liminf Pp,

n—oo

Sp+ 0p(1) > cpoo +€), (23.17)

where the two equalities hold using (23.16)) and the inequality is straightforward.
Consider a sequence {ey, }m>1 such that cs + 5, is a continuity point of Sy for all m > 1 and

€m | 0. Then, we have

liminf Pg, (S, + 0p(1) > €yp) > lim liminf Pg, (S, + 0p(1) > cyoo +em)

n—oo m—0o0 N—00

= lim P(Sec > CUco +€m)

m—0o0

= P(Ss > CUoo), (23.18)

where the inequality holds by , the first equality holds by and the definition of
{em}m>1, and the second equality holds by the monotone convergence theorem. This and
complete the proof of part (b).

Lastly, we establish part (d). By Theorem (h), Sy, —p 00 (using Assumptions A.0, C.1-C.7,
CA, S.1(iii), S.2, and S.3). Hence, it suffices to show that ¢, = Op(1). First, suppose the support
of S}, is bounded above. Then, there exists ¢ < oo such that P(S{;,, < ¢) = 1. For any € > 0, we
have

PV(S(*]n <c+ 5’{Wm}i§n,n21) — P(S(*]OO <c+ 8) =1 a.s.[Pv] (23.19)

by Assumption CV.3(ii). We obtain

liminf Pg,(S;, <c+¢) > liminf Pg, (S5, < c+¢)
n—oo

n—oo

= liminf EVPV(SEn < C+5’{Wni}i§n,n21) =1, (23.20)

n—oo

where the inequality holds by Assumption CV.3(i), the first equality holds by the law of iterated
expectations, and the second equality holds by the dominated convergence theorem using .
Since ¢, is the 1 — a quantile of S}, implies that ¢, < ¢+ 2¢ wp—1, which implies that
¢y = Op(1), as desired.

Next, we consider the case where the support of S; is not bounded above. Then, there exists

a1 < o such that the 1 — a; quantile of S} exceeds the 1 — o quantile of S}, (and is finite
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because Sj;,, € R a.s. by Assumption CV.3(ii)). By (23.13)), but with cyo defined to equal the
1 — a1 quantile of S}, , rather than the 1 — a quantile, we obtain the result of (23.13) (with the

rhs being 1 — a and without imposing Assumption BC.5). In consequence, (23.14])—(23.16) give

liminf P, (cpoo 4+ € > Cum) = 1, (23.21)

n—oo

where cpoo is the 1 — aq quantile of S . Since cpyoo < 00, this yields ¢y, = Op(1). By (23.12), we
have

liminf Pp, (¢, (6,) = 1) > liminf Pr, (S, + 0p(1) > Cun) = 1, (23.22)

n—oo n—oo

where the equality holds because S,, —, co by Theorem [5.3(h) and €y, = O,(1). This completes
the proof of part (d). O

23.2 Proof of Lemma [22.3

Proof of Lemma First, we prove part (a). For all j < k, we have

02 (7,5(60) — B, iy (W, 0)) = 09 (1), (23.23)

by (21.5) and Assumption C.5. Hence, we obtain

sup |7, (0) — 1 (0)] = 0p(1) (23.24)
0cO

using Assumption C.4. Now, we use the result that for any sequence of random variables { X}, },>1
on (Q, F, Py) for which X,, —, 0, there exists a subsequence {c, },>1 of {n},>1 such that X., — 0
a.s.[Py], e.g., see Theorem 9.2.1 of Dudley (1989). We apply this result with the original sequence
{n}n>1 replaced by some subsequence {py},>1. Using this and , given any subsequence

{pn}n>1 of {n},>1, there exists a subsequence {cy}n>1 of {pn}n>1 such that
Sug e, j(0) —m;(0)| = o(1) a.s.[Pg]. (23.25)
€

By the continuity of m;(#) (Assumption C.4) and 0,, — 0+ (Assumption C.1), (23.25|) gives

Meyj(0c,) — Mj(0) a.s.[Pol. (23.26)
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Conditional on {Why;}i<nn>1, for the subsequence {cy, }n>1, we have
1/2 aznj(e%) 1 .
cl/ <80n]9) — 1> —q §Gjoo a.s.[Py] Vj < k. (23.27)

This holds by the delta method, as in (21.16) with 8’:3(9”) and Eij(en) in place of Eij(Qn) and
a%n j(Gn), respectively, and using Assumption BC.6 in place of (21.15)).

Next, suppressing the dependence of various quantities on ., for notational simplicity, we have:

conditional on {Wp;}i<nn>1,
o
T 1/2 Menj  Meyj
CnJ " n FF O
~ e — — G
_ <UCnJ> (CI/Z < enj mcw) M, 1/2 0 CnJ>
= | = n = = Cn
Uan Ucnj Ucnj UC"] UC"j

a-\cnj m* A~ 1/2 Cn] O-C'”j
= <A* Venj = MenjCn ]
Oc,j Ucn]

1
—a G} — 2mjooG" =G as.[Py] (23.28)
Vj <k, where mjo = m;(0) by (5 = Gm(Ooo) and GY, = G}’(Hoo) by (5.7), the second

equality holds by algebra, the third equahty uses the definition of v (0c,) in , the convergence
holds by , , and Assumptions BC.6 and C.1, and the last equality holds by .
We have 17, poars(0n) = T + ¢5(€ni(6n)) by (6.1 -, and (23.28), and 17, parrs =
G;?Zf + w}f(h;w) by for all j < k. By (2 , there exists a subsequence {¢;, }n>1 of {pn}tn>1
for which {T7%(0c,,)[{Whiti<nn>1} —a G727 a.s.[Pg]. Hence, part (a) holds if there exists a subse-

quence {ay}n>1 of {¢,}n>1 for which

{#5(€a,j (Oa)) [ {Wnitisnn>1} = @ (hjoo) as.[Pg] Vi < k. (23.29)
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‘We have

O
= (5l (On)n) " 0Y/2 (s (0) + P (00))
= (1 (0n)) 02 (ing (0n) = B, g (W, 00))
(5l (0n)n) ™ (1112 (g (0n) — B, iy (W, 0)) + 02 B, g (W, 0,)] - )
~ [0 B, i, (W, 0,)] - )
(5830 (On)in) " Y2 (B (W, 00) + 71, (00))
—p (23.30)

joor

where the first equality holds by definition, see , the second equality holds using and
, and the convergence holds using sdj,,;(0r)/sd1joc —p 1 by Assumption BC.1 and sdje =
o0 (Ooc): 12 (7 (00) — B, 35 (W, 0,)) = Op(1) (by (EB23)), x(v, )] i= [[v+ el — [e]-| < Iy
for v,c € R (by (21.7)), k,, — oo (by Assumption A.6(i)), and Assumption BC.2 (which relies on
Assumption BC.1 for the definition of sdj;js(6)).

Equation and the continuity of ¢}(§;) at all {; € R[, o (by Assumption A.5(ii)) give
d(¢3 (0 (0n)), ¢} (h}s)) —p 0 for all j < k. Now, we use the result that for any sequence of random
variables { X, },>1 on (2, F, Py) for which X,, —,, 0, there exists a subsequence {ay }n>1 of {cn}n>1
such that X,, — 0 a.s.[Pg|. Thus, there exists a subsequence {ay, }n>1 of {pn}n>1 such that
holds, which completes the proof of part (a).

Now, we prove part (b). Define

Vg (0) =7 (0) — §mj(0)ynj(c9) Vi <k. (23.31)
We show that under {F, },>1, conditional on {Wp;}i<n n>1, for the subsequence {cy, }n>1 of {pp}n>1
defined above,

Sule) v, (0) —ve 7 (0)] = op(1) as.[Py]. (23.32)
€

This, Assumption BC.6, (23.25]), and the continuous mapping theorem give: under {F},},>1, con-

ditional on {Wpy;}i<nn>1, for the subsequence {cy}n>1 of {pn}n>1,

Uh () =Vl 40 (1) = G7(+) as.[Py). (23.33)

cnj Cnj

The proof of (23.32) is quite similar to (21.4]) and (21.5]), but with bootstrap quantities in place

of original sample quantities. By the same argument as in (21.4) with &7,;(f) and 7,;(0) in place
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of 5,j(0) and oF,;(0), respectively, we obtain

5 (0
/2 <32E9; _ 1) _ %yg;(e) +02(1) as. [Py, (23.34)

using Assumption BC.6 in place of Assumption C.5 and (21.2)). Next, we have: conditional on

{Whiti<nn>1, for the subsequence {cp}n>1,
my, ;(0) Ge, i (0) 5% .(6)
v i(0) = ¢/ <Afn3 — M, (0 > = (l/m*- 0) — e, (0)cL/? <Acnj - 1>>
an( ) n Ucnj(e) n]( ) Ucnj(e) Cn]( ) nj( ) O—cnj(e)
mx e o * Mo *
— (1+02(1)) (vcnj<0> — SO (6) + o;?u)) — U (0) + 09 (1) a5 [Py,
(23.35)

where the third equality holds by (23.25)) and (23.34]), and the fourth equality holds by the definition
of 1/””*(9) in (23.31) and Assumption BC.6. This proves (23.32)).

