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11 Outline

References to sections with section numbers less than 11 refer to sections of the main paper.

Similarly, all theorems and lemmas with section numbers less than 11 refer to results in the main

paper. BCS abbreviates Bugni, Canay, and Shi (2015). For ease of reference, the assumptions

used in the paper and this Supplemental Material are listed in the last section of this Supplemental

Material, Section 27.

Section 12 of this Supplemental Material gives lower and upper bounds on the asymptotic power

of SPUR1 tests for n�1=2-local alternatives and consistency results for these tests. These results

have implications for the asymptotic power of SPUR2 tests as well.

Section 13 shows that when the �max� S function is employed, the SPUR test statistic is

equivalent to a recentered test statistic, as has been considered in Chernozhukov, Hong, and Tamer

(2007) for use with a correctly-speci�ed model.

Section 14 de�nes the one-sided upper-bound CI CIn;r;UP (�) for rinfF introduced in Andrews

and Kwon (2019) that is employed by SPUR2 tests and CS�s. It also provides some properties of

this CI.

Section 15 provides explicit expressions for the bootstrap quantities sd�anj(�) for a = 1; :::; 4 that

are employed by the EGMS critical values arise in (6.4) and (6.7)�(6.10).

Section 16 discusses extensions of the results of the paper to tests with weighted moment

inequalities, to tests without the standard-deviation normalization, and to non-i.i.d. observations.

Section 17 provides additional numerical results concerning the spurious precision of the GMS

CS�s in Andrews and Soares (2010), as well as the proof of Lemma 17.1, which concerns the spurious

precision of these CS�s.

Section 18 provides some additional simulation results for the lower/upper bound model con-

sidered in Section 8.

Section 19 provides derivations for (8.5) and (8.6), which concern the missing data model.

Section 20 states Lemma 20.1, which gives su¢ cient conditions for Assumptions NLA and CA,

and proves Lemmas 5.1, 5.2, and 20.1.

Sections 21�26 prove the main results of the paper. Section 21 proves Theorem 5.3, which gives

the asymptotic distribution of the SPUR test statistic.

Section 22 states Theorem 22.1, which is the key ingredient to the proofs of Theorems 7.1

and 12.1, which provide asymptotic size and power results for SPUR1 and SPUR2 tests and CS�s.

Theorem 22.1 provides asymptotic null rejection probability (NRP) results, asymptotic n�1=2-local

power bounds, and consistency results for the nominal level � SPUR1 test �n;SPUR1(�n); de�ned in

(4.4), under drifting subsequences of distributions and parameter values. Section 23 proves Lemmas
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22.2�22.5, which are used in the proof of Theorem 22.1.

Section 24 proves Theorem 7.1, which shows that the SPUR1 and SPUR2 tests and CS�s have

correct asymptotic size, using Theorem 22.1. Section 25 proves Theorem 12.1 using Theorem 22.1.

Section 26 proves Theorem 9.1 and establishes rate of convergence results for the set estimatorb�n of the MR identi�ed set under correct model speci�cation and misspeci�cation.
Let o�p (1) and O

�
p (1) denote quantities that are op(1) and Op(1); respectively, uniformly over

� 2 �:

12 Asymptotic Power

In this section, we give upper and lower bounds on the asymptotic power of SPUR1 tests for

n�1=2-local alternatives. Bounds on asymptotic local power, rather than precise asymptotic local

power, are given due to the complexity of the data-dependent EGMS critical values. Even the

bounds involve fairly complicated expressions. We also provide consistency results for these tests

under �xed and non-n�1=2-local alternatives. The results allow for drifting null hypothesis values,

which yield asymptotic false coverage probabilities for SPUR1 CS�s. As discussed below, the results

have implications for the asymptotic power of SPUR2 tests.

For � 2 �; de�ne

jn(�) := argmax
j�k

bnj(�); where bnj(�) := n1=2([EFn emj(W; �)]� � rinfFn):19 (12.1)

By Lemma 5.2(a),

bnjn(�)(�) � 0 8� 2 �: (12.2)

We employ the following bootstrap convergence (BC) assumptions, which apply to a drifting

sequence of null values f�ngn�1 and distributions fFngn�1:

Assumption BC.1. sup�2� jsd�anj(�)�sdaj1(�)j !p 0 as n!1 for some nonrandom continuous

real-valued functions sdaj1(�) on � for j � k and a = 1; 3:

De�ne

�
��n
n;Fn

:=
n
(�; b; b�; `; j�) 2 ��nI (Fn)�R

3k � f1; :::; kg : bj = n1=2([EFn emj(W; �)]� � rinfFn);

b�j = (sd3j1(�)�n)
�1bj ; `j = n

1=2EFn emj(W; �) 8j � k; j� := jn(�)
o
; (12.3)

where f�ngn�1 is as in Assumption C.8 and f�ngn�1 is as in (6.4), (6.7), (6.8), and (6.9). Let
19 If the argmax is not unique, jn(�) is de�ned to be the smallest argmax :
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S(��R3k[�1] � f1; :::; kg) denote the space of compact subsets of the metric space (��R
3k+1
[�1]; d);

where d is de�ned following (5.2) with a� = d� + 3k + 1:

De�ne ���UnUn;Fn
analogously to ���nn;Fn

; but without the elements (`; j�) and with �Un in place of

�n: Thus, �
��Un
Un;Fn

contains points (�; b; b�) 2 ��UnI (Fn) � R2k: Let sd1j1 := sd1j1(�1); where �1

is as in Assumption C.1.

Assumption BC.2. (sd1j1�n)�1n1=2(EFn emj(W; �n)+r
inf
Fn
)! h�j1 for some h�j1 2 R[�1] 8j � k:

Assumption BC.3. ���nn;Fn
!H ��I for some non-empty set �

�
I 2 S(� � R3k[�1] � f1; :::; kg) for

some constants f�ngn�1 that satisfy �n !1 and �n=�n ! 0 for f�ngn�1 as in Assumption A.6(ii).

Assumption BC.4. ���UnUn;Fn
!H �

�
U;I for some non-empty set �

�
U;I 2 S(��R2k[�1]) for constants

f�Ungn�1 that satisfy �Un !1 and �n=�Un ! 0 for f�ngn�1 as in Assumption A.6(ii).

We employ the following assumption on the GMS function ' = ('1; :::; 'k)
0; which appears in

(6.4) and (6.11) and is de�ned following (6.4).

Assumption A.10. Given the function ' : Rk[+1]�	! Rk[+1]; there is a function '
�� : Rk[+1] !

Rk[+1] that takes the form '��(�) = ('��1 (�1); :::; '
��
k (�k))

0 and 8j � k; (i) '��j (�j) � 'j(�;
)

8(�;
) 2 Rk[+1] �	; (ii) '
��
j is continuous, and (iii) '��j (�j) = 0 8�j � 0 and '��j (1) =1:

For example, in the leading case where 'j(�;
) = 11(�j > 1) for j � k; Assumption A.10

holds with '��j (�j) =11(�j � 1 + ") + ((�j � 1)=(1 + "� �j))1(1 � �j < 1 + ") for any " > 0:
For � 2 �; de�ne a lower bound (wp!1) random variable, S�Ln;EGMS(�); on the EGMS boot-

strap statistic S�n;EGMS(�) to be

S�Ln;EGMS(�) := S
�
T �Ln;EGMS(�) +A

� inf
Ln;EGMS1k; b
n(�)� ; where

T �Lnj;EGMS(�) := b��nj(�) + '�j (�nj(�)) 8j � k;
T �Ln;EGMS(�) := (T �L1n;EGMS ; :::; T

�
Lkn;EGMS)

0;

A� infLn;EGMS := inf
�2��nI (Fn)

max
j�k

�
�(b��nj(�); n1=2EFn emj(W; �)) + 1(j 6= jn(�))bnj(�)

+1(j = jn(�))'
�
j (�

b
nj(�))

�
(12.4)

for 1k := (1; :::; 1)0 2 Rk and �(�; c) := [� + c]� � [c]�:
The asymptotic distribution of the lower bound random variable S�Ln;EGMS(�n) is

S�L1;EGMS := S
�
T �L1;EGMS +A

� inf
L1;EGMS1k;
1

�
; where

T �Lj1;EGMS := Gm�j1 + '
�
j (h

�
j1) 8j � k; T �L1;EGMS = (T

�
L11;EGMS ; :::; T

�
Lk1;EGMS)

0; and

A� infL1;EGMS := inf
(�;b;b�;`;j�)2��I

max
j�k

�
�(Gm�j (�); `j) + 1(j 6= j�)bj + 1(j = j�)'�j�(b�j�)

�
(12.5)
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for ��I as in Assumption BC.3.

For � 2 �; de�ne an upper bound (wp!1) random variable, S�Un;EGMS(�); on the EGMS

bootstrap statistic S�n;EGMS(�) to be

S�Un;EGMS(�) := S
�
T �Un;EGMS(�) +A

� inf
Un;EGMS1k; b
n(�)� ; where

T �Unj;EGMS(�) := b��nj(�) + '��j (�nj(�)) 8j � k;
T �Un;EGMS(�) := (T �U1n;EGMS ; :::; T

�
Ukn;EGMS)

0; and (12.6)

A� infUn;EGMS := inf
�2��UnI (Fn)

min
j�k

�
�[b��nj(�)]+ + '��j (�bnj(�))�

for '��j as in Assumption A.10. The asymptotic distribution of S�Un;EGMS(�n) is

S�U1;EGMS := S
�
T �U1;EGMS +A

� inf
U1;EGMS1k;
1

�
; where

T �Uj1;EGMS := Gm�j1 + '
��
j (h

�
j1) 8j � k; T �U1;EGMS = (T

�
U11;EGMS ; :::; T

�
Uk1;EGMS)

0;

A� infU1;EGMS := inf
(�;b;b�;`)2��U;I

min
j�k

�
�[Gm�j (�)]+ + '

��
j (b

�
j )
�

(12.7)

for ��U;I as in Assumption BC.4.

Let cL1;EGMS(1 � �) and cU1;EGMS(1 � �) denote the 1 � � quantiles of S�L1;EGMS and

S�U1;EGMS ; respectively. For some results, we assume that S
�
U1;EGMS satis�es the following con-

tinuity condition.

Assumption BC.5. The distribution of S�U1;EGMS is continuous at cU1;EGMS(1� �):

Theorem 12.1 For sequences fFngn�1 and f�ngn�1 that satisfy Assumptions A.0�A.4, A.6, BC.1,
BC.2, C.1�C.4, C.7�C.9, and S.1 and for � 2 (0; 1); the nominal level � SPUR1 test �n;SPUR1(�n)
for testing H0 : �n 2 �I(Fn) satis�es

(a) lim supn!1 PFn(�n;SPUR1(�n) = 1) � P (S1 > cL1;EGMS(1 � �)) provided Assumptions
A.5, BC.3, and NLA hold,

(b) lim infn!1 PFn(�n;SPUR1(�n) = 1) � P (S1 > cU1;EGMS(1 � �)) provided Assumptions
A.10, BC.4, BC.5, and NLA hold, and

(c) lim infn!1 PFn(�n;SPUR1(�n) = 1) = 1 provided Assumptions A.10, BC.4, CA, S.2, and S.3

hold.20

Comments. (i). Theorem 12.1(a) and (b) provide upper and lower bounds on the asymptotic

power of the SPUR1 test under n�1=2-local alternatives.
20 In Theorem 12.1(a), the constants f�ngn�1 in Assumptions BC.2 and C.9 are assumed to be the same. For

example, one can take �n := �
1=2
n 8n � 1 given �n in the de�nition of b�n in (6.5) and in Assumption A.6(iii). In

Theorem 12.1(b) and (c), one can take �Un := �
2
n 8n � 1 to be the constants f�Ungn�1 in Assumption BC.3.
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(ii) In Theorem 12.1(a) and (b), the distribution of S1; de�ned in (5.11), and the magnitude of

the asymptotic power of the SPUR1 test under n�1=2-local alternatives depends on the �noncentral-

ity parameters�hj1 := limn1=2(EFn emj(W; �n) + r
inf
Fn
) 2 R[�1] 8j � k that appear in Assumption

C.3. Increasingly negative values of hj1 lead to greater asymptotic power.

(iii). Theorem 12.1(c) shows that the SPUR1 test is consistent against all alternatives that

satisfy Assumption CA.

The results of Theorem 12.1 give the power properties of the SPUR2 test when the model

exhibits �large-local�or �global�model misspeci�cation, i.e., when fFngn�1 is such that n1=2rinfFn !
1 (which is Assumption MM in Section 14 below). In this case, the upper bound brn;UP (�) of the
CI for rinfFn is positive wp!1 by Proposition 14.2(b) below, the level � SPUR2 test equals the level
�2 SPUR1 test wp!1, and the SPUR2 test has the same asymptotic power properties as the level
�2 SPUR1 test.

On the other hand, the asymptotic power of the SPUR2 test is the same as that of the level

�2 GMS test, see Andrews and Soares (2010), when fFngn�1 is such that there exists a sequence
f�In 2 �I(Fn)gn�1 for which n1=2EFn emj(W; �

I
n) ! 1 8j � k (which is Assumption IS in Section

14 below). This occurs when the model is correctly speci�ed and the identi�ed set contains slack

points for which the slackness of the inequalities is of order greater than n�1=2: In this case, the

upper bound brn;UP (�) equals zero wp!1 by Proposition 14.2(a) below and the level � SPUR2 test
equals the level �2 GMS test wp!1.

The SPUR2 test is consistent against all alternatives that satisfy Assumption CA, because both

of the GMS and SPUR1 tests are.

13 Recentered Test Statistics

An alternative to the SPUR test statistic de�ned in Section 4.1 is a recentered test statistic,

such as considered in Chernozhukov, Hong, and Tamer (2007), which is de�ned to be

Sn;Recen(�) := Sn;Std(�)� inf
�2�

Sn;Std(�); (13.1)

where Sn;Std(�) := S(n1=2 bmn(�); b
n(�)) is a �standard� test statistic, such as one considered in
Andrews and Soares (2010), see (3.1). The MR identi�ed set corresponding to the recentered

statistic is the set of � values that minimize the population version of the recentered statistic.21 It

depends on the choice of test statistic.

21The population version of the recentered statistic is S(EF em(W; �);
F (�))� inf�2� S(EF em(W; �);
F (�)); where

F (�) := V arF (em(Wi; �)):
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Chernozhukov, Hong, and Tamer (2007) consider recentered test statistics, but they do not

analyze their asymptotic properties under misspeci�cation or under correct speci�cation with drift-

ing sequences of distributions fFngn�1: In consequence, it is not clear whether the application of
subsampling to recentered test statistics provides critical values that are uniformly asymptotically

valid under misspeci�cation or correct speci�cation.22

When Sn;Std(�) is a test statistic from Andrews and Soares (2010) with the function S equal

to S4; see (4.3), we denote the recentered test statistic by S4n;Recen(�): It is easy to show that the

MR identi�ed set corresponding to S4n;Recen(�) is the same as the MR identi�ed set in Section 2.

On the other hand, if one employs a di¤erent S function in SRecen;n(�); the MR identi�ed set is

di¤erent.

When the function S employed by the SPUR test statistic Sn(�) de�ned in (4.2) is S4; we denote

the SPUR statistic by S4n(�): The following lemma shows that the recentered statistic S4n;Recen(�)

is identical to the S4n(�) SPUR statistic. That is, for the S4 function, the recentered statistic is

not an alternative to the SPUR statistic� it is the same.

Lemma 13.1 For any � 2 �; S4n;Recen(�) = S4n(�):

Proof of Lemma 13.1. By (4.1), brinfn := inf�2�maxj�k[bmnj(�)]�:Hence, for S = S4; inf�2� Sn;Std(�)

= n1=2brinfn : In consequence,
S4n;Recen(�) = max

j�k

h
n1=2 bmnj(�)

i
�
� n1=2brinfn and

S4n(�) = max
j�k

h
n1=2 bmnj(�) + n

1=2brinfn i� : (13.2)

We claim: S4n;Recen(�) > 0 i¤ S4n(�) > 0: This clearly holds if brinfn = 0; so suppose brinfn > 0: In this

case, S4n;Recen(�) > 0 i¤ �n1=2 bmnj(�) � n1=2brinfn > 0 for some j � k i¤ S4n(�) > 0; which proves
the claim. In addition, S4n(�) � 0 because [x]� � 0 for all x; and S4n;Recen(�) � 0 because brinfn is

the inf�2� of maxj�k[bmnj(�)]�; which completes the proof. �

For recentered tests based on S not equal to S4; one can determine the asymptotic distribution

of Sn;Recen(�n) under suitable drifting sequences f�ngn�1 and fFngn�1 by altering the proof of
Theorem 5.3(b). However, the resulting asymptotic distribution seems problematic because it is

not apparent how one can construct a critical value in an EGMS fashion that exploits the analogue

of the condition maxj�k bj � 0; which appears when S = S4:
22The reason is that, even under correct speci�cation, the recentering term inf�2� Sn;Std(�) has a complicated

asymptotic distribution under drifting sequences of distributions (given by Ainf1 (�) in Theorem 5.3(b) when the re-
centered test is based on S5 in (4.3)). In consequence, the argument for the correct asymptotic size of the subsampling
test based on a test statistic without recentering that is given in Andrews and Guggenberger (2009) does not extend
to the case of the subsampling recentered test.
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14 Con�dence Interval for rinfF

In this section, we de�ne the one-sided upper-bound CI CIn;r;UP (�) for rinfF that is introduced

in Andrews and Kwon (2019) and employed by the SPUR2 test and CI in Section 4.2. De�ne

�Fj(�) := �EF emj(W; �) for j � k; �F (�) := max
j�k

�Fj(�); and �infF := inf
�2�

�F (�): (14.1)

The parameter �infF is the minimum over � of the maximum inequality violation over the k mo-

ments, where a slack moment inequality yields a negative violation value. We refer to �infF as the

minimax violation parameter.

If the model is correctly speci�ed, �infF � 0 because there exists some � 2 � for which all of the
moment inequalities are satis�ed, i.e., maxj�k�infFj(�) � 0: If the model is misspeci�ed, �infF > 0

because for all � 2 � some moment inequality is violated, i.e., �Fj(�) > 0:23 When �infF � 0;

rinfF = �infF : When �
inf
F < 0; rinfF = 0: Thus,

rinfF = maxf�infF ; 0g (14.2)

and �infF provides more information than rinfF : For this reason, the CI for r
inf
F is obtained from a

CI for �infF : This yields a CI for r
inf
F that has the feature that it equals f0g wp!1 when the model

is correctly speci�ed and the identi�ed set contains slack points � for which the slackness of the

inequalities is of order greater than n�1=2: In turn, this yields the highly desirable feature of the

SPUR2 test that under these circumstances it has the same asymptotic properties as a standard

test that assumes correct model speci�cation.

We estimate �Fj(�); �F (�); and �infF by

b�nj(�) := �bmnj(�); b�n(�) := max
j�k

b�nj(�); and b�infn := inf
�2�

b�n(�) (14.3)

for j � k; respectively. The nominal level 1� � one-sided upper-bound CI for �infF is

CIn;�;UP (�) := (�1; b�infn;�;UP (�)]; where b�infn;�;UP (�) := b�infn � bcn;�;UP (�)
n1=2

(14.4)

and bcn;�;UP (�) is a data-dependent EGMS critical value de�ned below. The nominal 1�� one-sided
upper-bound CI for rinfF is

CIn;r;UP (�) := [0; brn;UP (�)]; where brn;UP (�) := maxfb�infn;�;UP (�); 0g: (14.5)

23This statement relies on continuity of �Fj(�) and compactness of � by Assumption A.0.
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As de�ned, CIn;r;UP (�) = f0g whenever the CI for �infF indicates the model is correctly speci�ed,

i.e., whenever b�infn;�;UP (�) � 0:
We have �infFn 2 CIn;�;UP (�) i¤ n1=2(b�infn � �infFn) < bcn;�;UP (�): Hence, the critical valuebcn;�;UP (�) is determined using the asymptotic distribution of

Ainfn;� := n
1=2
�b�infn ��infFn

�
: (14.6)

The upper-bound EGMS bootstrap critical value bcn;�;UP (�) is de�ned as follows. Let
benj(�) := n1=2 �b�nj(�)� b�infn �� sd�enj(�)�n; (14.7)

where sd�5nj(�) := maxfV ar�(n1=2(b�nj(�)� b�infn ))1=2; 1g for j � k; V ar�(�) denotes the bootstrap
variance de�ned in (6.1), and b�n is de�ned in (BC.5). Let
�enj(�) := (sd

�
5nj(�)�n)

�1n1=2
�b�nj(�)� b�infn � 8j � k and �en(�) = (�en1(�); :::; �enk(�))0; (14.8)

where �n and sd�5nj(�) are as above. De�ne

bJne(�) := fj 2 f1; :::; kg : b�nj(�) � b�n(�)� sd�6nj(�)n�1=2�ng; (14.9)

where b�nj(�) and b�n(�) are de�ned in (14.3) and sd�6nj(�) := maxfV ar�(n1=2(b�nj(�)�b�n(�)))1=2; 1g
for j � k: Explicit expressions for sd�5nj(�) and sd�6nj(�) are given in Section 15 below.

The asymptotic distribution of Ainfn;� depends on the set of minimizers of �F (�) over �; which

is de�ned by �min(F ) := f� 2 � : �F (�) = �infF g: Under Assumption A.0, �min(F ) is non-empty.
The critical value bcn;�;UP (�) employs the following estimator of �min(F ):

b�min;n := f� 2 � : b�n(�) � b�infn + �n=n
1=2g; (14.10)

where f�ngn�1 is a sequence of positive constants that satis�es �n !1 (and typically �n=n1=2 !
0); such as the BIC choice �n = (lnn)1=2:24

The upper-bound EGMS bootstrap statistic, A� infn;�;UP ; is de�ned to be

A� infn;�;UP := inf
�2b�min;n min

j12 bJne(�)maxj�k

�
�b��nj(�)+1(j 6= j1)benj(�)+1(j = j1)'j(�en(�); b
n(�))� : (14.11)

The upper-bound critical value bcn;�;UP (�) is the � conditional quantile of A� infn;�;UP given fWigi�n
24More precisely, b�min;n is (and needs to be) an estimator of an asymptotically small expansion of the minimizer

set �min(F ); see Andrews and Kwon (2019) for details.
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for � 2 (0; 1): This quantile can be computed by simulation. The form of A� infn;�;UP is similar to

that of A� infn;EGMS ; but it is not the same. See Andrews and Kwon (2019) for the details behind its

speci�c form.

Proposition 14.1 below shows that CIn;r;UP (�) has correct asymptotic level in a uniform sense

with i.i.d. observations under a set of relatively primitive conditions. This result relies on the

asymptotic distribution of Ainfn;� for a certain subsequence fangn�1 of fngn�1:
There always exists a sequence fFngn�1 and a subsequence fqngn�1 of fngn�1 such that

lim inf
n!1

inf
F2P

PF

�
�infF 2 (�1; b�infn;UP (�)]� = lim inf

n!1
PFn

�
n1=2(b�infn ��infFn) � bcn;�;UP (�)�

= limPFqn (A
inf
qn;� � bcqn;�;UP (�)); (14.12)

where the �rst and second equalities use (14.4) and (14.6), respectively. For the subsequence

fqngn�1 in (14.12), let fangn�1 be a subsequence of fqngn�1 for which �an;�;Fan !H �� as n!1
for some �� 2 S(� � Rk[�1]): Such a subsequence always exists. The corresponding subsequence
of statistics fAinfan;� : n � 1g has asymptotic distribution A

inf
1;�

(��) de�ned by

Ainf1;�(��) := inf
(�;e)2��

max
j�k

�
�Gmj (�) +

1

2
emj(�)G

�
j (�) + ej

�
: (14.13)

Let c1;�(�) denote the � quantile of Ainf1;�(��): We impose the following continuity condition on

the distribution function of Ainf
1;�

(��) at c1;�(�):

Assumption A.7�. P (Ainf1;�(��) = c1;�(�)) = 0:

Assumption A.7� can be avoided by de�ning bcn;�;UP (�) to be the � conditional quantile of A� infn;�;UP

given fWigi�n minus a very small constant �; such as � = 10�6:

Proposition 14.1 Under Assumptions A.0�A.6, A.7�, and A.8, for � 2 (0; 1); the nominal 1��
CI CIn;r;UP (�) satis�es

lim inf
n!1

inf
F2P

PF (r
inf
Fn 2 CIn;r;UP (�)) � 1� �:

Comment. Proposition 14.1 follows from Theorem 6.1(a) in Andrews and Kwon (2019), which

concerns CIn;�;UP (�); using the de�nition of CIn;r;UP (�) in (14.5) because �infFn 2 CIn;�;UP (�)
implies that rinfFn 2 CIn;r;UP (�):

Next, we show that when the model is correctly speci�ed and the sequence of MR identi�ed

sets f�I(Fn)gn�1 contains slack points with slackness of order greater than n�1=2; de�ned precisely
in Assumption IS below, then CIn;r;UP (�) = f0g wp!1. This demonstrates that it is possible to
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provide evidence that the model is not identi�ably misspeci�ed, which is the reverse of evidence

provided by a model misspeci�cation test.

We employ the following assumption concerning the MR identi�ed set (IS).

Assumption IS. The sequence fFngn�1 is such that there exists a sequence f�In 2 �I(Fn)gn�1
for which n1=2EFn emj(W; �

I
n)!1 8j � k:

We also show that if the model exhibits �large-local�or �global�model misspeci�cation (MM),

then brn;UP (�) > 0 wp!1.
Assumption MM. The sequence fFngn�1 is such that n1=2rinfFn !1:

Proposition 14.2 Suppose Assumptions A.0�A.6 and A.8 hold.

