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Abstract

Most assets clear independently rather than jointly. This paper presents a model
based on the uniform-price double auction which accommodates arbitrary restrictions on
market clearing, including independent clearing across assets (allowed when demand for
each asset is contingent only on the price of that asset) and joint market clearing for all
assets (required when demand for each asset is contingent on the prices of all assets). The
introduction of additional trading protocols for traded assets or linking existent trading
protocols—neutral when the market clears jointly—are generally not redundant innova-
tions, even if all traders participate in all protocols. Multiple trading protocols that clear
independently can be designed to be at least as e�cient as joint market clearing for all
assets. Independence in market clearing can enhance diversification and risk sharing. Ex-
cept when the market is competitive, market characteristics should guide innovation in
trading technology.
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1 Introduction
Today’s financial markets are comprised of coexistent trading protocols for the same or distinct
assets. Venues for financial securities clear independently and, typically, the assets traded in
each venue do as well: an order submitted for one asset cannot be made contingent on the prices
of other assets. In some markets, such as those for spectrum, electricity, and electronic trading
platforms for financial assets, traders can express their demands for one asset contingent on
the prices of other assets.1 When available, however, such contingent orders allow cross-asset
conditioning among a limited number of assets. Feasibility might provide one rationale as to
why cross-asset conditioning is relatively uncommon in practice—with contingent schedules,
the market-clearing prices must be determined jointly for all assets, thus requiring coordination
in market clearing among market makers or trading venues that are private entities. Advances
in technology have increased interest in cross-asset conditioning.2

The objective of this paper is twofold. First, we investigate the implications of independent
market clearing for equilibrium and welfare. Second, we examine the innovations in trading
technology—defined by changes in market clearing—that cross-asset conditioning makes pos-
sible. As we will show, regulation that promotes joint clearing for some assets, if applied in
disregard of market characteristics, can lower welfare in the Pareto sense. Moreover, multiple
exchanges that clear independently can be designed to be at least as e�cient as joint clearing
for all assets irrespective of the characteristics of assets and traders. Thus, joint market clearing
of all assets is inessential and can be suboptimal.

We dispense with the assumption that demand schedules are contingent—on which the
standard competitive (e.g., general equilibrium) and imperfectly competitive models of equi-
librium and asset pricing are based—in the canonical uniform-price double auction for I < Œ
strategic traders and K < Œ assets (e.g., Wilson (1979), Klemperer and Meyer (1989), Kyle
(1989), Vives (2011)). Our analysis is cast in the quadratic-Gaussian setting. Traders have
private information about their endowments, which are independent across assets and possibly
correlated across traders. The model encompasses the standard in theory but less so in practice
contingent schedules q

i,c
k (·) : RK æ R, specifying the quantities demanded of each asset for any

realization of the price vector (i.e., joint market clearing for all assets).
We first examine markets with uncontingent schedules q

i
k(·) : R æ R, each specifying the

quantities demanded for any price realization of a given asset (i.e., assets clear independently).
To accommodate innovation in trading technology and more general market structures, we then
generalize the model in two ways. Specifically, we permit arbitrary restrictions on cross-asset

1E.g., Active Trader Pro, Etrade, Street Smart, Tradehawk. Variants of cross-asset conditioning are available
in futures and options markets (e.g., multi-leg orders). The Regulation National Market System and Unlisted
Trading Privileges in US stock exchanges de facto induce contingent demand schedules; however, analogous rules
do not apply in markets for other asset classes or stock markets abroad (see Budish, Lee, and Shim (2019)).

2Indeed, electronic trading platforms such as those listed in ft. 1 innovate on such orders.
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demand conditioning “between” uncontingent and contingent and allow an asset to be traded
in multiple venues. A market structure consists of exchanges, each defined by the subset of
the K assets traded there; all traders participate in all exchanges (see also ft. 12). Demand
schedules condition on the prices of the assets traded in an exchange and not on those in
other exchanges; the market clears independently across exchanges. It is convenient to identify
independent market clearing (i.e., a uniform-price trading protocol) with an exchange in the
model; an exchange can thus represent either a trading protocol within a trading venue or the
venue itself.

Limited demand conditioning requires a new technique for characterizing equilibrium. In
contrast to contingent trading, we cannot rely on the method of characterizing ex post opti-
mization. When a trader’s demands are not contingent on the prices of all assets, they depend
on the expected (rather than realized) trades of the assets in other exchanges. Due to cross-
asset inference, the coe�cients of a trader’s own best-response demands must be characterized
as a fixed point across assets.3 Additionally, price impact is no longer a su�cient statistic for
a trader’s residual supply—the distribution matters as well.

The methodological contribution of the paper is the characterization of the Bayesian Nash
equilibrium in markets with limited cross-asset conditioning. The equilibrium fixed point in
demand schedules, we show, is equivalent to a fixed point in price impact matrices alone. That
is, we endogenize all demand coe�cients—including expected trades and the distributions of
residual supplies—as functions of price impacts (Theorem 1). We prove the existence of a
symmetric linear Bayesian Nash equilibrium in the uniform-price double auction for K Ø 2
assets (Theorem 2) and equilibrium uniqueness for K = 2 assets.

The paper’s second contribution is its implications of independence in market clearing for
equilibrium, welfare, and design, which underscore the role of imperfect competition. If joint
clearing were feasible, would it maximize total welfare? If the market were competitive (I æ
Œ), then joint market clearing would be weakly more e�cient than any other market structure
regardless of the characteristics of assets and traders—contingent schedules prevent information
loss across exchanges. We show that in imperfectly competitive markets (I < Œ), independent
market clearing across venues can lower the trading costs associated with per-unit price impact
for a given asset and/or across assets. Thus, multi-venue trading changes, respectively, the
traders’ ability to share an asset’s risk and diversify risk across assets. It can increase welfare
despite the information loss due to limited demand conditioning.

Central to the e�ects of multi-venue trading that have no analogues with joint clearing is that
it severs the proportionality between the equilibrium price impact and the fundamental assets

3In a multivariate optimization problem, contingent or uncontingent, a trader’s first-order conditions define
a fixed point for the trader’s best-response demand schedules across assets. With demands contingent on the
common price vector, the first-order conditions can be written as a single matrix equation and solved for the
quantity vector pointwise with respect to the price vector. Thus, the best-response demand coe�cients need
not be characterized as a fixed point.
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covariance that holds with contingent trading. First, the cross-venue price impact becomes
zero,4 which may or may not be conducive to e�ciency (Example 1). Second, with multiple
assets per venue, cross-asset price impacts are asymmetric when either asset covariance or
market structure is heterogeneous across assets. Underlying the lack of proportionality are
the cross-asset inference e�ects brought by independence in market clearing. We provide the
comparative statics of price impact, which can be higher or lower than in the contingent market,
with respect to the asset correlation and number of traders (Theorem 3, Proposition 5 in
Appendix C.1).

We present three main results. First, once one departs from the assumption that demands
are contingent, innovation in trading technology5 which would be neutral for traders’ equilib-
rium payo�s with joint clearing (or have no counterparts) is no longer redundant. Independent
market clearing motivates two types of innovations that are nonredundant: innovations that
reduce inference error for all assets (e.g., the linking of existing trading protocols by merging
their assets or the inclusion of an asset in a trading protocol where it was not previously traded,
such as asset listings) and innovations that alter inference across assets without letting demands
of any assets be contingent on prices of additional assets (e.g., duplicating a traded asset in a
new venue, Example 3). If the market were competitive, the latter type of innovation would be
redundant irrespective of demand conditioning.

Proposition 3 shows that one can compare equilibrium and welfare across arbitrary market
structures through a pair of su�cient statistics that correspond to a single-exchange counter-
factual: per-unit price impact and cross-asset inference matrices (Proposition 3). Thus, this
result also identifies nonredundant innovation. Intuitively, an innovation is not redundant if it
alters the trading costs or inference across assets.

Second, markets with multiple trading protocols that clear independently can be at least
as e�cient as a single exchange that clears all assets jointly. We show that one can design
a market with multiple protocols—none of which clears all assets—that can function like a
single exchange. That is, equilibrium trades, prices, and traders’ payo�s are the same with
schedules simpler than the contingent ones. Thus, innovation in trading technology can bound
welfare at the corresponding contingent level—with no knowledge of traders’ preferences and
endowments or asset distribution. Equilibrium is ex post even if demands in no exchange are
contingent on the prices of all assets. Such designs involve su�ciently many trading protocols
for di�erent assets, which enables the conditioning variables to eliminate inference errors in
traders’ expectations.

4Nevertheless, equilibrium behavior and outcome (i.e., prices and trades) are not independent across trading
venues—unless the asset payo�s are independent.

5Or in market structure, depending on whether market clearing is interpreted as applying to trading venues or
the trading protocols that they provide—the model accommodates both. Neither alters the traders’ endowments,
assets’ net supply (which we assume to be zero, for simplicity), or participation. Thus, invoking the notion of
spanning: in contrast to the contingent model, innovation in market clearing for the traded assets which does
not change their payo� span is no longer redundant with independent market clearing.
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This equivalence result also characterizes the scope for innovation that can be introduced
in a market and be nonredundant. For a market structure to implement equilibrium with joint
clearing, one venue per pair of assets su�ces—the maximal number of nonredundant protocols
is K(K≠1)

2

. Moreover, even in market structures that are not payo�-equivalent to joint clearing,
not all new trading protocols a�ect welfare (Theorem 4). Notably, a new trading protocol whose
assets are not all jointly traded in any existing venue can be neutral when price impact matrix
is symmetric.

Third, we ask which designs can strictly improve welfare relative to the welfare bound im-
plemented by the designs equivalent to joint clearing. Hinting at the diversity of the trading
protocols in practice, the market structure in which all assets clear jointly (i.e., contingent
demands or a payo�-equivalent design) is not generally e�cient; nor is the market structure
in which every asset is traded in a separate venue (i.e., uncontingent demands) e�cient ir-
respective of the market characteristics. In symmetric trading environments,6 the extreme
uncontingent/contingent market structures are optimal with, respectively, asset payo� substi-
tutabilities/complementarities.

A key result (Corollary 3 of Theorem 3) relates the welfare e�ects of changes in market
structure to corresponding changes in per-unit price impact. In two-asset markets, joint clearing
minimizes the per-unit price impact for each asset—hence, the cost of risk sharing is the lowest.
Thus, to increase welfare, multi-venue trading must lower the trading cost of diversification
(i.e., cross-asset price impact). More generally, however, with multiple assets, innovation that
increases demand conditioning can raise or lower the price impact costs of both diversification
and risk sharing.

Our results recognize that the welfare-enhancing exchange design should respond to the
number of traders, and joint substitutability of the asset payo�s and trading needs of mar-
ket participants across assets.7 Even if assets’ payo�s are all either symmetric substitutes or
complements, e�cient design depends on whether the market is “one-sided”—i.e., traders want
to buy or sell all assets (e.g., the primary market for Treasury securities)—or some assets are
demanded while others are supplied (e.g., intra-dealer markets). In imperfectly competitive
markets, given the assets and traders, a market structure with multiple venues is more e�cient
than joint clearing for some distributions of endowments (Proposition 4). In fact, any demerger
(i.e., breaking up a single exchange for all assets into multiple venues) can increase welfare.

One might wonder—given that, when trading is dynamic, traders can often condition their
demands in one trading venue on past outcomes from other venues—whether the independence
in market clearing across trading venues has any e�ects. Conditioning on past outcomes allows
information from past shocks to be (at least partially) incorporated into traders’ demands—

6With respect to asset correlations, trading needs, and market structure.
7In a market with multiple venues, all innovations are neutral if and only if the payo�s of all assets are either

perfectly correlated (i.e., cross-asset inference is perfect) or independent (i.e., cross-asset inference is absent),
or (by design) equilibrium is ex post.
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contingent or not. Our paper investigates how independence in market clearing a�ects the
way current-round shocks impact behavior and outcomes.8 Our results thus indicate a role for
opaqueness in the form of independent market clearing (embodied in restrictions on cross-asset
conditioning), which have implications distinct from transparency requirements (i.e., condition-
ing on past outcomes).

Other related literature. Our paper contributes to the literature on imperfectly competitive
trading (Kyle (1989), Vayanos (1999), Vives (2011), Garleanu and Pedersen (2013), Rostek and
Weretka (2015), Bergemann, Heumann, and Morris (2017), Sannikov and Skrzypacz (2016),
Du and Zhu (2017a,b), Antill and Du�e (2019), Kyle, Obizhaeva, and Wang (2017), Kyle and
Lee (2018), Du�e (2018), Zhang (2020), Zhu (2018a,b)). To our knowledge, we are the first to
examine equilibrium and welfare with arbitrary restrictions on cross-asset conditioning and to
characterize the (non)redundant exchange design. In fact, little is known about markets with
multiple heterogeneous assets outside of settings with ex post equilibria. Contemporaneously,
in a model with two assets and random supply, Wittwer (2019) shows that traders trade the
same amounts with contingent and uncontingent demands if and only if traders’ private signals
are perfectly correlated and supplies are either zero or perfectly correlated across assets. In
a one-asset model with strategic traders and noise traders, Chen and Du�e (2020) show that
additional venues increase welfare relative to one venue and the welfare-maximizing number of
exchanges is finite.

Apart from financial market applications, the techniques we introduce will be useful to
researchers studying games in which agents interact through contracts over multiple goods,
actions, or characteristics. One application is to package auctions with large traders, who
have price impact. Our results suggest that package bids can be implemented via simpler-
than-contingent schedules and limiting the allowable packages that traders can bid for can be
e�cient. The problem in which players submit uncontingent demand schedules in di�erent
trading venues is also related to those studied by the literature on “island” models (in compet-
itive markets) and, more generally, the approach based on Nash-in-Nash.9 A typical context

8With the gains from trade renewed by shocks (to endowment or information), if demands are contingent
and traders are price-takers (I æ Œ), the outcome will be e�cient in every round. In a dynamic model with
imperfectly competitive traders (I < Œ), multiple rounds are needed to realize the gains from trade from a
given round’s shock. The e�ects of limited conditioning we identify will be present in all rounds. From the
literature on dynamic trading (which is based on contingent demands or one-asset markets; e.g., Du and Zhu
(2017b), Rostek and Yoon (2019)), two results can be extrapolated beyond contingent demands. First, even in
the competitive market, the equilibrium outcome will di�er with limited conditioning and contingent demands
unless the frequency of the shocks renewing the gains from trade relative to the frequency of trading is low.
Second, apart from its contemporaneous e�ects (this paper), limited conditioning will have temporal e�ects
on price impact. With a finite number of traders (I < Œ) and trading rounds, the interaction between the
dynamics of price impact and cross-exchange inference also contributes to the di�erence between the contingent
and uncontingent outcomes. Whether the ine�ciency of trade that stems from limited demand conditioning
can be eliminated in some limit depends on the relative frequencies of the shocks renewing the gains from trade,
market-clearing, and payo� realization (consumption).

9This solution concept, introduced by Horn and Wolinsky (1988), has become popular in the structural
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where Nash-in-Nash has been applied is surplus division in bargaining or contracting with
externalities—across contracts and agents—when negotiations are simultaneous. Likewise, in
this paper, the demands that a player submits simultaneously for di�erent assets are essentially
contracts specifying the quantities demanded as a function of a subset of prices. There are two
di�erences. In Nash-in-Nash, a player agrees to the price in one contract while holding fixed
(i) the prices in his other contracts10 and (ii) the prices to which other players agree. By its
virtue of treating prices as contingent variables in traders’ demands, the (noncooperative) game
in demand functions allows accounting for the cross-contract and cross-player externalities in a
Bayesian Nash equilibrium—without employing the Nash-in-Nash counterfactual (which holds
prices fixed in other contracts) or restricting how beliefs can change o� equilibrium (e.g., pas-
sive beliefs; Hart and Tirole (1990)).11 Our model complements the Nash-in-Nash approach in
applications where ine�ciencies in surplus sharing arise due to limited inference and imperfect
competition, and contracts involve multiple assets with cross-asset externalities. Accounting for
imperfect competition along with private information sheds light on how the design of contracts
over which agents bargain can enhance the equilibrium surplus when there are cross-contract
externalities. With price-taking behavior, contingent contracts are e�cient.

Our paper also contributes to the literature on decentralized trading. Markets with contin-
gent schedules are centralized because a single market clearing applies to all assets. Accordingly,
a market in which assets are traded in separate venues that clear independently is decentralized.
The assumption that schedules are contingent is the only assumption of the centralized market
model that we relax. In particular, assuming that all traders trade all assets with all other
traders allows us to focus on those e�ects of decentralized trading that are due to incomplete
conditioning as opposed to incomplete participation.12 The literature recognizes several argu-

analysis of decentralized markets. As in this paper’s model, the applications of Nash-in-Nash have typically
considered negotiated contracts, given the set of agreements. See, e.g., Collard-Wexler, Gowrisankaran, and Lee
(2019) and references there. We are grateful to an anonymous referee for suggesting we explore the link to the
literature on “island” models.

10This is typically justified using the “delegated agent” interpretation: a player involved in multiple bilateral
bargains relies on separate agents for each negotiation, and these agents cannot communicate with one another
while bargaining.

11With price-elastic demands, all price realizations occur in equilibrium for some realizations of endowments.
12In the centralized market assumption, two assumptions are implicit. First, demand conditioning is complete

(i.e., demands are contingent); then, a single aggregation applies to all assets. Second, trader participation in
the market is complete in the sense that each trader trades all assets with all other traders. A growing literature
on decentralized trading has explored the implications of incomplete participation modeled as fixed or random
(hyper)graphs (e.g., Gale (1986a,b), Kranton and Minehart (2001), Du�e, Garleanu, and Pedersen (2005),
Vayanos and Weill (2008), Afonso and Lagos (2015), Gofman (2018), Atkeson, Eisfeldt, and Weill (2015),
Elliott (2015), Choi, Galeotti, and Goyal (2017), Condorelli, Galeotti, and Renou (2017), Hugonnier, Lester,
and Weill (2020), Malamud and Rostek (2017), and Chang and Zhang (2018)). Babus and Kondor (2018), Babus
and Parlatore (2017), and Malamud and Rostek (2017) study markets with limited participation and contingent
contracts. Interestingly, with decentralized trading in the sense of limited demand conditioning (e.g., this paper)
as well as limited participation, the equilibrium price covariance and price impact are not proportional to the
asset covariance (see Malamud and Rostek (2017). Yet, the e�ects on price impact, as well as the underlying
mechanisms, are distinct. Indeed, with limited participation and contingent schedules, equilibrium is ex post.
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ments as to why decentralized trading might be more e�cient: it may improve traders’ learning
about the asset value (Babus and Kondor (2018)) or asset price (Zhu (2014)); it may reduce
ine�cient screening (Glode and Opp (2016)) or ine�cient information aggregation (Kawakami
(2017)); it may redistribute risk towards less risk averse traders (Malamud and Rostek (2017));
and it may be more stable than the centralized market (Peivandi and Vohra (2020)). This
paper contributes another argument: even if risk preferences are the same among all traders,
decentralized trading may improve risk sharing and/or diversification by lowering the trading
costs that are due to price impact.13

2 Model
Notation. We use the following notation: (xk)k is a vector in which the k

th element is xk,
and (yk¸)k,¸ is a matrix such that the (k, ¸)th element is yk¸; sets of the respective elements
are denoted by {xk}k and {yk¸}k,¸. Also, diag(xk)k = diag(x

1

, · · · , xK) is a diagonal matrix in
RK◊K where the k

th diagonal element is xk. The (k, ¸)th element of matrix M is denoted by
mk¸, and the k

th row is denoted by Mk. To distinguish them from scalar variables, vectors and
matrices are denoted in bold, and matrices are capitalized.
Market: traders, assets, and exchanges. Consider a market with I Ø 3 traders who trade
K risky assets in N exchanges. An exchange is defined by the assets traded (listed) there; all
traders participate in all exchanges. In Section 3, to ease exposition, we focus on markets with
one asset per exchange, N = K; in Sections 4 and 5, we consider exchanges with multiple assets
(Definition 4). We index traders by i, assets by k, and exchanges by n.

The payo�s of the K risky assets are jointly normally distributed r = (rk)k ≥ N (�, �) with
a vector of expected payo�s � = (”k)k œ RK and a positive semi-definite covariance matrix
� œ RK◊K . There is also a riskless asset with a zero interest rate (a numéraire).

Each trader i has a quadratic in the quantity of risky assets (mean-variance) utility:

u

i(qi) = � · (qi + qi
0

) ≠ –

i

2 (qi + qi
0

) · �(qi + qi
0

), (1)

where qi = (qi
k)k œ RK is trade, qi

0

= (qi
0,k)k œ RK represents the units of risky assets with

which trader i is initially endowed, and –

i œ R
+

is trader i’s risk aversion. Endowments {qi
0

}i

are traders’ private information and are independent of asset payo�s r. Gains from trade come
from risk sharing and diversification: endowments are heterogeneous. All traders are strategic.

In keeping with the literature, to ensure that the per-capita aggregate endowment (equiv-
alently, price) is random in the limit large market (I æ Œ), we allow for the common value
component qcv

0

= (qcv
0,k)k œ RK in traders’ endowments. For each asset k, privately known

13Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018, 2019) examine the joint e�ects of an information
friction and market power (induced by a search friction) in over-the-counter markets.
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endowments {q

i
0,k}i are correlated among traders through q

cv
0,k ≥ N (E[qcv

0,k], ‡cv): for each i,

q

i
0,k = q

cv
0,k + q

i,pv
0,k , q

i,pv
0,k ≥ N (E[qi,pv

0,k ], ‡pv),

where q

i,pv
0,k are independent across i and k.14 Trader i knows his endowment qi

0

but not its
components qcv

0

or qi,pv
0

= (qi,pv
0,k )k œ RK . The endowments {q

i
0,k}i and the common value q

cv
0,k

are independent across assets k.15

Double auction. Each exchange is organized as the uniform-price double auction in which
traders submit strictly downward-sloping16 (net) demand schedules. For q

i
k > 0, trader i is a

buyer of asset k; for q

i
k < 0, he is a seller. We first consider two types of schedules: contingent

and uncontingent. In Section 4, we analyze arbitrary cross-asset conditioning.

Definition 1 (Contingent and Uncontingent Schedules) In a double auction with con-
tingent schedules, each trader i submits K demand functions qi,c(·) © (qi,c

1

(p), . . . , q

i,c
K (p)),

each q

i,c
k (·) : RK æ R specifying the quantity of asset k demanded for any price vector p =

(p
1

, . . . , pK).
In a double auction with uncontingent schedules, each trader i submits K demand functions

qi(·) © (qi
1

(p
1

), . . . , q

i
K(pK)), each q

i
k(·) : R æ R specifying the quantity of asset k demanded

for any price pk.

How the market clears is determined by demand conditioning. With uncontingent schedules,
the market clears independently across assets: the market-clearing price pk sets the aggregate
net demand in each exchange k to zero, q

i q

i
k(pk) = 0. With contingent schedules, the K assets

clear jointly: the equilibrium price vector is determined by q
i qi,c(p

1

, · · · , pK) = 0 œ RK . With
either type of schedule, trader i trades {q

i
k}k, pays q

k pkq

i
k, and receives a payo� of u

i(qi)≠p·qi.

Equilibrium. We study the Bayesian Nash equilibrium in linear demand schedules (hereafter,
equilibrium).

Definition 2 (Equilibrium) A profile of (net) demand schedules {{q

i
k(·)}k}i is a Bayesian

Nash equilibrium if, for each i, {q

i
k(·)}k maximizes the expected payo�:

max
{qi

k
(·)}k

E[� · (qi + qi
0

) ≠ –

i

2 (qi + qi
0

) · �(qi + qi
0

) ≠ p · qi|qi
0

], (2)

given the schedules of other traders {{q

j
k(·)}k}j ”=i and market clearing q

j q

j
k(·) = 0 for all k.

14The common value component in {q

i

0}
i

a�ects the magnitude of inference coe�cients, but does not a�ect
any results qualitatively.

15For simplicity, we assume the symmetry of variance across traders and the independence of endowments
across assets; the results hold qualitatively without these assumptions. Our equilibrium characterization in
Appendix A allows for correlated endowments across assets that are symmetrically correlated across traders.

16I.e., the Jacobian of demand schedules ˆqi(·)
ˆp =

!
ˆq

i
k(·)

ˆp¸

"
k,¸

œ RK◊K is negative semi-definite. This rules out
trivial equilibria with no trade.
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As is well known, in markets with contingent schedules, equilibrium is invariant to the
distribution of private endowments; i.e., the linear Bayesian Nash equilibrium with (possibly
correlated) private endowments has an ex post property.17 The contingent schedule allows a
trader to choose his demand for each asset as a function of all prices to be realized, which map
one-to-one to realizations of quantities traded of other assets. With uncontingent schedules,
equilibrium is not generally ex post. Given the quasilinear-quadratic utility, traders face uncer-
tainty both with respect to the price and payo�; their expected payo� (2) penalizes the latter,
but not the former.

Competitive market. The competitive market will often serve as a benchmark when evalu-
ating the e�ects of incomplete conditioning with imperfectly competitive traders.18

Definition 3 (Competitive Market, Competitive Equilibrium) Consider a market with
I < Œ traders. The competitive market is the limit game as I æ Œ, holding fixed all other
primitives. Letting {qi,I(·)}i be the equilibrium in the market with I < Œ traders, the compet-
itive equilibrium {qi(·)}i is the limit of equilibria {qi,I(·)}i as I æ Œ:

qi(·) = lim
IæŒ

qi,I(·) ’i.

3 Equilibrium: Contingent vs. Uncontingent Demands
In this section, we characterize equilibrium in markets with uncontingent demands (Proposition
2, Theorem 1, and Corollary 1). For the sake of comparison, we also review equilibrium with
contingent demands.

Although the contingent and uncontingent models are quite di�erent, equilibria in both
models can be characterized through parallel conditions (Propositions 1 and 2). First, a key
argument (Lemma 2 in Appendix B) shows that the well-known equivalence between individual
trader optimization in demand functions (2) and pointwise optimization with respect to the
realizations of p œ RK in the contingent model also holds in the uncontingent model with respect
to the realizations of the relevant contingent variable, i.e., pk œ R. Both pointwise problems
are motivated by the observation that when traders submit demand schedules contingent on
price realizations (of any subset of assets), it is useful to adopt the perspective of an individual

17Equilibrium is linear if schedules have the functional form of q

i(·) = ai +B

i

q

i

0 +C

i

p. Equilibrium is ex post

if equilibrium schedules {q

i

k

(·; q

i

0)}
k

are optimal for all i, given endowment realizations for all traders {q

j

0}
j

:

{q

i

k

(·; q

i

0)}
k

= arg max
{q

i
k

(·)}k

E[� · (qi + q

i

0) ≠ –

i

2 (qi + q

i

0) · �(qi + q

i

0) ≠ p · q

i|{q

j

0}
j

].

18The common value component q

cv

0 in traders’ endowments {q

i

0}
i

ensures that the price (equivalently, the
per-capita aggregate endowment) is random in the limit large market (I æ Œ). To make the price variance
V ar[p|qi

0] = �V ar[(
q

j

1
–

j )≠1
q

j

0|qi

0]�Õ independent of the number of traders I, the risk aversion –

i in utility

(1) can be scaled according to –

i,I © –

i

I

I≠1

Ò
(‡

cv

+ 1
I

‡

pv

)≠1
‡

cv

. As I æ Œ, –

i,I æ –

i

> 0 for all i. More
generally, one can jointly scale (–i

, ‡

cv

, ‡

pv

).
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trader who optimizes against a profile of his residual supply functions, which is the su�cient
statistic of a residual market {{q

j
k(·)}k}j ”=i.19 The residual supply S

≠i,c
k (·) : RK æ R for asset

k is a function of p if demands are contingent ({q

i,c
k (·) : RK æ R}i), and S

≠i
k (·) : R æ R is

a function of pk if demands are uncontingent ({q

i
k(·) : R æ R}i). Second, in equilibrium, the

residual supply functions are correct: S

≠i
k (·) = ≠ q

j ”=i q

j
k(·) for all k by aggregation through

market clearing of the other traders’ submitted schedules.

3.1 Equilibrium with Contingent Demands
Consider the optimization problem (2) of trader i who submits demand schedules qi,c(·) : RK æ
RK contingent on price realizations for all assets p œ RK .20 It is well known that maximizing
the expected payo� (2) is the same as maximizing the ex post payo� pointwise: for each asset
k,

max
qi,c

k
œR

{� · (qi,c + qi
0

) ≠ –

i

2 (qi,c + qi
0

) · �(qi,c + qi
0

) ≠ p · qi,c} ’p œ RK
, (3)

given the trader’s demands for other assets {q

i,c
¸ (·)}¸”=k and his residual supply function S≠i,c(·) :

RK æ RK for all assets. In essence, the equivalence follows because the demand for each asset
is measurable with respect to {p, qi

0

} (i.e., the contingent variable p and the privately known
endowment vector qi

0

) and, as we will show, price distribution has full support (see Remark 1).
Coupled with the requirement that the residual supply is correct, i.e., S≠i,c(·) = ≠ q

j ”=i qj,c(·)
for all i, pointwise optimization leads to an equilibrium characterization in terms of two simple
conditions (Proposition 1).

Step 1 (Optimization, given price impact) The first-order condition with respect to the
demand for each asset q

i,c
k is: for each k,

”k ≠ –

i(‡kk(qi,c
k + q

i
0,k) +

ÿ

”̧=k

‡k¸(qi,c
¸ + q

i
0,¸))

¸ ˚˙ ˝
Marginal utility for asset k

= pk + dpk

dq

i,c
k

q

i,c
k +

ÿ

¸ ”=k

dp¸

dq

i,c
k

q

i,c
¸

¸ ˚˙ ˝
Marginal payment for asset k

’p œ RK
. (4)

In a linear equilibrium,21

dp¸

dqi,c
k

© ⁄

i,c
k¸ is constant for each k, ¸ and i. Written in matrix form, the

19The idea of considering the pointwise optimization problem of a single trader, taking as given his residual
market, goes back to Klemperer and Meyer (1989) and Kyle (1989). Rostek and Weretka (2015) introduced
the equilibrium characterization in terms of the fixed point in price impacts (Proposition 1 below), showing
equivalence between the equilibrium conditions in Definition 2 and Proposition 1. The characterization of
equilibrium with contingent demands for heterogeneous risk aversions (Proposition 1) is from Malamud and
Rostek (2017).

20A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously di�erentiable
functions {�q

i

k

(·) : RK æ R}
k

so that q

i(·) + �q

i(·) is downward-sloping with respect to p œ RK , i.e., the
Jacobian ˆ(qi(·)+�qi(·))

ˆp œ RK◊K is negative semi-definite.
21More precisely, assuming that the best-response demands of traders j ”= i are linear.
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first-order conditions (4) become:

� ≠ –

i�(qi,c + qi
0

) = p + �i,cqi,c ’p œ RK
, (5)

where matrix

�i,c © dp
dqi,c

= ( dp¸

dq

i,c
k

)k,¸ =

S

WWWU

dp1
dq

i,c
1

· · · dpK

dq

i,c
1... . . . ...

dp1
dq

i,c
K

· · · dpK

dq

i,c
K

T

XXXV œ RK◊K

is the price impact of trader i. Its (k, ¸)th element ⁄

i,c
k¸ represents the price change in asset ¸

following a demand change in asset k by trader i. The inverse of price impact is a common
measure of liquidity: the lower the price impact, the smaller the price concession a trader
must accept, the more liquid the market. From the first-order condition (5), the best-response
demand of trader i is:

qi,c(p) = (–i� + �i,c)≠1(� ≠ p ≠ –

i�qi
0

) ’p œ RK
, (6)

given his price impact �i,c, which is a su�cient statistic for trader i’s residual supply function
(see Remark 2) and is endogenized in Step 2.