Next, we have

N i(0 _
/25,50 = 220 (11 9) 4 /2B, i, (W.0))

Tnj(0)
= Gnj(0) + n2Ep, m;(W,0), where (23.36)
G0s0)i= ) 2 ( 250 1) T s ,6) = 0.,

where v} (0) denotes the jth element of v7'(6) defined in (2.12), and the second equality on the
last line holds by Assumptions C.4 and C.5 and (21.4). Now, we have

012 ([ (0)] = F) = nM/2([ng (O)] - = [Bring (W, 0)]-) = n/2(Fi28 = 1) + by (6)
= dj(0) + bp; (), where
B (0) 2= X (@ (0), 0" 2Ep, i (W, 0)) — nM/2(F0F — pinfy = 09(1),  (23.37)

n P
the first equality uses the definition b,;(0) := n'/2([Eg,m;(W,0)]- — rigf) in , the second
equality uses x(v,c) := [v + ¢]- — [¢]—, and the second equality on the last line holds because

Ix(v,¢)| < |v| Yv,c € R by 1' Wn;(0) = OP(1) by (23.36), and nt/2(Finf riph) = At = O, (1)
by (5.2) and Theorem [5.3b) (which uses Assumptions A.0, C.4, C.5, and C.7).
For b} = (5d3j00 (0)kn) "t 2([Er, mj(W,0)]— r?f) as in A*n” (defined in ), we obtain

Sd3joo (9)

b(0) = (s (0) ) ~tn2 ([mm(f))] —?"“;{‘f) = (sl (0)n) ™" dnj(6) + s,

@ bh, (23.38)
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where the first equality holds by definition, see (12.4]), and the second equality holds by ([23.37]).

Using (23.36)), (23.38), and the definition of A" , we can write A7 g in (12.4) as

ALwseus = inf omax | xX(77,(0),4) + 105 # 57 (23.39)
’ (0.6,6%£,5%)eNT i<k

G =) (<sd§nj<e>nn>-13nj<e> + Wh)) ,

3ng (0)
where (0,0;,b3,05,5%) € A:;n}} implies that b; = b,;(0), b5 = (8d3500(0)kn) b0 (0),
0 :=nY2Ep,m;(W,0), and j* == gn(e) and x(v, c) [v+c-—[c]-.
We have (sd3,,;(0)k,)~ 1dn]( by E Assumption A.6(i), and sd3, ;(0) >

1 (by its definition following ) Also, by Assumptlon BC.1 and sdj,;(0) > 1, we have
SUpgep |5d3joo(0)/5d35,,;(0) — 1| —; 0. Hence, by the same argument as used to establish ([23.25)),
there exists a subsequence {ay}n,>1 (different from that in the proof of part (a)) of {c,}n>1 for

which

sd3joo(0) B

1| — 0 a.s.|Po|. 23.40
Sdganj (0) [ V] ( )

sup |(sd3,,,;(0)ka,) " da,j(0)] — 0 a.s.[Py] and sup
0cO 0cO

In addition, by (23.33), under {F,},>1, conditional on {Wy;}i<nn>1, the subsequence {ay, }n>1
of {pn}n>1 is such that

v () = v () + oy (1) = GT () as.[Py). (23.41)
Define
Apitoours = infmax (x(7(0), 45) + 10 # 5
(0,0, £,5%)eA, R I<k
F10) = 508 (1107 (0) + p2 (0)05)) , where
Nlnj(e) = (5d3nj(9)’<0n) ldnj(g) and :U'2nj(6) = d*yiw)’ (23.42)
3anj
Msn(e) = (Msnl (0)’ "'Hu’snk(‘g)), for s = 17 2’ and :U’n(e) = (:u’ln(e)lvu2n(9),),‘
By (23.39)), (23.41)), and (23.42)), we obtain:
Aziarf,EGMs = ALlarf,EGMS + 0p(1) a.s.[Pyl, (23.43)

using the continuity of ¢3(£;) on Rﬁ:oo} by Assumption A.5(ii) and the continuity of x(v,c) on
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R X R4 under d. Hence, to establish part (b), it suffices to show: conditional on {W;}i<nn>1,

for the subsequence {an }n>1,

. .
{Azg,EGMsHWm}iﬁmnzl} —a AT panrs a8 [Py). (23.44)

To prove , we use a similar (but more complicated) argument to that used to prove
Theorem [5.3(b) based on the extended continuous mapping theorem. As above, let D be the space
of functions from © to R%*. Let Dy be the subset of uniformly continuous functions in D. For non-
stochastic functions v(-) € D and u(-) : © — R* with u(0) = (1111(0), ..., ft15,(0), 1191 (0), .. 1121, (0))’,
define

() p() = il max (r(0(),0,0) + 10 # 5)bg
(0.b,b* 5% )EA"R  J<k

F1( = 575 (11 (0) + 1oy (0)55.) )

TRk 3= g, g0 1 (V00,0 41627

F10 = 7)) (01 (0) + gy (OB}-)) , (23.45)

where v(0) = (V™(0),v7(0)'), v}*(0) and v$(f) denote the jth elements of v™(0) and v7(0),

respectively, and 7;(v(-),0,¢) is defined in (21.20). Note that

% in ~ * * In ~
ALn,fEGMS = gn(v5(+), i (+)) and ALoof,EGMS = g(G(-), poo(*)), (23.46)

where 11 (+) is the constant function that equals (0%, 1;)" for all 6 € ©.

We want to show {ga,(v7, (), tta, ()){Whiticnnz1} —da 9(G(), poo(+)) as.[Py], where
{vi (OO Whiticnm>1} = G(-) a.s.[Pg] by Assumption BC.6 and supgeg ||itq, () — 1oo(0)|| = o(1)
a.s.[Py] by and the definition of 1, (6) following (23.42). We use the extended CMT to
establish this result. For notational simplicity, we employ n, rather than a,, in the proof of this
result. The extended CMT requires showing that for any deterministic sequences {v,(-) € D}p>1
and {u,(-) : © — R?!},~1 and deterministic v(-) € Dy such that supgce ||vn(0) — v(0)|| — 0 and
supgeo |[1n(0) — too(0)|] — 0, we have Gn(vn (), tn(-)) — G(V(+), oo (+)). (For notational simplicity,
we abuse notation here and consider a deterministic v, (-) that differs from the random v,(-) in
Assumption C.5.) Once we have shown this, the proof of part (b) is complete.

The proof of g, (Vn(+), 1, (+)) — g(v(+), peo(+)) is an extension of the proof of g, (v, (:)) — g(¥(+))

99



in (21.22)—(21.28]) in the proof of Theorem |5.3(b). We show

(i) Hininf G (v (), () > 9(V(), poo(5)) and

n—oo

(i) imsup gn(va(-), (1)) < 9 (), poo(-))- (23.47)

n—oo

First, we establish (i) in 1’ There exists a subsequence {cy, }n>1 of {n},>1 and a sequence

*

{(gcn’gcnagcnazcm;:n) eA c }n>1 such that

(%)

liminf g, (v5 (), () = 1 ge, (ve, (-); pie,,(+)) and

lim_ge, (ve, (), e, (1)) = lim max (Tj(vcn(-)ﬁcm?cn) +1(j # Jo, e, (23.48)

n—00 n—oo j<k

F1G =006 (g, (Be) + gy, @e)B52,) )

and chj denote the jth elements of b, , b, and £, , respectively. Also, there

- =~
where b, ;, b s

cnjs

exists a subsequence {q, }n>1 of {cn}n>1 and (6,0, b0, ) € O x R[ioo x {1,...,k} such that

A (@B B L T 0.5,8°,2.57)) = 0, (23.49)
where d is defined following , by compactness of the metric space (O x Rf’fw] x {1,....,k},d)
under Assumption A.0(i). We have (6,0,b°,7,57) € A% by the same argument as used to show
(6,b,0) € A in (but without the requirement that ,, € ©;(F,,) Vn > 1) using and
Assumption BC.3.
For all j <k,

6% |

lim 7;(vg, (), 0g,,lg,) = 7;(v(),0,0) € R (23.50)

n—o0

by (21.25)) using vy, (6) — v(6) uniformly over § € © (by assumption) and ([23.49).
In addition, we have, for all j < k,

1(j # an) i — LG #7J )b and

1G = 73065 (nge, @o) + pag, Ba)by,5: ) = 10 =765 B), (23.51)

where the first line holds by (23.49) and the second line holds by (23.49), supyee ||pg, (0) —
Lo (0)]] — 0, and the continuity of gojf() on Rfﬂ:oo] under d by Assumption A.5(ii), and the fact that
g5, g, By O 57,555 — Ol hat 5. Gy B, By 5,) =

4,03’?* (5}) (as a sequence of numbers in R[ ) even if 4,0 (b ) = +o0.
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Now, we have

liminf g, (v, (-), p,(+))

n—oo

n—oo j<k
= max (7 (v().0.0) +1G # 7 + 16 = 7)o (5))

ey DO (Tj(V(-),H,E) +10G #5)0 +10 =7 )soj*(bj*))

g () poo () (23.52)

Y

where the first equality holds by and the fact that {g,}n>1 is a subsequence of {¢,, }n>1, the
second equality holds by (using the notational convention that v + ¢ = ¢ when v € R and
¢ = +oo if b; = +oo for any j < k) and , the inequality holds because (6, b, b7, i) e A7
by the paragraph containing , and the last equality holds by the definition of g(v(-), () in

(23.45)) with pu(-) = po(+). This establishes result (i) in (23.47]).
Next, we establish result (ii) in (23.47). There exists (QT, b, o, 0, 1) € A7 such that

