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Summary

In this paper we consider regression models with centred errors, independent of the covariates.
Given independent and identically distributed data and given an estimator of the regression
function, which can be parametric or nonparametric in nature, we estimate the distribution of the
error term by the empirical distribution of estimated residuals. To approximate the distribution of
this estimator, Koul & Lahiri (1994) and Neumeyer (2009) proposed bootstrap procedures based
on smoothing the residuals before drawing bootstrap samples. So far it has been an open question
as to whether a classical nonsmooth residual bootstrap is asymptotically valid in this context.
Here we solve this open problem and show that the nonsmooth residual bootstrap is consistent.
We illustrate the theoretical result by means of simulations, which demonstrate the accuracy of
this bootstrap procedure for various models, testing procedures and sample sizes.

Some key words: Bootstrap; Empirical distribution function; Kernel smoothing; Linear regression; Location model;
Nonparametric regression.

1. Introduction

Consider the model

Y = m(X ) + ε, (1)

where the response Y is univariate, the covariate X is of dimension p ! 1, and the error term
ε is independent of X . The regression function m(·) can be parametric, for instance linear, or
nonparametric in nature, and the distribution F of ε is completely unknown, except that E(ε) = 0.
The estimation of the distribution F has been the subject of many papers, starting with the seminal
work of Durbin (1973), Loynes (1980) and Koul (1987) in the case where m(·) is parametric; the
nonparametric case has been studied by Van Keilegom &Akritas (1999),Akritas & Van Keilegom
(2001) and Müller et al. (2004), among others.

The estimator of the error distribution has been shown to be very useful for testing hypotheses
regarding several features of model (1), such as testing for the form of the regression function
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m(·) (Van Keilegom et al., 2008), comparing regression curves (Pardo-Fernández et al., 2007),
testing independence between ε and X (Einmahl & Van Keilegom, 2008; Racine & Van Keile-
gom, 2019), or testing for a symmetric error distribution (Koul, 2002; Neumeyer & Dette, 2007).
The idea in each of these papers is to compare an estimator of the error distribution obtained
under the null hypothesis with an estimator that is not based on the null. Since the asymptotic
distribution of the estimator of F has a complicated covariance structure, bootstrap procedures
have been proposed to approximate the distribution of the estimator and the critical values of
the tests.

Koul & Lahiri (1994) proposed a residual bootstrap for linear regression models, where the
bootstrap residuals are drawn from a smoothed empirical distribution of the residuals. Neumeyer
(2009) considered a similar bootstrap procedure for nonparametric regression models. The reason
why a smooth bootstrap was proposed is that the methods of proof in both papers require a smooth
distribution of the bootstrap error. Smooth residual bootstrap procedures have been applied by De
Angelis et al. (1993), Mora (2005), Pardo-Fernández et al. (2007), Huskova & Meintanis (2009),
and others. An alternative bootstrap procedure for nonparametric regression was considered
by Neumeyer (2008), where bootstrap residuals were drawn from the nonsmoothed empirical
distribution of the residuals, after which smoothing is applied to the empirical distribution of the
bootstrap residuals. Further, in the context of residual-based procedures, it has been shown that
the wild bootstrap can be used for specific testing problems such as testing for a symmetric error
distribution (Neumeyer et al., 2005; Neumeyer & Dette, 2007), whereas it is not valid in general,
as shown in the 2006 Ruhr-Universität Bochum habilitation thesis by N. Neumeyer. It has been
an open question as to whether a classical nonsmooth residual bootstrap is asymptotically valid
in this context. In the present paper we solve this open problem and show that the nonsmooth
residual bootstrap is consistent when applied to residual processes. We will do this for the cases of
univariate nonparametric regression with random design and of multivariate linear regression with
fixed design. Other models, such as nonparametric regression with fixed design, and nonlinear or
semiparametric regression, can be treated similarly. The question of whether smooth bootstrap
procedures should be preferred over nonsmooth bootstrap procedures has been discussed in
various contexts; see Silverman & Young (1987) and Hall et al. (1989).

The finite-sample performance of the smooth and nonsmooth residual bootstraps for residual
processes has been studied by Neumeyer (2009) who showed that for small sample sizes, using
the classical residual bootstrap version of the residual empirical process in the nonparametric
regression context yields quantiles that are too small. However, as we will show here, this problem
diminishes for larger sample sizes and it is not very relevant when applied to testing problems.

In this paper we consider bootstrap procedures that can be used to obtain confidence bands
for the error distribution or bootstrap versions of hypothesis tests based on residual empirical
processes. These have to be distinguished from bootstrap procedures in regression models for
other purposes. First, bootstrap procedures for linear models have been considered by Efron
(1979), Freedman (1981) and Wu (1986), among others, and can be used for hypothesis testing
or derivation of confidence sets for the regression parameter; see also Davison & Hinkley (1997)
and the references therein. Second, there is a vast literature on bootstrap confidence sets for the
regression function in nonparametric models; see Härdle & Bowman (1988), Härdle & Marron
(1991), Neumann & Polzehl (1998) and Claeskens &Van Keilegom (2003). Third, several authors
have considered bootstrap procedures applied to hypothesis testing with test statistics that depend
directly on the regression estimator. Among others, Härdle & Mammen (1993), Stute et al. (1998)
and Delgado & González Manteiga (2001) proved validity of bootstrap procedures in the context
of specific test statistics for nonparametric regression models that do not depend on residual
empirical processes.
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2. Nonparametric regression

We start with the case of nonparametric regression with random design. The covariate is
assumed to be one-dimensional. To estimate the regression function, we use a kernel estimator
based on Nadaraya–Watson weights:

m̂(x) =
n∑

i=1

kh(x − Xi)∑n
j=1 kh(x − Xj)

Yi,

where k is a kernel density function, kh(·) = k(·/h)/h, and h = hn is a positive bandwidth
sequence that converges to zero as n tends to infinity. Our main result is valid under the following
regularity assumptions.

Assumption 1. The univariate covariates X1, . . . , Xn are independent and identically distributed
on a compact support, say [0, 1]. They have a twice continuously differentiable density fX that
is bounded away from zero. The regression function m is twice continuously differentiable in
(0, 1).

