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Abstract

A principal incentivizes a team of agents to work by privately offering

them bonuses contingent on team success. We study the principal’s optimal

incentive scheme that implements work as a unique equilibrium. This

scheme leverages rank uncertainty to address strategic uncertainty. Each

agent is informed only of a ranking distribution and his own bonus, the

latter making work dominant provided that higher-rank agents work. If

agents are symmetric, their bonuses are identical. Thus, discrimination

is strictly suboptimal, in sharp contrast with the case of public contracts

(Winter, 2004). We characterize how agents’ ranking and compensation

vary with asymmetric effort costs.
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1. Introduction

Project success in organizations relies on the contribution of multiple workers

whose tasks are complementary. Workers who are rewarded based on overall

project outcomes may thus be reluctant to do their share unless they expect that

others will as well. We study the optimal provision of incentives that addresses

this strategic risk. A firm seeking to ensure effort at the lowest cost must not

only offer high rewards to make effort worthwhile, but also fine tune rewards to

keep workers optimistic that others will also want to work toward their common

goal. How does the firm design incentives to manage workers’ expectations and

facilitate coordination? Is transparency about workers’ rank and pay always

good? Is pay inequality a feature of optimal incentive provision?

It is intuitive that transparency about coworker effort would help coordination,

as workers could then condition their behavior on that of others.1 Effort, however,

is often not directly observable to the firm or other workers, and responding to

others’ behavior is infeasible when tasks must be undertaken in parallel. Yet,

the firm can still provide assurance to a worker that his coworker will work,

for example by offering the latter a high reward for project success that makes

working a dominant choice. In fact, based on this logic, Winter’s (2004) seminal

paper finds that a hierarchy of workers is optimal: high-rank workers are offered

steep incentives to work no matter what others do, while low-rank workers are

offered just enough to make them work knowing that higher-rank workers will

work. Consistent with a broader literature on contracting with externalities (e.g.,

Segal, 1999, 2003), Winter (2004) obtains that any optimal incentive scheme must

be discriminatory, offering differential rewards even when workers are symmetric.

In this paper, we show that the above conclusion hinges on the presump-

tion that contracts within an organization are public, so that workers’ relative

ranks are transparent. Such a presumption is at odds with evidence and cur-

rent debates on firm practices. Firms not only rarely disclose information about

employees’ contractual terms, but also tend to discourage or even prohibit em-

ployees from discussing this information with each other (e.g. Gely and Bierman,

2003; Hegewisch, Williams and Drago, 2011). Thus there is often little if any

1 See Winter (2006, 2010) for theoretical analysis and discussions of the empirical evidence.
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transparency, and this secrecy inside firms is further sustained by social norms

(e.g. Edwards, 2005; Cullen and Perez-Truglia, 2018). Taking the canonical team

setting of Winter (2004), we show that limiting workers’ information about their

position relative to others is indeed beneficial to a firm. With private contract

offers, the firm leverages rank uncertainty to better address strategic uncertainty

and ensure effort at a lower cost. Furthermore, we prove that the firm’s optimal

incentive scheme is unique and does not discriminate between symmetric work-

ers. That is, under private contracting, discrimination is not only unnecessary

but strictly suboptimal for the firm.

Our model is cast in a moral-hazard-in-teams setting (Holmström, 1982) with

effort complementarities. A principal incentivizes a number of agents to work

toward a common project. Each agent privately chooses whether to work or

shirk, where working is costly and increases the likelihood of project success at

a rate that is increasing with other agents’ work. The principal can commit to

make bonus payments to the agents conditional on the project succeeding, with

the bonus offers being private. The principal’s goal is to uniquely implement

work at the least total cost, that is, to specify a least-cost incentive scheme such

that all agents working is the unique Bayesian Nash equilibrium.

We begin by showing that an optimal incentive scheme specifies ranks as in

Winter (2004). However, a key difference is that the ranking can be uncertain.

Formally, the principal uses a ranking scheme, specifying a distribution of type

profiles and informing each agent only of his own realized type. Given his belief

over other agents’ types, each agent type is then offered the minimum bonus for

success that makes him want to work under the hypothesis that agents of lower

type work and the rest do not. Since agents’ efforts are strategic complements, an

agent who believes himself to have a low type relative to others must be offered a

relatively high bonus. Thus, a relatively low type corresponds to being assigned

a relatively high rank.

Using the structure of ranking schemes, we characterize the principal’s optimal

value in Theorem 1. The principal’s problem can be viewed as choosing an average

ranking distribution plus an information structure, the latter determining what

each agent learns about the realized ranking from his own type. Theorem 1

shows that providing agents with any private information about the ranking is
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suboptimal, and therefore the principal’s problem reduces to only optimizing

over the average ranking distribution. To prove this result, we show that the

minimum bonus payment required for an agent to work when only lower types

work is convex in the agent’s belief about the ranking distribution. Hence, it is

optimal to induce the same belief for all types of a given agent.

In Theorem 2, we show that our characterization of the principal’s optimal

value permits a characterization of optimal incentive schemes. Specifically, we

show that there is a unique profile of optimal agent bonuses that solve the prin-

cipal’s problem in Theorem 1, and any optimal sequence of incentive schemes

must induce a bonus distribution that converges to a degenerate distribution on

this optimal bonus profile. Therefore, optimal incentive contracts are (approxi-

mately) unique, with agents’ bonus payments being a continuous function of the

parameters of the model.

An important corollary of Theorem 2 concerns the case in which agents are

symmetric. The principal in this case finds it optimal to induce uniform beliefs

over all possible agent rankings, and the unique optimal limiting bonuses are equal

across the agents. The intuition turns on how the principal provides assurance

to the agents that other agents will work. Making a worker more optimistic that

his coworkers will work allows the principal to incentivize his effort at a lower

cost; however, this requires that some coworker become more pessimistic, with

his incentives then more sensitive to his beliefs about others. Thus, to minimize

bonus payments, the principal builds assurance between the workers in a mutual

way. The optimal incentive scheme makes symmetric workers hold the same belief

about their rank, and therefore demand the same bonus payment to work.

These results bring a new perspective on the current debate about firm com-

pensation practices. Concerns about pay discrimination have motivated recent

regulation to improve transparency inside firms (Trotter, Zacur and Stickney,

2017), and have led a number of companies to announce more open internal dis-

closure policies (Shellenbarger, 2016). Our analysis shows that, from the view of

optimal incentive provision, lack of transparency does not generate discriminatory

incentives. In fact, together with the results of Winter (2004), we obtain precisely

the opposite: a firm’s optimal incentive scheme is discriminatory if and only if

contracts are required to be public. As a practical implication, this suggests that
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either measures aimed at improving transparency may be counterproductive at

reducing discrimination, or factors others than optimal incentive provision are

behind firms’ discriminatory practices.2

We characterize the optimal degree of rank uncertainty and derive comparative

statics of optimal contracts for agents who may be asymmetric in their costs of

effort. We show that for any set of agents who are sufficiently symmetric (in a

sense that we make precise), the principal strictly benefits from making them

uncertain about their relative ranks.3 An agent is ranked lower than another

agent with certainty if and only if his effort cost is comparatively higher enough,

in which case the principal seeks to assure him that the lower-cost agent will

work. Regarding the optimal bonus profile, we find that higher-cost agents are

offered larger bonuses. However, since the principal also tailors ranking beliefs

in order to relax the more demanding incentive constraints of higher-cost agents,

she compensates lower-cost agents with higher markups, namely higher bonuses

per effort cost. Overall, our model predicts an organizational hierarchy in which

workers of similar skill are assigned to the same level and only those of sufficiently

higher skill to higher levels, and in which higher skill is rewarded with higher rents.

We close the paper by discussing a number of model extensions. In one such

extension, we address a key element of our model—that the principal can withhold

information from one agent about another’s contract terms. We show that if

agents can voluntarily, verifiably disclose their contract terms to other agents,

then the principal would be unable to leverage rank uncertainty and outperform

the public-contracts benchmark. As such, our results can help understand why

firms often maintain strict pay secrecy policies. As noted above, many private

sector employers in the US prohibit the discussion of salary information, and

workers report that discussing this information can lead to punishment; see Gely

and Bierman (2003), Hegewisch et al. (2011), and Rosenfeld (2017), among others.

One potential explanation why firms maintain these policies is that they put

2 In particular, transparency might help address taste-based discrimination; see for example
Bennedsen, Simintzi, Tsoutsoura and Wolfenzon (2019).

3 Moreover, the principal finds it optimal to make this uncertainty complete, so that no
ranking among the agents can be ruled out. Importantly, recall that the agents face this
uncertainty both ex ante and also interim, as they learn minimal information about others
from their own contract offers.
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workers at an informational disadvantage when negotiating contract terms. But

workers in many cases do not have the bargaining power to exploit information

about others’ contracts, and when they do, it is unclear that transparency would

help them (cf. Cullen and Pakzad-Hurson, 2019). We study a model in which the

firm has all the bargaining power and show that limiting workers’ information

is beneficial to the firm even in such a case. Pay secrecy benefits the firm not

by improving its bargaining position, but by improving its ability to address

strategic risk in incentive provision.

Related literature. Our paper belongs to the literature on contracting with

externalities in multi-agent settings, pioneered by Segal (1999, 2003). Most of this

literature, including Segal (2003), Winter (2004), Bernstein and Winter (2012),

and Halac, Kremer and Winter (2020), studies optimal unique-implementation

mechanisms as we do. Except for Winter (2004), however, these papers focus

on settings in which agents’ choices are observable and bilaterally contractible.

Moreover, all of this work requires that contracts be public, thus abstracting from

the possibility of information design.4

Winter (2004) provides a benchmark for our study by analyzing how to uniquely

induce a team of agents to work when only the team’s overall success is observ-

able and contractible. Restricting attention to publicly observed offers, he finds

that any optimal incentive scheme must be discriminatory if agents’ efforts are

strategic complements. This result is related to the optimality of “divide and

conquer” strategies in Segal (2003). A key lesson from our analysis is that this

result is overturned when contract offers can be private.5

Our point that introducing uncertainty can reduce a principal’s cost of ensuring

effort is related to results in Eliaz and Spiegler (2015) and Moriya and Yamashita

(2020). Both of these articles, however, feature different constraints on the space

of contracts. In the context of Winter (2004), the analysis in Eliaz and Spiegler

4 In his section IV, Segal (1999) also considers privately observed contract offers but in
a setting in which the principal is unable to commit to a scheme. As Segal (1999) studies
equilibria in pure strategies, his agents face no on-path uncertainty about others’ offers.

