
Investment Incentives in Near-Optimal Mechanisms∗

Mohammad Akbarpour† Scott Duke Kominers‡

Shengwu Li§ Paul Milgrom¶

First posted: Feb 25, 2020
This version: August 21 2020

Abstract

In a Vickrey auction, if one bidder can invest to increase his value, the combined
mechanism including investments is still fully optimal. By contrast, there exist mono-
tone allocation rules that are arbitrarily close to the the allocative optimum, but such
that the associated mechanism with investments by one bidder cannot guarantee any
positive fraction of the full optimum. We show that if a monotone allocation rule
that guarantees some fraction of the allocative optimum also “excludes bossy negative
externalities,” then the same guarantee applies to the combined mechanism with in-
vestments. We show moreover that a mild weakening of this property is necessary and
sufficient for the result.

Keywords: Combinatorial optimization, Knapsack problem, Investment, Auctions,
Approximation, Algorithms

JEL classification: D44, D47, D82

∗We thank Matthew Gentzkow, Paul Goldsmith-Pinkham, Andy Haupt, John William Hatfield, Emir
Kamenica, Zi Yang Kang, Kevin Michael Li, Eric Maskin, Ellen Muir, Noam Nisan, Amin Saberi, and
Mitchell Watt for helpful comments. We thank Broadsheet Cafe for inspiration and coffee. Akbarpour and
Kominers gratefully acknowledge the support of the Washington Center for Equitable Growth. Additionally,
Kominers gratefully acknowledges the support of National Science Foundation grant SES-1459912 and both
the Ng Fund and the Mathematics in Economics Research Fund of the Harvard Center of Mathematical
Sciences and Applications. All errors remain our own.
†Stanford University. Email: mohamwad@stanford.edu
‡Harvard University. Email: kominers@fas.harvard.edu
§Harvard University. Email: shengwu_li@fas.harvard.edu
¶Stanford University and Auctionomics. Email: milgrom@stanford.edu

1

mohamwad@stanford.edu
kominers@fas.harvard.edu
shengwu_li@fas.harvard.edu
milgrom@stanford.edu

1 Introduction

Many real-world allocation problems are too complex for exact optimization. For example, it

is computationally difficult—even under full information—to optimally pack indivisible cargo

for transport (Dantzig, 1957; Karp, 1972), coordinate electricity generation and transmission

(Lavaei and Low, 2011; Bienstock and Verma, 2019), assign radio spectrum broadcast rights

subject to legally-mandated interference constraints (Leyton-Brown et al., 2017), or find

value-maximizing allocations in combinatorial auctions (Sandholm, 2002; Lehmann et al.,

2006b).

Computational difficulty, however, does not obviate the need to solve allocation prob-

lems in practice. Hence, recent research in economics and computation has identified fast

algorithms that solve hard problems approximately, as well as associated payment schemes

that provide incentives for participants to report the input values truthfully. In the language

of textbook economics, this research focuses on short-run analyses: it takes the values and

resource constraints as fixed, omitting long-run considerations about parties’ incentives to

invest to create new assets or improve existing ones or disinvest to cash in less valuable

assets. In resource allocation problems, investments can affect both what is feasible (such as

when an airline that chooses to use larger planes is more difficult to schedule on a runway)

and the values of the items being allocated (because a larger plane carries more passengers).

Mechanisms based on fast algorithms can misalign participants’ investment incentives

with the objective of maximizing total welfare.1 To illustrate one such case, consider the

classic knapsack problem, in which we have a knapsack of fixed capacity and several indi-

visible items. Each item has a size and a value, and our aim is to maximize the sum of

the values of packed items subject to the sum of their sizes not exceeding the knapsack’s

capacity. Each item also has a different owner and the owners bid in a truthful auction to

buy space in the knapsack. The auctioneer can see the sizes of the items but not their values,

so she uses the owners’ bids instead of values as inputs to her algorithm. Since the knapsack

problem is NP-hard, the auctioneer applies a fast algorithm—in this example, Dantzig’s

Greedy algorithm—to the bids and sizes to determine which items to pack. This algorithm

sorts items in decreasing order of value-per-unit-size and packs items in that order, stopping

when it encounters an item that does not fit. The associated truthful auction is a threshold

auction in which each winning bidder pays an amount equal to its threshold price, which is

the lowest value the bidder could report, given the bids of the other bidders, to win a space

in the knapsack.2

1Formally, mechanisms are based on allocation rules and pricing rules. To keep language simple, in this
paper, we blur the distinction between algorithms and the allocation rules that they compute.

2The truthfulness of this threshold auction and the ease of computing threshold prices for it were estab-

2

Suppose that the knapsack has capacity 20 and there are three bidders, whose items have

values 11, 11, and 12 and sizes 10, 10, and 11. Since 11
10
> 12

11
, the Greedy algorithm packs

the first two items for a total value of 22, which is also the optimal packing. Next, we add an

investment stage. Suppose that before the auction, the third bidder has an opportunity to

increase his value from 12 to 14 at a cost of 1. From the bidder’s perspective, the investment

can be assessed like this: “If I invest, my value will be 14 and my item will be packed. In

fact, any value over 12.1 would result in my item being packed (11
10

= 12.1
11

), so 12.1 is my

threshold price. If I invest, I will pay that threshold price of 12.1 plus my investment cost of

1, but my total cost of 13.1 is less than my value of 14 for a place in the knapsack. That’s

a good deal! I should invest.” From a social welfare perspective, the investment is assessed

differently. If the bidder invests, the packed value will be 14 and an investment cost of 1

will be incurred, for a welfare of just 13. With no investment, welfare would be 22, so the

investment reduces welfare.

In this paper, we study a long-run formulation in which the resource allocation game

consists of two stages. The second stage uses a truthful mechanism, which requires that the

allocation algorithm must be weakly monotone (Nisan, 2000; Saks and Yu, 2005) and each

participant’s outcome-contingent prices must depend only on other bidders’ reports. In the

first stage, one or more bidders can make a costly investment guided by knowledge of these

prices. We begin with the case in which only a single bidder can invest.

In this extended game, VCG mechanisms have an efficient investments property, which

is that for any investment technology, the choice that maximizes the investor-bidder’s net

payoff also maximizes net social welfare.3 As a corollary, VCG mechanisms also have the

group investments property that if multiple bidders have investment opportunities, then for

any investment technologies, the socially optimal investment choices are a Nash equilibrium

of the investment game.

Which other strategy-proof mechanisms have these two properties? Our first result is that

any strategy-proof mechanism with the efficient investments property must, for almost every

value profile, choose an allocation that maximizes social welfare from a possibly limited

subset of the alternatives and must set corresponding VCG prices. All such mechanisms

automatically have the group investments property as well.

The result just described is highly constraining. For many problems, limiting the set of

alternatives sufficiently to make optimization practical can result in large value losses. For

such cases, we propose to replace the objective of fully efficient investments by a standard

lished by Lehmann et al. (2002).
3Net social welfare is the sum of the bidders’ values for the outcome minus the investment cost and plus

or minus a value or cost for the auctioneer.

3

that mirrors the one used for algorithm performance. Specifically, suppose that an algorithm

always delivers at least a fraction β ∈ (0, 1) of the optimal welfare in a short-run allocation

problem. We ask two questions. If some single bidder has an investment opportunity,

when does the same worst-case guarantee β apply—for all investment technologies—to the

corresponding two-stage game? Second, if all bidders have an opportunity to invest, when

is there some Nash equilibrium that preserves the worst-case guarantee in the same sense?

Focusing on worst-case guarantees enables us to apply our results to a vast class of

algorithms for which these guarantees are commonly used to measure performance.4

In any truthful mechanism for a packing problem like the knapsack problem, the price a

bidder faces depends only on other bidders’ values. This price guides the bidder’s investment

decision. If the price to be packed is too low, the bidder may prefer to invest and become a

winner even though that excludes some bidder with a higher value, reducing total welfare.

Similarly, if the price is too high, the bidder may fail to make an investment that would both

make him a winner and increase total social welfare. These are the ordinary externalities

commonly found in classical market models in which missing or inaccurate prices lead to

socially suboptimal private investment decisions.5

In a direct reporting mechanism supplying data to an approximate algorithm, there

can also be a different kind of externality that does not arise in classical economic theory.

Specifically, we say that an algorithm has a “bossy externality” if a bidder can change his

reported value in a way that alters the allocation for the other participants without affecting

his own part of the allocation.6

We show by example that there are bossy algorithms for which allocative performance

is arbitrarily close-to-optimal but performance including investments can be arbitrarily bad.

More precisely, for any β < 1, there is an algorithm for the knapsack problem that guaran-

tees at least a fraction β of the maximum value but such that if one bidder can make an

investment, then for any ε > 0, there are instances with performance less than ε of the social

optimum. The key to the bad investment performance is a certain bossy externality.

4In the computer science literature, worst-case performance of this form is the standard criterion for
evaluating algorithms, for both approximations and run times. Indeed, complexity classes such as P and
NP are defined with respect to worst-case run times (Cook, 1971). See Williamson and Shmoys (2011) or
Vazirani (2013) for an overview of approximation algorithms.

5We use the traditional notion of externalities, as explained by the OECD glossary:“Externalities refer to
situations when the effect of production or consumption of goods and services imposes costs or benefits on
others which are not [accurately] reflected in the prices charged for the goods and services being provided.”

6Satterthwaite and Sonnenschein (1981) introduced the concepts of bossiness and non-bossiness for mech-
anisms, and these same terms can be applied to algorithms. A mechanism can have a non-bossy allocation
rule but be bossy because of its pricing rule. For example, the second-price auction has a non-bossy allo-
cation rule—it awards the item to the highest bidder—but is a bossy mechanism because the second price
depends on the losing bids.

4

We prove that if an algorithm excludes bossy negative externalities—a property we call

XBONE—then that algorithm’s performance guarantee for the “long-run” allocation prob-

lem with investment is the same as its guarantee for the “short-run” problem without invest-

ment. Thus, for an XBONE algorithm, investments do not affect the worst-case guarantee.

To describe XBONE for simple packing problems, suppose that we are given a value

profile and feasibility constraints. An algorithm then outputs some set of packed bidders.

If we raise the value of a packed bidder or lower the value of an unpacked bidder and then

run the algorithm at the new value profile, the algorithm outputs a new packing, but for a

monotone algorithm, the decision about whether to pack that single bidder is unchanged, so

any change in the total packed value is a bossy externality. The algorithm is XBONE if the

welfare of the new packing, assessed at the new values, is at least as high as the welfare of

the old packing, assessed at the new values, that is, if the bossy externality is always zero or

positive.

In practical applications, an algorithm’s expected performance may be better than worst-

case because the relevant instances are known to have some special structure. We formulate

our theory to accommodate and take advantage of that possibility. Given an allocation

problem (that is, a set of instances), we define well-behaved subsets to be “sub-problems.”

We show that if an algorithm is XBONE, then its long-run guarantee on every sub-problem

is equal to its short-run guarantee on that same sub-problem.

For example, in the knapsack problem, the Greedy algorithm generally has only a 0

worst-case guarantee, but for the sub-problem with knapsack capacity C and item sizes

no more than S, the short-run performance guarantee is 1 − S
C

. The Greedy algorithm

is XBONE, so for any investment technology, this sub-problem satisfies the same 1 − S
C

guarantee in the long-run.

We say that an algorithm is weakly XBONE if it allows no bossy negative externalities

except those arising from value decreases beginning below a bidder’s Vickrey price. This

yields a characterization theorem: An algorithm is weakly XBONE if and only if for every

subproblem, its worst-case investment performance is the same as its worst-case allocation

performance. Because Vickrey prices can be hard to compute and analyze, we expect that

the XBONE sufficient condition will often be easier to check.

The class of XBONE algorithms is closed under maximization, which suggests that

XBONE may be a useful relaxation of non-bossiness. That is, given any set of algorithms

that are all XBONE (or all weakly XBONE), the algorithm that returns the best of their

solutions inherits the property. By contrast, an algorithm that returns the best solution

from a set of non-bossy algorithms may itself be bossy.

Additionally, some real-world mechanisms have used XBONE algorithms. For example,

5

the US Federal Communications Commission ran a two-sided auction to reallocate radio

spectrum in 2017, buying broadcast rights from TV stations in a reverse auction for about

US$10.1 billion, and selling those broadband licenses in a forward auction for about US$19.8

billion. Because of complex interference constraints, the reverse auction used a greedy rejec-

tion algorithm to determine the allocation (Milgrom and Segal, 2020). The class of greedy

rejection algorithms is XBONE.

For the group investments property, which applies when multiple bidders may invest,

XBONE is not a sufficient condition, but a stronger condition does suffice. We find that if

a monotone algorithm guarantees a β fraction of the optimum for all instances of the short-

run problem and is non-bossy (so there are neither positive nor negative bossy externalities),

then the related investment game has a Nash equilibrium with the same β guarantee.

Our last finding concerns combinatorial auctions in which the set of values is restricted

(for tractability) to be fractionally subadditive. For that case, we show that if the investment

cost function is isotone and supermodular, then for any XBONE algorithm, the long-run

performance guarantee is again equal to the short-run performance guarantee.

1.1 Related work

Economists have studied ex ante investment in mechanism design at least since the work of

Rogerson (1992), who demonstrated that Vickrey mechanisms induce efficient investment.

Bergemann and Välimäki (2002) extended this finding in a setting with uncertainty, in which

agents invest in information before participating in an auction. Relatedly, Arozamena and

Cantillon (2004), studied pre-market investment in procurement auctions, showing that while

second-price auctions induce efficient investment, first-price auctions do not. Hatfield et al.