Gr(): oo () = mae (500,07, 61) 17 # 579 + 10 = 7). (017.)) (23.53)

because A} is compact under the metric d defined following (5.2) with a, = dp + 3k + 1 (since it
is assumed to be an element of S(© x R:E’ioo] x{1,...,k})) and 7;(v(:),0,0) + 1(j # j*)b; + 1(j =
7%}« (b}+) is a continuous function of (6,b,b%, ¢, j*) under d that takes values in the extended real
line using Assumption A.5(ii). By Assumption BC.3, Azngn —p A7. Hence, there is a sequence

{(0F,, 05,0}, €1, 317) € A" V=1 such that d((0, bl bl ), 55°), (67, bt bt £, 57%)) — 0. We obtain

lim sup gn(yn()a //Jn())

n—oo
:= limsup inf max (Tj(l/n('),ejé) + 1(j #* j*)bj
n—00 (0,b7b*,€,j*)€/\::j£n Jsk

+1(7 = 7@}« (t1nj+ () + pop - (0)D5+))
lim sup max (Tj(Vn('), GL,EL) +1(5 # jl*)bj@j +1(j = j;rz*)SO;k.l* (N1njib*(0) + Loy, i (a)bjz*))

n—o0 S
_ (0N gt ot . iy 7 R FIgg T
= max (5 (v(), 01, 00) + 1 # 3980 + 16 = ™). (817

9w(), oo (4)), (23.54)

IN

where the inequality holds because (6:’1, bL, bL*,EL, j;;*) € AZ?;;n Vn > 1, the second equality holds
using d((0,bh, bl €5, 31), (67,85, b1, €1, 1)) — 0, (23.50) with (1,(-), 65, €h) and (v(-), 61, ¢") in
place of (vg,(+),0q,,%,) and (v(-),0,0), respectively, and (23.51)) with (HLj,bLj,bIZ,ELj,jIL*) and
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(08, 61,05, €8, 51 in place of (84,5, bg,j: Dy, s Lanss ) a0 (9 b],b],ﬁ 77), respectively, and the

last equality holds by . This establishes result (ii) in and completes the proof of part
(b).

For notational simplicity, we let the subsequence {a;, }n>1 of {pn }n>1 differ in the proofs of parts
(a) and (b). However, by taking successive subsequences across the proofs of parts (a) and (b), we
can obtain a single subsequence {ay}n>1 of {pn}n>1 for which both parts (a) and (b) (and part
(d)) hold, as stated in the theorem.

The convergence result of part (c) follows from parts (a) and (b), Qp (6,) —p Qo (by Assumption
C.6), the continuity of S(m, Q) by Assumption S.1(iii), and the continuous mapping theorem. We
have ST peys = 0 a.s. by Assumption S.1(ii). The function S(m,$2) can be arbitrarily large
only if m; is arbitrarily small (i.e., m; is negative and arbitrarily large in absolute value) for some
j < k, by Assumption S.1(i). We have T} oo pGMs a0d Azg‘)f’EGMS (defined in ) are in R
a.s. by Assumptions A.5, C.4, and C.5, and x(G}'?(0),¢;) > —|G]"(0)| (because x(v,c) > —|v| by
1) This yields ST, paars < o a.s., which completes the proof of part (c).

Lastly, we prove part (d) of the theorem. The random variables T 56Mm 5(0) and T joo. EGMS

(defined in (12.6) and (12.7)) are the same as 17, ; poas(0) and 17, poys (defined in (12.4)
and ), respectively, except the former are defined using cp;?*, which satisfies Assumption A.10,

whereas the latter are defined using ¢%, which satisfies Assumption A.5. In consequence, the proof
of part (a) also applies with U in place of L.
Next, we consider the U version of part (b) that is stated in part (d). By definition, see ((12.4)

and ([12.6)), we have

7o = i in (—[0F w (b
AUn,EGMS = GEefgf(Fn) Ijnglil < [ (O)]+ + ©5" (& (0))) , whereas
Aioens = il max (X(73(0), 02 B, iy (W, 0)) + 17 # jn(6))bn (9)

0O (F,) I<k

105 = n0))9}(€5,(0))) (23.55)

In consequence, analogously to 1' we can write AUf; BEGMS 88
i . . s . g sd3ico(8) .,
A ons = inf min <_[an(0)]+ + 5" <(Sd§nj(9)'€n) Y (0) + W%)) ,

(0,0.b%)er\Un  T<k 5nj (0)
(23.56)

where A*Unrij%n is defined just below {) with n = ng,,.
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By the same arguments as in (23.39))—(23.43]), using Assumption A.10 in place of A.5, we obtain

A”(}gliEGMS Zgﬁ;jEGMS + 0(1) a.s.[Py], where (23.57)

% inf L . . _[,,mo* o ) ) *
Un,EGMS - — (G,b,b*;Ielff\*UZgﬁn Ijnglil ( [an (9)]+ + Pj (:ulny (0) + Hon; (Q)bj)) :

In place of the definitions in (23.45)), for nonstochastic functions v(-) € D and u(-) : © — R
With u(0) = (1(0)s - gy (0), g1 (0), s g (6))'s we now define

n 3, D)) = inf 1 —[p™9 (9 _|_"f* (6) + (0 b* and
gun(v(-), u(-)) (ab’b*;g@nﬂ% fjnglg( [0+ + 57 (11 (0) + 125 (0)05)) an
gu(v(-), u(+)) = (97b7big)1£AaI min (=7 7(O)]+ + @5 (11(0) + p2;(0)b7)) , where
1 -~ g
Vi (0) = vi'(0) - §mj(9)yj (). (23.58)

The remainder of the proof of the U version of part (b) goes through as in the proof of the L version
given above, using Assumptions A.10 and BC.4 in place of A.5 and BC.3.

The U version of part (c) that is stated in part (d) goes through as in the proof of the L version
above, using Assumption A.10 in place of A.5. This completes the proof of part (d). O

23.3 Proof of Lemma 22.4]

The proof of Lemma uses the following lemma. The set ©7(F) for a positive constant 7
is defined in (5.4) by ON(F) := {0 € O : max;j<x[Epm;(W,0) + ritf]_ < 5/n'/2}. The set O, is
defined in (BC.5) by ©,, :={# € O : max; <[ (0) + 7irf]_ < 1, /nl/2}.

Lemma 23.1 Suppose that under {Fy,}p>1 and {0, }n>1, Assumptions A.0, C.4, C.5, and C.7 are
satisfied.
(a) Let {n,}tn>1 and {Tp}n>1 be any sequences of positive constants that satisfy T, — oo and
Np/Tn — 0. Then,
Pr, (06, 20" (F,)) — 1.

(b) Let {nyptn>1 and {7y }n>1 be any sequences of positive constants that satisfy ny,, — oo and
Tn/Mun — 0. Then,
PFn(@}]Un (Fn) 2 @n) — 1.

Proof of Lemma For notational simplicity, we replace {py}n>1 by {n},>1 throughout the

proof of this lemma. Part (c) follows from parts (a) and (b) using the definitions of ST, paare(6n)
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and Sy paars(0n) in and (| ., respectively, and Assumption S.1(i), which requires that

S(m, Q) is nonincreasing in m € R* V(m, Q) € R[ x W,

too] X

To prove part (a), note that T}, pqag(0) and T popsg(0) only differ because the former
depends on ¢ (&,;(¢)), whereas the latter depends on gpj(fn(ﬁ),ﬁnw)). By Assumption A.5(i),
P& = 9i(6,Q) Vi < k, VE,Q) € RE x V. This gives ¢7(6,5(0) > 9;(6,(6), 3 (0)) for
all sample and bootstrap realizations. Hence, T7, ; paas(0n) = 105 pears(6n) for all sample and

bootstrap realizations, Vj < k, ¥n > 1, and part (a) holds.

Next, we prove part (b). By definition, see (12.4) and (6.11)), we have

*inf _ o 1/2
AlLnpams 1= oo by T (X(VnJ(H) Ep,m;i(W,0)) + 1(j 7 jn(6))bn; (6)

10 = jnl0))}(€5,(6)) ) and

Aroms i= inf  min max (?Zj,EGMs(Q) +1(j # J1)bnj,pcrs(0)
0€0,, j1edn(9) I<k

10 = 1) (€4(6), 0(0)) ) (23.59)

The bootstrap random variables A L;Q "EGMms and A;lzfe g differ in five ways. Specifically, Aziﬁf’%e MS
versus (vs.) A*%GMS are defined with (i) 1nf€€@?n(Fn) vs. infy g , (ii) cp;(fzj(e)) Vs. goj(fl,’L(H),
On(0)), (i) by (0) vs. Dugmanis(0), () X(Thy(8), w2 B, iny(W,0)) vs. Tiypcars(®), and (v)
J = jn(0) or j # jn(0) vs. min, 7 o with j = ji or j # J1.

Lemma (a) applies because Lemma imposes Assumptions A.0, C.4, C.5, and C.7,
Tn — 0o by Assumptions A.6(ii), and 7,,/7, — 0 by Assumption BC.3. By Lemma [23.1f(a), for

any bootstrap random function K7 (0),

Py inf K (0)> inf K (0)
00 (Fy) 0O,

{Wm’}i<n,n>1> =1 wWp — 1. (2360)
By Assumption A.5(i), we have

GHE9)) = ¢, (E5(0), 0 (0)) VO € © (23.61)

for all sample and bootstrap realizations.