(a) For sequences fFngn�1 that satisfy Assumption IS, lim infn!1 PFn(brn;UP (�) = 0) = 1:
(b) For sequences fFngn�1 that satisfy Assumption MM, lim infn!1 PFn(brn;UP (�) > 0) = 1:

Comments. (i). Proposition 14.2(a) is a consequence of Theorem 7.1 in Andrews and Kwon

(2019) and brn;UP (�) := maxfb�infn;�;UP (�); 0g: Proposition 14.2(b) is a consequence of Theorem 16.1
in the Supplemental Material to Andrews and Kwon (2019) and brn;UP (�) := maxfb�infn;�;UP (�); 0g:

(ii). Proposition 14.2(a) implies that the level � misspeci�cation-robust adaptive SPUR2 test

has the same power properties as a level �2 standard GMS test that is designed for correct model

speci�cation when the model is correctly speci�ed and Assumption IS holds, where � = �1 + �2

and �1; �2 > 0; such as � = :05 and �2 = :045:

(iii). Proposition 14.2(b) implies that the level � adaptive SPUR2 test has the same power

properties as the level �2 SPUR1 test when the model is misspeci�ed and Assumption MM holds.

15 Explicit Expressions for sd�anj(�) for a = 1; :::;6

Here we provide explicit expressions for the bootstrap quantities sd�anj(�) for a = 1; :::; 6 that

arise in (6.4), (6.7)�(6.10), (14.7), and (14.9), based on b = 1; :::; B bootstrap samples, which

we denote by sd�anjB(�) for a = 1; :::; 6: We also provide expressions for the bootstrap statistics

fS�nb;EGMS(�) : b = 1; :::; Bg:
Given the de�nitions of sd�anj(�) for a = 1; :::; 6; it su¢ ces to provide explicit expressions for

bV �1nj(�) := V ar�(n1=2(bmnj(�) + brn(�))); bV �2nj(�) := V ar�(n1=2 bmnj(�));bV �3nj(�) := V ar�(n1=2([bmnj(�)]� � brinfn )); bV �4nj(�) := V ar�(n1=2(brnj(�)� brn(�)));bV �5nj(�) := V ar�(n1=2(b�nj(�)� b�infn )) and bV �6nj(�) := V ar�(n1=2(b�nj(�)� b�n(�))): (15.1)
11



Based on the nonparametric i.i.d. bootstrap in (6.1), let fW �
ibgi�n denote the b-th bootstrap

sample for b = 1; :::; B: Then, bV �1nj(�n) and bV �2nj(�n) are simulated using B bootstrap samples via

the formulae:

bV �1njB(�) := nB�1
BX
b=1

 
m�
njb(�)b��njb(�) + maxJ�k

�
m�
nJb(�)b��nJb(�)

�
�
�B�1

BX
c=1

�
m�
njc(�)b��njc(�) + maxJ�k

�
m�
nJc(�)b��nJc(�)

�
�

�!2
;

bV �2njB(�) := nB�1
BX
b=1

 
m�
njb(�)b��njb(�) �B�1

BX
c=1

m�
njc(�)b��njc(�)

!2
;

m�
njb(�) := n�1

nX
i=1

mj(W
�
ib; �); and b��2njb(�) := n�1 nX

i=1

�
mj(W

�
ib; �)�m�

njb(�)
�2
: (15.2)

The quantity bV �3nj(�) is simulated using B bootstrap samples via the formula:

bV �3njB(�) := nB�1
BX
b=1

 "
m�
njb(�)b��njb(�)

#
�

� br� infnb �B�1
BX
c=1

 �
m�
njc(�)b��njc(�)

�
�
� br� infnc

!!2
; where

br� infnb := inf
�2b�n br�nb(�) := inf

�2b�nmaxj�k

"
m�
njb(�)b��njb(�)

#
�

: (15.3)

The quantity bV �4nj(�) is simulated using B bootstrap samples via the formula:

bV �4njB(�) := nB�1
BX
b=1

 "
m�
njb(�)b��njb(�)

#
�

�max
J�k

�
m�
nJb(�)b��nJb(�)

�
�

�B�1
BX
c=1

 �
m�
njc(�)b��njc(�)

�
�
�max

J�k

�
m�
nJc(�)b��nJc(�)

�
�

!!2
: (15.4)

The quantities bV �5nj(�) and bV �6nj(�) are simulated using B bootstrap samples via the formulae:

bV �5njB(�) := nB�1
BX
b=1

 b��njb(�)� b�� infnb �B�1
BX
c=1

�b��njc(�)� b�� infnc

�!2
and

bV �6njB(�) := nB�1
BX
b=1

 b��njb(�)� b��nb(�)�B�1 BX
c=1

�b��njc(�)� b��nc(�)�
!2
; where

b��njb(�) := �
m�
njb(�)b��njb(�) ; b��nb(�) := maxj�k

b��njb(�); b�� infnb := inf
�2b�n b��nb(�); (15.5)

m�
njb(�) := n�1

nX
i=1

mj(W
�
ib; �); and b��2njb(�) := n�1 nX

i=1

�
mj(W

�
ib; �)�m�

njb(�)
�2
:

By de�nition, sd�anjB(�) := (bV �anjB(�))1=2 for a = 1; :::; 6:
12



The bootstrap statistic S�nb;EGMS(�) is simulated for b = 1; :::; B by

S�nb;EGMS(�) := S
�
T �nb;EGMS(�) +A

� inf
nb;EGMS1k;

b
n(�)� ; where
T �njb;EGMS(�) := b��njb(�) + 'j(�nB(�); b
n(�));

b��njb(�) := n1=2

 
m�
njb(�)b��njb(�) � bmnj(�)

!
;

A� infn;EGMS := inf
�2b�n min

j12 bJnB(�)maxj�k

�b��njb;EGMS(�)+1(j 6= j1)bbnjB;EGMS(�)

+1(j = j1)'j(�
b
nB(�);

b
n(�))� ; (15.6)

�nB(�) is de�ned in (6.4) with sd
�
1njB(�) in place of sd

�
1nj(�);

bJnB(�) is de�ned in (6.10) with
sd�4njB(�) in place of sd

�
4nj(�); b��njb;EGMS(�) is de�ned in (6.7) with b��njb(�) and sd�2njB(�) in place

of b��nj(�) and sd�2nj(�); respectively, bbnjB;EGMS(�) is de�ned in (6.8) with sd�3njB(�) in place of

sd�3nj(�); and �
b
nB(�) is de�ned in (6.9) with sd

�
3njB(�) in place of sd

�
3nj(�):

The bootstrap critical value is the 1� � sample quantile of fS�nb;EGMS(�) : b = 1; :::; Bg:

16 Extensions

16.1 Weighted Moments

The weights used in the de�nition of the MR identi�ed set �I(F ) in (2.7) are uniform weights.

This follows from the 1k vector that appears in (2.5) and (2.7). Non-uniform weights ! :=

(!1; :::; !k)
0; where !j 2 [0;1) for j � k; can be introduced by replacing 1k by ! = (1=!1; :::; 1=!k)0

in these equations, where 1=0 := 1: Equivalently, one can de�ne rFj(�) := [!jEF emj(W; �)]� and

rF (�) = maxj�k rFj(�) (analogously to (2.6)). The larger is !j ; the more weight is placed on in-

equality j and the less inequality j is relaxed in the MR identi�ed set under misspeci�cation. For

example, if one believes that some key moment inequalities are correctly speci�ed and one does

not want these inequalities to be relaxed under misspeci�cation, then one can set the weights !j

corresponding to these inequalities to be very large relative to the other weights, such as 1000

versus 1: If !j = 0; the jth moment inequality is ignored.

The SPUR1 and SPUR2 tests can be constructed with weights !: In the de�nition of brnj(�) in
(4.1), bmnj(�) is replaced by !j bmnj(�); i.e., brnj(�) := [!j bmnj(�)]�: In the de�nition of the SPUR

statistic Sn(�0) in (4.2) and (5.2), brinfn 1k is replaced by brinfn !: In the de�nition of the EGMS critical
value, (i) brn(�) is replaced by !jbrn(�) in the de�nitions of �nj(�) in (6.4) and sd�1nj(�) following
(6.4), (ii) bmnj(�) + brinfn is replaced by bmnj(�) + !jbrinfn in the de�nition of b�n in (6.5), (iii) brinfn is

replaced by !jbrinfn in the de�nitions of bbnj;EGMS(�) in (6.8), sd�3nj(�) following (6.8), and �
b
nj(�)

13



in (6.9), and (iv) brnj(�) is de�ned by [!j bmnj(�)]�; brn(�) := maxj�k[!j bmnj(�)]�; and sd�4nj(�) is

de�ned using these updated de�nitions in the de�nition of bJn(�) in (6.10), and (v) A� infn;EGMS1k

replaced by A� infn;EGMS! in the de�nition of S
�
n;EGMS(�) in (6.3).

For the SPUR2 test, the de�nition of the CI CIn;�;UP (�) is altered as follows to take account

of the weights !: The de�nition of the population quantity �Fj(�) := �EF emj(W; �) in (14.1) is

replaced by �Fj(�) := �!jEF emj(W; �): Correspondingly, the de�nition of the sample quantityb�nj(�) := �bmnj(�) in (14.3) is replaced by b�nj(�) := �!j bmnj(�): Given this change, CIn;�;UP (�)

is de�ned as in (14.5), and the critical value bcn;�;UP (�) is de�ned as in (14.7)�(14.11). With the
updated de�nitions of the SPUR1 test and CIn;�;UP (�); the SPUR2 test with weights ! is de�ned

just as in Section 4.2.

The above changes to the de�nition of the SPUR test statistic to take account of weights !

a¤ect its asymptotic distribution as follows. In the de�nition of �n;F in (5.3) and �
�
n;Fn

de�ned

following (5.4), bj is de�ned with !jrinfF in place of rinfF : And because �n;F and ��n;Fn appear in

Assumptions C.7 and C.8, respectively, this a¤ects these assumptions and the sets � and �I : In

the de�nition of ��I (F ) in (5.4) and in Assumption C.3, r
inf
F is replaced by !jrinfF : This change in

Assumption C.3 e¤ects the de�nition of hj1: In Lemma 5.2(a), bnj(�) is de�ned with rinfFn replaced

by !jrinfFn : The changes above a¤ect the de�nitions of A
inf
n (�n;Fn) and A

inf
1 (�) in (5.10), but do not

require any changes in their expressions given in (5.10).

Provided !j 2 [0;1) for all j � k and !j > 0 for some j � k; all of the results above concerning
the SPUR1 and SPUR2 tests, namely, Theorems 7.1, 9.1, and 12.1, as well as Propositions 14.1

and 14.2, go through for the weighted versions of these tests given the changes above. The tests

are invariant to the scale of !:

16.2 Tests without the Standard-Deviation Normalization

In some scenarios, it may be desirable to de�ne the MR identi�ed set �I(F ) in (2.7) without

the standard deviation normalization of the moment functions� i.e., to de�ne �I(F ) with m(W; �)

in place of em(W; �): For example, in their study of demand based on quasilinear utility, Allen
and Rehbeck (2018) do not renormalize their moment inequality functions because the moment

functions are denominated in dollars, which makes the interpretation simple. In this paper, a

notationally-convenient equivalent way to describe non-normalized moments is to rede�ne �2Fj(�)

in (2.2) to equal 1 8j � k; 8� 2 �: Then, m(W; �) = em(W; �): One forms a �non-normalized�test
statistic by rede�ning b�2nj(�) in (2.10) to equal 1 8j � k; 8� 2 �: In this case, b
n(�) = b�n(�) in
(2.11) and b
n(�) is a variance matrix, rather than a correlation matrix. Denote the resulting test
statistic by Sn;non(�); where �non�stands for non-normalized.

14



The asymptotic distributions of Sn;non := Sn;non(�n) and its components, denoted by Tn;non(�n)

and Ainfn;non; are as in Theorem 5.3 with all of its assumptions de�ned with �2Fj(�) = b�2nj(�) = 1;

which yields m(W; �) = em(W; �); and with Assumption C.5 rede�ned with ��n(�) = G�j (�) = 0

8� 2 �; which yields G�j1 = 0 and Gm�j1 := Gmj1: Thus, the asymptotic distribution of Sn;non di¤ers

from that of Sn because there is no e¤ect of estimation of the standard deviations, but otherwise

is unchanged.

Given this, one de�nes the EGMS critical values for Sn;non as in Section 4.1 and the CI

CIn;r;UP (�) as in Section 14, but with b��2nj(�) = 1; which yields ���nj (�) = 0 and b��nj(�) :=
n1=2

�
m�
nj(�)�mnj(�)

�
; and �2Fj(�) = 1; which yields bmnj(�) = mnj(�) 8j � k; 8� 2 �:

The results of Theorem 7.1 and 12.1 hold for the SPUR1 and SPUR2 tests based on Sn;non

provided the assumptions imposed in the theorems are modi�ed by taking �2Fj(�) = b�2nj(�) = 1

and the number of moments �nite in Assumption A.3 is reduced to 2 + a from 4 + a: Finally, the

results of Theorem 9.1 for the set estimator b�n also hold in the non-normalized case with the same
modi�cations.

Note that weighted moments also can be employed with non-normalized moments. In this case,

the changes outlined above for both of these scenarios need to be employed.

16.3 Non-I.I.D. Observations

The basic results in this paper are given under high-level conditions that allow for non-identically

distributed and/or clustered observations, as well as time series observations. For example, this

is true of Theorem 5.3 and of Theorem 22.1 below, which is the key ingredient to the proofs of

Theorems 7.1 and 12.1. In particular, provided the distributions F of the observations are restricted

such that Assumptions C.5, C.6, and BC.6 can be veri�ed for suitable subsequences fpngn�1 of
fngn�1; the rest of the proofs of the asymptotic size results go through.

For non-i.i.d. observations, the following changes are needed: the nonparametric i.i.d. bootstrap

de�ned in (6.1) needs to be changed (a) for clustered observations to a cluster-level nonparametric

i.i.d. bootstrap and (b) for time series observations to a block bootstrap or Markov bootstrap, but

(c) for independent non-identically distributed observations does not need to be changed. With

these changes, the SPUR1 and SPUR2 tests have correct asymptotic size (under conditions such

that Assumptions C.5, C.6, and BC.6 can be veri�ed).
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Figure 17.1: Maximum Coverage Probabilities for any � 2 � for a Standard 95% GMS Con�dence
Set under Model Misspeci�cation Indexed by r: J# = 1; 2; : : : ; 15; � = 0; and (a) Test Function
S1(�) (equivalently S2(�)) and (b) Test Function S4(�)

17 Spurious Precision of GMS CS�s

This section provides numerical results regarding the spurious precision of GMS CS�s that

augment those in Figure 3.1. In addition, it provides the asymptotic spurious precision results

upon which Figure 3.1 is based.

17.1 Numerical Results

Figures 16.1, 16.2, and 16.3 compare the spurious precision of GMS CS�s based on di¤erent

S functions, viz., S1; S2; and S4; for di¤erent numbers J# of violated moment inequalities and

di¤erent values of the common correlation � between the moment functions. Figure 16.1 considers

J# = 1; 2; 3; 5; 10; 15 with � = 0 (in which case S1 = S2): Figure 16.2 considers the same J# values

with � = :75 (in which case S1 6= S2): Figure 16.3 considers J# = 2 and � = 0; :2; :4; :6; :8; :95:
Figure 16.1 shows higher levels of spurious precision for S1 (and S2) than S4 when J# is large,

but little di¤erence for small J#: This is to be expected because the magnitude of spurious precision

under model misspeci�cation is inversely related to power under correct model speci�cation. Figure

16.2 exhibits the same patterns as in Figure 16.1, but the di¤erences between the S functions and

across J# values are much smaller when � = :75 than when � = 0: The results for the S1 and S2
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Set under Model Misspeci�cation Indexed by r: J# = 1; 2; : : : ; 15, � = :75, (a) Test Function S1(�),
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functions are quite similar. Figure 16.3 shows that, for all three S functions, spurious precision is

greatest for � = 0 and least for � = :95; but the di¤erences across � values are not huge in the case

considered where J# = 2:

17.2 Asymptotic Results for Spurious Precision

Here, we provide an expression for the maximum asymptotic coverage probability for any � 2 �
for a standard GMS CS. The standard test statistic is of the form

Sn;Std(�) := S
�
n1=2 bmn(�); b
n(�)� ; (17.1)

where S(m;
) is a test function de�ned as in Andrews and Soares (2010) with m 2 Rk and


 2 	; and 	 is a speci�ed closed set of k � k correlation matrices. We assume S(m;
) satis�es
Assumptions S.1�S.4. Examples of S(m;
) functions that satisfy these assumptions are given in

(4.3).

Let bcn(�; 1 � �) denote the GMS critical value de�ned in Andrews and Soares (2010) using a
constant �n; such as �n = (lnn)1=2; where �n !1 and �n=n1=2 ! 0:25

We consider a set Pn of distributions F for which one or more moment inequalities is violated
by at least r=n1=2; and the other moment inequalities are slack by at least dn=n1=2 for all � 2 �;
where dn��1n ! 1: Let 
F (�) := V arF (em(Wi; �)) 2 Rk�k denote the variance/correlation matrix
of em(Wi; �) under F: Let J := f1; : : : ; kg:

De�ne

Pn := fF : 8� 2 �;9J(�) � J with J(�) 6= ? such that

EF emj(Wi; �) � �r=n1=2 if j 2 J(�) and

EF emj(Wi; �) � dn=n1=2 if j 2 J n J(�); and 
F (�) 2 	g; and

L	 := f(`;
) 2 Rk[�1] �	 : for some subsequence fangn�1 of fng with

(�an ; Fan) 2 �� Pan ; a1=2n EFan em(W; �an)! ` and 
Fan (�an)! 
g: (17.2)

By the de�nition of Pn; for (`;
) 2 L	; `j � �r or `j =1 8j � k; where ` = (`1; :::; `k)0:
For ` 2 Rk[�1]; let c`(
; 1��) denote the 1�� quantile of S(


1=2Z�+`;
); where Z� � N(0k; Ik):
For ` 2 Rk[�1]; de�ne �(`) := (�1(`); : : : ; �k(`))

0 by �j(`) :=11(`j =1) for j � k; where1�0 := 0:
An upper bound on the maximum asymptotic coverage probability for any � 2 � for GMS CS�s

25We assume that the GMS function '(�;
) satis�es Assumption A.4 of Bugni, Canay, and Guggenberger (2012)
with � = 0 replaced with � � 0 in part (b).
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under fPngn�1 misspeci�cation is given in the following lemma, which is proved using results in
Bugni, Canay, and Guggenberger (2012). For example, if the upper bound for a nominal :95 CS

is :70; then the asymptotic coverage probability for any potential pseudo-true value is at most :70;

which indicates spurious precision of the CS.

Lemma 17.1 Suppose the observations fWigi�n are i.i.d under each F 2 Pn and 0 < � < 1=2:

Under Assumptions S.1, S.3, and S.4 (stated in the Appendix ),

lim sup
n!1

sup
(�;F )2��Pn

PF (Sn;Std(�) � bcn(�; 1� �)) � sup
(`;
)2L	

P
�
S(
1=2Z� + `;
) � c�(`)(
; 1� �)

�
:

Comments. (i). For the test functions S(�) = S1(�) and S4(�); we show in the following subsection
that the upper bound in Lemma 17.1 is strictly less than 1� � for all r > 0:26 Hence, these GMS
CS�s exhibit spurious precision under misspeci�cation.

(ii). Under a mild condition, the inequality in Lemma 17.1 holds as an equality. Let (`1;
1) 2
L	 be a point that achieves the supremum on the right-hand side in Lemma 17.1. (Such a

point always exists.) Let J1 � J ; denote the set of indices j for which `1j < 1; where
`1 = (`11; :::; `1k)

0: Let `(J1;�r) denote the vector in Rk[�1] with jth element equal to �r
for j 2 J1 and all other elements equal to in�nity. The inequality in Lemma 17.1 holds as an

equality if `(J1;�r) 2 L1 := f` 2 Rk[�1] : (`;
1) 2 L	g:

The right-hand side in Lemma 17.1 equalsMaxCPM(r; 
1; J1) = P (S(

1=2
1 Z�+`(J1;�r);
1)

� c`(J1;0)(
1; 1��)) for `(J1;�r) de�ned in Comment (ii), where MaxCPM abbreviates �max-

imum coverage probability under misspeci�cation�.

17.3 Proof of Lemma 17.1 and Comment (i) to Lemma 17.1

Proof of Lemma 17.1. There always exists a subsequence fqng of fng such that

lim sup
n!1

sup
(�;F )2��Pn

PF (Sn;Std(�) � bcn(�; 1� �)) = limPFqn (Sqn;Std(�qn) � bcqn(�qn ; 1� �)) ; (17.3)
where (�qn ; Fqn) 2 �� Pn 8n � 1: We can take a further subsequence fwng of fqng such that

w1=2n EFwn emj(Wi; �wn)! `1 and 
Fwn (�wn)! 
1 (17.4)

for some (`1;
1) 2 L	:
26For any test function S(�) satisfying the conditions, the upper bound in Lemma 17.1 is less than or equal to 1��:
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Let JF (�) denote the set J(�) corresponding to F in the de�nition of Pn in (17.2). The

�rst convergence result in (17.4) and the de�nition of Pn (including dn��1n ! 1) give: (i)

JFwn (�wn) = J1 := fj � k : `1j < 1g for all n large, where `1 = (`11; :::; `1k)
0 and (ii)

��1wnw
1=2
n EFwn emj(Wi; �wn) ! �1 = (�11; :::; �1k)

0; where by de�nition �1j = 0 if `1j < 1 and

�1j =1 if `1j =1 (i.e., �1 = �(`1) and �(�1) = �1):

We have c�(�1)(
1; 1 � �) > 0 by the discussion following Assumption A.7 of Bugni, Canay,
and Guggenberger (2012) (using �1 6= 11k): We have Swn;Std(�wn) !d S(


1=2
1 Z� + `1;
1) by

Lemma S1.1 in the Supplemental Material of Bugni, Canay, and Guggenberger (2012) using (17.4),

and bcwn(�wn ; 1 � �) !p c�(�1)(
1; 1 � �) by a similar argument to that given in the proof of
Lemma 2 of Andrews and Soares (2010) using (17.4) and the results in the previous paragraph.

Finally, by applying Lemma 5 of Andrews and Guggenberger (2010) to the right-hand side (rhs) of

(17.3), we obtain

limPFwn (Swn;Std(�wn) � bcwn(�wn ; 1� �)) = P �S(
1=21 Z� + `1;
1) � c�(`1)(
1; 1� �)
�
:

(17.5)

The left-hand side of (17.3) equals the rhs of (17.5) because a subsequence has the same limit as

the original sequence.

For any (`;
) 2 L	; we have `j � �r or `j =1 8j � k; where ` = (`1; :::; `k)0; by the de�nition
of Pn in (17.2). Thus, `j � �(`j) (:= 11(`j = 1)) 8j � k: In consequence, using Assumption

S.1(i), we obtain c`(
; 1� �) � c�(`)(
; 1� �) 8(`;
) 2 L	:
We have

P
�
S(
1=21 Z� + `1;
1) � c�(`1)(
1; 1� �)

�
� sup

(`;
)2L	
P
�
S(
1=2Z� + `;
) � c�(`)(
; 1� �)

�
� 1� �; (17.6)

where the �rst inequality holds because (`1;
1) 2 L	 by (17.4) and the second inequality holds
because c`(
; 1� �) is the 1� � quantile of S(
1=2Z� + `;
) and c`(
; 1� �) � c�(`)(
; 1� �) by
the previous paragraph. Equations (17.3), (17.5), and (17.6) combine to prove the lemma. �

Now, we prove the result stated in Comment (i) to Lemma 17.1: �For the test functions S(�) =
S1(�) and S4(�); the upper bound in Lemma 17.1 is strictly less than 1�� for all r > 0:�The proof
uses the following lemma.

Lemma 17.2 Suppose X and Y are random variables with 1�� quantiles cX and cY ; respectively,
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for some � 2 (0; 1=2); X � Y a.s., and P (X � cX) = P (Y � cY ) = 1 � �: Then, cX = cY

i¤ P (X � cX ; Y > cX) = 0:

Proof of Comment (i) to Lemma 17.1. If c`1(
1; 1 � �) > c�(`1)(
1; 1 � �); then (17.3),
(17.5), and Assumptions S.4(i) and (ii) establish the desired result:

lim sup
n!1

sup
(�;F )2��Pn

PF (Sn;Std(�) � bcn(�; 1� �)) < 1� �: (17.7)

We have `1 � �(`1) with a strict inequality holding for one or more elements, because `1j �
�r < 0 = �(`1)j for j 2 J1 := fj � k : `1j < 1g; `1j = �(`1)j = 1 for j 2 J nJ1; and
J1 6= ?:

For notational simplicity, let

S` := S(

1=2
1 Z� + `;
1) for ` 2 Rk[�1]: (17.8)

By the discussion following Assumption A.7 of Bugni, Canay, and Guggenberger (2012), c`(
1; 1�
�) > 0 for ` = `1; �(`1) and � 2 (0; 1=2): Hence, by Assumption S.4, we have

P (S` � c`(
1; 1� �)) = 1� � for ` = `1; �(`1): (17.9)

In addition, S�(`1) � S`1 a.s. by Assumption S.1(i) because `1 � �(`1): Using these results and
Lemma 17.2, we have: c�(`1)(
1; 1� �) = c`1(
1; 1� �) if and only if

P
�
S�(`1) � c�(`1)(
1; 1� �); S`1 > c�(`1)(
1; 1� �)

�
= 0: (17.10)

Thus, to prove the result of Comment (i), it su¢ ces to show

P
�
S�(`1) � c; S`1 > c

�
> 0 (17.11)

for arbitrary c > 0; for S(�) = S1(�) and S4(�): In the following, let c > 0 be an arbitrary positive
number.