(2014, 2019) extended these findings to characterize a relationship between the degree to

which a mechanism fails to be strategy-proof and/or efficient and the degree to which it fails

to induce efficient investment. While that paper, like ours, deals with the connection between

(near-)efficiency at the allocation stage and (near-)efficiency at the investment stage, it uses

additive error bounds, rather than the multiplicative worst-case bounds that are standard for

the analysis of computationally hard problems. Tomoeda (2019) studies full implementation

of exactly-efficient social choice rules with endogenous investment.

Our paper is also not the first work to study investment incentives in an NP-hard alloca-

tion setting. Milgrom (2017) introduced a “knapsack problem with investment” in which the

items to be packed are owned by individuals, and owners may invest to make their items ei-

ther more valuable or smaller (and thus easier to fit into the knapsack). In the present paper,

we reformulate the investment question in terms of worst-case guarantees and broaden the

6

formulation to study incentive-compatible mechanisms for a wide class of resource allocation

problems.

Lipsey and Lancaster (1956) explain that in economic systems that are not fully op-

timized, investments that violate optimality conditions can sometimes improve welfare by

offsetting other distortions of the system. Our question is related, but leads to a different

analysis. We isolate bossy negative externalities as the only externalities that can degrade

an allocation algorithm’s long-run performance guarantee relative to its short-run guarantee.

Other externalities associated with failures of optimization cannot have that effect.

By studying the investment problem in near-optimal mechanisms, our paper is naturally

connected to a large literature, primarily in computer science, that considers computational

complexity in mechanism design, and explores properties of approximately optimal mecha-

nisms. Among these works are those of Nisan and Ronen (2007) and Lehmann et al. (2002).

Nisan and Ronen (2007) showed that in settings where identifying the optimal allocation is

an NP-hard problem, VCG-based mechanisms with nearly optimal allocations determined

by heuristics are generically non-truthful, while Lehmann et al. (2002) introduced a truth-

ful mechanism for the knapsack problem in which the allocation is determined by a greedy

algorithm. In addition, Hartline and Lucier (2015) developed a method for converting a

(non-optimal) algorithm for optimization into a Bayesian incentive compatible mechanism

with weakly higher social welfare or revenue; Dughmi et al. (2017) generalized this result

to multidimensional types. For a more comprehensive review of results on approximation in

mechanism design, see Hartline (2016).

There is also a large literature on greedy algorithms of the type we study here, which

sort bidders based on some intuitive criteria and choose them for packing in an irreversible

way; see Pardalos et al. (2013) for a review. Lehmann et al. (2002) study the problem

of constructing strategy-proof mechanisms from greedy algorithms; similarly, Bikhchandani

et al. (2011) and Milgrom and Segal (2020) propose clock auction implementations of greedy

allocation algorithms.

Our concept of an XBONE algorithm is closely related to the definition of a “bitonic”

algorithm, introduced by Mu’Alem and Nisan (2008) to construct truthful mechanisms in

combinatorial auctions. Bitonicity is defined for binary outcomes; with the restriction to

binary outcomes, every XBONE algorithm is bitonic, but not vice versa.

7

2 Investment with binary outcomes

2.1 Model

We start our exposition with binary outcomes—each bidder is either ‘packed’ or ‘unpacked’,

and we normalize the value of being unpacked to 0. We later generalize the main theorem

to allow any finite number of outcomes for each bidder.

We consider three nested perspectives on the same situation. First is the allocation

problem, in which our objective is total welfare and the values of the bidders are known to us.

Second is the reporting problem, in which values are private information and we must elicit

them via an incentive-compatible payment rule prior to allocation. Third perspective—our

main contribution—is the investment problem, in which a bidder can make costly investments

to change his value before reporting.

Proofs omitted from the main text are in Appendix A.

2.1.1 The allocation problem

We define an allocation problem to be a collection of instances. In words, an instance

consists of a profile of bidder values and feasibility constraints. A bidder n has a value vn

for being packed. A value profile v is a vector that specifies, for each bidder, that bidder’s

value for being packed. An algorithm for a problem chooses a set of bidders to pack, subject

to the feasibility constraints, with the objective of maximizing the sum of the values of the

packed bidders. We now define same objects formally, using the notation on which we will

rely.

An instance (v,A) consists of:

1. a value profile v ∈ (R+
0)N , for some set of bidders N , and

2. a set of feasible allocations A ⊆ ℘(N).

An allocation problem is a collection Ω of instances such that the possible value profiles

are products of intervals. More formally, for each set of feasible allocations A, there exists

for each bidder n ∈ N a closed interval V A
n ⊆ R such that {v : (v,A) ∈ Ω} =

∏
n V

A
n .

An algorithm x selects, for each instance (v, A) ∈ Ω, a feasible allocation, that is,

x(v, A) ∈ A.7 We will occasionally abuse notation and write xn(v, A) to denote an indicator

function, equal to 1 if n is packed (i.e., n ∈ x(v, A)) and 0 otherwise.

7In complexity theory, we often are not given the feasible allocations A directly, but instead only a de-
scription that implies which allocations are feasible. For instance, a description could specify the items’ sizes
and the capacity of the knapsack. In principle, algorithms for the knapsack problem could output different
allocations for two instances with different item sizes but the same feasible allocations. Our formulation
ignores this description-dependence, but we could easily accommodate it by specifying a function A from de-

8

The welfare of algorithm x at instance (v,A) is

Wx(v,A) ≡
∑

n∈x(v,A)

vn.

The optimal welfare at instance (v,A) is

W ∗(v,A) ≡ WOPT(v, A) = max
a∈A

{∑
n∈a

vn

}
,

where OPT is an algorithm that always achieves the maximum feasible welfare,

OPT(v, A) ∈ argmax
a∈A

{∑
n∈a

vn

}
.

In the knapsack problem and other cases of interest, optimization is NP-hard and it may

be impractical to identify optimal solutions, even though fast algorithms may guarantee

acceptable performance on some problems. The standard measure of algorithm performance

is the worst-case guarantee, which is defined as follows.

Definition 2.1. For β ∈ [0, 1], an algorithm x is a β-approximation for allocation if

for all (v,A) ∈ Ω, we have

βW ∗(v, A) ≤ Wx(v, A).

Our goal is to analyze whether and when the performance guarantee of an algorithm also

applies to the long-run problem in which bidders’ investments determine the values of their

assets and their reports are the inputs to the algorithm.

We begin with the problem of truthful reporting, which is equivalently characterized as

a problem of mechanism design.

2.1.2 The reporting problem

Given some allocation problem Ω, we next consider the corresponding reporting problem,

which differs from the allocation problem because the algorithm can no longer directly input

each bidder n’s value vn and must instead rely on each bidder’s reported value v̂n. To elicit

truthful value reports, we use a mechanism (x, p), which is a pair consisting of an algorithm

x and a payment rule p that maps any reported instance (v̂, A) into an allocation x(v̂, A) ∈ A
and a profile of payments p(v̂, A) ∈ RN .

scriptions to feasible allocations, and defining an instance as consisting of a value profile v and a description
d; none of our results would materially change with this adjustment.

9

Definition 2.2. The mechanism (x, p) is strategy-proof if for all (v,A) ∈ Ω and all n ∈ N ,

we have

vn ∈ argmax
v̂n∈V An

{vnxn(v̂n, v−n, A)− pn(v̂n, v−n, A)} ;

that is, if reporting truthfully is always a best response (for each n ∈ N).

In the reporting problem, the mechanism (x, p) might be chosen to (approximately)

maximize welfare, subject to the additional constraint that (x, p) be strategy-proof.

Definition 2.3. For β ∈ [0, 1], (x, p) is a β-approximation for reporting if x is a

β-approximation for allocation and (x, p) is strategy-proof.

Given an algorithm x that is an β-approximation for allocation, when can we choose

payments so that (x, p) is an β-approximation for reporting?

Definition 2.4. Algorithm x is monotone (on Ω) if, for all (v,A) ∈ Ω and n ∈ N , if

n ∈ x(v,A), then n ∈ x(ṽn, v−n, A) for all ṽn ≥ vn.

Definition 2.5. The threshold price for bidder n at instance (v,A) is

txn(v,A) ≡ inf{ṽn : n ∈ x(ṽn, v−n, A) and (ṽn, v−n, A) ∈ Ω}.

For any monotone x, we define the threshold auction (x, px) to be the mechanism such

that for all n and all (v,A),

pxn(v, A) =

txn(v, A) n ∈ x(v, A)

0 otherwise;

that is, a threshold auction uses a monotonic allocation rule and charges each bidder his

threshold price in the case that he is packed, and charges 0 otherwise.

For any optimal algorithm OPT, the corresponding threshold auction (OPT, pOPT) is the

Vickrey-Clarke-Groves (VCG) auction. For other strategy-proof mechanisms, the following

characterization is a special case of the well-known “taxation principle” of mechanism design.

(Alternatively, see Myerson (1981).)

Proposition 2.1. If x is monotone, then the threshold auction (x, px) is strategy-proof.

Conversely, if (x, p) is strategy-proof then for all (v,A) and all n we have

pn(v,A) = pxn(v,A) + f(v−n, A)

10

where pxn(v,A) is the threshold auction price for n and f is a function that does not depend

on vn.

Corollary 2.1. If x is monotone and a β-approximation for allocation, then (x, px) is a

β-approximation for reporting.

2.1.3 The investment problem

Finally, given some allocation problem Ω, we define the corresponding investment prob-

lem. For now, we focus on the investment decision of a single bidder; we extend to the case

in which multiple bidders may invest in Section 2.3.

We assume that one bidder has an opportunity to change his value at a cost, with

knowledge of his threshold price.

In the reporting problem, we required that each bidder be incentivized to report his

value truthfully, regardless of his beliefs about the other bidders’ values. In the investment

problem, we instead require that a bidder with an investment opportunity be incentivized

to make socially-beneficial investments, with full information about his threshold price.

Given these distinct assumptions about information, it is natural to ask: Is the true

situation described by the reporting problem, or the investment problem? Our perspective

is that these models capture different aspects of the same situation. When a mechanism is

new, each bidder’s value may be known by no one else, so we must ensure that these values

are reported truthfully as inputs to the allocation algorithm. This short-run consideration

is captured by the reporting problem. Over time, bidders may learn much more – a bidder

may, for instance, use historical data to forecast his own threshold price. However, as time

passes, bidders may also gain opportunities to adjust their assets and technology given the

prices they face. These gradual adjustments can affect the performance of the mechanism.

This long-run consideration is captured by the investment problem.

Given an investor ι ∈ N , an investment is a pair (vι, cι) ∈ V A
ι × R, specifying a value

and a cost. An instance of the investment problem is a tuple (Iι, v−ι, A), where Iι ⊆ V A
ι ×R

is a set of feasible investments and v−ι ∈ V A
−ι. We restrict attention to instances that satisfy:

1. Finite. |Iι| <∞.

2. Normalization. min {cι : (vι, cι) ∈ Iι} = 0.

Note that while n denotes a representative element of N , ι denotes the investor, so ι is

only well-defined once we fix an instance of the investment problem.

As a baseline, we consider the investment problem under the VCG auction. For that

auction, the total profits of the auctioneer and all the participants besides ι is an amount

11

f(v−ι, A) that does not depend on ι’s report. Hence, ι’s net profit is the total social wel-

fare minus f(v−ι, A). A consequence is that ι maximizes his own payoff by maximizing

social welfare, which he does both by reporting truthfully and by choosing the social-welfare

maximizing investment.

Definition 2.6. Mechanism (x, p) has efficient investments8 if for every investment

instance (Iι, v−ι, A) we have

argmax
(vι,cι)∈Iι

{vι · xι(vι, v−ι, A)− p(vι, v−ι, A)− cι} = argmax
(vι,cι)∈Iι

{Wx (vι, v−ι, A)− cι} . (1)

Proposition 2.2. Any VCG auction has efficient investments.

We also obtain a partial converse to Proposition 2.2. In particular, we show that if a

mechanism is strategy-proof and has efficient investment incentives, then it must act like a

VCG auction restricted to a subset of the allocations.

We now introduce a notation for the welfare generated by selecting allocation a at value

profile v,

w(a | v) ≡
∑
n∈a

vn.

With this notation, note that we have Wx(v, A) = w(x(v,A) | v).

Definition 2.7. We say that x has constrained-efficient allocations if for every A,

there exists some set of allocations R ⊆ A such that for every value profile v ∈ V A
n ,

x(v, A) ∈ argmax
a∈R

{w(a | v)}. (2)

If (2) holds for almost every value profile v, then x has constrained-efficient allocations

almost everywhere.

We now have three desiderata for mechanisms: constrained-efficient allocations, strategy-

proofness, and efficient investments. Our next proposition states, essentially, that any two

of these together imply the third.9

Proposition 2.3. For any mechanism (x, p):

1. If x has constrained-efficient allocations and (x, p) is strategy-proof, then (x, p) has

efficient investments.

8It is natural to consider replacing “=” in (1) with “⊆”. These definitions are equivalent.
9None of the three, by itself, implies either of the other two. Clauses 1 and 2 of Proposition 2.3 are

corollaries of Theorem 1 of Hatfield et al. (2019).

12

2. If x has constrained-efficient allocations and (x, p) has efficient investments, then (x, p)

is strategy-proof.

3. If (x, p) is strategy-proof and has efficient investments, then x has constrained-efficient

allocations almost everywhere.