5 While the substantive message is overturned, the mechanics are not. One can view our
principal’s optimal incentive scheme as a divide and conquer strategy that proceeds “type by
type” as opposed to “agent by agent.”
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(2015) amounts to letting the principal randomize over each agent’s bonus offer,

but, crucially, with bonus distributions that are required to be independent and

identical across the (symmetric) agents. Moriya and Yamashita (2020) extend

Winter’s (2004) setting by letting effort incentives depend on the realization of an

exogenous binary state. Taking bonus offers to be deterministic (hence public)

and symmetric, they show that the principal’s optimal scheme may inform agents

asymmetrically about the realized state.

More broadly, our paper is related to recent work studying multi-agent per-

suasion under adversarial equilibrium selection.6 Inostroza and Pavan (2020)

characterize optimal disclosure policies in a global game, where discriminatory

disclosures can be beneficial by a similar “divide and conquer” logic as in the

above literature. Mathevet, Perego and Taneva (2020) examine the distributions

of agents’ beliefs that an information designer can induce, with a representation

for optimal distributions. The analysis of Oyama and Takahashi (2020) yields

conditions for unique implementation in binary-action supermodular games of

complete information, using contagion arguments (as in Rubinstein, 1989; Carls-

son and van Damme, 1993; Kajii and Morris, 1997, and many others) similar

to those in our Lemma 1, and Morris, Oyama and Takahashi (2020) address

information design for such games under incomplete information.7 While our

paper differs in many aspects, our main departure from this literature is that we

consider the joint design of both transfers and information about said transfers.

There is recent work studying, from different angles, pay transparency and

discrimination in firms. Cullen and Pakzad-Hurson (2019) analyze the effects of

increasing transparency on wage bargaining. Both theoretically and empirically,

they find that higher transparency can allow workers to renegotiate to a com-

mon wage, while also reducing average wages as firms bargain more aggressively.

Habibi (2019) uses a signaling model to study a firm’s decision to be transparent,

6 Our principal’s goal of inducing all agents to work as the unique equilibrium is equivalent
to inducing all agents to work under adversarial selection, i.e., in the lowest-effort equilibrium
of the induced game.

7 The latter generalizes the results of Moriya and Yamashita (2020) in an application. See
also Hoshino (2019), which relates persuasion under adversarial selection to risk dominance,
and Doval and Ely (2020), which characterizes, for given actions and payoffs, all the equilibrium
outcomes that are consistent with some choice of information structure and extensive form.
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finding that either decision may be optimal depending on the firm’s technology.

Finally, there is a literature on organizational hierarchies. One strand of this

literature focuses on the role of hierarchy in the processing and aggregation of

information and knowledge (see the survey by Garicano and Zandt, 2013). Our

paper is more closely related to another strand that examines the incentive func-

tion of hierarchy (see the survey by Mookherjee, 2013), although the focus there

is on monitoring and delegation of authority, from which we abstract. A hier-

archy in our setting instead arises as a means of determining and (selectively)

communicating the strength of workers’ incentives.

2. Simple Example

This section explains the intuition for our main results in a simplified example.

Consider a firm with two workers and a production technology as in Winter

(2004). Each worker performs a different task. If a worker works, he completes

his task with probability 1; if instead he shirks, the probability that he completes

his task is only p ∈ (0, 1). The firm’s project succeeds if and only if both workers’

tasks are completed. Each worker’s cost of working is c > 0, and workers make

their work decisions simultaneously.

The firm observes only whether the project as a whole succeeds and can com-

mit to make bonus payments to the workers given success. The firm’s bonus

offers induce a game between the workers, where a worker’s payoff is equal to his

expected bonus payment, minus the cost c if he works. The firm’s problem is to

find a least-cost incentive scheme such that both workers working is the unique

(Bayesian) Nash equilibrium of the induced game.

Suppose first that the firm commits to public bonus contracts. Note that

conditional on the other worker working, a worker is willing to work so long as

he is offered a bonus for success no smaller than bL satisfying bL − c = pbL, i.e.,

bL = c
1−p . However, if the other worker shirks, then the required bonus is no

smaller than bH satisfying pbH − c = p2bH , i.e., bH = c
p(1−p) > bL. This implies

that, while offering bonuses b1 = b2 = bL would suffice to induce an equilibrium in

which both workers work, these (or slightly higher) bonuses would not exclude an

equilibrium in which both workers shirk. To uniquely implement work, the firm
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must make it dominant for one of the workers to work, namely offer a bonus above

bH to one of the workers. A bonus above bL for the other worker then ensures that

he also works, knowing that the first worker always works. It follows that a least-

cost public scheme that guarantees work entails a cost (slightly above) bH + bL

to the firm. As stressed by Winter (2004), such a scheme is discriminatory, as

workers are treated asymmetrically despite them being identical.

It turns out that the firm can do better by introducing uncertainty. For exam-

ple, consider a scheme in which worker 1 may be offered a high bonus (slightly

above) bH or a low bonus (slightly above) bL, each with equal probability. Worker

1 is informed of his bonus before choosing whether to work, but worker 2 only

knows worker 1’s bonus distribution. Note that if worker 1 is offered bH , then

it is dominant for him to work. Since worker 2 knows that this happens with

probability 1
2
, the firm can ensure that worker 2 works by offering him a bonus

(slightly above) bM satisfying(
1

2
+

1

2
p

)
bM − c =

(
1

2
p+

1

2
p2

)
bM ,

that is,

bM =
c

1
2
(1− p) + 1

2
p(1− p)

.

Moreover, since worker 2 works under bonus bM , it is then optimal for worker

1 to also work when he is offered bonus bL. It follows that the firm guarantees

work with this scheme at a cost (slightly above) bH+bL
2

+ bM . Since bM < bH+bL
2

,

the firm’s cost is lower than the cost computed above under public offers. Fur-

thermore, since bL < bM < bH , the firm’s scheme is less discriminatory compared

to that above, not only ex ante but also ex post.

Intuitively, given effort complementarities, the firm wishes to provide assurance

to the workers that their coworker will work. A public scheme favors one of

the workers in order to guarantee his effort and provide assurance to the other

worker. By creating rank uncertainty, however, the firm can build this assurance

in a mutual way, so that both workers provide assurance to each other.8 This

8 An analogous form of mutual assurance arises in the literature on virtual implementation.
For instance, the analysis of Abreu and Matsushima (1992) ensures truthful implementation by
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not only makes the workers’ contracts less asymmetric, but also allows the firm

to ensure effort at a lower cost. The reason is that a worker’s incentive to work

increases at a decreasing rate with his belief that the other worker works; hence,

assurance is most valuable when a worker is pessimistic about his coworker’s

effort.

While the scheme described above improves upon the public-contracts scheme

and illustrates our main points, it is not an optimal scheme in this setting. A

simple way to further decrease the firm’s cost is to add another bonus realization

for worker 2 so that worker 1 is also uncertain about his relative rank. More

specifically, consider a uniform distribution over bonus profiles (slightly above)

(bH , bM), (bM , bM), and (bM , bL). By analogous reasoning to that above, proceed-

ing one bonus realization at a time, one can verify that both workers working

is the unique equilibrium. Moreover, the cost to the firm is 2
(

2
3
bM + 1

3
bH+bL

2

)
,

which is lower than the previous cost (again because bM < bH+bL
2

). We return

to this example and expand on this idea when describing an optimal scheme in

Subsection 4.2.

This discussion serves as a prelude for our analysis in the next sections. Our

characterization of the firm’s optimal incentive scheme will show more generally

how creating rank uncertainty can be beneficial to the firm, and how offering

discriminatory incentives becomes detrimental.

3. Model

We study a principal’s design of incentives for N agents tasked with working

on a common project. With some abuse of notation, let the set of agents be

N = {1, . . . , N}. Each agent i ∈ N can either work at cost ci > 0 or shirk. De-

pending on the agents’ work decisions, the project can either succeed or fail: the

production technology is given by P : 2N → [0, 1], where P (J) is the probability

that the project succeeds conditional on all agents i ∈ J working and all others

shirking. We make the following assumption on P :

breaking a collective decision into a product of many distinct decisions which are determined
at various stages of a deletion sequence. Similarly, our principal ensures work by breaking the
agents’ effort decisions into those of distinct types whose choices are determined at various
stages of a deletion sequence.
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Assumption 1. P is strictly increasing and strictly supermodular, i.e., for any

J, J ′ ⊆ N :

1. P (J) > P (J ′) if J ) J ′;

2. P (J ∪ J ′)− P (J) > P (J ′)− P (J ∩ J ′) if J, J ′ are not nested.

Part 1 says that effort is productive, that is, the project succeeds with higher

probability if more agents choose to work rather than shirk. Part 2 says that

efforts are complementary, that is, an agent’s marginal product (the marginal

effect of his effort on the probability of project success) is larger when more other

agents are working.

Agents’ work choices are private and only the project outcome—whether the

project succeeds or fails—is contractible. Additionally, agents are protected by

limited liability, requiring any payments from the principal to be nonnegative.

Without loss, the principal therefore only offers the agents success-contingent

bonuses, with project failure resulting in no payment to any agent. We allow the

principal’s bonus offers to be private. Formally, an incentive scheme is σ = 〈q, B〉,
where q ∈ ∆(NN) is a finite-support prior and B = (B1, . . . , BN) is a bonus

rule, with Bi : Supp(qi) → R+. For convenience, let T qi := Supp(qi) denote

the support of the marginal of q along dimension i and T q :=
∏

i∈N T
q
i . The

interpretation is that the principal privately informs each agent i ∈ N of his

type ti ∈ T qi and, through the bonus rule, of his success-contingent bonus Bi(ti).
9

Hence, an agent may face uncertainty about the contracts of other agents but

is completely informed about his own.10 The extent of the uncertainty depends

on the principal’s choice of q, specifically the correlation between agents’ types.