We have

~

bnjpcs(0) == n'/? ([mnj(e)}_ - ?;;lf) — 5d3,;(0)n = dnj () + byj (0) — 5d5,,;(0)kn, and so,

sup (an,EGMS(H) - bnj(O)) < sup (dAm(H) - Hn> —p —00, (23.62)
0co fco
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where the first equality in the first line holds by definition, see , the second equality holds by
(123.37)), and the second line follows from the first line, the last line of (23.37)), sdjémj(ﬂ) > 1 by
definition, and k,, — oo (by Assumption A.6(i)) and the inequality on the second line holds for

all bootstrap realizations because c/l\nj(H) does not depend on any bootstrap quantities. Equation

(123.62) implies that

o~

sup (bnj,ams(0) —bp;(0)) <0 V5 <k, for all bootstrap realizations, wp — 1. (23.63)
0cO

Now, we show
Py (X@Zj@a n2Ep, i (W,0)) > X5 soms(0) V0 € 9|{Wni}z’§n,nzl) =1lwp—1  (23.64)

By the footnote following (6.7)), x(v,c) is nondecreasing in ¢ for v > 0 and nonincreasing in ¢
for v < 0. Using this and the definition of x(v,c1,c2) in , we obtain: for v > 0, x(v,c1,¢2) =
x(v,c1) < x(v,¢) Ve > ¢1. And, for v < 0, x(v,c1,¢c2) = x(v,¢c2) < x(v,¢) Ve < ca. These results
yield: for all v7;(0) > 0,

R pcnrs(0) = X (P5(0), 0210 (0) = 5, (0)n, /2700 (0) + s, (05 )
= X (25(0). 0!/ (6) = sd () )
< x (935(0), nM205(0) = 1)
<X (%(9)» n'2Ep, m; (W, 9)) (23.65)

provided n'/2Ep, m; (W, 0) > n'/2,;(6) — ki, where the first inequality holds because sdy,;(0) > 1

and x(v, c) is nondecreasing in ¢ for v > 0, as stated above. Similarly, for 77,;(0) < 0,

Rnzcars(0) = x (73;(0), 027 (0) + sd;(0)rn )
< x (935(0), 020 (0

¥ (735(0), 02 Ep, i (W,0)) (23.66)

IN

provided n'/2Eg, m;j(W,0) < n'/?m,,;(0) + ky.
By (23.36)), which uses Assumptions C.4 and C.5, n'/?m,,;(0) = n'/2Eg, m;(W,0) + Og(l).

Hence,

liminf Pp, (n1/2Eanj(W, 0) € [0/ 21 (0) — ki, 0} 2005(0) + ﬁn] Vo @) =1 (23.67)

n—oo
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using K, — oo by Assumption A.6(i). The combination of (23.65)—(23.67) establishes (|23.64]).
Define

—x* inf . . A~k
Apnpeus i= inf - min max (X(Vn]w) V2Ep,mi(W,0)) + 1(j # j1)bni (6)
666}’”(Fn)jleJn(9) J<k

10 = 71)#5(64,0))) (23.68)

Combining ([23.60)—(23.64]) and (23.68]) gives

— inf

Py(Apncus = AnBarrs{Wniticnn>1) = 1 wp — 1. (23.69)

Next, we show that
Py (jn(0) € Jn(0) V0 € O{Wyiicnms1) = 1 wp — 1, (23.70)

where j,(0) := argmaxj<jy byp;(6) is defined in and J,(0) := {j € {1,....k} : Tn;(60) >
n(0) — sdznj(e)nfl/%n} is defined in (6.10). We have j,(0) € J,(0) iff 7, Trjn(0)(0) = Tn(0)
— sdznjn(e)(H)n*1/2/£n if nl/2(7,;, 0 (0) — Finfy _ nl2(7,(0) — P) > —k,, because sd4njn(9)(9) 1
by definition. By (23.37), n!/2(F,;(0) — Finf) = by;(0) + OF (1) ¥j < k (since 7j(0) = [ (0)]— by
). Hence, n1/2(maxj§k Tnj(0) — 7)) = max<y, by (0) + O@(l). Taking j = j,(0), these results
combine to give n1/2(rnjn(9)(9) Finfy _ pl/2(7,(9) — 7int) = by (0)(0) — maxj<y by (0) + O (1) =
Oz(? (1) using the definition of j,(0), where the Og) (1) term does not depend on any bootstrap
quantities. Since OF (1) > —ky, holds wp—1 using Assumption A.6(i) (i.e., £, — 00), is
proved.

For a suitably defined random function w(j1,0) on {1,...,k} x ©, A7) ¢ and A*LgleGMS
can be written as infeee)”"(Fn) w(jn(0),0) and 1nf9€@nn(Fn) min w(j1,0), respectively. Since
w(jn(0),0) > min

obtain

JlEJ (9)
w(j1,0) when j,(6) € Jn(f) and the latter event satisfies (23.70), we

J1€Tn(0)

— inf

(ALn EGMS = Apnpems{IWniti<nn>1) =1 wp — 1. (23.71)

This and (23.69)) establish the result of part (b) of the lemma.
Now, we prove part (d) of the lemma. The proofs of the U versions of parts (c) and (a) stated
in part (d) are the same as the L version proofs given above with the inequalities reversed using

Assumption A.10(i) in place of A.5(i).
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The proof of the U version of part (b) stated in part (d) is as follows. By definition, see (12.6)),

* inf L . . o ok (b
Atn,EGMS = 966;}35 oy R ( i O)]+ + €57 (&0 (0))) (23.72)

= reol i, EiR X (=7, (O)] + 10 # 1) (—00) + 10 = 1)} (€6;6)) )
where the second equality holds because on the rhs the max over j < k is attained for j = j; (since
for j # j1 the term in parentheses equals —c0).

In contrast, consider A;f%fG ms» Which is defined in . The bootstrap random variables
A’l}i;LleG wg and Ajiblgfc w g differ in five ways. Specifically, A’{Ji;fEG Mg VS A;’;lgfc ug are defined with
(i) infyeqron (g, Vs g s (1) @5 (€0;(0)) vs. 0;(€5(6), 2u(0)), (iii) —o00 vs. bujmams(8), (iv)
—[U5; O]+ vs. Xnjrems(0), and (v) minj < vs. min, 7 o - Lemma m(b) applies because
Lemma (d) imposes Assumptions A.0, C.4, C.5, and C.7, 7, — oo by Assumptions A.6(ii), and
Num/Tn — 0 by Assumption BC.4. Hence, by Lemma [23.1](b), for any bootstrap random function

K3(0),

Pv inf K:L(H) < inf K;;(H) {Wni}i<n,n>1 =1 wWp — 1. (2373)
007U (F,) 00, -
By Assumption A.10(i),
P (E5(0)) < 0;(€4(0), 0 (0)) VO € © (23.74)

for all sample and bootstrap realizations. Since /b\nj,EGMS(Q) € Rj4o0), we have —co < /b\nj,EGMS(Q)
V6 € O for all sample and bootstrap realizations.

For all 77,;(0) > 0,

Xnj.eaars(8) = x(@5(0), 0" ? i (0) — sdb, ;(0)rn) = x(7,;(0), —00) = —;,;(6), (23.75)

where the first equality holds by the definition of X},; s (€) in (6.7), the inequality holds because
X(v, ¢) is nondecreasing in ¢ for v > 0 by the footnote following (6.7, and the last equality uses

x(v, —o0) = —v by (5.6). Similarly, for all 7;,;(0) <0,
Xnjpcars(0) = X(05;(0),n'2;(0) + sd3,;(0)kn) > X(V5;(6), +00) = 0, (23.76)

where the first equality holds by the definition of X}, ; pars(0), the inequality holds because x (v, c) is
nonincreasing in ¢ for v < 0 by the footnote following (6.7)), and the last equality uses x (v, +00) =0

by (5.6). Hence, for all sample and bootstrap realizations, X;.; paars(0) > —[V5;(0)]4-
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Because jn(Q) C {1,...,k}, the minj < is less than or equal to the min; 7 ) - In consequence

1€Jn
*in * inf

of the results above, we obtain PV(AUn,fEGMS < An,lEGMS|{Wni}i§n7n21) = 1 wp—1, which estab-

lishes the U version of part (b) stated in part (d) of the lemma. O

Proof of Lemma First, we prove part (a). We have

P, (6,201 (F) > Pr, | sup  maxnl/2[fn(6) + 7] <1,
0ce (F,) 1<k

= Pp, sup  maxn/2([M,;(0)]- — 7)) <7, |, (23.77)
peen (F,) Ik

where the inequality holds by the definition of (:)n and the equality holds because for b,¢ > 0,
[a+ b]— < cif and only if [a]— — b < ¢. To see this, first note that [a +b]— < c and [a]- —b < ¢ are
equivalent to max{—a — b — ¢, —¢} < 0 and max{—a — b — ¢, —b — ¢} < 0, respectively. The “only
if” part follows by observing that max{—a — b — ¢, —c} > max{—a — b — ¢, —b — c}. Now, suppose
[a]— — b < ¢ so that either (i) a > 0 or (ii) @ < 0 and —a — b < ¢. If (i) is the case, [a+b]- =0 <,
and if (ii) is the case, [a + b]— = max{—a — b,0} < max{c,0} < c.