Proposition 2.2 shows that the VCG auction induces any given bidder to make the socially

optimal investment; Clause 3 of Proposition 2.3 shows that any strategy-proof mechanism

that has that property must almost everywhere choose the exactly optimal allocation from

a restricted set R.

Proposition 2.2 highlights two ways in which VCG may fail to provide efficient investment

incentives. First, a bidder may not know his threshold price and may forecast incorrectly

whether he will be packed. Second, as we discuss further in Section 2.3, if multiple bidders

make simultaneous investment decisions, then while each of them makes an investment that

is socially optimal conditional on others’ investments, there may be coordination problems

that render the overall equilibrium socially inefficient.

To isolate the impact of using an approximately-optimal allocation rule, we shut down

these information and coordination channels, and ask how a single agent’s investment in-

centives are affected by the approximation. As we have already seen, even with just one

investing bidder under full information, the investment problem becomes subtle: under an

approximately-optimal mechanism, there can be privately profitable investment opportuni-

ties that reduce social welfare. When does this possibility mean that investment performance

must be strictly worse than allocation performance?

Suppose we have some weakly monotone algorithm x that guarantees a β-approximation

for allocation. Under what conditions does its corresponding threshold auction still yield a

β-approximation in the investment problem?

When ι faces a threshold auction (x, px), his utility from investment (vι, cι) is

uι(x, vι, cι, v−ι, A) ≡ vιxι(vι, v−ι, A)− pxι (vι, v−ι, A)− cι.

We denote his best responses at instance (Iι, v−ι, A) by

BR(x, Iι, v−ι, A) ≡ argmax
(vι,cι)∈Iι

{uι(x, vι, cι, v−ι, A)} .

The welfare of algorithm x at instance (Iι, v−ι, A) is then

W x(Iι, v−ι, A) ≡ min
(vι,cι)∈BR(x,Iι,v−ι,A)

{Wx(vι, v−ι, A)− cι} ; (3)

13

the optimal welfare at instance (Iι, v−ι, A) is

W
∗
(Iι, v−ι, A) ≡ max

(vι,cι)∈Iι
{W ∗(vι, v−ι, A)− cι} .

Definition 2.8. For β ∈ [0, 1], algorithm x is a β-approximation for investment if for

all investment instances (Iι, v−ι, A),

βW
∗
(Iι, v−ι, A) ≤ W x(Iι, v−ι, A).

Proposition 2.4. If x is a β-approximation for investment, then x is a β-approximation

for allocation.

Proof. Any instance of the allocation problem (vι, v−ι, A) is equivalent to the instance of the

investment problem (Iι, v−ι, A) in which the investment technology is the singleton {(vι, 0)}.
Thus, the investment problem embeds the allocation problem without investment as a special

case.

Our next result shows that even if the allocation guarantee is very good, without further

structure, the investment guarantee can be arbitrarily bad.

Proposition 2.5. Let Ψ be the set of instances such that |N | = 2, v ∈ R2
+, and A = ℘(N).

If Ω ⊇ Ψ, then for all β ∈ (0, 1), there exists an algorithm xβ for Ω such that

1. xβ is monotone;

2. xβ is a β-approximation for allocation; and

3. for all β′ > 0, xβ is not a β′-approximation for investment.

Proposition 2.5 suggests that investment efficiency guarantees are (very) sensitive to

relaxing full efficiency of the allocation rule—even independent of the known inefficiencies

that arise in the presence of incomplete information and/or coordination failures.

Note also that the setting of Proposition 2.5 includes the knapsack problem, which we

define in Section 2.2.2.

Proof of Proposition 2.5. We construct the algorithms xβ as follows:

xβ(v, A) =


{1, 2} if (v, A) ∈ Ψ and v1

v1+v2
< β

{1} if (v, A) ∈ Ψ and v1
v1+v2

≥ β

OPT(v, A) otherwise.

14

By inspection, xβ is monotone and a β-approximation for allocation. Moreover, since Bidder

1 is always packed for instances in Ψ, 1’s threshold price at such instances is 0.

Consider the investment technology I1 = {(γ+ ε, γ), (0, 0)} for γ, ε > 0. For any (v, A) ∈
Ψ, 1’s best-response at investment instance (I1, v2, A) is to choose investment (γ+ ε, γ). For

large enough γ, however, xβ packs only Bidder 1, for total welfare ε. By contrast, the optimal

benchmark chooses investment (γ + ε, γ) and packs both bidders, for total welfare v2 + ε.

For all β′ > 0, we can pick v2 > 0 and small enough ε, so

W x(I1, v2, A) = ε < β′(v2 + ε) = β′W
∗
(I1, v2, A).

2.2 Results for binary outcomes

For any given investment technology, a bidder may have multiple best choices and in (3) we

have specified the welfare-minimizing one as the basis for our calculations. Our next result

allows us to ignore this multiplicity. It states that an algorithm’s investment approxima-

tion ratio over all instances is equal to its approximation ratio over just the instances with

singleton best-responses.

Lemma 2.1. If for all (Iι, v−ι, A) such that BR(x, Iι, v−ι, A) is a singleton, we have

βW
∗
(Iι, v−ι, A) ≤ W x(Iι, v−ι, A),

then x is a β-approximation for investment.

We now characterize the investor’s best response facing any threshold auction: the bidder

can find an optimal investment using the following procedure:

1. First, find the investment that would maximize his value net of cost.

2. Make that investment if the associated value net of cost is above the threshold price;

otherwise, make a costless investment.

Lemma 2.2. Given an instance (Iι, v−ι, A), let (v↑ι , c
↑
ι) denote an arbitrary element of

argmax(vι,cι)∈Iι {vι − cι}. Let (v↓ι , c
↓
ι) ∈ Iι denote a costless investment (c↓ι = 0). For any

monotone algorithm x:

1. if ι ∈ x(v↑ι − c↑ι , v−ι, A), then (v↑ι , c
↑
ι) is a best-response for ι;

2. otherwise, (v↓ι , c
↓
ι) is a best-response for ι.

15

Proof. Let τι(v−ι, A) be the threshold price for ι. To reduce clutter, we suppress the depen-

dence of uι, xι, and τι on (v−ι, A). To prove clause 1, we suppose that ι ∈ x(v↑ι − c↑ι). Then

v↑ι − c↑ι ≥ τι, and by x monotone, ι ∈ x(v↑ι). Thus,

uι(v
↑
ι , c
↑
ι) = v↑ι − τι − c↑ι ≥ 0.

Take any (vι, cι) ∈ Iι. We want to prove that uι(v
↑
ι , c
↑
ι) ≥ uι(vι, cι). If uι(vι, cι) ≤ 0, then we

are done. If uι(vι, cι) > 0, then

uι(vι, cι) = vι − τι − cι ≤ v↑ι − τι − c↑ι = uι(v
↑
ι , c
↑
ι),

where the inequality follows because (v↑ι , c
↑
ι) ∈ argmax(vι,cι)∈Iι {vι − cι}.

Now, to prove clause 2, we suppose that n /∈ x(v↑ι − c↑ι). Take any (vι, cι) ∈ Iι. We want

to prove that uι(v
↓
ι , c
↓
ι) ≥ uι(vι, cι). As xι(v

↑
ι − c↑ι) = 0,

τι ≥ v↑ι − c↑ι ≥ vι − cι.

Thus, we have uι(vι, cι) = max{vι − τι, 0} − cι ≤ 0 ≤ max{v↓ι − τι, 0} = uι(v
↓
ι , c
↓
ι).

We now state the key definition for our main theorem.

Definition 2.9. Algorithm x is XBONE (eXcludes BOssy Negative Externalities)

if for any two instances (v, A) and (ṽn, v−n, A) of the allocation problem, if whenever either

of the following two conditions hold

1. n ∈ x(v,A) and ṽn > vn,

2. n /∈ x(v,A) and ṽn < vn,

then we have

w(x(ṽn, v−n, A) | ṽn, v−n) ≥ w(x(v, A) | ṽn, v−n). (4)

If either of the two conditions of Definition 2.9 holds and x is monotone, then (4) is

equivalent to the requirement that∑
m 6=n

vm [xm(ṽn, v−n, A)− xm(v,A)] ≥ 0 (5)

The left-hand side of (5) is the effect on other bidders’ welfare caused by a change in bidder

n’s value. Since, under the identified conditions, there is no change in n’s outcome or

16

threshold price, this effect is a bossy externality. XBONE is the requirement that any

such externality must be non-negative.

XBONE is equivalent to the requirement that if we raise the value of a packed bidder by

some positive ∆, then the algorithm’s welfare rises by at least ∆, and if we lower the value

of an unpacked bidder, then the algorithm’s welfare does not fall.10

XBONE algorithms can entail other kinds of externalities, as Section 2.2.2 will illustrate,

but excluding bossy negative externalities is sufficient to preserve the performance guarantee.

Theorem 2.1. Assume that x is monotone. If x is XBONE and is a β-approximation for

allocation, then x is a β-approximation for investment.

Proof. By Lemma 2.1, we can restrict attention to instances (Iι, v−ι, A) with singleton best-

responses. To reduce clutter, we suppress the dependence of x, Wx, W x, W
∗, and W

∗
on v−ι

and A. Let (v↑ι , c
↑
ι) denote an arbitrary element of argmax(vι,cι)∈Iι {vι − cι}, and let (v↓ι , c

↓
ι)

denote a costless investment (c↓ι = 0).

By Lemma 2.2, there are two cases to consider. Either ι chooses (v↑ι , c
↑
ι) and ι ∈ x(v↑ι−c↑ι),

or ι chooses (v↓ι , c
↓
ι) and ι /∈ x(v↑ι − c↑ι). The next two inequalities below follow from the

hypothesis that x is XBONE.

If ι chooses (v↑ι , c
↑
ι) and ι ∈ x(v↑ι − c↑ι), then as x is XBONE,

W x(Iι) = Wx(v
↑
ι)− c↑ι ≥ Wx(v

↑
ι − c↑ι).

If ι chooses (v↓ι , c
↓
ι) and ι /∈ x(v↑ι − c↑ι), then as x is XBONE,

W x(Iι) = Wx(v
↓
ι)− c↓ι = Wx(v

↓
ι − c↓ι) ≥ Wx(v

↑
ι − c↑ι).

Let (v∗ι , c
∗
ι) be an element of argmax(vι,cι)∈Iι {W ∗(vι)− cι}, so that

W
∗
(Iι) = W ∗(v∗ι)− c∗ι = W ∗(v∗ι − c∗ι) ≤ W ∗(v↑ι − c↑ι). (6)

Thus, as x is a β-approximation for allocation, we have

W x(Iι) ≥ Wx(v
↑
ι − c↑ι) ≥ βW ∗(v↑ι − c↑ι) ≥ βW

∗
(Iι).

This completes the proof of Theorem 2.1.

10Bitonicity, as defined by Mu’Alem and Nisan (2008), is a weaker requirement: if we raise the value of a
packed bidder or lower the value of an unpacked bidder, then the algorithm’s welfare does not fall.

17

2.2.1 Non-bossiness and XBONE

XBONE is naturally weaker than non-bossiness.

Definition 2.10. Algorithm x is non-bossy if for all (v, A) and ṽn, if xn(v, A) = xn(ṽn, v−n, A),

then x(v,A) = x(ṽn, v−n, A), that is, if no bidder can affect other bidders’ outcomes without

affecting his own.

Proposition 2.6. If x is monotone and non-bossy, then x is XBONE.

Proof. Take any two instances (v,A) and (ṽn, v−n, A) that satisfy the antecedent condition of

Definition 2.9. As x is monotone, we have xn(v, A) = xn(ṽn, v−n, A). Then, as x is non-bossy,

we have x(v, A) = x(ṽn, v−n, A). Thus, we see that

w(x(v,A) | ṽn, v−n) = w(x(ṽn, v−n, A) | ṽn, v−n),

as desired.

XBONE requires that for particular value changes for an individual that do not affect

that individual’s outcome, x should not pick less valuable outcomes for others. Non-bossiness

is stronger: it requires that for any value change for an individual that does not affect that

individual’s outcome, x should not make any change in others’ outcomes.

Proposition 2.7. Let X be a collection of XBONE algorithms. If y is an algorithm that

at each instance (v, A) ∈ Ω outputs a surplus-maximizing allocation from the collection

{x(v, A)}x∈X , then y is XBONE.

Proof. We consider any two instances (v, A) and (ṽn, v−n, A) satisfying the antecedent con-

dition of Definition 2.9. Let x ∈ X be such that y(v, A) = x(v, A). As x is XBONE, we

have

w(y(v,A) | ṽn, v−n) = w(x(v,A) | ṽn, v−n)

≤ w(x(ṽn, v−n, A) | ṽn, v−n)

≤ w(y(ṽn, v−n, A) | ṽn, v−n),

as desired.

2.2.2 Application: Knapsack algorithms

The knapsack problem is a special case of the allocation problem introduced in Section 2.1.1.

In the knapsack problem, there is a set of items, where an item n has value vn and size sn.

18

The knapsack has capacity S. Without loss of generality, suppose no item’s size is more than

S. The set of feasible allocations is any subset of items K ⊆ N such that
∑

n∈K sn ≤ S. As

before, let A denote the set of feasible allocations and let a be an element of A.