For example, agents face no uncertainty about other agents’ terms under public

contracting, i.e., if the prior q satisfies |{t−i : q(ti, t−i) > 0}| = 1 for every agent

9 An essentially equivalent formulation would have the principal choose a distribution over
bonus profiles directly. Our present formulation highlights that the principal separately chooses
an agent’s bonus and his information about others’ realized terms via his type. We restrict
attention to finite type spaces for notational simplicity, but the analysis is substantively the
same, and the principal’s optimal value identical, for more general common-prior type spaces.
Given the finite type restriction, since the type itself is simply a label, it is immaterial that
agents’ types are labeled with natural numbers.

10 This realistic assumption is not without loss. In Section 6, we show how results change
without it, i.e., when agent i’s bonus can be conditioned on the private contract of agent j.
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i ∈ N and type ti ∈ T qi .

An incentive scheme σ = 〈q, B〉 defines a Bayesian game between the agents. In

this game, 〈(T qi )i∈N , q〉 is a common-prior type space; each agent simultaneously

makes a type-contingent decision of whether to work or shirk; and an agent’s

payoff is equal to his expected bonus payment net of any cost of effort he bears.

An equilibrium induced by an incentive scheme is a Bayesian Nash equilibrium

of the Bayesian game defined by the scheme. The principal’s goal is to offer

a least-cost incentive scheme that ensures work, namely that induces all types

of all agents to work as the unique equilibrium. For expositional convenience

when dealing with indifferent agents, we require schemes to induce such a unique

equilibrium only once the bonus offers are increased by any positive amount.

More precisely, say that σ = 〈q, B〉 uniquely implements work (UIW) if,

for every ε > 0, all agent types working is the unique equilibrium of the game

induced by scheme 〈q, B + ε〉 (in which each type ti of agent i is offered bonus

Bi(ti) + ε).11 The principal then solves the following problem:

inf
σ UIW

W (σ), (1)

where W (σ) is the principal’s total expected cost given incentive scheme σ and

all agents working:

W (σ) = P (N)
∑
i∈N

∑
ti∈T q

i

qi(ti)Bi(ti).

It will follow from our results that the principal’s problem does not generally

admit a minimum. Hence, we will focus on approximately optimal incentive

schemes. Let W ∗ denote the principal’s optimal value, i.e., the value of program

(1). We define an optimal sequence of incentive schemes as a sequence

(σm)m such that each σm uniquely implements work and W (σm) converges to

W ∗ as m→∞.

A feature of approximately optimal incentive schemes in which we are par-

11 As will be clear, our characterization results in Theorem 1 and Theorem 2 would remain
true as stated if ε were replaced with 0 in this definition. Our solution concept corresponds to
that in Winter (2004) except that we have a Bayesian game as the principal’s offers are private.
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ticularly interested is the distribution of bonuses offered to each agent. Given

an incentive scheme σ = 〈q, B〉, let βσ ∈ ∆(RN
+ ) be the distribution of bonus

profiles, i.e., the finite-support distribution with12

βσ(b) := q {t ∈ T q : B1(t1) = b1, . . . , BN(tN) = bN} for all b ∈ RN
+ .

Given a sequence (σm)m of incentive schemes, β∗ ∈ ∆(RN
+ ) is the limit bonus

distribution of this sequence if it is the limit of the sequence (βσ
m

)m.13 Finally,

say β∗ is an optimal bonus distribution if it is the limit bonus distribution of an

optimal sequence of incentive schemes.

Remark 1. We focus our exposition around the principal inducing every agent

to work as the unique equilibrium. In our setting, this requirement is equivalent

to inducing every agent to work as the unique rationalizable outcome. This

follows from the fact that, given the supermodular technology P and the agents’

limited liability, the game played by the agents under any incentive scheme is a

supermodular game, and thus the results of Milgrom and Roberts (1990) apply.14

In particular, the strategy profile in which every agent type chooses his lowest

(i.e., least-work) interim correlated rationalizable action is an equilibrium, and if

this lowest rationalizable strategy profile does not consist of everybody working,

then it cannot be the unique equilibrium for everybody to work.

4. Optimal Incentives

We characterize optimal incentives by solving the principal’s problem in (1).

We proceed as follows. First, we show that it is without loss for the principal

to focus on a simple class of incentive schemes which we call ranking schemes.

12 Note that using this definition, the principal’s total expected cost in (1) can be written
as W (σ) = P (N)

∑
i∈N

∫
bi dβσi (bi), where βσi ∈ ∆(R+) is the marginal distribution over the

bonus offered to agent i.
13 Here, we take convergence in the weak* sense.
14 Milgrom and Roberts (1990) study games of complete information. To apply their results

to our setting, however, note that our game can be viewed in “agent form” by taking each of
the finitely many types of each agent as a distinct player. Interim correlated rationalizable play
in the induced Bayesian game is equivalent to correlated rationalizable play in the agent-form
game, and the latter is a game of strategic complements.
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Second, using the structure of ranking schemes, we derive an auxiliary optimiza-

tion program that fully characterizes the principal’s value of (1). Finally, we

show that this auxiliary program also characterizes the solution to (1), by pin-

ning down the limiting bonus distribution of an optimal sequence of incentive

schemes. We discuss the implications of optimal bonuses for pay discrimination.

4.1. Ranking Agents

It will be useful for our analysis to define a class of incentive schemes that we

call ranking schemes:

Definition 1. An incentive scheme σ = 〈q, B〉 is a ranking scheme if:

1. No two agents are assigned the same type. That is, for all i, j ∈ N ,

q{t ∈ T q : ti = tj} = 0 if i 6= j.

2. The bonus for each agent type makes him indifferent between working and

shirking given the belief that all other agents of lower type work and the rest

shirk. That is, for all i ∈ N and all ti ∈ T qi ,

Bi(ti)
∑
t−i

qi(t−i|ti)
[
P{j ∈ N : tj ≤ ti} − P{j ∈ N : tj < ti}

]
= ci.

Note that the bonuses in a ranking scheme σ = 〈q, B〉 are pinned down, given

the prior q, by the indifference conditions in part 2 of Definition 1. Thus, we will

sometimes refer to a ranking scheme simply by a distribution q over type profiles

(satisfying part 1 of Definition 1), with the understanding that the associated

bonus rule is as specified in this definition.

Ranking schemes have a simple structure. Under any such scheme σ = 〈q, B〉,
each type of every agent is indifferent over working if all (strictly) lower types

of other agents work and the rest do not. This means that under 〈q, B + ε〉, for

any ε > 0, each type strictly prefers to work if all lower types work and the rest

do not. Moreover, by supermodularity of P , working is then dominant for each

type given that at least all lower types work. It therefore follows, by induction on

the type, that any ranking scheme uniquely implements work: under 〈q, B + ε〉,
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the lowest type finds work dominant; the second lowest type finds work dominant

given that the lowest type works; the third lowest type finds work dominant given

that the lowest and second lowest types work; and so on.

The next lemma shows that ranking schemes are useful not only because they

ensure that all agents work, but because they can also be constructed to ensure

work at the least total cost to the principal. Hence, to solve the principal’s

problem in (1), it is without loss to focus on ranking schemes.

Lemma 1. Every ranking scheme uniquely implements work. Moreover, if an

incentive scheme σ uniquely implements work, then there is a ranking scheme σ∗

such that, for each agent i ∈ N , the marginal bonus distribution βσi first-order-

stochastically dominates βσ
∗

i . Hence, the principal’s optimal value satisfies

inf
σ UIW

W (σ) = inf
σ is a ranking scheme

W (σ).

For intuition, fix an incentive scheme σ = 〈q, B〉 that uniquely implements

work. We can construct a ranking scheme that (weakly) improves the principal’s

objective in three steps. First, we iteratively assign each type of each agent an

“index”: the index-1 types are those who find work weakly dominant; the index-2

types are those who find work weakly dominant given that index-1 types work;

the index-3 types are those who find work weakly dominant given that index-1

and index-2 types work; and so on. We observe that every type will be assigned

such an index, for otherwise one can construct an equilibrium for 〈q, B + ε〉, with

ε > 0 small enough, in which the unindexed types shirk. Second, we relabel types,

so that no two agents ever have the same type and, moreover, ti < tj whenever ti

has a strictly lower index than tj. We can then assign bonuses to relabeled types

as required by the definition of a ranking scheme, namely as specified in part 2 of

Definition 1. Third, we show that, by supermodularity of P , this adjustment to

the bonuses systematically (weakly) lowers each type’s bonus payment, thereby

first-order-stochastically reducing the bonus distribution.15 The resulting ranking

scheme reduces the principal’s total expected cost.

15 This reduction in bonuses for a given type could be due to slack in the original incentive
scheme given that lower index types work, or because relabeling changes the relevant incentive
constraint to one that assumes more other types are working.
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Agents’ incentives to work in a ranking scheme depend on the probability that

they assign to other agents having realized a lower type than their own. To make

these incentives precise, we introduce the following notation. Let Π denote the

set of all permutations on N , i.e., all π ∈ NN such that πi 6= πj for distinct

i, j ∈ N . For a type profile t with ti 6= tj for all i, j ∈ N , let the agent ranking

given t be π(t) ∈ Π with πi(t) = |{j ∈ N : tj ≤ ti}|. Then given a ranking

scheme q, agent i ∈ N , and type ti ∈ T qi , let ti’s ranking belief µqi (·|ti) ∈ ∆Π

be given by

µqi (π̂|ti) := qi

(
{t−i : π(ti, t−i) = π̂}

∣∣∣∣ ti) for all π̂ ∈ Π. (2)

Finally, let the ranking distribution µq ∈ ∆Π be given by

µq(π̂) := q ({t : π(t) = π̂}) for all π̂ ∈ Π.