Step 2 (Correct price impact) In equilibrium, the price impact in the pointwise first-order
condition (5) of trader i must be correct, i.e., must equal the transpose of the K ◊ K Jacobian
matrix of the trader’s inverse residual supply function. Applying market clearing to the best-
response demands (6) for traders j ”= i yields the residual supply function S≠i,c(·) of trader
i:

S≠i,c(p) = ≠
ÿ

j ”=i

(–j� + �j,c)≠1(� ≠ –

j�qj
0

) +
ÿ

j ”=i

(–j� + �j,c)≠1p ’p œ RK
. (7)

The price impact of trader i is �i,c © ( dp¸

dqi,c
k

)k,¸ =
11

ˆS≠i,c
(·)

ˆp

2≠1

2Õ
.

Proposition 1 gives an equivalent characterization of the equilibrium in demand schedules by
two conditions: (i) traders optimize, given their assumed price impacts, (ii) which are correct.

Proposition 1 (Equilibrium: Contingent Trading) A profile of (net) demand schedules
{qi,c(·)}i is a linear Bayesian Nash equilibrium if and only if, for each trader i,

(i) (Optimization, given price impact) Demand schedules qi,c(·) : RK æ RK are determined
by pointwise equalization of marginal utility and marginal payment in Eq. (6), given his
price impact �i,c, such that:

(ii) (Correct price impact) The price impact of trader i equals the transpose of the Jacobian
of his inverse residual supply function:

�i,c =
11 ÿ

j ”=i
(–j� + �j,c)≠1

2≠1

2Õ
. (8)
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The fixed point for price impact matrices defined by the system of I equations (8) can be
solved in closed form when demands are contingent: for each i,

�i,c = —

i,c
–

i�, (9)

where —

i,c = 2≠–ib+

Ô
(–ib)

2
+4

2–ib
œ R

+

and b œ R
+

is the unique solution to q
j(–j

b + 2 +Ò
(–j

b)2 + 4)≠1 = 1/2. If risk aversions are symmetric (i.e., –

i = – for all i), then price impact
is �i,c = –

I≠2

�.
Analyzing price impact directly o�ers insights into the role of imperfectly competitive be-

havior. As I æ Œ, then �i,c æ 0 for all i,22 and the competitive limit demand coincides with
the inverse marginal utility, given the quasilinearity of the payo� function. When price impact
is positive, �i,c

> 0, trader i demands (or sells) less than if he had submitted his competitive
schedule.

Remarks. We note four properties, which—with the exception of the second—do not hold
when demands are not contingent.

1. By (9), the price impact of trader i derives from the utility concavity of the residual
market {–

j�}j ”=i
23 and, with contingent trading, the equilibrium price impact of every trader

is proportional to the fundamental covariance matrix �. This proportionality has important
implications for how the contingent market functions and, as we will show, does not hold with
limited demand conditioning (cf. Theorem 3, Proposition 5 in Appendix C.1).

2. All price realizations p œ RK occur in equilibrium for some realizations of endowments,
given the traders’ downward-sloping demands (i.e., the Jacobian ˆqi,c

(·)
ˆp = ≠(–i�+�i)≠1

< 0).24

Hence, the first-order conditions must hold for all prices, and the price impact of each trader
is determined by the requirement that optimization, Bayesian inference, and market clearing
hold in equilibrium and following a unilateral demand change. The market-clearing condition
(Definition 2) is accounted for by condition (ii) for price impacts (Eq. (8)).

3. A trader’s own price impact �i,c is a su�cient statistic for the residual supply func-
tion in the best-response problem. This holds due to the one-to-one map between the con-
tingent variable (i.e., price vector p) and the residual supply’s intercept (i.e., the vector
s≠i,c © ≠ q

j ”=i(–j� + �j,c)≠1(� ≠ –

j�qj
0

) œ RK in Eq. (7)) for all assets.
4. Equilibrium is ex post, given the one-to-one map.

22Price impact converges to zero as I æ Œ so long as the risk aversion –

i,I increases slower than linearly,
i.e., –

i,I = –

i

“

I where “

I ≥ o(I1≠Á) for some Á œ (0, 1) (Lemma 3 in Appendix B). Aggregate endowment is
random in the limit, provided that traders’ endowments are correlated via q

cv

0 (‡
cv

> 0); see ft. 18.
23The riskier the assets traded and the more risk averse trader i’s counterparties, the less elastic their marginal

utilities, the less elastic the residual supply of trader i, and the larger the price concessions that i has to accept.
24If M is not invertible, M

≠1 is the Moore-Penrose pseudoinverse of M.
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3.2 Equilibrium with Uncontingent Demands
Consider the optimization problem (2) of trader i in a market with K exchanges, each for one
asset, who submits demand schedules {q

i
k(·) : R æ R}k.25 The trader’s objective function is

the same as with contingent trading; in particular, his information set (i.e., qi
0

) is. However,
the choice variable di�ers: the demand in the exchange for asset k is contingent on, and hence
measurable with respect to, price pk only. Consequently, maximizing expected payo� (2) is not
the same as maximizing ex post payo�.

Proposition 2 establishes that, analogously to the contingent market (Proposition 1), a
trader’s pointwise optimization for each asset k, now with respect to pk œ R, is necessary and
su�cient for optimization in demand functions (i.e., {q

i
k(·)}k): for each asset k,

max
qi

k
œR

E[� · (qi + qi
0

) ≠ –

i

2 (qi + qi
0

) · �(qi + qi
0

) ≠ p · qi|pk, qi
0

] ’pk œ R, (10)

given his demands for other assets {q

i
¸(·)}¸ ”=k and a profile of residual supply functions {S

≠i
¸ (·) :

R æ R}¸ for all assets. Proposition 2 also shows that asset by asset optimization is without loss
of generality by the Fréchet di�erentiability of expected payo� (2) with respect to the profile of
demands {q

i
k(·)}k (Lemma 2 in Appendix B), and that the second-order condition holds, given

downward-sloping demands.
Compared to contingent trading (Eq. (4)), the first-order condition di�ers in two ways:

”k ≠ –

i(‡kk(qi
k + q

i
0,k) +

ÿ

”̧=k

‡k¸( E[qi
¸|pk, qi

0

]
¸ ˚˙ ˝
Expected trade

of asset ¸

+q

i
0,¸))

¸ ˚˙ ˝
Expected marginal utility for asset k

= pk + ⁄

i
k¸˚˙˝

Zero cross-exchange

price impact

q

i
k

¸ ˚˙ ˝
Marginal payment for asset k

’pk œ R, (11)

where ⁄

i
k © dpk

dqi
k

œ R
+

is the price impact of trader i in the exchange for asset k; in a linear
equilibrium, ⁄

i
k is constant. First, a trader’s demand for asset k depends on expected rather

than realized trades of other assets ¸ ”= k, E[qi
¸|pk, qi

0

]. Equilibrium is generally not ex post.
Second, the cross-exchange price impact is zero: ⁄

i
k¸ © dp¸

dqi
k

= 0 for all k and ¸ ”= k, since the
residual supply function S

≠i
k (·; {qj

0

}j ”=i) : R æ R is contingent on pk but not {p¸}¸ ”=k. It follows
that, in contrast to the contingent market, where the price impact matrices of all traders are
proportional to the covariance matrix � (Eq. (9) and Remark 1), the price impacts of all
traders are diagonal matrices: for each i,

�i ©
1

dp¸

dq

i
k

)k,¸ = diag(⁄i
k)k œ RK◊K

. (12)

Although the cross-exchange price impact is eliminated, equilibrium behavior and outcome
(i.e., prices and allocations) are not independent across exchanges—unless all assets’ payo�s

25A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously di�erentiable
functions {�q

i

k

(·) : R æ R}
k

so that q

i

k

(·) + �q

i

k

(·) is downward-sloping, i.e., ˆ(q

i
k(·)+�q

i
k(·))

ˆpk
< 0 for all k.
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are independent (i.e., ‡k¸ = 0 for all ¸ ”= k), in which case traders’ utility Hessian is separable.
Proposition 2 takes the intercept of trader i’s residual supply s

≠i
k rather than price pk as

a contingent variable—s

≠i
k is exogenous in the best-response problem of trader i. This allows

us to separate the best response and equilibrium problems analogously to Proposition 1: (i)
optimization by trader i, given i’s residual supply (Step 1); (ii) which is correct (Step 2).

For each trader i, let F ((qj
0

)j ”=i|qi
0

) be the joint distribution of other traders’ endowments
and let F (s≠i|qi

0

) be the joint distribution of the intercepts s≠i © (s≠i
k )k of the residual supplies

of trader i—both conditional on trader i’s privately known endowment. The former distribution
is a primitive object; the latter is not, but it is taken as given in trader i’s best-response problem.
Given the linear demands {qj(·)}j ”=i, F (s≠i|qi

0

) is jointly Normal.

Proposition 2 (Equilibrium: Uncontingent Trading) A profile of (net) demand sched-
ules {{q

i
k(·)}k}i is a linear Bayesian Nash equilibrium if and only if, for each trader i,

(i) (Optimization, given residual supply) Demand schedules q

i
k(·) : R æ R are determined by

equalization of expected marginal utility and marginal payment for each asset k pointwise
to pk œ R:

”k ≠ –

i�kE[qi + qi
0

|s≠i
k , qi

0

] = pk + ⁄

i
kq

i
k ’pk œ R, (13)

given the trader’s own demands for other assets {q

i
¸(·)}¸ ”=k, the distribution F (s≠i|qi

0

),
and price impact �i = diag(⁄i

k)k.26

(ii) (Correct residual supply) The residual supply function S

≠i
k (·) : R æ R of trader i is

determined by applying market clearing to the best responses of traders j ”= i {q

j
k(·)}j ”=i

that satisfy condition (i): for each k,

S

≠i
k (·) = ≠

ÿ

j ”=i

q

j
k(·).

The price impact ⁄

i
k of trader i is characterized by the slope of (S≠i

k (·))≠1. The distribution
F (s≠i|qi

0

) is characterized by the intercept of S

≠i
k (·), given F ((qj

0

)j ”=i|qi
0

).

Because of cross-asset inference {{E[qi
¸|s≠i

k , qi
0

]}¸ ”=k}k, one cannot rely on the method of ex
post optimization, and this makes the equilibrium characterization more challenging in two
ways.

First, the price impact �i is not by itself a su�cient statistic for the residual supply of
trader i (cf. Remark 2)—the joint distribution of the conditioning variable s≠i (equivalently,
p) matters. Second, in a trader’s best response (11) for asset k, expected trades E[qi

¸|pk, qi
0

]
depend on the distribution of his endogenous quantity traded of other assets, {q

i
¸}¸ ”=k. Therefore,

26Given the one-to-one map between s

≠i

k

and p

k

, expected trades E[qi

¸

|p
k

, q

i

0] = E[qi

¸

|s≠i

k

, q

i

0] for ¸ ”= k are
characterized by the Projection Theorem, given F (s≠i|qi

0) and �

i.
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characterizing a trader’s own best-response demands requires solving a fixed point for the
trader’s own demand coe�cients across assets.

To elaborate on the latter point, in a trader’s multivariate optimization problem (2)—
contingent or uncontingent—the system of first-order conditions defines a fixed point problem
among the trader’s best-response schedules. With contingent demands, the system can be
written as a single matrix equation, � ≠ –

i�(qi,c + qi
0

) = p + �i,cqi,c for all p œ RK (Eq. (5))
for a quantity vector qi,c = (qi,c

k )k as a function of the common conditioning variable p, and can
be solved for qi,c pointwise with respect to p. (Eq. (6) gives the closed-form solution.) Thus,
the coe�cients of the best-response functions need not be characterized as a fixed point.

Theorem 1 in Section 3.2.2 endogenizes all demand coe�cients (Step 1)—including expected
trades {{E[qi

¸|pk, qi
0

]} ”̧=k}k—and the distribution of the residual supply (Step 2) as functions
of price impacts {�i}i. It thus shows that a fixed point in uncontingent demand schedules
{{q

i
k(·)}k}i is equivalent to a fixed point in price impact matrices.

3.2.1 Preview

Before introducing a technique to characterize equilibrium in uncontingent markets, Example
1 provides a preview of the results that follow.

Example 1 (Price Impact with Uncontingent Demands) Consider a market with two
imperfectly correlated assets, 0 < |fl

12

| < 1, fl

12

= ‡12Ô
‡11‡22

:

� =
S

U ‡

11

‡

12

‡

21

‡

22

T

V
, �i,c =

S

U ⁄

i,c
1

⁄

i,c
12

⁄

i,c
21

⁄

i,c
2

T

V
, �i =

S

U ⁄

i
1

0
0 ⁄

i
2

T

V
.

In the contingent market, by the proportionality of price impact �i,c in the covariance � (Eq.
(9) and Remark 1), the cross-asset price impact inherits the covariance’s sign. When the assets
are payo� substitutes, i.e., ‡

12

> 0, for the traders who take the same (buying or selling)
position in both assets, the cross-asset price impacts ⁄

i,c
12

> 0 and ⁄

i,c
21

> 0 increase the marginal
trading cost of each asset:

p

1

+ ⁄

i,c
1

q

i,c
1

+ ⁄

i,c
12

q

i,c
2

, p

2

+ ⁄

i,c
2

q

i,c
2

+ ⁄

i,c
21

q

i,c
1

, (14)

thereby exacerbating the demand reduction relative to the competitive demand. When the
assets are payo� complements, i.e., ‡

12

< 0, the negative cross-asset price impacts ⁄

i,c
12

< 0 and
⁄

i,c
21

< 0 lower the trading costs. These e�ects are absent with uncontingent demands—the
cross-asset price impacts ⁄

i
12

and ⁄

i
21

are zero. Moreover, as we will show, the within-exchange
price impacts ⁄

i
1

and ⁄

i
2

change (Theorem 3). ⇤

As Example 1 indicates (and Corollary 4 will demonstrate), letting assets clear indepen-
dently can increase welfare in some trading environments. Unlike the competitive market, the
characteristics of traders and assets matter for which design is e�cient. In particular, when
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trading is imperfectly competitive, neither the market structure in which all assets clear jointly
nor that in which each asset is traded in a separate exchange is always e�cient.

We will show that one can design a market with multiple venues that clear independently
which, for any characteristics of traders and assets, is as e�cient as a single exchange that clears
all assets jointly (Section 4). Thus, suitable design can implement a bound on welfare with no
knowledge of traders’ preferences or endowments. In fact, multi-venue design can be strictly
more e�cient than joint clearing (Section 5). Underlying these results it is that innovation
that would be neutral for traders’ payo�s with joint clearing (if well defined at all) is no longer
redundant—another consequence of the nonproportionality between the price impact matrix
�i and the covariance matrix �.

3.2.2 Equilibrium as a Fixed Point in Price Impacts

This section presents our main characterization result, Theorem 1. To tackle the characteriza-
tion of the fixed point problem for a trader’s best-response schedules {q

i
k(·)}k, we first transform

the system of first-order conditions (11) into a fixed point among the trader’s demand coef-
ficients, given the residual supplies, i.e., �i and F (s≠i|qi

0

) (Step 1). We then endogenize the
distribution of the residual supply—and thus all demand coe�cients, including expected trades
E[qi

¸|pk, qi
0

] for all ¸ ”= k and k—as a function of price impacts {�i}i and characterize equilib-
rium as the fixed point for {�i}i (Step 2).

Best-response problem (Step 1). In each exchange k, we parameterize a trader’s conjec-
tured best responses for other assets ¸ ”= k as linear functions of p¸ and qi

0

:

q

i
¸(p¸) © a

i
¸ ≠ bi

¸qi
0

≠ c

i
¸p¸ ’p¸ œ R, (15)

with the demand intercept a

i
¸ œ R, the demand coe�cients bi

¸ œ R1◊K on qi
0

, and the demand
slope c

i
¸ œ R

+

on p¸.27

The parameterization of demands (15) allows us to characterize the change in the contingent
variable (from pk to s

≠i
k ) and endogenize expected trades in terms of variables that are exogenous

in the trader’s best-response problem for asset k. By market clearing, given the residual supply
S

≠i
¸ (·) = s

≠i
¸ + (⁄i

¸)≠1

p¸, we have a

i
¸ ≠ bi

¸qi
0

≠ c

i
¸p¸ = s

≠i
¸ + (⁄i

¸)≠1

p¸ for all s

≠i
¸ œ R, which gives

p¸ as a linear function of s

≠i
¸ and

E[qi
¸|pk, qi

0

] = E[ai
¸ ≠ bi

¸qi
0

≠ c

i
¸

c

i
¸ + (⁄i

¸)≠1

1
a

i
¸ ≠ bi

¸qi
0

≠ s

≠i
¸

2
|s≠i

k , qi
0

] ’s

≠i
k œ R.

Theorem 1 shows that when traders’ risk aversions are the same, the fixed point problem for
the coe�cients of best-response schedules {q

i
k(·)}k in Eqs. (18)-(20) has a unique solution.

27Here, we used that the expected trades in exchange ¸ condition on price p

¸

(the contingent variable in
exchange ¸) and endowment vector q

i

0 (a trader’s private information) by the one-to-one map between p

¸

and
s

≠i

¸

(to be established).
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Equilibrium as a fixed point in price impacts (Step 2). With best-response coe�cients
{a

i
k, bi

k, c

i
k}k endogenized as functions of �i and F (s≠i|qi

0

), the equilibrium fixed point problem
across traders becomes one among the traders’ residual supplies {�i, F (s≠i|qi

0

)}i. The fixed
point problem for {�i, F (s≠i|qi

0

)}i across traders and assets is still complex and has a larger
dimensionality.28

Nevertheless, the equilibrium distributions of the residual supply {F (s≠i|qi
0

)}i can also
be characterized as functions of only price impacts {�i}i, given the primitive distribution
of endowments: Applying market clearing to the best-response schedules {q

j
k(·)}j ”=i gives the

residual supply functions of trader i (i.e., condition (ii) in Proposition 2): for each k,

S

≠i
k (pk) = ≠

ÿ

j ”=i

(aj
k ≠ bj

kqj
0

)
¸ ˚˙ ˝

=s≠i
k

+
ÿ

j ”=i

c

j
k

¸ ˚˙ ˝
=(⁄i

k
)

≠1

pk ’pk œ R. (16)

The fixed point problem for the joint distributions of the residual supply {F (s≠i|qi
0

)}i across
traders becomes one for demand coe�cients {{a

i
k, bi

k}k}i:

F (s≠i|qi
0

) = N
31

≠
ÿ

j ”=i

(aj
k ≠ bj

kE[qj
0

|qi
0

])
2

k
,

1 ÿ

j,h ”=i

bj
kCov[qj

0

, qh
0

|qi
0

](bh
¸ )Õ

2

k,¸

4
, (17)

which, by Step 1, are functions of price impacts {{⁄

i
k}k}i. Finally, in each exchange, the

equilibrium price impact ⁄

i
k © dpk

dqi
k

œ R
+

must equal the slope of the inverse residual supply

function: ⁄

i
k = ≠

1 q
j ”=i

ˆqj
k

(·)
ˆpk

2≠1

= (q
j ”=i c

j
k)≠1 for all i and k.

Theorem 1 characterizes the equilibrium demand coe�cients ai © (ai
k)k œ RK , Bi © (bi

k)k œ
RK◊K , and Ci © diag(ci

k)k œ RK◊K as functions of price impact—in matrix closed form—and
characterizes equilibrium price impact in terms of primitives. In the main text, we present
the characterization of the symmetric equilibrium29 for simplicity of notation. In Appendix
A, we state and prove the result for an asymmetric equilibrium. In what follows, we assume
symmetric risk preferences.

Assumption (Symmetric Risk Preferences) Let –

i = – for all i.

Notation. Let [·]d : RK◊K æ RK◊K be an operator such that, for any matrix M, [M]d is a
diagonal matrix with the (k, ¸)th element equal to zero for k ”= ¸ and the (k, k)th element equal

28In the contingent market, given the proportionality of the price impact matrix in the covariance, the
equilibrium fixed point equations (i.e., price impact equations) become scalar equations; hence, the fixed point
problem involves I scalar variables {—

i,c}
i

(Eq. (9)). When schedules are not contingent, since the price impact
�

i is not by itself a su�cient statistic for the residual supply, the corresponding fixed point problem among
the distributions of the residual supplies’ intercepts involves (K + K(K+1)

2 )I variables—i.e., K first moments
{E[s≠i

k

|qi

0]}
k

and K(K+1)
2 second moments {Cov[s≠i

k

, s

≠i

¸

|qi

0]}
k,¸

for each i. Theorem 1 shows that equilibrium
can be characterized by IK price impacts {{⁄

i

k

}
k

}
i

.
29Equilibrium is symmetric, if for all k, price impacts satisfy ⁄

i

k

© ⁄

k

for all i, demand coe�cients satisfy
c

i

k

© c

k

and b

i

k

© b

k

for all i, and a

i

k

is a symmetric function of
)

{E[qj

0]}
j ”=i

, E[qi

0]
*

across traders. We will
suppress the superscript i except where it is helpful.
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to mkk for any k.

Theorem 1 (Equilibrium: Fixed Point in Demand Schedules) In a symmetric equilib-
rium, the (net) demand schedules, defined by matrix coe�cients {ai}i, B, and C, and price
impact � are characterized by the following conditions: for each trader i,

(i) (Optimization, given price impact) Given price impact matrix �, the coe�cients of (net)
demands ai

, B, and C are characterized by:

ai = C
1
� ≠ (–� ≠ C≠1B)E[q

0

]
2

¸ ˚˙ ˝
=p≠C≠1Bq0

+
1
(–� + �)≠1

–� ≠ B
2
(E[q

0

] ≠ E[qi
0

]),
¸ ˚˙ ˝

Adjustment due to cross-asset inference

(18)

B =
1
(1 ≠ ‡

2

0

)(–� + �) + ‡

2

0

C≠1

¸ ˚˙ ˝
Adjustment due to

cross-asset inference

2≠1

–�, (19)

C =
5
(–� + �)(BBÕ)[BBÕ]≠1

d
¸ ˚˙ ˝
Inference coe�cient

V ar[s≠i|qi
0][V ar[s≠i|qi

0]]

≠1
d

6≠1

d
, (20)

where q
0

© 1

I

q
j qj

0

œ RK is the aggregate endowment and ‡

0

© ‡cv+

1
I

‡pv

‡cv+‡pv
œ R.

(ii) (Correct price impact) Price impact � equals the transpose of the Jacobian of the trader’s
inverse residual supply function:

� = 1
I ≠ 1(C≠1)Õ = –

I ≠ 2

5
�(BBÕ)[BBÕ]≠1

d

6

d
. (21)

Note that the price slope C is a diagonal matrix in the uncontingent market. Appendix C.2
derives demand coe�cients for K = 2.

Equilibrium outcome. Theorem 1 enables a direct comparison between the imperfectly
competitive (I < Œ) and competitive (I æ Œ) outcomes. The competitive case is characterized
by �i æ 0 for all i.

By Theorem 1, the implications of independence in market clearing that we will subsequently
characterize can be understood through the structure of the endogenous price impact matrix.
To begin, Corollary 1 shows how independence in market clearing a�ects equilibrium outcome.
To ease the comparison, if the market clears jointly, then by Eqs. (6) and (9),

Bc = (–� + �c)≠1

–� = I ≠ 2
I ≠ 1Id, Cc = (–� + �c)≠1

, �c = 1
I ≠ 2–�,

where Id œ RK◊K is the identity matrix. By contrast, in the uncontingent market, traders’
demand coe�cients depend on the distribution of traders’ endowments, as do price impacts,
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which are also not proportional to the fundamental risk �.30

Corollary 1 (Equilibrium Prices and Allocations) Given the equilibrium demand coe�-
cients {ai}i, B, C, and price impact � in Theorem 1, equilibrium prices and allocations are:

p = � ≠ (–� ≠ C≠1B)E[q
0

] ≠ C≠1Bq
0

, (22)
qi + qi

0

=
1
(–� + �)≠1

–� ≠ B
2
(E[q

0

] ≠ E[qi
0

]) + Bq
0

+ (Id ≠ B)qi
0

. (23)

We highlight two implications of the lack of proportionality between � and �. In contrast
to the contingent market, where pc = �≠ –�q

0

, the second moment V ar[p] of the distribution
of equilibrium prices depends on the distribution of endowments—through the endogenous
demand coe�cient C≠1B—rather than only the exogenous asset covariance �. In particular,
the price covariance of any asset pair depends on the second moment of the joint distribution
of all assets. (We explore the implications of this property in Section 3.2.3 and Example
3.) Additionally, the allocations’ weights on the idiosyncratic and market risk (i.e., Id ≠ B
and B) depend on the asset covariance and the distribution of endowments. Thus, asset payo�
substitutability itself factors in which assets’ allocation is more e�cient. The nonproportionality
of C to �≠1 continues to hold in the limit as I æ Œ.

Theorem 2 (Existence of Symmetric Equilibrium) There exists a symmetric linear Bayesian
Nash equilibrium. When K = 2, equilibrium is unique.

In the contingent market, the proportionality of price impact to asset covariance reduces
the fixed point problem for {�i,c}i to one for scalars {—

i,c œ R}i (Eq. (9)). In the uncontingent
market, the argument di�ers in two ways, due to cross-asset inference (i.e., inference coe�cient
(BBÕ)[BBÕ]≠1

d ). First, price impact matrices are not proportional to the covariance, and ought
to be found jointly for all assets and traders. Second, the mapping for price impact �i—defined
by the fixed point Eqs. (19) and (21)—is not monotone in price impacts {�j}j ”=i.

Given Theorem 1’s result that a fixed point in demand schedules can equivalently (for
I < Œ) be represented as a fixed point in price impact matrices, the existence of equilibrium
follows from the Brouwer fixed point theorem (Theorem 2) with the bounds of price impact
being matrices (rather than scalars).31

30The inference coe�cient (BB

Õ)[BB

Õ]≠1
d

= V ar[s≠i|qi

0][V ar[s≠i|qi

0]]≠1
d

in Eq. (20) is derived from the
distribution of the residual supply intercepts s

≠i in Eq. (17), given the distribution of endowments F ((qj

0)
j ”=i

|qi

0).
31We do not provide a uniqueness result for K > 2. In the contingent model, the equilibrium uniqueness can

be shown by applying the argument from a one-asset market, using the proportionality of price impact in the
covariance matrix (Eq. (9)) (see Malamud and Rostek (2017)). Lambert, Ostrovsky, and Panov (2018) consider
a game in which strategies are quantities (market orders) with one asset and one liquidity provider; the scalar
price impact solves a quadratic equation that has a unique positive solution, which gives equilibrium uniqueness.
We analyze games in demand and supply functions with multiple assets and price impacts characterized by a
system of nonlinear (non-polynomial) matrix equations.
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3.2.3 Comparative Statics of Price Impact

Thus far, we noted that, in contrast to when markets clear jointly, the cross-exchange price im-
pacts are zero (by definition of uncontingent demands) and the within-exchange price impacts
depend on cross-asset inference (Theorem 1). We now show that, due to cross-asset infer-
ence, the within-exchange price impacts {⁄k}k can be larger or smaller than their contingent
counterparts. Theorem 3 provides a su�cient condition for {⁄k}k to be larger.

Price impact and cross-asset inference. Consider the counterfactual that defines trader
i’s price impact in exchange k: what is the e�ect of increasing the demand by trader i for asset
k at a margin? Price pk increases so that other traders are willing to sell the extra units and
the market clears. This direct e�ect is present in the contingent market as well. When the
market is uncontingent, equilibrium is not ex post and the change in price pk has an indirect
inference e�ect. Implicitly di�erentiating the first-order condition (11) of trader j ”= i for asset
k with respect to pk characterizes the direct and inference e�ects on the marginal utility and
the marginal payment:

≠ –

j
‡kk

ˆq

j
k(·)

ˆpk

≠
ÿ

”̧=k

–

j
‡k¸

ˆq

j
¸(·)

ˆp¸

ˆE[p¸|pk, qj
0

]
ˆpk

¸ ˚˙ ˝
Inference e�ect

on the marginal utility

= 1
¸˚˙˝

Direct e�ect

on the marginal payment

+ ⁄

j
k

ˆq

j
k(·)

ˆpk

. (24)

Rewriting Eq. (24) decomposes the demand slope ˆqj
k

(·)
ˆpk

, and hence trader i’s price impact ⁄

i
k,

into the direct and indirect inference e�ects: Using ˆqj
k

ˆp¸
© –j‡k¸

–j‡kk+⁄j
k

(≠ˆqj
¸
(·)

ˆp¸
) = –j‡k¸

–j‡kk+⁄j
k

c

j
¸,

⁄

i
k = ≠

1 ÿ

j ”=i

ˆq

j
k(·)

ˆpk¸ ˚˙ ˝
= ≠cj

k

2≠1

= ≠
3 ÿ

j ”=i

1
≠ 1

–

j
‡kk + ⁄

j
k¸ ˚˙ ˝

©
ˆq

j
k

ˆpk¸ ˚˙ ˝
© Direct e�ect (≠)

+
ÿ

¸ ”=k

ˆq

j
k

ˆp¸¸˚˙˝
sign(‡k¸)

ˆE[p¸|pk, qj
0

]
ˆpk¸ ˚˙ ˝

sign(Cov[pk, p¸])

¸ ˚˙ ˝
© Inference e�ect

24≠1

. (25)

To explain the inference e�ect in Eq. (25), in the counterfactual following the demand
increase by i, consider traders’ j ”= i posterior conditioned on the higher price pk. When asset
payo�s are symmetric substitutes (i.e., ‡kk = ‡ for all k and ‡k¸ = ‡fl > 0 for all k and ¸ ”= k),
then other traders, who assume that all others—including trader i—play equilibrium, would
instead attribute the higher price pk to a lower, on average, realization of endowments for all
correlated assets, and expect higher prices and lower trades of those assets.32 This further
increases the price at which they are willing to sell units of the substitute asset k to trader i.33

32Price p

k

a�ects the conditional expectation separately from endowments q

j

0 in expected trades E[qj

¸

|p
k

, q

j

0]
(equivalently, E[p

¸

|p
k

, q

j

0]) provided that asset payo�s are not independent: p

k

contains information about
endowments of other traders for all assets.

33The decomposition of equilibrium price impact—which, by definition, represents an o�-equilibrium
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Theorem 3 shows that when payo� correlations are symmetric, uncontingent trading in-
creases the within-exchange price impact—the inference e�ect in Eq. (25) is positive. Let
flk¸ © Corr[rk, r¸] = ‡k¸Ô

‡kk‡¸¸
.

Theorem 3 (Price Impact: Comparative Statics) Suppose that asset covariances are sym-
metric: ‡¸¸ = ‡ for all ¸ and ‡¸m = ‡fl for all ¸ and m ”= ¸. The within-exchange price impact
⁄k satisfies the following properties for each k:

(1) (Magnitude) With K assets, price impact ⁄k maximally increases K-fold relative to ⁄

c
k =

–
I≠2

‡kk:
–

I ≠ 2‡kk Æ ⁄k Æ –

I ≠ 2
ÿ

¸

‡¸¸.

The upper bound of the K-fold increase is attained if and only if |fl| = 1.

(2) (Comparative statics) Relative to the contingent market:

(i) ˆ(⁄k≠⁄c
k)

ˆI
< 0, i.e., the inference e�ect is decreasing in the number of traders I;

(ii) ˆ(⁄k≠⁄c
k)

ˆ|fl| > 0, i.e., the inference e�ect is increasing in asset correlation |fl|.