We have
sup  maxn'/?([n;(0)]- — 7))
00’ (F,) I<k
= sup  maxn! ([ (0)]- — ) + 0P -7
9ee)n (F,) I<F
= Ssup max n1/2([mnj(9)]— - r}?j) + Op(1)

90 (F,) Ik

= sup max(wj”(e)+n1/2Eanj<W,9>]_—[nl/ZEFnﬁmw,e)]_
pce (F,) Ik

(B, s (W, 0)] = rE5)) + 0p(1)

< sup  max|v,7(0)] +n, + Op(1)
pce (F,) ISk

= 0,(1) + 1, (23.78)

where the second equality holds by Theorem (b) (which requires Assumptions A.0, C.4, C.5,
and C.7), the third equality holds by (21.5) and (21.6)), the inequality holds by the definition of
@}7" (F},), the same reasoning as given following (23.77]), and 1) and the last equality holds by
Assumption C.5.
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It follows that

P, sup  maxn'/? ([ ()] — 7)) <7,
0O (F,) Ik
> Pr,(Op(1) + 1, < 7n)

= Pp,(Op(1/70) +np/mn < 1)
— 1, (23.79)

where the convergence holds because 7,, — oo and n,,/7, — 0. Combining this with (23.77)) gives
the result of part (a).
Next, we prove part (b). Note that

Pp, (©]7"(F,) 2 ©,) > Pr, (SHP max n'2([Ep,m;(W,0)]- —rih) < 77Un> (23.80)
eeén I

by the definition of G)?U"(Fn) and the same reasoning as given following (23.77)).
We have

sup maxn'/?([Ep,m; (W, 0)]- — )
06, I=<F
= sup Iyggnl/z([Eanj(W 0)]— — [ (0)] - + [T (0)] — 7 + 7 — vt
0eO, “—
= sup I;lélginlﬂ([Eanj(VVa 0)]- — [mnj(e)]— + [mnj(g)]— - ?lv?f) + Op(l)
Ge@n -
< sup maxn/2([Ep, i (W, 0)] — [Fing(0)]-) + 7 + Op(1)
06, I<F
= sup max <[n1/2EFn'r7Lj(W, 0)]- — [vny (0) + nY2Ep, m;(W, 0)]_) + 75+ O0p(1)
0€d, I=F
< sup max }unmja(9)| + 7 4+ Op(1)
0c®, I=F
= 0,(1) + 7, (23.81)

where the second equality holds by Theorem [5.3|(b) (which requires Assumptions A.0, C.4, C.5, and
C.7), the first inequality holds by the definition of ©,, and the same reasoning as given following

(23.77)), the third equality holds by (21.5) and (21.6)), the second inequality holds by (21.7)), and

the last equality holds by Assumption C.5.
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It follows that

Pr, (:eu(:i max n'?([Ep,m;(W,0)]- - rigf) < nUn>
> Pr,(O0p(1) + 7n < 17y

= Pp,(Op(1/nyy) + Tn/Mun < 1)

, (23.82)

— 1

where the convergence holds because 7y, — oo and 7, /7, — 0. Combining this with (23.80)) gives
the result of part (b). O

23.4 Proof of Lemma [22.5|

Proof of Lemma Given the definitions of ST pare and Sreo in (12.5) and (5.11)), respec-

tively, and Assumption S.1(i), it suffices to show that T}, pars < Tjeo and AEL‘;{EGMS < Af(A7)

for all sample realizations, where 17 paarg, Tjoos AE};{EGMS, ATE(A), and A are defined in

(112.5), (5.8)), (12.5), (5.10), and Assumption C.8, respectively, using quantities that are defined in
Assumptions C.1 and C.3-C.5. We have

17 jooEams = Gl + ¢ (hoo) < G127 + hjoo := Tjeo (23.83)

for all sample realizations, where the inequality holds because (i) hjoo > 0 by Lemma a) (which
imposes Assumptions C.3 and N), (ii) ¢}(hj,) < hjoo holds immediately if hjoo = oo, and (iii)
if 0 < hjoo < 00, then A7, = 0 (since nY2(Ep,m;(W,0,) + r}?j) — hjoo and (sdinj(0y)kn) "
xn'/2(Ep,m;(W,0,) + r}f{f) — hj, by Assumptions C.3 and BC.2, sdi,;(0n) > 1/2 for n large,
which holds by Assumption BC.1 and sdj,,;(65) > 1, and k,, — 00), hj,, = 0 implies ¢} (h},,) =0
by Assumption A.5(iii), and hence, ¢} (h}y) < hjoo-

Now, we show A*Lgéf,EGMS < Af(A7). We can write Azgéf,EGMS = inf(gp b 0 j%)ens K (6,b,b%, ¢,
§*) and ARf(A7) = inf (.4 0yen, K (6,b,0) for random functions K1 (-) and K(-) defined in (23.85)
below. To show AE{{;{EGMS < ARf(Ap), it suffices to show that for any (6,b,£) € As there exists
(0,b,b*,£,5*) € A} for which K1 (0,b,b*,¢,5%) < K(0,b,¢) for all sample realizations.

To this end, we claim: Given any (6,b,¢) € A, there exists an element (0,b,b*, ¢, %) € A}.

This claim is proved as follows. By Assumption C.8, given any (6,b,¢) € Aj, there exists a
sequence {(0,,, by, ) € AZTFn}nzl such that d((0,,, bn, ln), (0,b,€)) — 0, where 0,, € @?"(Fn) for all
n > 1 by the definition of AZ”Fn following . Given {gn}nZL consider the corresponding sequence

{(Ons by by Ly ) € A5 Yy for A7 defined in (12.3), where b} := (sdzjoo(0n)fn) ™ by, iy =
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arg max;<j Enj, and j* is the smallest arg max value if the arg max is not unique. By Assumption
BC.3, AZZZLH — g A} for A} compact (under d). In consequence, there exist a subsequence {uy }n>1

of {n},>1 and an element (6, b,b*, ¢, j*) of A% for which

d((Buyy, bups by s luns 32 ), (0,5,b%,€,5%)) — 0 and (8,5) = (6,b), (23.84)

where the equality holds because d((6,bn,?y), (0,b,¢)) — 0, which completes the proof of the
claim.
Given any (0,b,¢) € Ay, take (6,b,b*,¢,5*) € A} as in the previous paragraph. Then, we have
Ku(0,0,6',0.5°) = max (X(G5'7(0). ) + 107 # 3")by +1G = 5")¢5- (85.))
< max [(G(0),65) + by] = K(0,5,0) (23.85)
i<
for all sample realizations, where the first and last equalities hold by the definitions of A*L‘Org EGMS
and A (A7) and the inequality holds because, as we show below, o (b’;*) < bj«. As argued above,
(23.85)) implies that AEE;{EGMS < Af(A7), which we set out to prove.
Now, we show ¢7. (bj) < bj+. For notational simplicity, suppose (23.84) holds with n in place
of u,. We have j* — j5* by (23.84), and hence, j: = j* for n large (because j: € {1,...,k}),
where j¥ = jn(0,) by the definition of AZZZLﬂ in 1) for j,(0,) defined in |D We have
an — b; and b’:u- — b;- by (23.84)), where an = bnj(gn) and b:,j = (Sdgjoo(gn)/in)_lgnj by the
definition of AZ?}}H for by;(6) defined in 1} Hence, we have Enj; — by« and bj,;. — bj., where
b = (5d3jroo(On)kn)  onjs = (sdg; G 100 (@n)kn) ~'0,; G,y (0n) > 0 for all n > 1 by (12.2). This,
0 @ )(9) > 1, which holds by its
definition following ), and K, — oo (by Assumption A.6(i)) imply that b= > b7. > 0. In

3d3jn(§n)oo(9n) > 1/2 for n large (by Assumption BC.1 and sd;nj

addition, it implies that if 0 < bjx < oo, then bj. =0 (since K, — o0). Hence, we obtain: if
0 < bj» < oo, then ¢.(bj) = 0 < bj because ¢7.(0) = 0 by Assumption A.5(iii). On the other
hand, if bj= = oo, then ¢%.(b}.) < oo = b}, by the definition of ¢7(-), which completes the proof of

the lemma. O

24 Proof of Theorem [7.1]

The proof of Theorem [7.1] uses the following lemma, which provides sufficient conditions for
Assumptions C.5 and C.6 to hold for the case of i.i.d. observations.
Let —, denote uniform convergence over ©2.

We assume the covariance kernel converges uniformly.
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Assumption C.9. Qf (-,-) —u Qu(:,-) for some continuous R?*% _valued function Qs (-,-) on
02
The following Lemma is based on Lemma D.2 of BCS.

Lemma 24.1 Assumptions A.0-A.4, C.1, and C.9 imply Assumptions C.5 and C.6 with the co-
variance kernel of G(+) in Assumption C.5 equal to Qoo(-,-) and with Qs in Assumption C.6 equal

to the upper left k x k submatriz of Qoo(0oo, Ooo)-

Comment. For any subsequence {¢,}n>1 of {n},>1, Lemma holds with ¢, in place of n
throughout, including the assumptions. (The proof just needs to be changed by replacing n by ¢y
throughout.)

Proof of Theorem First, we prove the result of part (b) for the CS, spyr1 CS. Let
¢,,(0) abbreviate ¢,, spyg1(0). There always exist sequences {F;, },>1 and {0, € ©1(F,)}n>1 and a

subsequence {gy }n>1 of {n},>1 such that

I%Irii(gf }relfp eeierif&F) Pr(¢,(0) =0) = ligrii(gf Pr,(¢,(0n) = 0) = lim Pr, (¢, (04,) =0). (24.1)
The left-hand side expression equals the uniform coverage probability in Theorem (b) using the
definition of the SPUR1 CS in . By , it suffices to show that the rhs of isl—aor
greater with {¢,}n>1 replaced by some subsequence {an}n>1 of {gn}n>1 (because the limit under
the subsequence {ay }n>1 is the same as the limit under the original subsequence {gy }»>1). The rhs
of defined with {an}n>1 is 1 — a or greater by Theorem [22.1)(c) provided the assumptions of
Theorem [22.1](c) hold for some subsequence {pp}n>1 0f {gn}n>1. Note that Theorem [22.1f(c) holds
without imposing Assumption BC.1 and with sdjje(#) := 1 in Assumption BC.2 by Comment (ii)
following Theorem[22.1fc). Hence, it remains to verify that Assumptions BC.2 (with sdyje0(6) := 1),
BC.3, BC.6, and C.1-C.8 hold for some subsequence {pp}n>1 (of {gn}n>1) in place of {n},>1
(because Assumptions A.0, A.5-A.7, and S.1, which are imposed in Theorem c), are also
imposed in the present theorem, and Assumption N, which is imposed in Theorem (c), holds
because §,, € O7(F,,) Yn > 1 in by construction).