For any agent i ∈ N and ranking belief µi ∈ ∆Π that he might hold, we can

compute explicitly the bonus payment required by this agent to work. Specifically,

if agent i believes that the set of other agents who work is J ⊆ N \ {i} with

probability µi{π ∈ Π : for all j ∈ N, πj < πi if and only if j ∈ J}, then the

success-contingent bonus that keeps him exactly indifferent between working and

shirking is equal to:

ci∑
π∈Π µi(π) [P{j ∈ N : πj ≤ πi} − P{j ∈ N : πj < πi}]

.

Moreover, since the principal makes the bonus payments only when the project

succeeds, and the probability of project success (given that work is uniquely

implemented) is equal to P (N), it follows that the principal’s expected bonus

payment to agent i, as a function of this agent’s interim ranking belief µi, is:

fi(µi) :=
ciP (N)∑

π∈Π µi(π) [P{j ∈ N : πj ≤ πi} − P{j ∈ N : πj < πi}]
. (3)

The function fi : ∆Π → R++ describes the expected fees associated with

providing incentives to agent i for any given ranking belief that he might hold.
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Note that since P is supermodular, an agent who believes himself to be placed

earlier (respectively, later) in the agent ranking on average will require higher

(respectively, lower) bonuses to be willing to work. We thus say that agents who

are placed earlier in the ranking are “higher-rank” agents.

4.2. Principal’s Value

By Lemma 1, it is without loss for the principal to restrict attention to ranking

schemes when solving for a least-cost incentive scheme that uniquely implements

work. Moreover, we have shown that given a ranking scheme q, the bonus offer

for type ti ∈ T qi of agent i ∈ N can be computed as 1
P (N)

fi (µ
q
i (·|ti)), where

the function fi is defined in (3) and µqi (·|ti) is ti’s ranking belief. Hence, the

principal’s total expected cost under ranking scheme q can be written as

W (q) =
∑

t∈T q , i∈N

q(t)fi (µ
q
i (·|ti)) . (4)

It is clear from this expression that the relevant choice for the principal is a pro-

file of distributions over ranking beliefs. However, the principal is constrained:

she cannot make an agent believe that he is placed later in the agent ranking

(thereby reducing his associated bonus) without making some other agent believe

that he is placed earlier. To incorporate this constraint, consider the following

interpretation of the principal’s problem. The principal first chooses an average

ranking distribution and then chooses an information structure for each agent

about the realized ranking—with the agent’s type corresponding to his signal.

Every ranking scheme naturally implies some selection of ranking distribution

and information structure, and it turns out that a certain converse also holds.

Specifically, the following theorem shows that providing no private information

about the ranking to any agent is optimal given a ranking distribution, and more-

over that this can be done for any desired ranking distribution. Therefore, the

principal’s problem can be recast as an unconstrained optimization over ranking

distributions themselves.
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Theorem 1. The principal’s optimal value satisfies

inf
σ UIW

W (σ) = min
µ∈∆Π

∑
i∈N

fi(µ).

Theorem 1 reduces the principal’s problem to choosing a ranking distribution,

as opposed to choosing a profile of distributions over ranking beliefs. This means

that it is optimal for the principal not to provide any information to the agents

about the realized ranking. The reason lies in the fact that the minimum bonus

payment required for an agent to work is convex in the agent’s belief about the

ranking distribution. Intuitively, since P is supermodular, an agent type who

believes himself to have a high rank (i.e., to be placed early in the agent ranking)

will have weak incentives to work. This implies that the principal will have to

offer him a large bonus, but also that she can obtain large savings from making

this type believe that his rank is relatively lower. On the contrary, an agent type

who believes himself to have a low rank will have strong incentives to work, so

the principal can make him believe that his rank is relatively higher and maintain

his incentives at a low cost. As a consequence, the principal will benefit from

equalizing the beliefs of different types of the same agent.

While convexity implies that giving agents no private information about the

ranking is optimal, it is a priori unclear whether some ranking scheme achieves

this, and moreover whether in this way the principal can achieve any ranking

distribution without restriction. The proof of Theorem 1 shows that this is in-

deed true. For any given desired distribution, we construct a sequence of rank-

ing schemes that approximates this distribution and gives agents no information

about their rank with probability approaching one.16

To understand our construction, it is instructive to specialize it to the two-

worker symmetric example of Section 2. Recall that in that example, we consid-

ered an incentive scheme that would uniquely implement work by making worker

2 uncertain about his rank. Specifically, worker 2 did not know whether worker 1

was offered a high bonus bH (making work dominant) or a low bonus bL (making

16 The type space induced by each such ranking scheme is essentially the same as one con-
structed in Oyama and Takahashi (2020). We thank an anonymous referee for bringing this to
our attention.
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work dominant only conditional on worker 2 also working), and worker 2’s bonus

bM would make him just willing to work for uniform beliefs about worker 1. Given

the assumption that the project would succeed for sure under both workers work-

ing, the principal’s value under this scheme was equal to bH+bL
2

+ bM . Theorem 1

however tells us that the principal can do better; in fact, her optimal value in

this simple setting is equal to 2bM .

We can approximate the principal’s optimal value by constructing a sequence

of ranking schemes that makes both workers uncertain about their rank. For

each m ∈ N, let the principal (privately) draw a random variable ` which is

uniform over {0, . . . ,m− 1}. Independent of ` and uniformly across the workers,

one worker is chosen to be the “leader” and the other to be the “follower”. The

leader is told that his type is `+ 1 and the follower is told that his type is `+ 2;

crucially, neither is told whether he is the leader or the follower. Consider a

worker’s ranking belief given his type in {1, . . . ,m + 1}: when his type is 1, he

knows he is the leader; when his type is m + 1, he knows he is the follower; and

for every other type, he assigns probability 1
2

to being the leader. Therefore, the

principal can uniquely implement work by specifying bonus bH for type 1, bonus

bL for type m+ 1, and bonus bM for every other type. As m becomes large, this

ranking scheme pays bonus bM to each worker with arbitrarily high probability,

thus approximating the principal’s optimal value in Theorem 1.17

4.3. Bonus Distribution and (No-)Discrimination

We have shown that the principal’s optimal value can be characterized via the

auxiliary optimization over ranking distributions given in Theorem 1. We now

show that this auxiliary program also permits a characterization of optimal in-

centives. The following theorem fully characterizes optimal sequences of incentive

schemes, by characterizing the limiting bonus distributions they generate.

17 In this construction, only one low-probability type of each agent is paid enough to make
work dominant. Thus, the principal’s ability to offer different bonuses to different types, in
contrast to the principal of Moriya and Yamashita (2020), is strictly valuable.
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Theorem 2. There is a unique bonus profile b∗ ∈ RN which minimizes
∑

i∈N bi

among all

b ∈
{

1
P (N)

(f1(µ), . . . , fN(µ)) : µ ∈ ∆Π
}
.

Furthermore, a sequence (σm)m of incentive schemes that uniquely implement

work is optimal if and only if, for every i ∈ N , the induced bonus distribution of

agent i under σm converges to a degenerate distribution on b∗i .

The proof of Theorem 2 makes use of the fact that the function fi(µi), which

describes the cost of incentivizing agent i ∈ N as a function of his ranking

belief, is a strictly convex transformation of an affine, scalar-valued function.

Thus, for every i ∈ N and finite-support distribution τi ∈ ∆∆Π, we obtain∫
fi dτi ≥ fi

(∫
µi dτi(µi)

)
, with a strict inequality if τi induces a nondegener-

ate distribution of fi. This allows us to show that
∑

i∈N fi(µ) admits a unique

minimizing payment profile (fi(µ))i∈N over all µ ∈ ∆Π, and that, given an opti-

mal sequence (qm)m of ranking schemes, any limit point of the implied sequence

(τmi )m induces a degenerate distribution of fi for every i ∈ N . Combining these

together with Lemma 1 and Theorem 1 yields Theorem 2.

The result in Theorem 2 shows that optimal incentive contracts are (approxi-

mately) unique, with agents’ bonus payments being a continuous function of the

parameters of the model.18 It is worth noting that both of these features stand in

contrast with the results of Winter (2004). In a setting in which the principal’s

contract offers are constrained to be public, Winter (2004) finds that the optimal

incentive scheme may be arbitrary (for example, when all agents are symmetric),

and so agents’ payments may change discontinuously with the model parame-

ters (for example, when agents become slightly asymmetric). Instead, allowing

contract offers to be private delivers a unique and well-behaved solution.

Theorem 2 tells us that, for some parameter values, the principal benefits

strictly from being able to contract privately with the agents. In particular, we

will show in the next section that the unique optimal incentive scheme features

rank uncertainty whenever the agents are not too asymmetric. Before turning

18 Berge’s theorem implies that optimal ranking distributions (as in Theorem 1) move upper
hemicontinuously with the model’s parameters. The uniqueness result of Theorem 2 then
implies optimal bonuses are a continuous function of said parameters.
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to those results, we highlight here the implications of Theorem 2 for the case of

symmetric agents. We say that agents i, j ∈ N are symmetric if they have the

same effort cost and marginal product, i.e., ci = cj and P (J ∪ {i}) = P (J ∪ {j})
for each J ⊆ N \ {i, j}. The next corollary follows directly from Theorem 2:

Corollary 1. Suppose agents i, j ∈ N are symmetric. If a sequence (σm)m of in-

centives schemes that uniquely implement work is optimal, then the induced bonus

distributions of agents i and j under σm converge to degenerate distributions on

bonuses b∗i and b∗j with b∗i = b∗j .

The principal’s optimal incentive scheme treats symmetric agents symmetri-

cally. Importantly, Corollary 1 says that pay discrimination is not just unneces-

sary but strictly suboptimal for the principal. Any two symmetric agents receive

the same bonus offer, and they are thus also faced with the same uncertainty

about their ranks. For example, if all the agents are symmetric, then an optimal

incentive scheme induces uniform beliefs over all possible agent rankings, so that

the limiting bonus is b∗i := 1
P (N)

f1(µ!) for all i ∈ N , where µ! ∈ ∆Π is uniform.