Assumption 2. The errors ε1, . . . , εn are independent and identically distributed with dis-
tribution function F . They are centred and are independent of the covariates, and F is twice
continuously differentiable with strictly positive density f such that supy∈R f (y) < ∞ and
supy∈R |f ′(y)| < ∞. Further, E(|ε1|υ) < ∞ for some υ ! 7.

Assumption 3. The function k is a twice continuously differentiable symmetric density with
compact support [−1, 1], say, such that

∫
uk(u) du = 0 and k(−1) = k(1) = 0. The first

derivative of k is of bounded variation.

Assumption 4. The sequence {hn} consists of positive bandwidths such that hn ∼ cnn−1/3+η

with 4/(3 + 9υ) < η < 1/12, where cn is only of logarithmic rate and υ is as defined in
Assumption 2.

Under the above assumptions one has that, in particular, nh4
n = o(1), and it is possible to find

some δ ∈ (0, 1/2) such that

nh3+2δ
n

log(h−1
n )

→ ∞. (2)

Let residuals be defined as ε̂i = Yi − m̂(Xi) (i = 1, . . . , n). Theorem 1 in Akritas & Van Keilegom
(2001) shows that the residual process n−1/2 ∑n

i=1{I (ε̂i " y) − F(y)}, y ∈ R, converges weakly
to a zero-mean Gaussian process W (y) with covariance function given by

cov
{
W (y1), W (y2)

}
= E

[{
I (ε " y1) + f (y1)ε

}{
I (ε " y2) + f (y2)ε

}]
, (3)

where ε has distribution function F and density f .
Neumeyer (2009) studied a smooth bootstrap procedure for approximating the distribution

of this residual process, and showed that using the smooth bootstrap, the limiting distribution
of the bootstrapped residual process, conditional on the data, equals the process W (y) defined
above in probability. We will study an alternative bootstrap procedure that has the advantage of
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not requiring smoothing of the residual distribution. For i = 1, . . . , n let ε̃i = ε̂i − n−1 ∑n
j=1 ε̂j,

and let

F̂0,n(y) = n−1
n∑

i=1

I (ε̃i " y)

be the nonsmoothed empirical distribution of the centred residuals. Then we randomly draw boot-
strap errors ε∗

0,1, . . . , ε∗
0,n with replacement from F̂0,n. Let Y ∗

i = m̂(Xi)+ε∗
0,i (i = 1, . . . , n), and let

m̂∗
0(·) be the same as m̂(·) except that we use the bootstrap data (X1, Y ∗

1 ), . . . , (Xn, Y ∗
n ). Now define

ε̂∗
0,i = Y ∗

i − m̂∗
0(Xi) = ε∗

0,i + m̂(Xi) − m̂∗
0(Xi). (4)

We are interested in the asymptotic behaviour of the process n1/2(F̂∗
0,n − F̂0,n) with

F̂∗
0,n(y) = n−1

n∑

i=1

I (ε̂∗
0,i " y),

and we will show below that it converges to the same limiting Gaussian process as the original
residual process n−1/2 ∑n

i=1{I (ε̂i " y) − F(y)}, y ∈ R, which means that smoothing of the
residuals is not necessary for obtaining a consistent bootstrap procedure.

To prove this result, we will use the results in Neumeyer (2009) to show that the difference
between the smooth and nonsmooth bootstrap residual processes is asymptotically negligible.
To this end, we can write ε∗

0,i = F̂−1
0,n (Ui) (i = 1, . . . , n), where U1, . . . , Un are independent

random variables from a Un[0, 1] distribution. Strictly speaking, the Ui form a triangular array
U1,n, . . . , Un,n of Un[0, 1] variables, but since we are only interested in convergence in distribution
of the bootstrap residual process, as opposed to convergence in probability or almost surely, we
can work with U1, . . . , Un without loss of generality.

We introduce the following notation: let ε∗
s,i = F̂−1

s,n (Ui), where F̂s,n(y) =
∫

F̂0,n(y−vsn) dL(v)
is the convolution of the distribution F̂0,n(y − ·sn) and the integrated kernel L(·) =

∫ ·
−∞ ℓ(u) du,

with ℓ being a kernel density function and sn a sequence of positive bandwidths controlling the
smoothness of F̂s,n such that sn → 0 for n → ∞. Then, similarly to the definition of ε̂∗

0,i in (4),
we define

ε̂∗
s,0,i = ε∗

s,i + m̂(Xi) − m̂∗
0(Xi). (5)

We then decompose the bootstrap residual process as follows:

n1/2{F̂∗
0,n(y) − F̂0,n(y)

}
= n−1/2

n∑

i=1

{
I (ε̂∗

0,i " y) − I (ε̂∗
s,0,i " y)

}

+ n−1/2
n∑

i=1

{
I (ε̂∗

s,0,i " y) − F̂s,n(y)
}

+ n1/2{F̂s,n(y) − F̂0,n(y)
}

= Tn1(y) + Tn2(y) + Tn3(y). (6)
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In the Supplementary Material we show that under Assumptions 1–4 above and conditions S1
and S2 in the Supplementary Material, concerning the choice of ℓ and sn in the proof, the terms
Tn1 and Tn3 are asymptotically negligible. For the proof of negligibility of Tn1, two features of
our construction are of utmost importance. On the one hand, in (5) the same function m̂∗

0 needs to
be used as in (4), in contrast to (8) below. On the other hand, the same uniform random variables
Ui need to be used to generate the bootstrap errors ε∗