Under Assumptions A.4 and A.8, by Lemma D.7 of BCS, given {¢,}n>1, there exists a sub-
sequence {un}n>1 of {gn}tn>1, a continuous RF*k_valued function Qs on ©2, and a continuous
RF-valued function m on © for which (i) @ Fu, —u oo, Where —,, denotes uniform convergence
(over ©? in this case), (ii) Ep,, m(W,) —, m(-), and hence, Assumption C.4 holds for the sub-
sequence {up}n>1, and (iii) Assumptions C.7, C.8, and BC.3 hold for the subsequence {uy}n>1.

Strictly speaking, Lemma D.7 of BCS only establishes {2, — (2o and the subsequence versions
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of Assumptions C.7 and C.8, but Ep, m(W,-) —, m(-) and the subsequence version of Assump-
tion BC.3 are established in the same ways as Qp, —, Qo (but using Assumption A.8 in place of
Assumption A.4) and the subsequence versions of Assumptions C.7 and C.8, respectively.

Assumption C.1 holds for a subsequence {@y, }n>1 of {un}n>1 because {6, }n>1 is a sequence in
the compact set © (by Assumption A.0(i)).

Assumptions C.5 and C.6 hold for the subsequence {u, }»>1 by applying a subsequence version
of Lemma [24.1] which imposes Assumptions A.0-A.4, C.1, and C.9. Assumptions A.0-A.4 are
imposed in the present theorem and the subsequence version of Assumption C.9 holds by (i) above.

Assumptions C.2, C.3, and BC.2 hold for a subsequence {pp}n>1 of {@n}n>1 because
(@ B, (W, 05, Yoz, {0 (B, (W, 0,,) + 785 Voo, and {rg ! (B, (W, 05,) +
T}?lifn)}nzl are sequences taking values in Rfioo], which is compact under d (defined following
with a, = k).

Assumption BC.6 holds for the subsequence {py}n>1 by Lemma D.2(8) of BCS because As-
sumptions A.1-A.4 of this paper imply Assumptions A.1-A.4 of BCS and Qp, —u o implies
Qf

Pn

This concludes the proof that the assumptions employed in Theorem (c) hold for the sub-

—u Qoo (because {pp }n>1 is a subsequence of {uy, },>1).

sequence {p, }n>1 of {gn}n>1, which completes the proof of part (b) for C'S,, spuri.

The proof of part (a) for the SPURI test is essentially the same as that of part (b) for the
SPURI1 CS, but with 6y in place of 6,, Vn > 1.

Next, we prove part (b) for the SPUR2 CS. Let {F),},>1 and {0,},>1 denote sequences of

distributions in P for which

limsup sup sup Pp(d, spyra(f) = 1) = limsup Pr, (¢, spyra(fn) =1). (24.2)
n—oo FeP IO (F) n—00
Such sequences always exists. The left-hand side expression in (24.2)) equals one minus the uniform
coverage probability in Theorem [7.1(b) using the definition of the SPUR2 CS in (4.5).

We use the following Bonferroni argument. Define

¢n,GMS(9a OQ) ifr=20

' (24.3)
bn.spuri(0,a2) ifr>0.

bp.spuR2(0,7) =
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Then, ¢, spyra(0) = Ming<, <7, 1 p(ar) Pn,spurz(f; ). We have

limsup Pr, (¢, spure2(0n) = 1)

n—oo
< limsup Pg, (¢, spure(fn) =1 & ril < Thop(ar))
n—oo

Himsup Pr, (¢, spvra(0n) =1 & T8 > 7 up(ar))

n—oo
< limsup Pp, (¢,.5pure(0n) =1 & r < T up(ar)) +ay
n—oo
= limsup Pp, ( min ¢, gpypa(fn,7) =1 & rif <7, up(ar)) + ax, (24.4)
n—00 0<r<rp,up

where the inequality holds because liminf,,_,~ Pr, (rmf € 0,Pup(ar)]) >1— 0.

First, consider the case where rmf > 0 for all n large. Under the null hypothesis, the rhs of

(24.4) is less than or equal to

lim sup PFn ((bn,SPURI(Qn? 042) = 1) + o S oo + o1 = Q, (245)

n—oo

where the inequality holds because the nominal level az test ¢, spyg1(0n, a2) has asymptotic size
as or less by Theorem [7.1|(b) for the SPUR1 CS (which allows for drifting sequences of null values
).

Next, consider the case where rmf = 0 for all n large. Under the null hypothesis, the rhs of

(24.4) is less than or equal to

limsup Pr, (¢, gaps(On,a2) =1) + a1 <az+a1 = a, (24.6)

n—oo

where the inequality holds because the model is correctly specified (i.e., r}fﬂf = 0) for n large and
the ¢, Gars(0n, 2) test has asymptotic size ag or less in this case. The latter holds by the same
argument as used to prove Theorem [7.1|(b) for the SPUR1 CS (which allows for drifting sequences
of null values 6,,), but with the test statistic S, () defined in with 71" replaced by the true
value rmf = 0 and with the EGMS bootstrap statistic replaced by the GMS bootstrap statistic
n.Gus(0) defined just above , which is suitable because rmf 0.

The result of part (b) for the SPUR2 CS holds because the rhs of for the sequence
{Fn}n>11s «a or less by considering subsequences of {n} where either or applies.

The proof of part (a) for the SPUR2 test is analogous to that of part (b) for the SPUR2 CS
with ¢ in place of 6,, Vn > 1. O

Proof of Lemma Now we verify Assumption C.5 using Lemma D.2(1) of BCS, which
imposes their Assumptions A.1-A.4 and M.2 and Qp, —, Qoo for some Q. Assumptions A.1-A.4
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in this paper imply A.1-A.4 in BCS, Assumption A.0(i) is the same as BCS’s M.2, and Assumption
C.9 implies Qp, —y Q. Lemma D.2(1) of BCS gives v]'(-) = G™(-), whereas Assumption C.5
(1)"). However, by the same argument as in the proof of Lemma D.2(1)

concerns v, (-) := (v(-)', 12

applied to v, (-), rather than v]'(-), we obtain
v(:) = G(-), (24.7)

where G(-) is as in Assumption C.5, using equicontinuity of v, (-) in our Assumption A.2, rather
than of v]'(-) in BCS’s Assumption A.2, and using 4 + a finite moments in our Assumption A.3,
rather than 2 4 a finite moments in BCS’s Assumption A.3. Hence, Assumption C.5 holds.

Next, we verify Assumption C.6. Lemma D.2(5) of BCS gives supgeg ||Qn(6) = Qo011 (0,0)|| — 0,
where Q4011(0,0) denotes the upper left k£ x k submatrix of Q4 (0, 0), because Assumptions A.1—-
A.4 in this paper imply Assumptions A.1-A.4 of BCS and Qp, —, Qo by Assumption C.9. By
Assumption C.1, 6,, — 0+, and by Assumption C.9, Q. (6, 6) is continuous on ©2. These results
combine to yield ﬁn(en) —p Qo011 (oo, o) = Qoo, which verifies Assumption C.6. O

25 Proof of Theorem 12.1

Proof of Theorem We prove part (a) first. There always exists a subsequence {py, }n>1 of
{n}n>1 such that

limsup Pp, (¢n gus(On) =1) = lim Pr, (¢, pams(0q,) =1). (25.1)

n—oo

By Theorem [22.1)(a) applied with {py}n>1 defined in (25.1)), there exists a subsequence {ay }n>1 of
{pn}n>1 such that

lim P, (¢, eams(0q,) =1) =1lim Pr, (¢4, pays(0a,) = 1) < P(Ss > coo,pams(l — a)),

(25.2)
where the equality holds because a subsequence has the same limit as the original sequence and the
inequality holds by Theorem (a) with {p,}n>1 defined in , which imposes Assumptions
A.0, A5, A6, BC.1-BC.3, BC.6, C.1-C.8, NLA, and S.1 defined using the subsequence {p;, },>1 in
place of {n},>1. Assumptions A.0, A.5, A.6, BC.1-BC.3, C.1, C.4, C.7, C.8, NLA, and S.1 (among
others) defined using {n},>1 are imposed in Theorem [12.1f(a), which implies that the subsequence
{pn}n>1 versions of them also hold. Hence, it remains to verify Assumptions BC.6, C.5, and C.6

(defined using {p,}n>1 in place of {n},>1). Assumptions C.5 and C.6 hold for the subsequence
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{pn}n>1 by applying a subsequence version of Lemma which imposes Assumptions A.0-A.4,
C.1, and C.9. These assumptions are also imposed in the theorem. Assumption BC.6 holds for the
subsequence {p,}n>1 by Lemma D.2(8) of BCS because Assumptions A.1-A.4 of this paper imply
Assumptions A.1-A.4 of BCS and Qp, —y Qs (by Assumption C.9) implies Qp, —y Qoo. This
completes the proof of part (a).