We consider the case where S(�) = S1(�) �rst. By the de�nition of S1(�); S` =
P
j2J1 [!

0
jZ

�+`j ]2�

for ` = `1; �(`1); where !j denotes the jth column of 

1=2
1 (because `1j = �(`1j) = 1 for

j 2 J nJ1): Let v (> 0) denote the number of elements in J1: We have
P
j2J1 [!

0
jZ

� � `1j ]2� > c
if
P
j2J1 [!

0
jZ

� � r]2� > c (because `1j � �r for j 2 J1); and the latter holds if !0jZ� < r�
p
c=v
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for all j 2 J1: In addition,
P
j2J1 [!

0
jZ

�]2� � c if !0jZ� � �
p
c=v for all j 2 J1: It follows that

P
�
S�(`1) � c; S`1 > c

�
� P

0@ \
j2J1

f!0jZ� 2 (�
p
c=v; r �

p
c=v]g

1A > 0; (17.12)

where the last inequality holds because the probability on its left-hand side is the probability that

a multivariate normal v-vector with positive de�nite variance matrix lies in a set with positive

Lebesgue measure (on Rv): This completes the proof of the result of Comment (i) for S(�) = S1(�):
Next, we consider the case where S(�) = S4(�): By the de�nition of S4(�); S` = maxj2J1 [!0jZ�+

`j ]
2
� for ` = `1; �(`1) (because `1j = �(`1j) =1 for j 2 J nJ1): Thus, if !0jZ� < r �

p
c for all

j 2 J1; then S`1 > c (because `1j � �r for all j 2 J1): Also, if !0jZ� � �
p
c for all j 2 J1; then

S�(`1) � c: Hence, we obtain

P
�
S�(`1) � c; S`1 > c

�
� P

0@ \
j2J1

f!0jZ� 2 (�
p
c; r �

p
c]g

1A > 0; (17.13)

where the last inequality holds for the same reason as given for the last inequality in (17.12). This

completes the proof of the result of Comment (i) for S(�) = S4(�): �

Proof of Lemma 17.2. We have

1� � = P (X � cX) = P (X � cX ; Y > cX) + P (X � cX ; Y � cX)

= P (X � cX ; Y > cX) + P (Y � cX); (17.14)

where the �rst equality holds by assumption and the last equality holds because X � Y a.s.

If cX = cY ; we have

1� � = P (X � cX ; Y > cX) + P (Y � cY ) = P (X � cX ; Y > cX) + 1� �; (17.15)

where the �rst equality holds by (17.14) and cX = cY and the second equality holds because

P (Y � cY ) = 1� �: Thus, the �only if�result of the lemma is proved.
If P (X � cX ; Y > cX) = 0; then, by (17.14), 1� � = P (Y � cX): Since cY := minfy : P (Y �

y) � 1 � �g; this implies that cY � cX : But, X � Y a.s. implies cX � cY : Hence, in this case,

cX = cY ; which establishes the �if�result of the lemma. �
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18 Additional Simulation Results for the Lower/Upper Bound

Model

Here we provide some additional simulation results for the lower/upper bound model considered

in Section 8. We give results for k = 4 and 8:

Figure 18.1 shows the rejection probabilities for the misspeci�ed case with k = 4 under the �very

slack�and �slack/almost binding�scenarios that were not reported in the main paper. Figure 18.2

does likewise for the correctly-speci�ed case. The two �gures con�rm what we have already seen

in the main paper: (i) when the model is misspeci�ed, the SPUR1 and SPUR2 tests perform quite

similarly, with their rejection probabilities reaching 1 fairly quickly as the distance between the

null value and the MR identi�ed set increases, and (ii) when the model is correctly speci�ed, the

SPUR2 test performs similarly to the GMS test when the length of identi�ed set is :5 or larger,

and likewise for the SPUR1 test when the length is 1: Again, we see that the SPUR2 test performs

better than the SPUR1 test when the identi�ed set is small, but not too small.

Next, we consider cases with k = 8: In this case, the moment inequalities are given as

EFWij � � for 1 � j � 4 and

� � EFWij for 5 � j � 8: (18.1)

The de�nition of each scenario is analogous to the k = 4 cases, with each entry repeated twice.

That is, if �4 = (�1; �2; �3; �4)
0 2 R4 is the mean vector used under some scenario for k = 4; then

�8 = (�1; �1; �2; �2; �3; �3; �4; �4)
0 2 R8 is the mean vector used in the same scenario for k = 8:

Figures 18.3 and Figure 18.4 give the simulation results for k = 8: These results show that the same

qualitative results hold as for k = 8 as for k = 4:

19 Details for the Missing Data Model

In this section, we provide additional details for the missing data model considered in Section

8.2. Speci�cally, we provide derivations for (8.5), (8.6), and the line following (8.6), which gives an

expression for the MR identi�ed set.

Let pj := P (Xi = xj) > 0 for j � 3: In the simulations, we take pj = 1=3 for j � 3: Some
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Figure 18.1: Rejection probabilities for (additional) misspeci�ed cases for k = 4. Each plot shows,
under di¤erent scenarios, the rejection probabilities of the SPUR1 and SPUR2 tests for the null
hypothesis H0 : � = �0 for a range of �0 values, identi�ed set �I(F ) = f0g; and two di¤erent values
of rinfF :

calculations give

EFm1(W; �) = p1�1;

EFm2(W; �) = �p2(�1 + er); and
EFm3(W; �) = p3�2: (19.1)

In consequence, the model is misspeci�ed if and only if er > 0; as stated in Section 8. If er � 0;

rinfF = 0:

Now, suppose er > 0: Additional calculations give
V arF (m1(W; �)) = (p1 � p21)�21 + p1pz;

V arF (m2(W; �)) = (p2 � p22)(�1 + er)2 + p2 �(1 + er)2(1=pz � 1) + pz� ; and
V arF (m3(W; �)) = (p3 � p23)�22 + p3pz: (19.2)
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Figure 18.2: Rejection probabilities for (additional) correctly speci�ed cases for k = 4. Each plot
shows, under di¤erent scenarios, the rejection probabilities of the SPUR1, SPUR2 and standard
GMS tests for the null hypothesis H0 : � = �0 for a range of �0 values and di¤erent lengths ` of the
identi�ed set �I(F ) = [�`; 0]:

We relax the (standardized) inequalities by r: Then, by (19.1) and (19.2), the inequalities are

p1�1

((p1 � p21)�21 + p1pz)1=2
� �r;

� p2(�1 + er)
((p2 � p22)(�1 + er)2 + p2((1 + er)2(1=pz � 1) + pz))1=2 � �r; and

p3�2

((p3 � p23)�22 + p3pz)1=2
� �r: (19.3)

By de�nition, rinfF is the smallest r > 0 such that there exists some � 2 � that satis�es (19.3). The
third inequality does not play a role in determining rinfF : Hence, we focus on �nding the smallest

r > 0 such that there exists some �1 that satis�es the �rst two inequalities.

For arbitrary numbers a; b; and c with a > 0 and b > 0, consider the function

h(�1) =
�1 + c

(a(�1 + c)2 + b)1=2
: (19.4)
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Figure 18.3: Rejection probabilities for misspeci�ed cases for k = 8. Each plot shows, under
di¤erent scenarios, the rejection probabilities of the SPUR1 and SPUR2 tests for the null hypothesis
H0 : � = �0 for a range of �0 values, identi�ed set �I(F ) = f0g; and two di¤erent values of rinfF .
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Figure 18.4: Rejection probabilities for correctly speci�ed cases for k = 8. Each plot shows, under
di¤erent scenarios, the rejection probabilities of the SPUR1, SPUR2 and standard GMS tests for
the null hypothesis H0 : � = �0 for a range of �0 values and di¤erent lengths ` of the identi�ed set
�I(F ) = [�`; 0]:
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Calculation of the �rst derivative of h(�) shows that h(�) is strictly increasing. This implies that
the left-hand sides of the �rst and second inequalities in (19.3) are strictly increasing and strictly

decreasing functions of �1; respectively. Hence, if we let �1(r) and �1(r) denote the �1 values that

solve the �rst and second inequalities as equalities, respectively, then �1 satis�es the two inequalities

if and only if �1 lies in [�1(r); �1(r)]; where this interval is de�ned to be empty if �1(r) > �1(r):

Some algebra gives

�1(r) = �
�

pz
(p1=r2 + p1 � 1))

�1=2
and

�1(r) =

�
(1 + er)2(1=pz � 1) + pz

p2=r2 + p2 � 1)

�1=2
� er: (19.5)

Hence, if r is such that

er � �(1 + er)2(1=pz � 1) + pz
p2=r2 + p2 � 1

�1=2
+

�
pz

p1=r2 + p1 � 1)

�1=2
; (19.6)

then the MR identi�ed set under the relaxation r is non-empty. Since the rhs is increasing in r; rinfF

must solve (19.6) as an equality. That is, rinfF is the value of r that makes �1(r) = �1(r): Assuming

p1 = p2; this gives

rinfF =

0B@ p1er2�
p
1=2
z + ((1 + er)2(1=pz � 1) + pz)1=2�2 + (1� p1)er2

1CA
1=2

: (19.7)

Taking p1 = p2 = 1=3 gives (8.5).

Plugging the expression for rinfF in place of r in (19.5) gives

�1(r
inf
F ) = �1(r

inf
F ) = �

p
1=2
z er

p
1=2
z + ((1 + er)2(1=pz � 1) + pz)1=2 =: �I1(er): (19.8)

Thus, the only �1 value that satis�es (19.3) with r = rinfF is �1 = �I1(er): This gives (8.6).
Now, plugging in rinfF in place of r in the third inequality of (19.3) and taking p1 = p2 = p3 = 1=3;

one can see that any �2 such that �2 � �I1(er) satis�es (19.3) (with rinfF in place of r). This shows

that �I(F ) = f�I1(er)g � [�I1(er);1):
20 Lemma 20.1 and Proofs of Lemmas 5.1, 5.2, and 20.1

The following is a su¢ cient condition for Assumption NLA, which �rst appears in Section 5.1.
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Assumption LA. The null values f�ngn�1 and distributions fFngn�1 satisfy: (i) jj�n � �Injj =
O(n�1=2) for some sequence f�In 2 �I(Fn)gn�1; (ii) n1=2(EFn emj(W; �In) + r

inf
Fn
) ! hIj1 for some

hIj1 2 R[�1] 8j � k; and (iii) EF em(W; �) is Lipschitz on � uniformly over P; i.e., there exists a
constant K <1 such that jjEF em(W; �1)� EF em(W; �2)jj � Kjj�1 � �2jj 8�1; �2 2 �; 8F 2 P:

Under Assumption LA, f�ngn�1 is a sequence of n�1=2-local alternatives to the null hypothesis
8n � 1: Assumption LA(ii) is the same as Assumption C.3 with f�ngn�1 replaced by some sequence
f�Ingn�1 in the MR identi�ed set(s). Hence, by Lemma 5.1(a), hIj1 � 0 8j � k:

A su¢ cient condition for Assumption CA is the following �xed alternative assumption.

Assumption FA. The null values f�ngn�1 and distributions fFngn�1 satisfy: (i) The distributions
Fn = F� 2 P and the null values �n = �� 2 � do not depend on n � 1 and (ii) EF� emj(W; ��)+rinfF� <

0 for some j � k:

Lemma 20.1 Under Assumption C.3, (a) Assumption N implies Assumption NLA, (b) Assump-

tion LA implies Assumption NLA, and (c) Assumption FA implies Assumption CA.

Proof of Lemma 5.1. Part (a) holds because rinfFn � 0 by its de�nition in (2.5). The �rst result
in part (b) holds because n1=2 � 1: The second result in part (b) holds because j`j1j <1 implies

n1=2EFn emj(W; �n) = O(1); which implies that emj1 := emj(�1) = limn!1EFn emj(W; �n) = 0; using

Assumptions C.1, C.2, and C.4.

Now, we prove part (c). If � 2 �I(F ); then rF (�) = rinfF (by the de�nition of �I(F ) in (2.7)),

rFj(�) � rinfF 8j � k (by the de�nition of rFj(�) in (2.6)), and rFj(�) = rinfF for some j � k: In

consequence,

0 = max
j�k

(rFj(�)� rinfF ) = max
j�k

(maxf�EF emj(W; �); 0g � rinfF )

� max
j�k

(�EF emj(W; �)� rinfF ) = �min
j�k

(EF emj(W; �) + r
inf
F ); (20.1)

where the second equality holds by the de�nition of rFj(�) and the inequality is trivial.

Using (20.1), if �n 2 �I(Fn) for n large, then

0 � lim inf
n!1

min
j�k

n1=2(EFn emj(W; �n) + r
inf
Fn)

= min
j�k

lim inf
n!1

n1=2(EFn emj(W; �n) + r
inf
Fn) = minj�k

hj1; (20.2)

where the �rst equality holds by a subsequence argument and the second equality uses Assumption

C.3. This establishes part (c).
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Lastly, we prove part (d). If � 2 �I(F ) and the model is correctly speci�ed, then

rinfF = max
j�k

rFj(�) = max
j�k

maxf�EF em(W; �); 0g = 0; (20.3)

where the �rst two equalities hold by the de�nitions of rinfF and rFj(�) in (2.5) and (2.6), respectively,

and the last equality holds because EF em(W; �) � 0k 8� 2 �I(F ) by correct model speci�cation,
see (2.4).

Equation (20.3) implies that under correct model speci�cation, if �n 2 �I(Fn) for all n large,
then

hj1 = limn1=2(EFn emj(W; �n) + r
inf
Fn) = limn

1=2EFn emj(W; �n) = `j1 8j � k: (20.4)

We have hj1; `j1; emj1 � 0 under correct model speci�cation when �n 2 �I(Fn) for all n large,
because the moment inequalities all hold at �n 2 �I(Fn); i.e., EFn emj(W; �n) � 0; under correct

model speci�cation. This completes the proof of part (d). �

Proof of Lemma 5.2. Because rinfF := inf�2�maxj�k rFj(�); see (2.5) and (2.6), for all F and

� 2 �; we have
max
j�k

(rFj(�)� rinfF ) � 0; (20.5)

which establishes part (a).

Any (�; b; `) 2 � is the limit of some sequence (�n; bn; `n) 2 �n;Fn because �n;Fn !H � by

Assumption C.7. That is, bn ! b and maxj�k bnj ! maxj�k bj : This and (20.5) applied with

(�; F ) = (�n; Fn) give

0 � max
j�k

n1=2(rFnj(�n)� rinfFn) = maxj�k
bnj ! max

j�k
bj ; (20.6)

which proves part (b) of the lemma.

Next, we prove part (c). The function rFn(�) � rinfFn is lower semi-continuous on � (since

EF emj(W; �) is upper semi-continuous on � by Assumption A.0(ii)) and [x]� := maxf�x; 0g; � is

compact by Assumption A.0(i), and a lower semi-continuous function on a compact set achieves its

in�mum. Hence, there exists e�n 2 � such that rF (e�n) = rinfF 8n � 1; which establishes part (c).
For part (d), let (e�n;ebn; èn) 2 �n;Fn be such that e�n 2 �I(Fn) 8n � 1: Such (e�n;ebn; èn) exist

because �I(Fn) is non-empty 8n � 1 by part (c). There exists a subsequence fqngn�1 of fngn�1
and a (e�;eb; è) 2 � � R2k[�1] such that d((e�qn ;ebqn ; èqn); (e�;eb; è)) ! 0 because (� � R2k[�1]; d) is a
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compact metric space under Assumption A.0(i). We have (e�;eb; è) 2 � by the following argument:
0 � inf

(�;b;`)2�
d((�; b; `); (e�;eb; è)) � inf

(�;b;`)2�
d((�; b; `); (e�qn ;ebqn ; èqn)) + d((e�qn ;ebqn ; èqn); (e�;eb; è))

! 0; (20.7)

where the second inequality holds by the triangle inequality and the convergence holds using

Assumption C.7 (i.e., �n;Fn !H �): Thus, inf(�;b;`)2� d((�; b; `); (e�;eb; è)) = 0: This implies that

(e�;eb; è) 2 �; because � is a compact subset of (��R2k[�1]; d) by Assumption C.7, d((�; b; `); (e�;eb; è))
is a continuous function of (�; b; `); and a continuous function on a compact set attains its in�mum.

Since e�n 2 �I(Fn); rFn(e�n) = rinfFn 8n � 1: Hence, for all n � 1;
max
j�k

ebnj = max
j�k

n1=2([EFn emj(W;e�n)]� � rinfFn) = n1=2(rFn(e�n)� rinfFn) = 0; (20.8)

where the �rst equality holds by the de�nition of �n;Fn in (5.3) and the second equality holds by

the de�nition of rF (�) in (2.6). We obtain

max
j�k

ebj = lim
n!1

max
j�k

ebnj = 0; (20.9)

which proves part (d) of the lemma since (e�;eb; è) 2 �:
Given any (��; b�; `�) 2 �; there exists a sequence f(��n; b�n; `�n) 2 �n;Fngn�1 such that (��n; b�n; `�n)

! (��; b�; `�) because �n;Fn !H � by Assumption C.7. Hence, if j`�j j <1; we have

jemj(�
�)j = lim jEFn emj(W; �

�
n)j = lim(n�1=2(j`�j j+ o(1))) = 0; (20.10)

where the �rst equality uses Assumption C.4. This establishes part (e). �

Proof of Lemma 20.1. Under Assumption N, Lemma 5.1(a) implies that hj1 � 0 8j � k; which
establishes Assumption NLA and part (a).

Now, we establish part (b). Under Assumption LA, for all j � k; we have

n1=2jEFn emj(W; �n)� EFn emj(W; �In)j � Kn1=2jj�n � �Injj = O(1); (20.11)

where the inequality holds by Assumption LA(iii) and the equality holds by Assumption LA(i). In
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consequence, for all j � k; we have

hj1 = lim
n!1

n1=2(EFn emj(W; �n) + r
inf
Fn)

= lim
n!1

n1=2(EFn emj(W; �In) + r
inf
Fn) +O(1) = hIj1 +O(1) � O(1); (20.12)

where the �rst equality holds by Assumption C.3, the second equality holds by (20.11), the third

equality holds by Assumption LA(ii), and the inequality holds by Lemma 5.1(a) with �In in place

of �n using Assumption LA(ii) in place of Assumption C.3. This completes the proof of part (b).

Under Assumption FA, we have

min
j�k

hj1 = min
j�k

limn1=2(EF� emj(W; ��) + r
inf
F� ) = �1; (20.13)

where the second equality holds because EF� emj(W; ��) + rinfF� < 0 for some j � k by Assumption
FA(ii). Thus, Assumption CA holds, which establishes part (c). �

21 Proof of Theorem 5.3

The proof of Theorem 5.3(b) uses the following lemma.

Lemma 21.1 Suppose Assumptions C.4 and C.5 hold. Under fFngn�1; we have

Ainfn = Ainfn (�n;Fn) + op(1):

Proof of Lemma 21.1. For a given distribution F; de�ne

��yn (�) := n
1=2

�� b�2n1(�)
�2F1(�)

� 1
�
; :::;

� b�2nk(�)
�2Fk(�)

� 1
��0

: (21.1)

Note that ��yn (�) di¤ers from ��n(�) (de�ned in (2.12)) because the former depends on b�2nj(�); which
is centered at the sample quantity mnj(�); see (2.10), whereas the latter depends on b�2Fnj(�);
which is centered at the population quantity EFmj(Wi; �): The following calculations show that
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��ynj(�) = �
�
nj(�)� n�1=2(�mnj(�))2:

��ynj(�) := n1=2

 b�2nj(�)
�2Fnj(�)

� 1
!
= n�1=2

nX
i=1

�
(emj(Wi; �)� emnj(�))

2 � 1
�

= n�1=2
nX
i=1

�
(emj(Wi; �)� EFn emj(W; �))

2 � 1
�
� n1=2(emnj(�)� EFn emj(W; �))

2

= ��nj(�)� n�1=2(�mnj(�))2; and

��ynj(�) = ��nj(�) + o
�
p (1) (21.2)

8j � k; where the last equality holds by Assumption C.5.
By (21.2), Assumption C.5, and the continuous mapping theorem, for all j � k;

sup
�2�

����� b�2nj(�)�2Fnj(�)
� 1
�����= : sup

�2�
n�1=2

�����ynj(�)��� = sup
�2�

n�1=2
����nj(�)��+ o�p (n�1=2)!p 0; and so,

sup
�2�

�����Fnj(�)b�nj(�) � 1
���� !p 0: (21.3)

We have

n1=2
� b�nj(�)
�Fnj(�)

� 1
�
= n1=2

0@ 1 + b�2nj(�)
�2Fnj(�)

� 1
!!1=2

� 1

1A
=
1

2
(1 + o�p (1))

�1=2n1=2

 b�2nj(�)
�2Fnj(�)

� 1
!

=
1

2
��nj(�) + o

�
p (1); (21.4)

where the second equality holds by the following mean-value expansion, (1 + x)1=2 = 1+ (1=2)(1+ex)�1=2x; where jexj � jxj; with x := b�2nj(�)=�2Fnj(�)� 1 and sup�2� jxj � sup�2� jb�2nj(�)=�2Fnj(�)�
1j = op(1) by (21.3), and the last equality uses (21.2) and Assumption C.5.

For all j � k; we have

n1=2 (bmnj(�)� EFn emj(W; �)) =
�Fnj(�)b�nj(�)

�
�mnj(�)� EFn emj(W; �)n

1=2

� b�nj(�)
�Fnj(�)

� 1
��

= (1 + o�p (1))

�
�mnj(�)�

1

2
EFn emj(W; �)�

�
nj(�) + o

�
p (1)

�
= �m�nj (�) + o

�
p (1); (21.5)

where �mnj(�) := n
1=2(emnj(�)�EFn emj(W; �)); emnj(�) = (b�nj(�)=�Fnj(�))bmnj(�) is de�ned in (2.3),

the second equality holds by (21.4), and the third equality holds by the de�nition of �m�nj (�) in (5.7)
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and Assumptions C.4 and C.5.

Next, we have

sup
`j2R

�����m�nj (�) + o�p (1) + `j�� � ��m�nj (�) + `j����� = o�p (1) (21.6)

because the function �(v; c) := [v + c]� � [c]� for v; c 2 R[�1] satis�es

j�(v; c)j � jvj: (21.7)

This holds because (i) if c � 0 and � + c � 0; then �(�; c) = j�j; (ii) if c � 0 and � + c > 0; then
� > �c and �(�; c) = jcj � j�j; and (iii) if c > 0; then �(�; c) = [� + c]� � [�]� � j�j:

We have

n1=2
�brnj(�)� rinfFn�

:= n1=2
�
[bmnj(�)]� � rinfFn

�
(21.8)

=

�h
�m�nj (�) + n

1=2EFn emj(W; �)
i
�
�
h
n1=2EFn emj(W; �)

i
�
+ snj(�; Fn)

�
+ o�p (1);

where snj(�; F ) := n1=2([EF emj(W; �)]� � rinfF ); using (21.5) and (21.6).
For given (�; b; `) 2 �n;Fn ; where �n;Fn is de�ned in (5.3), we have

n1=2EFn em(W; �) = `j and snj(�; Fn) = bj : (21.9)

Using (21.8) and (21.9), we obtain

Ainfn := inf
�2�

max
j�k

n1=2
�brnj(�)� rinfFn�

= inf
(�;b;`)2�n;Fn

max
j�k

�
[�m�nj (�) + `j ]� � [`j ]� + bj

�
+ op(1)

=: Ainfn (�n;Fn) + op(1); (21.10)

where the �rst equality holds by the de�nitions in (4.1) and (5.2) and the last equality holds by

the de�nition in (5.10). �

Proof of Theorem 5.3. First, we prove part (a). For j � k; we show that

n1=2(bmnj(�n) + r
inf
Fn)!d Tj1 (21.11)
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and the convergence holds jointly over j � k: Stacking these results for j = 1; :::; k gives Tn(�n)!d

T1 using the de�nitions of Tn(�n) and T1 in (5.2) and (5.8), respectively.

We have

n1=2
�bmnj(�) + r

inf
F

�
= n1=2

�
mnj(�)b�nj(�) + rinfF

�
=
�Fj(�)b�nj(�) bK1nj(�; F ) + �Fj(�)b�nj(�) bK2nj(�; F ) +K3nj(�; F ); wherebK1nj(�; F ) := n1=2

�
mnj(�)

�Fj(�)
� EFmj(W; �)

�Fj(�)

�
;

bK2nj(�; F ) := �n1=2
� b�nj(�)
�Fj(�)

� 1
�
EFmj(W; �)

�Fj(�)
; and

K3nj(�; F ) := n1=2
�
EFmj(W; �)

�Fj(�)
+ rinfF

�
: (21.12)

By Assumption C.3,

K3nj(�n; Fn)! hj1: (21.13)

By (21.4) and Assumption C.5,
�Fnj(�n)b�nj(�n) !p 1: (21.14)

Given (21.14), to prove part (a), it remains to determine the asymptotic distributions of bK1nj(�n; Fn)
and bK2nj(�n; Fn):

We have

n1=2

 b�2nj(�n)
�2Fnj(�n)

� 1
!
=: ��ynj(�n) = �

�
nj(�n) + o

�
p (1)!d G

�
j1 ; (21.15)

where the two equalities hold by (21.2) and the convergence holds by Assumption C.5 (which implies

stochastic equicontinuity of f��n(�)gn�1) and Assumption C.1. Equation (21.15) and the �-method
applied with the function g(x) = x1=2; for which g0(x)jx=1 = 1=2; give

n1=2
� b�nj(�n)
�Fnj(�n)

� 1
�
!d

1

2
G�j1 : (21.16)

By Assumptions C.1 and C.4, EFn emj(W; �n) = emj(�n) + o(1) ! emj(�1) := emj1: This and

(21.16) give bK2nj(�n; Fn)!d �
emj1
2
G�j1 : (21.17)

We have

bK1nj(�n; Fn) := n1=2 (emnj(�n)� EFn emnj(�n)) = �
m
nj(�n)!d G

m
j1 ; (21.18)
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where �mnj(�n) denotes the jth element of �
m
n (�n) and the convergence holds by Assumption C.5.