The knapsack problem is NP-Hard (Karp, 1972); there is no known polynomial-time

algorithm that outputs optimal allocations (Cook, 2006; Fortnow, 2009). Dantzig (1957)

suggested applying a Greedy algorithm to the knapsack problem. Formally:

Algorithm 1 (Greedy). Sort items by the ratio of their values to their sizes so that

v1
s1
≥ v2
s2
· · · ≥

v|N |
s|N |

(7)

Add items to the knapsack one by one in the sorted order so long as the sum of the sizes does

not exceed the knapsack’s capacity. When encountering the first item that would violate the

size constraint, stop.

Although Dantzig’s Greedy algorithm performs well on some instances, including ones

for which all items are small in relation to the capacity of the knapsack, its worst-case

performance guarantee is 0, as illustrated by the following example.

Example 2.1. Consider a knapsack with capacity 1 and two items. For some arbitrarily

small ε > 0, let v1 = ε, s1 = ε
2
, v2 = 1, and s2 = 1. The Greedy algorithm picks item 1

and stops, whereas the optimal algorithm picks item 2. Thus, Greedy’s performance is no

better than ε of the optimum.

There is a simple modification of the Greedy algorithm that improves the worst-case

guarantee for the knapsack problem. Let us define the MGreedy algorithm as follows.

Algorithm 2 (MGreedy). Run the Greedy algorithm. Compare the Greedy algo-

rithm’s packing to the the most valuable individual item; output whichever has higher wel-

fare.

MGreedy’s worst-case performance is much better than Greedy’s:

Proposition 2.8. MGreedy is a 1
2
-approximation for the Knapsack problem.

Proof. For any instance ω, order the items by value/size as in (7). If Greedy packs all

items, then trivially W ∗(ω) = WMGreedy(ω). Otherwise, let k be the lowest index of an item

19

not packed by Greedy and let K be the index of an item with maximum value. We have

W ∗(ω) ≤
k∑

n=1

vn = WGreedy(ω) + vk

≤ WGreedy(ω) + vK

≤ 2 max {WGreedy(ω), vK}

= 2WMGreedy(ω).

MGreedy turns out to be bossy, as our next example shows.

Example 2.2. Consider the knapsack instance with capacity 10 and 3 items. v1 = 2, v2 = 1,

v3 = 8. s1 = s2 = 1, s3 = 9. At this instance, MGreedy packs just item 3. If we raise v3 to

10, then MGreedy instead packs item 1 and item 3. Thus, MGreedy is bossy. However,

this is a bossy positive externality; raising the value of a packed item by 2 has increased

welfare by 4.

Proposition 2.9. For the knapsack problem, the Greedy algorithm and the MGreedy

algorithm are both XBONE.

Proof. The Greedy algorithm is a monotone and non-bossy algorithm, and thus it is

XBONE by Proposition 2.6.

The MGreedy algorithm’s output is equal to the welfare-maximizing selection from the

outputs of two algorithms:

• the Greedy algorithm, and

• the algorithm that selects the most valuable single item.

We have just shown that the Greedy algorithm is XBONE. Meanwhile, the algorithm

that selects the most valuable single item is monotone and non-bossy and so is XBONE by

Proposition 2.6, as well. Thus, by Proposition 2.7, the MGreedy algorithm is XBONE.

For the example in the Introduction, the Greedy and MGreedy algorithms output the

same packings. Hence, that example shows that there can be negative externalities under the

MGreedy algorithm. In particular, an investment that causes the investor to be packed

can increase the investor’s utility but yield a reduction in social welfare. However, those

negative externalities are not bossy, so they cannot undermine the MGreedy algorithm’s

worst-case performance guarantee of 1
2
. Conversely, Example 2.2 shows that there can be

bossy externalities under the MGreedy algorithm, but because those bossy externalities

are not negative, they, too, cannot undermine the worst-case performance guarantee.

20

2.2.3 An approximation algorithm that is not XBONE: Steiner tree

In a way, XBONE seems like a natural property. The optimum algorithm is always XBONE.

For the knapsack problem, Greedy and MGreedy are both XBONE. One may thus ask

whether the condition is actually nontrivial: is there any “classic” approximation algorithm

that is not XBONE? We now show one such example.

The Steiner tree problem is a classic NP-Complete problem: The input to the problem is

a connected, undirected graph G = (V,E), where each edge has a weight, and a set V ⊆ E

of nodes are selected as terminals. The goal is to find a cost-minimizing connected subgraph

of G which contains all the terminals.

This problem has a classic 2-approximation based on finding the minimum-spanning

tree (MST) of graphs. In Appendix B we explain this algorithm and prove the following

proposition:

Proposition 2.10. The MST-based 2-approximation algorithm of the Steiner tree problem

is not XBONE.

2.2.4 A necessary and sufficient condition

Definition 2.9 is sufficient for approximation guarantees to persist under investment; however,

it is not quite necessary. In this section, we show that the first half of the XBONE condition,

which states that there is no bossy negative externality for positive investments, is necessary.

The second half of the XBONE condition, which requires the same for disinvestments, is only

necessary for values above the VCG price. We show that modifying XBONE to require only

these components gives us a necessary and sufficient condition.

Definition 2.11. Algorithm x is weakly XBONE if for any two instances (v, A) and

(ṽn, v−n, A) of the allocation problem, if

1. either n ∈ x(v, A) and ṽn > vn,

2. or n /∈ x(v, A), ṽn < vn, and tOPT
n (v, A) < vn

then we have

w(x(ṽn, v−n, A) | ṽn, v−n) ≥ w(x(v,A) | ṽn, v−n).

Theorem 2.2. Assume that x is monotone. If x is weakly XBONE and is a β-approximation

for allocation, then x is a β-approximation for investment.

Theorem 2.2 establishes that XBONE is not a necessary condition for worst-case guar-

antees to persist under investment, as weak XBONE is sufficient. However, in problems of

21

interest there is no known fast method to compute the VCG threshold prices, since those

prices are defined by the exact solution to the optimization problem. Thus, Clause 2 of

Definition 2.11 may be intractable to verify.

Definition 2.12. For two problems Ω and Ω′, Ω′ is a sub-problem of Ω if Ω′ ⊆ Ω.

If x is monotone and weakly XBONE on Ω, then x is monotone and weakly XBONE on

any sub-problem Ω′; hence, we obtain the following corollary of Theorem 2.2.

Corollary 2.2. Suppose that x is monotone and is weakly XBONE on problem Ω. For any

sub-problem Ω′, if x is a β′-approximation for allocation on Ω′, then x is a β′-approximation

for investment on Ω′.

Next, we find that, under a mild technical condition, weak XBONE is necessary for

the conclusion of Corollary 2.2. That is, weak XBONE comprises a maximal domain for

allocative guarantees to extend to investment guarantees.

Theorem 2.3. Assume x is monotone and a β-approximation for allocation on problem Ω

for β > 0. Suppose that for all ι ∈ N and all (v−ι, A), there exists a partition of V A
ι into

positive-length intervals such that x(·, v−ι, A) is measurable with respect to that partition.

If x is not weakly XBONE, then there exists a sub-problem Ω′ ⊆ Ω and β′ such that x is

a β′-approximation for allocation on Ω′, but not a β′-approximation for investment on Ω′.

How much can XBONE be relaxed, while still ensuring that an algorithm’s allocative

guarantees extend to investment? Theorem 2.3 provides an answer: the “upward” direction

of XBONE cannot be relaxed at all, and the “downward” direction can only be relaxed below

the VCG threshold price.

2.3 Allowing multiple investors

The analysis changes in two ways when multiple participants can make investments. The

first change is made to acknowledge a possible coordination problem among the investors,

which requires a different statement of the conclusion of the theorems. The second change

arises because we use a condition stronger than XBONE to prove the new conclusion.

Formally, an instance of the multi-investor problem is a tuple (I, A), where I = (In)n∈N

and In ⊆ V A
n × R is a set of feasible investments. We restrict attention to investment

technologies that satisfy:

1. Finite. |In| <∞.

2. Normalization. min {cn : (vn, cn) ∈ In} = 0.

22

With multiple investors, even VCG auctions can suffer from inefficient investments due

to a coordination problem, as the following example illustrates.

Example 2.3. Consider the knapsack problem. There is a knapsack with capacity 2, and

three bidders, with sizes s1 = 2, s2 = s3 = 1. Bidder 1 has the singleton technology I1 =

{(10, 0)}. Bidders 2 and 3 have the technology I2 = I3 = {(0, 0), (9, 1)}. It is socially optimal

for Bidders 2 and 3 to both choose (9, 1) and both be packed. However, if only one of them

invests, then it is optimal to pack just Bidder 1. In the VCG auction
(
OPT, pOPT

)
, there

are two Nash equilibrium investment profiles. In one Nash equilibrium, no bidder invests. In

the efficient Nash equilibrium, both Bidders 2 and 3 invest.

We do not know whether XBONE is enough, in general, to ensure that an efficient Nash

equilibrium exists. However, if the algorithm is monotone and non-bossy and guarantees a

fraction β in the short-run problem, then even with multiple investors, there is an equilibrium

of the long-run problem that achieves the same performance.

Theorem 2.4. Assume that x is monotone, non-bossy, and a β-approximation for allocation.

For any instance of the multi-investor problem (I, A), there exists a Nash equilibrium (v̂, ĉ)

of the investment game facing threshold auction (x, px), such that

Wx(v̂, A)−
∑
n∈N

ĉn ≥ β max
(v,c)∈I

{
W ∗(v, A)−

∑
n∈N

cn

}
.

3 Investment with multiple outcomes

The problems we studied in Section 2 were generalizations of the knapsack problem in which

each bidder has two possible outcomes: being packed or not. We now extend our analysis

to settings in which there can be more than two outcomes that the algorithm can assign to

each bidder. This extension encompasses knapsack problems in which each participant can

be packed with a large item or a small one, combinatorial auctions in which each bidder can

win one of several packages, and many other problems.

3.1 Allocation problems with multiple outcomes

Let O denote a finite set of outcomes. Each bidder’s value vn ∈ (R+
0)O is a row vector,

with element von denoting n’s value for outcome o. We normalize the value of one outcome

o, von = 0; this is n’s value for “being unpacked.” A value profile v = (vn)n∈N specifies a

value for each bidder.

23

An allocation a = (an)n∈N specifies an outcome an ∈ O for each bidder n. It is

convenient to represent an as a binary vector, with aon = 1 if o is the outcome for bidder n,

and 0 otherwise.

An instance (v, A) consists of a value profile v and a non-empty set of A of feasible

allocations, such that for all a ∈ A, v’s dimensions agree with a’s dimensions.11

An allocation problem consists of a collection of instances, denoted Ω. For each A

and n, let V A
n ⊆ RO denote the space of possible value vectors for bidder n. We assume a

product structure: for all A, {v : (v, A) ∈ Ω} =
∏

n V
A
n .

The welfare generated by selecting allocation a ∈ A at instance (v,A) is

w(a | v) ≡
∑
n

an · vn.

As before, an algorithm x selects, for each instance (v, A) ∈ Ω, a feasible allocation

x(v, A) ∈ A; we denote n’s outcome under x at (v,A) by xn(v,A). The welfare of algorithm

x at instance (v, A) is

Wx(v,A) ≡ w(x(v, A) | v).

3.2 Reporting problems with multiple outcomes

A mechanism (x, p) consists of an algorithm x with x(v,A) ∈ A and a payment rule p

with p(v, A) ∈ RN . With multiple outcomes, it is less straightforward to characterize the

strategy-proof mechanisms. A necessary condition is weak monotonicity of x.

Definition 3.1. x is weakly monotone (W-Mon) if for any two instances (vn, v−n, A)

and (ṽn, v−n, A), we have

ṽn · xn(ṽn, v−n, A)− ṽn · xn(vn, v−n, A) ≥ vn · xn(ṽn, v−n, A)− vn · xn(vn, v−n, A).

Proposition 3.1 (Lavi et al. (2003)). If there exists p such that (x, p) is strategy-proof, then

x is W-Mon.

Moreover, when each V A
n is convex, W-Mon is also a sufficient condition.12

Proposition 3.2 (Saks and Yu (2005)). If for all n and A, the set of possible values V A
n is

convex, then if x is W-Mon, there exists p such that (x, p) is strategy-proof.

11With this formulation, it is without loss of generality for each bidder to have the same set of possible
outcomes O. If some outcome is infeasible for bidder n, we can represent this by restricting A.

12Bikhchandani et al. (2006) provide other domain assumptions such that W-Mon is sufficient.

24

When each V A
n is convex, it follows that for any W-Mon x, the corresponding incentive-

compatible payment rule p is essentially unique. The following Proposition is a corollary of

the generalized envelope theorem (Milgrom and Segal, 2002, Corollary 1).

Proposition 3.3. Suppose that for all n and A, the set of possible values V A
n is convex. Then

for any x, if (x, p) and (x, p̃) are both strategy-proof, then for any two instances (vn, v−n, A)

and (ṽn, v−n, A), we have

pn(vn, v−n, A)− pn(ṽn, v−n, A) = p̃n(vn, v−n, A)− p̃n(ṽn, v−n, A).

Corollary 3.1. Let 0 denote a value vector with every element equal to 0. If for all n and

A, V A
n is convex and 0 ∈ V A

n , then for any W-Mon x, there is a unique payment rule p such

that

1. (x, p) is strategy-proof

2. and for all n, v−n, and A, pn(0, v−n, A) = 0.

Henceforth, we assume that each V A
n is convex.