0,i and ε∗
s,i (i = 1, . . . , n). In this way the

difference between the empirical distribution functions of ε̂∗
0,1, . . . , ε̂∗

0,n and ε̂∗
s,0,1, . . . , ε̂∗

s,0,n can
be bounded by the difference En(f1) − En(f2), where En is an asymptotically equicontinuous
empirical process indexed in a function class. Negligibility of Tn1 then follows because the
distance between the indices f1 and f2 can be bounded by the difference between F̂s,n and F̂0,n,
which is shown to be opr(n−1/2). From the latter fact negligibility of Tn3 also follows. Further, in
the Supplementary Material we show that the process Tn2 is asymptotically equivalent, in terms
of weak convergence, to the smooth bootstrap residual process n1/2(F̂∗

s,n − F̂s,n) with

F̂∗
s,n(y) = n−1

n∑

i=1

I (ε̂∗
s,i " y), (7)

where, in contrast to (5),

ε̂∗
s,i = ε∗

s,i + m̂(Xi) − m̂∗
s (Xi), (8)

with m̂∗
s defined as m̂ but based on smoothed bootstrap data (Xi, m̂(Xi) + ε∗

s,i) (i = 1, . . . , n).
Neumeyer (2009) showed weak convergence of the residual process based on the smooth residual
bootstrap, n1/2(F̂∗

s,n − F̂s,n), to the Gaussian process defined in (3). Thus, the main idea in proving
the lemma in the Supplementary Material is to show that the estimator m̂∗

0 has similar asymptotic
properties to m̂∗

s , such that using the different estimator does not make a difference in the proofs
of fidi-convergence and tightness and in the calculation of the asymptotic covariance. The three
lemmas in the Supplementary Material lead to the following main result regarding the validity
of the nonsmooth bootstrap residual process.

Theorem 1. Suppose that Assumptions 1–4 hold. Then, conditionally on the data
(X1, Y1), . . . , (Xn, Yn), the process n1/2{F̂∗

0,n(y)−F̂0,n(y)}, y ∈ R, converges weakly in probability
to the zero-mean Gaussian process W (y), y ∈ R, defined in (3).

The proof is given in the Supplementary Material.
Theorem 1 can be applied to obtain confidence bands for the error distribution. It can further be

used to approximate critical values for hypothesis tests in nonparametric regression models which
are based on residual empirical processes, such as tests for properties of the error distribution
(see, e.g., Neumeyer & Dette, 2007; Einmahl & Van Keilegom, 2008) or tests concerning the
regression function (see, e.g., Pardo-Fernández et al., 2007; Van Keilegom et al., 2008). The
application of the bootstrap procedure needs to be modified in order to obtain data that satisfy
the null hypothesis; see § 4 for examples and also Neumeyer (2009, § 5).

Remark 1. If the aim is to obtain confidence sets for the regression function, one needs
different kinds of bootstrap results. To demonstrate that both the nonsmooth and the smooth
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residual bootstraps can be applied in this context as well, note that under Assumptions 1–4,
for fixed 0 < x < 1, (nhn)

1/2{m̂(x) − m(x)} converges in distribution to a centred normally
distributed random variable Z with variance E(ε2

1)
∫

k2(u) du/fX (x). No bias term appears
because under our assumptions nh5

n → 0. Under the same assumptions one obtains, condi-
tionally on the data (X1, Y1), . . . , (Xn, Yn), weak convergence in probability of the nonsmooth
residual bootstrap version (nhn)

1/2{m̂∗
0(x) − m∗(x)} to Z , if the centring term is chosen as

m∗(x) = ∑n
i=1 kh(Xi − x)m̂(Xi)/

∑n
j=1 kh(Xj − x). In the Supplementary Material we provide a

sketch of the proof to obtain the result under exactly our model and our assumptions, though sim-
ilar results are well known in the literature. Choosing this centring is analogous to the approach
of Härdle & Bowman (1988), who obtained confidence bands for the regression function with a
residual bootstrap approach in the case of fixed design points and for the Priestley–Chao regres-
sion estimator. If one wants to replace the centring m∗(x) by m̂(x), one should use a larger pilot
bandwidth for m̂ when constructing the bootstrap observations. This was demonstrated by Härdle
& Marron (1991) for a wild bootstrap for the Nadaraya–Watson estimator and random covari-
ates, and the same reasoning applies to the residual bootstrap. Cao-Abad & González-Manteiga
(1993) obtained similar results for a bootstrap procedure with smoothing in the explanatory
variable. More recently, McMurry & Politis (2008) considered an alternative method of bias cor-
rection by using infinite-order kernels for the Gasser–Müller estimator in the case of fixed design
points. Concerning the smooth residual bootstrap, one obtains conditional weak convergence of
(nhn)

1/2{m̂∗
s (x) − m∗(x)} to Z in probability, if sn → 0 and ℓ is a symmetric density with second

moments. See the Supplementary Material for a derivation of this result.

3. Linear model

Consider independent observations from the linear model

Yni = xT
niβ + εni (i = 1, . . . , n), (9)

where β ∈ Rp denotes the unknown parameter and the errors εni are assumed to be independent
and identically distributed with E(εni) = 0 and distribution function F . Throughout this section
let Xn ∈ Rn×p denote the design matrix in the linear model, where the vector xT

ni = (xni1, . . . , xnip)
corresponds to the ith row of the matrix Xn and is not random. The design matrix is assumed to
be of rank p " n. We assume the following regularity conditions.

Assumption 5. The fixed design satisfies:

(i) maxi=1,...,n xT
ni(X

T
n Xn)

−1xni = O(n−1);
(ii) limn→∞ n−1X T

n Xn = ' ∈ Rp×p with invertible ';
(iii) limn→∞ n−1 ∑n

i=1 xni = m ∈ Rp.

Assumption 6. The errors εni (i = 1, . . . , n; n ∈ N) are independent and identically distributed
with distribution function F and density f that is strictly positive, bounded and continuously
differentiable with bounded derivative on R. Assume that E(|ε11|υ) < ∞ for some υ > 3.