Combining the results in (21.12)�(21.14), (21.17), (21.18) and, for the case where hj1 = �1;
the fact that Gmj1 � emj1G�j1=2 = Op(1) (by Assumptions C.4 and C.5), establishes (21.11). The

results in (21.11) for j � k hold jointly because they are all based on the convergence result in

Assumption C.5. This completes the proof of part (a).

Next, we prove part (b). By Lemma 21.1, it su¢ ces to show

Ainfn (�n;Fn)!d A
inf
1 (�): (21.19)

Let D be the space of functions from � to R2k: Let D0 be the subset of uniformly continuous
functions in D: For a nonstochastic function �(�) 2 D; let �(�) = (�m(�)0; ��(�)0)0; and let �mj (�)

and ��j (�) denote the jth elements of �
m(�) and ��(�); respectively. De�ne

gn(�(�)) := inf
(�;b;`)2�n;Fn

max
j�k

[� j(�(�); �; `) + bj ] ;

g(�(�)) := inf
(�;b;`)2�

max
j�k

[� j(�(�); �; `) + bj ] ; where

� j(�(�); �; `) := [�m�j (�) + `j ]� � [`j ]� and

�m�j (�) := �mj (�)�
1

2
emj(�)�

�
j (�): (21.20)

For the stochastic processes �n(�) and G(�); we can write

Ainfn (�n;Fn) = gn(�n(�)) and Ainf1 (�) = g(G(�)): (21.21)

We want to show that gn(�n(�)) !d g(G(�)): By Assumption C.5, �n(�) ) G(�) for �n(�) 2 D
a.s. and G(�) 2 D0 a.s. We use the extended CMT, see van der Vaart and Wellner (1996, Theorem
1.11.1), to establish the desired result, as in the proof of Theorem 3.1 in BCS. The extended CMT

requires showing: for any deterministic sequence f�n(�) 2 Dgn�1 and deterministic �(�) 2 D0 such
that sup�2� jj�n(�)� �(�)jj ! 0; we have gn(�n(�))! g(�(�)): (For notational simplicity, we abuse
notation here and consider a deterministic �n(�) that di¤ers from the random �n(�) in Assumption
C.5.) Once we have shown this, the proof of part (b) is complete.

Let f�n(�) 2 Dgn�1 and �(�) 2 D0 be deterministic and satisfy sup�2� jj�n(�)� �(�)jj ! 0: We

show

(i) lim inf
n!1

gn(�n(�)) � g(�(�)) and (ii) lim sup
n!1

gn(�n(�)) � g(�(�)): (21.22)
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First, we establish (i) in (21.22). There exists a subsequence fangn�1 of fngn�1 and there exists
a sequence f(�an ; ban ; `an) 2 �an;Fangn�1 such that

lim inf
n!1

gn(�n(�)) = lim
n!1

gan(�an(�)) and

lim
n!1

gan(�an(�)) = lim
n!1

max
j�k

�
� j(�an(�); �an ; `an) + banj

�
; (21.23)

where banj denotes the jth element of ban : Also, there exists a subsequence fengn�1 of fangn�1 and
(�; b; `) 2 ��R2k[�1] such that

d
�
(�en ; ben ; `en); (�; b; `)

�
! 0; (21.24)

where d is de�ned following (5.2), by compactness of the metric space (� � R2k
[�1]

; d) under As-

sumption A.0(i). We have (�; b; `) 2 � by the same argument as used to show (e�;eb; è) 2 � in (20.7)
(but without the requirement that �an 2 �I(Fan) 8n � 1) using (21.24) and Assumption C.7.

For all j � k;

lim
n!1

� j(�en(�); �en ; `en) = � j1(�(�); �; `) 2 R; where

� j1(�(�); �; `) :=

8>><>>:
[�m�j (�) + `j ]� � [`j ]� if j`j j <1
��m�j (�) if `j = �1
0 if `j = +1

= [�m�j (�) + `j ]� � [`j ]�

:= � j(�(�); �; `); (21.25)

the equality on the �rst line holds by �en(�) ! �(�) = (�m(�)0; ��(�)0)0 uniformly over � 2 � (by

assumption), (21.24), [�n + cn]� � [cn]� ! �� as (�n; cn)! (�;�1) for � 2 R; and [�n + cn]� �
[cn]� ! 0 as (�n; cn)! (�;+1) for � 2 R; the equality on the third line holds using the notational
convention in (5.6), the equality on the last line holds by the de�nition of � j(�(�); �; `) in (21.20),
and �2 R�in the �rst line holds using the rhs expression on the second line because �m�j (�) is �nite

since �(�) is assumed to be in D; �(�; c) := [� + c]� � [c]� for �; c 2 R satis�es j�(�; c)j � j�j as
shown in (21.7), and emj(�) is �nite by Assumption C.4.
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Now, we have

lim inf
n!1

gn(�n(�)) = lim
n!1

max
j�k

�
� j(�en(�); �en ; `en) + benj

�
= max

j�k

�
� j(�(�); �; `) + bj

�
� inf

(�;b;`)2�
max
j�k

[� j(�(�); �; `) + bj ]

:= g(�(�)); (21.26)

where the �rst equality holds by (21.23) and the fact that fengn�1 is a subsequence of fangn�1;
the second equality holds by (21.25) (using the notational convention in (5.6) if bj = �1 for any

j � k); the inequality holds because (�; b; `) 2 � by the paragraph containing (21.24), and the last
equality holds by the de�nition of g(�(�)) in (21.20). This establishes result (i) in (21.22).

Next, we establish result (ii) in (21.22). There exists (�y; by; `y) 2 � such that

g(�(�)) = max
j�k

h
� j(�(�); �y; `y) + byj

i
(21.27)

because � is compact under the metric d; de�ned following (5.2) (since it is assumed to be an

element of S(� � R2k[�1])) and � j(�(�); �; `) + bj is a continuous function of (�; b; `) under d that
takes values in the extended real line. By Assumption C.7, �n;Fn !H �: Hence, there is a sequence

f(�yn; b
y
n; `

y
n) 2 �n;Fngn�1 such that d((�yn; b

y
n; `

y
n); (�

y; by; `y))! 0: We obtain

lim sup
n!1

gn(�n(�)) := lim sup
n!1

inf
(�;b;`)2�n;Fn

max
j�k

[� j(�n(�); �; `) + bj ]

� lim sup
n!1

max
j�k

h
� j(�n(�); �yn; `yn) + b

y
nj

i
= max

j�k

h
� j(�(�); �y; `y) + byj

i
= g(�(�)); (21.28)

where the inequality holds because (�yn; b
y
n; `

y
n) 2 �n;Fn 8n � 1; the second equality holds using

d((�yn; b
y
n; `

y
n); (�

y; by; `y))! 0 and (21.25) with (�n(�); �yn; `
y
n) and (�(�); �y; `y) in place of (�en(�); �en ;

`en) and (�(�); �; `); respectively, and the last equality holds by (21.27). This establishes result (ii)
in (21.22) and completes the proof of part (b).

Now we prove part (c). We have

Ainf1 (�) := inf
(�;b;`)2�

max
j�k

�
[Gm�j (�) + `j ]� � [`j ]� + bj

�
> �1 a.s. (21.29)
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because (I) maxj�k bj � 0 8(�; b; `) 2 � by Lemma 5.2(b) and (II) sup(�;b;`)2� j[Gm�j (�) + `j ]� �
[`j ]�j � sup�2� jGm�j (�)j < 1 a.s. (because �(�; c) := [� + c]� � [c]� satis�es j�(�; c)j � j�j as
shown in (21.7), j[� + c]� � [c]�j := 0 if � 2 R and c = +1; j[� + c]� � [c]�j := �� if � 2 R and

c = �1 using (5.6), and sup�2� jGm�j (�)j <1 a.s. since G(�) is bounded on � a.s. by Assumption
C.5 and emj(�) is bounded on � by Assumption C.4).

To obtain the other half of part (c), i.e., Ainf1 (�) <1 a.s., we use Lemma 5.2(d). We have

Ainf1 (�) := inf
(�;b;`)2�

max
j�k

�
[Gm�j (�) + `j ]� � [`j ]� + bj

�
� max

j�k

�
[Gm�j (e�) + èj ]� � [èj ]� +ebj� <1 a.s., (21.30)

where (e�;eb; è) 2 � is as in Lemma 5.2(d), the �rst equality holds by the de�nition of Ainf1 (�)

in (5.10), the �rst inequality holds because (e�;eb; è) 2 �; and last inequality holds because (I)

maxj�k ebj = 0 by Lemma 5.2(d) and (II) sup(�;b;`)2� j[Gm�j (�) + `j ]� � [`j ]�j < 1 a.s. by (II)

following (21.29). This completes the proof of part (c).

Now we prove part (d). Under Assumption NLA, for all j � k; we have

Tj1 := Gm�j1 + hj1 > �1 a.s., (21.31)

where the �rst equality holds by (5.8) and the inequality holds because jGm�j1 j < 1 a.s. by the

de�nitions in (5.5) and (5.7) and Assumptions C.4 and C.5, and hj1 > �1 by Assumption NLA.

Part (e) follows from the convergence results for Tn(�n) and Ainfn in parts (a) and (b), the

convergence result for b
n(�n) in Assumption C.6, the de�nition of Sn := Sn(�n) in (4.2) and (5.2),
the continuity of S(m;
) at all m 2 Rk[+1] and 
 2 	 by Assumption S.1(iii), and the fact that

Tj1 > �1 8j � k and Ainf1 (�) 2 R by parts (c) and (d).
Now, we establish part (f). If � = �I ; then part (f) holds immediately. So, we suppose that

�n�I is not empty. We show that for any (��; b�; `�) 2 �n�I ;

max
j�k

�
� j(G(�); ��; `�) + b�j

�
=1 a.s., (21.32)

where � j(�(�); �; `) is de�ned in (21.20). Since Ainf1 (�) 2 R a.s. by part (c), and Ainf1 (�) :=

inf(�;b;`)2�maxj�k [� j(G(�); �; `) + bj ] by (5.10), (21.32) implies that Ainf1 (�) = Ainf1 (�I) a.s., which
establishes the �rst result in part (f). The second result in part (f) follows from the �rst result

provided the quantities �1; T1; and 
1 are well de�ned, which requires Assumptions C.1, C.3,

and C.6.
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For part (f), it remains to show (21.32). By Assumption C.8, �I is compact. For any

(��; b�; `�) 2 �n�I ; there is a neighborhood of (��; b�; `�) that lies in �n�I and there exists a
sequence f(��n; b�n; `�n) 2 �n;Fngn�1 such that d((��n; b�n; `�n); (��; b�; `�)) ! 0 by Assumption C.7. In

consequence, for n large, (��n; b
�
n; `

�
n) =2 �

�n
n;Fn

: In turn, this implies that ��n =2 �
�n
I (Fn) for n large

using the de�nition of ��nn;Fn following (5.4).

Now, ��n =2 �
�n
I (Fn) for all n large implies

max
j�k

n1=2[EFn emj(W; �
�
n) + r

inf
Fn ]� > �n for all n large,

max
j�k

n1=2(�EFn emj(W; �
�
n)� rinfFn)!1; and

max
j�k

b�j = limmax
j�k

b�n;j := limmax
j�k

n1=2([EFn emj(W; �
�
n)]� � rinfFn) =1; (21.33)

where the �rst line holds by the de�nition of ��I (F ) in (5.4), the �rst line implies that minj�k

EFn emj(W; �
�
n) + r

inf
Fn
< 0 for all n large, which is used to obtain the second line, the second line

also uses �n !1 by Assumption C.8, the �rst equality in the third line holds by the convergence

result for f(��n; b�n; `�n)gn�1 in the previous paragraph, the second equality in the third line holds
by (��n; b

�
n; `

�
n) 2 �n;Fn and the de�nition of �n;F in (5.3), and the third equality in the third

line follows from the second line because minj�k EFn emj(W; �
�
n) + r

inf
Fn

< 0 for n large implies

minj�k EFn emj(W; �
�
n) < 0 for n large, since r

inf
Fn
� 0 by (2.5).

The result maxj�k b�j = 1 in (21.33) implies that (21.32) holds because j� j(G(�); ��; `�)j < 1
a.s. (using Assumptions C.4 and C.5, the de�nition of � j(�(�); �; `) in (21.20), and explanation (II)
following (21.29)). This completes the proof of part (f).

Part (g) holds because Tj1 := Gm�j1 + hj1 = �1 for some j � k by (5.8), Assumption CA,

and the notational convention in (5.6).

Next, we prove part (h). We have Tnj(�n)!p hj1 = �1 for some j � k by parts (a) and (g)
and Ainfn !d A

inf
1 (�) 2 R by parts (b) and (c). Thus,

'n := min
j�k

(Tnj(�n) +A
inf
n )!p �1: (21.34)

Using this, we obtain

Sn := Sn(�n) = S
�
Tn(�n) +A

inf
n 1k;

b
n(�n)� = j'nj�S �[Tn(�n) +Ainfn 1k]=j'nj; b
n(�n)�
� j'nj�min

j�k
S
�
cj ; b
n(�n)� = j'nj��min

j�k
S (cj ;
1) + op(1)

�
!p 1; (21.35)
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where cj is a k-vector of 1�s but with �1 as its jth element, the second equality holds by (5.2),
the third equality holds with � > 0 by Assumption S.3, the inequality holds with probability that

goes to one as n ! 1 (wp!1) because (Tnj(�n) + Ainfn )=j'nj = �1 for some j � k wp!1 by the
de�nition of 'n and 'n !p �1; S(m;
) is nonincreasing in m for all 
 2 	 by Assumption S.1(i),
and [Tn(�n) + Ainfn 1k]=j'nj < 1 8j � k; the last equality holds by Assumptions C.6 and S.1(iii),

and the convergence holds because minj�k S (cj ;
1) > 0 by Assumption S.2 and the fact that cj

has a negative element for all j � k; j'nj !p 1 and � > 0:

Lastly, the results in parts (a)�(e) hold jointly because they are all based on the convergence

result in Assumption C.5, which establishes part (i). �

22 Asymptotic Rejection Probabilities of SPUR1 Tests

The �rst subsection of this section provides a theorem, Theorem 22.1, that is the key ingredient

to the proofs of Theorems 7.1 and 12.1. It provides asymptotic NRP bounds, asymptotic n�1=2-local

power bounds, and consistency results for the nominal level � SPUR1 test �n;SPUR1(�n); de�ned

in (4.4), under drifting subsequences of distributions and parameter values. The second subsection

states several lemmas that are used in the proof of Theorem 22.1. The third subsection provides

the proof of Theorem 22.1 using these lemmas.

To establish the asymptotic properties of bootstrap critical values for a given sequence of dis-

tributions fFngn�1; it is convenient to have a single probability space (
;F ; P5) on which all of
the random vectors fWigi�n for n � 1 and the bootstrap random variables (or vectors) f�igi�n for
all n � 1 are de�ned. Since Fn changes with n; this requires that we consider triangular arrays of
random vectors, not sequences. Let fWnigi�n;n�1 := fWni : i � n; n � 1g be a triangular array
of random vectors on (
;F ; P5) such that, for each n � 1; fWnigi�n has the same distribution as
fWigi�n � Fn: Analogously, let f�nigi�n;n�1 be a triangular array of bootstrap random variables

(or vectors) on (
;F ; P5) such that for each n � 1; f�nigi�n has the same distribution as f�igi�n
and f�nigi�n;n�1 is independent of fWnigi�n;n�1:

For notational simplicity, but with some abuse of notation, we let all of the statistics being

considered, including Sn; S�n(�n); and bcn(�n; 1��); which are de�ned as functions of fWigi�n � Fn
and f�igi�n; also denote the corresponding statistics de�ned when using the triangular arrays
fWnigi�n;n�1 and f�nigi�n;n�1: For events that only depend on n random vectors for a single n;

such as S�n(�n) 2 Bn for some �xed set Bn � R; we have P5(S�n(�n) 2 Bn) = PFn(S�n(�n) 2 Bn):
But, for events that depend on statistics for multiple values of n; such as fS�n(�n)gn�1; we use
the probability space (
;F ; P5): In particular, when we condition on the entire triangular array
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fWnigi�n;n�1; we need to use (
;F ; P5):

22.1 Statement of Theorem 22.1

Let f��n(�) 2 R2k : � 2 �g be a bootstrap version of the empirical process (�mn (�)0; �
�y
n (�)0)0

de�ned in (2.12) and (21.1). It is de�ned as follows:

��n(�) := (�m�n (�)0; ���n (�)
0)0; where

�m�nj (�) := n1=2
� em�

nj(�)� bmnj(�)
�
; em�

nj(�) :=
m�
nj(�)b�nj(�) ; m�

nj(�) := n
�1

nX
i=1

mj(W
�
i ; �);

���nj (�) := n1=2

 b��2nj(�)b�2nj(�) � 1
!
; b��2nj(�) := n�1 nX

i=1

(mj(W
�
i ; �)�m�

nj(�))
2 8j � k;

�m�n (�) = (�m�n1 (�); :::; �
m�
nk (�))

0; and ���n (�) = (�
��
n1(�); :::; �

��
nk(�))

0: (22.1)

We employ the following bootstrap convergence (BC) assumption.

Assumption BC.6. f��n(�)jfWnigi�n;n�1g ) G(�) a.s.[P5]; where G(�) is as in Assumption C.5.

Assumption BC.6 is veri�ed below for i.i.d. observations using Lemma D.2(8) of BCS under

Assumptions A.1�A.4. To allow the general results to apply to non-i.i.d. observations, including

time series observations, we employ Assumption BC.6 here, rather than impose Assumptions A.1�

A.4.

The following theorem uses S1; which is de�ned in (5.11). The distribution of S1 is the

asymptotic distribution of the SPUR test statistic, see Theorem 5.3. The theorem also uses

cL1;EGMS(1 � �) and cU1;EGMS(1 � �); which are de�ned just below (12.7) and are the 1 � �
quantiles of the asymptotic distributions of the lower and upper bounds on the EGMS bootstrap

statistic S�n;EGMS(�) de�ned in (12.4)�(12.7).

Theorem 22.1 For � 2 (0; 1) and for sequences fFngn�1 and f�ngn�1 that satisfy Assumptions
A.0, A.6, BC.1, BC.2, BC.6, C.1�C.8, and S.1 for a subsequence fpngn�1 in place of fngn�1; there
exists a subsequence fangn�1 of fpngn�1 for which the nominal level � SPUR1 test �n;SPUR1(�n)
for testing H0 : �n 2 �I(Fn) satis�es

(a) lim supn!1 PFan (�an;SPUR1(�an) = 1) � P (S1 > cL1;EGMS(1� �)) provided Assumptions
A.5, BC.3, and NLA hold for the subsequence fpngn�1 in place of fngn�1;

(b) lim infn!1 PFan (�an;SPUR1(�an) = 1) � P (S1 > cU1;EGMS(1� �)) provided Assumptions
A.10, BC.4, BC.5, and NLA hold for the subsequence fpngn�1 in place of fngn�1;

(c) lim supn!1 PFan (�an;SPUR1(�an) = 1) � � provided Assumptions A.5, A.7, BC.3, and N

hold for the subsequence fpngn�1 in place of fngn�1; and
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(d) lim infn!1 PFan (�an;SPUR1(�an) = 1) = 1 provided Assumptions A.10, BC.4, CA, S.2, and

S.3 hold for the subsequence fpngn�1 in place of fngn�1:

Comments. (i). Theorem 22.1(a) and (b) provide upper and lower bounds, respectively, on the

asymptotic power of the SPUR1 test under null and n�1=2-local-alternative distributions for certain

subsequences.

(ii). Theorem 22.1(c) shows that the nominal level � SPUR1 test has asymptotic NRP�s equal

to � or less for certain subsequences. Theorem 22.1(c) also holds without imposing Assumption

BC.1 and with sd1j1(�) := 1 in Assumption BC.2. The proof of this is given following the proof

of Theorem 22.1.

(iii). Theorem 22.1(d) establishes that the SPUR1 test �n;SPUR1(�n) is consistent for certain

subsequences under Assumption CA, which includes all �xed alternatives, as well as (drifting) local

alternatives that deviate from the null by more than n�1=2-local alternatives.

(iv). When Theorem 22.1 is used below to prove Theorems 7.1 and 12.1, the subsequences

that are employed are ones in which the lim supn!1 and lim infn!1 in Theorem 22.1 are actually

limits as n!1:

22.2 Lemmas Used in the Proof of Theorem 22.1

Lemma 22.2 below provides upper and lower bounds on the asymptotic rejection probabilities

of a test based on the SPUR test statistic and a generic bootstrap critical value under drifting

sequences of distributions and parameters values under high-level conditions, namely, Assumptions

CV.1�CV.3. The method employed is somewhat similar to that of Theorem 4.1 of BCS. Next,

in Lemmas 22.3�22.5 below, we verify these high-level conditions for the EGMS bootstrap critical

value, which is de�ned in Section 4.1.

Let S�n(�) denote a nonnegative generic bootstrap (or some other) statistic that is used to

calculate a critical value, such as S�n(�) := S�n;EGMS(�) in (6.3). The bootstrap statistic S
�
n(�)

depends on fWigi�n and on some other independent random variables f�igi�n that are used to
construct the bootstrap sample. Let bcn(�; 1 � �) be the 1 � � conditional quantile of S�n(�) given
fWigi�n for � 2 (0; 1): Let �n(�n) denote the nominal level � test that rejects H0 : �n 2 �I(Fn) if

Sn(�n) > bcn(�n; 1� �): (22.2)

Let X �ST Y denote that X is stochastically greater than or equal to Y: That is, P (Y > x) �
P (X > x) for all x 2 R:

To establish the asymptotic rejection probability results, we assume the existence of sequences
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of bounding random variables fS�Ln(�n)gn�1 for which S�Ln(�n) � S�n(�n) for almost all realizations
of the bootstrap random variables wp!1 with respect to the randomness in the sample and likewise
for some upper-bound random variables fS�Un(�n)gn�1:

Assumption CV.1. There exist nonnegative random variables fS�Ln(�n)gn�1 such that

(i) Pr(S�Ln(�n) � S�n(�n)jfWnigi�n;n�1) = 1 wp!1 and (ii) fS�Ln(�n)jfWnigi�n;n�1g !d S
�
L1

a.s.[P5] for some S�L1 2 R a.s. that does not depend on the conditioning value of fWnigi�n;n�1:27

Assumption CV.2. S�L1 satis�es S�L1 �ST S1:

Assumption CV.3. There exist nonnegative random variables fS�Un(�n)gn�1 such that

(i) Pr(S�Un(�n) � S�n(�n)jfWnigi�n;n�1) = 1 wp!1 and (ii) fS�Un(�n)jfWnigi�n;n�1g !d S
�
U1

a.s.[P5] for some S�U1 2 R a.s. that does not depend on the conditioning value of fWnigi�n;n�1:

Assumptions CV.1 and CV.3 are used to obtain upper and lower bounds, respectively, on as-

ymptotic rejection probabilities under null and n�1=2-local alternative distributions. For example,

when Assumption CV.1 is employed with S�n(�n) = S
�
n;EGMS(�n); we de�ne the statistic S

�
Ln(�n) to

equal S�Ln;EGMS(�n) in (12.4), which is de�ned using inf�2��nI (Fn)
(where ��nI (Fn) is nonrandom),

whereas S�n;EGMS(�n) is de�ned using inf�2b�n (where b�n is random) and several other simpli�ca-
tions. These changes lead to simpler asymptotic behavior of S�Ln(�n) than S

�
n(�n): The same is true

when Assumption CV.3 is employed with S�n(�n) = S�n;EGMS(�n) and S
�
Un(�n) = S�Un;EGMS(�n)

(de�ned in (12.6)).

Assumption CV.2 is only employed in conjunction with Assumption N, i.e., when S1 is an

asymptotic null distribution of Sn: Under Assumption LA, the distribution of S1 is larger than

under Assumption N and S�L1 �ST S1 typically fails.

Let cL1(1� �) and cU1(1� �) denote the 1� � quantiles of S�L1 and S�U1; respectively.

Lemma 22.2 Suppose that under fFngn�1 and f�ngn�1; Assumptions A.0, C.1�C.7, and S.1(iii)
hold. For � 2 (0; 1); let �n(�n) be the nominal level � test de�ned in (22.2). Then,

(a) lim sup
n!1

PFn(�n(�n) = 1) � P (S1 > cL1(1 � �)) provided Assumptions CV.1 and NLA
hold,

(b) lim sup
n!1

PFn(�n(�n) = 1) � P (S1 > cU1(1 � �)) provided Assumptions CV.3, BC.5, and
NLA hold,

(c) lim sup
n!1

PFn(�n(�n) = 1) � � provided Assumptions A.7, CV.1, CV.2, N, and S.1(ii) hold,
and

(d) lim sup
n!1

PFn(�n(�n) = 1) = 1 provided Assumptions CA, CV.3, S.2, and S.3 hold.