3.3 Investment problems with multiple outcomes

As before, we suppose that a bidder ι ∈ N has the opportunity to invest before reporting and

allocation. An investment is a pair (vι, cι), with vι ∈ (R+
0)O and cι ∈ R. An investment

instance is a tuple (Iι, v−ι, A), where Iι ⊆ V A
ι × R is a set of feasible investments and

v−ι ∈ V A
ι . We restrict attention to investment instances that satisfy:

1. Finite. |Iι| <∞.

2. Normalization. min {cι : (vι, cι) ∈ Iι} = 0.

Given any W-Mon algorithm x, we suppose that ι faces a strategy-proof mechanism

(x, px). We define uι, BR, W x, and W
∗

as before. Note that for convex V A
ι , the par-

ticular choice of payment rule does not matter, because Proposition 3.3 implies that ι’s

best-responses are the same for all incentive-compatible payment rules.

3.4 Results for multiple outcomes

We now generalize our XBONE condition (Definition 2.9) and Theorem 2.1 to allow for more

than two outcomes. Recall that Definition 2.9 involved starting from some instance (v, A)

and then raising the value of a packed bidder or lowering the value of an unpacked bidder.

25

The generalization below involves starting from some instance (v, A) and changing bidder

n’s value vector in a way that raises his marginal value for his current outcome xn(v, A)

compared to any other outcome.

Definition 3.2. Algorithm x is XBONE if for any two instances (v,A) and (ṽn, v−n, A),

if for all outcomes o:

ṽxn(v,A)n − ṽon ≥ vxn(v,A)n − von, (8)

then

w(x(ṽn, v−n, A) | ṽn, v−n) ≥ w(x(v, A) | ṽn, v−n). (9)

Note that by our normalization, ṽon = von = 0, so condition (8) implies that ṽ
xn(v,A)
n ≥

v
xn(v,A)
n .

XBONE is a property of allocation algorithms—it is defined without reference to the

payment rule. Nevertheless, when an algorithm x is paired with an incentive-compatible

payment rule p, then the requirement that the algorithm x is XBONE can be restated in

a way that associates the externality with the mechanism and corresponds closely to the

conventional definition of externalities.

Proposition 3.4. If (v, A) and (ṽn, v−n, A) satisfy (8) and (x, p) is strategy-proof, then (9)

is equivalent to the requirement that

pn(ṽn, v−n, A)− pn(v, A)︸ ︷︷ ︸
change in n’s payment

+
∑
m6=n

vm · [xm(ṽn, v−n, A)− xm(v, A)]︸ ︷︷ ︸
effect on others’ values

≥ 0, (10)

Moreover, if (x, p) is strategy-proof, then for almost all pairs (vn, ṽn) ∈ R2|O|, if vn and ṽn

satisfy (8), then we have pn(ṽn, v−n, A)− pn(v, A) = 0.

Expression (10) decomposes the effect of moving from vn to ṽn into a change in n’s

payment and an effect on the total value allocated to other bidders. In total, the left-hand

side is the net externality from the mechanism, that is, the portion of the effect on other

participants that is not fully reflected in the price.13 When condition (8) of the XBONE

definition applies, changing n’s report from vn to ṽn while holding n’s value fixed has no net

effect on n’s payoff. Thus, using a notion of bossy mechanisms based on payoffs rather than

outcomes, (10) quantifies the impact of a bossy externality and requires it to be non-negative.

As before, XBONE allows us to carry over approximation guarantees for allocation into

the investment problem.

13In the mechanism design literature, the word “externality” is often used to refer just to the second term,
but that is different from the traditional economic use of the word.

26

Theorem 3.1. Assume that x is W-Mon and that V A
n is a product of one-dimensional

intervals for all A and n. If x is XBONE and is a β-approximation for allocation, then x is

a β-approximation for investment.

Theorem 3.1 extends Theorem 2.1 to a much more general model that includes multiple

outcomes. Almost everywhere, if a bidder’s marginal value for his original outcome rises

compared to every other outcome, then the bidder’s outcome remains unchanged. If such

a change affects others’ outcomes, that is a bossy externality. Theorem 3.1 tells us that if

the algorithm excludes bossy negative externalities, then the long-run problem inherits the

worst-case guarantee from the short-run problem.

3.4.1 Proof of Theorem 3.1

As in the theorem statement, suppose that x is W-Mon, XBONE, and a β-approximation

for allocation and suppose moreover that each V A
n is a product of one-dimensional intervals.

We define a pivotal vector vι that plays a key role in the argument. For each outcome

o ∈ O, the corresponding component of the pivotal vector is

voι = max
(vι,cι)∈Iι

{voι − cι} . (11)

As Iι is normalized and V A
ι is a product of one-dimensional intervals, we have vι ∈ V A

ι by

construction.

We begin by showing that the investor ι can find a best-response using the following

simple procedure:

1. Construct the pivotal vector vι

2. Check what outcome would occur if he reported the pivotal vector to the mechanism,

this is xι(vι, v−ι, A).

3. Choose an investment that maximizes his value, net of costs, for xι(vι, v−ι, A).

The next lemma formalizes this procedure.

Lemma 3.1. For any instance (Iι, v−ι, A), it is a best-response for ι to choose (vι, cι) to

maximize

vxι(vι,v−ι,A)ι − cι.

Proof. Bidder ι’s best response corresponds to the maximization

max
(vι,cι)∈Iι

{vι · xι(vι)− pxι (vι)− cι} . (12)

27

As (x, px) is strategy-proof,

vι · xι(ṽι)− pxι (ṽι)

is maximized by taking ṽι = vι; hence, we can rewrite the maximand in (12) to yield

max
(vι,cι)∈Iι

max
ṽι
{vι · xι(ṽι)− pxι (ṽι)− cι} . (13)

Changing the order of maximization in (13) then gives us

max
ṽι

max
(vι,cι)∈Iι

{vι · xι(ṽι)− pxι (ṽι)− cι} .

Now, by our construction of vι, for all ṽι ∈ V A
ι , we have

max
(vι,cι)∈Iι

{vι · xι(ṽι)− pxι (ṽι)− cι} = vι · xι(ṽι)− pxι (ṽι), (14)

as xι(ṽι) ∈ O. As (x, px) is strategy-proof, setting ṽι = vι maximizes the right-hand side

of (14), and so also maximizes the left-hand side of (14). This reduces ι’s problem to the

maximization

max
(vι,cι)∈Iι

{vι · xι(vι)− pxι (vι)− cι} = max
(vι,cι)∈Iι

{vι · xι(vι)− cι} − pxι (vι). (15)

Dropping the term in (15) that does not depend on (vι, cι) yields

max
(vι,cι)∈Iι

{vι · xι(vι)− cι} ,

which gives us Lemma 3.1.

Lemma 3.2. For any instance (Iι, v−ι, A), we have

W
∗
(Iι, v−ι, A) = W ∗(vι, v−ι, A).

Proof. We have

W
∗
(Iι, v−ι, A) = max

(vι,cι)∈Iι
max
a∈A
{w(a | vι, v−ι)− cι)}

= max
a∈A

max
(vι,cι)∈Iι

{w(a | vι, v−ι)− cι)}

= max
a∈A
{w(a | vι, v−ι)}

= W ∗(vι, v−ι, A).

28

Now, with Lemma 3.1 and Lemma 3.2, we can proceed with the proof of Theorem 3.1.

By the same argument as in the proof of Lemma 2.1, we can restrict attention to proving the

desired bound for instances with singleton best-responses. We let (v̂ι, ĉι) ∈ BR(x, Iι, v−ι, A)

denote ι’s best-response.

We now prove that moving from vι to v̂ι satisfies the antecedent condition of Defini-

tion 3.2: For all outcomes o, we have

v̂xι(vι)ι − v̂oι =
(
v̂xι(vι)ι − ĉι

)
− (v̂oι − ĉι)

≥ max
(vι,cι)∈Iι

{
vxι(vι)ι − cι

}
− max

(vι,cι)∈Iι
{voι − cι}

= vxι(vι)ι − voι ,

where the inequality follows from Lemma 3.1, given that (v̂ι, ĉι) ∈ BR(x, Iι, v−ι, A) is a best

response. Thus, as x is XBONE, we have that

Wx(v̂ι) = w(x(v̂ι) | v̂ι) ≥ w(x(vι) | v̂ι). (16)

Now, by our construction of the pivotal vector vι in (11) and by Lemma 3.1, we have

v̂xι(vι)ι − ĉι = vxι(vι)ι

which implies

w(x(vι) | v̂ι)− ĉι = w(x(vι) | vι) = Wx(vι). (17)

Subtracting ĉι from (16) and applying (17), we find that

Wx(v̂ι)− ĉι ≥ Wx(vι). (18)

Combining the preceding steps, we see that

(18) Lemma 3.2︷ ︸︸ ︷ ︷ ︸︸ ︷
W x(Iι) = Wx(v̂ι)− ĉι ≥ Wx(vι) ≥ βW ∗(vι) = βW

∗
(Iι)︸ ︷︷ ︸

β-approx for allocation

,

which shows that x is a β-approximation for investment, as desired.

3.5 Combinatorial auctions

Theorem 3.1 relies on each bidder’s values for different outcomes having a product struc-

ture. In a combinatorial auction, an outcome consists of a bundle of goods and common

29

assumptions in such analyses are incompatible with a product structure on the possible val-

ues of bundles. For instance, if a bidder’s value function is additive, then knowing his value

for each singleton bundle exactly pins down his value for the grand bundle. In such cases,

Theorem 3.1 fails to apply. In this section, we develop an extension that accommodates a

standard class of preferences for combinatorial auctions.

An allocation instance consists of:

1. a finite set of bidders N ;

2. a finite set of goods G; and

3. for each n ∈ N , a value function vn : ℘(G)→ R.

We write v for a profile of value functions; (v,G) denotes an instance. An allocation

problem Ω is a collection of allocation instances. An algorithm x selects for each (v,G)

a bundle of goods, one for each bidder, x(v,G) ∈ (℘(G))N . We require that no good is

allocated twice, that is, for all n 6= n′, we have xn(v,G) ∩ xn′(v,G) = ∅.
Correspondingly, an investment instance consists of:

1. a cost function for the investing bidder, cι : Vι → R, for some domain of value

functions Vι;

2. a profile of value functions for the other bidders, v−ι; and

3. a set of goods G.

As before, the investing bidder ι faces a strategy-proof mechanism (x, px), and chooses

an investment vι ∈ Vι.
When value functions are fully general, a bidder’s preferences are described by |℘(G)| real

numbers, and it is computationally infeasible even to approximate the optimum. Hence, we

study allocation and investment under fractionally subadditive value functions. These are

a canonical class of preferences, for which there are known fast algorithms with non-trivial

guarantees (Nisan, 2000; Feige, 2009). The class includes all submodular functions, as well

as all functions that have the gross substitutability property (Lehmann et al., 2006a; Paes

Leme, 2017).

Definition 3.3. Value function vn(·) is additive if there exists α ∈ (R+
0)G such that for all

F ⊆ G,

vn(F) =
∑
g∈F

αg.

30

In the case that a bidder’s value function is additive with parameter vector α, we abuse

notation, and use α to denote the value function itself.

Value function vn(·) is fractionally sub-additive (XOS) if there exists a family of

additive value functions (α`)`∈L such that for all F ⊆ G,

vn(F) = max
`
α`(F).

We denote by XOS the set of all XOS value functions.

We restrict attention to allocation problems such that bidders can have any XOS prefer-

ences, that is, for all (v−n, G),

{vn : (vn, v−n, G) ∈ Ω} = XOS.

We restrict attention to cost functions cι such that, for each investment instance (cι, v−n, G):

1. The investor’s best-response set is non-empty.

2. The set of socially optimal investments is non-empty.

3. Vι = XOS.

4. If for all F ⊆ G, vι(F) = 0, then cι(vι) = 0.

Definition 3.4. Cost function cι(·) is isotone if for any vι, ṽι ∈ Vι, if vι(F) ≥ ṽι(F) for all

F ⊆ G, then cι(vn) ≥ cι(ṽι).

Definition 3.5. For any α, α′ ∈ (R+
0)G, let α ∨ α′ = (max{αg, α′g})g∈G, and let α ∧ α′ =

(min{αg, α′g})g∈G. Cost function cι(·) is supermodular on additive valuations if for

any α, α′ ∈ (R+
0)G we have

cι(α ∨ α′) + cι(α ∧ α′) ≥ cι(α) + cι(α
′).

We extend the definitions of W-Mon and XBONE to combinatorial auctions, by regarding

each bundle of goods as an outcome.

Theorem 3.2. Assume that x is W-Mon, and restrict cι to be isotone and supermodular

on additive valuations. If x is XBONE and is a β-approximation for allocation, then x is a

β-approximation for investment.

31

Proof. Given some investment instance (cι, v−ι, G), let the pivotal value function vι be defined

by

vι(F) ≡ max
vι∈XOS

{vι(F)− cι(vι)}

for all F ⊆ G.

Lemma 3.3. If cι is isotone and supermodular on additive valuations, then vι ∈ XOS.

We once again suppress the dependence of functions on v−ι and G.

We now note that, by the same argument as in Lemma 3.1, in any instance (cι, v−ι, G),

choosing v̂ι to maximize vι(xι(vι))−cι(vι) is a best-response for ι. And by the same argument

as in Lemma 2.1, we can restrict attention to proving the bound for instances with singleton

best-response sets.