We consider the least squares estimator

β̂n = (X T
n Xn)

−1X T
n Yn = β + (X T

n Xn)
−1X T

n εn, (10)
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with the notation Yn = (Yn1, . . . , Ynn)
T and εn = (εn1, . . . , εnn)

T, and define residuals ε̂ni =
Yni − xT

niβ̂n (i = 1, . . . , n). Residual processes in linear models have been extensively studied in
Koul (2002). It is shown there that, under Assumptions 5 and 6, the process n−1/2 ∑n

i=1{I (ε̂ni "
y) − F(y)}, y ∈ R, converges weakly to a zero-mean Gaussian process W (y) with covariance
function

cov
{
W (y1), W (y2)

}
= F(y1 ∧ y2) − F(y1)F(y2) + mT'−1m

[
f (y1)f (y2)var(ε)

+ f (y1)E{I (ε " y2)ε} + f (y2)E{I (ε " y1)ε}
]
,

(11)

where ε has distribution function F and density f , and m and ' are as defined in Assumption 5.
For the bootstrap procedure we generate ε∗

0,i (i = 1, . . . , n) from the distribution function

F̂0,n(y) = n−1
n∑

i=1

I (ε̃ni " y) (12)

with ε̃ni = ε̂ni − n−1 ∑n
j=1 ε̂nj (i = 1, . . . , n). The centring of residuals is not necessary when

the covariate includes an intercept. In the bootstrap residuals we suppress the index n to match
the notation in the nonparametric case. We now define bootstrap observations by

Y ∗
ni = xT

niβ̂n + ε∗
0,i (i = 1, . . . , n)

and calculate estimated residuals from the bootstrap sample,

ε̂∗
0,i = Y ∗

ni − xT
niβ̂

∗
0,n = ε∗

0,i + xT
ni(β̂n − β̂∗

0,n), (13)

where β̂∗
0,n is the least squares estimator,

β̂∗
0,n = (X T

n Xn)
−1X T

n Y ∗
n = β̂n + (X T

n Xn)
−1X T

n ε∗
0,n, (14)

with the notation Y ∗
n = (Y ∗

n1, . . . , Y ∗
nn)

T and ε∗
0,n = (ε∗

0,1, . . . , ε∗
0,n)

T. We will show that the
bootstrap residual process n1/2{F̂∗

0,n(y) − F̂0,n(y)}, with

F̂∗
0,n(y) = n−1

n∑

i=1

I (ε̂∗
0,i " y), (15)

converges to the same limiting process W (y), y ∈ R, as the original residual process
n−1/2 ∑n

i=1{I (ε̂ni " y) − F(y)}, y ∈ R. Using the representations ε∗
0,i = F̂−1

0,n (Ui) and
ε∗

s,i = F̂−1
s,n (Ui) (i = 1, . . . , n), where U1, . . . , Un are independent and Un[0, 1]-distributed and

F̂s,n(y) =
∫

F̂0,n(y − vsn) dL(v) is the smoothed empirical distribution function of the residuals,
we have the same decomposition (6) as in the nonparametric case. In the Supplementary Material
we show that under Assumptions 5 and 6 and the conditions in the Supplementary Material on
the choice of sn and L, the terms Tn1 and Tn3 are asymptotically negligible. The idea of the proof
is analogous to that in the nonparametric case. In particular, one needs to use the same estimator
β̂∗

0,n in (13) and in the definition of ε̂∗
s,0,i = ε∗

s,i + xT
ni(β̂n − β̂∗

0,n) with smooth bootstrap errors ε∗
s,i,
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and one needs to use the same uniform random variables Ui to define ε∗
0,i and ε∗

s,i (i = 1, . . . , n).
We further show in the Supplementary Material that the limiting distribution of

Tn2(y) = n−1/2
n∑

i=1

{
I (ε̂∗

s,0,i " y) − F̂s,n(y)
}

(16)

is the same as the limiting distribution of n1/2{F̂∗
s,n(y) − F̂s,n(y)}, with

F̂∗
s,n(y) = n−1

n∑

i=1

I (ε̂∗
s,i " y) (17)

and ε̂∗
s,i = ε∗

s,i + xT
ni(β̂n − β̂∗

s,n), where β̂∗
s,n = β̂n + (X T

n Xn)
−1X T

n ε∗
s,n and ε∗

s,n = (ε∗
s,1, . . . , ε∗

s,n)
T.

To show this we apply results from Koul & Lahiri (1994) and demonstrate that the use of the
estimator β̂∗

0,n in the definition of ε̂∗
s,0,i, instead of β̂∗

s,n in the definition of ε̂∗
s,i, does not change

the asymptotic distribution. In this way we obtain the validity of the classical residual bootstrap.

Theorem 2. Assume that Assumptions 5 and 6 hold. Then, conditionally on the data
Y1n, . . . , Ynn, the process n1/2{F̂∗

0,n(y) − F̂0,n(y)}, y ∈ R, converges weakly in probability to
the zero-mean Gaussian process W (y), y ∈ R, defined in (11).

The proof is given in the Supplementary Material.
The result can be used to obtain confidence bands for the error distribution or for hypothesis

testing with procedures based on the residual empirical process; see, for example, Koul (2002)
or Neumeyer et al. (2005).

Remark 2. The same bootstrap procedures can be applied to mimic the distribution of n1/2(β̂n−
β), which converges to a p-dimensional centred normal random variable Z with covariance matrix
E(ε2

11)'
−1. Freedman (1981) showed that along almost all sequences Y1n, . . . , Ynn, n1/2(β̂∗

0,n−β̂n)
converges in distribution to Z . His result holds under our, stronger, Assumptions 5 and 6. Thus
the asymptotic distribution of n1/2(β̂n − β) is mimicked by the nonsmooth residual bootstrap.
Freedman (1981) further demonstrated that the residual bootstrap may fail if the residuals are
not centred; see (12). Concerning the smooth residual bootstrap, one obtains conditional weak
convergence of n1/2(β̂∗

s,n − β̂n) to Z , in probability, if sn → 0 and ℓ is a symmetric density with
second moments. We will demonstrate this in the Supplementary Material.

4. Simulations

4.1. Confidence bands
We study the behaviour of the smooth and nonsmooth residual bootstraps for a range of models,

sample sizes and contexts. We start with an empirical study to assess the quality of bootstrap
confidence bands for the error distribution.