As discussed in the Introduction, these findings provide a key counterpoint to

Winter’s (2004) seminal discrimination result. When the principal’s contract of-

fers are public, Winter (2004) finds that any optimal incentive scheme must treat

all agents differently. Such a scheme discriminates between symmetric agents in

an arbitrary way (at least ex post) and it treats nearly symmetric agents dispro-

portionally differently (both ex ante and ex post). Intuitively, as in our setting,

the principal uses a ranking scheme to uniquely induce the agents to work. How-

ever, under public contracts, the agent ranking must be transparent, and it must

thus be accompanied by a hierarchy of bonuses: the first agent in the ranking

is offered the highest bonus so that working is dominant; the second agent is

offered the second highest bonus so that working is dominant knowing that the

first agent works; and so on.

Theorem 2 and Corollary 1 show that this logic breaks down when the prin-

cipal can contract privately with the agents. By announcing only a ranking

distribution, the principal can make each agent assign positive probability to

other agents working, thereby providing each of them with some assurance that

others will work instead of building this assurance hierarchically as under public
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contracts above. We find that when agents are symmetric, the principal indeed

minimizes bonus payments by building assurance symmetrically. The reason is

that agents’ incentives to work increase at a decreasing rate with their beliefs that

other agents will work, so the principal wishes to increase the beliefs of precisely

those agents who are most pessimistic. As a consequence, the optimal incentive

scheme makes symmetric agents hold the same belief about their rank and, in

turn, require the same bonus payment to work.

By reducing the average total payment from the principal to implement the

same effort profile, allowing for rank uncertainty also reduces the sum of utilities

faced by the agents relative to the case of public contracting. We should note,

however, that this conclusion is sensitive to the details of our model as stated,

in particular that agents are risk neutral. Indeed, if agents were risk averse over

money, then (suitably modifying each fi) a nearly identical analysis would re-

produce the results of this section. In this case, if all agents are symmetric,

then optimal incentive schemes can in fact be strictly better for the agents (in

the sense of utilitarian welfare) than an optimal public-contracts scheme. Intu-

itively, agents face no risk or dispersion in pay (given Corollary 1) for a successful

project, whereas the public-contracts case causes harmful dispersion in pay be-

tween agents.

5. Rank Uncertainty and Comparative Statics

In this section, we study the optimal degree of rank uncertainty and the com-

parative statics of optimal contracts. We have seen in Subsection 4.3 that if

agents are symmetric, then the principal offers them the same bonus payments

while making them completely uncertain about their ranks. How does the princi-

pal’s optimal incentive scheme change if agents become asymmetric? Is it always

beneficial to induce rank uncertainty? How do optimal bonuses depend on agents’

characteristics?

To address these questions, we focus on asymmetries in agents’ costs of effort

and take a production technology that is symmetric across the agents. Specifi-

cally, let the production function satisfy P (J) = P{1, . . . , |J |} for each J ⊆ N ,

so the probability of project success depends only on how many agents work and
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not on their identities. Mildly abusing notation, let P (k) := P{1, . . . , k} for

each k ∈ {1, . . . , N} and P (0) := P (∅). With the only remaining heterogeneity

being in the agents’ costs of effort, we index the agents according to these costs:

c1 ≤ . . . ≤ cN . In what follows, we refer to this case as symmetric production.

A symmetric production function simplifies the description of the principal’s

optimal incentive scheme. Recall that, by our previous results, this scheme is

associated with an optimal ranking distribution µ that minimizes the principal’s

cost of providing incentives,
∑

i∈N fi(µ). With symmetric production, any rank-

ing belief µi ∈ ∆Π of agent i ∈ N can be identified with a vector (µij)j∈N , where

µij is the probability that agent i is rank j. In turn, any ranking distribution

can be described by a doubly stochastic matrix (µij)i,j∈N , namely a matrix of

probabilities each of whose rows and columns sums to 1.19 (The latter property

reflects the principal’s constraint that each agent must be assigned to some rank

and each rank to some agent.) With some abuse of notation, we will denote the

matrix (µij)i,j∈N simply by µ and refer to it as a ranking matrix. Using these

objects, consider the following definitions:

Definition 2. Given symmetric production and ranking matrix µ, say:

1. Agent i is ranked higher than i′ if µi′j > 0 =⇒ µij′ = 0 for all j′ ≥ j.

2. There is rank uncertainty if there exist distinct agents i, i′ ∈ N such that

neither is ranked higher than the other.

3. There is complete rank uncertainty over S ⊆ N if each bijection π̃ : S →
{1, . . . , |S|} has j1 < . . . < j|S| such that µ̃π−1(1) j1 , . . . , µ̃π−1(|S|) j|S| > 0.

An agent is ranked higher than another under a ranking distribution µ if it is

certain from their respective rank distributions that he is assigned to a strictly

higher rank (recall that higher ranks are represented by lower rank indices).

Accordingly, a ranking distribution µ exhibits rank uncertainty if not all pairs of

agents are ranked under µ. Finally, µ exhibits complete rank uncertainty over

a set S ⊆ N if no ranking among the agents in this set can be ruled out. The

next result describes the kind of rank uncertainty associated with the principal’s

optimal incentive scheme.

19 Conversely, every doubly stochastic matrix is induced by some ranking distribution by the
Birkhoff-von Neumann theorem.
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Proposition 1. Given symmetric production, there is a weak order % on N such

that (1) if i � i′, then every optimal ranking distribution ranks agent i higher than

agent i′; and (2) an optimal ranking distribution exists which induces complete

rank uncertainty over each ∼ equivalence class. Moreover, ci < ci′ if i � i′.

Proposition 1 says that for any two agents, either the lower-cost agent is ranked

higher than the higher-cost agent in any optimum, or there exists an optimal

ranking distribution in which the two agents belong to a set exhibiting complete

rank uncertainty. Importantly, recall that agents face this uncertainty not only

ex ante but also interim, as they learn minimal payoff-relevant information about

others from their own contract offers.

To prove Proposition 1, we consider an optimal ranking matrix, call it µ∗,

with the smallest number of zero entries. Observe that every optimal ranking

matrix must have a set of zero entries that contains that of µ∗ because the set

of optimal ranking matrices is convex. We then establish the result by proving

that µ∗ is a block diagonal matrix with strictly positive blocks (i.e., inducing

complete rank uncertainty over each block). The blocks of µ∗ correspond to the

equivalence classes under % in the statement of Proposition 1, and thus the order

% satisfies ci < ci′ for any agents i � i′. To see the logic for the latter, consider

the principal’s cost of providing incentives under ranking matrix µ:∑
i∈N

fi(µ) = P (N)
∑
i∈N

ci∑N
j=1 µij [P (j)− P (j − 1)]

. (5)

By supermodularity of P , being assigned to lower ranks increases an agent i’s

expected contribution to project success,
∑N

j=1 µij [P (j)− P (j − 1)]. Since the

fee fi(µ) required to incentivize an agent i is strictly submodular in this expected

contribution and ci, it follows from (5) that ranking i′ lower than i can only

be optimal if ci < ci′ . That is, the principal optimally assigns lower ranks to

higher-cost agents in order to relax their more demanding incentive constraints.

In the Online Appendix, we solve explicitly for the order % described in Propo-

sition 1, thus fully characterizing the degree of rank uncertainty that is optimal

for the principal.20 The order % can be derived from the principal’s first-order

20 See ?? in the proof of Proposition 2. While Proposition 1 says that % captures the degree of
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conditions and reflects an intuitive tradeoff. On the one hand, because agents’

incentives to work increase at a decreasing rate with their beliefs about other

agents’ work, the principal benefits from reducing differences in agents’ beliefs.

This is the force that leads to complete rank uncertainty when agents are sym-

metric, and which calls here for agents to be grouped into the same equivalence

class. On the other hand, because higher-cost agents have lower incentives to

work for any given belief about other agents’ work, the principal benefits from

assigning them more optimistic beliefs. As discussed above, this force calls for

higher-cost agents to be assigned to a lower-ranked class.

The implication of this tradeoff is that the optimality of rank uncertainty

depends on how symmetric agents’ costs are, as summarized by the conditions in

the next proposition:

Proposition 2. Given symmetric production:

1. Every optimal ranking distribution exhibits rank uncertainty if and only if

P (i+ 1)− P (i)
√
ci+1

>
P (i)− P (i− 1)

√
ci

for some i ∈ {1, . . . , N − 1}. (6)

2. There exists an optimal ranking distribution that exhibits complete rank

uncertainty over the whole set N of agents if and only if

P (N)− P (0)∑N
i=1

√
ci

>
P (n)− P (0)∑n

i=1

√
ci

for all n ∈ {1, . . . , N − 1}. (7)

Condition (6) in the first part of the proposition says that rank uncertainty

is strictly optimal if and only if there is a pair of agents who are sufficiently

symmetric. Note that, by our previous results, a ranking distribution with no

rank uncertainty would assign any two agents i and i + 1 to ranks i and i + 1

respectively. But if (6) holds, then the principal could strictly reduce her total

cost in (5) by introducing uncertainty over the ranking of agents i and i + 1,

rank uncertainty in some optimum (and provides limits on it for all optima), one may wonder
whether % indeed fully characterizes the degree of rank uncertainty in all optimal ranking
distributions. We address this issue in ?? in the proof of Proposition 2: we show that, if µ is
any optimal ranking matrix, then % is the finest weak order of the agents such that µ ranks
each agent i higher than i′ whenever the order does.
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namely assigning them to ranks i+ 1 and i respectively with positive probability.

Condition (7) in the second part of Proposition 2 follows in a similar manner,

showing that complete rank uncertainty over the whole set of agents is optimal

if and only if all agents are symmetric enough.

Naturally, asymmetries in agents’ effort costs affect not only the optimal rank-

ing distribution but also the optimal profile of bonuses. From Corollary 1, we

know that the principal pays identical bonuses to any two agents who are sym-

metric. Suppose instead that the agents have different effort costs. Will the

higher-cost agent receive a larger or a smaller bonus than the lower-cost agent?

On the one hand, fixing an agent’s ranking belief, a higher cost requires a larger

bonus to incentivize the agent’s effort. On the other hand, as discussed above,

the principal optimally tailors ranking beliefs in order to relax the incentive con-

straints and thus reduce the bonus payments of higher-cost agents.