By Lemma 3.3, vι ∈ XOS. Thus, as x is a β-approximation for allocation, Wx(vι) ≥
βW ∗(vι). Moreover, just as in the proof of Theorem 3.1, the fact that x is XBONE implies

that

Wx(v̂ι)− cι(v̂ι) ≥ Wx(vι). (19)

We then have

(19) Lemma 3.2︷ ︸︸ ︷ ︷ ︸︸ ︷
W x(cι) = Wx(v̂ι)− cι(v̂ι) ≥ Wx(vι) ≥ βW ∗(vι) = βW

∗
(cι)︸ ︷︷ ︸

β-approx for allocation

,

which completes the proof.

4 Discussion

Standard market design frameworks typically assume that the marketplace operator can

optimize exactly. In practice, however, many allocation problems can at best be optimized

approximately—and that fact has inspired a large literature to study mechanisms that rely

only on approximations. We are led to ask: What are the consequences when approximation

mechanisms are incorporated into the larger economic system? In particular, what happens

to participants’ investment incentives?

The analysis in this paper suggests that the economic consequences of approximation can

be subtle. Nearly-optimal allocation rules can lead to arbitrarily bad long-run investment

incentives, even under truthful implementation. The key problem is that approximation al-

gorithms introduce a new type of externality, under which a bidder’s investment may bossily

change other bidder’s outcomes by causing the algorithm to select a different approximate

32

optimum. Ruling out bossy negative externalities is sufficient for short-run approximation

guarantees to persist in the long-run under investment. Notably, although we have defined

bossy negative externalities in terms of a mechanism’s allocation rule alone—without di-

rect reference to the pricing rule—this property of an algorithm corresponds exactly to the

economic bossy negative externality in the associated truthful mechanism.

The analysis in this paper is just a beginning and raises more questions for further study.

• Our analysis so far has focused on investment under nearly full information, that is,

when the investor knows the prices it faces. How, if at all, does the analysis extend

to cases in which prices are unknown? What properties must an allocation algorithm

have to retain its performance when a bidder can only guess about its prices when

it makes it investment decision? Can the relevant information be elicited in advance

through an appropriate choice of mechanism?

• We have analyzed deterministic algorithms. Does the analysis extend to randomized

algorithms, with an appropriate generalization of XBONE?

• Does requiring an allocation algorithm to be XBONE raise significant new computa-

tional hurdles? Or is it possible to modify existing algorithms to satisfy this property?

For example, given oracle access to some monotone allocation algorithm, is there a

polynomial-time procedure that outputs a monotone XBONE allocation algorithm

with a weakly better approximation ratio?

More broadly, replacing exact optimization with approximation can have many conse-

quences beyond investment. For example, it can affect how participants understand mecha-

nisms in practice, raise new opportunities for coordination or collusion, and influence post-

auction resale markets. Given the close connection between monotone algorithms and truth-

ful mechanisms, it seems possible to analyze how these and other economic properties cor-

respond to properties of the underlying algorithms themselves.

References

Arozamena, L. and E. Cantillon (2004): “Investment incentives in procurement auc-

tions,” Review of Economic Studies, 71, 1–18.

Bergemann, D. and J. Välimäki (2002): “Information Acquisition and Efficient Mech-

anism Design,” Econometrica, 70, 1007–1033.

33

Bienstock, D. and A. Verma (2019): “Strong NP-hardness of AC power flows feasibil-

ity,” Operations Research Letters, 47, 494–501.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen

(2006): “Weak Monotonicity Characterizes Deterministic Dominant-Strategy Implemen-

tation,” Econometrica, 74, 1109–1132.

Bikhchandani, S., S. De Vries, J. Schummer, and R. V. Vohra (2011): “An

ascending vickrey auction for selling bases of a matroid,” Operations Research, 59, 400–

413.

Clarke, E. H. (1971): “Multipart Pricing of Public Goods,” Public Choice, 11, 17–33.

Cook, S. (2006): “The P versus NP problem,” in The Millennium Prize Problems, ed. by

J. A. Carlson, A. Jaffe, and A. Wiles, American Mathematical Society Providence, 87–104.

Cook, S. A. (1971): “The complexity of theorem-proving procedures,” in Proceedings of

the third annual ACM symposium on Theory of computing, 151–158.

Dantzig, G. B. (1957): “Discrete-variable extremum problems,” Operations research, 5,

266–288.

Dughmi, S., J. D. Hartline, R. Kleinberg, and R. Niazadeh (2017): “Bernoulli

factories and black-box reductions in mechanism design,” in Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, 158–169.

Feige, U. (2009): “On maximizing welfare when utility functions are subadditive,” SIAM

Journal on Computing, 39, 122–142.

Fortnow, L. (2009): “The status of the P versus NP problem,” Communications of the

ACM, 52, 78–86.

Green, J. and J.-J. Laffont (1977): “Characterization of satisfactory mechanisms for

the revelation of preferences for public goods,” Econometrica, 427–438.

Groves, T. (1973): “Incentives in Teams,” Econometrica, 41, 617–631.

Hartline, J. D. (2016): “Mechanism design and approximation,” Book draft, 122.

Hartline, J. D. and B. Lucier (2015): “Non-optimal mechanism design,” American

Economic Review, 105, 3102–24.

34

Hatfield, J. W., F. Kojima, and S. D. Kominers (2014): “Investment Incentives in

Labor Market Matching,” American Economic Review Papers & Proceedings, 104, 436–

441.

——— (2019): “Strategy-Proofness, Investment Efficiency, and Marginal Returns: An

Equivalence,” Becker Friedman Institute Working Paper.

Holmström, B. (1979): “Groves’ scheme on restricted domains,” Econometrica, 1137–

1144.

Karp, R. M. (1972): “Reducibility among combinatorial problems,” in Complexity of Com-

puter Computations, ed. by R. E. Miller and J. W. Thatcher, Springer, 85–103.

Lavaei, J. and S. H. Low (2011): “Zero duality gap in optimal power flow problem,”

IEEE Transactions on Power Systems, 27, 92–107.

Lavi, R., A. Mu’Alem, and N. Nisan (2003): “Towards a characterization of truthful

combinatorial auctions,” in Proceedings of the 44th Annual IEEE Symposium on Founda-

tions of Computer Science, 574–583.

Lehmann, B., D. Lehmann, and N. Nisan (2006a): “Combinatorial auctions with de-

creasing marginal utilities,” Games and Economic Behavior, 55, 270–296.

Lehmann, D., R. Müller, and T. Sandholm (2006b): “The winner determination

problem,” in Combinatorial Auctions, ed. by P. Cramton, Y. Shoham, and R. Steinberg,

297–318.

Lehmann, D., L. I. Oćallaghan, and Y. Shoham (2002): “Truth revelation in ap-

proximately efficient combinatorial auctions,” Journal of the ACM, 49, 577–602.

Leyton-Brown, K., P. Milgrom, and I. Segal (2017): “Economics and computer

science of a radio spectrum reallocation,” Proceedings of the National Academy of Sciences,

114, 7202–7209.

Lipsey, R. and K. Lancaster (1956): “The General Theory of Second Best,” Review of

Economic Studies, 24, 11–32.

Milgrom, P. (2017): Discovering Prices, Columbia University Press.

Milgrom, P. and I. Segal (2002): “Envelope theorems for arbitrary choice sets,” Econo-

metrica, 70, 583–601.

35

——— (2020): “Clock auctions and radio spectrum reallocation,” Journal of Political Econ-

omy, 128, 1–31.

Mu’Alem, A. and N. Nisan (2008): “Truthful approximation mechanisms for restricted

combinatorial auctions,” Games and Economic Behavior, 64, 612–631.

Myerson, R. B. (1981): “Optimal auction design,” Mathematics of Operations Research,

6, 58–73.

Nisan, N. (2000): “Bidding and allocation in combinatorial auctions,” in Proceedings of the

2nd ACM Conference on Electronic Commerce, 1–12.

Nisan, N. and A. Ronen (2007): “Computationally feasible VCG mechanisms,” Journal

of Artificial Intelligence Research, 29, 19–47.

Paes Leme, R. (2017): “Gross substitutability: An algorithmic survey,” Games and Eco-

nomic Behavior, 106, 294–316.

Pardalos, P. M., D.-Z. Du, and R. L. Graham (2013): Handbook of Combinatorial

Optimization, Springer.

Rogerson, W. P. (1992): “Contractual solutions to the hold-up problem,” Review of

Economic Studies, 59, 777–793.

Saks, M. and L. Yu (2005): “Weak monotonicity suffices for truthfulness on convex

domains,” in Proceedings of the 6th ACM Conference on Electronic Commerce, 286–293.

Sandholm, T. (2002): “Algorithm for optimal winner determination in combinatorial auc-

tions,” Artificial Intelligence, 135, 1–54.

Satterthwaite, M. A. and H. Sonnenschein (1981): “Strategy-proof allocation mech-

anisms at differentiable points,” Review of Economic Studies, 48, 587–597.

Tomoeda, K. (2019): “Efficient investments in the implementation problem,” Journal of

Economic Theory, 182, 247–278.

Vazirani, V. V. (2013): Approximation Algorithms, Springer Science & Business Media.

Vickrey, W. (1961): “Counterspeculation, auctions, and competitive sealed tenders,” The

Journal of Finance, 16, 8–37.

Williamson, D. P. and D. B. Shmoys (2011): The Design of Approximation Algorithms,

Cambridge University Press.

36

A Proofs omitted from the main text

Proof of Proposition 2.3

Lemma A.1. The mechanism (x, p) has efficient investments if and only if (x, p) pro-

vides marginal rewards in the sense that for any two allocation instances (vι, v−ι, A) and

(v′ι, v−ι, A),

[vι · xι(vι, v−ι, A)− p(vι, v−ι, A)]− [v′ι · xι(v′ι, v−ι, A)− p(v′ι, v−ι, A)]

= Wx(vι, v−ι, A)−Wx(v
′
ι, v−ι, A) (20)

Proof. Suppose (x, p) provides marginal rewards. By inspection of (1), (x, p) has efficient

investments.

Suppose (x, p) does not provide marginal rewards. Let (vι, v−ι, A) and (v′ι, v−ι, A) be a

pair of allocation instances such that (20) does not hold. Consider the investment technology

Iι = {(vι, cι), (v′ι, c′ι)}, such that

cι − c′ι = [vι · xι(vι, v−ι, A)− p(vι, v−ι, A)]− [v′ι · xι(v′ι, v−ι, A)− p(v′ι, v−ι, A)] .

We then have by construction that

argmax
(v̂ι,ĉι)∈Iι

{v̂ι · xι(v̂ι, v−ι, A)− p(v̂ι, v−ι, A)− ĉι} = Ii 6= argmax
(v̂ι,ĉι)∈Iι

{Wx (v̂ι, v−ι, A)− ĉι} ,

so (x, p) does not have efficient investments.

Lemma A.2. If x has constrained-efficient allocations, then (x, p) provides marginal rewards

if and only if (x, p) is strategy-proof.

Proof. The lemma follows directly from the Green-Laffont-Holmström theorem (Green and

Laffont, 1977; Holmström, 1979).

Together, Lemma A.1 and Lemma A.2 prove Clause 1 and Clause 2 of Proposition 2.3.14

What remains is to prove Clause 3 of Proposition 2.3. We suppose that (x, p) is strategy-

proof and has efficient investments. In the argument that follows, we fix some A and suppress

the dependence on A henceforth.

Lemma A.3. If (x, p) is strategy-proof and has efficient investments, then Wx is continuous

in v.
14As noted in Footnote 9, these two clauses are essentially corollaries of Theorem 1 of Hatfield et al. (2019),

an argument here adapts the Hatfield et al. (2019) approach to our setting.

37

Proof. Suppose (x, p) is strategy-proof and has efficient investments. By Lemma A.1, there

exists some function ζ that does not depend on vn, such that for all vn and v−n:

Wx(vn, v−n) + ζ(v−n) (21)

= vn · x(vn, v−n)− p(vn, v−n)

= max
v̂n

vn · x(v̂n, v−n)− p(v̂n, v−n) by (x, p) strategy-proof

By the envelope theorem, the last line of (21) is 1-Lipschitz in vn, so Wx is 1-Lipschitz in

vn. This argument holds for all n, so Wx is continuous in v.

We introduce a modified range for x, denoted R ⊆ A, that contains any r in the range of

x such there exists v for which r = x(v) and w(r|v) 6= w(r′|v) for any r′ 6= r.

Lemma A.4. If (x, p) is strategy-proof and has efficient investments, then for any v, there

exists an r ∈ R such that w(r|v) = Wx(v).

Proof. Since Wx is continuous by Lemma A.3, for any ε > 0 there exists a δ > 0 such that

if |v − v′| < δ, then |Wx(v) − Wx(v
′)| < ε. We can pick v′ such that |v′n − vn| < min(δ,ε)

|N |

for all n ∈ N and—since the set of sums {
∑

n∈J ′ v
′
n}J⊆N is finite—so that we have, for any

J, J ′ ⊆ N , ∑
n∈J

v′n =
∑
n∈J ′

v′n ⇐⇒ J = J ′. (22)

By r = x(v′) ∈ R by our choice of R, and

|w(r|v)−Wx(v)| ≤ |w(r|v)−Wx(v
′)|+ |Wx(v

′)−Wx(v)| ≤ ε+ ε. (23)

Now, R is a finite set and ε can be arbitrarily small, so (23) proves the lemma.

Now, we show that

Wx(v) = max
r∈R
{w(r|v)}. (24)

To see (24), we assume for the sake of contradiction that there exists a v0 such that

Wx(v
0) 6= max

r∈R
{w(r|v0)}.