Consider model (1) in the nonparametric case and generate data with m(x) = 2x, where
X follows a uniform distribution on [0, 1] and ε ∼ N (0, 0.252). To assess the quality of the
smooth and nonsmooth bootstrap approximations, we calculate confidence bands for the error
distribution F(·) by means of the two bootstraps. The bands are defined as F̂0,n(·) ± dα,n,0

for the nonsmooth bootstrap, and F̂0,n(·) ± dα,n,s for the smooth bootstrap, where dα,n,0 and
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Table 1. Coverage (%) and average width of confidence bands for F(·) for the smooth and
nonsmooth bootstraps in the nonparametric model, with 1 − α = 0.90, 0.95 and 0.99

n Bootstrap Coverage Average width
90 95 99 90 95 99

50 Smooth 86.3 92.7 99.0 23.6 25.8 30.2
Nonsmooth 97.6 99.4 100 28.1 30.3 35.4

100 Smooth 86.6 92.7 98.9 17.0 18.5 21.6
Nonsmooth 96.4 98.8 998. 19.8 21.5 24.9

200 Smooth 86.9 93.1 98.2 12.2 13.3 15.4
Nonsmooth 95.8 97.8 99.8 13.9 15.1 17.4

500 Smooth 86.3 92.6 98.2 7.8 8.5 9.8
Nonsmooth 93.4 98.0 99.7 8.7 9.4 10.8

1000 Smooth 85.1 91.1 96.9 5.5 6.0 7.0
Nonsmooth 92.2 95.3 98.8 6.1 6.6 7.6

dα,n,s are the level-(1 − α) quantiles of the distributions of max1!i!n |F̂∗
0,n(ε̂

∗
0,i) − F̂0,n(ε̂

∗
0,i)| and

max1!i!n |F̂∗
s,n(ε̂

∗
s,i) − F̂s,n(ε̂

∗
s,i)|, respectively.

In order to verify whether the bootstrap approximation works well, we calculate the coverage
and the average width of the confidence bands for several values of the sample size n and the
confidence level 1 − α. The results, based on 1000 simulation runs, are shown in Table 1;
for each simulation 1000 bootstrap samples are generated. The bandwidth hn is taken equal
to hn = σ̂X n−0.3, where σ̂X is the empirical standard deviation of X1, . . . , Xn, and the kernel
k is the Gaussian kernel. For the smooth bootstrap, bootstrap errors ε∗

s,i are generated from
F̂s,n(y) =

∫
F̂0,n(y − vsn) dL(v), where L is the standard normal distribution and sn is chosen by

means of the crossvalidation procedure proposed by Li et al. (2017). The latter paper studies the
estimation of distribution functions by applying kernel smoothing to the empirical distribution,
exactly in the same way as we do for obtaining our estimator F̂s,n(·). The bandwidth selector
is included in the R package np (R Development Core Team, 2019) and is obtained from the
function npudistbw. This bandwidth satisfies a regularity condition imposed on sn, given in
the Supplementary Material, thanks to Theorem 3.2 of Li et al. (2017).

The table shows that the smooth bootstrap leads to coverages that are too small, and the
coverage does not improve as n increases. On the other hand, the nonsmooth bootstrap leads to
too-large coverage probabilities for small values of n, but the coverage is close to the nominal
level 1−α when n equals 1000. So the smooth bootstrap is anticonservative while the nonsmooth
bootstrap tends to be conservative in this situation. A natural consequence of this tendency to
underestimate or overestimate the coverage probability is that the average width of the confidence
bands obtained with the smooth bootstrap is smaller than that for the nonsmooth bootstrap, and
the difference in width is of the order of 10–20%.

4.2. Testing for a symmetric error distribution
As already mentioned, the residual bootstrap is much used in hypothesis testing regarding

various aspects of model (1). As a first illustration we consider a test for the symmetry of the
error density in a linear regression model with fixed design. More precisely, consider the model
Yni = xT

niβ + εni where E(εni) = 0, and suppose we are interested in testing the following
hypothesis regarding the distribution F of εni:

H0 : F(t) = 1 − F(−t) for all t ∈ R.
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When the design is fixed and the regression function is linear, Koul (2002) considered a test for
H0 based on the residual process

F̂0,n(·) − F̂−0,n(·) = n−1
n∑

i=1

{
I (ε̂ni " ·) − I (−ε̂ni < ·)

}
,

where F̂−0,n(y) = n−1 ∑n
i=1 I (−ε̂ni < y) and ε̂ni = Yni − xT

niβ̂n. Natural test statistics are the
Kolmogorov–Smirnov and Crámer–von Mises statistics,

TKS = n1/2 sup
y

∣∣F̂0,n(y) − F̂−0,n(y)
∣∣, TCM = n

∫ {
F̂0,n(y) − F̂−0,n(y)

}2 dF̂0,n(y).

It is clear from the covariance function given in (11) that their asymptotic distributions are not
easy to approximate and that the residual bootstrap offers a valid alternative. We will compare the
level and power of the two tests using the smooth and nonsmooth bootstraps. The bootstrapped
versions of TCM are given by

T ∗
CM,0 = n

∫ {
F̂∗

0,n(y) − F̂∗
−0,n(y)

}2 dF̂∗
0,n(y),

T ∗
CM,s = n

∫ {
F̂∗

s,n(y) − F̂∗
−s,n(y)

}2 dF̂∗
s,n(y);

bootstrapped versions of TKS can be defined similarly. Here, for the nonsmooth bootstrap, boot-
strap errors ε∗

0,1, . . . , ε∗
0,n are drawn from {F̂0,n(·) + F̂−0,n(·)}/2, which is by construction a

symmetric distribution, and for the smooth bootstrap we smooth this distribution using a Gauss-
ian kernel and by choosing sn by means of crossvalidation as in the previous simulation study.
The estimators F̂∗

0,n(·) and F̂∗
s,n(·) are defined as in (15) and (17), and F̂∗

−0,n(·) and F̂∗
−s,n(·) are

defined accordingly. Finally, we reject H0 if the observed value of TCM exceeds the level-(1 −α)
quantile of the distribution of T ∗

CM,0 or T ∗
CM,s.