A priori, it is thus unclear how an agent’s optimal bonus changes with his

cost of effort. In fact, in the setting of Winter (2004) where contracts are public

and thus all agents are ranked, the relationship is non-monotonic: increasing

an agent’s effort cost can first lead to a reduction of the agent’s bonus as the

principal lowers his rank, while subsequently leading to an increase of the agent’s

bonus as his incentive constraint continues to tighten. In our setting with private

contracts, in contrast, changes in agents’ ranks are “smoothed out” by rank

uncertainty, and we can show as a result that the relationship is monotonic:

agent i’s optimal bonus b∗i increases with his cost ci. At the same time, since the

principal assigns more optimistic ranking beliefs to higher-cost agents relative to

lower-cost agents, we also find that agent i’s markup b∗i /ci decreases with his cost

ci, whereas both his bonus and markup increase with the cost cj of other agents

j 6= i.21

21 As illustrated in the example of Figure 1 below, b∗i /ci decreases strictly when ci increases
unless i is in a ∼ equivalence class by himself before and after the change, and b∗i and b∗i /ci
increase strictly when cj increases unless i and j are in different ∼ equivalence classes before
and after the change. Our proof of Proposition 3 in the Online Appendix solves for the agents’
optimal bonuses in closed form. The explicit formula that we derive, and the arguments sup-
porting it, are adapted from those used in Rappoport (2020) to construct a receiver-optimal
equilibrium in a verifiable disclosure setting.
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Proposition 3. Take symmetric production, and let b∗ be the unique optimal

limiting bonus profile. For each i ∈ N , agent i’s bonus b∗i is strictly increasing in

his effort cost ci, while his markup b∗i /ci is decreasing in ci. Agent i’s bonus b∗i

and markup b∗i /ci are both increasing in the effort cost cj of any agent j 6= i.

Figure 1 provides an illustration of the results presented in this section. We

take the two-worker setting of Section 2 but allow for asymmetric costs of effort.

The horizontal axis in each panel depicts the cost c2 of worker 2, with the cost

of worker 1 fixed at c1 = 1. The vertical axis shows the workers’ optimal ranking

beliefs µ12 and µ22 in the top panel, their optimal bonuses b1 and b2 in the middle

panel, and their resulting markups b1/c1 and b2/c2 in the bottom panel. We

see that the workers are assigned uniform beliefs and offered equal bonuses and

markups when they are symmetric. As worker 2’s effort cost c2 increases, the

principal increases his bonus as well his ranking belief, thus lowering the ranking

belief of worker 1. Consequently, the principal must also increase worker 1’s

bonus and thus his markup, whereas worker 2’s markup goes down. As long as

the difference in workers’ costs remains small enough, inducing rank uncertainty

remains optimal, with workers’ beliefs interior and their bonuses increasing in

c2. It is only when c2 becomes significantly higher than c1 that the principal

benefits from ranking the workers; further increases in c2 then no longer affect

ranking beliefs, so worker 2’s bonus increases proportionally with c2 while worker

1’s bonus and both workers’ markups stay constant.

Overall, our model predicts an organizational hierarchy determined by workers’

effort costs or skill. Similarly-skilled workers are assigned to the same hierarchical

level, with uncertainty about their relative positions and with their pay changing

with their relative skills. Instead, workers of sufficiently higher skill are publicly

assigned to higher hierarchical levels and have their pay unaffected by those

in lower levels. Throughout, the firm rewards higher-skilled workers with higher

markups; these rents ensure that they are willing to work no matter what workers

of lower skill do, and in turn that lower-skilled workers are also willing to work

despite their lower markups.
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(*bonus as a function of cost 2*)
c1 = 1;
p = .5;

PlotPiecewisec2 / (p (1 - p)), c2  c1 < p, c2 + c2 c1   (1 - p^2),

1 / p > c2  c1 > p, c2 / (1 - p), 1 / p < c2  c1 ,

Piecewisec1 / (p (1 - p)), c1  c2 < p, c1 + c1 c2   (1 - p^2),

1 / p > c1  c2 > p, c1 / (1 - p), 1 / p < c1  c2 , {c2, 0, 5}

(*ranking belief as a function of cost 2*)
c1 = 1;
p = .5;

PlotPiecewise0, c2  c1 < p, 
- c2 + c1 p

 c2 + c1  (-1 + p)
, 1 / p > c2  c1 > p,

1, 1 / p < c2  c1 , Piecewise0, c1  c2 < p, 
- c1 + c2 p

 c1 + c2  (-1 + p)
,

1 / p > c1  c2 > p, 1, 1 / p < c1  c2 , {c2, 0, 5}

(*two successes figure*)
q = .8;
p = .3;
Plot[Min[1 / (b (q - p) / q + (1 - b) (p / q (q - p) / q)),

1 / (b ((1 + q - p) / (1 + q)) + (1 - b) (p / (1 + q)))], {b, 0, 1}]

RankUncertainty

μ12

μ22

c1 = 1

1 2 3 4 5
c2

0.2

0.4

0.6

0.8

1.0
μ

b2

b1

c1 = 1

RankUncertainty

1 2 3 4 5
c2

2

4

6

8

10
Bonus

μ *

Partial Full

fi(μ)

0.2 0.4 0.6 0.8 1.0
Ranking

Bonus

2     proofrank1.nb

RankUncertainty

b1
c1

b2
c2c1 = 1

1 2 3 4 5
c2

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Markup

(*two successes figure*)
q = .8;
p = .3;
Plot[Min[1 / (b (q - p) / q + (1 - b) (p / q (q - p) / q)),

1 / (b ((1 + q - p) / (1 + q)) + (1 - b) (p / (1 + q)))], {b, 0, 1}]
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Figure 1: Optimal ranking beliefs, bonuses, and markups as a function of effort costs.

The figure is drawn for the two-worker setup of Section 2 with p = 0.5, c1 = 1, and c2

varying from 0 to 5.
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6. Discussion

In this section, we briefly describe some ways in which our model can be

enriched, point to how the analysis changes, and identify some open questions.

Information sharing. Our analysis, and the possibility of rank uncertainty

and its benefits, relies on the principal’s ability to withhold information from one

agent about another agent’s contract terms. A natural question, then, is how

robust the principal’s scheme is to agents being able to share this information. It

turns out that the possibility of information sharing can completely undermine

the principal’s ability to leverage rank uncertainty.

To see this, let us restrict attention to the case of symmetric production and

suppose that the agents have the option to verifiably disclose their type to other

agents before effort choices are made. Given an incentive scheme σ = 〈q, B〉, we

claim there is a perfect Bayesian equilibrium in which all agents disclose their

types, and the lowest-effort equilibrium of the associated complete-information

game (which exists and is in pure strategies) is played thereafter.22 For any

t ∈ T q, let J(t) be the set of agents who work in said equilibrium of the in-

duced complete-information game. Additionally, for each i ∈ N and type pro-

file t−i of agents other than i, let t∗i (t−i) ∈ T qi be chosen to minimize the ef-

fort of such agents in the complete-information game for (t∗i , t−i); that is, let

t∗i (t−i) ∈ arg minti∈T q
i
|J(t) \ {i}| . We can then construct an equilibrium in which,

whenever an agent i fails to disclose his type, all other agents believe that agent

i’s type is t∗i (t−i), therefore punishing him for nondisclosure.

More precisely, consider the following strategy profile. Every agent discloses

his type, and then exactly the agents in J(t) work if type profile t was disclosed.

If everybody but one agent i discloses his type, then all disclosing agents believe

that agent i’s type is t∗i (t−i), and exactly the agents in J (t∗i (t−i), t−i) work. If

any larger group of agents fail to disclose, let agents’ beliefs about the types of

non-disclosing agents and resulting continuation equilibrium be arbitrary. It is

22 Although we cannot directly apply their result here, this constructive argument is similar
to that in Theorem 1 of Hagenbach, Koessler and Perez-Richet (2014) in the special case where
all types share the same worst-case belief.
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straightforward that this profile constitutes an equilibrium, and that this equi-

librium generates a payoff for the principal that she could have attained by using

public contracts.

In sum, we find that if agents can voluntarily, verifiably disclose their contracts

to other agents, the principal cannot hope to outperform the public-contracts

benchmark studied by Winter (2004). As noted in the Introduction, this anal-

ysis may help explain why, in reality, firms insist that employees do not share

their contractual terms with each other, often formally prohibiting them from

discussing any salary information and punishing those who do so.

Strategic substitutability. While complementarities are a natural feature of

team production, some substitutability might exist, either due to congestion costs

or because some aspects of production may only require the efforts of a small

number of workers. If such substitutability overwhelms any complementarity

so that P is submodular, then our principal’s problem is simple: making it an

equilibrium for all agents to work necessitates making it dominant for all agents

to work, because the case that all other agents are working is the worst-case belief

for an agent’s own marginal product. In particular, in this case, there is then no

scope for beneficial rank uncertainty.

But what if, as seems more realistic when there are many agents, P is neither

supermodular nor submodular? In this case, an analysis nearly identical to ours

can be used to study the least-cost way to incentivize work from every agent as

a unique (interim correlated) rationalizable choice. The main difference in the

analysis is that an agent who knows that a subset J of other agents is working

may suspect that even more other agents are working, and this can make him

even more pessimistic about his own marginal product. To take this possibility

into account, for each J ⊆ N and i ∈ N \ J , let

mi(J) := min
{
P
(
Ĵ ∪ {i}

)
− P (Ĵ) : J ⊆ Ĵ ⊆ N \ {i}

}
denote the minimum marginal product that agent i can entertain given that

all agents j ∈ J work.23 With this worst-case marginal product in hand, the

23 Clearly, a minimizing Ĵ in the definition of mi(J) is simply equal to J itself (respectively,
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rest of our analysis extends readily. Specifically, redefining the cost of providing

incentives to agent i (given by (3) in our analysis) via

fi(µi) :=
ciP (N)∑

π∈Π µi(π)mi ({j ∈ N : πj < πi})
,

all of our main results go through as stated.

At this stage, it remains an open question whether the principal can more

cheaply incentivize all agents to work as a unique equilibrium instead of a unique

rationalizable choice. The reason is that different types of a given agent might

have their worst-case beliefs generated by different strategies for other agents.