As a corollary, in two-asset markets, uncontingent trading always increases the within-
exchange price impact.34 Price impact ⁄k increases less relative to ⁄

c
k = –

I≠2

‡kk when the
inference e�ect is weaker—i.e., with a larger number of traders I or smaller correlations |fl|
(Fig. 1A). Price impact increases K-fold when the inference is perfect (i.e., |fl| = 1). As
I æ Œ, then �i æ 0 for all i (Lemma 3 in Appendix B).35

Endogenous price covariance. When asset correlations are heterogeneous (K > 2), uncon-
tingent trading can lower the price impact ⁄k for some assets relative to contingent trading
(Fig. 1B). In the counterfactual below Eq. (25), when correlations are symmetric, the inferred
price changes of all assets induced by a demand change for one asset have the same sign. With
heterogeneous correlations, however, the inferred price changes may di�er in sign, resulting in
a negative inference e�ect.
counterfactual—captures how the cross-agent and cross-asset externalities are accounted for. This makes precise
the di�erence with Nash-in-Nash (see Introduction).

34 When K = 2, Appendix C.2 characterizes ˆE[p¸|pk,qj
0]

ˆpk
as a closed-form function of price impact ⁄ and

simplifies Eq. (25) into Eq. (161):
⁄

k

= –

I ≠ 2

¸ ˚˙ ˝
=⁄

c
k

+ –fl

I ≠ 2¸ ˚˙ ˝
sign(fl)

2xy

x

2 + y

2
¸ ˚˙ ˝

sign(fl)
¸ ˚˙ ˝

Inference (+)

,

where x © (1 ≠ ‡0)(1 ≠ fl

2)– + (1 + (I ≠ 2)‡0)⁄ and y © fl(1 + (I ≠ 2)‡0)⁄.
35The conditions from ft. 22 apply to contingent, uncontingent, and general markets in the next section. When

schedules are not contingent, the cross-asset inference is present in the limit (i.e., ˆE[p¸|pk,qj
0]

ˆpk
= Cov[p¸,pk|qj

0]
V ar[pk|qj

0] ”= 0
for ¸ ”= k) even when the price impact becomes zero (i.e., ⁄

i

k

æ 0).
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Figure 1: Within-exchange price impact: inference effect
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Notes: Panel A: (K = 2) Price impact di�erence ⁄k ≠ ⁄

c
k is determined by the inference e�ect (Eq.

(25))—the direct e�ect is the same in contingent and uncontingent markets. The inference e�ect is
larger (in absolute value) when assets are more strongly correlated (i.e., |fl| is larger) and the number
of traders I is smaller. The black, blue and red curves assume, respectively, I = 5, I

Õ = 10, and
I

ÕÕ = 100. Panel B: (K > 2) With heterogeneous correlations, price impact ⁄k can be lower than ⁄

c
k.

Assets 1 and 2 are heterogeneously correlated with other assets: fl

13

= fl

14

, fl

23

= fl

24

, fl

12

= ≠0.1,
fl

15

= fl

16

= ≠0.5, and fl

25

= fl

26

= 0.3; I = 10. In both panels, ‡cv = 0, ‡pv = 1, – = 1.

Underlying this result is the lack of proportionality between equilibrium price impact, and
hence price covariance, and asset covariance � with limited demand conditioning, as seen in
Eq. (22). Consequently, � and Cov[pk, p¸] depend on the covariance of all assets and, in fact,
need not match the sign of asset correlation (i.e., ‡k¸), e.g., prices of complementary assets
(‡k¸ < 0) can be positively correlated (Cov[pk, p¸] > 0). The intuition can be seen in the price
equation (22): Cov[pk, p¸] is determined by

1
C≠1B

2

k¸
=

1
(C + Ÿ(–�)≠1)≠1

2

k¸
= –‡k¸ ≠ –�k(–� + ŸC≠1)≠1 · –�¸, (26)

where Ÿ = 1+(I≠2)‡0
(I≠1)(1≠‡0)

œ R
+

. When demand coe�cient C is not proportional to (–�)≠1, one can

have sign(ˆE[p¸|pk,qj
0]

ˆpk
) = sign(Cov[pk, p¸]) ”= sign(‡k¸) for some ¸ ”= k, and as a result, ⁄k < ⁄

c
k

by Eq. (25) (Fig. 1B). In the contingent market, the price covariance matrix is proportional to
the asset covariance: substituting Cc = (–� + �c)≠1 = I≠2

I≠1

(–�)≠1 in Eq. (26), we have:
1
(Cc + Ÿ(–�)≠1)≠1

2

k¸
= (I ≠ 1)Ÿ

(I ≠ 1)Ÿ + (I ≠ 2)–‡k¸ ’k ’¸;

hence, sign(Cov[pk, p¸]) = sign(‡k¸).
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4 Changes in Market Structure
The endogenous—with limited conditioning—price covariance creates incentives for innovation
in trading technology, defined by changes in market clearing. To fix ideas, we first discuss a
particular example of such innovation.

Example 2 (Innovation in Trading Technology) Suppose a new exchange for one of the
K traded assets is created to operate along with the existing exchanges without altering traders’
endowments of any asset. In the contingent market, the corresponding innovation of duplicating
a traded asset would be neutral for traders’ equilibrium payo�s. This can be seen from the
first-order condition (5) for contingent demands qi,c(p

1

, ..., pK , pK+1

) : RK+1 æ RK+1,

(–i�+ + �i,c)qi,c = �+ ≠ p ≠ –

i�+qi,+
0

’p œ RK+1

, (27)

where the payo�s of K +1 assets are jointly Normally distributed according to N (�+

, �+) with
�+ œ RK+1 and �+ œ R(K+1)◊(K+1), and endowments for the duplicated asset can be arbitrarily
split, provided that q

i,+
0,k + q

i,+
0,K+1

= q

i
0,k. Using the fact that price impact �i,c = —

i,c
–

i�+ œ
R(K+1)◊(K+1) is proportional to the covariance matrix for all i in the contingent market (Eq.
(9)), and that the covariance matrix �+ is singular with the new asset, condition (27) has
a continuum of solutions qi,c œ RK+1 pointwise with respect to the price vector p œ RK+1,
including zero trade of the new asset q

i,c
K+1

(·) = 0. Even if the asset in the new venue is traded,
traders’ equilibrium payo�s are the same as in the market with K assets. ⇤

With independent market clearing, innovation in trading technology that would be neutral
for traders’ payo�s with joint clearing is generally no longer redundant, i.e., traders’ equilibrium
payo�s change. In regard to innovation, we present two results: first, we characterize when
innovation is not redundant (Proposition 3, Theorem 4); second, we show that markets with
multiple exchanges that clear independently can be designed to function like a single exchange
for all assets (Corollary 2). In Section 5, we examine how innovation a�ects welfare.

To accommodate various forms of innovation and a more general class of market struc-
tures, we extend the uncontingent model from Section 3.2: we allow arbitrary restrictions on
cross-asset demand conditioning “between” uncontingent and contingent—this permits multi-
ple assets per exchange—and we allow an asset to be traded in multiple venues. Given that all
traders participate in all exchanges, we can identify an exchange with a subset of assets traded.

Definition 4 (Exchanges, Market Structure) Consider a market with I traders and K

assets. An exchange n is defined by the subset of assets traded K(n) ™ K. The market
structure is described by a set of N exchanges; i.e., N = {K(n)}n.

Exchanges clear independently: in each exchange n, trader i submits a demand q

i
k,n(·) :

RK(n) æ R for each asset k œ K(n) contingent on the prices of assets traded there, pK(n)

©
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(p¸,n)¸œK(n)

œ RK(n). The market-clearing price vector pK(n)

in exchange n is determined by
q

j q

j
k,n(pK(n)

) = 0 jointly for all assets k œ K(n) traded in this exchange.

Like in previous sections, the market clears independently across exchanges (but not necessarily
across assets). The uncontingent market corresponds to K exchanges N = {{k}}k, and the
contingent market corresponds to a single exchange N = {K}.

We treat the same asset traded in di�erent exchanges as distinct assets with perfectly
correlated payo�s. For the fundamentals � œ RK

, � œ RK◊K , and {qi
0

œ RK}i, the superscript
‘+’ indicates their counterparts in R

q
n

K(n). Accordingly, the asset payo�s in N exchanges are
jointly Normally distributed N (�+

, �+), where �+ œ R
q

n
K(n) and �+ œ R(

q
n

K(n))◊(

q
n

K(n)).
An asset’s endowment can be split arbitrarily across exchanges.36 This is because the trader’s
demand for each asset depends on his total endowment of all assets (Eq. (28)); hence, so
do prices. Generalizing from the first-order condition (13) for one asset per exchange, the
best-response demand schedule for asset k œ K(n) in exchange n is determined by:

”

+

k ≠ –

i�kqi
0

≠ –

i�+

k E[qi|pK(n)

, qi
0

] = pk,n + (�i
K(n)

)kqi
K(n)

’pK(n)

œ RK(n)

, (28)

given {q

i
¸,n(·)} ”̧=k,¸œK(n)

, {{q

i
¸,nÕ(·)}¸œK(nÕ

)

}nÕ ”=n, F (s≠i|qi
0

), and {�i
K(n)

}n, where �i
K(n)

œ RK(n)◊K(n)

is trader i’s price impact in exchange n and (�i
K(n)

)k œ R1◊K(n) is the k

th row of �i
K(n)

.
To analyze equilibrium in markets with arbitrary demand conditioning across assets (Def-

inition 4), we must extend Theorem 1. As with the simpler market structures characterized
in Theorem 1, the fixed point in demand schedules is equivalent to a fixed point in traders’
price impacts—now, block-diagonal matrices �i © diag(�i

K(n)

)n œ R(

q
n

K(n))◊(

q
n

K(n)) for all
i. Theorem 5 in Appendix A characterizes equilibrium; Proposition 5 in Appendix C.1 provides
the comparative statics of equilibrium price impact. The proofs of Proposition 2 and Theorem
2 in Appendix B encompass general market structures.

4.1 Nonredundant Changes in Market Structure
Price impacts per se are not useful in comparing payo�s across arbitrary market structures,
as they are defined for di�erent exchanges and may have di�erent dimensionality. Proposition
3 simplifies and illuminates the analysis of nonredundancy and welfare: it relates the payo�s
across market structures with di�erent conditioning variables, and hence di�erent price impact
�, through a single-exchange counterfactual.

We define two statistics, ‚� and ‚B, that match the moments of total equilibrium trade of
each asset k across exchanges in a market structure {K(n)}n, ‚

q

i
k © q

{n|kœK(n)} q

i
k,n. The per-

unit price impact ‚� corresponds to the unique positive semi-definite matrix, such that if the
36Given trader i’s endowment q

i

0 = (qi

0,k

)
k

œ RK , his endowment in R
q

n
K(n) can be an arbitrary vector

q

i,+
0 © ((qi,+

0,k,n

)
k

)
n

œ R
q

n
K(n) such that q

i

0,k

=
q

{n|kœK(n)} q

i,+
0,k,n

for all k. The parts of the split endowment
in di�erent exchanges are perfectly correlated: Corr[qi,+

0,k,n

, q

i,+
0,k,n

Õ ] = 1 for any n, n

Õ such that k œ K(n)flK(nÕ).
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price impact in a market structure with a single exchange for K assets were ‚�, the expected
trade of each asset k œ K in the counterfactual exchange would equal the expected equilibrium
total trade in the market structure {K(n)}n. For all i and k,

E[‚
q

i
k] ©

ÿ

{n|kœK(n)}
E[qi

k,n] = (–� + ‚�)≠1

k –�(E[q
0

] ≠ E[qi
0

]). (29)

In turn, the cross-asset inference ‚B is the coe�cient on the privately known endowment qi
0

in
a trader’s total demand that matches the variance of the equilibrium total trade (cf. Eq. (19)).
For all i and k,

V ar[‚
q

i
k] © V ar

Ë ÿ

{n|kœK(n)}
q

i
k,n

È
= ‚BV ar[q

0

≠ qi
0

] ‚BÕ = I ≠ 1
I

‡pv
‚B ‚BÕ; (30)

( ‚B ‚BÕ)k¸( ‚B ‚BÕ)≠1

kk is the cross-asset inference coe�cient in the expected total trade E[‚
q

i
¸|‚

q

i
k, qi

0

].37

Proposition 3 shows that one can compare equilibrium payo�s across market structures
through ( ‚�,

‚B) œ RK◊K ◊RK◊K and, hence, identify nonredundant innovation with the change
in ( ‚�,

‚B). We introduce an indicator matrix W that represents a market structure N =
{K(n)}n.

Definition 5 (Indicator Matrix for Market Structure) An indicator matrix W © (Wn)n œ
{0, 1}(

q
n

K(n))◊K represents a market structure N = {K(n)}n if for each exchange n, the (¸, k)th

element of Wn œ {0, 1}K(n)◊K equals one if the ¸

th asset in exchange n is asset k and zero oth-
erwise.

We can now write �+ = W� and �+ = W�WÕ. Recall that tr(M) © q
k mkk is the trace of a

matrix M (i.e., the sum of its diagonal elements).

Proposition 3 (Su�cient Statistic for Equilibrium Payo�s) Let I < Œ and K > 1.
Assume that � is not singular.38 Fix a market structure N = {K(n)}n.

(1) (Expected payo�s) The expected equilibrium payo� of trader i is characterized as a function
of ‚� and ‚B:

E[ui(qi) ≠ p · qi] = E[� · qi
0

≠ 1
2qi

0

· –�qi
0

]
¸ ˚˙ ˝

Payo� without trade

+ (E[q
0

] ≠ E[qi
0

]) · �( ‚�)(E[q
0

] ≠ E[qi
0

])
¸ ˚˙ ˝

Equilibrium surplus from trade

+ 1
2

I ≠ 1
I

‡pvtr

3
‚BÕ

–� + –� ‚B ≠ ‚BÕ
–� ‚B

4

¸ ˚˙ ˝
Payo� term due to V ar[q0|qi

0] > 0

, (31)

37 ‚
� and ‚

B are not defined as equilibrium objects in a single-exchange game.
38The proof allows for a singular covariance �. Then, the uniqueness of ‚

� and ‚
B holds up to payo� equiva-

lence.
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where the per-unit price impact ‚� œ RK◊K and cross-asset inference ‚B œ RK◊K are defined by
conditions (29) and (30), respectively, and characterized by:

‚� ©
1
WÕ �≠1

¸ ˚˙ ˝
=(I≠1)CÕ

W
2≠1

,

‚B © WÕ
1
(1 ≠ ‡

0

)(–�+ + �
¸˚˙˝

=

1
I≠1 (C≠1

)

Õ

) + ‡

0

(I ≠ 1)�Õ

¸˚˙˝
=

1
I≠1 C≠1

2≠1

W–�; (32)

�( ‚�) © 1

2

–�(–�+ ‚�Õ)≠1(–�+ ‚�+ ‚�Õ)(–�+ ‚�)≠1

–� œ RK◊K represents the marginal payo�
per unit of ex ante trading needs E[q

0

] ≠ E[qi
0

].

(2) (Su�cient statistic and symmetry) The su�cient statistic ( ‚�,

‚B) for the equilibrium payo�s
(31) reduces to ‚�, equivalently ‚B, if and only if the equilibrium price impact is a symmetric
matrix, i.e., � = �Õ.

Crucially, while either price impact � itself or the demand coe�cient B is a su�cient
statistic for equilibrium payo�s in a market structure N = {K(n)}k (Theorems 1 and 5), their
per-unit counterparts ‚� and ‚B are both required for the payo�s in two market structures N

and N

Õ to match, unless price impact is a symmetric matrix.
Theorem 4 shows that the asymmetry of price impact is the key to understanding which

innovations are nonredundant. Mathematically, the relevance of the price impact asymmetry
can be seen in Eq. (32): the inverse matrix in ‚B is a harmonic mean of the demand coe�cient
C = 1

I≠1

(�≠1)Õ and its transpose CÕ and, thus, it is not a linear function of � unless � is
symmetric. The asymmetry is a new equilibrium property relative to both the contingent design
(�c is proportional to � and hence ⁄k¸ = ⁄¸k, ¸ ”= k, Eq. (9)) and the uncontingent design
(⁄k¸ = 0, ¸ ”= k). The asymmetry of the cross-asset price impacts is another consequence of
the asymmetric, with limited conditioning, inference e�ect component of price impact (Section
3.2.3). Example 3 illustrates this link.

Theorem 4 (Nonredundancy of Changes in Market Structure: Conditions) Let I <

Œ and K > 1, and consider a market structure N = {K(n)}n. Suppose a new exchange n

Õ such
that K(nÕ) µ K(n) for some n œ N is introduced. Exchange n

Õ is redundant in an equilibrium
if and only if one of the following conditions holds:

(i) (Innovation mimics an exchange) The set of assets traded in exchange n

Õ is the same as
in an existing exchange, i.e., K(nÕ) = K(nÕÕ) for some n

ÕÕ œ N .

(ii) (Symmetric price impact) Price impact in an exchange n

ÕÕ such that K(nÕ) µ K(nÕÕ) is
symmetric, i.e., �K(nÕÕ

)

= �Õ
K(nÕÕ

)

.

(iii) (Independent or perfectly correlated assets) The payo�s of all assets in K(nÕ) are indepen-
dent or perfectly correlated with those of the assets in K(n) \ K(nÕ), i.e., |flk¸| œ {0, 1}
for all k œ K(nÕ) and ¸ œ K(n) \ K(nÕ).
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By Proposition 3, an innovation is nonredundant if it changes the relative trading costs across
assets ‚� or cross-asset inference ‚B.39 Intuitively, under any of Theorem 4’s conditions, new
exchanges do not create additional linearly independent conditioning variables in any asset’s
demand. Neither ‚B nor ‚� change. Example 3 illustrates Theorem 4.

Example 3 (Nonredundant Exchanges and Price Impact Asymmetry) Consider a
market with two exchanges N = {{1, 2}, {3}}. For simplicity, assume that ‡

11

= ‡

22

= ‡

33

and
the assets are imperfectly correlated (0 < |flk¸| < 1 for all k and ¸ ”= k). Per Theorem 4 (ii), the
introduction of exchange {1} is redundant if and only if the equilibrium price impact �{1,2} is
a symmetric matrix: i.e., the cross-asset price impacts coincide, ⁄

12

= ⁄

21

.

(i) When is price impact �{1,2} symmetric? This is the case if and only if the covariances of
assets 1 and 2 are symmetric:

‡

13

= ‡

23

… Cov[p
2

, p

3

] = Cov[p
1

, p

3

]. (33)

A closer look at the inference e�ect in price impact shows why. Using the relation between
price impact and demand slope, �{1,2} = 1

I≠1

(C≠1

{1,2})Õ, i.e.,
S

U ⁄

11

⁄

12

⁄

21

⁄

22

T

V = 1
I ≠ 1

1
c

11

c

22

≠ c

12

c

21

S

U c

22

≠c

21

≠c

12

c

11

T

V
, (34)

we decompose the o�-diagonal demand coe�cients c

12

© ˆqj
1(·)

ˆp2
and c

21

© ˆqj
2(·)

ˆp1
into direct and

indirect e�ects (analogously to Eq. (25) in Section 3.2.3):

ˆq

j
1

(·)
ˆp

2¸ ˚˙ ˝
=≠c12

= ˆq

j
1

ˆp

2

¸˚˙˝
Direct e�ect ‡12

+ ˆq

j
1

ˆp

3¸˚˙˝
‡13

ˆE[p
3

|p
1

, p

2

, qj
0

]
ˆp

2¸ ˚˙ ˝
Cov[p2,p3]

¸ ˚˙ ˝
Inference e�ect

, (35)

ˆq

j
2

(·)
ˆp

1¸ ˚˙ ˝
=≠c21

= ˆq

j
2

ˆp

1

¸˚˙˝
Direct e�ect ‡21

+ ˆq

j
2

ˆp

3¸˚˙˝
‡23

ˆE[p
3

|p
1

, p

2

, qj
0

]
ˆp

1¸ ˚˙ ˝
Cov[p1,p3]

¸ ˚˙ ˝
Inference e�ect

. (36)

Since the direct e�ects in cross-asset price impact coincide, price impact is symmetric if the
corresponding inference e�ects coincide. As we discussed in Section 3.2.3, because price impact
is not proportional to covariance � with independent market clearing, the price impact between
any pair of assets depends on the covariance of all assets. If assets 1 and 2, whose demands
are contingent on the same prices, are symmetrically correlated with asset 3, the equilibrium
price covariances with asset 3—and hence inference e�ects and cross-asset price impacts ⁄

12

and ⁄

21

—are the same.
39Both change if one does, generically in asset covariance � and market structure N = {K(n)}

n

.
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(ii) Why is exchange {1} redundant when the cross-asset price impacts ⁄

12

and ⁄

21

are sym-
metric (Theorem 4 (ii))?

We first note that the inclusion of exchange {1} preserves the symmetry of cross-asset price
impacts of assets 1, 2 vs. 3 in the new market structure. While the new venue {1} changes
cross-asset inference e�ects, it does not include prices of assets that are not traded in exchange
{1, 2}.

Price impact symmetry plays a key role in the proof of Theorem 4 because the demand co-
e�cient ‚B = WÕB is determined by a harmonic mean of C and CÕ (Eq. (32)). The equilibrium
price is a linear function of the random variables—the aggregate endowments {q

0,k}k—with
weights C≠1B (Eq. (22)). When the price impact (equivalently C{1,2}) is symmetric, the de-
mand matrix coe�cients B and C are linked proportionally; thus, the relative weights across
assets in C≠1B are invariant to the changes in B and C induced by the new venue. In particular,
the price of each asset is the same linear combination of {q

0,k}k before and after the new venue
is introduced. Consequently, the per-unit price impact ‚� and cross-asset inference ‚B do not
change. Moreover, we show that, in any market structure, the prices of the same asset traded
in di�erent venues equalize if and only if the price impact submatrix for the corresponding
exchanges is symmetric (Lemma 4 in Appendix B).

With asymmetric cross-asset price impacts, ⁄

12

”= ⁄

21

, the demand coe�cients B and C are
not linked proportionally—neither before nor after the new venue is introduced. The prices of
asset 1 in exchanges {1, 2} and {1} are di�erent linear combinations of the random variables
than its price before venue {1} is created; the new exchange is not redundant.

(iii) On the other hand, the introduction of exchange {3} is redundant irrespective of the
symmetry of � (Theorem 4 (i)). Because the inference e�ects with respect to assets 1 and 2 are
the same in both exchanges {3}, the price impact is the same in these venues—prices equalize,
and traders split their demands for asset 3 equally between the two exchanges. ⇤

We highlight additional insights of Proposition 3 and Theorem 4. These results under-
score the role of imperfect competition for the nonredundancy of innovation. In imperfectly
competitive markets, there are two types of nonredundant innovation:

• Exchanges n

Õ whose assets are not a subset of another venue’s assets (K(nÕ) ”µ K(n) for
all n), i.e., the total demand for some asset k œ K is contingent on prices of new assets;
e.g., exchange {2, 3} in Example 3. The inference error weakly decreases for all assets.

• Exchanges n

Õ whose assets are a proper subset of another venue’s assets (K(nÕ) ( K(n)
for some n), i.e., the total demand of each asset k œ K is contingent on prices of the same
assets; e.g., exchange {1} in Example 3. However, with new contingent variables (i.e.,
additional prices of the same assets), demands for the same asset in di�erent exchanges
are contingent on distinct linear combinations of the random variables. This changes
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cross-asset inference, and hence ‚� and ‚B. Inference error can increase for some assets
and decrease for others.

The latter type of nonredundant innovation—which is present when price impact is asym-
metric (Theorem 4 (ii))—has no counterparts in competitive markets. Indeed, when the price
impact is symmetric (e.g., the zero matrix) only the former type of innovation can be nonre-
dundant. Furthermore, even if information loss were zero (i.e., (‡cv, ‡pv) æ 0, ‡pv

‡cv
> 0), the

former type of innovation would be nonredundant when I < Œ but not when I æ Œ, as it
would change the equilibrium price impact.

More generally, apart from the introduction of new trading protocols (Example 3), inde-
pendent market clearing motivates other forms of innovation, such as the linking of existing
trading protocols (i.e., merging assets between venues), and the inclusion of an asset in a trad-
ing protocol where it was not previously traded (e.g., asset listings). When increasing the set
of (imperfectly correlated) conditioning variables in traders’ demands, these innovations lead
to a market structure with more, fewer, and the same number of exchanges, respectively.40

At a primitive level, price impact is a symmetric matrix under a joint condition on the
market structure and the asset covariance. Per Theorem 4 (ii), the symmetry of price impact
is required only for the exchanges n

ÕÕ whose assets are a superset of those in the new venue
n

Õ. For example, in the market {{1, 2}, {3, 4}}, the price impact in exchange {3, 4} need not
be symmetric for exchange {1} to be redundant. The required symmetry condition ensures
that the inference e�ects among the new assets K(nÕ) and between assets K(nÕ) and assets
K(n) \ K(nÕ) and K \ K(n) are symmetric.

4.2 Multiple Exchanges: Equivalence with Joint Market Clearing
In this section, we ask: what is the scope for innovation in trading technology that would not be
redundant in the market? Corollary 2 characterizes the bound on the number of nonredundant
exchanges in any market structure. The intuition for the general result can be gleaned from
the following example.

Example 4 (Multi-Venue Market Can Be Equivalent to Market That Clears Jointly)
Consider the market structure {{1, 2}, {2, 3}, {3, 1}}. Even though the market is comprised of
multiple exchanges, none of which contain all assets, traders’ equilibrium payo�s are the same
as in the market with a single exchange for all assets {{1, 2, 3}}.

To explain this result, we consider trader i’s total demand for asset 1 behind the one-
exchange counterfactual in Proposition 3, i.e., the sum of his demands for asset 1 in exchanges
{1, 2} and {3, 1}:

‚
q

i
1

(p{1,2}, p{3,1}) © q

i
1,{1,2}(p{1,2}) + q

i
1,{3,1}(p{3,1}) ’p{1,2} œ R2 ’p{3,1} œ R2

.

40The argument from the proof of Theorem 4 applies to these other innovations and shows that an innovation
is redundant if the price impact submatrix that corresponds to the a�ected exchanges is symmetric.
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In either exchange, the expected trades are conditioned on the respective contingent variables
in traders’ demands—e.g., p

1

and p

2

in exchange {1, 2}. In the total demand for asset 1, with
additional expected trade terms contingent on a di�erent subset of prices, the expected trades
of assets 2 and 3 are linear combinations of all random variables, q

0,1, q

0,2, and q

0,3.41

Crucially, since the total demand for each asset is conditioned on at least K = 3 prices that
give linearly independent combinations of the K random variables {q

0,k}k, the inference errors
cancel out; i.e., the sum of expected total trades E[‚

q

i
¸|pK(n)

, qi
0

] in the total demand for asset
k across exchanges {n|k œ K(n)} is the same as ‚

q

i
¸ for all k and ¸ ”= k. Equilibrium is ex post

even if in no exchange, traders’ demands condition on prices of all assets (i.e., K(n) ( K for
all n) so that no expectation about trade is perfect, i.e., E[qi

¸,nÕ|pK(n)

, qi
0

] ”= q

i
¸,nÕ for all n and

n

Õ ”= n, and all i.
Furthermore, with perfect inference in total demands, price impact matrix is symmetric and

the same as in the contingent market, ‚� = �c = –
I≠2

� and ‚B = Bc = I≠2

I≠1

Id (Proposition 3).
Equilibrium is as if traders could condition their demand for each asset on the price vector.42

⇤

Corollary 2 gives a condition on the market structure itself that characterizes the scope for
nonredundant innovation.43

Corollary 2 (Redundancy of Changes in Market Structure: A Condition on Exchanges)
Suppose that 0 < |flk¸| < 1 for some k and ¸ ”= k. When I < Œ, the following statements are
equivalent:

(i) Introducing any additional exchange n

Õ is redundant;

(ii) Equilibrium is ex post;

(iii) For every pair of assets k

Õ and ¸

Õ ”= k

Õ such that 0 < |flkÕ¸Õ| < 1, there is an exchange n in
which these assets are traded, i.e., k

Õ
, ¸

Õ œ K(n).

The equivalence between conditions (ii) and (iii) answers the following question: Given the
assets and traders, which market structures with multiple exchanges that clear independently
function like a market that clears jointly, and when does equilibrium behavior di�er? For all

41For example, from Eq. (28), the total expected trade for asset 2 in total demand ‚qi

1(·) = q

i

1,{1,2}(·)+q

i

1,{3,1}(·)
is ((–�{1,2},{1,2} + �{1,2})≠1)1–�{1,2}E[‚qi

2|p{1,2}, q

i

0] + ((–�{3,1},{3,1} + �{3,1})≠1)1–�{3,1}E[‚qi

2|p{3,1}, q

i

0].
42Consider a market structure {{1, 2}, {2, 3}, {3, 1}, {4}} and assume that the payo� of asset 4 is imperfectly

correlated with those of other assets. This market structure is payo�-equivalent to {{1, 2, 3}, {4}} if and only if
the inference e�ects of assets 1, 2 and 3 with respect to asset 4 are symmetric. Then, multiple venues that clear
independently can implement joint clearing “locally” for assets 1, 2, and 3.

43Corollary 6 in Appendix B shows that as long as some assets in the market are imperfectly correlated,
some innovations will not be redundant. With perfectly correlated assets, inference is perfect; with independent
assets, inference is not payo�-relevant. Innovation then does not a�ect equilibrium price distribution.
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market structures characterized in condition (iii) of Corollary 2, equilibrium is ex post.44 This
result shows that one can implement the contingent-market outcome via simpler schedules.
Two assets per exchange su�ce.

The equivalence between conditions (i) and (iii) puts a bound on the number of exchanges
that can be introduced in a market or the ways in which trading protocols can be linked (by
merging their assets) or asset listings and still be nonredundant. The maximal number of such
nonredundant innovations is K(K≠1)

2

.

5 Welfare and Independence in Market Clearing
In this section, we consider the welfare impact of independence in market clearing. An important
implication of Corollary 2 is that when combined with suitable exchange design, markets with
multiple exchanges that clear independently can be as e�cient as a single exchange that clears
all assets jointly, for any distributions of asset payo�s and endowments. The main observation
in this section is that markets with multiple exchanges can strictly improve ex ante welfare
relative to joint market clearing.

We first ask: why might a market with multiple trading venues give rise to higher welfare
than a single exchange for all assets? If the market were competitive (I æ Œ), then joint clear-
ing would give higher welfare than any other market structure—it would eliminate information
loss across exchanges. In imperfectly competitive markets, the benefit of lower trading costs
associated with price impact can countervail the cost that stems from inference error.

We then inquire: In which trading environments is welfare higher with multi-venue trading?
Unlike the competitive market, e�cient design depends on market characteristics. Corollary 3,
Proposition 4, and Examples 1 and 5 give and illustrate the conditions.

5.1 Welfare-improving Designs
The ex ante total welfare is given by the sum of the equilibrium payo�s (Eq. (31)) for all
traders. By Proposition 3, the welfare e�ects of market structure can be understood in terms
of the per-unit price impact matrix ‚� and cross-asset inference ‚B. When the market structure
changes, the corresponding welfare change can be decomposed into three e�ects related to: (1)
the price impact for a given asset (i.e., diagonal elements of ‚�), (2) the cross-asset price impact
(i.e., o�-diagonal elements of ‚�), and (3) the inference error.45 A corollary of Theorem 3 and

44In the market structures that satisfy condition (iii), while the cross-exchange price impacts are zero, the
per-unit price impact matrix is the same as in the contingent market, ‚

� = �

c; in particular, it is proportional
to the asset covariance �. The cross-exchange inference e�ects mimic the contingent design’s cross-asset price
impact.