Consider the model Yni = 2xni + εni, where xni = i/n. We consider two error distributions
under H0. The first one is a normal distribution with mean zero and variance 0.252. Under the
alternative we consider the skew-normal distribution of Azzalini (1985), whose density is given
by 2φ(y)+(dy), where φ and + are the standard normal density and distribution, respectively.
More precisely, we let d = 2 and d = 4 and standardize these skew-normal distributions so
that they have mean zero and variance 0.252. When d = 0 we recover the normal distribution.
The second error distribution under H0 is a Student t distribution with three degrees of freedom,
standardized in such a way that the variance equals 0.252. The asymptotic theory does not cover
this case, but we would like to know how sensitive the bootstrap methods are to the existence of
moments of higher order. Under the alternative we consider a mixture of this Student t distribution
and a standard Gumbel distribution, again standardized to have mean zero and variance 0.252.
The mixture proportions p are 1, 0.75 and 0.50, where p = 1 corresponds to H0.

The results, shown in Tables 2 and 3, are based on 2000 simulation runs, and for each simulated
sample a total of 2000 bootstrap samples are generated. The power is obtained after calibrating
the test in such a way that the size equals exactly 1 − α, in order to ease comparison between
the two bootstrap methods. The tables show that the Crámer–von Mises test outperforms the
Kolmogorov–Smirnov test, and hence we focus on the former test. Table 2 shows that for the
normal error distribution, the size is about right for the smooth bootstrap and a little too low
for the nonsmooth bootstrap. After correcting the critical value of the tests so that the rejection
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Table 2. Rejection probabilities (%) of the test for symmetry in the linear model for several sample
sizes n and for α = 0.025, 0.05 and 0.1: under the null we have a normal distribution (d = 0),
whereas under the alternative we have a skew-normal distribution (d = 2 and d = 4); the
power is obtained after calibrating the test in such a way that the size equals α, in order to

ease comparison between the two bootstrap methods
n Test d = 0 d = 2 d = 4

2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0

50 T ∗
KS,s 2.5 5.3 9.8 6.1 9.5 18.1 16.5 22.3 36.7

T ∗
KS,0 2.0 4.2 8.3 6.4 9.5 18.1 16.9 23.6 36.8

T ∗
CM,s 2.3 4.6 9.4 6.9 11.8 20.0 19.8 29.3 41.5

T ∗
CM,0 2.2 3.9 8.5 6.8 12.2 20.0 19.9 29.6 41.3

100 T ∗
KS,s 1.8 4.7 9.4 11.2 16.8 27.0 36.3 46.1 61.1

T ∗
KS,0 1.5 3.9 8.1 11.6 18.2 27.3 38.0 48.0 61.3

T ∗
CM,s 1.9 4.1 8.7 13.3 21.7 31.2 43.3 56.5 67.3

T ∗
CM,0 1.8 3.9 8.1 13.0 20.6 30.3 42.2 55.5 66.5

200 T ∗
KS,s 2.4 5.1 10.3 21.5 29.3 43.4 64.6 74.0 85.0

T ∗
KS,0 1.8 4.3 8.8 22.3 30.0 43.1 65.4 74.9 85.1

T ∗
CM,s 2.1 4.6 9.4 27.7 36.5 48.1 77.1 85.2 91.4

T ∗
CM,0 1.7 4.4 9.0 27.1 36.4 48.6 77.1 85.4 91.6

500 T ∗
KS,s 3.0 5.8 10.9 50.5 61.9 73.8 97.7 98.9 99.8

T ∗
KS,0 2.7 5.0 9.9 51.2 61.8 73.7 97.7 98.9 99.8

T ∗
CM,s 2.8 5.0 10.7 60.5 72.2 80.7 99.7 100 100

T ∗
CM,0 2.7 5.0 10.3 60.0 71.3 80.8 99.6 100 100

1000 T ∗
KS,s 2.8 4.7 10.4 81.1 89.8 94.5 100 100 100

T ∗
KS,0 2.5 4.4 9.2 81.6 90.1 94.5 100 100 100

T ∗
CM,s 2.4 4.7 9.4 89.8 94.9 97.6 100 100 100

T ∗
CM,0 2.3 4.5 9.2 90.5 94.9 97.6 100 100 100

probabilities under H0 equal α, we see that the smooth and nonsmooth bootstraps have almost
identical power. The tabulated powers have a standard deviation of {power (1−power)/2000}1/2,
which is bounded above by 1.1%. Taking this standard deviation into account, we can conclude
that there is no significant difference between the powers of the two tests.

Table 3 shows that when the distribution under H0 is a Student t distribution with three degrees
of freedom, the size is in general too large for the smooth bootstrap, especially for small n, and
is about right for the nonsmooth bootstrap. The level-adjusted power is again very similar for
the two types of bootstrap. However, the nonsmooth bootstrap has the advantage that it does
not depend on the selection of a bandwidth parameter and tends to be conservative in certain
situations, whereas the smooth bootstrap has a tendency to be anticonservative.

4.3. Goodness-of-fit tests
We now test the fit of a parametric model for the regression function m:

H0 : m ∈ M = {mθ : θ ∈ -},

where M is a class of parametric regression functions depending on a k-dimensional parameter
space -. Van Keilegom et al. (2008) showed that testing H0 is equivalent to testing whether the
error distribution satisfies F ≡ F0, where F0 is the distribution of Y − mθ0(X ) and θ0 is the value
of θ that minimizes E[{m(X ) − mθ (X )}2]. Consider the following Kolmogorov–Smirnov and
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Table 3. Rejection probabilities (%) of the test for symmetry in the linear model for several
sample sizes n and for α = 0.025, 0.05 and 0.1: under the null we have a Student t distribution
with three degrees of freedom (p = 1), whereas under the alternative we have a mixture of a
Student t(3) and a Gumbel distribution (p = 0.75 and p = 0.50); the power is obtained after
calibrating the test in such a way that the size equals α, in order to ease comparison between