By Lemma A.4, we know that there is some r ∈ R such that Wx(v
0) = w(r|v0); hence, since

38

Wx(v
0) 6= maxr∈R{w(r|v0)}, we must have

Wx(v
0) < max

r∈R
{w(r|v0)}. (25)

Both sides of (25) are continuous (the left side by Lemma A.3), so there exists an ε > 0,

such that ‖v− v0‖ < ε implies that (25) holds for v. Therefore we can choose v so that (25)

and (25) hold simultaneously.

Now, we let r = x(v) and r′ ∈ argmaxr′′∈R w(r′′|v). Since r′ ∈ R there exists a ṽ and

ε > 0 such that ‖v′ − ṽ‖ < ε implies r′ = x(v′). So we can choose v′ so that x(v′) = r′ and∑
n∈J

v∗n =
∑
n∈J ′

v∗n ⇐⇒ J = J ′

for any v∗ such that v∗n ∈ {vι, v′ι}.
We construct a new value profile v′′ as follows:

v′′n =

max(vn, v
′
n) n ∈ x(v′)

min(vn, v
′
n) n /∈ x(v′).

By weak monotonicity of x and since (22) holds at each step, we have x(v′′) = r′. Now,

we create a directed line segment from v′′ to v and suppose that along it one encounters

a value profile with allocation r′′ 6= r′ ∈ R under x. Let v̂ be the switching boundary for

the new decision. Consider the linear functions f(ṽ) = w(r′, ṽ) − w(r′′, ṽ) and fn(ṽn) =

(1j∈r′ − 1j∈r′′) ṽn. We have f(v) > 0 since r′ ∈ argmaxr∈R w(r|v) and (22) holds at v. By

construction, we have

f(v′′) =
∑
n∈N

fn(v′′n) ≥
∑
n∈N

fn(vn) = f(v) > 0.

So we must have f(v̂) > 0 along the entire interval. But continuity of Wx requires that

f(v̂) = 0 which is a contradiction, so no such r′′ 6= r′ ∈ R can arise along the line. Hence,

we must have x(v) = r′, which contradicts our assumption that x(v) = r 6= r′. Thus,

we have (24), as desired, establishing that (x, p) has constrained-efficient allocations almost

everywhere.

39

Proof of Lemma 2.1

We prove the contrapositive: Suppose x is not a β-approximation for investment. Then there

exists some (Iι, v−ι, A) such that

βW
∗
(Iι, v−ι, A) > W x(Iι, v−ι, A).

We now modify Iι to ensure that ι’s best-response is singleton. Let

(v̂ι, ĉι) ∈ argmin
(vι,cι)∈BR(x,Iι,v−ι,A)

{Wx(vι, v−ι, A)− cι} .

For δ > 0, let Iδι be the investment technology produced by raising by δ the cost of all

investments except (v̂ι, ĉι), and then re-normalizing the costs so that

min
{
cι : (vι, cι) ∈ Iδι

}
= 0.

Now BR(x, Iδι , v−ι, A) = {(v̂ι, ĉι)} by construction, making it a singleton. Moreover, in

constructing Iδι , each investment’s cost has changed by no more than δ. Thus,

W
∗
(Iδι , v−ι, A) ≥ W

∗
(Iι, v−ι, A)− δ

W x(Iι, v−ι, A) + δ ≥ W x(I
δ
ι , v−ι, A).

For small enough δ, we then have

βW
∗
(Iδι , v−ι, A) > W x(I

δ
ι , v−ι, A),

which completes the proof of the contrapositive.

Proof of Theorem 2.2

Proof. The proof of Theorem 2.1 established that

W x(Iι, v−ι, A) ≥ βW
∗
(Iι, v−ι, A) (26)

in two cases:

1. ι chooses (v↑ι , c
↑
ι) and ι ∈ x(v↑ι − c↑ι); and

2. ι chooses (v↓ι , c
↓
ι) and ι /∈ x(v↑ι − c↑ι).

40

To establish (26) under the assumption that x is weakly XBONE, we consider three cases:

1. ι chooses (v↑ι , c
↑
ι) and ι ∈ x(v↑ι − c↑ι);

2a. ι chooses (v↓ι , c
↓
ι), ι /∈ x(v↑ι − c↑ι), and v↑ι − c↑ι > tOPT

n (v↑ι − c↑ι , v−n, A)

2b. ι chooses (v↓ι , c
↓
ι), ι /∈ x(v↑ι − c↑ι), and v↑ι − c↑ι ≤ tOPT

n (v↑ι − c↑ι , v−n, A)

When x is weakly XBONE, the same arguments as in the proof of Theorem 2.1 work for

Case 1 and Case 2a. For Case 2b, v↑ι − c↑ι ≤ tOPT
n (v↑ι − c↑ι , v−n, A) implies that there exists a

welfare-maximizing allocation at (v↑ι − c↑ι , v−n, A) such that n is not packed, and thus that

W ∗(v↓ι , v−ι, A) = W ∗(v↑ι − c↑ι , v−ι, A). Thus we conclude that

W x(Iι, v−ι, A) = Wx(v
↓
ι , v−ι, A) ≥ βW ∗(v↓ι , v−ι, A) = βW ∗(v↑ι − c↑ι , v−ι, A) ≥ βW

∗
(Iι, v−ι, A),

where the last inequality follows by (6).

Proof of Theorem 2.3

Definition A.1. Wx(·, v−ι, A) is lower semi-continuous at vι if for all sequences {vkι }∞k=1

such that vkι → vι, we have

lim inf
vkι→vι

{
Wx(v

k
ι , v−ι, A)

}
≥ Wx(vι, v−ι, A).

Lemma A.5. Assume x is monotone and a β-approximation for allocation on problem Ω

for β > 0. Assume Wx(·, v−ι, A) is lower semi-continuous at vι. If there exists ṽι such that

(v, A) and (ṽι, v−ι, A) do not satisfy the requirements of Definition 2.11, then there exists a

sub-problem Ω′ ⊆ Ω and β′ such that x is a β′-approximation for allocation on Ω′, but not a

β′-approximation for investment on Ω′.

Proof. Suppose we have some (v,A) and ṽι that do not satisfy the requirements of Defini-

tion 2.11. As usual, we will suppress the dependence of functions on v−ι and A. Let

Ω′ = {(v′ι, v−ι, A) : v′ι ∈ [min{vι, ṽι},max{vι, ṽι}]}

β = sup{β′ : x is a β′-approximation for allocation on Ω′}.

It is straightforward to check that x is a β-approximation for allocation on Ω′. As x is a

β-approximation for allocation on Ω and Ω′ ⊆ Ω, β ≥ β > 0. As x is not XBONE on Ω′, x

is not optimal on Ω′, so β < 1.

41

Let (ε̌k)∞k=1 denote a sequence such that ε̌k > 0 and limk→∞ ε̌
k = 0. For all k, there

exists v̌kι ∈ [min{vι, ṽι},max{vι, ṽι}] such that (β + ε̌k)W ∗(v̌kι) > Wx(v̌
k
ι). The sequence

{v̌kι ,Wx(v̌
k
ι)}∞k=1 is bounded. Thus, by the Bolzano–Weierstrass theorem, we can pick subse-

quences (εk)∞k=1 and (vkι)∞k=1 such that both terms converge, where we denote v∞ι = limk→∞ v
k
ι

and σ∞x = limk→∞Wx(v
k
ι). By continuity of W ∗(·),

lim
k→∞

W ∗(vkι) = W ∗(v∞ι).

As for all k,

βW ∗(vkι) ≤ Wx(v
k
ι) ≤ (β + εk)W ∗(vkι),

it follows that β limk→∞W
∗(vkι) = σ∞x .

We will check four cases that are jointly exhaustive, and show that in each case x is not

a β-approximation for investment on Ω′.

Case 1: Suppose the first clause of Definition 2.11 is not satisfied, so there exists (v, A)

and ṽι such that ι ∈ x(v,A), ṽι > vι, and Wx(ṽι, v−ι, A) −Wx(vι, v−ι, A) < ṽι − vι. Either

σ∞x −Wx(vι) < v∞ι − vι, or Wx(ṽι)− σ∞x < ṽι − v∞ι .15

Case 1a: Suppose σ∞x −Wx(vι) < v∞ι − vι.
If v∞ι = vι, we have σ∞x −Wx(vι) = limk→∞Wx(v

k
ι)−Wx(v

∞
ι) ≥ 0, where the inequality

follows by lower semi-continuity, a contradiction. Thus, v∞ι > vι.

Consider the binary investment technology Ikι =
{

(vι, 0), (vkι , v
k
ι − vι)

}
. Observe that

W x(I
k
ι) ≤ Wx(v

k
ι)− (vkι − vι)

W
∗
(Ikι) ≥ W ∗(vkι)− (vkι − vι).

Hence,

β lim inf
k→∞

W
∗
(Ikι) ≥ β

(
lim
k→∞

W ∗(vkι)− (v∞ι − vι)
)
> σ∞x − (v∞ι − vι) ≥ lim sup

k→∞
W x(I

k
ι).

Case 1b: Suppose Wx(ṽι)− σ∞x < ṽι − v∞ι .

Consider the binary investment technology Ikι =
{

(vkι , 0), (ṽι, ṽι − vkι)
}

. Observe that

W x(I
k
ι) ≤ Wx(ṽι)− (ṽι − vkι)

W
∗
(Ikι) ≥ W ∗(vkι).

15Suppose not; then σ∞x −Wx(vι) ≥ v∞ι − vι and Wx(ṽι)− σ∞x ≥ ṽι − v∞ι , so Wx(ṽι)−Wx(vι) ≥ ṽι − vι,
a contradiction.

42

Hence,

β lim inf
k→∞

W
∗
(Ikι) ≥ β lim

k→∞
W ∗(vkι) = σ∞x > Wx(ṽι)− (ṽι − v∞ι) ≥ lim sup

k→∞
W x(I

k
ι).

Case 2: Suppose Clause 2 of Definition 2.11 is not satisfied, so that

1. ι /∈ x(v, A);

2. ṽι < vι;

3. tOPT
ι (v, A) < vι; and

4. Wx(ṽι)−Wx(vι) < 0.

There are two cases to consider; either v∞ι < vι or v∞ι = vι.

Case 2a: Suppose v∞ι < vι. Consider the technology Ikι =
{

(vkι , 0), (vι, 0)
}

.

W x(I
k
ι) ≤ Wx(v

k
ι)

W
∗
(Ikι) ≥ W ∗(vι).

Since tOPT
ι (v,A) < vι and v∞ι < vι, it follows that

W ∗(v∞ι) < W ∗(vι).

Thus,

β lim inf
k→∞

W
∗
(Ikι) ≥ βW ∗(vι) > βW ∗(v∞ι) = β lim

k→∞
W ∗(vkι) = σ∞x ≥ lim sup

k→∞
W x(I

k
ι).

Case 2b: Suppose v∞ι = vι. Let Ikι =
{

(ṽι, 0), (vkι , 0)
}

.

W x(I
k
ι) ≤ Wx(ṽι)

W
∗
(Ikι) ≥ W ∗(vkι).

By lower semi-continuity, we have

σ∞x = lim
k→∞

Wx(v
k
ι) ≥ Wx

(
lim
k→∞

vkι

)
= Wx(v

∞
ι) = Wx(vι).

Thus,

β lim inf
k→∞

W
∗
(Ikι) ≥ β lim

k→∞
W ∗(vkι) = σ∞x ≥ Wx(vι) > Wx(ṽι) ≥ lim sup

k→∞
W x(I

k
ι).

43

Now, under the hypotheses of Theorem 2.3, if we can find (v, A) and (ṽι, v−ι, A) that do

not satisfy Definition 2.11, then we can find ˜̃vι arbitrarily close to vι such that (˜̃vι, v−ι, A) and

(ṽι, v−ι, A) do not satisfy Definition 2.11 and Wx(·, v−ι, A) is continuous at ˜̃vι. Lemma A.5

completes the proof.

Proof of Theorem 2.4

As before, let (v↑n, c
↑
n) denote an arbitrary element of argmax(vn,cn)∈In {vn − cn}, and let

(v↓n, c
↓
n) denote a costless investment (c↓n = 0). We suppress the dependence of functions on

A.

Consider the allocation x(v↑−c↑). We now construct an investment profile by requiring all

bidders in this allocation to invest (v↑n, c
↑
n), and all other bidders to invest (v↓n, c

↓
n). Formally,

let (v̂, ĉ) be the investment profile such that, for all n,

(v̂n, ĉn) =

(v↑n, c
↑
n) if n ∈ x(v↑ − c↑)

(v↓n, c
↓
n) otherwise.

Recall that the threshold price for bidder n at instance (v,A) is

txn(v,A) = inf{ṽn : n ∈ x(ṽn, v−n, A) = 1 and (ṽn, v−n, A) ∈ Ω}.

Suppressing A, let tx(v) be the profile of threshold prices at (v, A).

Lemma A.6. Let vk be the value profile with the first |N | − k elements equal to the corre-

sponding elements of v↑ − c↑, and the last k elements equal to the corresponding elements of

v̂. For all k ∈ {0, 1, . . . , |N |}, x(vk) = x(v↑ − c↑).

Proof. We argue by induction. By definition, x(v0) = x(v↑−c↑). Suppose x(vk) = x(v↑−c↑).
Moving from vk to vk+1 either raises the value of a bidder in x(vk) or lowers the value of a

bidder not in x(vk). Thus, as x is monotone and non-bossy, the x(vk+1) = x(vk) = x(v↑−c↑);
this proves Lemma A.6.