45The inference error in the last term of
q

i

E[ui(qi) ≠ p · q

i] in Eq. (31) can be characterized as:

(I ≠ 1)‡
pv

tr

11
2(‚

B ≠ B

c)Õ
–�(‚

B ≠ B

c) + 1
I ≠ 1–�(‚

B ≠ B

c)
2

, (37)
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Proposition 3 shows that it is important to distinguish between the trading cost components
(1) and (2). Respectively, they represent the trading cost of risk sharing and the trading costs
of diversification.

Corollary 3 (Price Impact and Market Structure) Consider two market structures N

and N

Õ such that if {k, ¸} µ K(nÕ) for some n

Õ œ N

Õ, ¸ ”= k, then {k, ¸} µ K(n) for some
n œ N . Let ‚�N and ‚�N Õ be the corresponding per-unit price impact matrices. Assume that
‚�N ”= ‚�N Õ .46

(i) If K = 2, then ‚
⁄

N
k Æ ‚

⁄

N Õ
k for each k.

(ii) If K > 2, ‚
⁄

N
k need not be lower than ‚

⁄

N Õ
k for some k.

For two-asset markets, Corollary 3 establishes a trade-o� between risk sharing and diversi-
fication. Namely, when K = 2, then limited conditioning increases the per-unit diagonal price
impact for each asset (part (i)).47 Although joint clearing minimizes the cost of risk sharing,
multi-venue trading can strictly increase welfare by lowering the trading cost of diversification
that stems from cross-asset price impact; Example 1 illustrates this. Corollary 4 in Section
5.2 provides the necessary and su�cient conditions for independent market clearing to increase
welfare in two-asset markets.

More generally, in markets with K > 2, multi-venue trading can increase welfare by lowering
the trading costs of risk sharing, diversification, or both (part (ii); Example 5). Likewise, so
can the further limiting of demand conditioning in markets with multiple exchanges. The
increase in welfare with multi-venue trading—relative to joint clearing or more generally—can
be accomplished in the Pareto sense.

5.2 When Are Multi-Venue Markets More E�cient?
We further ask: in which trading environments is multi-venue trading more e�cient than
joint clearing? Proposition 4 translates Corollary 3’s price-impact e�ects on risk sharing and
diversification to market characteristics.

Proposition 4 (Welfare with Multiple Exchanges vs. Joint Market Clearing) Given
I < Œ traders and K assets such that 0 < |flk¸| < 1 for some k and ¸ ”= k, there exists a market
structure with multiple exchanges for which the ex ante welfare is strictly larger than that in a
single exchange for some distribution of endowments {qi

0

}i.

where B

c = I≠2
I≠1 Id is the coe�cient of the contingent demand on q

i

0. In the contingent market, using the fact
that ‚

� = �

c, we have that �(�c) © I(I≠2)
2(I≠1)2 –� in the ex ante welfare Eq. (31), and the inference error (37) is

zero (equilibrium is ex post).
46That is, there exists {k

Õ
, ¸

Õ} such that {k

Õ
, ¸

Õ} µ K(n) for some n œ N but {k

Õ
, ¸

Õ} ”µ K(nÕ) for all n

Õ œ N

Õ.
47Part (i) of Corollary 3 holds in more general markets with K Ø 2 assets, symmetric covariances (i.e., ‡

kk

= ‡

for all k and ‡

k¸

= ‡fl for all k and ¸ ”= k), and market structures defined by symmetric demergers (Definition
6). (See Proposition 5 in Appendix C.1.)
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Proposition 4, Corollary 4, and Example 5 demonstrate that neither the contingent nor the
uncontingent market structure is e�cient irrespective of the market characteristics (see also
Example 1 and Corollary 3). Here, we highlight three insights.

First, if the number of traders is su�ciently large, then joint clearing (or an equivalent
design) is e�cient. Given any K (imperfectly correlated) assets and I < Œ traders, however, a
market structure with multiple venues is more e�cient than joint clearing for some distributions
of endowments. The proof of Proposition 4 is constructive and provides a su�cient condition
on the pertinent market structures: any demerger of a single exchange for all assets.

Definition 6 (Demerger) A demerger of a single exchange for all assets is a market structure
N = {K(n)}n whose exchanges partition the K assets traded: K(n) fl K(nÕ) = ÿ for all n and
n

Õ ”= n. A demerger is symmetric if its exchanges have the same number of assets.

Thus, simply breaking up a single exchange for all assets into multiple venues can increase
welfare. The intuition for the proof can be seen in Eq. (31): as we show, in any demerger of a
single exchange, the price impact matrices in the surplus matrix di�erence �(�c) ≠ �( ‚�) are
not ranked in a positive semidefinite sense (Corollary 3 and Lemma 5 in Appendix B).

Second, which assets’ demands should be linked and which exchanges should be introduced
depends on the joint distribution of asset payo�s and traders’ endowments across assets. More
precisely, the condition involves the joint substitutability in asset payo�s (i.e., �) and the
trading needs of market participants (i.e., {|E[q

0,k]≠E[qi
0,k]|}i,k). In particular, even if all asset

payo�s are substitutes or complements, e�cient design depends on whether some traders buy
and others sell assets (e.g., the primary market in Treasury auctions) or traders buy some assets
and sell others (e.g., intra-dealer markets). See Example 5 (a) and (b).

The role of the joint condition can be seen in Eq. (31), where the equilibrium surplus is a
quadratic matrix function of expected trading needs {E[q

0

] ≠ E[qi
0

]}i. A market with multiple
trading venues yields higher welfare than a single exchange if E[q

0

] ≠ E[qi
0

] is proportional
to an eigenvector of �(�c) ≠ �( ‚�) that corresponds to a negative eigenvalue. Corollary 3
and Lemma 5 in Appendix B show that a negative eigenvalue exists for any market structure
whose exchanges are demergers of a single venue for all assets. The surplus matrix di�erence
�(�c) ≠ �( ‚�) depends on the asset covariance.48

Finally, the heterogeneity in the asset payo�s’ substitutability � as well as trading needs
across assets {E[q

0

] ≠ E[qi
0

]}i determines whether the net benefit from diversification and risk
sharing dominates with multi-venue trading. The heterogeneity can favor a market structure
“intermediate” between contingent or uncontingent—then, inducing asymmetries in trading
costs can be beneficial. See Example 5 (c).

Corollary 4 illustrates these observations in two-asset markets, providing a necessary and
48As Example 1 illustrates, in markets with K = 2, the zero cross-asset price impact is beneficial when traders

take the same (buying or selling) position for asset payo� substitutes or the opposite position for complements.
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su�cient condition on {�, {E[q
0

] ≠ E[qi
0

]}i} for multi-venue trading to dominate joint clearing
in welfare terms.

Corollary 4 (Welfare with Multiple Exchanges vs. Joint Market Clearing (K = 2))
Consider a market with two imperfectly correlated (i.e., 0 < |fl| < 1) assets whose variances
are the same (i.e., ‡

11

= ‡

22

). Suppose there is no information loss: i.e., (‡cv, ‡pv) æ 0 and
‡

0

< 1. The ex ante welfare is strictly larger in the uncontingent market {{1}, {2}} than in a
single exchange for all assets {{1, 2}} if and only if the following conditions hold:

(i) sign(E[q
0,1] ≠ E[qi

0,1])sign(E[q
0,2] ≠ E[qi

0,2]) = sign(fl), i.e., the market is one-sided when
fl > 0 or two-sided when fl < 0; and

(ii) The trading needs are su�ciently symmetric across assets, i.e., there exist bounds ›(fl, I) <

1 < ›(fl, I) on the relative trading needs such that

›(fl, I) <

----
E[q

0,k] ≠ E[qi
0,k]

E[q
0,¸] ≠ E[qi

0,¸]

---- < ›(fl, I) ’i.

By condition (i), the zero cross-asset price impact is beneficial; by condition (ii), the benefit
of diversification (i) dominates the cost of risk sharing (cf. Example 1 and Corollary 3).49

Example 5 (Heterogeneity and E�cient Market Structure)
Consider a market with K = 3 assets, two of which (i.e., 2 and 3) are each symmetrically
correlated with other assets and have symmetric ex ante trading needs. There are thirteen
payo�-relevant market structures, including the contingent and uncontingent ones. Fig. 2
plots the welfare-maximizing design as a function of the heterogeneity in asset correlations
fl

12

/fl

23

= fl

13

/fl

23

© flH/flL on the horizontal axis and the heterogeneity in trading needs
(E[q

0,1] ≠ E[qi
0,1])/(E[q

0,2] ≠ E[qi
0,2]) = (E[q

0,1] ≠ E[qi
0,1])/(E[q

0,3] ≠ E[qi
0,3]) © q

i
H/q

i
L for all i on

the vertical axis.

(a) If the asset correlations and trading needs are symmetric across assets (i.e., the point
(flH

flL
,

qi
H

qi
L

) = (1, 1) in each panel), either the contingent or the uncontingent market structure
is e�cient.

(b) In one-sided markets (i.e., when traders either buy or sell all assets), e�cient market
structure depends on the asset payo� substitutability:

If asset payo�s are complements (i.e., flH < 0 and flL < 0; Fig. 2B) and traders buy
both assets (i.e., q

i
H > 0 and q

i
L > 0), then the contingent market maximizes welfare,

irrespective of the heterogeneity in {flH , flL} and {q

i
H , q

i
L}.

49As I æ Œ, the bounds in condition (ii) ›(fl, I) æ 0 and ›(fl, I) æ Œ for all fl, and so the cost of risk sharing
goes to zero regardless of the heterogeneity in trading needs across assets. However, �(�c)≠�(‚

�) æ 0, i.e., the
benefit from diversification relative to the contingent market also vanishes, and the ex ante welfare in {{1}, {2}}
and {{1, 2}} can di�er in the limit only due to the information loss (if ‡

cv

> 0 and ‡

pv

> 0).

35

Electronic copy available at: https://ssrn.com/abstract=3604976



If asset payo�s are substitutes (i.e., flH > 0 and flL > 0; Fig. 2A), then the heterogeneity
in trading needs matters. If trading needs are symmetric, the uncontingent market is
e�cient. With su�ciently heterogeneous trading needs, a market structure other than
the contingent or uncontingent ones maximizes welfare.

(c) Welfare-maximizing market structures in which some but not all assets clear jointly either
link assets to reduce the trading cost of diversification for those assets (orange and blue
areas) or link assets with the most heterogeneous trading needs to balance the tradeo� be-
tween risk sharing and diversification—even when linking the assets increases the trading
costs due to diversification (yellow and purple areas).50 ⇤

Figure 2: Heterogeneous Asset Correlations and Trading Needs
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(A) flL = 0.25 (B) flL = ≠0.25

Notes: Each color indicates which market structure provides the highest ex ante welfare. Red
= {{1}, {2}, {3}} (i.e., the uncontingent market); Orange = {{1}, {2, 3}}; Yellow = {{1, 2}, {3}};
Blue = {{1, 2}, {1, 3}}; Light blue = {{1, 2}, {1, 3}, {3}}; Purple = {{1, 2}, {1, 3}, {1}}; Green =
{{1, 2}, {2}, {3}}; Olive = {{1, 2}, {1}, {3}}; and White = {{1, 2, 3}} (i.e., the contingent mar-
ket). Information loss is su�ciently small not to dominate the welfare benefit from diversification
(‡cv = 0, ‡pv = 0.01). The number of traders is I = 10. The trading needs for assets 2 and 3
are |E[q

0,L] ≠ E[qi
0,L]| = 1 for all i. Panel (A) assumes the asset payo� correlation flL = 0.2 (i.e.,

substitutes), and panel (B) assumes flL = ≠0.2 (i.e., complements).

Proposition 6 in Appendix C.1 generalizes Corollary 4 to K Ø 2 assets. It shows the link
between asset payo� substitutes and complements and the optimality of an extreme market
structure in symmetric trading environments.51 The uncontingent market is the most e�cient
when asset payo�s are substitutes (fl > 0 in condition (i)), whereas a single exchange for all
assets is the most e�cient when asset payo�s are complements (fl < 0).

50Whether linking the trading protocols of some assets is e�cient depends on the trading needs and the payo�
substitutability of all assets—another result of the non-proportionality of price impact to asset covariance in
markets other than the contingent one (Eqs. (21) and (26)).

51I.e., symmetric demergers (Definition 6), asset covariances (i.e., ‡

kk

= ‡ for all k and ‡

k¸

= ‡fl for all ¸ ”= k

and k), and trading needs across assets ( E[q0,k]≠E[qi
0,k]

E[q0,¸]≠E[qi
0,¸

] = 1 for all k, ¸, and i in condition (ii) of Corollary 4).
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6 Discussion
The e�ects identified in this paper contribute to the discussion concerning the impact of changes
in trading technology (e.g., Pagano (1989), Budish, Cramton, and Shim (2015), Pagnotta and
Philippon (2018), Budish, Lee, and Shim (2019), Cespa and Vives (2019)). By accommo-
dating general cross-asset demand conditioning, our analysis takes a step towards exploring
implications of innovation in trading technology defined by changes in market clearing that
cross-asset conditioning makes possible. We conclude with directions for future research and
further discussion of the model.

First, the non-neutrality of innovation in trading technology is a manifestation of a more
general implication of independence in market clearing: equilibrium payo�s can be changed
by innovations whose payo�s lie in the span of the existing assets. This paper’s model and
equilibrium characterization as a fixed point in price impacts can be adapted to the study
of other innovations. In Rostek and Yoon (2018), we study one such class: derivatives, i.e.,
securities whose payo�s are defined as bundles (linear combinations) of the existing assets. We
show that the equilibrium e�ects of the introduction of nonredundant derivatives di�er from
those produced by the innovation in trading technology studied in this paper. Thus, innovation
in trading technology provides an instrument for impacting markets’ performance separate from
security innovation.

Second, it would be worthwhile to explore whether in a dynamic market, a joint design of
the trading frequency and trading technology could further improve the lower bound on welfare
relative to the contingent design. Dynamic trading provides additional reasons to innovate
in trading technology. More generally, conditioning on simultaneously determined prices (i.e.,
this paper) and past prices within or outside an exchange will interact in nontrivial ways
with the relative frequencies of shocks which renew the gains from trade, market clearing, and
payo� realizations (i.e., consumption). The rich set of market design questions raised by these
two types of demand conditioning merits a separate study to develop design principles for
imperfectly competitive markets.

Third, the non-neutrality of innovation in trading technology could be leveraged to enhance
revenue or other objectives in markets such as that for Treasury bills, in which securities are
often traded simultaneously and independently.

Finally, there is room for further development of the asset-pricing implications of indepen-
dence in market clearing as well as the equilibrium properties it induces, such as the transfor-
mation of risk made possible by the nonproportionality and asymmetry of price impact.

Independence of market clearing: incentives of traders vs. exchanges. While the
paper does not characterize the endogenous formation of exchanges, the analysis suggests that
it is interesting to distinguish between the incentives of traders and exchanges. If traders
themselves could decide whether to submit contingent or uncontingent demands, individual
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optimization entails that a contingent demand would be a best response, taking as given the
demands submitted by others. Submission of contingent demands by all traders would be the
unique equilibrium, eliminating the welfare-improving (possibly in the Pareto sense) e�ects
of limited conditioning. Thus, implementation of uncontingent trading involves a restriction
of the cross-asset conditioning of simultaneously placed orders. This is the prevalent practice.
Exchanges, however, endowed with an objective to maximize (e.g., revenue, volume, or liquidity)
generally have at least weak incentives not to allow for full demand conditioning of assets traded.
Too much innovation, through its externalities on the liquidity of the traded assets, can hinder
the exchanges’ objective.

Role of the uniform-price mechanism. One might wonder whether our conclusions rely on
the uniform-price mechanism. The key to the welfare e�ects of new exchanges is the ine�ciency
of equilibrium allocation due to price impact—given incomplete demand conditioning—which
new exchanges alter. With (two-sided) private information, one expects allocation to be ine�-
cient and the e�ects of new exchanges to exist for other pricing mechanisms.

Heterogeneous participation.52 Decentralizing a market by allowing some traders to par-
ticipate in exchanges for only a subset of all assets or trade with only a subset of all traders
(while submitting contingent schedules) can increase welfare by reallocating risk across traders,
provided that traders’ risk preferences di�er; with symmetric risk preferences, the centralized
market maximizes welfare (Malamud and Rostek (2017)). Our results suggest that restrictions
on conditioning can provide an e�ective instrument to increase welfare in the Pareto sense—
by improving risk sharing across traders and/or risk diversification across assets in ways not
feasible with heterogeneous participation and contingent trading.

References
Afonso, G. and R. Lagos (2015): “Trade Dynamics in the Market for Federal Funds,” Econometrica, 83:

263-313.
Antill, S. and D. Duffie (2019): “Augmenting Markets with Mechanisms,” Working Paper.
Atkeson, A. G., A. L. Eisfeldt, and P.-O. Weill (2015): “Entry and Exit in OTC Derivatives Markets,”

Econometrica, 83: 2231-2292.
Babus, A. and P. Kondor (2018): “Trading and Information Di�usion in Over-the-Counter Markets,” Econo-

metrica, 86: 1727-1769.
Babus, A. and C. Parlatore (2017): “Strategic Fragmented Markets,” Working Paper.
Bergemann, D., T. Heumann, and S. Morris (2017): “Information and Market Power,” Working Paper.
Budish, E., P. Cramton, and J. Shim (2015): “The High-Frequency Trading Arms Race: Frequent Batch

Auctions as a Market Design Response,” Quarterly Journal of Economics, 130, 4: 1547-1621.
52Babus and Kondor (2017), Babus and Parlatore (2017), and Malamud and Rostek (2017) study markets

with limited participation and contingent contracts.

38

Electronic copy available at: https://ssrn.com/abstract=3604976



Budish, E., R. Lee, and J. Shim (2019): “A Theory of Stock Exchange Competition and Innovation: Will the
Market Fix the Market?” Working Paper.

Cespa, G. and X. Vives (2019): “Market Transparency and Fragility,” Working Paper.
Chang, B. and S. Zhang (2018): “Endogenous Market Making and Network Formation,” Working Paper.
Chen, D. and D. Duffie (2020): “Market Fragmentation,” Working Paper.
Choi, M., A. Galeotti, and S. Goyal (2017): “Trading in Networks: Theory and Experiment,” Journal of

the European Economic Association, 15, 4: 784-817.
Collard-Wexler, A., G. Gowrisankaran, and R. S. Lee (2019): ““Nash-in-Nash” Bargaining: A Micro-

foundation for Applied Work,” Journal of Political Economy, 127, 1: 163-195.
Condorelli , D., A. Galeotti, and L. Renou (2017): “Bilateral Trading in Networks,” Review of Economic

Studies, 84, 1: 82-105.
Du, S. and H. Zhu (2017a): “Bilateral Trading in Divisible Double Auctions,” Journal of Economic Theory, 167:

285-311.
Du, S. and H. Zhu (2017b): “What is the Optimal Trading Frequency in Financial Markets?” Review of Economic

Studies, 84, 4: 1606-1651.
Duffie, D. (2018): “Notes on LIBOR Conversion,” Working Paper.
Duffie, D., N. Garleanu, and L. H. Pedersen (2005): “Over-the-Counter Markets,” Econometrica, 73, 6:

1815-1847.
Elliott, M. (2015): “Ine�ciencies in Networked Markets,” American Economic Journal: Microeconomics, 7, 4:

43-82.
Gale, D. (1986a): “Bargaining and Competition Part I: Characterization,” Econometrica, 54, 4: 785-806.
Gale, D. (1986b): “Bargaining and Competition Part II: Existence,” Econometrica, 54, 4: 807-818.
Garleanu, N. and L. Pedersen (2013): “Dynamic Trading with Predictable Returns and Transaction Costs,”

Journal of Finance, 68, 6: 2309-2340.
Glode, V. and C. Opp (2016): “Asymmetric Information and Intermediation Chains,” American Economic

Review, 106, 9: 2699-2721.
Gofman, M. (2018): “A Network-Based Analysis of Over-the-Counter Markets,” Working Paper.
Hart, O. and J. Tirole (1990): “Vertical Integration and Market Foreclosure.” Brookings Papers on Economic

Activity, Special Issue: 205-276.
Horn, H. and A. Wolinsky (1988): “Bilateral Monopolies and Incentives for Merger,” The RAND Journal of

Economics, 19, 3: 408-419.
Hugonnier, J., B. Lester, and P.-O. Weill (2020): “Frictional Intermediation in Over-the-Counter Markets,”

Review of Economic Studies, 87: 1432-1469.
Kawakami, K. (2017): “Welfare Consequences of Information Aggregation and Optimal Market Size,” American

Economic Journal: Microeconomics, 9, 4: 303-323.
Klemperer, P. and M. Meyer (1989): “Supply Function Equilibria in Oligopoly under Uncertainty,” Econo-

metrica, 57, 6: 1243-1277.
Kranton, R. E. and D. F. Minehart (2001): “A Theory of Buyer-Seller Networks,” American Economic

Review, 91, 3: 485-508.
Kyle, A. S. (1989): “Informed Speculation and Imperfect Competition,” Review of Economic Studies, 56, 3:

517-556.

39

Electronic copy available at: https://ssrn.com/abstract=3604976



Kyle, A. S. and J. Lee (2018): “Information and Competition with Speculation and Hedging,” Working Paper.
Kyle, A. S., A. A. Obizhaeva, and Y. Wang (2017): “Smooth Trading with Overconfidence and Market

Power,” Review of Economic Studies, 85, 1: 611-662.
Lambert, N., M. Ostrovsky, and M. Panov (2018): “Strategic Trading in Informationally Complex Envi-

ronments,” Econometrica, 86, 4: 1119-1157.
Lester, B., A. Shourideh, V. Venkateswaran, and A. Zetlin-Jones (2018): “Market-making with Search

and Information Frictions,” Working Paper.
Lester, B., A. Shourideh, V. Venkateswaran, and A. Zetlin-Jones (2019): “Screening and Adverse

Selection in a Frictional Markets,” Journal of Political Economy, 127, 1: 338-377.
Malamud, S. and M. Rostek (2017): “Decentralized Exchange,” American Economic Review, 107, 11: 3320-

3362.
Pagano, M. (1989): “Trading Volume and Asset Liquidity,” Quarterly Journal of Economics, 104, 2: 255-274.
Pagnotta, E. and T. Philippon (2018): “Competing on Speed,” Econometrica, 86, 3: 1067-1115.
Peivandi, A. and R. Vohra (2020): “On Fragmentation of Markets,” Working Paper.
Rostek, M. and M. Weretka (2015): “Dynamic Thin Markets,” Review of Financial Studies, 28, 10: 2946-2992.
Rostek, M. and J. H. Yoon (2018): “Innovation in Decentralized Markets,” Working Paper.
Rostek, M. and J. H. Yoon (2019): “Dynamic Imperfectly Competitive Markets with Private Information,”

Working Paper.
Sannikov, Y. and A. Skrzypacz (2016): “Dynamic Trading: Price Inertia and Front-Running,” Working Paper.
Vayanos D. (1999): “Strategic Trading and Welfare in a Dynamic Market,” Review of Economic Studies, 66, 2:

219-54.
Vayanos, D. and P.-O. Weill (2008): “A Search-based Theory of the On-the-run Phenomenon,” Journal of

Finance, 63, 3: 1351-1389.
Vives, X. (2011): “Strategic Supply Function Competition with Private Information,” Econometrica, 79, 6:

1919-66.
Wilson, R. (1979): “Auctions of Shares,” Quarterly Journal of Economics, 93, 4: 675-689.
Wittwer, M. (2019): “Connecting Disconnected Markets? An Irrelevance Result,” Working Paper.
Zhang, A. (2020): “Competition and Manipulation in Derivative Contract Markets,” Working Paper.
Zhu, H. (2014): “Do Dark Pools Harm Price Discovery?” Review of Financial Studies, 27, 3: 747-789.
Zhu, H. (2018a): “A Multi-maturity Clock Auction Design,” Market Design Proposal.
Zhu, H. (2018b): “Design of CCP Default Management Auctions,” Market Design Proposal.

Appendix
Appendix A: Equilibrium Characterization (Proofs of Theorems 1 and 5).
Appendix B: Other Proofs and Additional Results: General Design (Supplementary Material).
Appendix C: Symmetric Markets (Supplementary Material).

40

Electronic copy available at: https://ssrn.com/abstract=3604976



A Equilibrium Characterization
Theorem 5 characterizes equilibrium for general market structures (Definition 4). We allow
endowments to be correlated across assets: � =

1
Cov[qi

0,k, q

i
0,¸]

2

k,¸
œ RK◊K is a positive definite

matrix.53 In a market structure N = {K(n)}n, the distribution of asset returns is jointly
Normal, N (�+

, �+), where �+ œ R
q

n
K(n) and �+ œ R(

q
n

K(n))◊(

q
n

K(n)).

Notation. We define an operator [·]N : R(

q
n

K(n))◊(

q
n

K(n)) æ R(

q
n

K(n))◊(

q
n

K(n)) that
maps a matrix M to a block-diagonal matrix [M]N with ([M]N)K(n),K(nÕ

)

© 0 for n ”= n

Õ and
([M]N)K(n),K(n)

© MK(n),K(n)

for any n.

Theorem 5 (Equilibrium: Fixed Point in Demand Schedules; General Design) Consider
a market with N = {K(n)}n exchanges. In equilibrium, the (net) demand schedules, defined
by matrix coe�cients {ai

, Bi
, Ci}i, and price impacts {�i}i are characterized by the following

conditions: for each trader i,

(i) (Optimization, given price impact) Given price impact matrices �i œ R(

q
n

K(n))◊(

q
n

K(n)),
the coe�cients of (net) demands ai œ R

q
n

K(n)

, Bi œ R(

q
n

K(n))◊K , and Ci œ R(

q
n

K(n))◊(

q
n

K(n))

are characterized by:

ai = Ci�+ +
1
Bi ≠ (–i�+ + �i)≠1W–

i�
2
E[qi

0

]
≠(Ci ≠ (–i�+ + �i)≠1) (

ÿ

j

(–j�+ + �j)≠1)≠1

ÿ

j

(–j�+ + �j)≠1W–

j�E[qj
0

]
¸ ˚˙ ˝

=�+≠E[p]

, (38)

Bi = (–i�+ + �i)≠1W–

i� ≠ ((–i�+ + �i)≠1 ≠ Ci)(
ÿ

j

Cj)≠1

3
Bi + ‡cv

‡cv + ‡pv

(
ÿ

j ”=i

Bj)
4

¸ ˚˙ ˝
Adjustment due to cross-asset inference

,(39)

5
(Id ≠ (–i�+ + �i)Ci)(

ÿ

j

Cj)≠1

3 ÿ

j ”=i

Bj�
1
Bj + ‡cv

‡cv + ‡pv

ÿ

h ”=i

Bh
2Õ

¸ ˚˙ ˝
Inference coe�cient V ar[s≠i|qi

0]

46

N
= 0, (40)

where W œ {0, 1}(

q
n

K(n))◊K is the indicator matrix in market N (Definition 5).

(ii) (Correct price impact) Price impact �i equals the transpose of the Jacobian of trader i’s
inverse residual supply:

�i =
1
(
ÿ

j ”=i

Cj)≠1

2Õ
. (41)

Note. With one asset per exchange (i.e., N = {{k}}k), the statement of Theorem 5 specializes
to that of Theorem 1.

53The characterization results—Theorems 2 and 5, Proposition 2, Corollaries 1 and 5, and Lemmas 2 and 3—
allow for general market structures. Theorem 5, Proposition 2, Corollary 1, Lemma 2 also allow for correlated
endowments across assets, and heterogeneous risk preferences across traders.
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Lemma 2 in Appendix B shows that asset by asset optimization54 brings no loss of generality for
optimization with respect to a profile of demands {{q

i
k,n(·)}kœK(n)

}n.55 Proposition 2 shows that
pointwise optimization56 is necessary and su�cient for optimization with respect to demand
schedules qi

K(n)

(·) © (qi
k,n(·))kœK(n)

: RK(n) æ RK(n) in each exchange n.

Proof of Theorem 5 (Equilibrium: Fixed Point in Demand Schedules; General
Design).
Step 1 (Part (i): Optimization, given residual supply �i and F (s≠i|qi

0

)) Because pK(n)

maps one-to-one to s≠i
K(n)

(as we will show in Step 1.3), the price vector pK(n)

has full support.
Proposition 2 and Lemma 2 establish that a trader’s pointwise optimization for each asset k

and each exchange n is necessary and su�cient for optimization in demand functions (i.e.,
{{q

i
k,n(·)}k}n): for each k and n,

max
qi

k,n
œR

E[� · (qi + qi
0

) ≠ –

i

2 (qi + qi
0

) · �(qi + qi
0

) ≠ p · qi|pK(n)

, qi
0

] ’pK(n)

œ RK(n)

, (42)

given his demands for other assets {q

i
¸,n(·)} ”̧=kœK(n)

and {q

i
¸,nÕ(·)}¸œK(nÕ

),nÕ ”=n, and his residual
supply functions for all assets: i.e., the distribution of the trader’s residual supply intercepts
F (s≠i|qi

0

) and price impact �i
K(n)

© dpK(n)
dqi

K(n)
œ RK(n)◊K(n)

> 0 for all n.57 The first-order
condition of trader i in each exchange n is:

�+

K(n)

≠ –

i�K(n)

qi
0

≠ –

i�+

K(n)

E[qi|pK(n)

, qi
0

] = pK(n)

+ �i
K(n)

qi
K(n)

’pK(n)

œ RK(n)

. (43)

In the quadratic-Gaussian setting, �i
K(n)

is a constant matrix for all n, given the linearity of
residual supply.

Because the first-order condition (43) in exchange n depends on expected trades E[qi|pK(n)

, qi
0

]
of other assets, to characterize the best-response demands of trader i, {qi

K(n)

(·)}n, we transform
the fixed point among the trader’s best-response demands into a fixed point among the trader’s
demand coe�cients, given the residual supplies, i.e., �i and F (s≠i|qi

0

) (Step 1). We then en-
dogenize the distribution of the residual supply—and thus all demand coe�cients, including
expected trades E[qi

K(nÕ
)

|pK(n)

, qi
0

] for all n

Õ ”= n and n—as a function of price impacts {�i}i

(Step 2).

Step 1.1 (Parameterization of trader i’s demands in exchanges n

Õ ”= n) Fix trader i’s
demands {qi

K(nÕ
)

(·)}nÕ ”=n in exchanges n

Õ ”= n, and parameterize them as linear functions: for
54I.e., trader i’s optimization with respect to demand q

i

k,n

(·) for each asset k œ K(n) in each exchange n, taking
as given his demands for other assets {q

i

¸,n

(·)}
¸œK(n),¸ ”=k

in exchange n and {{q

i

¸,n

Õ(·) : RK(n

Õ) æ R}
¸œK(n

Õ)}n

Õ ”=n

in all other exchanges n

Õ ”= n.
55A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously di�erentiable

functions {�q

i

k

(·) : RK(n) æ R}
k

so that q

i

K(n)(·) + �q

i

K(n)(·) are downward-sloping with respect to the

contingent variables, i.e., the Jacobian ˆ(qi
K(n)(·)+�qi

K(n)(·))
ˆpK(n)

œ RK(n)◊K(n) is negative semi-definite.
56I.e., optimization with respect to q

i

K(n) pointwise to each realization of s

≠i

K(n) œ RK(n) in each exchange n

57Given the downward-sloping demands of traders j ”= i (Step 2.2).
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each n

Õ ”= n,

qi
K(nÕ

)

(pK(nÕ
)

) = ai
K(nÕ

)

≠ Bi
K(nÕ

)

qi
0

≠ Ci
K(nÕ

)

pK(nÕ
)

’pK(nÕ
)

œ RK(nÕ
)

, (44)

where ai
K(nÕ

)

œ RK(nÕ
)

, Bi
K(nÕ

)

œ RK(nÕ
)◊K , and Ci

K(nÕ
)

œ RK(nÕ
)◊K(nÕ

).