the two bootstrap methods
n Test p = 1 p = 0.75 p = 0.50

2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0

50 T ∗
KS,s 3.7 7.9 13.8 3.4 5.8 10.5 4.9 8.6 14.9

T ∗
KS,0 2.6 5.6 11.2 3.5 6.5 10.7 5.4 9.5 16.0

T ∗
CM,s 3.1 6.8 13.3 4.1 7.6 12.1 7.6 11.7 17.7

T ∗
CM,0 2.0 4.8 11.1 4.8 7.7 12.0 8.4 12.6 18.8

100 T ∗
KS,s 3.7 7.2 12.9 3.9 6.9 13.0 8.4 13.5 23.7

T ∗
KS,0 2.7 5.5 10.0 3.6 7.0 13.3 8.2 13.6 23.9

T ∗
CM,s 3.9 6.5 13.0 4.1 7.6 13.4 9.9 17.0 27.0

T ∗
CM,0 2.8 5.3 10.7 4.2 7.5 13.6 10.0 17.2 27.6

200 T ∗
KS,s 2.5 5.5 11.5 6.7 10.5 17.3 17.0 25.6 35.8

T ∗
KS,0 1.8 4.3 9.2 6.6 10.8 17.0 17.0 26.2 35.9

T ∗
CM,s 2.7 5.6 11.0 7.5 11.9 19.1 22.0 30.6 43.0

T ∗
CM,0 2.1 4.3 9.5 7.7 12.4 19.0 22.3 31.3 43.1

500 T ∗
KS,s 2.5 4.8 10.7 10.7 17.9 25.3 42.2 54.6 64.1

T ∗
KS,0 2.2 4.2 9.7 10.5 17.4 25.5 42.1 54.3 64.3

T ∗
CM,s 2.4 4.9 10.7 14.2 20.4 29.5 52.2 62.4 71.1

T ∗
CM,0 2.1 4.3 9.9 13.9 20.5 30.0 52.2 62.6 71.9

1000 T ∗
KS,s 2.6 5.6 10.5 18.9 27.3 40.0 75.7 83.9 90.6

T ∗
KS,0 2.0 4.8 9.5 19.2 27.1 40.2 76.1 83.0 90.6

T ∗
CM,s 2.5 5.0 10.9 23.7 34.0 44.2 83.7 89.4 93.8

T ∗
CM,0 2.3 4.8 9.9 24.0 33.8 44.9 84.3 89.4 93.9

Crámer–von Mises-type test statistics:

TKS = n1/2 sup
y

∣∣F̂0,n(y) − F̂θ̂ (y)
∣∣, TCM = n

∫ {
F̂0,n(y) − F̂θ̂ (y)

}2 dF̂θ̂ (y),

where F̂0,n is as defined in § 2 and F̂θ (y) = n−1 ∑n
i=1 I {Yi − m̂θ (Xi) " y} with

m̂θ (x) =
n∑

i=1

kh(x − Xi)∑n
j=1 kh(x − Xj)

mθ (Xi)

for any θ , and θ̂ is the least squares estimator of θ . The critical values of these test statistics
are approximated using our smooth and nonsmooth residual bootstraps. More precisely, the
bootstrapped versions of TCM are given by

T ∗
CM,0 = n

∫ {
F̂∗

0,n(y) − F̂∗
0,θ̂∗

0
(y)

}2 dF̂∗
0,θ̂∗

0
(y),

T ∗
CM,s = n

∫ {
F̂∗

s,n(y) − F̂∗
s,θ̂∗

s
(y)

}2 dF̂∗
s,θ̂∗

s
(y);
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Table 4. Rejection probabilities (%) of the goodness-of-fit test for several sample sizes and for
α = 0.025, 0.05 and 0.1, when the error term has a normal distribution: the regression function
is m(x) = 2x + ax2 and the null hypothesis corresponds to a = 0; the power is obtained after
calibrating the test in such a way that the size equals α, in order to ease comparison between

the two bootstrap methods
n Test a = 0 a = 0.25 a = 0.5

2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0

50 T ∗
KS,s 3.9 6.3 13.3 3.3 6.4 11.6 9.3 15.2 24.1

T ∗
KS,0 2.3 4.8 10.7 3.2 6.9 12.5 10.1 16.3 25.8

T ∗
CM,s 2.4 4.9 9.7 5.6 10.1 17.9 16.8 24.8 36.6

T ∗
CM,0 1.5 3.8 8.0 5.8 11.0 18.1 17.5 25.7 36.7

100 T ∗
KS,s 2.1 4.0 9.2 8.1 12.6 19.5 25.4 33.8 45.5

T ∗
KS,0 1.3 2.7 7.1 8.1 12.6 19.2 26.3 34.0 46.4

T ∗
CM,s 2.0 4.5 9.0 10.3 16.1 25.7 34.2 43.8 58.3

T ∗
CM,0 1.5 3.5 7.9 10.4 16.1 26.2 34.7 43.9 59.2

200 T ∗
KS,s 2.1 4.5 9.3 12.5 20.9 32.1 48.9 60.9 73.7

T ∗
KS,0 1.5 3.3 7.6 14.1 20.9 32.3 52.2 61.5 74.2

T ∗
CM,s 2.2 4.2 8.5 19.2 29.8 42.5 63.6 74.9 84.3

T ∗
CM,0 1.7 3.6 7.3 19.8 29.3 43.0 64.9 74.8 84.8

500 T ∗
KS,s 2.0 4.5 9.4 35.2 44.8 58.6 92.0 95.2 97.8

T ∗
KS,0 1.5 3.4 7.7 36.6 45.0 58.4 92.6 95.6 97.8

T ∗
CM,s 1.9 4.1 8.2 45.4 56.8 68.2 96.3 98.0 98.9

T ∗
CM,0 1.8 3.8 7.4 45.0 57.0 68.0 96.2 98.0 98.9

1000 T ∗
KS,s 2.2 4.2 9.6 65.4 76.9 84.9 100 100 100

T ∗
KS,0 1.8 3.6 8.4 65.2 77.0 84.9 100 100 100

T ∗
CM,s 2.0 4.6 9.3 72.9 81.6 88.6 100 100 100

T ∗
CM,0 1.9 4.2 8.9 72.9 81.6 88.6 100 100 100

bootstrapped versions of TKS can be defined similarly. Here, θ̂∗
0 is the least squares estimator

based on the bootstrap data (Xi, Y ∗
0,i = mθ̂ (Xi)+ε∗

0,i) (i = 1, . . . , n), F̂∗
0,θ (y) = n−1 ∑n

i=1 I {Y ∗
0,i −

m̂θ (Xi) " y} for any θ , and similarly for θ̂∗
s and F̂∗

s,θ (y). We reject H0 if the observed value of
TCM exceeds the level-(1 − α) quantile of the distribution of T ∗

CM,0 or T ∗
CM,s.