Next, we prove part (b). There always exists a subsequence {py, }n>1 of {n},>1 and, by Theorem

22.1[(b), there exists a subsequence {ay, }n>1 of {pn}n>1 such that

hgl—{&f PFn (¢n,EGMS(9n) = 1) = lim PFpn (¢pnvEGMS(9p") - 1)
= lim Pr, (¢4, rers(fa,) = 1)

> P(Soo > Coo,EGMS(]- - O[)), (253)

where the second equality holds because a subsequence has the same limit as the original sequence
and the inequality holds by Theorem b) (with {pp }n>1 defined in (25.3)), which employs the
same assumptions as Theorem M(a) except with Assumptions A.10, BC.4, and BC.5 in place
of A.5 and BC.3. Given the assumptions imposed in part (b) of the theorem (which include
Assumptions A.10, BC.4, and BC.5), it remains to verify Assumptions BC.6, C.5, and C.6 defined
using the subsequence {p,}n>1 in place of {n},>1. These assumptions are verified by the same
argument as in the proof of part (a) above.

Now, we prove part (c). There always exists a subsequence {py, }n>1 of {n},>1 and, by Theorem

22.1{(d), there exists a subsequence {ay, },>1 of {pn}n>1 such that

lilglj&f Pr, (n.pcms(0n) = 1) = lim Pr, (¢, pems(Op,) =1)

— lim Pr,, (¢, pens(fa,) = 1) = 1, (25.4)

where the second equality holds because a subsequence has the same limit as the original sequence
and the third equality holds by Theorem d) provided the assumptions of Theorem M(d)
hold for the subsequence {py, }n>1 defined in in place of {n},>1. All of the latter assumptions
hold by the assumptions imposed in Theorem (c) for the sequence {n},>1, except Assumptions
BC.6, C.5, and C.6 defined using the subsequence {p,}n>1 in place of {n},>1. These assumptions
are verified by the same argument as given in the proof of part (b), which completes the proof of

part (c). O

76



26 Proof of Theorem 9.1 and Rate of Convergence of (:)n

This section proves Theorem [9.1] (i.e., it shows that (:)n, defined in 1 , is uniformly consistent
for ©7(F)) and it establishes the rate of convergence of dH((:)n,@ 1(Fy)) to zero under suitable

conditions. These results are similar to results in Theorem 3.1 of Chernozhukov, Hong, and Tamer

(2007).

26.1 Consistency and Rate of Convergence of ©, under {Fotnst

Here we establish consistency and rate of convergence results for (:)n under a drifting sequence
of distributions {F}, }n>1.

The set ©r.(F},), which is an e-expansion of ©;(F},), is defined in Section @ The following
assumption ensures that infgceno, . (r,) max;j<k [Er,m;(W;, 0)]- — 7’}?5 is bounded away from zero

under {F), }n>1.

Assumption C.10. For all € > 0,

lim inf < inf max [Ep,m;(W;,0)]- — Ti]?f> > 0.
n—oo \0cO\O; (Fn) j<k "

The following minorant condition for the population moments is similar to (4.1) of Cher-
nozhukov, Hong, and Tamer (2007). It is used to determine the rate of convergence of dg (6, ©1(F},))

to zero.

Assumption C.11. There exist positive constants C, ¢, and - such that for all § € © and n > 1,

max|Er, mj(W;,0)]- — riff > ' (min{d(0, O1(F})),e})7.

J<k

Typically, Assumption C.11 holds with v = 1.
Part (a) of the following lemma is used in the proof of Theorem given below. Part (b)

provides a rate of convergence result for ©,,.

Lemma 26.1 Suppose Assumptions A.0, C.4, C.5, C.7, and C.10 hold under {Fy}n>1. Suppose
the positive constants {7y }n>1 that appear in 1' satisfy T, — oo and T,/n'/? = o(1). Then,

(a) d(On, O1(Fy)) = 0p(1) and

(b) d(On, O1(Fp)) = Op((Tn/n 2)1/7) provided Assumption C.11 also holds.

Comment. When F,, = F for all n > 1 for some F € P, Assumption C.10 holds by the definitions
of rilflf and O .(F') under Assumption A.0. In consequence, Lemma (a) establishes the result
of Theorem with suppep deleted and without imposing Assumption A.9.
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26.2 Proofs of Lemma [26.1] and Theorem [9.7]

The proof of Lemma [26.1{(b) uses the following lemma, which shows that Assumption C.11
implies a similar minorant condition on the sample analogue of the left-hand side of Assumption

C.11.

Lemma 26.2 Suppose Assumptions A.0, C.4, C.5, C.7, and C.11 hold under { F}, }n>1. Then, there
exist positive constants K, €, and v such that for any § € (0,1) there exists positive constants kg
and Ny such that

max([n; (0))- — ') = k- (min{d(9, ©r(Fy)),e})

for all® € {6 € ©:d(0,07(F,)) > (ks/n*/*)Y/7} with probability at least 1 — & for all m > Nj.

Proof of Lemma The proof is similar to that of Theorem 3.1 of Chernozhukov, Hong, and
Tamer (2007). For part (a), we have

sup  d(0,0,) =0 wp — 1 (26.1)
GGGI(FH)

because ©;(F,,) C 0, wp — 1 by Lemma (a) (which requires Assumptions A.0, C.4, C.5, and
C.7). For part (a), it remains to show sup, g d(0,01(Fy)) = 0p(1).
By Assumption C.10, for arbitrary ¢ > 0, we have

(= liminf eee\gi(m%lggg [Er,mj(W;,0)]- — 2t > 0. (26.2)

By (23.81)) (which requires Assumptions A.0, C.4, C.5, and C.7), we have

sup max(Ep, i (Wi, )] — i, < Op(1/n1/?) + 70 /n!/? = 0,(1), (26.3)
eeén IS

where the equality holds because 7, /n'/? = o(1). Combining (26.2) and (26.3), it follows that

lim P inf Ep iy (Wi, 0)] > Ep (W5, 0)]
1, <aee\&,€(m?3§( [Er 5 (W3, 0)] :euc:irfgx[ Fu (W, 0)] )

> lim Pr, (C./2 > 0p(1)
= 1. (26.4)

Thus, lim PFn(@)n C O1(Fy)) =1 and supy g d(0,0;(F,)) < e wp— 1. Since € > 0 is arbitrary,
we have sup,_g d(0,©(F},)) = 0,(1), which completes the proof of part (a).
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For part (b), take the positive constants (k,e,7,d, Ns,ks) as in Lemma We can take
N’ > Nj such that 27, > k- ks and &, := (27, /(n!/?k))Y/7 < ¢ for n > N}, because 7, — oo and
Tn/n'/? = o(1). As defined, e, > (r5/n'/?)}/7 for n > N}. Hence,

O\O;., C {0 €0:d0,0,(F,)) > (ks/n*?)/7} (26.5)

for n > Nj. In consequence, with probability at least 1 — ¢ for n > Nj, we have

v

inf  max([fn;(0)]- — ) > &

in{d(0, 01(F)),£})"
0€O\O; ., (Fn) j<k (min{d(0, ©;(F%)),€})

. inf
96@\61,577, (Fn)

V

k- (min{e,, e})”

LY
K-€)

.= 27, /n'/?

1/2

V

Tn/M
> sup max([iin; (6)]- — ), (26.6)
0cd, I=F

where the first inequality holds by Lemma and , the second inequality holds by the
definition of Or ., (F}), the first equality holds by the definition of Nj, the second equality holds
by the definition of &,, and the last holds inequality by the definition of (:)n.

Equation implies ©,, C O1c, (Fr), and hence, SUPpcg, d(0,01(F,)) < &, with probability
at least 1 — ¢ for n > Nj. Combining this with gives

di(©n,01(F,)) = Op(gn) = Op((Tn/nl/Q)l/’y)a (26.7)

which completes the proof of part (b). O

Proof of Lemma|26.2, By (23.78) with © in place of ©7" (F,,) throughout and with [Eg, m;(W, )] _—

r}?j in place of n,, in the last two lines (which makes the inequality into an equality), we have

max ([fiin; (0)] - — Fat) = max[Ep, m;(0)] - — rgf + 05 (1/n'/?) (26.8)
i<k i<k

using Assumptions A.0, C.4, C.5, and C.7. Hence, for any ¢ € (0, 1), there exist positive constants
ks and Ng such that with probability at least 1 — d, we have

max([n; (0)]- — ) = C - (min{d(6, ©r(Fy)),e})7 + OF (1/n'/?)