27 In Assumption CV.1(ii), fS�Ln(�n)jfWnigi�n;n�1g !d S
�
L1 a.s.[P5] means P5(S�Ln(�n)!d S

�
L1jfWnigi�n;n�1)

:= P5(f! : S�Ln(�n)!d S
�
L1jfWni(!)gi�n;n�1g) = 1:
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Comment. For any subsequence fangn�1 of fngn�1; Lemma 22.2 holds with an in place of n
throughout, including the assumptions. (The proof just needs to be changed by replacing n by an

throughout.)

The next three lemmas verify Assumptions CV.1�CV.3 for the EGMS critical values employed

by the SPUR1 tests �n;SPUR1(�n): More precisely, given any subsequence fpngn�1 of fngn�1; the
lemmas verify Assumptions CV.1�CV.3 when these assumptions are de�ned for some subsequence

fangn�1 of fpngn�1; rather than for fngn�1:
The EGMS critical values are based on the bootstrap random variables S�n;EGMS(�n): In the

following lemmas, the �lower bound�random variables S�Ln;EGMS(�); T
�
Lnj;EGMS(�); and A

� inf
Ln;EGMS

are de�ned in (12.4); the asymptotic distributions of these random variables S�L1;EGMS ; T
�
Lj1;EGMS ;

and A� infL1;EGMS are de�ned in (12.5); the �upper bound� random variables S�Un;EGMS(�);

T �Unj;EGMS(�); and A
� inf
Un;EGMS are de�ned in (12.6); and the asymptotic distributions of the latter

random variables S�U1;EGMS ; T
�
Uj1;EGMS ; and A

� inf
U1;EGMS are de�ned in (12.7). As above, we as-

sume that all of the statistics are functions of the triangular arrays fWnigi�n;n�1 and f�nigi�n;n�1
that are de�ned on a single probability space (
;F ; P5):

The following lemma provides the asymptotic distributions of S�Ln;EGMS(�n) and S
�
Un;EGMS(�n):

Lemma 22.3 For sequences fFngn�1 and f�ngn�1 that satisfy Assumptions A.0, A.5, A.6, BC.1�
BC.3, BC.6, C.1, C.2, C.4�C.7, and S.1 for a subsequence fpngn�1 in place of fngn�1; there exists
a subsequence fangn�1 of fpngn�1 for which (a) fT �Lanj;EGMS(�an)jfWnigi�n;n�1g !d T

�
Lj1;EGMS

a.s.[P5] 8j � k; (b) fA� infLan;EGMS jfWnigi�n;n�1g!d A
� inf
L1;EGMS a.s.[P5]; (c) fS�Lan;EGMS(�an)j

fWnigi�n;n�1g !d S
�
L1;EGMS a.s.[P5] and S

�
L1;EGMS 2 [0;1) a.s., and (d) parts (a)�(c) hold

with U in place of L throughout and Assumptions A.10 and BC.4 in place of Assumptions A.5 and

BC.3.

Comment. Lemma 22.3(c) and (d) verify the convergence results in Assumptions CV.1(ii) and

CV.3(ii) for the subsequences fS�Lan;EGMS(�an)gn�1 and fS�Uan;EGMS(�an)gn�1; respectively.

The following lemma veri�es Assumptions CV.1(i) and CV.3(i) for a subsequence fpngn�1 of
fngn�1:

Lemma 22.4 For sequences fFngn�1 and f�ngn�1 that satisfy Assumptions A.0, A.5, A.6, BC.1,
BC.3, C.4, C.5, C.7, and S.1(i) for a subsequence fpngn�1 in place of fngn�1;
(a) PFpn (T

�
Lpnj;EGMS(�pn) � T �pnj;EGMS(�pn)jfWnigi�n;n�1) = 1 8j � k wp!1, (b) PFpn (A� infLpn;EGMS

� A� infpn;EGMS jfWnigi�n;n�1) = 1 wp!1, (c) PFpn (S�Lpn;EGMS(�n) � S�pn;EGMS(�n)jfWnigi�n;n�1)
= 1 wp!1, and (d) parts (a)�(c) hold with U in place of L throughout, the inequalities reversed

throughout, and Assumptions A.10 and BC.4 in place of Assumptions A.5 and BC.3.
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The following lemma veri�es Assumption CV.2 with S�L1 = S�L1;EGMS for sequences f�ngn�1
of null parameter values (i.e., under Assumption N).

Lemma 22.5 For sequences fFngn�1 and f�ngn�1 that satisfy Assumptions A.5, A.6, BC.1�
BC.3, C.1, C.3�C.5, C.8, N, and S.1(i) for a subsequence fpngn�1 in place of fngn�1; we have
S�L1;EGMS � SI1 for all sample realizations.

22.3 Proof of Theorem 22.1

Proof of Theorem 22.1. Given any subsequence fpngn�1 of fngn�1; we take the subsequence
fangn�1 of fpngn�1 as in Lemma 22.3. We apply Lemma 22.2 with S�n(�n); S�Ln(�n); and S�Un(�n)
in Lemma 22.2 and Assumptions CV.1 and CV.3 equal to S�n;EGMS(�n); S

�
Ln;EGMS(�n); and

S�Un;EGMS(�n); respectively, and with the subsequence fangn�1 in place of fngn�1 (see the Comment
following Lemma 22.2), which establishes all of the results of the theorem. All of the assumptions

in parts (a)�(d) of Lemma 22.2, which need to hold with fangn�1 in place of fngn�1; are imposed
in the corresponding parts (a)�(d) of the theorem based on fngn�1; except Assumptions CV.1�
CV.3. The assumptions based on fngn�1 imply those based on fangn�1: Thus, it remains to verify
Assumption CV.1 (de�ned using fangn�1 in place of fngn�1) in parts (a) and (c) of Theorem 22.1,

Assumption CV.2 in part (c), and Assumption CV.3 (de�ned using fangn�1 in place of fngn�1) in
parts (b) and (d).

As required by Assumptions CV.1 and CV.3, S�Ln;EGMS(�n) � 0 and S�Un;EGMS(�n) � 0 by

Assumption S.1(ii).

The assumptions of parts (a) and (c) of the theorem include all of the assumptions imposed

in Lemmas 22.3(c) and 22.4(c). Lemma 22.3(c) veri�es the convergence result of Assumption

CV.1(ii) for the subsequence fangn�1 with S�L1 = S�L1;EGMS and the requirement of Assumption

CV.1(ii) that S�L1 = S�L1;EGMS 2 [0;1) a.s. Lemma 22.4(c) veri�es Assumption CV.1(i) for the
subsequence fpngn�1; and hence, also for its subsequence fangn�1: The requirement of Assumption
CV.1(ii) that �S�L1 = S�L1;EGMS does not depend on the conditioning value of fWnigi�n;n�1�
holds by the de�nition of S�L1;EGMS in (12.5). Hence, Assumption CV.1 (de�ned using fangn�1
in place of fngn�1) holds in parts (a) and (c) of the theorem.

Assumption CV.2 holds in part (c) of Theorem 22.1 with S�L1 = S�L1;EGMS by Lemma 22.5,

because part (c) imposes all of the assumptions of Lemma 22.5.

The assumptions of parts (b) and (d) of the theorem include all of the assumptions imposed

in Lemmas 22.3(d) and 22.4(d). Lemma 22.3(d) veri�es the convergence result of Assumption

CV.3(ii) for the subsequence fangn�1 with S�U1 = S�U1;EGMS and the requirement of Assumption

CV.3(ii) that S�U1 = S�U1;EGMS 2 [0;1) a.s. Lemma 22.4(d) veri�es Assumption CV.3(i). The
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requirement of Assumption CV.3(ii) that �S�U1 = S�U1;EGMS does not depend on the conditioning

value of fWnigi�n;n�1�holds by the de�nition of S�U1;EGMS in (12.7). Hence, Assumption CV.3

(de�ned using fangn�1 in place of fngn�1) holds in parts (b) and (d) of the theorem. This completes
the proof. �

Next, we show that Theorem 22.1(c) also holds without imposing Assumption BC.1 and with

sd1j1(�) := 1 in Assumption BC.2, as stated in Comment (ii) to Theorem 22.1. Consider the

bootstrap statistic S�n;EGMS(�) de�ned using sd
�
anj(�) := 1 for a = 1; 3 and using '

�
j rather than 'j

(where '�j and 'j are de�ned in Assumption A.5) for j � k: We claim that this adjusted statistic

is stochastically less than or equal to the original statistic S�n;EGMS(�) de�ned in Section 4.1. This

implies that the bootstrap critical value based on the adjusted S�n;EGMS(�) statistic is less than or

equal to that based on the original S�n;EGMS(�) statistic. In turn this implies that if the test based

on the adjusted S�n;EGMS(�) statistic satis�es the result of Theorem 22.1(c), then the test based on

the original S�n;EGMS(�) statistic also satis�es the result of Theorem 22.1(c), which is the desired

result.

The test based on the adjusted statistic S�n;EGMS(�) satis�es the assumptions of Theorem 22.1(c)

if the original test does with sd1j1(�) := 1 in Assumption BC.2 and with the exception that the

adjusted test does not require Assumption BC.1 because no statistics sd�anj(�) for a = 1; 3 and

j � k appear in its de�nition. Hence, under the assumptions of Theorem 22.1(c), but without

imposing Assumption BC.1 and with sd1j1(�) := 1 in Assumption BC.2, the adjusted test satis�es

the result of Theorem 22.1(c).

To complete the argument above, it remains to show that the adjusted statistic S�n;EGMS(�) is

stochastically less than or equal to the original statistic S�n;EGMS(�): This holds if the adjusted ver-

sions of T �nj;EGMS(�) and A
�
n;EGMS(�) are greater than or equal to the original statistics T

�
nj;EGMS(�)

and A�n;EGMS(�) statistics, respectively, de�ned in Section 4.1, with probability one. The adjusted

version of T �nj;EGMS(�) depends on

'�j (�nj(�)); where �nj(�) := �
�1
n n

1=2(bmnj(�) + brn(�)); (22.3)

whereas the original version of T �nj;EGMS(�) depends on 'j(�n(�); b
n(�)): We have
'�j (�nj(�)) � '�j (�nj(�)) � 'j(�n(�); b
n(�)); (22.4)

where the �rst inequality holds because (i) if �nj(�) < 0; then '
�
j (�nj(�)) = 0 by Assumption A.5(i)

and (ii) and '�j (�nj(�)) � 0 by Assumptions A.5(ii) and (iii), and (ii) if �nj(�) � 0; then �nj(�) �
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�nj(�) := (sd
�
1nj(�)�n)

�1n1=2(bmnj(�) + brn(�)) (since sd�1nj(�) � 1 by its de�nition following (6.4))
and '�j (�) is nondecreasing by Assumption A.5(ii), and the second inequality holds by Assumption
A.5(i). Equation (22.4) gives the desired "greater than or equal to" result for the adjusted versus

original T �nj;EGMS(�) statistics. A completely analogous argument gives the desired "greater than

or equal to" result for the adjusted versus original A�n;EGMS(�) statistics.

23 Proofs of Lemmas 22.2�22.5

23.1 Proof of Lemma 22.2

Proof of Lemma 22.2. For notational simplicity, let S�n := S�n(�n); S
�
Ln := S�Ln(�n); S

�
Un :=

S�Un(�n); cL1 := cL1(1 � �); cU1 := cU1(1 � �); bcn := bcn(�n; 1 � �); and c1 := c1(1 � �):
Let bcLn and bcUn denote the 1 � � conditional quantiles of S�Ln(�n) and S�Un(�n); respectively,
given fWnigi�n;n�1: Note that bcLn and bcUn are random and depend on the conditioning value of

fWnigi�n;n�1; whereas cL1 and cU1 denote the 1 � � conditional (or unconditional) quantiles
of S�L1 and S�U1; respectively, which are nonrandom and do not depend on fWnigi�n;n�1 by
Assumptions CV.1(ii) and CV.3(ii), respectively.

First, we prove part (a). If S�Ln(�n) � S�n(�n) with probability one (with respect to the bootstrap
randomness) conditional on fWnigi�n;n�1; then the 1 � � conditional quantile of S�Ln(�n) given
fWnigi�n;n�1; which is bcLn; is less than or equal to the 1� � conditional quantile of S�n(�n) given
fWnigi�n;n�1; which is bcn; as a consequence of the de�nition of a quantile. By Assumption CV.1(i),
the �if� condition in the previous sentence holds wp!1 (with respect to the randomness in the
sample, i.e., fWnigi�n;n�1): Hence, Assumption CV.1(i) implies that bcLn � bcn wp!1, which implies
that bcLn � bcn + op(1); where the op(1) term refers to randomness in the sample. This gives

lim sup
n!1

PFn(�n(�n) = 1) = lim sup
n!1

PFn(Sn > bcn)
� lim sup

n!1
PFn(Sn + op(1) > bcLn): (23.1)

Now, take an arbitrary " > 0: Then, there exists "� 2 (0; ") such that cL1 � "� is a continuity
point of S�L1: We have

lim sup
n!1

P5(S
�
Ln � cL1 � "jfWnigi�n;n�1)

� lim sup
n!1

P5(S
�
Ln � cL1 � "�jfWnigi�n;n�1) = P (S�L1 � cL1 � "�) < 1� � (23.2)

a.s.[P5]; where the equality holds by Assumption CV.1(ii) and the second inequality holds by the
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de�nition of the quantile cL1:

Note that�
lim sup
n!1

P5(S
�
Ln � cL1 � "jfWnigi�n;n�1) < 1� �

�
� lim inf

n!1
fcL1 � " � bcLng ; (23.3)

because for a sample path ! 2 
 included in the left-hand side event, we must have that cL1� " �bcLn for large n (where lim infn!1Bn := [k�1\n�kBn for Bn � 
): Taking expectations, we obtain
P5

�
lim sup
n!1

P5(S
�
Ln � cL1 � "jfWnigi�n;n�1) < 1� �

�
� P5

�
lim inf
n!1

fcL1 � " � bcLng�
� lim inf

n!1
P5 (cL1 � " � bcLn)

= lim inf
n!1

PFn (cL1 � " � bcLn) ; (23.4)

where the second inequality follows from P5(lim infn!1Bn) � lim infn!1 P5(Bn) for Bn 2 F
(which holds because P5(lim infn!1Bn) = limk!1 P5(\n�kBn) � limk!1 infn�k P5(Bn)) and

the equality holds because bcLn depends only on fWnigi�n or fWigi�n; which have the same dis-
tribution. Since the probability on the �rst line of (23.4) equals one by (23.2), we have shown

that

lim inf
n!1

PFn (cL1 � " � bcLn) = 1 8" > 0: (23.5)

Next, we have

lim sup
n!1

PFn(Sn + op(1) > bcLn)
= lim sup

n!1
PFn(Sn + op(1) > bcLn & cL1 � " � bcLn)

� lim sup
n!1

PFn(Sn + op(1) > cL1 � " & cL1 � " � bcLn)
= lim sup

n!1
PFn(Sn + op(1) > cL1 � "); (23.6)

where the two equalities hold using (23.5) and the inequality is straightforward.

By Theorem 5.3(e), we have

Sn !d S1 (23.7)

using Assumptions A.0, C.1�C.7, S.1(iii), and NLA. Consider a sequence f"mgm�1 such that c1�"m
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is a continuity point of S1 for all m � 1 and "m # 0: Then, we have

lim sup
n!1

PFn(Sn + op(1) > bcLn) � lim
m!1

lim sup
n!1

PFn(Sn + op(1) > cL1 � "m)

= lim
m!1

P (S1 > cL1 � "m)

= P (S1 > cL1); (23.8)

where the inequality holds by (23.6), the �rst equality holds by (23.7) and the de�nition of f"mgm�1;
and the second equality holds by the monotone convergence theorem. This and (23.1) complete

the proof of part (a).

Next, we prove part (c). By Assumption S.1(ii), there are two possible cases: (i) c1 = 0 and

(ii) c1 > 0: First, if c1 = 0; the result follows immediately because

lim sup
n!1

PFn(Sn > bcn) � lim sup
n!1

PFn(Sn > 0) � �; (23.9)

where the �rst inequality holds because bcn � 0 (since S�n is nonnegative by assumption) and the

second holds by Assumption A.7(ii).

Second, we consider the case where c1 > 0: By (23.1), it su¢ ces to show

lim sup
n!1

PFn(Sn + op(1) > bcLn) � �: (23.10)

By Lemma 20.1, under Assumption C.3, Assumption N implies NLA. Hence, the assumptions of

part (c) imply those of part (a) and (23.8) holds under the assumptions of part (c). Using (23.8),

we have

lim sup
n!1

PFn(Sn + op(1) > bcLn) � P (S1 > cL1) � P (S1 > c1) = �; (23.11)

where the second inequality holds by Assumption CV.2 because S�L1 �ST S1 implies that cL1 �
c1; and the equality holds by Assumption A.7(i).

Now, we prove part (b). The proof is similar to that of part (a), but there are some di¤erences,

such as the need for Assumption BC.5, and we use parts of the proof of part (c) in the proof of

part (d), so we provide the details. By the same argument as in the paragraph containing (23.1),

but with Assumption CV.3 in place of Assumption CV.1, we obtain bcUn � bcn wp!1, which implies

51



that

bcUn � bcn + op(1); and
lim inf
n!1

PFn(�n(�n) = 1) = lim inf
n!1

PFn(Sn > bcn)
� lim inf

n!1
PFn(Sn + op(1) > bcUn); (23.12)

where the op(1) terms refer to randomness in the sample, not bootstrap randomness.

Consider an arbitrary " > 0: There exists an "� 2 (0; ") such that cU1+ "� is a continuity point
of S�U1: We have

lim inf
n!1

P5(S
�
Un � cU1 + "jfWnigi�n;n�1)

� lim inf
n!1

P5(S
�
Un � cU1 + "�jfWnigi�n;n�1)

= P (S�U1 � cU1 + "�)

> 1� � (23.13)

a.s.[P5]; where the equality holds by Assumption CV.3(ii) and the second inequality holds by

Assumption BC.5 and the de�nition of the quantile cU1:

Note that

n
lim inf
n!1

P5(S
�
Un � cU1 + "jfWnigi�n;n�1) > 1� �

o
� lim inf

n!1
fcU1 + " � bcUng ; (23.14)

because for a sample path ! 2 
 included in the left-hand side event, we must have that cU1+" �bcUn for large n: Taking expectations, we obtain
P5
�
lim inf
n!1

P5(S
�
Un � cU1 + "jfWnigi�n;n�1) > 1� �

�
� P5

�
lim inf
n!1

fcU1 + " � bcUng�
� lim inf

n!1
P5 (cU1 + " � bcUn)

= lim inf
n!1

PFn (cU1 + " � bcUn) (23.15)

for the same reasons as in (23.4). Since the probability on the �rst line of (23.15) equals one by

(23.13), we have shown that

lim inf
n!1

PFn (cU1 + " � bcUn) = 1: (23.16)
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Next, we have

lim inf
n!1

PFn(Sn + op(1) > bcUn)
= lim inf

n!1
PFn(Sn + op(1) > bcUn & cU1 + " � bcUn)

� lim inf
n!1

PFn(Sn + op(1) > cU1 + " & cU1 + " � bcUn)
= lim inf

n!1
PFn(Sn + op(1) > cU1 + "); (23.17)

where the two equalities hold using (23.16) and the inequality is straightforward.

Consider a sequence f"mgm�1 such that c1 + "m is a continuity point of S1 for all m � 1 and
"m # 0: Then, we have

lim inf
n!1

PFn(Sn + op(1) > bcUn) � lim
m!1

lim inf
n!1

PFn(Sn + op(1) > cU1 + "m)

= lim
m!1

P (S1 > cU1 + "m)

= P (S1 > cU1); (23.18)

where the inequality holds by (23.17), the �rst equality holds by (23.7) and the de�nition of

f"mgm�1; and the second equality holds by the monotone convergence theorem. This and (23.12)
complete the proof of part (b).

Lastly, we establish part (d). By Theorem 5.3(h), Sn !p 1 (using Assumptions A.0, C.1�C.7,

CA, S.1(iii), S.2, and S.3). Hence, it su¢ ces to show that bcn = Op(1): First, suppose the support
of S�U1 is bounded above. Then, there exists c <1 such that P (S�U1 � c) = 1: For any " > 0; we
have

P5(S
�
Un � c+ "jfWnigi�n;n�1)! P (S�U1 � c+ ") = 1 a.s.[P5] (23.19)

by Assumption CV.3(ii). We obtain

lim inf
n!1

PFn(S
�
n � c+ ") � lim inf

n!1
PFn(S

�
Un � c+ ")

= lim inf
n!1

E5P5(S
�
Un � c+ "jfWnigi�n;n�1) = 1; (23.20)

where the inequality holds by Assumption CV.3(i), the �rst equality holds by the law of iterated

expectations, and the second equality holds by the dominated convergence theorem using (23.19).

Since bcn is the 1 � � quantile of S�n; (23.20) implies that bcn � c + 2" wp!1, which implies thatbcn = Op(1); as desired.
Next, we consider the case where the support of S�U1 is not bounded above. Then, there exists

�1 < � such that the 1 � �1 quantile of S�U1 exceeds the 1 � � quantile of S�U1 (and is �nite

53



because S�U1 2 R a.s. by Assumption CV.3(ii)). By (23.13), but with cU1 de�ned to equal the

1 � �1 quantile of S�U1; rather than the 1 � � quantile, we obtain the result of (23.13) (with the
rhs being 1� � and without imposing Assumption BC.5). In consequence, (23.14)�(23.16) give

lim inf
n!1

PFn (cU1 + " � bcUn) = 1; (23.21)

where cU1 is the 1� �1 quantile of S�U1: Since cU1 <1; this yields bcUn = Op(1): By (23.12), we
have

lim inf
n!1

PFn(�n(�n) = 1) � lim infn!1
PFn(Sn + op(1) > bcUn) = 1; (23.22)

where the equality holds because Sn !p 1 by Theorem 5.3(h) and bcUn = Op(1): This completes
the proof of part (d). �

23.2 Proof of Lemma 22.3

Proof of Lemma 22.3. First, we prove part (a). For all j � k; we have

n1=2 (bmnj(�)� EFn emj(W; �)) = O
�
p (1); (23.23)

by (21.5) and Assumption C.5. Hence, we obtain

sup
�2�

jbmnj(�)� emj(�)j = op(1) (23.24)

using Assumption C.4. Now, we use the result that for any sequence of random variables fXngn�1
on (
;F ; P5) for which Xn !p 0; there exists a subsequence fcngn�1 of fngn�1 such that Xcn ! 0

a.s.[P5]; e.g., see Theorem 9.2.1 of Dudley (1989). We apply this result with the original sequence

fngn�1 replaced by some subsequence fpngn�1: Using this and (23.24), given any subsequence
fpngn�1 of fngn�1; there exists a subsequence fcngn�1 of fpngn�1 such that

sup
�2�

jbmcnj(�)� emj(�)j = o(1) a.s.[P5]: (23.25)

By the continuity of emj(�) (Assumption C.4) and �n ! �1 (Assumption C.1), (23.25) gives

bmcnj(�cn)! emj(�1) a.s.[P5]: (23.26)
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Conditional on fWnigi�n;n�1; for the subsequence fcngn�1; we have

c1=2n

�b��cnj(�cn)b�cnj(�cn) � 1
�
!d

1

2
G�j1 a.s.[P5] 8j � k: (23.27)

This holds by the delta method, as in (21.16) with b��2nj(�n) and b�2nj(�n) in place of b�2nj(�n) and
�2Fnj(�n); respectively, and using Assumption BC.6 in place of (21.15).

Next, suppressing the dependence of various quantities on �cn for notational simplicity, we have:

conditional on fWnigi�n;n�1;

T ��cnj : = c1=2n

�
m�
cnjb��cnj � mcnjb�cnj

�
=

�b�cnjb��cnj
��

c1=2n

�
m�
cnjb�cnj � mcnjb�cnj

�
� mcnjb�cnj c1=2n b��cnj � b�cnjb�cnj

�
=

�b�cnjb��cnj
��

�m�cnj � bmcnjc
1=2
n

b��cnj � b�cnjb�cnj
�

!d G
m
j1 �

1

2
emj1G

�
j1 =: G

m�
j1 a.s.[P5] (23.28)

8j � k; where emj1 = emj(�1) by (5.5), Gmj1 := Gmj (�1) and G
�
j1 := G�j (�1) by (5.7), the second

equality holds by algebra, the third equality uses the de�nition of �m�cnj(�cn) in (6.1), the convergence

holds by (23.26), (23.27), and Assumptions BC.6 and C.1, and the last equality holds by (5.7).