We consider the model m(x) = 2x and let M = {x → θx : θ ∈ -}, i.e., the null model is a
linear model without intercept. The error term ε follows either a normal distribution or a Student
t distribution with three degrees of freedom, in both cases standardized in such a way that the
variance equals 0.252. The covariate X has a uniform distribution on [0, 1]. The bandwidth hn is
taken to be hn = σ̂X n−0.3, and the kernel k is the Gaussian kernel. For the smooth bootstrap, we
use a standard normal distribution and select sn via crossvalidation as in the previous simulations.
Under the alternative we consider the model m(x) = 2x +ax2 for a = 0.25 and 0.5. The rejection
probabilities, given in Tables 4 and 5, are based on 2000 simulation runs, and for each simulation
2000 bootstrap samples are generated.

The tables show that the Crámer–von Mises test outperforms the Kolmogorov–Smirnov test,
independently of the sample size, the type of bootstrap and the value of a, corresponding to the
null or the alternative. Hence we focus on the Crámer–von Mises test. Table 4 shows that when
the error term has a normal distribution, both the smooth and the nonsmooth bootstraps lead to
conservative tests, although rejection probabilities are closer to the nominal level for the smooth
bootstrap. After adjusting the critical value in such a way that the size equals α, we see that the
size-adjusted powers under the two types of bootstrap are almost identical. A simple test of the
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Table 5. Rejection probabilities (%) of the goodness-of-fit test for several sample sizes and for
α = 0.025, 0.05 and 0.1, when the error term has a Student t distribution with three degrees
of freedom: the regression function is m(x) = 2x + ax2 and the null hypothesis corresponds to
a = 0; the power is obtained after calibrating the test in such a way that the size equals α, in

order to ease comparison between the two bootstrap methods
n Test a = 0 a = 0.25 a = 0.5

2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0

50 T ∗
KS,s 4.3 7.3 15.7 5.3 9.4 16.3 15.5 23.5 34.9

T ∗
KS,0 3.0 5.6 11.9 4.8 10.0 16.7 14.9 24.6 36.6

T ∗
CM,s 3.2 5.9 12.2 8.8 14.8 22.0 24.5 35.2 45.9

T ∗
CM,0 2.4 4.7 10.0 8.7 14.4 22.7 24.4 35.6 47.0

100 T ∗
KS,s 4.2 7.7 13.2 10.1 15.7 24.2 31.3 41.7 54.9

T ∗
KS,0 2.9 5.8 10.8 10.5 15.8 24.5 32.3 42.4 55.5

T ∗
CM,s 3.4 6.4 12.9 14.2 21.4 29.9 42.5 53.0 64.2

T ∗
CM,0 2.5 5.2 10.8 14.7 21.5 30.0 43.1 53.1 64.4

200 T ∗
KS,s 3.4 6.1 12.2 18.0 25.8 38.9 57.8 69.1 79.4

T ∗
KS,0 2.5 4.7 9.4 18.7 26.5 38.9 59.6 70.0 79.5

T ∗
CM,s 3.3 5.4 10.8 23.1 34.2 45.2 68.5 79.0 86.3

T ∗
CM,0 2.6 4.7 9.5 22.6 33.8 45.6 68.6 78.7 86.4

500 T ∗
KS,s 3.6 6.8 12.6 34.6 48.6 61.8 92.2 95.7 97.7

T ∗
KS,0 3.1 5.5 10.9 33.8 48.2 62.4 91.7 95.6 97.8

T ∗
CM,s 3.4 6.2 11.9 44.0 54.9 67.4 95.3 97.1 98.4

T ∗
CM,0 3.1 5.8 10.7 43.8 55.0 67.6 95.2 97.1 98.5

1000 T ∗
KS,s 3.0 6.4 12.0 67.2 78.5 86.0 99.4 99.7 99.8

T ∗
KS,0 2.4 5.6 11.0 69.2 78.5 85.9 99.5 99.7 99.8

T ∗
CM,s 3.2 6.2 11.5 73.8 82.6 89.8 99.6 99.8 99.9

T ∗
CM,0 3.0 5.5 10.6 73.9 82.6 89.7 99.6 99.8 99.9

equality of two proportions shows that there is no significant difference. When the error has a
Student t distribution, see Table 5, the size is too large for the smooth bootstrap, but is more or
less equal to the nominal level for the nonsmooth bootstrap. The size-adjusted powers are again
very close.

Overall, upon comparing the smooth bootstrap with the nonsmooth bootstrap in the five con-
texts and for the different sample sizes and values of α, we can conclude that the smooth bootstrap
has a tendency to be anticonservative whereas the nonsmooth bootstrap has a tendency to be con-
servative. As conservative tests are in general preferred over nonconservative tests, if we follow
the general idea that we prefer to control the probability of committing a Type I error, we conclude
that the nonsmooth bootstrap is preferable to the smooth bootstrap in the testing problems under
consideration and in obtaining confidence bands for the error distribution. In addition, the smooth
bootstrap depends on how we choose the smoothing parameter sn and the corresponding kernel,
but this is not the case for the nonsmooth bootstrap.

5. Discussion

To the best of our knowledge, this paper is the first work that establishes consistency of
the nonsmoothed bootstrap of the error distribution. We have restricted attention to the case of
homoscedastic regression models, but in a next step it would be interesting to prove the con-
sistency of the bootstrap when the error variance depends on one or several covariates. Other
possible generalizations of the model considered in this paper include extensions to semipara-
metric regression, nonparametric regression with more than one covariate, dependent data, and
missing or censored data.
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