Lemma A.7. If x is monotone and non-bossy, then for all (v, A) and ṽn, if

1. Either: ṽn ≥ vn and xn(v, A) = 1

2. Or: ṽn ≤ vn and xn(v,A) = 0

44

then for all m 6= n and all ṽm such that xm(ṽm, v−m, A) = xm(v, A):

xm(v,A) = xm(ṽn, ṽm, v−{nm}, A).

Proof. As x is non-bossy, we have

xn(ṽm, v−m, A) = xn(v, A).

By the previous equation and x monotone,

xn(ṽn, ṽm, v−{nm}, A) = xn(ṽm, v−m, A).

By the previous equation and x non-bossy,

xm(ṽn, ṽm, v−{nm}, A) = xm(ṽm, v−m, A).

which proves Lemma A.7.

Lemma A.8. If x is monotone and non-bossy, then txn(v↑ − c↑) ≥ txn(v̂) for n ∈ x(v↑ − c↑)
and txn(v↑ − c↑) ≤ txn(v̂) for n /∈ x(v↑ − c↑).

Proof. We argue by induction. Let value profile vk be as defined as in Lemma A.6. The

inductive hypothesis is: txn(v↑ − c↑) ≥ txn(vk) for n ∈ x(v↑ − c↑) and txn(v↑ − c↑) ≤ txn(v̂) for

n /∈ x(vk).

The hypothesis holds by definition for k = 0. Suppose it holds for some k. By Lemma A.6,

x(vk) = x(v↑ − c↑). Moving from vk to vk+1 either raises the value of a bidder in x(vk) or

lowers the value of a bidder not in x(vk). By the inductive hypothesis for k and Lemma A.7,

txn(v↑ − c↑) ≥ txn(vk) ≥ txn(vk+1) for n ∈ x(v↑ − c↑) and txn(v↑ − c↑) ≤ txn(vk) ≤ txn(vk+1) for

n /∈ x(v↑ − c↑). Thus the inductive hypothesis holds for k + 1. This completes the proof of

Lemma A.8.

Lemma A.9. (v̂, ĉ) is a Nash equilibrium of the investment game (I, A) facing threshold

auction (x, px).

Proof. By Lemma 2.2, it suffices to check that bidders choosing (v↑n, c
↑
n) cannot profitably

deviate to (v↓n, c
↓
n) and vice versa. (Recall that c↓n = 0.)

Suppose that under (v̂, ĉ), n plays (v↑n, c
↑
n), so n ∈ x(v↑ − c↑). Then

max{v↑n − txn(v̂), 0} − c↑n ≥ max{v↑n − txn(v↑ − c↑), 0} − c↑n ≥ 0.

45

where the first inequality is by Lemma A.8 and the second inequality is by n ∈ x(v↑ − c↑).
This implies:

max{v↑n − txn(v̂), 0} − c↑n = max{v↑n − c↑n − txn(v̂), 0}

≥ max{v↓n − c↓n − txn(v̂), 0} = max{v↓n − txn(v̂), 0} − c↓n.

The left-hand side is n’s utility from playing (v↑n, c
↑
n) and the right-hand side is n’s utility

from playing (v↓n, c
↓
n). Hence, n cannot profit by deviating to (v↓n, c

↓
n).

Suppose that under (v̂, ĉ), n plays (v↓n, c
↓
n), so n /∈ x(v↑ − c↑). Then we have

max{v↑n − txn(v̂), 0} − c↑n ≤ max{v↑n − txn(v↑ − c↑), 0} − c↑n ≤ 0 ≤ max{v↓n − txn(v̂), 0} − c↓n,

where the first inequality is by Lemma A.8 and the second inequality is by n /∈ x(v↑ − c↑).
The left-hand side is n’s utility from deviating to (v↑n, c

↑
n) and the right-hand side is n’s

utility from playing (v↓n, c
↓
n). Hence, n cannot profit by deviating to (v↑n, c

↑
n); this proves

Lemma A.9.

Lemma A.10. If x is monotone, non-bossy, and a β-approximation for allocation, then

Wx(v̂, A)−
∑
n∈N

ĉn ≥ β max
(v,c)∈I

{
W ∗(v, A)−

∑
n∈N

cn

}
. (27)

Proof. Let (v∗, c∗) be a profile of investments that attains the maximum on the right-hand

side of (27). By Lemma A.6, x(v̂) = x(v↑ − c↑). Recall that, by construction,

(v̂n, ĉn) =

(v↑n, c
↑
n) if n ∈ x(v↑ − c↑)

(v↓n, c
↓
n) otherwise.

Hence,

Wx(v̂)−
∑
n∈N

ĉn = w(x(v̂) | v̂)−
∑
n∈N

ĉn = w(x(v↑ − c↑) | v̂)−
∑
n∈N

ĉn = Wx(v
↑ − c↑)

≥ βW ∗(v↑ − c↑) ≥ βW ∗(v∗ − c∗) ≥ β

(
W ∗(v∗)−

∑
n∈N

c∗n

)
;

this proves Lemma A.10.

Combining Lemmata A.9 and A.10 completes the proof.

46

Proof of Proposition 3.4

As in many of our other arguments, here we suppress the dependence of x on v−n and A, as

doing so will not introduce confusion.

By our choice of ṽn (in particular, by (8), with o = xn(ṽn)), we have

ṽn · [xn(vn)− xn(ṽn)] ≥ vn · [xn(vn)− xn(ṽn)] . (28)

We have assumed that (x, p) is strategy-proof, so—by Proposition 3.1—x is W-Mon. W-Mon

implies that

ṽn · [xn(ṽn)− xn(vn)] ≥ vn · [xn(ṽn)− xn(vn)] . (29)

Combining (29) and (the negative of) (28) yields

ṽn · [xn(ṽn)− xn(vn)] = vn · [xn(ṽn)− xn(vn)] . (30)

Now, as (x, p) is strategy proof, we know that ṽn cannot profitably imitate vn and vice

versa, which implies:

ṽn · [xn(ṽn)− xn(vn)] ≥ pn(ṽn)− pn(vn) (31)

vn · [xn(vn)− xn(ṽn)] ≥ pn(vn)− pn(ṽn). (32)

Now, from (31) and (the negative of) (32) we obtain

ṽn · [xn(ṽn)− xn(vn)] ≥ pn(ṽn)− pn(vn) ≥ vn · [xn(ṽn)− xn(vn)] . (33)

Combining Eq. (30) and Eq. (33), we find that

ṽn · [xn(ṽn)− xn(vn)] = pn(ṽn)− pn(vn). (34)

Finally, by the definition of w, we have

w(x(ṽn | ṽn)− w(x(v) | ṽn)

= ṽn · [xn(ṽn)− xn(vn)] +
∑
m 6=n

vm · [xm(ṽn)− xm(vn)]

= pn(ṽn)− pn(vn) +
∑
m6=n

vm · [xm(ṽn)− xm(vn)] ,

where the last equality follows from (34); this completes the proof of the first claim.

47

Now, we observe that pn(ṽn) − pn(vn) 6= 0 implies, by (34), that xn(ṽn) 6= xn(vn). We

then have from (30) that

ṽxn(ṽn)n − ṽxn(vn)n = vxn(ṽn)n − vxn(vn)n ,

which holds for a measure-zero set of pairs (vn, ṽn) when xn(ṽn) 6= xn(vn). Thus, we see that

pn(ṽn)− pn(vn) = 0 almost everywhere.

Proof of Lemma 3.3

We begin with a general lemma on submodular functions.

Lemma A.11. Let q : ℘(G) → R+
0 be a non-negative submodular function, i.e. for all

F ′, F ′′ ⊆ G:

q(F ′ ∪ F ′′) + q(F ′ ∩ F ′′) ≤ q(F ′) + q(F ′′).

For all F ⊆ G, there exists an additive value function α∗ : G → R+ such that α∗(F) =

q(F) and for all F ′, α∗(F ′) ≤ q(F ′).

Proof. All submodular functions are fractionally sub-additive (Lehmann et al., 2006a). Thus,

there exists a family of additive value functions (αl)l∈L such that for all F ′, q(F ′) =

maxl α
l(F ′).

Fix some arbitrary F . Let α∗ ∈ argmaxαl:l∈L
{
αl(F)

}
. α∗(F) = q(F), and for all F ′,

α∗(F ′) ≤ q(F ′).

Now, we can develop the proof of Lemma 3.3: For any F ⊆ G, let

vFι ≡ argmax
vι∈XOS

{vι(F)− cι(vι)}

By vFι ∈ XOS, there exists a family of additive value functions (αl)l∈L such that vFι =

maxl∈L α
l. Let α̃F = argmaxαl:l∈L

{
αl(F)

}
. We now define another additive value function

αF as follows:

αFg ≡

α̃Fg if g ∈ F

0 otherwise.

By cι isotone,

max
vι∈XOS

{vι(F)− cι(vι)} ≤ α̃F (F)− cι(α̃F) ≤ αF (F)− cι(αF).

48

αF ∈ XOS, so

max
vι∈XOS

{vι(F)− cι(vι)} = αF (F)− cι(αF).

The next step is to define, for each set of goods F , an additive value function αF that divides

the cost cι(α
F) appropriately across the various goods in F .

For any F, F ′, let αF.F
′

be the additive value function defined by:

αF.F
′

g ≡

αFg if g ∈ F ′

0 otherwise.

Fix some arbitrary F . Let qF : ℘(G)→ R be the function defined by

qF (F ′) ≡ αF.F
′
(F ′)− cι(αF.F

′
)

(for all F ′). As cι is supermodular on additive valuations, the function qF (·) is submodular.

Moreover, by submodularity of qF , it follows that for all F ′ we have:

qF (F ′) + qF (G \ F ′) ≥ qF (F ′ ∪ (G \ F ′))︸ ︷︷ ︸
=αF (F)−cι(αF)

+ qF (F ′ ∩ (G \ F ′))︸ ︷︷ ︸
=0

. (35)

Moreover, we have

qF (G \ F ′) = αF.(G\F
′)(G \ F ′)− cι(αF.(G\F

′))

= αF.(G\F
′)(F)− cι(αF.(G\F

′))

≤ max
vι∈XOS

{vι(F)− cι(vι)}

= αF (F)− cι(αF).

Rearranging terms in (35) yields

qF (F ′) ≥ αF (F)− cι(αF)− qF (G \ F ′) ≥ 0.

Thus, qF is a non-negative submodular function. By Lemma A.11, we can find an additive

value function αF such that αF (F) = qF (F) and for all F ′, αF (F ′) ≤ qF (F ′).

We assert now that the maximum of the family of additive value functions so constructed

is exactly equal to the pivotal value function vι, that is, for all F ,

max
F ′∈℘(G)

{
αF
′
(F)
}

= max
vι∈XOS

{vι(F)− cι(vι)} ≡ vι(F).

49

By construction, for all F ,

αF (F) = qF (F) = αF (F)− cι(αF) = max
vι∈XOS

{vι(F)− cι(vι)} .

which implies that for all F ,

max
F ′∈℘(G)

{
αF
′
(F)
}
≥ max

vι∈XOS
{vι(F)− cι(vι)} .

Also by construction, for all F and F ′,

αF
′
(F) ≤ qF

′
(F) = αF

′.F (F)− cι(αF
′.F) ≤ max

vι∈XOS
{vι(F)− cι(vι)} ,

which implies that for all F ,

max
F ′∈℘(G)

{
αF
′
(F)
}
≤ max

vι∈XOS
{vι(F)− cι(vι)} .

Thus, for all F ,

max
F ′∈℘(G)

{
αF
′
(F)
}

= max
vι∈XOS

{vι(F)− cι(vι)} ≡ vι(F);

we conclude that vι ∈ XOS.

B Steiner tree approximation algorithm

The MST-based 2-approximation algorithm for the Steiner tree problem works in three steps:

1. Construct a weighted graph G′ from the original graph G in the following way: The set

of nodes of G′ are the terminals node of G. For any two nodes t1 and t2, let the weight

of the edge between them be equal to the total weight of the shortest path between

the two.

2. Find a minimum spanning three in G′.

3. Recover the shortest paths in the original graph G which represent the edges. Delete

edges if necessary to result in a tree for output.

We now prove Proposition 2.10 by providing an example. Consider the graph in Figure 1.

Nodes a, b, d, f are the terminal nodes. The lower graph is G′, which we have constructed

50

Figure 1: Caption

Figure 2: Caption

51

from the top graph. The MST of G′ includes edges ad, df , and bf . These correspond to ac,

cd, de, ef , be in the original graph. The total cost of this Steiner tree is 76.

Now suppose we reduce the weight of cd from 10 to 2 (which is equivalent to increasing

the value of that weight in the corresponding maximization problem). Applying the same

algorithm (as illustrated in Figure 2) leads to choosing ac, cd, bc, de, ef , with a total cost

of 91. Thus, the algorithm is not XBONE.

52

	Introduction
	Related work

	Investment with binary outcomes
	Model
	The allocation problem
	The reporting problem
	The investment problem

	Results for binary outcomes
	Non-bossiness and XBONE
	Application: Knapsack algorithms
	An approximation algorithm that is not XBONE: Steiner tree
	A necessary and sufficient condition

	Allowing multiple investors

	Investment with multiple outcomes
	Allocation problems with multiple outcomes
	Reporting problems with multiple outcomes
	Investment problems with multiple outcomes
	Results for multiple outcomes
	Proof of Theorem 3.1

	Combinatorial auctions

	Discussion
	Proofs omitted from the main text
	Steiner tree approximation algorithm