We have T �Lnj;EGMS(�n) = T
��
nj + '

�
j (�nj(�n)) by (6.1), (12.4), and (23.28), and T

�
Lj1;EGMS =

Gm�j1 + '�j (h
�
j1) by (12.5) for all j � k: By (23.28), there exists a subsequence fcngn�1 of fpngn�1

for which fT ��cnj(�cn)jfWnigi�n;n�1g !d G
m�
j1 a.s.[P5]: Hence, part (a) holds if there exists a subse-

quence fangn�1 of fcngn�1 for which

f'�j (�anj(�an))jfWnigi�n;n�1g ! '�j (h
�
j1) a.s.[P5] 8j � k: (23.29)
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We have

�nj(�n)

:= (sd�1nj(�n)�n)
�1n1=2 (bmnj(�n) + brn(�n))

= (sd�1nj(�n)�n)
�1n1=2 (bmnj(�n)� EFn emj(W; �n))

+(sd�1nj(�n)�n)
�1
�
[n1=2(bmnj(�n)� EFn emj(W; �n)) + n

1=2EFn emj(W; �n)]�
�

�[n1=2EFn emj(W; �n)]�
�

+(sd�1nj(�n)�n)
�1n1=2(EFn emj(W; �n) + rFn(�n))

!p h
�
j1; (23.30)

where the �rst equality holds by de�nition, see (12.4), the second equality holds using (2.6) and

(4.1), and the convergence holds using sd�1nj(�n)=sd1j1 !p 1 by Assumption BC.1 and sd1j1 :=

sd1j1(�1); n1=2(bmnj(�n)�EFn emj(W; �n)) = Op(1) (by (23.23)), j�(�; c)j := j[� + c]� � [c]�j � j�j
for �; c 2 R (by (21.7)), �n ! 1 (by Assumption A.6(i)), and Assumption BC.2 (which relies on

Assumption BC.1 for the de�nition of sd1j1(�)):

Equation (23.30) and the continuity of '�j (�j) at all �j 2 R[+1] (by Assumption A.5(ii)) give
d('�j (�nj(�n)); '

�
j (h

�
j1))!p 0 for all j � k: Now, we use the result that for any sequence of random

variables fXngn�1 on (
;F ; P5) for which Xn !p 0; there exists a subsequence fangn�1 of fcngn�1
such that Xan ! 0 a.s.[P5]: Thus, there exists a subsequence fangn�1 of fpngn�1 such that (23.29)
holds, which completes the proof of part (a).

Now, we prove part (b). De�ne

�m��nj (�) := �m�nj (�)�
1

2
emj(�)�

��
nj (�) 8j � k: (23.31)

We show that under fFngn�1; conditional on fWnigi�n;n�1; for the subsequence fcngn�1 of fpngn�1
de�ned above,

sup
�2�

jb��cnj(�)� �m��cnj (�)j = op(1) a.s.[P5]: (23.32)

This, Assumption BC.6, (23.25), and the continuous mapping theorem give: under fFngn�1; con-
ditional on fWnigi�n;n�1; for the subsequence fcngn�1 of fpngn�1;

b��cnj(�) = �m��cnj (�) + o
�
p (1)) Gm�j (�) a.s.[P5]: (23.33)

The proof of (23.32) is quite similar to (21.4) and (21.5), but with bootstrap quantities in place

of original sample quantities. By the same argument as in (21.4) with b��nj(�) and b�nj(�) in place
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of b�nj(�) and �Fnj(�); respectively, we obtain
n1=2

�b��nj(�)b�nj(�) � 1
�
=
1

2
���nj (�) + o

�
p (1) a.s.[P5]; (23.34)

using Assumption BC.6 in place of Assumption C.5 and (21.2). Next, we have: conditional on

fWnigi�n;n�1; for the subsequence fcngn�1;

b��cnj(�) := c1=2n

�
m�
cnj
(�)b��cnj(�) � bmcnj(�)

�
=
b�cnj(�)b��cnj(�)

�
�m�cnj(�)� bmcnj(�)c

1=2
n

�b��cnj(�)b�cnj(�) � 1
��

= (1 + o�p (1))

�
�m�cnj(�)�

1

2
emj(�)�

��
cnj(�) + o

�
p (1)

�
= �m��cnj (�) + o

�
p (1) a.s.[P5];

(23.35)

where the third equality holds by (23.25) and (23.34), and the fourth equality holds by the de�nition

of �m��nj (�) in (23.31) and Assumption BC.6. This proves (23.32).

Next, we have

n1=2 bmnj(�) =
�Fnj(�)b�nj(�)

�
�mnj(�) + n

1=2EFn emj(W; �)
�

= b!nj(�) + n1=2EFn emj(W; �); where (23.36)

b!nj(�) := �Fnj(�)b�nj(�) �mnj(�)� n1=2
� b�nj(�)
�Fnj(�)

� 1
�
�Fnj(�)b�nj(�) EFn emj(W; �) = O

�
p (1);

where �mnj(�) denotes the jth element of �
m
n (�) de�ned in (2.12), and the second equality on the

last line holds by Assumptions C.4 and C.5 and (21.4). Now, we have

n1=2
�
[bmnj(�)]� � brinfn � = n1=2([bmnj(�)]� � [EF emj(W; �)]�)� n1=2(brinfn � rinfFn) + bnj(�)

= bdnj(�) + bnj(�); wherebdnj(�) := �(b!nj(�); n1=2EFn emj(W; �))� n1=2(brinfn � rinfFn) = O
�
p (1); (23.37)

the �rst equality uses the de�nition bnj(�) := n1=2([EFn emj(W; �)]� � rinfFn) in (12.1), the second
equality uses �(�; c) := [� + c]� � [c]�; and the second equality on the last line holds because
j�(�; c)j � jvj 8�; c 2 R by (21.7), b!nj(�) = O�p (1) by (23.36), and n1=2(brinfn � rinfFn) := A

inf
n = Op(1)

by (5.2) and Theorem 5.3(b) (which uses Assumptions A.0, C.4, C.5, and C.7).

For b�j = (sd3j1(�)�n)
�1n1=2([EFn emj(W; �)]� � rinfFn) as in �

��n
n;Fn

(de�ned in (12.3)), we obtain

�bnj(�) := (sd
�
3nj(�)�n)

�1n1=2
�
[bmnj(�)]� � brinfn � = (sd�3nj(�)�n)�1 bdnj(�) + sd3j1(�)sd�3nj(�)

b�j ; (23.38)
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where the �rst equality holds by de�nition, see (12.4), and the second equality holds by (23.37).

Using (23.36), (23.38), and the de�nition of ���nn;Fn
; we can write A� infLn;EGMS in (12.4) as

A� infLn;EGMS = inf
(�;b;b�;`;j�)2���nn;Fn

max
j�k

0@�(b��nj(�); `j) + 1(j 6= j�)bj (23.39)

+1(j = j�)'�j

 
(sd�3nj(�)�n)

�1 bdnj(�) + sd3j1(�)
sd�3nj(�)

b�j

!!
;

where (�; bj ; b
�
j ; `j ; j

�) 2 �
��n
n;Fn

implies that bj := bnj(�); b
�
j := (sd3j1(�)�n)�1bnj(�);

`j := n
1=2EFn emj(W; �); and j� := jn(�) and �(�; c) := [� + c]�� [c]�:

We have (sd�3nj(�)�n)
�1 bdnj(�) = o�p (1) by (23.36), (23.37), Assumption A.6(i), and sd�3nj(�) �

1 (by its de�nition following (6.8)). Also, by Assumption BC.1 and sd�3nj(�) � 1; we have

sup�2� jsd3j1(�)=sd�3nj(�) � 1j !p 0: Hence, by the same argument as used to establish (23.25),

there exists a subsequence fangn�1 (di¤erent from that in the proof of part (a)) of fcngn�1 for
which

sup
�2�

j(sd�3anj(�)�an)
�1 bdanj(�)j ! 0 a.s.[P5] and sup

�2�

����� sd3j1(�)sd�3anj(�)
� 1
�����! 0 a.s.[P5]: (23.40)

In addition, by (23.33), under fFngn�1; conditional on fWnigi�n;n�1; the subsequence fangn�1
of fpngn�1 is such that

b��anj(�) = �m��anj (�) + o
�
p (1)) Gm�j (�) a.s.[P5]: (23.41)

De�ne

�!
A � inf
Ln;EGMS := inf

(�;b;b�;`;j�)2���nn;Fn

max
j�k

�
�(�m��nj (�); `j) + 1(j 6= j�)bj

+1(j = j�)'�j (�1nj(�) + �2nj(�)b
�
j )
�
; where

�1nj(�) := (sd�3nj(�)�n)
�1 bdnj(�) and �2nj(�) := sd3j1(�)

sd�3anj(�)
; (23.42)

�sn(�) = (�sn1(�); :::; �snk(�))
0 for s = 1; 2; and �n(�) = (�1n(�)

0; �2n(�)
0)0:

By (23.39), (23.41), and (23.42), we obtain:

A� infLan;EGMS =
�!
A � inf
Lan;EGMS + op(1) a.s.[P5]; (23.43)

using the continuity of '�j (�j) on R
k
[�1] by Assumption A.5(ii) and the continuity of �(�; c) on
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R � R[�1] under d: Hence, to establish part (b), it su¢ ces to show: conditional on fWnigi�n;n�1;
for the subsequence fangn�1;

n�!
A � inf
Lan;EGMS jfWnigi�n;n�1

o
!d A

� inf
L1;EGMS a.s.[P5]: (23.44)

To prove (23.44), we use a similar (but more complicated) argument to that used to prove

Theorem 5.3(b) based on the extended continuous mapping theorem. As above, let D be the space
of functions from � to R2k: Let D0 be the subset of uniformly continuous functions in D: For non-
stochastic functions �(�) 2 D and �(�) : �! R2k with �(�) = (�11(�); :::; �1k(�); �21(�); :::; �2k(�))

0;

de�ne

egn(�(�); �(�)) := inf
(�;b;b�;`;j�)2���nn;Fn

max
j�k

�
� j(�(�); �; `) + 1(j 6= j�)bj

+1(j = j�)'�j�(�1j�(�) + �2j�(�)b
�
j�)
�
;

eg(�(�); �(�)) := inf
(�;b;b�;`;j�)2��I

max
j�k

�
� j(�(�); �; `) + 1(j 6= j�)bj

+1(j = j�)'�j�(�1j�(�) + �2j�(�)b
�
j�)
�
; (23.45)

where �(�) = (�m(�)0; ��(�)0)0; �mj (�) and �
�
j (�) denote the jth elements of �

m(�) and ��(�);

respectively, and � j(�(�); �; `) is de�ned in (21.20). Note that

�!
A � inf
Ln;EGMS = egn(��n(�); �n(�)) and A� infL1;EGMS = eg(G(�); �1(�)); (23.46)

where �1(�) is the constant function that equals (00k; 10k)0 for all � 2 �:
We want to show fegan(��an(�); �an(�))jfWnigi�n;n�1g !d eg(G(�); �1(�)) a.s.[P5]; where

f��an(�)jfWnigi�n;n�1g ) G(�) a.s.[P5] by Assumption BC.6 and sup�2� jj�an(�) � �1(�)jj = o(1)
a.s.[P5] by (23.40) and the de�nition of �n(�) following (23.42). We use the extended CMT to

establish this result. For notational simplicity, we employ n; rather than an; in the proof of this

result. The extended CMT requires showing that for any deterministic sequences f�n(�) 2 Dgn�1
and f�n(�) : � ! R2kgn�1 and deterministic �(�) 2 D0 such that sup�2� jj�n(�) � �(�)jj ! 0 and

sup�2� jj�n(�)� �1(�)jj ! 0; we have egn(�n(�); �n(�))! eg(�(�); �1(�)): (For notational simplicity,
we abuse notation here and consider a deterministic �n(�) that di¤ers from the random �n(�) in
Assumption C.5.) Once we have shown this, the proof of part (b) is complete.

The proof of egn(�n(�); �n(�))! eg(�(�); �1(�)) is an extension of the proof of gn(�n(�))! g(�(�))
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in (21.22)�(21.28) in the proof of Theorem 5.3(b). We show

(i) lim inf
n!1

egn(�n(�); �n(�)) � g(�(�); �1(�)) and

(ii) lim sup
n!1

egn(�n(�); �n(�)) � g(�(�); �1(�)): (23.47)

First, we establish (i) in (23.47). There exists a subsequence fcngn�1 of fngn�1 and a sequence
f(�cn ; bcn ; b

�
cn ; `cn ; j

�
cn) 2 �

��cn
cn;Fcn

gn�1 such that

lim inf
n!1

egn(�n(�); �n(�)) = lim
n!1

egcn(�cn(�); �cn(�)) and
lim
n!1

egcn(�cn(�); �cn(�)) = lim
n!1

max
j�k

�
� j(�cn(�); �cn ; `cn) + 1(j 6= j

�
cn)bcnj (23.48)

+ 1(j = j
�
cn)'

�
j
�
cn

(�1j�cn
(�cn) + �2j�cn

(�cn)b
�
cnj

�
cn
)
�
;

where bcnj ; b
�
cnj ; and `cnj denote the jth elements of bcn ; b

�
cn ; and `cn ; respectively. Also, there

exists a subsequence fqngn�1 of fcngn�1 and (�; b; b
�
; `; j

�
) 2 ��R3k[�1] � f1; :::; kg such that

d
�
(�qn ; bqn ; b

�
qn ; `qn ; j

�
qn); (�; b; b

�
; `; j

�
)
�
! 0; (23.49)

where d is de�ned following (5.2), by compactness of the metric space (� � R3k
[�1]

� f1; :::; kg; d)
under Assumption A.0(i). We have (�; b; b

�
; `; j

�
) 2 ��I by the same argument as used to show

(e�;eb; è) 2 � in (20.7) (but without the requirement that �qn 2 �I(Fqn) 8n � 1) using (23.49) and
Assumption BC.3.

For all j � k;
lim
n!1

� j(�qn(�); �qn ; `qn) = � j(�(�); �; `) 2 R (23.50)

by (21.25) using �qn(�)! �(�) uniformly over � 2 � (by assumption) and (23.49).
In addition, we have, for all j � k;

1(j 6= j
�
qn)bqnj ! 1(j 6= j�)bj and

1(j = j
�
qn)'

�
j
�
qn

(�1j�qn
(�qn) + �2j�qn

(�qn)b
�
qnj

�
qn
)! 1(j = j

�
)'�
j
�(b

�
j
�); (23.51)

where the �rst line holds by (23.49) and the second line holds by (23.49), sup�2� jj�qn(�) �
�1(�)jj ! 0; and the continuity of '�

j
(�) on Rk[�1] under d by Assumption A.5(ii), and the fact that

d('�
j
�
qn

(�1j�qn
(�qn)+�2j�qn

(�qn)b
�
qnj

�
qn
); '�

j
�(b

�
j
�))! 0 implies that '�

j
�
qn

(�1j�qn
(�qn)+�2j�qn

(�qn)b
�
qnj

�
qn
)!

'�
j
�(b

�
j
�) (as a sequence of numbers in R[+1]) even if '�j�(b

�
j
�) = +1:
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Now, we have

lim inf
n!1

egn(�n(�); �n(�))
= lim

n!1
max
j�k

�
� j(�qn(�); �qn ; `qn) + 1(j 6= j

�
qn)bqnj + 1(j = j

�
qn)'

�
j
�
qn

(�1j�qn
(�qn) + �2j�qn

(�qn)b
�
qnj

�
qn
)
�

= max
j�k

�
� j(�(�); �; `) + 1(j 6= j

�
)bj + 1(j = j

�
)'�
j
�(b

�
j
�)
�

� inf
(�;b;b�;`;j�)2��I

max
j�k

�
� j(�(�); �; `) + 1(j 6= j�)bj + 1(j = j�)'�j�(b�j�)

�
:= eg(�(�); �1(�)); (23.52)

where the �rst equality holds by (23.48) and the fact that fqngn�1 is a subsequence of fcngn�1; the
second equality holds by (23.50) (using the notational convention that � + c = c when � 2 R and
c = �1 if bj = �1 for any j � k) and (23.51), the inequality holds because (�; b; b�; `; j�) 2 ��I
by the paragraph containing (23.49), and the last equality holds by the de�nition of eg(�(�); �(�)) in
(23.45) with �(�) = �1(�): This establishes result (i) in (23.47).

Next, we establish result (ii) in (23.47). There exists (�y; by; by�; `y; jy�) 2 ��I such that

eg(�(�); �1(�)) = max
j�k

�
� j(�(�); �y; `y) + 1(j 6= jy�)byj + 1(j = j

y�)'�jy�(b
y�
jy�
)
�

(23.53)

because ��I is compact under the metric d de�ned following (5.2) with a� = d� + 3k + 1 (since it

is assumed to be an element of S(� � R3k[�1] � f1; :::; kg)) and � j(�(�); �; `) + 1(j 6= j
�)bj + 1(j =

j�)'�j�(b
�
j�) is a continuous function of (�; b; b

�; `; j�) under d that takes values in the extended real

line using Assumption A.5(ii). By Assumption BC.3, ���nn;Fn
!H ��I : Hence, there is a sequence

f(�yn; b
y
n; b

y�
n ; `

y
n; j

y�
n ) 2 ���nn;Fn

gn�1 such that d((�yn; b
y
n; b

y�
n ; `

y
n; j

y�
n ); (�

y; by; by�; `y; jy�))! 0:We obtain

lim sup
n!1

egn(�n(�); �n(�))
:= lim sup

n!1
inf

(�;b;b�;`;j�)2���nn;Fn

max
j�k

(� j(�n(�); �; `) + 1(j 6= j�)bj

+1(j = j�)'�j�(�1nj�(�) + �2nj�(�)b
�
j�)
�

� lim sup
n!1

max
j�k

�
� j(�n(�); �yn; `yn) + 1(j 6= jy�n )b

y
nj + 1(j = j

y�
n )'

�
jy�n
(�
1njy�n

(�) + �
2njy�n

(�)by�
jy�n
)
�

= max
j�k

�
� j(�(�); �y; `y) + 1(j 6= jy�)byj + 1(j = j

y�)'�jy�(b
y�
jy�
)
�

= eg(�(�); �1(�)); (23.54)

where the inequality holds because (�yn; b
y
n; b

y�
n ; `

y
n; j

y�
n ) 2 ���nn;Fn

8n � 1; the second equality holds

using d((�yn; b
y
n; b

y�
n ; `

y
n; j

y�
n ); (�

y; by; by�; `y; jy�)) ! 0; (23.50) with (�n(�); �yn; `
y
n) and (�(�); �y; `y) in

place of (�qn(�); �qn ; `qn) and (�(�); �; `); respectively, and (23.51) with (�
y
nj ; b

y
nj ; b

y�
nj ; `

y
nj ; j

y�
n ) and
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(�yj ; b
y
j ; b

y�
j ; `

y
j ; j

y�) in place of (�qnj ; bqnj ; b
�
qnj ; `qnj ; j

�
qn) and (�j ; bj ; b

�
j ; `j ; j

�
); respectively, and the

last equality holds by (23.53). This establishes result (ii) in (23.47) and completes the proof of part

(b).

For notational simplicity, we let the subsequence fangn�1 of fpngn�1 di¤er in the proofs of parts
(a) and (b). However, by taking successive subsequences across the proofs of parts (a) and (b), we

can obtain a single subsequence fangn�1 of fpngn�1 for which both parts (a) and (b) (and part
(d)) hold, as stated in the theorem.

The convergence result of part (c) follows from parts (a) and (b), b
n(�n)!p 
1 (by Assumption

C.6), the continuity of S(m;
) by Assumption S.1(iii), and the continuous mapping theorem. We

have S�L1;EGMS � 0 a.s. by Assumption S.1(ii). The function S(m;
) can be arbitrarily large

only if mj is arbitrarily small (i.e., mj is negative and arbitrarily large in absolute value) for some

j � k; by Assumption S.1(i). We have T �Lj1;EGMS and A
� inf
L1;EGMS (de�ned in (12.5)) are in R

a.s. by Assumptions A.5, C.4, and C.5, and �(Gm�j (�); `j) � �jGm�j (�)j (because �(�; c) � �j�j by
(21.7). This yields S�L1;EGMS <1 a.s., which completes the proof of part (c).

Lastly, we prove part (d) of the theorem. The random variables T �Unj;EGMS(�) and T
�
Uj1;EGMS

(de�ned in (12.6) and (12.7)) are the same as T �Lnj;EGMS(�) and T
�
Lj1;EGMS (de�ned in (12.4)

and (12.5)), respectively, except the former are de�ned using '��j ; which satis�es Assumption A.10,

whereas the latter are de�ned using '�j ; which satis�es Assumption A.5. In consequence, the proof

of part (a) also applies with U in place of L:

Next, we consider the U version of part (b) that is stated in part (d). By de�nition, see (12.4)

and (12.6), we have

A� infUn;EGMS := inf
�2��UnI (Fn)

min
j�k

�
�[b��nj(�)]+ + '��j (�bnj(�))� ; whereas

A� infLn;EGMS := inf
�2��nI (Fn)

max
j�k

�
�(b��nj(�); n1=2EFn emj(W; �)) + 1(j 6= jn(�))bnj(�)

+1(j = jn(�))'
�
j (�

b
nj(�))

�
: (23.55)

In consequence, analogously to (23.39), we can write A� infUn;EGMS as

A� infUn;EGMS = inf
(�;b;b�)2���UnUn;Fn

min
j�k

 
�[b��nj(�)]+ + '��j

 
(sd�3nj(�)�n)

�1 bdnj(�) + sd3j1(�)
sd�3nj(�)

b�j

!!
;

(23.56)

where ���UnUn;Fn
is de�ned just below (12.3) with � = �Un:
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By the same arguments as in (23.39)�(23.43), using Assumption A.10 in place of A.5, we obtain

A� infUan;EGMS =
�!
A � inf
Uan;EGMS + o(1) a.s.[P5]; where (23.57)

�!
A � inf
Un;EGMS := inf

(�;b;b�)2���UnUn;Fn

min
j�k

�
�[�m��nj (�)]+ + '

��
j (�1nj(�) + �2nj(�)b

�
j )
�
:

In place of the de�nitions in (23.45), for nonstochastic functions �(�) 2 D and �(�) : � ! R2k

with �(�) = (�11(�); :::; �1k(�); �21(�); :::; �2k(�))
0; we now de�ne

gUn(�(�); �(�)) := inf
(�;b;b�)2���UnUn;Fn

min
j�k

�
�[�m�j (�)]+ + '

��
j (�1j(�) + �2j(�)b

�
j )
�
and

gU (�(�); �(�)) := inf
(�;b;b�)2��U;I

min
j�k

�
�[�m�j (�)]+ + '

��
j (�1j(�) + �2j(�)b

�
j )
�
; where

�m�j (�) := �mj (�)�
1

2
emj(�)�

�
j (�): (23.58)

The remainder of the proof of the U version of part (b) goes through as in the proof of the L version

given above, using Assumptions A.10 and BC.4 in place of A.5 and BC.3.

The U version of part (c) that is stated in part (d) goes through as in the proof of the L version

above, using Assumption A.10 in place of A.5. This completes the proof of part (d). �

23.3 Proof of Lemma 22.4

The proof of Lemma 22.4 uses the following lemma. The set ��I (F ) for a positive constant �

is de�ned in (5.4) by ��I (F ) := f� 2 � : maxj�k[EF emj(W; �) + r
inf
F ]� � �=n1=2g: The set b�n is

de�ned in (BC.5) by b�n := f� 2 � : maxj�k[bmnj(�) + brinfn ]� � �n=n1=2g:
Lemma 23.1 Suppose that under fFngn�1 and f�ngn�1, Assumptions A.0, C.4, C.5, and C.7 are
satis�ed.

(a) Let f�ngn�1 and f�ngn�1 be any sequences of positive constants that satisfy �n ! 1 and

�n=�n ! 0: Then,

PFn(b�n � ��nI (Fn))! 1:

(b) Let f�Ungn�1 and f�ngn�1 be any sequences of positive constants that satisfy �Un !1 and

�n=�Un ! 0: Then,

PFn(�
�Un
I (Fn) � b�n)! 1:

Proof of Lemma 22.4. For notational simplicity, we replace fpngn�1 by fngn�1 throughout the
proof of this lemma. Part (c) follows from parts (a) and (b) using the de�nitions of S�Ln;EGMS(�n)
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and S�n;EGMS(�n) in (12.4) and (6.3), respectively, and Assumption S.1(i), which requires that

S(m;
) is nonincreasing in m 2 Rk 8(m;
) 2 Rk[+1] �	:
To prove part (a), note that T �Lnj;EGMS(�) and T

�
nj;EGMS(�) only di¤er because the former

depends on '�j (�nj(�)); whereas the latter depends on 'j(�n(�); b
n(�)): By Assumption A.5(i),
'�j (�j) � 'j(�;
) 8j � k; 8(�;
) 2 Rk[+1] � 	: This gives '

�
j (�nj(�)) � 'j(�n(�); b
n(�)) for

all sample and bootstrap realizations. Hence, T �Lnj;EGMS(�n) � T �nj;EGMS(�n) for all sample and

bootstrap realizations, 8j � k; 8n � 1; and part (a) holds.
Next, we prove part (b). By de�nition, see (12.4) and (6.11), we have

A� infLn;EGMS := inf
�2��nI (Fn)

max
j�k

�
�(b��nj(�); n1=2EFn emj(W; �)) + 1(j 6= jn(�))bnj(�)

+1(j = jn(�))'
�
j (�

b
nj(�))

�
and

A� infn;EGMS := inf
�2b�n min

j12 bJn(�)maxj�k

�b��nj;EGMS(�) + 1(j 6= j1)bbnj;EGMS(�)

+1(j = j1)'j(�
b
n(�);

b
n(�))� : (23.59)

The bootstrap random variables A� infLn;EGMS and A
� inf
n;EGMS di¤er in �ve ways. Speci�cally, A

� inf
Ln;EGMS

versus (vs.) A� infn;EGMS are de�ned with (i) inf�2��nI (Fn)
vs. inf

�2b�n ; (ii) '�j (�bnj(�)) vs. 'j(�bn(�);b
n(�)); (iii) bnj(�) vs. bbnj;EGMS(�); (iv) �(b��nj(�); n1=2EFn emj(W; �)) vs. b��nj;EGMS(�); and (v)

j = jn(�) or j 6= jn(�) vs. minj12 bJn(�) with j = j1 or j 6= j1:
Lemma 23.1(a) applies because Lemma 22.4 imposes Assumptions A.0, C.4, C.5, and C.7,

�n ! 1 by Assumptions A.6(ii), and �n=�n ! 0 by Assumption BC.3. By Lemma 23.1(a), for

any bootstrap random function K�
n(�);

Pr

 
inf

�2��nI (Fn)
K�
n(�) � inf

�2b�nK
�
n(�)

����� fWnigi�n;n�1

!
= 1 wp! 1. (23.60)

By Assumption A.5(i), we have

'�j (�
b
n(�)) � 'j(�bn(�); b
n(�)) 8� 2 � (23.61)

for all sample and bootstrap realizations.