Step 1.2 (Expected trades, given F (s≠i|qi
0

)) To endogenize the expected trades in a trader’s
demands in exchange n, we characterize the distributions of prices pK(nÕ

)

and the trader’s
quantity traded qi

K(nÕ
)

in other exchanges n

Õ ”= n, using the parameterized demands (44).
The price vector pK(nÕ

)

is determined as a function of the residual supply intercept s≠i
K(nÕ

)

by applying market clearing to trader i’s demands (44) and residual supply S≠i
K(nÕ

)

(·) = s≠i
K(nÕ

)

+
((�i

K(nÕ
)

)≠1)ÕpK(nÕ
)

: RK(nÕ
) æ RK(nÕ

): for each n

Õ ”= n,

ai
K(nÕ

)

≠ Bi
K(nÕ

)

qi
0

≠ Ci
K(nÕ

)

pK(nÕ
)

= s≠i
K(nÕ

)

+
1
(�i

K(nÕ
)

)≠1

2Õ
pK(nÕ

)

’s≠i
K(nÕ

)

œ RK(nÕ
)

. (45)

Given the downward-sloping demand in each exchange n

Õ ”= n (i.e., we assume Ci
K(nÕ

)

> 0),
price vector pK(nÕ

)

maps one-to-one to the residual supply intercept vector s≠i
K(nÕ

)

, which we can
thus treat as the contingent variable in trader i’s demands in exchange n

Õ (in place of pK(nÕ
)

):

qiú
K(nÕ

)

(si
K(nÕ

)

) = (Ci
K(nÕ

)

(�i
K(nÕ

)

)Õ+Id)≠1(ai
K(nÕ

)

≠Bi
K(nÕ

)

qi
0

)+Ci
K(nÕ

)

(�i
K(nÕ

)

)Õ(Ci
K(nÕ

)

(�i
K(nÕ

)

)Õ+Id)≠1s≠i
K(nÕ

)

.

(46)
Eq. (46) characterizes the distribution of trades qi

K(nÕ
)

as a function of F (s≠i|qi
0

), and ai
K(nÕ

)

, Bi
K(nÕ

)

,
and Ci

K(nÕ
)

. Denote this distribution by F (qi
K(nÕ

)

|qi
0

). Moreover,

E[qi
K(nÕ

)

(pK(nÕ
)

)|pK(n)

, qi
0

] = E[qiú
K(nÕ

)

(s≠i
K(nÕ

)

)|s≠i
K(n)

, qi
0

]. (47)

By Eq. (46), the expected trades vector E[qiú
K(nÕ

)

(s≠i
K(nÕ

)

)|s≠i
K(n)

, qi
0

] is a linear function of ex-
pected intercepts E[s≠i

K(nÕ
)

|s≠i
K(n)

, qi
0

]. Applying the Projection Theorem to the distribution of
intercepts F (s≠i|qi

0

), the vector of expected intercepts is:

E[s≠i
K(nÕ

)

|s≠i
K(n)

, qi
0

] = x≠i
nÕ,n + Y≠i

nÕ,ns≠i
K(n)

+ Z≠i
nÕ,nqi

0

, (48)

where x≠i
nÕ,n œ RK(nÕ

)

, Y≠i
nÕ,n œ RK(nÕ

)◊K(n), and Z≠i
nÕ,n œ RK(nÕ

)◊K are coe�cients of the expected
residual supply intercepts. We will endogenize these coe�cients in Eqs. (56)-(58), having
endogenized distribution F (s≠i|qi

0

).
Substituting the expected intercepts (48) into Eq. (47) characterizes the expected trades

E[qi|s≠i
K(n)

, qi
0

] as a function of the demand coe�cients in other exchanges {ai
K(nÕ

)

, Bi
K(nÕ

)

, Ci
K(nÕ

)

}nÕ ”=n

and the inference coe�cients {x≠i
nÕ,n, Y≠i

nÕ,n, Z≠i
nÕ,n}nÕ ”=n.

Step 1.3 (Best response in exchange n is linear) Substituting the expected trades (47)
into the first-order condition (43) gives the best-response demands qi

K(n)

(·) in exchange n as a
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linear function of pK(n)

, s≠i
K(n)

, and qi
0

:
1
–

i�+

K(n),K(n)

+ �i
K(n)

2
qi

K(n)

= �+

K(n)

≠ pK(n)

≠ –

i�K(n)

qi
0

≠
ÿ

nÕ ”=n

–

i�+

K(n),K(nÕ
)

(Ci
K(nÕ

)

(�i
K(nÕ

)

)Õ + Id)≠1(ai
K(nÕ

)

≠ Bi
K(nÕ

)

qi
0

)

≠
ÿ

nÕ ”=n

–

i�+

K(n),K(nÕ
)

Ci
K(nÕ

)

(�i
K(nÕ

)

)Õ(Ci
K(nÕ

)

(�i
K(nÕ

)

)Õ + Id)≠1

1
x≠i

nÕ,n + Y≠i
nÕ,ns≠i

K(n)

+ Z≠i
nÕ,nqi

0

2
. (49)

By the linearity of the downward-sloping best response qi
K(n)

(·), equilibrium price pK(n)

is a
strictly monotone linear function of s≠i

K(n)

(Eq. (45) for exchange n), and hence maps one-to-
one to s≠i

K(n)

. Thus, substituting s≠i
K(n)

for pK(n)

in Eq. (49) gives the best response qi
K(n)

(·)
as a function of his private information qi

0

and contingent variable pK(n)

. This allows us to
parameterize qi

K(n)

(·) as a linear function of qi
0

and pK(n)

:

qi
K(n)

(pK(n)

) = ai
K(n)

≠ Bi
K(n)

qi
0

≠ Ci
K(n)

pK(n)

’pK(n)

œ RK(n)

. (50)

Step 1.4 (Fixed point for each demand coe�cient as a single matrix equation) Given
the linearity of best response schedules {qi

K(n)

(·)}n in all exchanges (Step 1.3), we will write
a profile of demand schedules qi(·) = (qi

K(n)

(·) : RK(n) æ RK(n))n in matrix form (Eq. (51)
below). The matrix form allows us to write the fixed point problem (49) for trader i’s best-
response demands in all exchanges as a system of matrix equations, given �i and F (s≠i|qi

0

).
Define demand coe�cients for all N exchanges,

ai © (ai
K(n)

)n œ R
q

n
K(n)

, Bi © (Bi
K(n)

)n œ R(

q
n

K(n))◊K
, Ci © diag(Ci

K(n)

)n œ R(

q
n

K(n))◊(

q
n

K(n))

.

With matrix coe�cients {ai
, Bi

, Ci}i, a profile of trader i’s demand schedules qi(·) can be
written as a function of the vector of the contingent variables in all exchanges p œ R

q
n

K(n)

rather than the price vector pK(n)

œ RK(n) for exchange n:

qi(p) = ai ≠ Biqi
0

≠ Cip ’p œ R
q

n
K(n)

, (51)

using that the matrix slope Ci = diag(Ci
K(n)

)n is a block-diagonal matrix; each block corre-
sponds to an exchange in N . Similarly, we can write the inference coe�cients (48) in trader i’s
expected intercepts E[s≠i

K(nÕ
)

|s≠i
K(n)

, qi
0

] in matrix form:

(x≠i
nÕ,n)nÕ œ R

q
n

K(n)

, Y≠i © (Y ≠i
nÕ,n)nÕ,n œ R(

q
n

K(n))◊(

q
n

K(n))

, (Z≠i
nÕ,n)nÕ œ R(

q
n

K(n))◊K
,

where x≠i
n,n © 0, Y≠i

n,n © Id, and Z≠i
n,n © 0 for all n and i.

Using the matrix demand coe�cients {ai
, Bi

, Ci} and the matrix inference coe�cients
{{(x≠i

nÕ,n)nÕ
, (Z≠i

nÕ,n)nÕ}n, Y≠i}, the fixed point (49) for trader i’s best-response demands across
exchanges simplifies to three matrix equations, one for each demand coe�cient:

!
–

i
�

+ + �

i + (�i)Õ"(Ci(�i)Õ + Id)≠1ai = �+ ≠
!
–

i
�

+

K(n)

C

i(�i)Õ(Ci(�i)Õ + Id)≠1(x≠i
nÕ,n)nÕ

"
n
, (52)

!
–

i
�

+ + �

i + (�i)Õ"(Ci(�i)Õ + Id)≠1

B

i = W–

i
� +

!
–

i
�

+

K(n)

C

i(�i)Õ(Ci(�i)Õ + Id)≠1(Z≠i
nÕ,n)nÕ

"
n
,(53)

�

i
C

i +
#
–

i
�

+

C

i(�i)Õ(Ci(�i)Õ + Id)≠1

Y

≠i$
N

(�i)Õ(Ci(�i)Õ + Id) = Id. (54)
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Step 2 (Correct residual supply {F (s≠i|qi
0

)}i and {�i}i) Applying market clearing to the
best-response demands (50) of traders j ”= i gives the residual supply of trader i in exchange
n: for each pK(n)

œ RK(n),

S≠i
K(n)

(pK(n)

) © ≠
ÿ

j ”=i

qj
K(n)

(pK(n)

) = ≠
ÿ

j ”=i

(aj
K(n)

≠ Bj
K(n)

qj
0

)
¸ ˚˙ ˝

=s≠i
K(n)

+
ÿ

j ”=i

Cj
K(n)

pK(n)

. (55)

Step 2.1 (Correct distribution of residual supply intercepts {F (s≠i|qi
0

)}i) We endog-
enize the distributions of the vector of the residual supply intercepts s≠i of each trader i as a
function of price impacts {�j}j. The vector of intercepts s≠i

K(n)

in Eq. (55) in each exchange n

is jointly Normally distributed:

F (s≠i|qi
0

) = N
3

≠
ÿ

j ”=i

(aj ≠ Bj
E[qj

0

|qi
0

]),
ÿ

j,h ”=i

Bj
Cov[qj

0

, qh
0

|qi
0

](Bh)Õ
4

,

given traders’ j ”= i demand coe�cients {aj
, Bj}j ”=i and the primitive joint distribution of

their endowments F ((qj
0

)j ”=i|qi
0

). Applying the Projection Theorem to the joint distribution
F (s≠i|qi

0

) determines the inference coe�cients (x≠i
nÕ,n)nÕ

, Y≠i, and (Z≠i
nÕ,n)nÕ in expected intercepts

E[s≠i|s≠i
K(n)

, qi
0

] (Eq. (48)) as functions of demand coe�cients {aj
, Bj}j ”=i, given {�j}j ”=i: for

each n,

(x≠i
nÕ,n)nÕ = ≠

ÿ

j ”=i

1
aj ≠ (Y≠i

nÕ,n)nÕaj
K(n)

2
+

ÿ

j ”=i

1
Bj ≠ (Y≠i

nÕ,n)nÕBj
K(n)

21
E[qj

0

] ≠ ‡cv

‡cv + ‡pv

E[qi
0

]
2
,(56)

(Z≠i
nÕ,n)nÕ = ‡cv

‡cv + ‡pv

ÿ

j ”=i

(Bj ≠ (Y≠i
nÕ,n)nÕBj

K(n)

), (57)

Y≠i =
3 ÿ

j ”=i

Bj�(Bj + ‡cv

‡cv + ‡pv

ÿ

h ”=i

Bh)Õ
45 ÿ

j ”=i

Bj�+(Bj + ‡cv

‡cv + ‡pv

ÿ

h ”=i

Bh)Õ
6≠1

N
. (58)

Substituting these inference coe�cients into Eqs. (52)-(54) gives the system of equations (38)-
(40) for demand coe�cients {ai

, Bi
, Ci}i as functions of price impact matrices {�i}i.

Step 2.2 (Part (ii): Correct price impact {�i}i) The transpose of the Jacobian of
the trader’s inverse residual supply (S≠i(·))≠1 characterizes equilibrium price impact �i ©
diag(�i

K(n)

)n by a single matrix equation for all exchanges: for each i,

�i =
1
(
ÿ

j ”=i

Cj)≠1

2Õ
. (59)

The system of equations (39)-(40) and (59) for all traders characterizes the fixed point problem
for price impact {�i}i.
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“Exchange Design and Efficiency:”1 Supplementary Material

Appendix B: Other Proofs and Additional Results: General Design.

Appendix C: Symmetric Markets.

Appendix C.1: Additional Results: Symmetric Markets.

Appendix C.2: Symmetric Equilibrium Characterization in Markets with Two Assets: K = 2.

B Other Proofs and Additional Results: General Design
Lemma 1 (Woodbury Matrix Identity) Suppose that S 2 RK⇥K and T 2 RL⇥L are square ma-
trices, and U 2 RK⇥L and V 2 RL⇥K are real matrices. When S

�1 and T

�1 are (psedo)inverses of S
and T, respectively, the following matrix identity holds:

(S+UTV)

�1
= S

�1 � S

�1
U(T

�1
+VS

�1
U)

�1
VS

�1
.

We define demand q

i⇤
k,n

(·) : RK(n) ! R as a function of residual supply intercept s�i

K(n) (rather than
price p

K(n)) for each k 2 K(n) and n.

Lemma 2 (Asset by Asset Optimization) Consider a market structure N = {K(n)}
n

. Given the
residual supply of trader i, i.e., price impact ⇤

i and intercept distribution F (s

�i|qi

0), the following
optimization problems are equivalent:

(1) a profile of demands {{qi
k,n

(·) : RK(n) ! R}
k2K(n)}n maximizes the expected payoff (2);

(2) a profile of demands {{qi⇤
k,n

(·) : RK(n) ! R}
k2K(n)}n maximizes the expected payoff (2);

(3) for each n and k 2 K(n), demand q

i⇤
k,n

(·) : RK(n) ! R maximizes the expected payoff (2),
given trader i’s demands for other assets {qi⇤

`,n

(·)}
`2K(n), 6̀=k

in exchange n and other exchanges
{{qi⇤

`,n

0(·)}
`2K(n0)}n0 6=n

.

Proof of Lemma 2 (Asset by Asset Optimization). Consider a Banach space X of profiles of
twice continuously differentiable downward-sloping demands q

i

k,n

(·) : RK(n) ! R for all k 2 K(n) and
n. Similarly, we consider a Banach space X ⇤ of profiles of twice continuously differentiable downward-
sloping demands q

i⇤
k,n

(·) : RK(n) ! R for all k 2 K(n) and n. Specifically, the Jacobians of demands
@qi

K(n)(·)
@p

K(n)
=

�
@q

i

k,n

(·)
@p

`,n

�
k,`

2 RK(n)⇥K(n) and
@qi⇤

K(n)(·)
@s�i

K(n)

=

�
@q

i

k,n

(·)
@s

�i

`,n

�
k,`

2 RK(n)⇥K(n) are negative definite

for all n; they are negative semi-definite if some assets in exchange n are perfectly correlated.

(Part (1) , (2)) We first show that q

i

(·) ⌘ {{qi
k,n

(·)}
k2K(n)}n 2 X maps one-to-one to q

i⇤
(·) ⌘

{{qi⇤
k,n

(·)}
k2K(n)}n 2 X ⇤ that yields the same expected payoff (2), and endow the spaces X and X ⇤

with a norm k · k1 that assign the same norm to q

i

(·) and q

i⇤
(·) when they are mapped. Then, the

equivalence between problems (1) and (2) is immediate.
Central to the equivalence between problems (1) and (2)—equivalently, the existence of the one-

to-one map between X and X ⇤—is that p

K(n) maps one-to-one to s

�i

K(n) in each n. A function of
p

K(n) (qi
k,n

(·)) is measurable with respect to s

�i

K(n), and a function of s�i

K(n) (qi⇤
k,n

(·)) is measurable with
respect to p

K(n).
1Marzena Rostek: University of Wisconsin-Madison, Department of Economics; mrostek@ssc.wisc.edu. Ji Hee

Yoon: University College London, Department of Economics and Centre for Finance; jihee.yoon@ucl.ac.uk.
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To construct a map between q

i

(·) and q

i⇤
(·), we first characterize the map between p

K(n) and
s

�i

K(n), given residual supply and market clearing: The price vector p

K(n) 2 RK(n) is determined
applying market clearing to the demand of trader i and his residual supply in each exchange n:

q

i

K(n)(pK(n)) = s

�i

K(n) +
�
(⇤

i

K(n))
0��1

p

K(n) 8s�i

K(n) 2 RK(n)
. (60)

By the continuity of the downward-sloping demand q

i

K(n)(·), Eq. (60) uniquely determines price as
continuous functions of intercepts’ realizations s

�i

K(n) 2 RK(n), which we denote by p

⇤
K(n)(·) : R

K(n) !
RK(n). Then, trader i’s quantity demanded is uniquely determined by q

i⇤
K(n)(·) = q

i

K(n) � p

⇤
K(n)(·) :

RK(n) ! RK(n) in each n. Conversely, given q

i⇤
(·), a profile of demands is uniquely determined by

q

i

K(n)(·) = q

i⇤
K(n) �

�
p

⇤
K(n)(·))

�1 in each n when (p

⇤
K(n)(·))

�1 is the inverse of price function p

⇤
K(n)(·).

q

i⇤
(·) is downward-sloping if and only if q

i

(·) is downward-sloping, given the downward-sloping de-
mands of traders j 6= i (i.e., ⇤i

K(n) is positive semi-definite in Eq. (60)).
Moreover, the system of equations (2) and (60) that characterizes the expected payoff reduces to

a single equation for qi⇤
(·) (Eq. (62)). Market clearing (Eq. (60)) defines price as a function of trader

i’s quantity demanded q

i⇤ 2 R
P

n

K(n) and intercepts’ realizations s

�i 2 R
P

n

K(n):

p

i

(q

i⇤
, s

�i

) ⌘ (⇤

i

)

0
(q

i⇤ � s

�i

) 8qi⇤
= (q

i⇤
K(n))n 2 R

P
n

K(n) 8s�i

= (s

�i

K(n))n 2 R
P

n

K(n)
. (61)

Substituting p

⇤
(·) = (p

i � qi⇤
)(·) into the system of equations (2) and (61) characterizes the expected

payoff as a function of qi⇤
(·):

U(q

i⇤
(·)) = E[�+ · (qi⇤

+q

i

0)�
↵

i

2

(q

i⇤
+q

i

0) ·⌃+
(q

i⇤
+q

i

0)� (q

i⇤�s

�i

) ·⇤i

q

i⇤|qi

0] 8qi⇤
(·) 2 X ⇤

. (62)

The expected payoff U(q

i

(·)) in the system of equations (2) and (61) satisfies U(q

i

(·)) = U(q

i⇤
(·)),

given the map from q

i

(·) 2 X to q

i⇤
(·) 2 X ⇤ defined by Eq. (60).

Endow the space X ⇤ with a norm k · k1 defined by

||qi⇤
(·)k1 ⌘ max

k2K(n),n
kqi⇤

k,n

(·)k = max

k2K(n),n
(E

⇥
|qi⇤
k,n

(s

�i

K(n))|
2
��
q

i

0

⇤
)

1/2
, (63)

given ⇤

i and F (s

�i|qi

0). Because q

i⇤
(·) 2 X ⇤ maps one-to-one to q

i

(·) 2 X ,2 given ⇤

i and F (s

�i|qi

0),
the maximization of the expected payoff (2) with respect to a profile q

i

(·) = {{qi
k,n

(·)}
k

}
n

2 X subject
to market clearing (60) is equivalent to the maximization of the expected payoff (62) with respect to
a profile q

i,⇤
(·) = {{qi⇤

k,n

(·)}
k

}
n

2 X ⇤.

(Part (2) , (3)) We want to show that the maximization of expected payoff (62) with respect to a
profile of demands {{qi⇤

k,n

(·)}
k

}
n

is equivalent to the maximization with respect to the demand q

i⇤
k,n

(·),
given the trader’s demands for other assets, for all k 2 K(n) and n. By the Second Partial Derivative
Test, to show the equivalence between problems (2) and (3) in the lemma, it suffices to show that the
map U(·) : X ⇤ ! R is twice (Fréchet) differentiable3 and satisfies the second-order condition.

(Differentiability of expected payoff with respect to demand schedules) First, we will show
2We endow the space X (rather than X ⇤) with a norm k · k1 defined by

||qi

(·)k1 ⌘ max

k2K(n),n
kqi

k,n

(·)k = max

k2K(n),n
(E

⇥
|qi

k,n

(p⇤
K(n))|2

��qi

0

⇤
)

1/2
,

given ⇤i and F (s�i|qi

0) and market clearing (60). By the definition of the norm in X ⇤ in Eq. (63), ||qi

(·)k1 = ||qi⇤
(·)k1

when qi⇤
K(n)(·) = qi

K(n) � p⇤
K(n)(·) in each n.

3Let V and W be normed vector spaces, and U ⇢ V be an open subset of V. A function f : U ! W is Fréchet
differentiable at x 2 U if there exists a bounded linear operator A : V ! W such that limkhk!0

kf(x+h)�f(x)�AhkW
khkV

= 0.

If such an operator A exists, it is unique. Df(x) = A is the Fréchet derivative of f at x.

2
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that DU(·) : X ⇤ ! R
P

n

K(n):

DU(q

i⇤
(·)) = E

⇥
�+ � ↵

i

⌃

+
(q

i⇤
+ q

i

0)� p

⇤ �⇤

i

q

i⇤��
q

i

0

⇤
8qi⇤

(·) 2 X ⇤ (64)

is the Fréchet derivative of U(·) with respect to q

i⇤
(·). Consider a demand change �q

i⇤
(·) ⌘ {{�q

i⇤
k,n

(·)}
k

}
n

such that eqi⇤
(·) ⌘ q

i⇤
(·)+�q

i⇤
(·) is in X ⇤. Because eqi⇤

(·) is downward-sloping, by the same argument
as in (Part (1) , (2)), we can define price ep⇤

(·), that is a function of s�i, analogously to Eqs. (60)-(61).
Substituting e

p

⇤
(·) into Eq. (62) gives the expected payoff change (62) for a demand change �q

i

(·):

U(

e
q

i⇤
(·))�U(q

i⇤
(·)) = E

⇥
(�+�↵

i

⌃

+
(q

i⇤
+q

i

0)�p

⇤�⇤

i

q

i⇤
)·(eqi⇤�q

i⇤
)�(

e
q

i⇤�q

i⇤
)·(↵

i

2

⌃

+
+⇤

i

)(

e
q

i⇤�q

i⇤
)

��
q

i

0

⇤
.

(65)
By the convexity of the quadratic matrix function (

e
q

i⇤ � q

i⇤
) · (↵i

2 ⌃
+
+ ⇤

i

)(

e
q

i⇤ � q

i⇤
), the Jensen’s

inequality implies an upper bound on the change in the expected payoff:
��
U(

e
q

i⇤
(·))� U(q

i⇤
(·))� E

⇥
(�+ � ↵

i

⌃

+
(q

i⇤
+ q

i

0)� p

⇤ �⇤

i

q

i⇤
) · (eqi⇤ � q

i⇤
)

��
q

i

0

⇤�� (66)

=

��
E

⇥
(

e
q

i⇤ � q

i⇤
) · (↵

i

2

⌃

+
+⇤

i

)(

e
q

i⇤ � q

i⇤
)

��
q

i

0

⇤��  (1 ·
��↵

i

2

⌃

+
+⇤

i

��
1)

�
max

k2K(n),n

�
E

⇥
|eqi⇤
k,n

� q

i⇤
k,n

|2
��
q

i

0

⇤ �

 (1 ·
��↵

i

2

⌃

+
+⇤

i

��
1)

���e
q

i⇤
(·)� q

i⇤
(·)
��
1
�2
.

Finally, taking the limit of the payoff change (66) as
��e
q

i⇤
(·)� q

i⇤
(·)
��
1 ! 0, we have:

lim

keqi⇤(·)�qi⇤(·)k1!0

��
U(

e
q

i

(·))� U(q

i

(·))� E

⇥
(�+ � ↵

i

⌃

+
(q

i⇤
+ q

i

0)� p

⇤ �⇤

i

q

i⇤
) · (eqi⇤ � q

i⇤
)

��
q

i

0

⇤��
��e
q

i⇤
(·)� q

i⇤
(·)
��
1

 lim

keqi⇤(·)�qi⇤(·)k1!0
(1 ·

��↵
i

2

⌃

+
+⇤

i

��
1)

��e
q

i⇤
(·)� q

i⇤
(·)
��
1 = 0.

Given that all elements of |↵i

2 ⌃
+
+⇤

i| are bounded, (64) is bounded (i.e., |DU(q

i⇤
(·))| < 1) for any

q

i⇤
(·) 2 X ⇤ such that kqi⇤

(·)k1 < 1, and (64) is the Fréchet derivative of U(·).

(Second-order condition) We show that the second-order condition of the optimization problem
(62) holds. The Hessian of U(·), D2

U(·) : X ⇤ ! R(
P

n

K(n))⇥(
P

n

K(n)), is:

D

2
U(q

i⇤
(·)) = �↵

i

⌃

+ �⇤

i � (⇤

i

)

0 8qi⇤
(·) 2 X ⇤

. (67)

This is because, by the definition of the Fréchet derivative of DU(·), we have:

lim

keqi⇤(·)�qi⇤(·)k1!0

��
DU(

e
q

i⇤
(·))�DU(q

i⇤
(·))�D

2
U(q

i⇤
(·))�q

i
(·)
��

keqi⇤
(·)� q

i⇤
(·)k1

= lim

keqi⇤(·)�qi⇤(·)k1!0

��
E[�↵

i
⌃

+
(

e
q

i⇤ � q

i⇤
)�⇤

i
(

e
q

i⇤ � q

i⇤
)� (⇤

i
)

0
(

e
q

i⇤ � q

i⇤
) + (↵

i
⌃

+
+⇤

i
+ (⇤

i
)

0
)(

e
q

i⇤ � q

i⇤
)|qi

0]
��

keqi⇤
(·)� q

i⇤
(·)k1

= 0.

D

2
U(·) is a constant (matrix) function on X ⇤. Given the downward-sloping demands of traders j 6= i

(i.e., ⇤i is positive semi-definite), D2
U(·) is negative semi-definite. Hence, the second-order condition

of the maximization problem (2) holds. The Second Partial Derivative Test then implies the equivalence
between a trader’s optimization with respect to a profile of demands {{qi⇤

k,n

(·)}
k2K(n)}n 2 X ⇤ and asset

by asset optimization with respect to q

i⇤
k,n

(·), given his demands for assets ` 6= k, for all k and n.
It is immediate that the second-order conditions in problems (1) and (3) hold, given that the

second-order condition holds in problem (2).

Proof of Proposition 2 (Equilibrium: Uncontingent Trading). Let the market structure be

3
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N = {K(n)}
n

. Consider a trader who optimizes against a residual market {{qj

K(n)(·)}n}j 6=i

, for which
the residual supply is the sufficient statistic. Assuming the linearity of other traders’ demands, the
trader’s residual supply in each exchange n is parameterized as a linear function of the price vector
p

K(n):
S

�i

K(n)(pK(n)) = s

�i

K(n) +
��
⇤

i

K(n)

��1�0
p

K(n) 8p
K(n) 2 RK(n)

,

where s

�i

K(n) ⌘ S

�i

K(n)(0) 2 RK(n) is the intercept of the trader’s residual supply and ⇤

i

K(n) =

��
@S�i

K(n)(·)
@p

K(n)

��1�0 2 RK(n)⇥K(n) is the transpose of the Jacobian of inverse residual supply.

(Part (i): “Only if”) Suppose that a profile of (net) demands of trader i {{qi
k,n

(·)}
k2K(n)}n satisfies

the first-order condition: for each k 2 K(n) and n,

�

k

� ↵

i

⌃

k

q

i

0 � ↵

i

⌃

+
k

E[q

i|s�i

K(n),q
i

0] = p

k,n

+ (⇤

i

K(n))kq
i

K(n) 8s�i

K(n) 2 RK(n)
. (68)

When written in matrix form, the first-order condition (68) in each exchange n becomes a single
matrix equation:

�+
K(n) � ↵

i

⌃

K(n)q
i

0 � ↵

i

⌃

+
K(n)E[q

i|s�i

K(n),q
i

0] = p

K(n) +⇤

i

K(n)q
i

K(n) 8s�i

K(n) 2 RK(n)
, (69)

where ⇤

i

K(n) ⌘
dp

K(n)

dqi

K(n)
2 RK(n)⇥K(n) is his price impact in exchange n.

To demonstrate that the first-order conditions (69) computed pointwise with respect to each realiza-
tion of s�i

K(n) 2 RK(n) are sufficient to the optimization of demand schedules qi

K(n)(·) : R
K(n) ! RK(n),4

we show that a demand change �q

i

K(n)(·) : R
K(n) ! RK(n) does not increase the trader’s payoff (2).5

The payoff change following an arbitrary demand change �q

i

K(n)(·) : R
K(n) ! RK(n) that is a twice

continuously differentiable function in s

�i

K(n) is (as characterized in the proof of Lemma 2, Eq. (65)):

E

⇥
(�+

K(n) � ↵

i

⌃

K(n)q
i

0 � ↵

i

⌃

+
K(n)q

i � p

K(n) �⇤

i

K(n)q
i

K(n)) ·�q

i

K(n)

��
q

i

0

⇤
� o(k�q

i

K(n)k
2
1). (70)

Denoting the intercept distribution by F (s

�i

K(n)|q
i

0), the payoff change (70) can be written as follows:
Z

E

⇥
(�+K(n)�↵

i
⌃K(n)q

i
0�↵

i
⌃

+
K(n)q

i�pK(n)�⇤

i
K(n)q

i
K(n))

��
s

�i
K(n),q

i
0

⇤
·�q

i
K(n)dF (s

�i
K(n)|q

i
0)�o(k�q

i
K(n)k21).

(71)
If the integrand is zero for all intercept realizations s

�i

K(n) 2 RK(n), i.e., if the pointwise first-order
condition (69) holds, then the payoff change (71) is nonpositive for any demand change �q

i

K(n)(·).
Given the one-to-one map between p

K(n) and s

�i

K(n) (i.e., ⇤

i

K(n) > 0 in Eq. (60)), the first-order
condition (69) is pointwise with respect to p

K(n) 2 RK(n):

�+
K(n) � ↵

i

⌃

K(n)q
i

0 � ↵

i

⌃

+
K(n)E[q

i|p
K(n),q

i

0] = p

K(n) +⇤

i

K(n)q
i

K(n) 8p
K(n) 2 RK(n)

. (72)

Given that the second-order condition �↵

i

⌃

+�⇤

i� (⇤

i

)

0
< 0 holds (Lemma 2), pointwise optimiza-

tion (69) is also sufficient for optimization with respect to q

i

K(n)(·).

(Part (i): “If”) We prove by contradiction that condition (i) is necessary for each trader’s optimality
4As seen in the proof of Lemma 2, given downward-sloping and continuous qi

K(n)(·), Eq. (60) uniquely determines
trader i’s quantity demanded in each n as continuous functions of a realization of intercepts s�i

K(n) 2 RK(n), which we
denote by qi⇤

K(n)(·) : RK(n) ! RK(n). For simplicity, we omit the superscript ‘⇤’ from the proof of Proposition 2.
5A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously differentiable

functions {�q

i

k

(·) : RK(n) ! R}
k

so that qi

K(n)(·) + �qi

K(n)(·) are downward-sloping with respect to the contingent

variables, i.e., the Jacobian
@(qi

K(n)(·)+�qi
K(n)(·))

@pK(n)
2 RK(n)⇥K(n) is negative semi-definite.