> O (min{d(8, 01(F,)), )" — (C/2)ks/n}/? (26.9)
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for all 6 € © and n > Nj, where C, ¢, and v are as in Assumption C.11 and the first inequality
uses and Assumption C.11. Without loss in generality, we can take Ns > (k5/¢7)%. Hence,
/{5/]\751/2 < g7,
For all n > Ng, we have
ks /n'? < (min{d(0,0;(F},)),e})" (26.10)

for all @ € {# € © : d(h,07(F,)) > (ks/n'/?)Y/7}. Combining (26.9) and (26.10) establishes the
lemma with k = C/2. O

Proof of Theorem Let an arbitrary € > 0 be given. There always exists a sequence
{F,, € P}n>1 (that may depend on ¢) such that

lim sup sup Pp(dg (0, 01(F)) > ) = limsup Pr, (dg (0, O1(F,)) > ¢). (26.11)

n—oo FeP n—o0o

There always exists a subsequence {wy, }n>1 of {n},>1 such that

limsup P, (der(©n, 01(F,)) > €) = lim Pr, (dg(Ow,, Or(Fu,)) > €). (26.12)

n—oo

Given any subsequence {ay, }n>1 of {wy, }n>1, there exists a subsequence {uy, }n>1 of {ay }n>1 such
that Assumptions C.4, C.7, and C.9 hold for the subsequence {u,},>1 by the proof of Theorem
which uses Lemma D.7 of BCS and relies on Assumptions A.4 and A.8. Given Assumption
A9, Assumption C.10 also holds for the subsequence {up }n>1. By Lemma Assumptions A.0-
A.4 and C.9 imply Assumption C.5. Hence, Assumptions C.4, C.5, C.7, and C.10 hold for the
subsequence {uy,}n>1. In consequence, by Lemma a) applied with n replaced by w,, which
utilizes Assumptions A.0, C.4, C.5, C.7, and C.10, we have

lim P, dg(©y,,0r(F,,)) > ¢) = 0. (26.13)

This implies that the same result holds for the subsequence {wy,},>1, which completes the proof

using (26.11]) and (26.12)) because € > 0 is arbitrary. O

27 Assumptions

For ease of reference, we state all of the assumptions used in the paper and Supplemental
Material here.
Assumption A.0. (i) © is compact and non-empty and (ii) Epm;(W, 6) is upper semi-continuous

on OVj <k VFeP.
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Assumption A.1. The observations Wi, ...,W,, are i.i.d. under F' and {m;(-,0) : W — R} and
{7%]2(, 0) : W — R} are measurable classes of functions indexed by 0 € © Vj < k, VF € P.
Assumption A.2. The empirical process v, (-) is asymptotically pp-equicontinuous on © uniformly
in '€ P.
Assumption A.3. For some a > 0, suppep Er supgeg ||m(W, 0)|[42 < oo.
Assumption A.4. The covariance kernel Qg(0,0") satisfies: for all F' € P,

lims—.0 SUP||(g,,6,)— (62,03) || <5 ||S2F (01, 07) — Qp(62,05)|] = 0.
Assumption A.5. Given the function ¢ : Rﬁroo] XU — Rﬁoo}, which appears in and ,
there is a function ¢* : Rﬁroo] — Rﬁoo} that takes the form ¢*(§) = (¢7(&1), ..., 95 (&) and Vi < k,
1) (&) = ¢;(6:2) > 0V(E,Q) € Rfﬁroo] x W, (ii) ] is nondecreasing and continuous under the
metric d, and (iii) ¢7(§;) = 0 V€; < 0 and ¢j(c0) = oo.
Assumption A.6. (i) k, — oo. (ii) 7, — o0.
Assumption A.7. Under {F,, },>1 and {0y, }n>1, (i) if coo(1 —a) > 0, then P(So = coo(l—a)) =
0, and (ii) if coo(1 — ) = 0, then limsup,, ., Pr, (Sg, > 0) < o
Assumption A.8. Epm(W,0) is equicontinuous on © over F' € P. That is, lims|osuppep
Sup|jg_g|<s || EFm(W, 0) — Epm(W, ¢')|| = 0.
Assumption A.9. For all ¢ > 0, infrep infgee\o, . (r) max;<x [Epm;(W;, 0)]- — rinf > 0.
Assumption A.10. Given the function ¢ : Rﬁw] XU — Rﬁoo], which appears in and ,
there is a function @** : Rﬁoo] — Rf:_oo} that takes the form ¢** (&) = (¢1*(&1), .., i (&x)) and
Vi <k, (1) 05 (&) < w(6) Y(E,Q) € Rf, ) x W, (ii) ¢}* is continuous, and (iii) ¢}*(¢;) = 0
V€; < 0 and ¢}*(00) = oo.

Assumption S.1. (i) S(m, ) is nonincreasing in m € Rﬁoo] vQ e v,

(ii) S(m,Q) > 0Vm € R*, vQ € .

(iii) S(m, Q) is continuous at all m € Rﬁoo] and Q € V.
Assumption S.2. S(m,Q) > 0 iff m; < 0 for some j < k, VQ2 € V.
Assumption S.3. For some x > 0, S(am,Q) = aXS(m,Q) Ya > 0, ¥m € R*, vQ € V.
Assumption S.4. For all h € (—o0,00]¥, all Q € ¥, and Z ~ N(0, ), the distribution function
of S(Z + h,) at x € R is (i) continuous for = > 0, (ii) strictly increasing for z > 0 unless

h=(c0,...,00) € szl:oo]’ and (iii) less than 1/2 for = 0 if h; = 0 for some j < k.

The following assumptions apply to a drifting sequence of null values {6, }»>1 and distributions

{Fn}nZL
Assumption C.1. 6,, — 04 for some 6, € O.

Assumption C.2. n'/2Ep, m;(W,0,,) — ;o for some i, € Riioq Vi < k.
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Assumption C.3. n'/2(Eg,m;(W,0,) + r}?j) — hjoo for some hjoo € Riiog) Vi < k.
Assumption C.4. supyce ||Er,m(W,0) — m(0)|| — 0 for some nonrandom bounded continuous
RF-valued function 7 (-) on ©.

Assumption C.5. v,(-) := (v'(-),v2(-)) = G(-) .= (G™(-),G?(-)") as n — oo, where {G(0) :
6 € ©} is a mean zero R?*-valued Gaussian process with bounded continuous sample paths a.s.
and G™(0),G?(0) € RF.

Assumption C.6. ﬁn(é’n) —p Qoo for some g, € V.

Assumption C.7. A, p, — g A for some non-empty set A € S(© x R[zioo}).

Assumption C.8. Aann — g Aj for some non-empty set Ay € S(O x R[Qioo]), where {n, }n>1is a
sequence of positive constants for which n,, — oc.

Assumption C.9. Qp (-,-) —u Qoo(-,-) for some continuous R?**?_valued function Qu(-,-) on
02

Assumption C.10. For all € > 0,

lim inf ( inf max [Ep,mj(W;,0)]- — 7‘?) > 0.
n—oeo eee\el,s(Fn) i<k ) n

Assumption C.11. There exist positive constants C, €, and - such that for all § € © and n > 1,

max[Ep, m;(W;,0)]- — r?nf > C - (min{d(0,0;(F},)),c})".

J<k

The following assumptions apply to a drifting sequence of null values {6, },>1 and distributions

{Fn}n>1-

Assumption BC.1. supycg |sd;,;(0) — sdqjoo ()| —p 0 as n — oo for some nonrandom continuous
real-valued functions sdgjo(f) on © for j <k and a =1, 3.

Assumption BC.2. (sdijookin) ™ n'/2(Ep, m;(W, Qn)+r}§‘j) — R}, for some hio € Riio Vi < k.
Assumption BC.3. A;n;n —p A} for some non-empty set A7 € S(© x R?ioo] x {1,...,k}) for
some constants {7, }n>1 that satisfy n,, — oo and n,,/7, — 0 for {7, },,>1 as in Assumption A.6(ii).

Assumption BC.4. A;ﬁnU};n —n Af;; for some non-empty set Ay, € S (© x R?! ) for constants

[£o0]
{nuntn>1 that satisfy ng;,, — oo and 7y, /ng, — 0 for {7, },>1 as in Assumption A.6(ii).
Assumption BC.5. The distribution of St pass is continuous at CUoo,EGMS(1 — ).

Assumption BC.6. {v}(:\){Wyi}i<nn>1} = G(-) a.s.[Py], where G(-) is as in Assumption C.5.

Assumption NLA. min < hjeo > —00.
Assumption CA. minj<j hjs = —00.

Assumption N. 6, € O;(F,) Vn > 1.
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Assumption LA. The null values {6, },>1 and distributions {F},},>1 satisfy: (i) ||0n — O1n]| =
O(n=1/2) for some sequence {01, € O7(F,)}n>1, (i) n'/2(Eg, m; (W, 01,) + r}?nf) — h1joo for some
hrjco € Riio) Vj < k, and (iii) Epm(W,0) is Lipschitz on © uniformly over P, i.e., there exists a
constant K < oo such that ||[Epm(W, 0;) — Epm(W,02)|| < K01 — 02| V01,02 € ©, VF € P.
Assumption FA. The null values {0,},>1 and distributions {F},},> satisfy: (i) F,, = Fx € P
and 0, = 0, € © do not depend on n > 1 and (ii) Ep, m;(W,0.) + ritf < 0 for some j < k.

Assumption A.7x. P(AE{A(AA) = Co,n (@) = 0.
Assumption IS. The sequence {F,},>1 is such that there exists a sequence {#] € O7(F,)}n>1
for which n'/2Ep, m;(W,0L) — oo Vj < k.

Assumption MM. The sequence {F},},>1 is such that nl/QTi}f — 00.

Assumption CV.1. There exist nonnegative random variables {S7, (0,)}n>1 such that
(1) Po(S1,(0n) < S3(0n){Wniti<nn>1) = 1 wp—1 and (i) {S7,,(0n){Whiti<nn>1} —d STeo
a.s.[Pg] for some S7 . € R a.s. that does not depend on the conditioning value of {W;}i<n n>1.
Assumption CV.2. ST _ satisfies ST >s7 Soo.

Assumption CV.3. There exist nonnegative random variables{S};,, (0n)}n>1 such that
() Po(S5(0n) = S3(02){Washiznns1) = 1 wp—L and (i) {S5,(00) {Waikicnnst} —a Siac

a.s.[Pg] for some Sf;,, € R a.s. that does not depend on the conditioning value of {Wy;}i<nn>1.
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