This means that the principal may be able to implement work as a unique equilib-

rium at a lower cost, but also that one cannot optimize agents’ bonuses separably

across their types, making the analysis more delicate.

Grades of success. In our model, agents work on a project which can only

either succeed or fail. In reality, however, projects may yield different grades of

success, and the principal may in turn want to pay the agents following different

success outcomes. We find that a complete characterization of the principal’s

optimal incentive scheme can become more difficult in such a setting. The main

reason is that the principal may now benefit from providing agents with private

information about their realized ranking, unlike in our baseline model.

To illustrate, consider a simple setting with two symmetric agents. Suppose

each agent chooses whether or not to work on an individual task as in our example

of Section 2, but now working results in partial completion of the task with

probability q ∈ (0, 1) and full completion with probability 1−q, whereas shirking

results in partial completion with probability p ∈ (0, q) and no completion with

probability 1−p. Assume the project outcome is failure if either one or both tasks

are not completed, partial success if the two tasks are only partially completed,

and full success in the remaining cases. Table 1 shows the resulting probabilities

of partial and full success as a function of the number of agents working.

Observe that the probabilities of partial and full success are each strictly in-

creasing and strictly supermodular in the set of agents who work. Hence, as in

N \ {i}) in the case in which P is supermodular (respectively, submodular).
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# working partial full

2 q2 1− q2

1 pq p(1− q)
0 p2 0

Table 1: Probabilities of partial and full success in grades of success example.

our baseline model, failure is indicative of shirking and will never merit a positive

bonus from the principal. Furthermore, given that and for any subset of agent

types that an agent is certain are working, the agent’s worst-case belief is the

one that takes all other agent types to be shirking. This means that it remains

without loss of optimality for the principal to focus on ranking schemes, as in

our baseline model, albeit with suitably modified bonus payments. Specifically,

let Ps(k) denote the probability of success level s ∈ {partial, full} when k agents

work, and denote by µi ∈ [0, 1] an agent’s worst-case belief that the other agent

is working. Then we redefine

fi(µi) =
c

maxs∈{partial, full}
µi[Ps(2)−Ps(1)]+(1−µi)[Ps(1)−Ps(0)]

Ps(2)

. (8)

As shown by the denominator on the right-hand side, given an agent’s ranking

belief µi, the principal will benefit from rewarding the agent based on the success

outcome for which he has the highest expected contribution to success scaled

by its probability of occurring (in the uniquely implemented work equilibrium).

Note that if an agent is certain that the other agent is working (i.e., µi = 1), this

success outcome is full success, since [1− q2 − p(1− q)]/(1− q2) > (q2 − pq)/q2.

Assume instead that if an agent takes the other agent to be shirking (i.e., µi = 0),

then this success outcome is partial success; that is, assume p(1− q)/(1− q2) <

(pq−p2)/q2.24 This means that there is a belief µ∗ ∈ (0, 1) such that the principal

will want to reward a partial success for µi < µ∗ and a full success for µi > µ∗.

Figure 2 shows the resulting shape of the minimum payment function fi. As

in our baseline model, increasing an agent’s expected contribution to project

24 This inequality is equivalent to q > p(1 + q), which will clearly hold if p is small enough,
that is, if effort is sufficiently important in achieving partial success.
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success allows the principal to reduce his bonus payment at a decreasing rate;

that is, fi(µi) is convex in the expected contribution induced by µi. However,

when multiple success outcomes are rewarded, the agent’s expected contribution

to success can be nonlinear in the ranking belief. In this example, this occurs at

µ∗, where the principal switches from paying for partial success to paying for full

success. As a result, we obtain that fi(µi) is convex in µi on each side of µ∗ but

exhibits a concave kink at µ∗.
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Figure 2: Non-convex minimum payment function in grades of success example. The

figure depicts fi(µi) in equation (8) with c = 1 and the probabilities in Table 1 for

q = 0.8 and p = 0.3.

The concave kink in the function fi implies that Theorem 1 no longer applies.

Instead, we can prove an analog to the result where we replace fi with its convex

envelope.25 The interpretation is that the principal might now find it optimal to

provide agents with private information about their ranks. As a consequence, the

optimal incentive scheme becomes more complicated to characterize. Naturally,

introducing rank uncertainty will remain strictly optimal for the principal under

some parameter values. In fact, in this simple example, this will be the case

unless the kink at µ∗ is severe enough that the convex envelope of fi is linear.

Interdependent contracting. In our model, an incentive scheme is required

to make each agent’s success-contingent bonus a function solely of his own type.

25 In our problem, what matters for the principal’s cost of providing incentives is each agent’s
marginal distribution over ranking beliefs. This follows from additivity as in equation (4).
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This modeling choice reflects a realistic feature of employees’ contracts, namely

that they are perfectly informed of the terms of their own employment. However,

in settings in which bonuses are of a discretionary nature, it is conceivable that

agents face uncertainty about their own pay.26 We study here how allowing each

agent’s bonus to depend on the entire profile of agent types changes our results.

Let an incentive scheme σ = 〈q, B〉 specify a finite-support prior q ∈ ∆(NN)

and a bonus rule B = (B1, . . . , BN) as in our baseline model, but where the bonus

for each agent i ∈ N is now Bi(t), i.e. a function not only of agent i’s type ti ∈ T qi
but of the entire type profile t ∈ T q. We begin by noting that this distinction

is immaterial if the principal only wants to implement every agent working as

some equilibrium. Such an equilibrium requires that, conditional on all other

agent types working, each agent prefer to work whatever his type than to shirk

whatever his type: his average success-contingent bonus must be at least∑
t∈T q

q(t)Bi(t) ≥ ci
P (N)−P (N\{i}) =: bLi .

Clearly, publicly offering a bonus bLi to each agent yields every agent working as

an equilibrium, so the possibility of making agents uncertain about other agents’

or their own contract terms does not matter for this design problem.

But what if, as motivates our study, the principal wishes to implement every

agent working as a unique equilibrium? Of course, she can do no better than

having to pay only P (N)bLi on average to each agent i ∈ N . We next show that

when agents’ bonuses can depend on the entire type profile, the principal can, in

fact, approximate this theoretical bound arbitrarily well.

For given γ ∈ (0, 1), consider the following incentive scheme. Each agent i ∈ N
is assigned type ti = 1 with probability γ and type ti = 2 with probability 1− γ,

26 Other work has highlighted potential benefits to subjecting a worker to opaque incentives.
For example, the benefits of such opacity have been studied in the context of multidimensional
decision making (Jehiel, 2015; Ederer, Holden and Meyer, 2018).
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independent across agents. The type profile-contingent bonus rule is given by

Bi(t) :=


ci

P{i}−P (∅) : ti = 1,

1
γN−1 · bLi : ti = 2 and tj = 1 for all j ∈ N \ {i},

0 : otherwise.

Observe that this scheme uniquely implements work: a type-1 agent finds it

dominant to work, and a type-2 agent wants to work given that all other agents

work when assigned type 1 (since the probability that all others are type 1 is

γN−1). Furthermore, the expected payment to each agent i ∈ N is

P (N)
[
γ · ci

P{i}−P (∅) + (1− γ)γN−1 · 1
γN−1 b

L
i

]
,

which converges to P (N)bLi as γ → 0.

We thus find that if the principal is not required to inform agents of their own

contractual terms, then she can implement work while excluding other equilibria

at no extra cost. Allowing for contracts to be private in this (possibly unrealis-

tically) stronger sense makes the unique implementation requirement essentially

lose all of its bite.27
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A. Proofs for Section 4

This Appendix provides proofs for the results in Section 4. See the Online

Appendix for proofs of the results in Section 5.
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A.1. Proof of Lemma 1

We begin by proving the first part, namely that every ranking scheme uniquely

implements work. Fix a ranking scheme q and an ε > 0. Consider an arbitrary

Bayesian Nash equilibrium of the Bayesian game induced by 〈q, B + ε〉. By def-

inition of a ranking scheme, every type ti of every agent i ∈ N has work as his

unique best response given bonus

ci∑
t−i
qi(t−i|ti) [P{j ∈ N : tj ≤ ti} − P{j ∈ N : tj < ti}]

+ ε

if exactly all strictly lower types of other agents do, and so, by supermodularity

of P , if at least all strictly lower types do. Therefore, it follows by induction on

the type that each type ti of every agent i ∈ N works in the equilibrium.

We next prove the second part of the lemma. Fix an incentive scheme σ =

〈q, B〉 that uniquely implements work. We proceed in three steps.

Step 1. We assign each agent type ti a finite index ki(ti), which will represent

the stage at which shirking is eliminated for said type under iterated deletion of

weakly dominated strategies. Formally, ki : T qi → N∪{∞} (for i ∈ N) is defined

as follows. Let T qi (0) := ∅, and then, recursively for κ ∈ N, let T qi (κ) be the set

of all ti ∈ T qi such that

Bi(ti)
∑
t−i

qi(t−i|ti)
[
P
(
{j ∈ N : tj ∈ T qj (κ− 1)} ∪ {i}

)
−P

(
{j ∈ N : tj ∈ T qj (κ− 1)} \ {i}

) ] ≥ ci.

Define ki(ti) := inf{κ ∈ N : ti ∈ T qi (κ)} for each i ∈ N and ti ∈ T qi .

Assume, for a contradiction, that some type of some agent has index equal

to ∞. As T q is finite, there is some κ ∈ N strictly higher than everything in⋃
i∈N ki(T

q
i ) \ {∞}. Now, for each agent i ∈ N and each type ti ∈ T qi with

ki(ti) =∞, that ki(ti) > κ implies

εi(ti) := ci −Bi(ti)
∑
t−i

qi(t−i|ti)
[
P ({j ∈ N : kj(tj) <∞} ∪ {i})
−P ({j ∈ N : kj(tj) <∞} \ {i})

]
> 0.