We have

bbnj;EGMS(�) := n
1=2
�
[bmnj(�)]� � brinfn �� sd�3nj(�)�n = bdnj(�) + bnj(�)� sd�3nj(�)�n; and so,

sup
�2�

�bbnj;EGMS(�)� bnj(�)
�
� sup
�2�

�bdnj(�)� �n�!p �1; (23.62)
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where the �rst equality in the �rst line holds by de�nition, see (6.8), the second equality holds by

(23.37), and the second line follows from the �rst line, the last line of (23.37), sd�3nj(�) � 1 by

de�nition, and �n ! 1 (by Assumption A.6(i)) and the inequality on the second line holds for

all bootstrap realizations because bdnj(�) does not depend on any bootstrap quantities. Equation
(23.62) implies that

sup
�2�

(bbnj;EGMS(�)� bnj(�)) � 0 8j � k; for all bootstrap realizations, wp! 1. (23.63)

Now, we show

Pr
�
�(b��nj(�); n1=2EFn emj(W; �)) � b��nj;EGMS(�) 8� 2 �jfWnigi�n;n�1

�
= 1 wp! 1. (23.64)

By the footnote following (6.7), �(�; c) is nondecreasing in c for � > 0 and nonincreasing in c

for � < 0: Using this and the de�nition of �(�; c1; c2) in (6.6), we obtain: for � � 0; �(�; c1; c2) =
�(�; c1) � �(�; c) 8c � c1: And, for � < 0; �(�; c1; c2) = �(�; c2) � �(�; c) 8c � c2: These results
yield: for all b��nj(�) � 0;

b��nj;EGMS(�) := �
�b��nj(�); n1=2 bmnj(�)� sd�2nj(�)�n; n1=2 bmnj(�) + sd

�
2nj(�)�n

�
= �

�b��nj(�); n1=2 bmnj(�)� sd�2nj(�)�n
�

� �
�b��nj(�); n1=2 bmnj(�)� �n

�
� �

�b��nj(�); n1=2EFn emj(W; �)
�

(23.65)

provided n1=2EFn emj(W; �) � n1=2 bmnj(�)��n; where the �rst inequality holds because sd�2nj(�) � 1
and �(v; c) is nondecreasing in c for v � 0; as stated above. Similarly, for b��nj(�) < 0;

b��nj;EGMS(�) = �
�b��nj(�); n1=2 bmnj(�) + sd

�
2nj(�)�n

�
� �

�b��nj(�); n1=2 bmnj(�)�n

�
� �

�b��nj(�); n1=2EFn emj(W; �)
�

(23.66)

provided n1=2EFn emj(W; �) � n1=2 bmnj(�) + �n:

By (23.36), which uses Assumptions C.4 and C.5, n1=2 bmnj(�) = n1=2EFn emj(W; �) + O
�
p (1):

Hence,

lim inf
n!1

PFn

�
n1=2EFn emj(W; �) 2

h
n1=2 bmnj(�)� �n; n1=2 bmnj(�) + �n

i
8� 2 �

�
= 1 (23.67)
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using �n !1 by Assumption A.6(i). The combination of (23.65)�(23.67) establishes (23.64).

De�ne

A
� inf
Ln;EGMS := inf

�2��nI (Fn)
min

j12 bJn(�)maxj�k

�
�(b��nj(�); n1=2EFn emj(W; �)) + 1(j 6= j1)bnj(�)

+1(j = j1)'
�
j (�

b
nj(�))

�
: (23.68)

Combining (23.60)�(23.64) and (23.68) gives

Pr(A
� inf
Ln;EGMS � A� infn;EGMS jfWnigi�n;n�1) = 1 wp! 1. (23.69)

Next, we show that

Pr(jn(�) 2 bJn(�) 8� 2 �jfWnigi�n;n�1) = 1 wp! 1, (23.70)

where jn(�) := argmaxj�k bnj(�) is de�ned in (12.1) and bJn(�) := fj 2 f1; :::; kg : brnj(�) �brn(�) � sd�4nj(�)n
�1=2�ng is de�ned in (6.10). We have jn(�) 2 bJn(�) i¤ brnjn(�)(�) � brn(�)

� sd�4njn(�)(�)n
�1=2�n if n1=2(brnjn(�)(�)� brinfn )� n1=2(brn(�)� brinfn ) � ��n because sd�4njn(�)(�) � 1

by de�nition. By (23.37), n1=2(brnj(�)� brinfn ) = bnj(�) +O�p (1) 8j � k (since brnj(�) = [bmnj(�)]� by

(4.1)). Hence, n1=2(maxj�k brnj(�)� brinfn ) = maxj�k bnj(�) +O�p (1): Taking j = jn(�); these results
combine to give n1=2(brnjn(�)(�)� brinfn )� n1=2(brn(�)� brinfn ) = bnjn(�)(�)�maxj�k bnj(�) +O�p (1) =
O�p (1) using the de�nition of jn(�); where the O

�
p (1) term does not depend on any bootstrap

quantities. Since O�p (1) � ��n holds wp!1 using Assumption A.6(i) (i.e., �n ! 1); (23.70) is
proved.

For a suitably de�ned random function w(j1; �) on f1; :::; kg � �; A� infLn;EGMS and A
� inf
Ln;EGMS

can be written as inf�2��nI (Fn)
w(jn(�); �) and inf�2��nI (Fn)

min
j12 bJn(�)w(j1; �); respectively. Since

w(jn(�); �) � min
j12 bJn(�)w(j1; �) when jn(�) 2 bJn(�) and the latter event satis�es (23.70), we

obtain

Pr(A
� inf
Ln;EGMS � A

� inf
Ln;EGMS jfWnigi�n;n�1) = 1 wp! 1. (23.71)

This and (23.69) establish the result of part (b) of the lemma.

Now, we prove part (d) of the lemma. The proofs of the U versions of parts (c) and (a) stated

in part (d) are the same as the L version proofs given above with the inequalities reversed using

Assumption A.10(i) in place of A.5(i).
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The proof of the U version of part (b) stated in part (d) is as follows. By de�nition, see (12.6),

A� infUn;EGMS := inf
�2��UnI (Fn)

min
j�k

�
�[b��nj(�)]+ + '��j (�bnj(�))� (23.72)

= inf
�2��UnI (Fn)

min
j1�k

max
j�k

�
�[b��nj(�)]+ + 1(j 6= j1)(�1) + 1(j = j1)'��j (�bnj(�))� ;

where the second equality holds because on the rhs the max over j � k is attained for j = j1 (since
for j 6= j1 the term in parentheses equals �1):

In contrast, consider A� infn;EGMS ; which is de�ned in (23.59). The bootstrap random variables

A� infUn;EGMS and A
� inf
n;EGMS di¤er in �ve ways. Speci�cally, A

� inf
Un;EGMS vs. A

� inf
n;EGMS are de�ned with

(i) inf�2��UnI (Fn)
vs. inf

�2b�n ; (ii) '��j (�bnj(�)) vs. 'j(�bn(�); b
n(�)); (iii) �1 vs. bbnj;EGMS(�); (iv)

�[b��nj(�)]+ vs. b��nj;EGMS(�); and (v) minj1�k vs. minj12 bJn(�) : Lemma 23.1(b) applies because
Lemma 22.4(d) imposes Assumptions A.0, C.4, C.5, and C.7, �n !1 by Assumptions A.6(ii), and

�Un=�n ! 0 by Assumption BC.4. Hence, by Lemma 23.1(b), for any bootstrap random function

K�
n(�);

Pr

 
inf

�2��UnI (Fn)
K�
n(�) � inf

�2b�nK
�
n(�)

����� fWnigi�n;n�1

!
= 1 wp! 1. (23.73)

By Assumption A.10(i),

'��j (�
b
n(�)) � 'j(�bn(�); b
n(�)) 8� 2 � (23.74)

for all sample and bootstrap realizations. Since bbnj;EGMS(�) 2 R[�1]; we have �1 � bbnj;EGMS(�)

8� 2 � for all sample and bootstrap realizations.
For all b��nj(�) � 0;
b��nj;EGMS(�) = �(b��nj(�); n1=2 bmnj(�)� sd�2nj(�)�n) � �(b��nj(�);�1) = �b��nj(�); (23.75)

where the �rst equality holds by the de�nition of b��nj;EGMS(�) in (6.7), the inequality holds because

�(�; c) is nondecreasing in c for � � 0 by the footnote following (6.7), and the last equality uses

�(�;�1) = �� by (5.6). Similarly, for all b��nj(�) < 0;
b��nj;EGMS(�) = �(b��nj(�); n1=2 bmnj(�) + sd

�
2nj(�)�n) � �(b��nj(�);+1) = 0; (23.76)

where the �rst equality holds by the de�nition of b��nj;EGMS(�); the inequality holds because �(�; c) is

nonincreasing in c for � < 0 by the footnote following (6.7), and the last equality uses �(�;+1) = 0
by (5.6). Hence, for all sample and bootstrap realizations, b��nj;EGMS(�) � �[b��nj(�)]+:

67



Because bJn(�) � f1; :::; kg; the minj1�k is less than or equal to the minj12 bJn(�) : In consequence
of the results above, we obtain Pr(A� infUn;EGMS � A� infn;EGMS jfWnigi�n;n�1) = 1 wp!1, which estab-
lishes the U version of part (b) stated in part (d) of the lemma. �

Proof of Lemma 23.1. First, we prove part (a). We have

PFn(b�n � ��nI (Fn)) � PFn

 
sup

�2��nI (Fn)

max
j�k

n1=2[bmnj(�) + brinfn ]� � �n
!

= PFn

 
sup

�2��nI (Fn)

max
j�k

n1=2([bmnj(�)]� � brinfn ) � �n
!
; (23.77)

where the inequality holds by the de�nition of b�n and the equality holds because for b; c � 0;

[a+ b]� � c if and only if [a]� � b � c: To see this, �rst note that [a+ b]� � c and [a]� � b � c are
equivalent to maxf�a� b� c;�cg � 0 and maxf�a� b� c;�b� cg � 0, respectively. The �only
if�part follows by observing that maxf�a� b� c;�cg � maxf�a� b� c;�b� cg. Now, suppose
[a]�� b � c so that either (i) a � 0 or (ii) a < 0 and �a� b � c: If (i) is the case, [a+ b]� = 0 � c;
and if (ii) is the case, [a+ b]� = maxf�a� b; 0g � maxfc; 0g � c:

We have

sup
�2��nI (Fn)

max
j�k

n1=2([bmnj(�)]� � brinfn )
= sup

�2��nI (Fn)

max
j�k

n1=2([bmnj(�)]� � rinfFn) + n
1=2(rinfFn � brinfn )

= sup
�2��nI (Fn)

max
j�k

n1=2([bmnj(�)]� � rinfFn) +Op(1)

= sup
�2��nI (Fn)

max
j�k

�
[�m�nj (�) + n

1=2EFn emj(W; �)]� � [n1=2EFn emj(W; �)]�

+n1=2([EFn emj(W; �)]� � rinfFn)
�
+Op(1)

� sup
�2��nI (Fn)

max
j�k

j�m�nj (�)j+ �n +Op(1)

= Op(1) + �n; (23.78)

where the second equality holds by Theorem 5.3(b) (which requires Assumptions A.0, C.4, C.5,

and C.7), the third equality holds by (21.5) and (21.6), the inequality holds by the de�nition of

�
�n
I (Fn); the same reasoning as given following (23.77), and (21.7), and the last equality holds by

Assumption C.5.
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It follows that

PFn

 
sup

�2��nI (Fn)

max
j�k

n1=2([bmnj(�)]� � brinfn ) � �n
!

� PFn(Op(1) + �n � �n)

= PFn(Op(1=�n) + �n=�n � 1)

! 1; (23.79)

where the convergence holds because �n ! 1 and �n=�n ! 0: Combining this with (23.77) gives

the result of part (a).

Next, we prove part (b). Note that

PFn(�
�Un
I (Fn) � b�n) � PFn

 
sup
�2b�nmaxj�k

n1=2([EFn emj(W; �)]� � rinfFn) � �Un

!
(23.80)

by the de�nition of ��UnI (Fn) and the same reasoning as given following (23.77).

We have

sup
�2b�nmaxj�k

n1=2([EFn emj(W; �)]� � rinfFn)

= sup
�2b�nmaxj�k

n1=2([EFn emj(W; �)]� � [bmnj(�)]� + [bmnj(�)]� � brinfn + brinfn � rinfFn)

= sup
�2b�nmaxj�k

n1=2([EFn emj(W; �)]� � [bmnj(�)]� + [bmnj(�)]� � brinfn ) +Op(1)
� sup

�2b�nmaxj�k
n1=2([EFn emj(W; �)]� � [bmnj(�)]�) + �n +Op(1)

= sup
�2b�nmaxj�k

�
[n1=2EFn emj(W; �)]� � [�m�nj (�) + n1=2EFn emj(W; �)]�

�
+ �n +Op(1)

� sup
�2b�nmaxj�k

���m�nj (�)��+ �n +Op(1)
= Op(1) + �n; (23.81)

where the second equality holds by Theorem 5.3(b) (which requires Assumptions A.0, C.4, C.5, and

C.7), the �rst inequality holds by the de�nition of b�n and the same reasoning as given following
(23.77), the third equality holds by (21.5) and (21.6), the second inequality holds by (21.7), and

the last equality holds by Assumption C.5.
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It follows that

PFn

 
sup
�2b�nmaxj�k

n1=2([EFn emj(W; �)]� � rinfFn) � �Un

!
� PFn(Op(1) + �n � �Un)

= PFn(Op(1=�Un) + �n=�Un � 1)

! 1; (23.82)

where the convergence holds because �Un !1 and �n=�Un ! 0: Combining this with (23.80) gives

the result of part (b). �

23.4 Proof of Lemma 22.5

Proof of Lemma 22.5. Given the de�nitions of S�L1;EGMS and SI1 in (12.5) and (5.11), respec-

tively, and Assumption S.1(i), it su¢ ces to show that T �Lj1;EGMS � Tj1 and A� infL1;EGMS � Ainf1 (�I)
for all sample realizations, where T �Lj1;EGMS ; Tj1; A

� inf
L1;EGMS ; A

inf
1 (�); and �I are de�ned in

(12.5), (5.8), (12.5), (5.10), and Assumption C.8, respectively, using quantities that are de�ned in

Assumptions C.1 and C.3�C.5. We have

T �Lj1;EGMS := G
m�
j1 + '

�
j (h

�
j1) � Gm�j1 + hj1 := Tj1 (23.83)

for all sample realizations, where the inequality holds because (i) hj1 � 0 by Lemma 5.1(a) (which
imposes Assumptions C.3 and N), (ii) '�j (h

�
j1) � hj1 holds immediately if hj1 = 1; and (iii)

if 0 � hj1 < 1; then h�j1 = 0 (since n1=2(EFn emj(W; �n) + r
inf
Fn
) ! hj1 and (sd1nj(�n)�n)�1

�n1=2(EFn emj(W; �n) + r
inf
Fn
) ! h�j1 by Assumptions C.3 and BC.2, sd1nj(�n) � 1=2 for n large,

which holds by Assumption BC.1 and sd�1nj(�n) � 1; and �n !1); h�j1 = 0 implies '�j (h
�
j1) = 0

by Assumption A.5(iii), and hence, '�j (h
�
j1) � hj1:

Now, we show A� infL1;EGMS � Ainf1 (�I):We can write A� infL1;EGMS = inf(�;b;b�;`;j�)2��I KL(�; b; b
�; `;

j�) and Ainf1 (�I) = inf(�;b;`)2�I K(�; b; `) for random functions KL(�) and K(�) de�ned in (23.85)
below. To show A� infL1;EGMS � Ainf1 (�I); it su¢ ces to show that for any (�; b; `) 2 �I there exists
(�; b; b�; `; j�) 2 ��I for which KL(�; b; b�; `; j�) � K(�; b; `) for all sample realizations.

To this end, we claim: Given any (�; b; `) 2 �I ; there exists an element (�; b; b�; `; j�) 2 ��I :
This claim is proved as follows. By Assumption C.8, given any (�; b; `) 2 �I ; there exists a

sequence f(�n; bn; `n) 2 ��nn;Fngn�1 such that d((�n; bn; `n); (�; b; `))! 0; where �n 2 ��nI (Fn) for all
n � 1 by the de�nition of ��nn;Fn following (5.4). Given f�ngn�1; consider the corresponding sequence
f(�n; bn; b�n; `n; j�n) 2 �

��n
n;Fn

gn�1 for ���nn;Fn
de�ned in (12.3), where b�nj := (sd3j1(�n)�n)

�1bnj ; j�n :=
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argmaxj�k bnj ; and j�n is the smallest argmax value if the argmax is not unique. By Assumption

BC.3, ���nn;Fn
!H �

�
I for �

�
I compact (under d): In consequence, there exist a subsequence fungn�1

of fngn�1 and an element (�; b; b�; `; j�) of ��I for which

d((�un ; bun ; b
�
un ; `un ; j

�
un); (�; b; b

�; `; j�))! 0 and (�; b) = (�; b); (23.84)

where the equality holds because d((�n; bn; `n); (�; b; `)) ! 0; which completes the proof of the

claim.

Given any (�; b; `) 2 �I ; take (�; b; b�; `; j�) 2 ��I as in the previous paragraph. Then, we have

KL(�; b; b
�; `; j�) := max

j�k

�
�(Gm�j (�); `j) + 1(j 6= j�)bj + 1(j = j�)'�j�(b�j�)

�
� max

j�k

�
�(Gm�j (�); `j) + bj

�
:= K(�; b; `) (23.85)

for all sample realizations, where the �rst and last equalities hold by the de�nitions of A� infL1;EGMS

and Ainf1 (�I) and the inequality holds because, as we show below, '
�
j�(b

�
j�) � bj� : As argued above,

(23.85) implies that A� infL1;EGMS � Ainf1 (�I); which we set out to prove.
Now, we show '�j�(b

�
j�) � bj� : For notational simplicity, suppose (23.84) holds with n in place

of un: We have j�n ! j� by (23.84), and hence, j�n = j� for n large (because j�n 2 f1; :::; kg);
where j�n := jn(�n) by the de�nition of �

��n
n;Fn

in (12.3) for jn(�n) de�ned in (12.1). We have

bnj ! bj and b�nj ! b�j by (23.84), where bnj = bnj(�n) and b�nj = (sd3j1(�n)�n)�1bnj by the

de�nition of ���nn;Fn
for bnj(�) de�ned in (12.1). Hence, we have bnj�n ! bj� and b�nj�n ! b�j� ; where

b�nj�n = (sd3j
�
n1(�n)�n)

�1bnj�n = (sd3jn(�n)1(�n)�n)
�1bnjn(�n)(�n) � 0 for all n � 1 by (12.2). This,

sd3jn(�n)1(�n) � 1=2 for n large (by Assumption BC.1 and sd�
3njn(�n)

(�) � 1; which holds by its

de�nition following (6.8)), and �n ! 1 (by Assumption A.6(i)) imply that bj� � b�j� � 0: In

addition, it implies that if 0 � bj� < 1; then b�j� = 0 (since �n ! 1): Hence, we obtain: if
0 � bj� < 1; then '�j�(b�j�) = 0 � bj� because '�j�(0) = 0 by Assumption A.5(iii). On the other

hand, if bj� =1; then '�j�(b�j�) � 1 = b�j� by the de�nition of '
�
j (�); which completes the proof of

the lemma. �

24 Proof of Theorem 7.1

The proof of Theorem 7.1 uses the following lemma, which provides su¢ cient conditions for

Assumptions C.5 and C.6 to hold for the case of i.i.d. observations.

Let !u denote uniform convergence over �2:

We assume the covariance kernel converges uniformly.
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Assumption C.9. 
Fn(�; �) !u 
1(�; �) for some continuous R2k�2k-valued function 
1(�; �) on
�2:

The following Lemma is based on Lemma D.2 of BCS.

Lemma 24.1 Assumptions A.0�A.4, C.1, and C.9 imply Assumptions C.5 and C.6 with the co-

variance kernel of G(�) in Assumption C.5 equal to 
1(�; �) and with 
1 in Assumption C.6 equal

to the upper left k � k submatrix of 
1(�1; �1):

Comment. For any subsequence fqngn�1 of fngn�1; Lemma 24.1 holds with qn in place of n
throughout, including the assumptions. (The proof just needs to be changed by replacing n by qn

throughout.)

Proof of Theorem 7.1. First, we prove the result of part (b) for the CSn;SPUR1 CS. Let

�n(�) abbreviate �n;SPUR1(�): There always exist sequences fFngn�1 and f�n 2 �I(Fn)gn�1 and a
subsequence fqngn�1 of fngn�1 such that

lim inf
n!1

inf
F2P

inf
�2�I(F )

PF (�n(�) = 0) = lim infn!1
PFn(�n(�n) = 0) = limPFqn (�qn(�qn) = 0): (24.1)

The left-hand side expression equals the uniform coverage probability in Theorem 7.1(b) using the

de�nition of the SPUR1 CS in (4.5). By (24.1), it su¢ ces to show that the rhs of (24.1) is 1�� or
greater with fqngn�1 replaced by some subsequence fangn�1 of fqngn�1 (because the limit under
the subsequence fangn�1 is the same as the limit under the original subsequence fqngn�1): The rhs
of (24.1) de�ned with fangn�1 is 1�� or greater by Theorem 22.1(c) provided the assumptions of

Theorem 22.1(c) hold for some subsequence fpngn�1 of fqngn�1: Note that Theorem 22.1(c) holds

without imposing Assumption BC.1 and with sd1j1(�) := 1 in Assumption BC.2 by Comment (ii)

following Theorem 22.1(c). Hence, it remains to verify that Assumptions BC.2 (with sd1j1(�) := 1);

BC.3, BC.6, and C.1�C.8 hold for some subsequence fpngn�1 (of fqngn�1) in place of fngn�1
(because Assumptions A.0, A.5�A.7, and S.1, which are imposed in Theorem 22.1(c), are also

imposed in the present theorem, and Assumption N, which is imposed in Theorem 22.1(c), holds

because �an 2 �I(Fan) 8n � 1 in (24.1) by construction).
Under Assumptions A.4 and A.8, by Lemma D.7 of BCS, given fqngn�1; there exists a sub-

sequence fungn�1 of fqngn�1; a continuous Rk�k-valued function 
1 on �2; and a continuous

Rk-valued function em on � for which (i) 
Fun !u 
1; where !u denotes uniform convergence

(over �2 in this case), (ii) EFun em(W; �) !u em(�); and hence, Assumption C.4 holds for the sub-
sequence fungn�1; and (iii) Assumptions C.7, C.8, and BC.3 hold for the subsequence fungn�1:
Strictly speaking, Lemma D.7 of BCS only establishes 
Fun !u 
1 and the subsequence versions
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of Assumptions C.7 and C.8, but EFun em(W; �) !u em(�) and the subsequence version of Assump-
tion BC.3 are established in the same ways as 
Fun !u 
1 (but using Assumption A.8 in place of

Assumption A.4) and the subsequence versions of Assumptions C.7 and C.8, respectively.

Assumption C.1 holds for a subsequence fungn�1 of fungn�1 because f�ungn�1 is a sequence in
the compact set � (by Assumption A.0(i)).

Assumptions C.5 and C.6 hold for the subsequence fungn�1 by applying a subsequence version
of Lemma 24.1, which imposes Assumptions A.0�A.4, C.1, and C.9. Assumptions A.0�A.4 are

imposed in the present theorem and the subsequence version of Assumption C.9 holds by (i) above.

Assumptions C.2, C.3, and BC.2 hold for a subsequence fpngn�1 of fungn�1 because

fu1=2n EFun em(W; �un)gn�1; fu1=2n (EFun em(W; �un) + rinfFun
)gn�1; and f��1unu

1=2
n (EFun em(W; �un) +

rinfFun
)gn�1 are sequences taking values in Rk[�1]; which is compact under d (de�ned following (5.2)

with a� = k):

Assumption BC.6 holds for the subsequence fpngn�1 by Lemma D.2(8) of BCS because As-
sumptions A.1�A.4 of this paper imply Assumptions A.1�A.4 of BCS and 
Fun !u 
1 implies


Fpn !u 
1 (because fpngn�1 is a subsequence of fungn�1):
This concludes the proof that the assumptions employed in Theorem 22.1(c) hold for the sub-

sequence fpngn�1 of fqngn�1; which completes the proof of part (b) for CSn;SPUR1:
The proof of part (a) for the SPUR1 test is essentially the same as that of part (b) for the

SPUR1 CS, but with �0 in place of �n 8n � 1:
Next, we prove part (b) for the SPUR2 CS. Let fFngn�1 and f�ngn�1 denote sequences of

distributions in P for which

lim sup
n!1

sup
F2P

sup
�2�I(F )

PF (�n;SPUR2(�) = 1) = lim sup
n!1

PFn(�n;SPUR2(�n) = 1): (24.2)

Such sequences always exists. The left-hand side expression in (24.2) equals one minus the uniform

coverage probability in Theorem 7.1(b) using the de�nition of the SPUR2 CS in (4.5).