4
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of demand schedules in problem (2). Suppose that for some realization s

�i

K(n) 2 RK(n),

E

⇥
(�+

K(n) � ↵

i

⌃

K(n)q
i

0 � ↵

i

⌃

+
K(n)q

i � p

K(n) �⇤

i

K(n)q
i

K(n))
��
s

�i

K(n),q
i

0

⇤
> 0. (73)

The marginal payoff (i.e., the LHS of Eq. (73)) is continuous in s

�i

K(n) by the continuity of qi

K(n)(·) and
p

K(n)(·) with respect to s

�i

K(n). Hence, the marginal payoff is positive for all prices in a neighborhood
of s�i

K(n): i.e., there exists " > 0 such that

E

⇥
(�+

K(n) � ↵

i

⌃

K(n)q
i

0 � ↵

i

⌃

+
K(n)q

i � p

K(n) �⇤

i

K(n)q
i

K(n))
��
s

�i

K(n),q
i

0

⇤
> 0 8s�i

K(n) 2 R

"

(s

�i

K(n)),

where R

"

(s

�i

K(n)) ⌘ {s�i

K(n)| ks
�i

K(n) � s

�i

K(n)k1 < "} is an open set that contains s

�i

K(n). Because the
measure of R

"

(s

�i

K(n)) is nonzero, one can construct a demand change �q

i

K(n)(·) with a positive payoff
change in Eq. (71): Pick a twice continuously differentiable, positive, bounded, and downward-sloping
function ⌘(·) : RK(n) ! RK(n)

+ such that the Jacobian @⌘(·)
@s�i

K(n)

2 RK(n)⇥K(n) is negative semidefinite,

⌘(s�i

K(n)) = 0 for all s�i

K(n) /2 R

"

(s

�i

K(n)), and ⌘ ⌘ k⌘(·)k1 < 1. For a demand change �q

i

K(n)(·) = ⌫⌘(·)
by trader i for some ⌫ 2 R+, the payoff change (71) is:

⌫

Z

R

"

(s�i

K(n))
E

⇥
(�+

K(n)�↵

i

⌃

K(n)q
i

0�↵

i

⌃

+
K(n)q

i�p

K(n)�⇤

i

K(n)q
i

K(n))
��
s

�i

K(n),q
i

0

⇤
·⌘(s�i

K(n))dF (s

�i

K(n)|q
i

0)�⌫

2
o(⌘).

(74)
Eq. (74) is quadratic in ⌫ with a negative quadratic coefficient and a positive linear coefficient. It
follows that, for this ⌫ > 0, the payoff change (74) is strictly positive, and thus the demand increase
�q

i

K(n)(·) = ⌫⌘(·) is a strictly profitable deviation. This contradicts the optimality of qi

K(n)(·).
Similarly, we can show that if, for some realization s

�i

K(n) 2 RK(n),

E

⇥
(�+

K(n) � ↵

i

⌃

K(n)q
i

0 � ↵

i

⌃

+
K(n)(q

i

+ q

i

0)� p

K(n) �⇤

i

K(n)q
i

K(n))
��
s

�i

K(n),q
i

0

⇤
< 0, (75)

then trader i can increase his payoff by reducing his demands around s

�i

K(n) by �q

i

K(n)(·) = ⌫⌘(·) for

some ⌫ < 0 and ⌘(·) : RK(n) ! RK(n)
+ with the same properties as above.

(Part (ii): “Only if”) We show that condition (ii) is sufficient for equilibrium (Definition 2): given
each trader’s optimization problem that takes the residual supply as given (condition (i)), the require-
ment that the residual supply is correct (condition (ii)) is sufficient for each trader’s optimization
problem that takes other traders’ demands as given (Definition 2).

In trader i’s optimization problem, other traders’ demands {{qi

K(n)(·)}n}j 6=i

are payoff-relevant
to his expected payoff (2) only via the price distribution F (p|qi

0) and price impact ⇤

i ⌘ dp
dqi

. Be-
cause F (p|qi

0) and ⇤

i are determined by applying market clearing to demand schedules q

i

K(n)(·) +P
j 6=i

q

j

K(n)(·) = 0 in each exchange n, the sum of other traders’ demands {
P

j 6=i

q

j

K(n)(·)}n—equivalently,
the residual supply {S�i

K(n)(·) ⌘ �
P

j 6=i

q

j

K(n)(·)}n—is the sufficient statistic for F (p|qi

0) and ⇤

i, and
thus the sufficient statistic for the profile of other traders’ demands in trader i’s optimization problem.

(Part (ii): “If”) We show that condition (ii) is necessary for equilibrium: If the residual supply satisfies
e
S

�i

K(n)(·) 6= �
P

j

q

j

K(n)(·) for some i and n for some realization of {qj

0}j 6=i

2 R(I�1)K , then trader i’s
demand e

q

i

K(n)(·) that is optimized when taking e
S

�i

K(n)(·) as given is not an equilibrium demand. The
argument is by contradiction, and mimics the proof of Lemma 1 in Rostek and Weretka (2015).

Suppose that trader i submits demand functions {eqi

K(n)(·) ⌘ q

i

K(n)(·; eS
�i

(·))}
n

for which e
S

�i

K(n0)(·) 6=

�
P

j

q

j

K(n0)(·) for some n

0. Then, either e
⇤

i

K(n0) 6= �
��P

j 6=i

@qj

K(n0)(·)
@p

K(n0)

��1�0 or the residual supply

5
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intercept that defines F (

e
s

�i

K(n0)|q
i

0) is such that e
s

�i

K(n0) 6= �
P

j 6=i

q

j

K(n0)(0) for some realization of
{qj

0}j 6=i

2 R(I�1)K . Then, the first-order condition (69) of trader i in exchange n

0 that takes as given
other traders’ demands {qj

(·)}
j 6=i

—rather than function e
S

�i

(·)—is violated at the realization {qj

0}j 6=i

:

�+
K(n0) � ↵

i

⌃

K(n0)q
i

0 � ↵

i

⌃

+
K(n0)E[

e
q

i|s�i

K(n0),q
i

0]� p

K(n0) �⇤

i

K(n0)eq
i

K(n0) 6= 0, (76)

where ⇤i

K(n0) ⌘ �
�
(

P
j 6=i

@qj

K(n0)(·))
@p

K(n)
)

�1
�0 is the inverse of the transpose of the Jacobian of �(

P
j 6=i

q

j

K(n0)(·)),
and s

�i

K(n0) ⌘ �
P

j 6=i

q

j

K(n0)(0) is its intercept. Following the same argument as in the proof of (Part
(i): Part If), one can construct a deviation �q

i

K(n0)(·) = ⌫⌘(·) for which the expected payoff change
(Eq. (74)) is positive. It follows that {qi

K(n)(·; eS
�i

(·))}
n

is not a best response to the profile of other
traders’ demands {qj

(·)}
j 6=i

, and hence is not an equilibrium.

Proof of Corollary 1 (Equilibrium Prices and Allocations). We characterize equilibrium prices
and allocations as functions of the equilibrium demand coefficients {Bi

,C

i}
i

and price impacts {⇤i}
i

.
Applying market clearing to demand schedules (51) yields the price vector:

p = (

X

i

C

i

)

�1
(

X

i

ai �
X

i

B

i

q

i

0). (77)

Summing the intercepts {ai}
i

in Eq. (38), we have:
X

i

ai

= (

X

i

C

i

)

�
�+ � (

X

j

(↵

j

⌃

+
+⇤

j

)

�1
)

�1
X

j

(↵

j

⌃

+
+⇤

j

)

�1
W↵

j

⌃E[q

j

0]
�
+

X

i

B

i

E[q

i

0]. (78)

Substituting for
P

i

ai from Eq. (78), the price equation (77) becomes:

p = �+ � (

X

j

(↵

j
⌃

+
+⇤

j
)

�1
)

�1
X

j

(↵

j
⌃

+
+⇤

j
)

�1
W↵

j
⌃E[q

j
0]

| {z }
⌘E[Qc]

� (

X

j

C

j
)

�1
X

j

B

j
(q

j
0 � E[q

j
0])

| {z }
⌘Q�E[Q]

. (79)

Q ⌘ (

P
j

C

j

)

�1P
j

B

j

q

j

0 is the aggregate risk in the uncontingent market, while Q

c ⌘ (

P
j

(↵

j

⌃

+
+

⇤

j

)

�1
)

�1P
j

(↵

j

⌃

+
+⇤

j

)

�1
W↵

j

⌃q

j

0 is the aggregate risk in the contingent markets, where we used
C

j,c

= (↵

j

⌃

+
+⇤

j

)

�1 and B

j,c

= (↵

j

⌃

+
+⇤

j

)

�1
W↵

j

⌃ for all j.
To characterize the equilibrium quantity traded of trader i, substitute equilibrium price p and

demand coefficient ai into trader i’s demand (51): for each i,

q

i

= (↵

i

⌃

+
+⇤

i

)

�1
(E[Q

c

]�W↵

i

⌃E[q

i

0]) +C

i

(Q� E[Q])�B

i

(q

i

0 � E[q

i

0]). (80)

In the symmetric equilibrium (i.e., assuming ↵

i

= ↵ for all i), equilibrium price (79) and quantity
traded (80) become Eqs. (22) and (23), respectively.

Lemma 3 (Price Impact in Competitive Markets) Consider a market structure N = {K(n)}
n

,
let {↵i}

i

be the profile of traders’ risk aversions, and suppose {⇤i,I}
i

is a profile of the equilibrium
price impacts for all I < 1 and in the limit market as I ! 1. The equilibrium price impact becomes
zero as I ! 1 if ↵i,I

= ↵

i

�

I 2 R+ increases slower than linearly by a common factor �I ⇠ o(I

1�"

) for
some " 2 (0, 1): for each i, ⇤i

= lim

I!1⇤

i,I

= 0.

Proof of Lemma 3 (Price Impact in Competitive Markets). By Definition 3, the equilib-
rium price impact in the competitive market is ⇤

i

= lim

I!1⇤

i,I

. Theorem 5 characterizes the fixed
point equation for price impact matrices {⇤i,I}

i

for I < 1. We show that the price impact ⇤

i,I is
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proportional to a factor �

I 2 R+ that is common to all traders ↵

i,I

= ↵

i

�

I : i.e., {⇤i,I}
i

is a profile of
equilibrium price impacts when traders’ risk aversions are {↵i

�

I}
i

if and only if {e⇤i,I ⌘ 1
�

I

⇤

i,I}
i

is a
profile of equilibrium price impacts when traders’ risk aversions are {↵i}

i

independently of the number
of traders I. This can be shown by substituting ↵

i,I

= ↵

i

�

I for all i into Eqs. (39)-(41):

B

i,I

= (↵

i

⌃

+
+

1

�

I

⇤

i,I

)

�1
W↵

i

⌃� ((↵

i

⌃

+
+

1

�

I

⇤

i,I

)

�1 � �

I

C

i,I

)

�
�

I

C

I

��1� �

pv

I(�

cv

+ �

pv

)

B

i,I

+

�

cv

�

cv

+ �

pv

B

I

�
,

⇥
(Id � (↵

i

⌃

+
+

1

�

I

⇤

i,I

)�

I

C

i,I

)

�
�

I

C

I

��1�X

j 6=i

B

j,I

⌦

�
B

j,I

+

�

cv

�

cv

+ �

pv

X

h 6=i

B

h,I

�0�⇤
N

= 0,

1

�

I

⇤

i,I

= (

X

j 6=i

�

I

C

j

)

�1
. (81)

Hence, with {↵i}
i

, equilibrium demand coefficients and price impacts are e
C

i,I ⌘ �

I

C

i,I , e
B

i,I ⌘ B

i,I ,
and e

⇤

i,I ⌘ 1
�

I

⇤

i,I for all i. The proportionality of the price impact matrix ⇤

i,I to the common factor
�

I gives lower and upper bounds for the limit of the price impact matrix:

0  lim

I!1
⇤

i,I

= lim

I!1
�

I

lim

I!1
e
⇤

i,I

= lim

I!1
�

I

lim

I!1

��X

j 6=i

e
C

i,I

��1�0  lim

I!1

�

I

I � 1

max

i

��e
C

i,I

��1�0
.

Given that equilibrium exists in the limit market (I ! 1), the Jacobian of each trader’s demand
schedule is bounded: lim

I!1(

e
C

i,I

)

�1
k`

< 1 for all k, `, and i. We have lim

I!1⇤

i,I

= 0 when
�

I

I�1 ⇠ o(I

�"

) decreases to zero as I ! 1. We conclude that ⇤

i

= 0 for all i.

In what follows, we assume that risk preferences are symmetric across traders, and endowments
are independent across assets k unless specified otherwise. Then, Bi

= B,C

i

= C, and ⇤

i

= ⇤ for all
i, and ⌦ = Id.

Assumption (Symmetric Risk Preferences) Let ↵

i

= ↵ for all i.

In the symmetric equilibrium, Eqs. (38)-(41) in Theorem 5 simplify as summarized by Corollary 5.

Corollary 5 (Symmetric Equilibrium; General Design) Consider a market structure N = {K(n)}
n

.
In a symmetric equilibrium, (net) demand schedules, defined by matrix coefficients {ai}

i

,B, and C,
and price impact ⇤ are characterized by the following conditions: for each i,

(i) (Optimization, given price impact) Given price impact matrix ⇤, best-response coefficients ai

,B,
and C are characterized by:

ai

= C

�
�+ � (W↵⌃�C

�1
B)E[q0]

�
+ ((↵⌃

+
+⇤)

�1
W↵⌃�B)(E[q0]� E[q

i

0]), (82)

B =

�
(1� �0)(↵⌃

+
+⇤) + �0C

�1
��1

W↵⌃, (83)

C =

⇥
(↵⌃

+
+⇤)(BB

0
)[BB

0
]

�1
N

⇤�1
N

, (84)

where �0 ⌘
�

cv

+ 1
I

�

pv

�

cv

+�

pv

.

(ii) (Correct price impact) Price impact ⇤ equals the transpose of the Jacobian of the trader’s inverse
residual supply function:

⇤ =

1

I � 1

�
C

�1
�0
. (85)
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Note that the price slope C

�1
= diag(C

�1
K(n))n is a block-diagonal matrix.

Proof of Theorem 2 (Existence of Symmetric Equilibrium). Consider a market structure
N = {K(n)}

n

. Let M be the set of all (
P

n

K(n))-dimensional block-diagonal matrices, such that,
for any M 2 M, M

K(n),K(n0) = 0 for distinct exchanges n 6= n

0. Given that price impact matrices are
block-diagonal, we introduce a partial order on M: M

1  M

2 if (M2 �M

1
) is positive semi-definite,

or equivalently, if M1
K(n),K(n)  M

2
K(n),K(n) for all n.

(Existence) Substituting B from Eq. (83) into Eq. (84), the fixed point equation (85) for ⇤ becomes:

⇥
(↵⌃

+
+⇤� (I � 1)⇤

0
)

�
↵⌃

+
+⇤+

(I � 1)�0

1� �0
⇤

0��1
W↵⌃↵⌃W

0�
↵⌃

+
+⇤

0
+

(I � 1)�0

1� �0
⇤

��1⇤
N

| {z }
⌘L(⇤)

= 0. (86)

Define a map L(·) : M ! M using the LHS of Eq. (86). We want to show that there exists ⇤ such
that L(⇤) = 0. We first show that there exist two bounds (⇤,⇤), such that L(⇤) � 0 and L(⇤)  0.
Then, by the Brouwer fixed point theorem,6 since the set of block-diagonal matrices defined by the
bounds (⇤,⇤) is compact and the map L(⇤) is continuous, there exists a solution ⇤ to the fixed point
problem L(⇤) = 0.

Let ⇤ ⌘ 0 and ⇤ ⌘ ↵

I�2N [⌃

+
]

N

. It is immediate that ⇤ satisfies the desired condition: evaluating
L(⇤) at ⇤ = 0, we have L(⇤) = [↵⌃

+
]

N

� 0 by the positive semi-definiteness of ↵⌃+.
Evaluating L(⇤) at ⇤, we have:

L(⇤) = ↵

⇥
(Id +

N

I � 2

[⌃

+
]

N

(⌃

+
)

�1
)

�1
(⌃

+ �N [⌃

+
]

N

)(Id +

N

I � 2

[⌃

+
]

N

(⌃

+
)

�1
)

�1
⇤
N

, (87)

where  ⌘ 1+(I�2)�0

1��0
2 R+. Given that ⌃

+ is positive semi-definite, (Id +

N

I�2 [⌃
+
]

N

(⌃

+
)

�1
)

�1 is
positive definite, where we used that the inverse of a positive definite matrix is positive definite. In
turn, matrix (⌃

+ �N [⌃

+
]

N

) in Eq. (87) is negative definite. It is negative semi-definite if and only if
either some assets in an exchange are perfectly correlated or all

P
n

K(n) assets are perfectly correlated.
To prove this, observe that for any vector v ⌘ (v

K(n))n 2 R
P

n

K(n), we have:

Cov[v

K(n) · rK(n),vK(n0) · rK(n0)]  1

2

V ar[v

K(n) · rK(n)] +
1

2

V ar[v

K(n0) · rK(n0)] 8n, n0 2 N. (88)

Using that ⌃

+ is the covariance matrix of the distribution of asset returns r = (r

K(n))n, inequality
(88) is equivalent to:

v

0
K(n)⌃

+
K(n),K(n0)vK(n0)  1

2

v

0
K(n)⌃

+
K(n),K(n)vK(n) +

1

2

v

0
K(n0)⌃

+
K(n0),K(n0)vK(n0) 8n, n0 2 N. (89)

Summing each side of Eq. (89) over n and n

0 gives:

v

0
⌃

+
v =

X

n,n

0

v

0
K(n)⌃

+
K(n),K(n0)vK(n0)  N

X

n

v

0
K(n)⌃

+
K(n),K(n)vK(n) = v

0
(N [⌃

+
]

N

)v,

and hence, v0
(⌃

+ �N [⌃

+
]

N

)v  0 for any vector v.
By the positive semi-definiteness of (Id +

N

I�2 [⌃
+
]

N

(⌃

+
)

�1
)

�1 and the negative semi-definiteness
of (⌃+ �N [⌃

+
]

N

), it follows that the RHS of Eq. (87) becomes:

(Id +

N

I � 2

[⌃

+
]

N

(⌃

+
)

�1
)

�1
(⌃

+ �N [⌃

+
]

N

)(Id +

N

I � 2

[⌃

+
]

N

(⌃

+
)

�1
)

�1  0. (90)

6More precisely, the Brouwer fixed point theorem is applied to the equation ⇤ = L(⇤) +⇤ on the partially ordered
compact set {⇤|⇤  ⇤  ⇤} ⇢ R(

P
n K(n))⇥(

P
n K(n)).
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Consequently, L(⇤)  0; the equality holds if all
P

n

K(n) assets are perfectly correlated.7 This
completes the argument.

(Uniqueness for K = 2) We show that equilibrium in the uncontingent market for K = 2 is unique.
As Appendix C.2 shows, the equilibrium fixed point equation (86) for ⇤ = diag(�,�) simplifies to:

� =

↵

I � 2

+

↵⇢

I � 2

2xy

x

2
+ y

2
, (91)

where x ⌘ (1� �0)(1� ⇢

2
)↵+ (1 + (I � 2)�0)� and y ⌘ ⇢(1 + (I � 2)�0)� characterize each row of B

in Eq. (83): b1 = (x, y) and b2 = (y, x). Rearranging Eq. (91) gives a third-order polynomial of �:

0 = �(I � 2)(1 + ⇢

2
)(1 + (I � 2)�0)

2
�

3
+

�
4� (1� ⇢

2
)(2I � 1) + (I � 2)(3 + ⇢

2
)�0

�
(1 + (I � 2)�0)↵�

2

+

�
4� (1� ⇢

2
)I + (I � 2)(3 + ⇢

2
)�0

�
(1� �0)(1� ⇢

2
)↵

2
�+ ↵

3
(1� �0)

2
(1� ⇢

2
)

2
.

By the Descartes’ sign rule, there exists a unique positive solution �.

Proof of Proposition 3 (Sufficient Statistic for Equilibrium Payoffs). Let I < 1 and
K > 1. Consider a market N = {K(n)}

n

, represented by the indicator matrix W 2 {0, 1}(
P

n

K(n))⇥K

(Definition 5). Let {qi
k,n

(·)}
i,k,n

be a profile of equilibrium demands. We characterize the equilibrium
payoff of each trader (Eq. (93)) as a function of per-unit price impact b

⇤ 2 RK⇥K and the endowment
coefficient of total demand b

B 2 RK⇥K (Eq. (32)).

(Part (1)) Substituting the equilibrium prices and trades from Eqs. (22) and (23) into u

i

(·)� p · qi

gives the ex post equilibrium payoff of trader i in N :

u

i
(q

i
)� p · qi

= (� · qi
0 �

↵

2

q

i
0 ·⌃q

i
0) + (�+ � p�W↵⌃q

i
0) · qi � ↵

2

q

i ·⌃+
q

i (92)

= (� · qi
0 �

↵

2

q

i
0 ·⌃q

i
0) +

1

2

�
2(W↵⌃�C

�1
B)(E[q0]� q0)�

�
↵⌃

+
(↵⌃

+
+⇤)

�1
W↵⌃� ↵⌃

+
B

��
E[q0]� E[q

i
0]
�

+(2W↵⌃� ↵⌃

+
B)(q0 � q

i
0)
�
·
��
(↵⌃

+
+⇤)

�1
W↵⌃�B

��
E[q0]� E[q

i
0]
�
+B(q0 � q

i
0)
�
.

Taking an expectation of the ex post payoff (92) with respect to {qj

0}j , and using that trace satisfies
E[x

0
Mx] = E[tr(xx

0
M)] = tr(E[xx

0
]M) = tr(V ar[x]M) + E[x

0
]ME[x] for any x 2 RK and M 2

RK⇥K , the ex ante equilibrium payoff of trader i is:

E[u

i � p · qi

] = E[� · qi

0 �
1

2

q

i

0 · ↵⌃q

i

0]

| {z }
Payoff without trade

+(E[q0]� E[q

i

0]) ·⌥+
(⇤)(E[q0]� E[q

i

0])| {z }
Equilibrium surplus from trade

+

I � 1

I

�

pv

tr

�
↵⌃W

0
B� 1

2

B

0
↵⌃

+
B

�

| {z }
Payoff term due to V ar[q0|qi

0] > 0

, (93)

where ⌥

+
(⇤) 2 R(

P
n

K(n))⇥(
P

n

K(n)) is a surplus matrix, which is a function of price impact:

⌥

+
(⇤) ⌘ ↵⌃W

0
(↵⌃

+
+⇤)

�1
W↵⌃� 1

2

↵⌃W

0
(↵⌃

+
+⇤

0
)

�1
↵⌃

+
(↵⌃

+
+⇤)

�1
W↵⌃. (94)

First, applying the Woodbury Matrix Identity (Lemma 1) to matrix (↵⌃

+
+⇤)

�1 in Eq. (94), the
7The equality in (90) implies that ⇤ =

N

I�2 [⌃
+
]

N

is the solution to Eq. (86) if and only if all
P

n

K(n) assets are
perfectly correlated.
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surplus matrix ⌥

+
(⇤) can be written as:

⌥

+
(⇤) = ↵⌃W

0
⇤

�1
W(

b
⇤

�1
+ (↵⌃)

�1
)

�1 � 1

2

((

b
⇤

�1
)

0
+ (↵⌃)

�1
)

�1
W

0
(⇤

�1
)

0
↵⌃

+
⇤

�1
W(

b
⇤

�1
+ (↵⌃)

�1
)

�1

= ↵⌃(↵⌃+

b
⇤

0
)

�1
(

1

2

↵⌃+

b
⇤

0
)(↵⌃+

b
⇤)

�1
↵⌃. (95)

Therefore, the equilibrium surplus from trade in Eq. (93) is determined as a function of the per-unit
price impact b

⇤:
(E[q0]� E[q

i

0]) ·⌥(

b
⇤)(E[q0]� E[q

i

0]),

where
⌥(

b
⇤) ⌘ 1

2

↵⌃(↵⌃+

b
⇤

0
)

�1
(↵⌃+

b
⇤+

b
⇤

0
)(↵⌃+

b
⇤)

�1
↵⌃. (96)

Eq. (96) replaces the matrix (

1
2↵⌃+

b
⇤

0
) in Eq. (95) with its symmetric component 1

2(↵⌃+

b
⇤+

b
⇤

0
).

Replacing ⌥

+
(⇤) (Eq. (95)) by ⌥(⇤) (Eq. (93)) is innocuous when evaluating equilibrium surplus

from trade in Eq. (93), which is a quadratic function of E[q0]� E[q

i

0].
Second, we show that matrix ↵⌃W

0
B� 1

2B
0
↵⌃

+
B in Eq. (93) is determined as a function of b

B.
By the characterization of B in Eq. (83) of Corollary 5 in Appendix A, we have:

↵⌃W

0
B� 1

2

B

0
↵⌃

+
B = ↵⌃� 1

2

�
B

0
W� Id

�
↵⌃

�
W

0
B� Id

�
= ↵⌃� 1

2

�b
B� Id

�0
↵⌃

�b
B� Id

�
, (97)

where the second equality holds by the definition of b
B ⌘ W

0
B (Eq. (32)). It follows that trader i’s ex

ante equilibrium payoff (93) is determined as a function of (b⇤,

b
B):

E[u

i � p · qi

] = E[� · qi

0 �
1

2

q

i

0 · ↵⌃q

i

0] + (E[q0]� E[q

i

0]) ·⌥(

b
⇤)(E[q0]� E[q

i

0])

+

I � 1

I

�

pv

tr

�
↵⌃

�
� I � 1

2I

�

pv

tr

�
(

b
B� Id)0↵⌃(

b
B� Id)

�
. (98)

We now show that equilibrium payoffs (98) of all traders coincide between market structures N

and N

0 if and only if b
⇤ and b

B coincide between N and N

0.

(If and only if: 0  |⇢
k`

| < 1 for all k and ` 6= k) We first assume that no assets are perfectly
correlated, i.e., ⌃ is invertible. Then, in Eq. (96), the per-unit price impact b

⇤ is one-to-one with ⌥(

b
⇤),

while in Eq. (97), cross-asset inference b
B is one-to-one with ↵⌃W

0
B� 1

2B
0
↵⌃

+
B. Consequently, the

per-unit price impact b
⇤ 2 RK⇥K is the sufficient statistic for the surplus matrix ⌥(

b
⇤), while cross-asset

inference b
B 2 RK⇥K is the sufficient statistic for the payoff term due to V ar[q0|qi

0] in Eq. (93).

(If and only if: |⇢
k`

| = 1 for some k and ` 6= k) Suppose that the payoffs of some assets are
perfectly correlated, i.e., ⌃ is singular. When the asset payoffs of assets k and ` 6= k are perfectly
correlated, equilibrium coincides with that in which asset k and ` are treated as the same asset, i.e.,
the asset payoffs are defined by (r

m

)

m 6=`

2 RK�1 that is jointly normally distributed according to
N (��,⌃�

), where �� 2 RK�1 and ⌃

� 2 R(K�1)⇥(K�1). Given trader i’s endowment q

i

0 2 RK , his
endowment in RK�1 is qi,�

0 ⌘ (q

i,�
0,m)

m

2 RK�1 such that qi,�0,k = q

i

0,k+ sign(⇢

k`

)

�

kk

�

``

q

i

0,` and q

i,�
0,m = q

i

0,m

for all m 6= `, k.
The same argument as for the case 0  |⇢

k`

| < 1, ` 6= k, applies with endowments defined in
R

(K�1)⇥(K�1) rather than R

K⇥K : Equilibrium payoff (92) is a function of ⌃E[q

i

0] = W

�
⌃

�
E[q

i,�
0 ]

and ⌃q

i

0 = W

�
⌃

�
q

i,�
0 , where the `

th row W

�
`

= (w

�
`m

)

m 6=`

of W� 2 RK⇥(K�1) is such that w

�
`k

=

sign(⇢

k`

)

�

``

�

kk

and w

�
`m

= 0 for all m 6= k, and the (K � 1) ⇥ (K � 1) submatrix of W� excluding the
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`

th row is the identity matrix. Then, the trade of asset k (and zero trade of asset `) in the market with
K � 1 assets is the same as the total trade for assets k and `, defined by bqi

k

= q

i

k

+ sign(⇢

k`

)

�

kk

�

``

q

i

`

in
the market with K assets.

(Part (2)) We show that b
⇤ maps one-to-one to b

B if and only if ⇤ is symmetric, i.e., ⇤ = ⇤

0. Then,
b
⇤ is a sufficient statistic for equilibrium payoffs (93).

By Eq. (32), the per-unit cross-asset inference b
B is characterized as follows:

b
B = W

0�
(1� �0)(↵⌃

+
+⇤) + �0(I � 1)⇤

0��1
W↵⌃

=

�
(1� �0)↵⌃+

�
W

0
((1� �0)⇤+ �0(I � 1)⇤

0
)

�1
W

��1��1
↵⌃. (99)

The second equality holds by applying the Woodbury Matrix Identity (Lemma 1) to
�
(1� �0)↵⌃

+
+

(1� �0)⇤+ �0(I � 1)⇤

0��1. Given the invertibility of ⌃, Eq. (99) shows that b
B maps one-to-one to

W

0
((1� �0)⇤+ �0(I � 1)⇤

0
)

�1
W, which is a function of b

⇤ = (W

0
⇤W)

�1 if and only if ⇤ = ⇤

0:

W

0
((1� �0)⇤+ �0(I � 1)⇤

0
)

�1
W =

1

1 + (I � 2)�0

b
⇤

�1 if and only if ⇤ = ⇤

0
.

Hence, the sufficient statistic (

b
⇤,

b
B) of equilibrium payoffs reduces to a single variable b

⇤ or b
B if and

only if ⇤ = ⇤

0.

Proof of Theorem 4 (Nonredundancy of Changes in Market Structure: Conditions). Sup-
pose that K > 1 and |⇢

k`

| < 1 for all k and ` 6= k. By the same argument as in the proof of Proposition
3, it is without loss of generality to treat the perfectly correlated assets as the same asset. Given a
market structure N = {K(n)}

n

, let ⇤N be the equilibrium price impact. Suppose that an exchange n

0

is introduced such that K(n

0
) ⇢ K(n) for some n 2 N and define N

0 ⌘ N [ {n0}. Indicator matrices
W

N and W

N

0 represent market structures N and N

0 (Definition 5), respectively.

(Part “If”) We show that, when one of conditions (i)-(iii) holds, equilibrium payoffs in market N

and N

0 coincide. By Proposition 3, it suffices to show that equilibrium price impact ⇤

N

0 in market
N

0 ⌘ N [ {n0} satisfies b
⇤

N

0
=

b
⇤

N and b
B

N

0
=

b
B

N . Given equilibrium price impact ⇤

N in market N ,
we will first construct a block-diagonal matrix ⇤

N

0 2 R(
P

n

K(n)+K(n0))⇥(
P

n

K(n)+K(n0)) that equalizes
the per-unit price impact b

⇤

N

0
=

b
⇤

N and cross-asset inference b
B

N

0
=

b
B

N . Then, we will show that
such matrix ⇤

N

0 is an equilibrium price impact in N

0.