Letting ε := min{εi(ti) : i ∈ N, ti ∈ T qi has ki(ti) = ∞} > 0, observe that
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the Bayesian game induced by prior q and bonuses Bi + ε has a Bayesian Nash

equilibrium in which each agent i of type ti works if ki(ti) < ∞ and shirks

if ki(ti) = ∞. Indeed, the best response property for type ti follows directly

from the definition of ki(ti) when ki(ti) < ∞, and it follows additionally from

the definition of ε when ki(ti) =∞. We have thus constructed a Bayesian Nash

equilibrium of the Bayesian game induced by 〈q, B + ε〉 in which some type shirks,

contradicting the hypothesis that σ uniquely implements work. Thus, every type

is assigned a finite index.

Step 2. Using the indices from Step 1, we construct a ranking scheme σ∗ =

〈q∗, B∗〉 from the original scheme σ = 〈q, B〉. First, we relabel types so that

higher indices always correspond to higher types. That is, we construct a one-to-

one function

λ :
⋃
i∈N

[{i} × T qi ]→ N

such that, for any i, j ∈ N and ti ∈ T qi , tj ∈ T σj with ki(ti) > kj(tj), we have

λ(i, ti) > λ(j, tj)—and hence a given type’s perceived probability of other agents’

types having a lower image under λ is at least as high as the probability of said

agents having shirk eliminated sooner under iterated deletion.28 Then, using this

function, construct the incentive scheme σ∗ = 〈q∗, B∗〉 as follows. Let the prior

q∗ be given by

q∗(t∗) =

q(t) : t ∈ T q has λ(i, ti) = t∗i for all i ∈ N,

0 : otherwise.

Let the bonus rule B∗ = (B∗i )i∈N be given by B∗i (t
∗
i ) := 1

P (N)
fi

(
µq
∗

i (·|t∗i )
)

, where

the ranking belief µq
∗

i (·|t∗i ) is as given in (2) and the minimum cost function fi is

as given by (3). Using these equations, it follows readily that

B∗i (t
∗
i ) = ci∑

t∗−i
q∗i (t∗−i|t∗i )[P({j∈N : t∗j<t

∗
i }∪{i})−P{j∈N : t∗j<t

∗
i }]
.

Injectivity of λ ensures that, with q∗-distributed type profiles, no two agents ever

28 For instance, letting L := 1 + n+ maxi∈N,ti∈Tσi ti, take λ(i, ti) := L2ki(ti) + Li+ ti.
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have the same type realized. It follows directly that q∗ is a ranking scheme.

Step 3. All that remains is to show that the bonus distributions induced by the

ranking scheme q∗ constructed in Step 2 are first-order-stochastically dominated

by those induced by the original scheme σ = 〈q, B〉. As q∗ is constructed from

q by relabeling types and leaving their respective probabilities unchanged, it

suffices to check that every i ∈ N and ti ∈ T qi has Bi(ti) ≥ B∗i (λ(i, ti)). Letting

t∗i := λ(i, ti), we indeed verify that

Bi(ti) ≥ ci∑
t−i

qi(t−i|ti)[P({j∈N : tj∈T q
j (ki(ti)−1)}∪{i})−P({j∈N : tj∈T q

j (ki(ti)−1)}\{i})]

= ci∑
t−i

qi(t−i|ti)[P ({j∈N : kj(tj)<ki(ti)}∪{i})−P{j∈N : kj(tj)<ki(ti)}]

≥ ci∑
t−i

qi(t−i|ti)[P ({j∈N : λ(j,tj)<λ(i,ti)}∪{i})−P{j∈N : λ(j,tj)<λ(i,ti)}]

= ci∑
t∗−i

q∗i (t∗−i|t∗i )[P({j∈N : t∗j<t
∗
i }∪{i})−P{j∈N : t∗j<t

∗
i }]

= B∗i (t
∗
i ),

where the first inequality follows from the definition of T qi (κ) for κ = ki(ti),

and the second inequality follows from supermodularity of P and that {j ∈ N :

kj(tj) < ki(ti)} ⊆ {j ∈ N : λ(j, tj) < λ(i, ti)} for every agent i ∈ N and type

ti ∈ T qi .

A.2. Proof of Theorem 1

Note that a minimizer to
∑

i∈N fi exists and each fi is bounded because the

function is continuous over its compact domain.

We first show that infσ UIW W (σ) ≥ minµ∈∆Π

∑
i∈N fi(µ). Given Lemma 1,

it is sufficient to show that the principal’s value for a ranking scheme q is no

less than minµ∈∆Π

∑
i∈N fi(µ). Bayesian updating implies that a given agent i’s

ranking belief is, on average, equal to the true ranking distribution:∑
t∈T q

q(t)µqi (·|ti) =
∑
ti∈T q

i

qi(ti)µ
q
i (·|ti) = µq.
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Hence, since fi is convex, Jensen’s inequality implies∑
t∈T q

q(t)fi(µ
q
i (·|ti)) ≥ fi (µ

q) .

Summing over i ∈ N yields W (q) ≥
∑

i∈N fi(µ
q), proving the claim.

We next show that infσ UIW W (σ) ≤ minµ∈∆Π

∑
i∈N fi(µ). It suffices to find,

given arbitrary µ ∈ ∆Π, a sequence (qm)m of ranking schemes such thatW (qm)→∑
i∈N fi(µ) as m → ∞. For each m ∈ N, define the finite-support prior qm ∈

∆(NN) as follows:

qm(t) :=

 1
m
µ(π) if ∃` ∈ {0, . . . ,m− 1} with ti = `+ πi for all i ∈ N,

0 otherwise.

Let us now observe W (qm) converges (as m → ∞) to the appropriate payoff

bound. Indeed, by construction, for each m ∈ N and i ∈ N , every type ti ∈
T q

m

i with N ≤ ti ≤ m has ranking belief µq
m

i (·|ti) = µ and thus is offered

bonus 1
P (N)

fi(µ). Note that such types of agent i arise under qm with probability

max
{

0, m−N+1
m+N−1

}
, which converges to 1 as m → ∞. Hence, the expected bonus

payment to each agent i converges to fi(µ), proving the claim.

A.3. Proof of Theorem 2

Before proving the theorem, we record the following lemma about the function

fi : ∆Π → R++ that describes the expected fees required to incentivize agent

i ∈ N .

Lemma 2. For each i ∈ N , every τi ∈ ∆∆Π has
∫
fi dτi ≥ fi

(∫
µi dτi(µi)

)
,

with a strict inequality if τi induces a nondegenerate distribution of fi.

Proof. The function R++ → R given by x 7→ 1
x

is strictly convex and continuous,

while the function 1
fi

is affine and continuous. Therefore, Jensen’s inequality

yields ∫
fi dτi =

∫
1(
1
fi

) dτi ≥
1∫

1
fi

dτi
= fi

(∫
µi dτi(µi)

)
,
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where the inequality is strict if the τi-distribution of fi (and thereby 1
fi

) is non-

degenerate. Q.E.D.

We now proceed to prove the theorem. Consider the first claim, which says

that there is a unique µ∗ which minimizes
∑

i∈N fi(µ) among all µ ∈ ∆Π. Assume

for a contradiction that this is not true. Since
∑

i∈N fi(µ) attains a minimum

somewhere, there must then be two minimizers µ′, µ′′ ∈ ∆Π of
∑

i fi(µ) with

(fi(µ
′))i∈N 6= (fi(µ

′′))i∈N . Applying Lemma 2 to a uniform mixture over {µ′, µ′′}
yields∑

i∈N

fi
(

1
2
µ′ + 1

2
µ′′
)
<
∑
i∈N

(
1
2
fi(µ

′) + 1
2
fi(µ

′′)
)

= 1
2

∑
i∈N

fi(µ
′) + 1

2

∑
i∈N

fi(µ
′′),

contradicting that µ′, µ′′ ∈ ∆Π are minimizers. Hence, there is a unique mini-

mizer as claimed.

Consider now the second claim. The “if” direction of this claim follows imme-

diately from Theorem 1. To prove the “only if” direction, consider an optimal

sequence (σm)m of incentive schemes. Apply Lemma 1 to obtain, for each m ∈ N,

a ranking scheme q̂m such that βσ
m

i first-order-stochastically dominates the bonus

distribution β q̂
m

i for each i ∈ N . Notice that β q̂
m

i is supported on the compact

set
[
0, ci

P{i}−P (∅)

]
by the definition of a ranking scheme. We therefore need only

prove that the unique limit point of the sequence (β q̂
m

i )m is degenerate on b∗i for

all i ∈ N . Indeed, because of first-order stochastic dominance and optimality of

(σm)m, it follows that (βσ
m

i )m converges to the same degenerate bonus distribu-

tion.

For each i ∈ N and each m ∈ N, the ranking scheme q̂m generates a finite-

support distribution τmi ∈ ∆∆Π over agent i’s ranking belief, given by

τmi (µi) := q̂mi {ti : µq̂
m

i (ti) = µi} for all µi ∈ ∆Π.

Note that any limit point βi of (β q̂
m

i )m exhibits some limit point of (τmi )m whose

induced distribution of fi is βi. We thus focus on an arbitrary limit point of (τmi )m,

denoted τ ∗i . Since each agent has Bayes-consistent beliefs about the ranking
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distribution, ∫
µi dτmi (µi) =

∑
ti

q̂mi (ti)µ
q̂m

i (ti) = µq̂
m

is independent of i. Therefore, taking limits,
∫
µi dτ ∗i (µi) =: µ∗ is also indepen-

dent of i. We next observe that τ ∗i must induce a degenerate distribution of fi

for every i ∈ N . Indeed, if not, then Lemma 2 would imply

lim
m→∞

W (q̂m) =
∑
i∈N

∫
fi dτ ∗i >

∑
i∈N

fi(µ
∗) ≥ min

µ∈∆Π

∑
i∈N

fi(µ),

which (given Theorem 1) would violate the optimality of (q̂m)m.

Hence, we obtain that (τmi )m converges to a degenerate distribution on µ∗

for every agent i ∈ N , implying that limm→∞W (q̂m) =
∑

i∈N fi(µ
∗). By the

first claim in this theorem and the result in Theorem 1, optimality then requires

fi(µ
∗) = P (N)b∗i for all i ∈ N . This completes the proof.
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