We use the following Bonferroni argument. De�ne

�n;SPUR2(�; r) :=

8<: �n;GMS(�; �2) if r = 0

�n;SPUR1(�; �2) if r > 0:
(24.3)
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Then, �n;SPUR2(�) = min0�r�brn;UP (�1) �n;SPUR2(�; r): We have
lim sup
n!1

PFn(�n;SPUR2(�n) = 1)

� lim sup
n!1

PFn(�n;SPUR2(�n) = 1 & r
inf
Fn � brn;UP (�1))

+lim sup
n!1

PFn(�n;SPUR2(�n) = 1 & r
inf
Fn > brn;UP (�1))

� lim sup
n!1

PFn(�n;SPUR2(�n) = 1 & r
inf
Fn � brn;UP (�1)) + �1

= lim sup
n!1

PFn ( min
0�r�brn;UP �n;SPUR2(�n; r) = 1 & rinfFn � brn;UP (�1)) + �1; (24.4)

where the inequality holds because lim infn!1 PFn(r
inf
Fn
2 [0; brn;UP (�1)]) � 1� �1:

First, consider the case where rinfFn > 0 for all n large. Under the null hypothesis, the rhs of

(24.4) is less than or equal to

lim sup
n!1

PFn(�n;SPUR1(�n; �2) = 1) + �1 � �2 + �1 = �; (24.5)

where the inequality holds because the nominal level �2 test �n;SPUR1(�n; �2) has asymptotic size

�2 or less by Theorem 7.1(b) for the SPUR1 CS (which allows for drifting sequences of null values

�n):

Next, consider the case where rinfFn = 0 for all n large. Under the null hypothesis, the rhs of

(24.4) is less than or equal to

lim sup
n!1

PFn(�n;GMS(�n; �2) = 1) + �1 � �2 + �1 = �; (24.6)

where the inequality holds because the model is correctly speci�ed (i.e., rinfFn = 0) for n large and

the �n;GMS(�n; �2) test has asymptotic size �2 or less in this case. The latter holds by the same

argument as used to prove Theorem 7.1(b) for the SPUR1 CS (which allows for drifting sequences

of null values �n); but with the test statistic Sn(�) de�ned in (4.2) with brinfn replaced by the true

value rinfFn = 0 and with the EGMS bootstrap statistic replaced by the GMS bootstrap statistic

S�n;GMS(�) de�ned just above (4.7), which is suitable because r
inf
Fn
= 0:

The result of part (b) for the SPUR2 CS holds because the rhs of (24.4) for the sequence

fFngn�1 is � or less by considering subsequences of fng where either (24.5) or (24.6) applies.
The proof of part (a) for the SPUR2 test is analogous to that of part (b) for the SPUR2 CS

with �0 in place of �n 8n � 1: �

Proof of Lemma 24.1. Now we verify Assumption C.5 using Lemma D.2(1) of BCS, which

imposes their Assumptions A.1�A.4 and M.2 and 
Fn !u 
1 for some 
1: Assumptions A.1�A.4
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in this paper imply A.1�A.4 in BCS, Assumption A.0(i) is the same as BCS�s M.2, and Assumption

C.9 implies 
Fn !u 
1: Lemma D.2(1) of BCS gives �mn (�) ) Gm(�); whereas Assumption C.5
concerns �n(�) := (�mn (�)0; ��n(�)0)0: However, by the same argument as in the proof of Lemma D.2(1)
applied to �n(�); rather than �mn (�); we obtain

�n(�)) G(�); (24.7)

where G(�) is as in Assumption C.5, using equicontinuity of �n(�) in our Assumption A.2, rather
than of �mn (�) in BCS�s Assumption A.2, and using 4 + a �nite moments in our Assumption A.3,
rather than 2 + a �nite moments in BCS�s Assumption A.3. Hence, Assumption C.5 holds.

Next, we verify Assumption C.6. Lemma D.2(5) of BCS gives sup�2� jjb
n(�)�
111(�; �)jj !p 0;

where 
111(�; �) denotes the upper left k � k submatrix of 
1(�; �); because Assumptions A.1�
A.4 in this paper imply Assumptions A.1�A.4 of BCS and 
Fn !u 
1 by Assumption C.9. By

Assumption C.1, �n ! �1; and by Assumption C.9, 
1(�; �0) is continuous on �2: These results

combine to yield b
n(�n)!p 
111(�1; �1) := 
1; which veri�es Assumption C.6. �

25 Proof of Theorem 12.1

Proof of Theorem 12.1. We prove part (a) �rst. There always exists a subsequence fpngn�1 of
fngn�1 such that

lim sup
n!1

PFn(�n;EGMS(�n) = 1) = limPFpn (�pn;EGMS(�qn) = 1): (25.1)

By Theorem 22.1(a) applied with fpngn�1 de�ned in (25.1), there exists a subsequence fangn�1 of
fpngn�1 such that

limPFpn (�pn;EGMS(�qn) = 1) = limPFan (�an;EGMS(�an) = 1) � P (S1 > c1;EGMS(1� �));
(25.2)

where the equality holds because a subsequence has the same limit as the original sequence and the

inequality holds by Theorem 22.1(a) with fpngn�1 de�ned in (25.2), which imposes Assumptions
A.0, A.5, A.6, BC.1�BC.3, BC.6, C.1�C.8, NLA, and S.1 de�ned using the subsequence fpngn�1 in
place of fngn�1: Assumptions A.0, A.5, A.6, BC.1�BC.3, C.1, C.4, C.7, C.8, NLA, and S.1 (among
others) de�ned using fngn�1 are imposed in Theorem 12.1(a), which implies that the subsequence

fpngn�1 versions of them also hold. Hence, it remains to verify Assumptions BC.6, C.5, and C.6

(de�ned using fpngn�1 in place of fngn�1): Assumptions C.5 and C.6 hold for the subsequence

75



fpngn�1 by applying a subsequence version of Lemma 24.1, which imposes Assumptions A.0�A.4,
C.1, and C.9. These assumptions are also imposed in the theorem. Assumption BC.6 holds for the

subsequence fpngn�1 by Lemma D.2(8) of BCS because Assumptions A.1�A.4 of this paper imply
Assumptions A.1�A.4 of BCS and 
Fn !u 
1 (by Assumption C.9) implies 
Fpn !u 
1: This

completes the proof of part (a).

Next, we prove part (b). There always exists a subsequence fpngn�1 of fngn�1 and, by Theorem
22.1(b), there exists a subsequence fangn�1 of fpngn�1 such that

lim inf
n!1

PFn(�n;EGMS(�n) = 1) = limPFpn (�pn;EGMS(�pn) = 1)

= limPFan (�an;EGMS(�an) = 1)

� P (S1 > c1;EGMS(1� �)); (25.3)

where the second equality holds because a subsequence has the same limit as the original sequence

and the inequality holds by Theorem 22.1(b) (with fpngn�1 de�ned in (25.3)), which employs the
same assumptions as Theorem 22.1(a) except with Assumptions A.10, BC.4, and BC.5 in place

of A.5 and BC.3. Given the assumptions imposed in part (b) of the theorem (which include

Assumptions A.10, BC.4, and BC.5), it remains to verify Assumptions BC.6, C.5, and C.6 de�ned

using the subsequence fpngn�1 in place of fngn�1: These assumptions are veri�ed by the same
argument as in the proof of part (a) above.

Now, we prove part (c). There always exists a subsequence fpngn�1 of fngn�1 and, by Theorem
22.1(d), there exists a subsequence fangn�1 of fpngn�1 such that

lim inf
n!1

PFn(�n;EGMS(�n) = 1) = limPFpn (�pn;EGMS(�pn) = 1)

= limPFan (�an;EGMS(�an) = 1) = 1; (25.4)

where the second equality holds because a subsequence has the same limit as the original sequence

and the third equality holds by Theorem 22.1(d) provided the assumptions of Theorem 22.1(d)

hold for the subsequence fpngn�1 de�ned in (25.4) in place of fngn�1: All of the latter assumptions
hold by the assumptions imposed in Theorem 12.1(c) for the sequence fngn�1; except Assumptions
BC.6, C.5, and C.6 de�ned using the subsequence fpngn�1 in place of fngn�1: These assumptions
are veri�ed by the same argument as given in the proof of part (b), which completes the proof of

part (c). �
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26 Proof of Theorem 9.1 and Rate of Convergence of b�n

This section proves Theorem 9.1 (i.e., it shows that b�n; de�ned in (6.5), is uniformly consistent
for �I(F )) and it establishes the rate of convergence of dH(b�n;�I(Fn)) to zero under suitable
conditions. These results are similar to results in Theorem 3.1 of Chernozhukov, Hong, and Tamer

(2007).

26.1 Consistency and Rate of Convergence of b�n under fFngn�1

Here we establish consistency and rate of convergence results for b�n under a drifting sequence
of distributions fFngn�1:

The set �I;"(Fn); which is an "-expansion of �I(Fn); is de�ned in Section 9. The following

assumption ensures that inf�2�n�I;"(Fn)maxj�k [EFn emj(Wi; �)]�� rinfFn is bounded away from zero

under fFngn�1:

Assumption C.10. For all " > 0;

lim inf
n!1

�
inf

�2�n�I;"(Fn)
max
j�k

[EFn emj(Wi; �)]� � rinfFn
�
> 0:

The following minorant condition for the population moments is similar to (4.1) of Cher-

nozhukov, Hong, and Tamer (2007). It is used to determine the rate of convergence of dH(b�n;�I(Fn))
to zero.

Assumption C.11. There exist positive constants C; "; and 
 such that for all � 2 � and n � 1;

max
j�k

[EFn emj(Wi; �)]� � rinfFn � C � (minfd(�;�I(Fn)); "g)

 :

Typically, Assumption C.11 holds with 
 = 1:

Part (a) of the following lemma is used in the proof of Theorem 9.1 given below. Part (b)

provides a rate of convergence result for b�n:
Lemma 26.1 Suppose Assumptions A.0, C.4, C.5, C.7, and C.10 hold under fFngn�1: Suppose
the positive constants f�ngn�1 that appear in (6.5) satisfy �n !1 and �n=n1=2 = o(1): Then,

(a) dH(b�n;�I(Fn)) = op(1) and
(b) dH(b�n;�I(Fn)) = Op((�n=n1=2)1=
) provided Assumption C.11 also holds.

Comment. When Fn = F for all n � 1 for some F 2 P, Assumption C.10 holds by the de�nitions
of rinfF and �I;"(F ) under Assumption A.0. In consequence, Lemma 26.1(a) establishes the result

of Theorem 9.1 with supF2P deleted and without imposing Assumption A.9.
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26.2 Proofs of Lemma 26.1 and Theorem 9.1

The proof of Lemma 26.1(b) uses the following lemma, which shows that Assumption C.11

implies a similar minorant condition on the sample analogue of the left-hand side of Assumption

C.11.

Lemma 26.2 Suppose Assumptions A.0, C.4, C.5, C.7, and C.11 hold under fFngn�1: Then, there
exist positive constants �; "; and 
 such that for any � 2 (0; 1) there exists positive constants ��
and N� such that

max
j�k

([bmnj(�)]� � brinfn ) � � � (minfd(�;�I(Fn)); "g)

for all � 2 f� 2 � : d(�;�I(Fn)) � (��=n1=2)1=
g with probability at least 1� � for all n � N�:

Proof of Lemma 26.1. The proof is similar to that of Theorem 3.1 of Chernozhukov, Hong, and

Tamer (2007). For part (a), we have

sup
�2�I(Fn)

d(�; b�n) = 0 wp! 1 (26.1)

because �I(Fn) � b�n wp! 1 by Lemma 23.1(a) (which requires Assumptions A.0, C.4, C.5, and

C.7). For part (a), it remains to show sup
�2b�n d(�;�I(Fn)) = op(1):

By Assumption C.10, for arbitrary " > 0; we have

�" := lim infn!1
inf

�2�n�I;"(Fn)
max
j�k

[EFn emj(Wi; �)]� � rinfFn > 0: (26.2)

By (23.81) (which requires Assumptions A.0, C.4, C.5, and C.7), we have

sup
�2b�nmaxj�k

[EFn emj(Wi; �)]� � rinfFn � Op(1=n
1=2) + �n=n

1=2 = op(1); (26.3)

where the equality holds because �n=n1=2 = o(1): Combining (26.2) and (26.3), it follows that

limPFn

 
inf

�2�n�I;"(Fn)
max
j�k

[EFn emj(Wi; �)]� > sup
�2b�nmaxj�k

[EFn emj(Wi; �)]�

!
� limPFn(�"=2 > op(1))

= 1: (26.4)

Thus, limPFn(b�n � �I;"(Fn)) = 1 and sup�2b�n d(�;�I(Fn)) � " wp! 1: Since " > 0 is arbitrary,

we have sup
�2b�n d(�;�I(Fn)) = op(1); which completes the proof of part (a).
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For part (b), take the positive constants (�; "; 
; �;N�; ��) as in Lemma 26.2. We can take

N 0
� � N� such that 2�n > � � �� and "n := (2�n=(n1=2�))1=
 < " for n � N 0

�; because �n !1 and

�n=n
1=2 = o(1): As de�ned, "n > (��=n1=2)1=
 for n � N 0

�: Hence,

�n�I;"n � f� 2 � : d(�;�I(Fn)) � (��=n1=2)1=
g (26.5)

for n � N 0
�: In consequence, with probability at least 1� � for n � N 0

�; we have

inf
�2�n�I;"n (Fn)

max
j�k

([bmnj(�)]� � brinfn ) � � � inf
�2�n�I;"n (Fn)

(minfd(�;�I(Fn)); "g)


� � � (minf"n; "g)


= � � "
n

:= 2�n=n
1=2

> �n=n
1=2

� sup
�2b�nmaxj�k

([bmnj(�)]� � brinfn ); (26.6)

where the �rst inequality holds by Lemma 26.2 and (26.5), the second inequality holds by the

de�nition of �I;"n(Fn); the �rst equality holds by the de�nition of N
0
�; the second equality holds

by the de�nition of "n; and the last holds inequality by the de�nition of b�n:
Equation (26.6) implies b�n � �I;"n(Fn); and hence, sup�2b�n d(�;�I(Fn)) � "n with probability

at least 1� � for n � N 0
�: Combining this with (26.1) gives

dH(b�n;�I(Fn)) = Op("n) = Op((�n=n1=2)1=
); (26.7)

which completes the proof of part (b). �

Proof of Lemma 26.2. By (23.78) with� in place of��nI (Fn) throughout and with [EFn emj(W; �)]��
rinfFn in place of �n in the last two lines (which makes the inequality into an equality), we have

max
j�k

([bmnj(�)]� � brinfn ) = max
j�k

[EFn emj(�)]� � rinfFn +O
�
p (1=n

1=2) (26.8)

using Assumptions A.0, C.4, C.5, and C.7. Hence, for any � 2 (0; 1); there exist positive constants
�� and N� such that with probability at least 1� �; we have

max
j�k

([bmnj(�)]� � brinfn ) � C � (minfd(�;�I(Fn)); "g)
 +O�p (1=n1=2)

� C � (minfd(�;�I(Fn)); "g)
 � (C=2)��=n1=2 (26.9)
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for all � 2 � and n � N�; where C; "; and 
 are as in Assumption C.11 and the �rst inequality

uses (26.8) and Assumption C.11. Without loss in generality, we can take N� � (��="
)2: Hence,
��=N

1=2
� � "
 :
For all n � N�; we have

��=n
1=2 � (minfd(�;�I(Fn)); "g)
 (26.10)

for all � 2 f� 2 � : d(�;�I(Fn)) � (��=n
1=2)1=
g: Combining (26.9) and (26.10) establishes the

lemma with � = C=2: �

Proof of Theorem 9.1. Let an arbitrary " > 0 be given. There always exists a sequence

fFn 2 Pgn�1 (that may depend on ") such that

lim sup
n!1

sup
F2P

PF (dH(b�n;�I(F )) > ") = lim sup
n!1

PFn(dH(b�n;�I(Fn)) > "): (26.11)

There always exists a subsequence fwngn�1 of fngn�1 such that

lim sup
n!1

PFn(dH(b�n;�I(Fn)) > ") = limPFwn (dH(b�wn ;�I(Fwn)) > "): (26.12)

Given any subsequence fangn�1 of fwngn�1; there exists a subsequence fungn�1 of fangn�1 such
that Assumptions C.4, C.7, and C.9 hold for the subsequence fungn�1 by the proof of Theorem
7.1, which uses Lemma D.7 of BCS and relies on Assumptions A.4 and A.8. Given Assumption

A.9, Assumption C.10 also holds for the subsequence fungn�1: By Lemma 24.1, Assumptions A.0�
A.4 and C.9 imply Assumption C.5. Hence, Assumptions C.4, C.5, C.7, and C.10 hold for the

subsequence fungn�1: In consequence, by Lemma 26.1(a) applied with n replaced by un; which
utilizes Assumptions A.0, C.4, C.5, C.7, and C.10, we have

limPFundH(
b�un ;�I(Fun)) > ") = 0: (26.13)

This implies that the same result holds for the subsequence fwngn�1; which completes the proof
using (26.11) and (26.12) because " > 0 is arbitrary. �

27 Assumptions

For ease of reference, we state all of the assumptions used in the paper and Supplemental

Material here.

Assumption A.0. (i) � is compact and non-empty and (ii) EF emj(W; �) is upper semi-continuous

on � 8j � k; 8F 2 P:
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Assumption A.1. The observations W1; :::;Wn are i.i.d. under F and femj(�; �) : W ! Rg and
fem2

j (�; �) :W ! Rg are measurable classes of functions indexed by � 2 � 8j � k; 8F 2 P:
Assumption A.2. The empirical process �n(�) is asymptotically �F -equicontinuous on� uniformly
in F 2 P:
Assumption A.3. For some a > 0; supF2P EF sup�2� jjem(W; �)jj4+a <1:
Assumption A.4. The covariance kernel 
F (�; �0) satis�es: for all F 2 P;

lim�!0 supjj(�1;�01)�(�2;�02)jj<� jj
F (�1; �
0
1)� 
F (�2; �02)jj = 0:

Assumption A.5. Given the function ' : Rk[+1]�	! Rk[+1]; which appears in (6.4) and (6.11),

there is a function '� : Rk[+1] ! Rk[+1] that takes the form '
�(�) = ('�1(�1); :::; '

�
k(�k))

0 and 8j � k;
(i) '�j (�j) � 'j(�;
) � 0 8(�;
) 2 Rk[+1] � 	; (ii) '

�
j is nondecreasing and continuous under the

metric d; and (iii) '�j (�j) = 0 8�j � 0 and '�j (1) =1:
Assumption A.6. (i) �n !1: (ii) �n !1:
Assumption A.7. Under fFqngn�1 and f�qngn�1; (i) if c1(1��) > 0; then P (S1 = c1(1��)) =
0; and (ii) if c1(1� �) = 0; then lim supn!1 PFqn (Sqn > 0) � �:
Assumption A.8. EF em(W; �) is equicontinuous on � over F 2 P: That is, lim�#0 supF2P
supjj���0jj<� jjEF em(W; �)� EF em(W; �0)jj = 0:
Assumption A.9. For all " > 0; infF2P inf�2�n�I;"(F )maxj�k [EF emj(Wi; �)]� � rinfF > 0:

Assumption A.10. Given the function ' : Rk[+1]�	! Rk[+1]; which appears in (6.4) and (6.11),

there is a function '�� : Rk[+1] ! Rk[+1] that takes the form '��(�) = ('��1 (�1); :::; '
��
k (�k))

0 and

8j � k; (i) '��j (�j) � 'j(�;
) 8(�;
) 2 Rk[+1] � 	; (ii) '
��
j is continuous, and (iii) '��j (�j) = 0

8�j � 0 and '��j (1) =1:

Assumption S.1. (i) S(m;
) is nonincreasing in m 2 Rk[+1] 8
 2 	:
(ii) S(m;
) � 0 8m 2 Rk; 8
 2 	:
(iii) S(m;
) is continuous at all m 2 Rk[+1] and 
 2 	:

Assumption S.2. S(m;
) > 0 i¤mj < 0 for some j � k; 8
 2 	:
Assumption S.3. For some � > 0; S(am;
) = a�S(m;
) 8a > 0; 8m 2 Rk; 8
 2 	:
Assumption S.4. For all h 2 (�1;1]k; all 
 2 	; and Z � N(0k;
); the distribution function
of S(Z + h;
) at x 2 R is (i) continuous for x > 0; (ii) strictly increasing for x > 0 unless

h = (1; : : : ;1)0 2 Rk[�1]; and (iii) less than 1=2 for x = 0 if hj = 0 for some j � k:

The following assumptions apply to a drifting sequence of null values f�ngn�1 and distributions
fFngn�1:
Assumption C.1. �n ! �1 for some �1 2 �:
Assumption C.2. n1=2EFn emj(W; �n)! `j1 for some `j1 2 R[�1] 8j � k:
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Assumption C.3. n1=2(EFn emj(W; �n) + r
inf
Fn
)! hj1 for some hj1 2 R[�1] 8j � k:

Assumption C.4. sup�2� jjEFn em(W; �) � em(�)jj ! 0 for some nonrandom bounded continuous

Rk-valued function em(�) on �:
Assumption C.5. �n(�) := (�mn (�)0; ��n(�)0)0 ) G(�) := (Gm(�)0; G�(�)0)0 as n ! 1; where fG(�) :
� 2 �g is a mean zero R2k-valued Gaussian process with bounded continuous sample paths a.s.
and Gm(�); G�(�) 2 Rk:
Assumption C.6. b
n(�n)!p 
1 for some 
1 2 	:
Assumption C.7. �n;Fn !H � for some non-empty set � 2 S(��R2k[�1]):
Assumption C.8. ��nn;Fn !H �I for some non-empty set �I 2 S(��R2k[�1]); where f�ngn�1 is a
sequence of positive constants for which �n !1:
Assumption C.9. 
Fn(�; �) !u 
1(�; �) for some continuous R2k�2k-valued function 
1(�; �) on
�2:

Assumption C.10. For all " > 0;

lim inf
n!1

�
inf

�2�n�I;"(Fn)
max
j�k

[EFn emj(Wi; �)]� � rinfFn
�
> 0:

Assumption C.11. There exist positive constants C; "; and 
 such that for all � 2 � and n � 1;

max
j�k

[EFn emj(Wi; �)]� � rinfFn � C � (minfd(�;�I(Fn)); "g)

 :

The following assumptions apply to a drifting sequence of null values f�ngn�1 and distributions
fFngn�1:
Assumption BC.1. sup�2� jsd�anj(�)�sdaj1(�)j !p 0 as n!1 for some nonrandom continuous

real-valued functions sdaj1(�) on � for j � k and a = 1; 3:
Assumption BC.2. (sd1j1�n)�1n1=2(EFn emj(W; �n)+r

inf
Fn
)! h�j1 for some h�j1 2 R[�1] 8j � k:

Assumption BC.3. ���nn;Fn
!H ��I for some non-empty set �

�
I 2 S(� � R3k[�1] � f1; :::; kg) for

some constants f�ngn�1 that satisfy �n !1 and �n=�n ! 0 for f�ngn�1 as in Assumption A.6(ii).
Assumption BC.4. ���UnUn;Fn

!H �
�
U;I for some non-empty set �

�
U;I 2 S(��R2k[�1]) for constants

f�Ungn�1 that satisfy �Un !1 and �n=�Un ! 0 for f�ngn�1 as in Assumption A.6(ii).
Assumption BC.5. The distribution of S�U1;EGMS is continuous at cU1;EGMS(1� �):
Assumption BC.6. f��n(�)jfWnigi�n;n�1g ) G(�) a.s.[P5]; where G(�) is as in Assumption C.5.

Assumption NLA. minj�k hj1 > �1:
Assumption CA. minj�k hj1 = �1:
Assumption N. �n 2 �I(Fn) 8n � 1:
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Assumption LA. The null values f�ngn�1 and distributions fFngn�1 satisfy: (i) jj�n � �Injj =
O(n�1=2) for some sequence f�In 2 �I(Fn)gn�1; (ii) n1=2(EFn emj(W; �In) + r

inf
Fn
) ! hIj1 for some

hIj1 2 R[�1] 8j � k; and (iii) EF em(W; �) is Lipschitz on � uniformly over P; i.e., there exists a
constant K <1 such that jjEF em(W; �1)� EF em(W; �2)jj � Kjj�1 � �2jj 8�1; �2 2 �; 8F 2 P:
Assumption FA. The null values f�ngn�1 and distributions fFngn�1 satisfy: (i) Fn = F� 2 P
and �n = �� 2 � do not depend on n � 1 and (ii) EF� emj(W; ��) + rinfF� < 0 for some j � k:

Assumption A.7�. P (Ainf1;�(��) = c1;�(�)) = 0:

Assumption IS. The sequence fFngn�1 is such that there exists a sequence f�In 2 �I(Fn)gn�1
for which n1=2EFn emj(W; �

I
n)!1 8j � k:

Assumption MM. The sequence fFngn�1 is such that n1=2rinfFn !1:

Assumption CV.1. There exist nonnegative random variables fS�Ln(�n)gn�1 such that

(i) Pr(S�Ln(�n) � S�n(�n)jfWnigi�n;n�1) = 1 wp!1 and (ii) fS�Ln(�n)jfWnigi�n;n�1g !d S
�
L1

a.s.[P5] for some S�L1 2 R a.s. that does not depend on the conditioning value of fWnigi�n;n�1:
Assumption CV.2. S�L1 satis�es S�L1 �ST S1:
Assumption CV.3. There exist nonnegative random variablesfS�Un(�n)gn�1 such that

(i) Pr(S�Un(�n) � S�n(�n)jfWnigi�n;n�1) = 1 wp!1 and (ii) fS�Un(�n)jfWnigi�n;n�1g !d S
�
U1

a.s.[P5] for some S�U1 2 R a.s. that does not depend on the conditioning value of fWnigi�n;n�1:
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