(Construction of matrix ⇤

N

0 such that b
⇤

N

0
=

b
⇤

N and b
B

N

0
=

b
B

N) Define a block-diagonal
matrix ⇤

N

0
= diag(⇤

N

0

K(n00))n002N 0 such that
�
(⇤

N

0

K(n))
�1

�
`,m

=

�
(⇤

N

K(n))
�1

�
`,m

8`,m 2 K(n) and {`,m} 6⇢ K(n

0
), (100)

�
(⇤

N

0

K(n0))
�1

�
`,m

= ⇠

�
(⇤

N

K(n))
�1

�
`,m

,

�
(⇤

N

0

K(n))
�1

�
`,m

= (1� ⇠)

�
(⇤

N

K(n))
�1

�
`,m

8`,m 2 K(n

0
), (101)

⇤

N

0

K(n00) = ⇤

N

K(n00) 8n00 6= n, n

0
, (102)

for some ⇠ 2 (0, 1) subject to ⇤

N

0

K(n0) > 0 and ⇤

N

0

K(n) > 0. This implies that each trader’s demand
coefficient C

N

K(n) =

1
I�1((⇤

N

K(n))
�1

)

0 in exchange n of market N is a linear function of C

N

0

K(n) and
C

N

0

K(n0) in exchanges n and n

0 of market N 0. Moreover, demands in other exchanges n00 6= n, n

0 coincide
between markets N and N

0.
First, ⇤N

0 defined in Eqs. (100)-(102) satisfies b
⇤

N

0
=

b
⇤

N and b
B

N

0
=

b
B

N . By construction, b⇤N

0
=�

(W

N

0
)

0
(⇤

N

0
)

�1
W

N

0��1 is the same as the per-unit price impact b
⇤

N

=

�
(W

N

)

0
(⇤

N

)

�1
W

N

��1 in N
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when the indicator matrix in N

0 is

W

N

0
=


W

N

WK(n0)

�
.

In addition, when one of conditions (i)-(iii) holds, the cross-asset inference coincides, i.e., b
B

N

0
=

b
B

N .
By Eq. (32), b

B

N

0
=

b
B

N if and only if ⇤N

0 and ⇤

N satisfy

(W

N

0
)

0
((1��0)⇤

N

0
+�0(I� 1)(⇤

N

0
)

0
)

�1
W

N

0
= (W

N

)

0
((1��0)⇤

N

+�0(I� 1)(⇤

N

)

0
)

�1
W

N

. (103)

Because the trader’s demands in exchanges n00 6= n, n

0 coincide between markets N and N

0 (Eq. (102)),
Eq. (103) simplifies to an equation for price impacts in exchanges n and n

0 alone:
X

n

002{n,n0}

(W

N

0

K(n00))
0
(⇤

N

0

K(n00) + (⇤

N

0

K(n00))
0
)

�1
W

N

0

K(n00) = (W

N

K(n))
0
(⇤

N

K(n) + (⇤

N

K(n))
0
)

�1
W

N

K(n), (104)

where  ⌘ �0(I�1)
1��0

2 R+. When K(n

0
) = K(n

00
) (condition (i)), Eq. (104) holds because both

(⇤

N

0

K(n)+(⇤

N

0

K(n))
0
)

�1 and (⇤

N

0

K(n0)+(⇤

N

0

K(n0))
0
)

�1 are proportional to (⇤

N

K(n)+(⇤

N

K(n))
0
)

�1. When
the payoff of assets K(n

0
) are independent of other assets in exchange n, K(n) \ K(n

0
) (condition

(iii)), the demand coefficient C

N

K(n) = diag(C

N

K(n)\K(n0),C
N

K(n0)) is a block diagonal matrix, and so do
(⇤

N

0

K(n) + (⇤

N

0

K(n))
0
)

�1 and (⇤

N

K(n) + (⇤

N

K(n))
0
)

�1 in Eq. (104). Applying the same argument as in
condition (i) to each block diagonal submatrices that correspond to K(n

0
) and K(n) \ K(n

0
) shows

that Eq. (104) holds. Lastly, when ⇤

N

K(n) is symmetric (condition (ii)), both ⇤

N

0

K(n) and ⇤

N

0

K(n0) are
symmetric by construction (Eqs. (100)-(101)), and Eq. (104) holds:

X

n

002{n,n0}

1

1 + 

(W

N

0

K(n00))
0
(⇤

N

0

K(n00))
�1

W

N

0

K(n00) =
1

1 + 

(W

N

K(n))
0
(⇤

N

K(n))
�1

W

N

K(n).

(Simplifying the equilibrium fixed point with b
⇤ and b

B) We now show that ⇤

N

0 defined in
Eqs. (100)-(102) is equilibrium price impact in N

0
= N [ {n0}. We first simplify equilibrium fixed

point (83)-(85) by decomposing the terms that coincide between market N and N

0 (Eq. (107) below).
Applying the Woodbury Matrix Identity to B

N

0 gives:

B

N

0
=

1

1� �0

�
(1� �0)⇤

N

0
+ �0(I � 1)(⇤

N

0
)

0��1
W

N

0�b
�+ ((1� �0)↵⌃)

�1
��1

, (105)

where b
� ⌘ (W

N

0
)

0
((1� �0)⇤

N

0
+ �0(I � 1)(⇤

N

0
)

0
)

�1
W

N

0 2 RK⇥K coincides between N and N

0 (Eq.
(103)). Substituting B

N

0 into the LHS of equilibrium fixed point equation (Eq. (84)):
⇥
(↵⌃

+
+⇤

N

0 � (I � 1)(⇤

N

0
)

0
)

�
(1� �0)⇤

N

0
+ �0(I � 1)(⇤

N

0
)

0��1
W

N

0 b
V(W

N

0
)

0⇤
N

0 , (106)

where b
V ⌘

�b
�+ ((1� �0)↵⌃)

�1
��1

⌦

�b
�

0
+ ((1� �0)↵⌃)

�1
��1 2 RK⇥K represents the covariance of

K linearly independent random variables that determines the residual supply intercepts (cf. Eq. (55)).
The term b

V in Eq. (106) coincides in N and N

0. Eq. (106) further simplifies using ⇤

N

0�(I�1)(⇤

N

0
)

0
=

� 1
�0

�
(1� �0)⇤

N

0
+ �0(I � 1)(⇤

N

0
)

0�
+

1
�0
⇤

N

0 :
⇥
W

N 0�
↵⌃

b
�

b
V � 1

�0

b
V

�
(W

N 0
)

0⇤
N 0 +

1

�0

�
(1� �0)Id + �0(I � 1)(⇤

N 0
)

0
(⇤

N 0
)

�1
��1⇥

W

N 0 b
V(W

N 0
)

0⇤
N 0 . (107)

Eq. (107) is a function of a block diagonal matrix
�
(1��0)Id+�0(I � 1)(⇤

N

0
)

0
(⇤

N

0
)

�1
��1 and terms

that coincide in markets N and N

0. ⇤

N

0 is the equilibrium price impact in N

0 if and only if Eq. (107)
equals 0.
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(⇤N

0 in Eqs. (100)-(102) is equilibrium price impact in N

0) Each block submatrix ⇤

N

0

K(n00)

of ⇤N

0 satisfies Eq. (107): For any exchange n

00 6= n, n

0, WN

0

K(n00) = W

N

K(n00) and ⇤

N

0

K(n00) = ⇤

N

K(n00),
and hence, the block submatrix of Eq. (107) that corresponds to exchange n

00 is the same as the
corresponding submatrix in N . Therefore,

W

N 0

K(n00)

�
↵⌃

b
�

b
V� 1

�0

b
V

�
(W

N 0

K(n00))
0
+

1

�0

�
(1��0)Id+�0(I�1)(⇤

N 0

K(n00))
0
(⇤

N 0

K(n00))
�1

��1
W

N 0

K(n00)
b
V(W

N 0

K(n00))
0
= 0.

In exchange n, when the price impact matrix is a symmetric matrix (condition (ii)), we have
�
(1 �

�0)Id+�0(I�1)(⇤

N

0

K(n))
0
(⇤

N

0

K(n))
�1

��1
=

�
(1��0)Id+�0(I�1)(⇤

N

K(n))
0
(⇤

N

K(n))
�1

��1
=

1
1+(I�2)�0

Id.
This shows that the block submatrix in Eq. (107) corresponding to K(n) equals to 0 in N

0, given
that ⇤

N

K(n) is equilibrium price impact in exchange n in market N . If condition (iii) holds, ⇤N

0

K(n) is a
block diagonal matrix, whose each block submatrix corresponds to assets K(n

0
) and K(n) \K(n

0
). By

construction, the block submatrix of ⇤N

0

K(n) is proportional to the corresponding submatrix of ⇤N

K(n),
and hence, the block submatrix in Eq. (107) for exchange n equals to 0. The same argument applies to
condition (i). Finally, in the new exchange n0, Eq. (107) is equivalent to the K(n

0
)⇥K(n

0
) submatrix of�

↵⌃

b
�

b
V� 1

�0
b
V

�
K(n),K(n)

+

1
�0

1
1+(I�2)�0

b
V

K(n),K(n) = 0. It follows that ⇤N

0 defined in Eqs. (100)-(102)
is equilibrium price impact in N

0.

(Part “Only if”) We prove the contrapositive: Suppose that K(n

0
) 6= K(n

00
) for all n00 2 N (condition

(i)) and 0 < |⇢
k`

| < 1 for some assets k 2 K(n

0
) and ` 2 K(n)\K(n

0
) (condition (iii)). We show that if

a block diagonal matrix ⇤

N

0 2 R(
P

n

K(n)+K(n0))⇥(
P

n

K(n)+K(n0)) satisfies b
⇤

N

0
=

b
⇤

N , then b
B

N

0
=

b
B

N

generally does not hold unless ⇤N

K(n) = (⇤

N

K(n))
0 for an exchange n such that K(n

0
) ⇢ K(n) (condition

(ii)). Then, by Proposition 3, introducing new exchange n

0 in market N is nonredundant.

(Construction of ⇤

N

0 that equalizes per-unit price impact b
⇤

N

0
=

b
⇤

N) We first assume a
block-diagonal matrix ⇤

N

0
= diag(⇤

N

0

K(n00))n002N 0 such that b
⇤

N

0
=

b
⇤

N :

(W

N

0
)

0
(⇤

N

0
)

�1
W

N

0
= (W

N

)

0
(⇤

N

)

�1
W

N

. (108)

Given that K(n

0
) ⇢ K(n) for an existing exchange n 2 N , the indicator matrix (Definition 5) WN

0 in
market N

0
= N [ {n0} can be represented as a function of WN :

W

N

0
=


W

N

W

N 0

K(n0)

�
=

"
W

N
h
0 Id

i
W

N

#
. (109)

This is because W

N

0

K(n0) 2 RK(n0)⇥K for the new exchange n

0 is a submatrix of the matrix W

N .
Replacing W

N

0 by Eq. (109) simplifies Eq. (108) in terms of WN itself rather than W

N and W

N

0 :

(W

N

)

0�
(⇤

N

)

�1 � (⇤

N

0
�n

0)
�1

�
W

N

= (W

N

)

0⇥ 0 Id
⇤0
(⇤

N

0

K(n0))
�1

⇥
0 Id

⇤
W

N

. (110)

The subscript “�n

0” denotes the existing exchanges n

00 6= n

0 in market N

0
= N [ {n0}: i.e., ⇤N

0
�n

0 =

diag(⇤

N

0

K(n00))n00 6=n

0 .

(⇤N

0 does not satisfy b
B

N

0
=

b
B

N) We now show that ⇤N

0 that satisfies Eq. (110) does not satisfies
b
B

N

0
=

b
B

N unless one of conditions (i)-(iii) holds. The same argument near Eq. (104) shows that
b
B

N

0
=

b
B

N holds if and only if the following equation holds:

(W

N

)

0��
⇤

N

+(⇤

N

)

0��1�
�
⇤

N

0
�n

0+(⇤

N

0
�n

0)
0��1�

W

N

= (W

N

)

0⇥ 0 Id
⇤0�

⇤

N

0

K(n0)+(⇤

N

0

K(n0))
0��1⇥

0 Id
⇤
W

N

.

(111)
Equalization of the per-unit price impact (Eq. (110)) gives a linear relation between the demand
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coefficients C =

1
I�1(⇤

�1
�0 in N and N

0: (W

N

)

0
(C

N

0
�n

0)
0
W

N

=

1
I�1(W

N

)

0
(⇤

N

0
�n

0)
�1

W

N is a linear
function of (W

N

)

0
C

N

W

N and (W

N

)

0⇥ 0 Id
⇤0
C

N

0

K(n0)

⇥
0 Id

⇤
(W

N

) (Eq. (110)). However, given
that C =

1
I�1(⇤

�1
)

0, Eq. (111) equalizes the harmonic means of CN

0
�n

0 and (C

N

0
�n

0)
0 with the sum of

the harmonic means of {CN

, (C

N

)

0} and {CN

0

K(n0), (C
N

0

K(n0))
0}.

Using the different relations—linear and harmonic mean—between the inverses of price impacts
(⇤

N

)

�1 and (⇤

N

0
)

�1 in Eqs. (110)-(111), we show that if Eq. (110) holds then Eq. (111) generally
does not hold. The RHS of Eq. (111) has zero elements for all k, ` 2 K, unless assets k and ` are both
traded in the new exchange n

0, i.e., {k, `} ⇢ K(n

0
). If Eq. (111) holds, then the LHS of Eq. (111)

must have zero elements for all k and ` such that {k, `} 6⇢ K(n

0
). By applying the Woodbury Matrix

Identity to (⇤

N

+ (⇤

N

)

0
)

�1 and (⇤

N

0
�n

0 + (⇤

N

0
�n

0)
0
)

�1, the LHS of Eq. (111) can be represented as:

(W

N

)

0
(C

N�C

N

0
�n

)W

N�(W

N

)

0�
C

N

�
(C

N

)

�1
(C

N

)

0
+Id

��1�C

N

0
�n

0((C
N

0
�n

0)
�1

(C

N

0
�n

0)
0
+Id)�1

�
W

N

.

(112)
The first term in Eq. (112) has zero elements for all k, ` such that {k, `} 6⇢ K(n

0
), while the second

term in Eq. (112) has a zero (k, `)

th element if and only if
X

{n002N |{k,`}⇢K(n00)}

�
C

N

K(n00)

�
(C

N

K(n00))
�1

(C

N

K(n00))
0
+Id

��1�C

N

0

K(n00)

�
(C

N

0

K(n00))
�1

(C

N

0

K(n00))
0
+Id

��1�
k`

= 0.

(113)
By Eq. (110), however, the C

N

0 that matches the per-unit price impact satisfies
X

{n002N |{k,`}⇢K(n00)}

�
c

N

k`,n

00 � c

N

0
k`,n

00
�
= 0.

The demand Jacobian C

N

0

K(n00) in exchange n

00 has a non-zero off-diagonal element c

N

0
k`,n

00 except when
[BB

0
]

k,K(n00) is proportional to [↵⌃BB

0
]

k,K(n00) (see Eq. (84) in Corollary 5), i.e., cN 0
k`,n

00 6= 0 unless
�

k`

= 0 (condition (iii)). When condition (iii) does not hold, for Eq. (113) to hold, for each n

00 2
N , the demand coefficient C

N

K(n00) must either be the same in market structures N and N

0, i.e.,
C

N

K(n00) = C

N

0

K(n00), or must be symmetric, i.e., CN

K(n00) = (C

N

K(n00))
0 so that

�
(C

N

K(n00))
�1

(C

N

K(n00))
0
+

Id
��1

=

1
1+

Id. The former condition cannot hold for all exchanges n

00 such that K(n

0
) ( K(n

00
)

unless condition (i) holds: When equilibrium exists, the demand coefficient in the new exchange n

0

is positive semi-definite C

N

0

K(n0) > 0 (i.e., demands are downward-sloping); using Eq. (110), for each
{k, `} ⇢ K(n

0
), there exists an exchange n

00 such that {k, `} ⇢ K(n

0
) \K(n

00
) and C

N

K(n00) 6= C

N

0

K(n00).
Hence, for such an exchange n

00, CN

K(n00) must be symmetric, i.e., condition (ii) must hold.

Lemma 4 (Price Equalization Across Exchanges) Given a market structure N = {K(n)}
n

, the
equilibrium prices of asset k are the same in the exchanges where k is traded,

p

k,n

= p

k,n

0 8n, 8n0 6= n s.t. k 2 K(n) \K(n

0
) 8k 8(qi

0)i 2 RIK

, (114)

if and only if price impact ⇤ is a symmetric matrix, i.e., ⇤ = ⇤

0.

Proof of Lemma 4 (Price Equalization Across Exchanges). Using the indicator matrix W

(Definition 5), we can write the equilibrium price equation (79) as follows:

p = �+ �W↵⌃E[q0]�C

�1
B(q0 � E[q0]) = W(� � ↵⌃E[q0])�C

�1
B(q0 � E[q0]). (115)

Prices for each asset k are the same in all exchanges where k is traded if and only if there exists a price
vector b

p 2 RK , such that p = W

b
p = (W

n

b
p)

n

for all realizations of endowments (q

i

0)i 2 RIK . From
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Eq. (115), the price equalization holds if and only if C�1
B 2 R(

P
n

K(n))⇥K is characterized as WM

for a matrix M 2 RK⇥K .
We now show that C

�1
B = WM if and only if C is a symmetric matrix (equivalently, ⇤ =

1
I�1(C

�1
)

0 is a symmetric matrix). Using demand coefficients B and C in Eqs. (83)-(84), the price
weight matrix coefficient C

�1
B 2 R(

P
n

K(n))⇥K in Eq. (115) can be characterized as follows:

C

�1
B = C

�1
�
(1� �0)W↵⌃W

0
+

1� �0

I � 1

(C

�1
)

0
+ �0C

�1
��1

W↵⌃

= (

1� �0

I � 1

(C

�1
)

0
C+ �0Id)�1

W

�
W

0
(

1

I � 1

(C

�1
)

0
+

�0

1� �0
C

�1
)

�1
W + (↵⌃)

�1
��1

, (116)

where the second equality applies the Woodbury matrix identity (Lemma 1) to
�
(1 � �0)W↵⌃W

0
+

1��0
I�1 (C

�1
)

0
+ �0C

�1
��1. Eq. (116) shows that C

�1
B = WM if and only if (1��0

I�1 (C
�1

)

0
C+ �0Id)�1

is a diagonal matrix whose diagonal elements corresponding to asset k are the same for all exchanges:
i.e., (C�1

)

0
C = diag(m

k,n

)

k,n

, where m

k,n

= m

k

for all n such that k 2 K(n). Given C > 0, m
k,n

= 1

for all k and n must hold, so C = C

0
diag(m

k,n

)

k,n

= C

0. We conclude that C�1
B = WM if and only

if C is a symmetric matrix, i.e., C = C

0.

Proof of Corollary 2 (Redundancy of Changes in Market Structure: A Condition on
Exchanges). Suppose that 0 < |⇢

k`

| < 1 for all k and ` 6= k. This assumption is without loss of
generality, as shown in the proof of Proposition 3.

(Part (ii) , b
⇤ = ⇤

c and b
B = B

c) We show that equilibrium in the market with exchanges N is ex
post if and only if traders’ equilibrium payoffs are the same as in the contingent market: Equilibrium
price and trades are characterized as a function of price impact ⇤:

p = �+ � (W↵⌃�C

�1
B)E[q0]�C

�1
Bq0, (117)

q

i

= ((↵⌃

+
+⇤)

�1
W↵⌃�B)(E[q0]� E[q

i

0]) +Bq0 �Bq

i

0. (118)

Equilibrium is ex post if and only if B = (↵⌃

+
+⇤)

�1
W↵⌃ and C

�1
B = W↵⌃ so that equilibrium

price and total trades are independent of the distribution of endowments. Applying the Woodbury
Matrix Identity (Lemma 1) to (↵⌃

+
+⇤)

�1 and B = ((1��0)(↵⌃
+
+⇤)+�0(I�1)⇤

0
)

�1
W↵⌃ (Eq.

(83)), the matrix condition B = (↵⌃

+
+⇤)

�1
W↵⌃ simplifies to:

(1� �0)↵⌃+ (W

0
((1� �0)⇤+ �0(I � 1)⇤

0
)

�1
W)

�1
= ↵⌃+

b
⇤. (119)

Eq. (119) holds if and only if b⇤ =

↵

I�2↵⌃ = ⇤

c and ⇤ = ⇤

0. Then, by Eqs. (83)-(84), bB =

I�2
I�1Id = B

c

and C

�1
B = W↵⌃ also holds.

(Part (ii) ( (iii)) From (Part (ii) , b
⇤ = ⇤

c and b
B = B

c), equilibrium in a market with exchanges
N is ex post if and only if it is payoff equivalent to equilibrium in N

0
= {K}. Suppose that for every

pair of assets k and ` 6= k such that 0 < |⇢
k`

| < 1, these assets are traded in a same exchange in N :
i.e., k, ` 2 K(n) for some n 2 N .

We first show that, given market structure N , there exists a symmetric block-diagonal matrix
⇤ = diag(⇤

K(n))n 2 R(
P

n

K(n))⇥(
P

n

K(n)) such that
�
W

0
⇤

�1
W

��1
=

b
⇤

c

=

↵

I�2⌃, which we then
show is the equilibrium price impact in market N . Given that W is the indicator matrix of market N ,
the (k, `)th element of W0

⇤

�1
W = (I�1)W

0
C

0
W is the sum of demand coefficients

P
{n|k,`2K(n)} c`k,n.

Because condition (iii) implies that {n|k, ` 2 K(n)} 6= ;,
P

{n|k,`2K(n)} c`k,n 6= 0 for any k and ` 6=
k except when ⇢

k`

= 0 (Proposition 5). Matching each element of W

0
C

0
W and (C

c

)

0 gives the
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system of K2 equations for
P

n

(K(n))

2 variables {{c
`k,n

}
k,`

}
n

. Given
P

n

(K(n))

2 � K

2, there exist
{c

`k,n

}{n|k,`2K(n)} such that
P

{n|k,`2K(n)} c`k,n = c

c

`k

for all k and ` 6= k. Moreover, when ⇤ satisfies
�
W

0
⇤

�1
W

��1
=

b
⇤

c, so does its symmetric counterpart 1
2(⇤+⇤

0
), because b

⇤

c is symmetric. It follows
that there exists a symmetric matrix ⇤ = ⇤

0 that satisfies
�
W

0
⇤

�1
W

��1
=

b
⇤

c.
We now show that a symmetric matrix ⇤ such that

�
W

0
⇤

�1
W

��1
=

↵

I�2⌃ is equilibrium price
impact, by showing that it satisfies equilibrium fixed point Eqs. (84)-(85), i.e.,

⇥
(↵⌃

+
+⇤� (I � 1)⇤

0
)B⌦B

0⇤
N

= 0. (120)

Using ⇤ = ⇤

0, Eq. (105) for B simplifies to:

B = ⇤

�1
W((1 + (I � 2)�0)(↵⌃)

�1
+ (1� �0)

b
⇤

�1
)

�1
. (121)

Substituting for B from Eq. (121) to Eq. (120), we have:
⇥
W(↵⌃�(I�2)

b
⇤)((1��0)(↵⌃+

b
⇤)+�0(I�1)

b
⇤)

�1
↵⌃⌦↵⌃((1��0)(↵⌃+

b
⇤)+�0(I�1)

b
⇤)

�1
W

0⇤
N

= 0.

(122)
When condition (iii) holds, for any matrix M 2 RK⇥K , [WMW

0
]

N

= 0 if and only if M = 0. This is
because, m

k`

= 0 for all ` 6= k and k if and only if (WMW

0
)

K(n) = (m

k`

)

k,`2K(n) = 0 for all n. This
establishes that matrix b

⇤ satisfies Eq. (122) given market N if and only if b
⇤ satisfies

(↵⌃�(I�2)

b
⇤)((1��0)(↵⌃+

b
⇤)+�0(I�1)

b
⇤)

�1
↵⌃⌦↵⌃((1��0)(↵⌃+

b
⇤)+�0(I�1)

b
⇤)

�1
= 0. (123)

Given the positive definiteness of ⌃ and ⌦, b
⇤ =

↵

I�2⌃ = ⇤

c is the unique matrix that satisfies Eq.
(123). It follows that ⇤ such that b

⇤ = ⇤

c, which hence satisfies Eq. (123), is equilibrium price impact
in N .

(Part (ii) ) (iii)) We prove by contradiction: Suppose that a pair of assets k and ` 6= k such that
0 < |⇢

k`

| < 1 is not traded in a same exchange in N : i.e., {k, `} 6⇢ K(n) for all n 2 N . By Proposition 3,
equilibrium payoffs in N coincide with ex post equilibrium payoffs only when

�
W

0
⇤

�1
W

��1
=

↵

I�2⌃, or
equivalently, W0

CW =

I�2
I�1(↵⌃)

�1. Following the argument in (Part (ii) ( (iii)), the (k, `)

th element
of W0

CW is zero, because {n|k, ` 2 K(n)} = ;. This contradicts the equality W

0
CW =

I�2
I�1(↵⌃)

�1,
because ((↵⌃)

�1
)

k`

6= 0:
�
W

0
⇤

�1
W

��1 6= ↵

I�2⌃. Therefore, condition (iii) is necessary for ex post
equilibrium.

(Part (i) ( (iii)) If condition (iii) holds in a market structure N , an additional exchange n

0 cannot
change the set of conditioning variables in traders’ total demands. More precisely, condition (iii) also
holds in market structure N

0
= N [ {n0}: for every pair of assets k and ` 6= k such that 0 < |⇢

k`

| < 1,
there is an exchange n

00 in which these assets are traded, i.e., k, ` 2 K(n

00
) for some n

00 2 N

0. By (Part
(ii) , (iii)), the equilibrium payoffs in both N and N

0 coincide with those in the contingent market,
and thus, are the same.

(Part (i) ) (ii)) We prove the contrapositive: if equilibrium is not ex post, then there exists a new
exchange that is not redundant. Consider exchanges N . By the equivalence between (ii) and (iii), there
exist imperfectly correlated assets k and ` 6= k that are not both traded in any exchange, i.e., there is
no n such that {k, `} ⇢ K(n). The (k, `)th element of the total demand’s Jacobian b

C = WCW

0 is zero,
i.e., bc

k`

= 0. Suppose that a new exchange n

0 ⌘ {k, `} is introduced in the market structure N , i.e.,
N

0
= N [ {n0}. We show that exchange n

0 is not redundant: The Jacobian C

N

0

K(n0) 2 R2⇥2 in exchange
n

0 has a non-zero off-diagonal element cN 0
k`

except when [BB

0
]

k,K(n0) is proportional to [↵⌃BB

0
]

k,K(n0)
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(Eq. (84) in Corollary 5), i.e., cN 0
k`

6= 0 unless �

k`

= 0. This shows that bcN 0
k`

6= bc
k`

= 0, and hence,
the Jacobians of the total demands in N

0 and N differ: b
C

N

0
= W

N

0
C

N

0
(W

N

0
)

0 6= b
C. Equivalently,

b
⇤

N

0 6= b
⇤. By Proposition 3 (i), equilibrium payoffs differ in N and N

0.

Corollary 6 (Nonredundancy of Changes in Market Structure: A Condition on Primitives)
All market structures {K(n)}

n

give the same equilibrium payoff if and only if the payoffs of all assets
are either perfectly correlated or independent.

Proof of Corollary 6 (Nonredundancy of Changes in Market Structure: A Condition on
Primitives). The proof is immediate from Corollary 2.

Proof of Proposition 4 (Welfare with Multiple Exchanges vs. Joint Market Clearing).

Suppose that there is no information loss: i.e., �
cv

! 0, �
pv

! 0, and �0 ⌘
�

cv

+ 1
I

�

pv

�

cv

+�

pv

< 1. For a market
structure N with multiple exchanges that is not payoff-equivalent to a single exchange, consider the
difference in equilibrium surplus U

c � U

N :

U

c � U

N

=

X

i

(E[q0]� E[q

i

0]) ·
�
⌥(⇤

c

)�⌥(

b
⇤)

�
(E[q0]� E[q

i

0]), (124)

which, by Proposition 3, is zero if the per-unit price impacts ⇤

c and b
⇤ are the same.

The equilibrium surplus difference (Eq. (124)) is a quadratic matrix function of E[q0]�E[q

i

0] with
a quadratic coefficient of ⌥(⇤

c

)�⌥(

b
⇤). If the surplus matrix difference ⌥(⇤

c

)�⌥(

b
⇤) has a negative

eigenvalue µ < 0, then there exist ex ante trading needs {E[q0]�E[q

i

0]}i 2 RIK such that U c�U

N

< 0.
Pick a distribution of endowments such that E[q0]�E[q

i

0] is proportional to an eigenvector of matrix
⌥(⇤

c

)�⌥(

b
⇤) (with a positive or a negative proportionality constant) associated with an eigenvalue

µ: for all i, �
⌥(⇤

c

)�⌥(

b
⇤)

�
(E[q0]� E[q

i

0]) = µ(E[q0]� E[q

i

0]). (125)

Substituting the vector of trading needs {E[q0] � E[q

i

0]}i that satisfies Eq. (125) into Eq. (124), we
have:
X

i

(E[q0]� E[q

i

0]) ·
�
⌥(⇤

c

)�⌥(

b
⇤)

�
(E[q0]� E[q

i

0]) =
X

i

(E[q0]� E[q

i

0]) · µ(E[q0]� E[q

i

0]) < 0,

and hence, UN

> U

c.
Lemma 5 gives a sufficient condition for a negative eigenvalue to exist: any market structure

whose exchanges are demergers (Definition 6) of a single venue for all assets. If the surplus matrix
difference ⌥(⇤

c

)�⌥(

b
⇤) does not have a negative eigenvalue, then U

c � U

N � 0 for any distribution
of endowments.

Lemma 5 (Price Impacts in Multiple Exchanges vs. Joint Market Clearing) Let K > 1 and
I < 1. Consider a market structure N = {K(n)}

n

that consists of exchanges that partition the set
of K assets: K(n) \K(n

0
) = ; for all n and n

0 6= n and [
n

K(n) = K. The equilibrium price impact
⇤ in N and the price impact in the contingent market ⇤

c are not ranked in the positive semi-definite
sense, i.e., neither ⇤ � ⇤

c nor ⇤  ⇤

c holds, except when ⇤ = ⇤

c.

Proof of Lemma 5 (Price Impacts in Multiple Exchanges vs. Joint Market Clearing).
The equilibrium fixed point equation (84) for the equilibrium price impact ⇤ 2 RK⇥K can be written
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as follows: ⇥
(↵⌃

+
+⇤� (I � 1)⇤

0
)B⌦B

0⇤
N

= 0. (126)

To demonstrate that ⇤

c � ⇤ is neither positive semi-definite nor negative semi-definite, we argue by
contradiction: Suppose that ⇤

c �⇤ =

↵

I�2⌃
+ �⇤ is positive semi-definite. By the Trace Inequality

for Matrix Product,8 the trace of the matrix on the LHS of Eq. (126) is nonnegative:

tr

�
(↵⌃

+
+⇤� (I � 1)⇤

0
)B⌦B

0� � (I � 2)µ

K

(B⌦B

0
) tr

�
↵

I � 2

⌃

+ � 1

2

(⇤+⇤

0
)

�
� 0, (127)

where µ

K

(M) 2 R is the lowest eigenvalue of matrix M. Because matrix B⌦B

0 is symmetric and
positive definite, its lowest eigenvalue is positive, and hence, (127) holds with equality if and only if
↵

I�2⌃
+
=

1
2(⇤+⇤

0
), or equivalently ⇤

c

= ⇤.
Except when ⇤

c

= ⇤, however, Eq. (127) contradicts the equilibrium fixed point equation (126).
Hence, by the definition of operator [·]

N

, the matrix trace must be zero:

tr

�
(↵⌃

+
+⇤� (I � 1)⇤

0
)B⌦B

0�
= 0.

An analogous argument shows that ⇤

c �⇤ is not negative semi-definite except when ⇤

c

= ⇤.

C Symmetric Markets
C.1 Additional Results: Symmetric Markets

This Appendix presents results for markets that are symmetric in the following sense.

Definition 7 (Symmetric Market) Assume K = MN for some M � 1. A market structure N =

{K(n)}
n

is symmetric if

• asset distribution is symmetric, i.e., � ⌘ V ar[r

k

] for all k and ⇢ ⌘ Corr[r

k

, r

`

] for all k and
` 6= k, and

• exchanges N partition the set of K assets into exchanges with the same number of assets, i.e.,
K(n) \K(n

0
) = ; for all n and n

0 6= n, and K(n) = M for all n.

For results in this part of the Appendix, we assume that traders’ endowments are independent
across assets: ⌦ = Id 2 RK⇥K .

In a symmetric market, the asset covariance is ⌃ = �((1�⇢)Id+⇢11

0
) and the price impact matrix

⇤ = diag(⇤

K(n))n 2 RK⇥K is symmetric across exchanges and assets and can be written as follows:
for all n,

⇤

K(n) = (�

k

� �

k`

)Id + �

k`

11

0 2 RM⇥M

, (128)

where �

k

2 R+ is the diagonal price impact for asset k and �

k`

2 R is the off-diagonal price impact for
assets k, ` 6= k.

A counterpart of Theorem 3, Proposition 5 characterizes the within-exchange equilibrium price
impact in symmetric markets.

8For a real matrix S 2 RK⇥K and a positive semi-definite matrix T 2 RK⇥K the following inequality holds:
µ

K

(S)tr(T)  tr(ST) = tr(TS)  µ1(S)tr(T),

where µ

k

(S) is the k

th largest eigenvalue of the Hermitian part 1
2 (S+ S0

).
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Proposition 5 (Price Impact: Comparative Statics; Symmetric Markets, General Design)
The within-exchange price impact ⇤

K(n) satisfies the following properties for each n:

(1) (Magnitude) With K assets, the diagonal price impact �
k

maximally increases N -fold relative to
�

c

k

=

↵

I�2�; this is the case if and only if |⇢| = 1.
↵

I � 2

�  �

k

 ↵

I � 2

N�.

(2) (Comparative statics) Relative to the contingent market:

(i) @(�
k

��

c

k

)
@I

 0 and @(�
k`

��

c

k`

)
@I

 0 for all k, ` 2 K(n);

(ii) @(�
k

��

c

k

)
@|⇢| � 0 and @(�

k`

��

c

k`

)
@|⇢| � 0 for all k, ` 2 K(n). Either inequality holds with equality if

and only if ⇢ = 0.

Note. With one asset per exchange (i.e., N = {{k}}
k

and M = 1), the proof of Proposition 5
specializes to that of Theorem 3.

Proof of Proposition 5 (Price Impact: Comparative Statics; Symmetric Markets, General
Design).
(Scalar equations for price impact) By Corollary 5 in Appendix A, the price impact ⇤ is deter-
mined by Eqs. (83)-(85):

⇥
(↵⌃� (I � 2)⇤)(Id + (↵⌃)

�1
⇤)

�1
(Id + ⇤(↵⌃)

�1
)

�1
⇤
N

= 0, (129)

where  ⌘ 1+(I�2)�0

1��0
2 R+.

We first rewrite the matrix fixed point equation (129) for ⇤ as a system of equations in R for �

k

and �

k`

(Eqs. (135)-(136) below). Market symmetry simplifies Eq. (129). In particular, the symmetry
of price impact ⇤ implies that vector 1 2 RK is an eigenvector of ⇤:

⇤1 = �1, (130)

where � ⌘ �

k

+ (M � 1)�

k`

is the sum of elements in each row of ⇤. Using Eq. (130), the inverse
matrix (Id+(↵⌃)

�1
⇤)

�1 in Eq. (129) can be decomposed as a linear combination of a block diagonal
matrix (Id +



↵�(1�⇢)⇤)

�1 and matrix 11

0 2 RK⇥K :

(Id + (↵⌃)

�1
⇤)

�1
= (Id +



↵�(1� ⇢)

⇤� ⇢�

↵�(1� ⇢)(1 + (K � 1)⇢)

11

0
)

�1

= (Id +



↵�(1� ⇢)

⇤)

�1
+

�⇢v

2

↵�(1� ⇢)(1 + (K � 1)⇢)�Kv�⇢

11

0
, (131)

where the second equality applies the Woodbury Matrix Identity (Lemma 1) to (Id +



↵�(1�⇢)⇤ �
⇢�

↵�(1�⇢)(1+(K�1)⇢)11
0
)

�1. Here, v 2 R+ is the eigenvalue of matrix (Id +



↵�(1�⇢)⇤)

�1 associated with
the eigenvector 1:

v1 = (Id +



↵�(1� ⇢)

⇤)

�1
1, v =

↵�(1� ⇢)

(�

k

+ (M � 1)�

k`

) + ↵�(1� ⇢)

=

↵�(1� ⇢)

�+ ↵�(1� ⇢)

. (132)

Substituting (Id+(↵⌃)

�1
⇤)

�1 (Eq. (131)) into Eq. (129), the LHS of Eq. (129) can be decomposed
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as a linear combination of a block diagonal matrix and matrix [11

0
]

N

2 RK⇥K :
⇥
(Id +



↵�(1� ⇢)

⇤)

�1
(↵⌃� (I � 2)⇤)(Id +



↵�(1� ⇢)

⇤)

�1
⇤
N

(133)

+

�
↵�(1 + (K � 1)⇢)� (I � 2)�

�
K

��
�⇢v

2

↵�(1� ⇢)(1 + (K � 1)⇢)�Kv�⇢

+

v

K

�2 � v

2

K

2

�⇥
11

0⇤
N

= 0.

Because (Id+



↵�(1�⇢)⇤)

�1 is a block diagonal matrix, the matrix equation (133) for ⇤ = diag(⇤

K(n))

simplifies to a fixed point equation for ⇤

K(n) in each exchange n:

(Id +



↵�(1� ⇢)

⇤

K(n))
�1

(↵⌃

K(n),K(n) � (I � 2)⇤

K(n))(Id +



↵�(1� ⇢)

⇤

K(n))
�1 (134)

+

�
↵�(1 + (K � 1)⇢)� (I � 2)�

�
K

��
�⇢v

2

↵�(1� ⇢)(1 + (K � 1)⇢)�Kv�⇢

+

v

K

�2 � v

2

K

2

�
11

0
= 0.

We remark that the second line of the LHS of Eq. (134) is proportional to matrix 11

0 2 RM⇥M .
Thus, for Eq. (134) to hold, its first line must be proportional to matrix 11

0. Equivalently, because
(Id+



↵�(1�⇢)⇤K(n))
�1 is invertible, multiplying the first line by (Id+



↵�(1�⇢)⇤K(n)) shows that matrix
(↵⌃

K(n),K(n) � (I � 2)⇤

K(n)) is proportional to 11

0, and hence,

↵� � (I � 2)�

k

= ↵�⇢� (I � 2)�

k`

, i.e., �

k

� �

k`

=

↵

I � 2

�(1� ⇢). (135)

Furthermore, using Eq. (135) and v� = ↵�(1� ⇢)(1� v) from Eq. (132), the matrix equation (134)
simplifies to a fixed point equation for �

k

in R:

�

k

� �

c

k

=

↵�⇢

I � 2

�
K

M + (K �M)

�1+(Kv�1)⇢
1+(K�1)⇢

�2 � 1

�
. (136)

(Part (1)) We are now ready to show the inequality �

k

� ↵

I�2� = �

c

k

. Because � > 0 in Eq. (130),
the following inequality holds for v:

0 < v =

↵�(1� ⇢)

�+ ↵�(1� ⇢)

< 1. (137)

This implies that the term 1+(Kv�1)⇢
1+(K�1)⇢ in the denominator of the RHS of (136) satisfies sign

�1+(Kv�1)⇢
1+(K�1)⇢ �

1

�
= �sign(⇢), and thus, sign

�
K

M+(K�M)
�

1+(Kv�1)⇢
1+(K�1)⇢

�2 � 1

�
= sign(⇢). Hence, by Eq. (136), �

k

�
↵

I�2� = �

c

k

; �
k

= �

c

k

if and only if ⇢ = 0.
Furthermore, the proof of Theorem 2 demonstrated the existence of an upper bound ⇤ =

↵

I�2N�Id
such that equilibrium price impact ⇤ satisfies ⇤  ⇤. It follows that �

k

 ↵

I�2N� for any k. The
equality holds if and only if |⇢

k`

| = 1 for all k and ` 6= k as we showed in the proof of Theorem 2.

(Part (2i)) We prove the monotonicity of the inference effect with respect to the number of traders
I. By Eq. (137), v ⇠ o(I

�1+"

) for some " 2 (0, 1), given  =

1+(I�2)�0

1��0
. Then, Eq. (136) implies that

@(�
k

��

c

k

)
@I

< 0 because ↵�⇢

I�2 ⇠ o(I

�1
) and K

M+(K�M)
�

1+(Kv�1)⇢
1+(K�1)⇢

�2 ⇠ o(I

1�"

).

From Eq. (135), the difference between off-diagonal and diagonal price impacts is the same:

�

k`

� �

c

k`

=

�
�

k

� ↵

I � 2

�(1� ⇢)

�
� ↵

I � 2

�⇢ = �

k

� �

c

k

. (138)

Hence, @(�
k`

��

c

k`

)
@I

< 0.

(Part (2ii)) For any |⇢| > 0, @

@⇢

1+(Kv�1)⇢
1+(K�1)⇢ < 0, because Kv � 1 < K � 1 by Eq. (137) and
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1 + (K � 1)⇢ > 0 by the positive definiteness of ⌃. This implies:
K

M + (K �M)

�1+(Kv�1)⇢
1+(K�1)⇢

�2 � 1 > 0,

@

@⇢

(

K

M + (K �M)

�1+(Kv�1)⇢
1+(K�1)⇢

�2 � 1) > 0.

Hence, in Eq. (136), sign

�
@(�

k

��

c

k

)
@⇢

�
= sign(⇢), i.e., @(�

k

��

c

k

)
@|⇢| > 0 when |⇢| > 0. When ⇢ = 0,

@(�
k

��

c

k

)
@|⇢| = 0. From Eq. (138), @(�

k`

��

c

k`

)
@|⇢| > 0 when |⇢| > 0 and @(�

k`

��

c

k`

)
@|⇢| = 0 when ⇢ = 0 for all

k, ` 2 K(n).

Proof of Corollary 3 (Price Impact and Market Structure).
(Part (i)) Suppose that K = 2 and consider market structures N = {K} = {{1, 2}} and N

0
=

{{k}}
k

= {{1}, {2}}. We want to show that �

N

0
k

� �

N

k

for all k. For simplicity, we dispense with the
superscript N 0 for the uncontingent market N 0 and use the superscript c for the contingent market N .

By the equilibrium fixed point equation (20) in the uncontingent market N

0, the demand slope
c

k

=

1
I�1�

�1
k

for asset k can be decomposed into the direct effect and the (indirect) inference effect:

c

k

⌘ �
@q

j

k

(·)
@p

k

= �
�
�I � 2

I � 1

(↵�

kk

)

�1

| {z }
Direct effect

+

I � 2

I � 1

(↵�

kk

)

�1
↵�

k`

c

`

(VV

0
)

`k

((VV

0
)

kk

)

�1

| {z }
Indirect effect

�
, (139)

where V ⌘ (1 � �0)C
�1

B = (C + (↵⌃)

�1
)

�1 and  ⌘ 1+(I�2)�0

(I�1)(1��0)
2 R+. We will show that

sign(�

k`

) = sign((VV

0
)

`k

).9 Given the decomposition in Eq. (139), the inference effect in Eq. (139)
is nonnegative, and hence c

k

 I�2
I�1(↵�kk)

�1, and �

k

=

c

�1
k

I�1 � �

c

k

=

↵

I�2�kk for all k.

We now characterize matrix VV

0. By the definition of V = (C+ (↵⌃)

�1
)

�1, we have:

V =

↵�

det(V

�1
)

"
↵�c2 + �11 �12

�12 ↵�c1 + �22

#
, (140)

where � ⌘ det(⌃) = �11�22��

2
12 > 0 and det(V

�1
) = (↵�c1+�22)(↵�c2+�22)�

2
�

2
12 > 0. Using

Eq. (140), we compute VV

0, whose off-diagonal element is:

(VV

0
)12 =

↵

2
�

2

det(V

�1
)

2
↵�12(↵�(c1 + c2) + (�11 + �22)). (141)

Because  > 0, Eq. (141) implies that sign((VV

0
)

`k

) = sign(�

k`

). Hence, �

k

� �

c

k

for all k; the
equality holds if and only if �12 = 0, because (VV

0
)

`k

= 0 if and only if �
k`

= 0 in Eq. (141).

(Part (ii)) See Fig. 1B in Section 3.2.3 for an example of b�N

>

b
�

N

0
k

.

Proposition 6 (Efficient Market Structure in Symmetric Markets) Consider the class of sym-
metric markets (Definition 7). Assume that traders’ ex ante trading needs are symmetric for all as-
sets E[q0,k] � E[q

i

0,k] = E[q0,`] � E[q

i

0,`] for all k and ` for each i, and there is no information loss:
(�

cv

,�

pv

) ! 0 and �0 < 1. When ⇢ > 0, the uncontingent market maximizes total ex ante welfare;
when ⇢ < 0, the contingent market does.

Proof of Proposition 6 (Efficient Market Structure in Symmetric Markets). We first derive
the ex ante equilibrium surplus (Eq. (93)) in a symmetric market. Given the symmetry of the ex ante

9We note that Eq. (139) is the counterpart of Eq. (25) for the demand coefficient c

k

=

1
I�1�

�1
k

(rather than price
impact �

k

). In Eq. (139), (VV0
)

`k

= (1� �0)
2
Cov[p

`

, p

k

|qi

0] determines the sign of price correlation for all k and ` 6= k

(See Section 3.2.3).
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trading needs across assets (i.e., E[q0]�E[q

i

0] = e

i

1 for some e

i 2 R), each trader’s ex ante equilibrium
surplus (Eq. (93)) is:

(E[q0]�E[q

i

0]) ·⌥(⇤)(E[q0]�E[q

i

0]) = K↵�(1+(K�1)⇢)

⇥
1� �

2

(↵�(1 + (K � 1)⇢) + �)

2

⇤
(e

i

)

2
, (142)

where � ⌘ �

k

+ (M � 1)�

k`

2 R+ is the eigenvalue of a symmetric matrix ⇤ that corresponds to
eigenvector 1. The ex ante equilibrium surplus (142) is decreasing in �, because � is nonnegative (i.e.,
⇤ is positive semi-definite). Therefore, it suffices to show that sign

�
@�

@M

�
= sign(⇢).

In the proof of Proposition 5, Eq. (136) characterizes the price impact ⇤ = diag(⇤

K(n))n =

(�

k

� �

k`

)Id + �

k`

[11

0
]

N

by a single scalar equation for �

k

and �

k`

= �

k

� ↵

I�2�(1 � ⇢) (Eq. (135)):
Replacing �

k

=

1
M

�
�+ (M � 1)

↵

I�2�(1� ⇢)

�
in Eq. (136) gives a third-order equation for � (a linear

equation for M):

F (�,M) ⌘ (K �M)(1� ⇢)

2
(↵�(1� ⇢)� (I � 2)�)(↵�(1 + (K � 1)⇢) + �)

2 (143)

+M(1 + (K � 1)⇢)

2
(↵�(1 + (K � 1)⇢)� (I � 2)�)(↵�(1� ⇢) + �)

2
= 0,

where  ⌘ 1+(I�2)�0

1��0
2 R+ and v ⌘ ↵�(1�⇢)

↵�(1�⇢)+�

2 R+ (Eq. (132)). To characterize the partial @�

@M

, we
apply the Implicit Function Theorem to Eq. (143):

@�

@M

= �@F/@M

@F/@�

, (144)

and each partial derivative of F (�,M) in Eq. (143) is:
@F

@M

= �K

M

(1� ⇢)

2
(↵�(1� ⇢)� (I � 2)�)(↵�(1 + (K � 1)⇢) + �)

2
, (145)

@F

@�

= �(I � 2)

�
M(1 + (K � 1)⇢)

2 � (K �M)(1 + (Kv � 1)⇢)

2
�
(↵�(1� ⇢) + �)

2 (146)

+2(K �M)(1� ⇢)

2
(↵�(1� ⇢)� (I � 2)�)(↵�(1 + (K � 1)⇢) + �)

+2M(1 + (K � 1)⇢)

2
(↵�(1 + (K � 1)⇢)� (I � 2)�)(↵�(1� ⇢) + �).

To sign @�

@M

in Eq. (144), we now determine the signs of partials @F

@�

and @F

@M

. First, in Eq. (143),
the signs of the first and second lines of Eq. (143) must be opposite for F (�,M) = 0 to hold.
Therefore, when 0 < ⇢, the eigenvalue of equilibrium price impact � satisfies ↵�(1 � ⇢) < (I � 2)� <

↵�(1 + (K � 1)⇢); when ⇢ < 0, ↵�(1 � ⇢) > (I � 2)� > ↵�(1 + (K � 1)⇢) holds. It follows that
sign(↵�(1� ⇢)� (I � 2)�) = sign(�⇢), and so sign

�
@F

@M

�
= sign(⇢) in Eq. (145).

Second, multiplying the partial @F

@�

in Eq. (146) by 1
(1+(K�1)⇢)2(↵�(1�⇢)+�)2

> 0 shows that @F

@�

< 0

if and only if

�(I � 2)M � (I � 2)(K �M)(

1 + (Kv � 1)⇢

1 + (K � 1)⇢

)

2 (147)

+2

�
(K �M)

↵�(1� ⇢)� (I � 2)�

↵�(1 + (K � 1)⇢) + �

+M

↵�(1 + (K � 1)⇢)� (I � 2)�

↵�(1� ⇢) + �

�
(

1 + (Kv � 1)⇢

1 + (K � 1)⇢

)

2
< 0.

Proposition 5 (i) provides a lower bound for �: � = �

k

+(M�1)�

k`

� ↵(1+(M�1)⇢)
I�2 ; the equality holds if

and only if M = K. Replacing � by its lower bound ↵(1+(M�1)⇢)
I�2 in the numerators ↵�(1�⇢)�(I�2)�

and ↵�(1 + (K � 1)⇢)� (I � 2)� in Eq. (147) characterizes an upper bound of the LHS of Eq. (147):

�(I � 2)M � (K�M)

(I � 2)(↵�(1� ⇢) + �)(↵�(1 + (K � 1)⇢) + �)� 2MK↵

2
�

2
⇢

2

(↵�(1� ⇢) + �)(↵�(1 + (K � 1)⇢) + �)

(

1 + (Kv � 1)⇢

1 + (K � 1)⇢

)

2
< 0.

22

Electronic copy available at: https://ssrn.com/abstract=3604976



It follows that @F

@�

< 0, and hence, sign
�

@�

@M

�
= sign(⇢) (Eq. (144)).

Proof of Corollary 4 (Welfare with Multiple Exchanges vs. Joint Market Clearing (K =

2)). Suppose the ex ante trading needs across assets E[q0] � E[q

i

0] are proportional to (⇠, 1)

0 2 R2

for all i for some non-zero constant: i.e., ⇠ ⌘ E[q0,1]�E[qi0,1]

E[q0,2]�E[qi0,2]
. Given the symmetry of asset payoffs, the

price impact in {{1}, {2}} is symmetric across assets: i.e., ⇤ = �Id.
We characterize the difference between the ex ante equilibrium surplus (Eq. (93)) in the uncontin-

gent market {{1}, {2}} and the contingent market {{1, 2}}:

(E[q0]� E[q

i

0]) ·
�
⌥(⇤)�⌥(⇤

c

)

�
(E[q0]� E[q

i

0]), (148)

where ⇤c

=

I�2
I�1⌃. Substituting ⇤ = �Id and ⌃ = ↵�(1�⇢)Id+↵�⇢11

0 into Eq. (96), we characterize
the difference between surplus matrices ⌥(⇤)�⌥(⇤

c

):

⌥(⇤)�⌥(⇤

c

) =

↵�

(I � 1)

2

"
1� x ⇢(1� y)

⇢(1� y) 1� x

#
, (149)

where x ⌘ (I�1)2�2

((↵�+�)2�(↵�⇢)2)2 ((↵�+�)

2�↵�⇢

2
(↵�+2�)) � 1 and y ⌘ (I�1)2�2

((↵�+�)2�(↵�⇢)2)2 (�
2� (↵�)

2
(1�

⇢

2
))  1. Substituting ⌥(⇤) � ⌥(⇤

c

) (Eq. (149)) and E[q0,1] � E[q

i

0,1] = ⇠(E[q0,2] � E[q

i

0,2]) into
Eq. (148) shows that the ex ante equilibrium payoff in the uncontingent market is higher than in the
contingent market if and only if

x⇠

2
+ 2⇠⇢y + x < ⇠

2
+ 2⇠⇢+ 1. (150)

The necessary and sufficient condition (150) has a solution ⇠ 2 (⇠(⇢, I), ⇠(⇢, I)) with ⇠(⇢, I) > ⇠(⇢, I)

for any asset correlation ⇢ 6= {0,±1} and any finite number of traders I < 1:

(1� y)⇢�
p
(1� y)

2
⇢

2 � (x� 1)

2

2(x� 1)

 ⇠ ⌘
E[q0,1]� E[q

i
0,1]

E[q0,2]� E[q

i
0,2]


(1� y)⇢+

p
(1� y)

2
⇢

2 � (x� 1)

2

2(x� 1)

. (151)

Given that |(1� y)⇢| >
p
(1� y)

2
⇢

2 � (x� 1)

2, the bounds in the necessary and sufficient condition
(150) are both positive when ⇢ > 0 and are both negative when ⇢ < 0. It follows that inequality

(151) holds if and only if conditions (i) and (ii) hold with ⇠(⇢, I) ⌘ (1�y)⇢�
p

(1�y)2⇢2�(x�1)2

2(x�1) and

⇠(⇢, I) ⌘ (1�y)⇢+
p

(1�y)2⇢2�(x�1)2

2(x�1) when ⇢ > 0, and ⇠(⇢, I) ⌘
�� (1�y)⇢+

p
(1�y)2⇢2�(x�1)2

2(x�1)

�� and ⇠(⇢, I) ⌘
�� (1�y)⇢�

p
(1�y)2⇢2�(x�1)2

2(x�1)

�� when ⇢ < 0.

C.2 Symmetric Equilibrium Characterization in Markets with Two Assets: K = 2

Suppose that ↵

i

= ↵ for all i, and ⌃ = (�

k`

)

k,`

is characterized by �11 = �22 = 1 and �12 = �21 = ⇢.
Then, the price impact is symmetric across traders and assets: �

i

k

= � for all k and i and �

i

k`

= 0 for
all k, ` 6= k, and i. Traders’ demand coefficients in (15) are symmetric: b

i

k

= b

k

and c

i

k

= c for all
i and k. Observe that vector b

k

is symmetric across k up to a permutation: i.e., if b1 = (x, y), then
b2 = (y, x). We will continue to use the superscript i and subscript k when they are useful.

Equilibrium with uncontingent trading is characterized in two steps (Proposition 2). Step 1 char-
acterizes the fixed point among trader i’s demand coefficients for assets 1 and 2, taking as given his
price impact � and residual supply intercepts F (s

�i|qi

0). Step 2 endogenizes � and F (s

�i|qi

0).
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Step 1 (Optimization, given residual supply � and F (s

�i|qi

0)) Taking the derivative of the
expected payoff (10) with respect to q

i

k

gives the first-order conditions of trader i for each k:

E

⇥
�1 � ↵

i

(�11(q
i

1 + q

i

0,1) + �12(q
i

2 + q

i

0,2))
��
p1,q

i

0

⇤
= p1 + �

i

1q
i

1 8p1 2 R, (152)

E

⇥
�2 � ↵

i

(�22(q
i

2 + q

i

0,2) + �21(q
i

1 + q

i

0,1))
��
p2,q

i

0

⇤
= p2 + �

i

2q
i

2 8p2 2 R. (153)

Trader i’s expected marginal utility for asset k depends on the demand coefficients of his schedule q

i

`

(·)
for asset ` 6= k. The characterization of a trader’s best-response demand q

i

k

(·) requires solving a fixed
point problem for trader i’s own demand schedules {qi

k

(·)}
k

across assets.

Step 1.1 (Parameterization of demands for asset ` 6= k) To characterize the best-response
demand of trader i for asset 1, assume that his demand for asset 2 is a linear function:

q

i

2(p2) = a

i

2 � b

i

2q
i

0 � c

i

2p2 8p2 2 R, (154)

where a

i

2 2 R,bi

2 2 R1⇥2, and c

i

2 2 R+.

Step 1.2 (Price distribution and expected trades, given F (s

�i|qi

0)) Market clearing for asset
2 characterizes the distribution of price p2. Equalization of demand q

i

2(·) in Eq. (154) and residual
supply S

�i

2 (·) = s

�i

2 + (�

i

2)
�1

p2 gives:

a

i

2 � b

i

2q
i

0 � c

i

2p2 = s

�i

2 + (�

i

2)
�1

p2 8s�i

2 2 R.

Price p2 maps one-to-one to s

�i

2 :

p2 =
1

c

i

2 + (�

i

2)
�1

(a

i

2 � b

i

2q
i

0 � s

�i

2 ) 8s�i

2 2 R. (155)

Eq. (155) characterizes price distribution F (p2|qi

0) as a function of the intercept distribution F (s

�i

2 |qi

0)

and the coefficients {ai2,bi

2, c
i

2} of trader i’s own demand function q

i

2(·) for asset 2.
The one-to-one map between p2 and s

�i

2 (Eq. (155)) allows the expected trade E[q

i

2|p1,qi

0] in the
first-order condition for asset 1 (Eq. (152)) to be characterized conditionally on s

�i

1 :

E[q

i

2|p1,qi

0] = E[q

i

2|s�i

1 ,q

i

0].

From the parameterization of qi2(·) in Eq. (154) and price distribution p2 in Eq. (155),

E[q

i

2|s�i

1 ,q

i

0] = E

⇥
a

i

2 � b

i

2q
i

0 � c

i

2p2

��
s

�i

1 ,q

i

0

⇤
= a

i

2 � b

i

2q
i

0 �
c

i

2

c

i

2 + (�

i

2)
�1

�
a

i

2 � b

i

2q
i

0 � E[s

�i

2 |s�i

1 ,q

i

0]
�
.

The conditional expectation E[s

�i

2 |s�i

1 ,q

i

0] is characterized by the intercept distribution F (s

�i|qi

0),
which trader i takes as given.

Step 1.3 (Best response for asset k, given demands for ` 6= k) Substituting the expected trade
into the first-order condition (152) gives the following equation:

�1 � ↵

i

�
�11(q

i

1 + q

i

0,1) + �12
�
a

i

2 � b

i

2q
i

0 �
c

i

2

c

i

2 + (�

i

2)
�1

�
a

i

2 � b

i

2q
i

0 �E[s

�i

2 |s�i

1 ,q

i

0]
�
+ q

i

0,2

��
= p1 + �

i

1q
i

1,

from which the best response q

i

1(·) is derived as a linear function of s�i

1 and p1:

q

i

1(p1, s
�i

1 ) =

1

↵

i

�11 + �

i

1

�
�1�↵

i

⌃1q
i

0�p1�↵

i

�12
�
a

i

2�b

i

2q
i

0�
c

i

2

c

i

2 + (�

i

2)
�1

�
a

i

2�b

i

2q
i

0�E[s

�i

2 |s�i

1 ,q

i

0]
���

.

(156)
The demand schedule q

i

1(·) in Eq. (156) can be written as a function of both p1 and s

�i

1 . Using the
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one-to-one map between p1 and s

�i

1 :

q

i

1(p1, s
�i

1 ) = s

�i

1 + (�

i

1)
�1

p1, (157)

the best response q

i

1(·) in Eq. (156) is characterized as a function of only p1 as an endogenous variable.
Eqs. (156)-(157) characterize the demand coefficients in q

i

1(p1) = a

i

1 � b

i

1q
i

0 � c

i

1p1 as functions of
a

i

2,b
i

2, c
i

2, and {�i

k

}
k

. An analogous argument characterizes the demand coefficients a

i

2,b
i

2, c
i

2 for asset
2 as functions of ai1,bi

1, c
i

1, and {�i

k

}
k

, which creates a fixed point for {ai
k

,b

i

k

, c

i

k

}
k

.

Step 2 (Correct residual supply) Given other traders’ demands (154) for all k and j 6= i, the
correct residual supply of trader i is determined by S

�i

k

(·) = �
P

j 6=i

q

j

k

(·).

Step 2.1 (Correct distribution of residual supply intercepts and expectations) The residual
supply intercepts s

�i

k

= �
P

j 6=i

(a

j

k

� b

j

k

q

j

0) are jointly normally distributed. From the distribution of
endowments F ((q

j

0)j |qi

0), the first and second moments of intercepts (s

�i

1 , s

�i

2 ) are: for each k and `,

E[s

�i

k

|qi

0] = �
X

j 6=i

a

j

k

+ b

k

X

j 6=i

(E[q

j

0] +
�

cv

�

cv

+ �

pv

(q

i

0 � E[q

i

0])),

Cov[s

�i

k

, s

�i

`

|qi

0] = b

k

X

j,h 6=i

Cov[q

j

0,q
h

0 |qi

0]b
0
`

= I(I � 1)�

pv

�0b
k

· b
`

.

Applying the Projection Theorem to this distribution of the residual supply intercepts F (s

�i|qi

0) gives
the expected intercepts E[s

�i

`

|s�i

k

,q

i

0]:

E[s

�i

`

|s�i

k

,q

i

0] = E[s

�i

`

|qi

0] +
b

k

· b
`

b

k

· b
k

(s

�i

k

� E[s

�i

k

|qi

0]).

Substituting E[s

�i

`

|s�i

k

,q

i

0] into Eq. (156) characterizes trader i’s demand coefficients {ai
k

,b

i

k

, c

i

k

}
k

as
functions of {aj

k

,b

j

k

, c

j

k

}
k,j 6=i

and price impacts {�i

k

}
k

. This defines a fixed point for {ai
k

,b

i

k

, c

i

k

}
i,k

as
a function of {�i

k

}
i,k

.

Step 2.2 (Fixed point for best response coefficients, given price impacts) By the symmetry
across traders and assets, the fixed point for demand coefficients of trader i simplifies to:

a

i

k

= c

k

�

k

� c

k

(1� �0)↵
�
(x(↵� (I � 2)�) + y⇢)E[q0,k] + (y(↵� (I � 2)�) + x⇢)E[q0,l]

�
, (158)

c1 = c2 =
�
(↵+ �) + ↵⇢

b1 · b2

b1 · b1

��1
, (159)

b1 = (x, y), b2 = (y, x), (160)

where x ⌘ (1 � �0)(1 � ⇢

2
)↵ + (1 + (I � 2)�0)� and y ⌘ ⇢(1 + (I � 2)�0)�. The demand coefficients

a

i

k

,b

k

, and c

k

are closed-form functions of � (158)-(160).

Step 2.3 (Correct price impact) Price impact must equal the slope of the inverse residual supply,
�

k

= (

P
j 6=i

@q

j

k

(·)
@p

k

)

�1
=

1
I�1c

�1
k

for all k. By Eqs. (159)-(160), the price impact � =

1
I�1c

�1
1 =

1
I�1c

�1
2

is characterized by:
� =

↵

I � 2

+

↵⇢

I � 2

2xy

x

2
+ y

2
. (161)

Eq. (161) characterizes the equilibrium price impact, which in turn determines the demand coefficients
in Eqs. (158)-(160).
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