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We study the optimal stopping of an American call option in a random
time-horizon under exponential spectrally negative Lévy models. The random
time-horizon is modeled as the so-called Omega default clock in insurance,
which is the first time when the occupation time of the underlying Lévy pro-
cess below a level y, exceeds an independent exponential random variable
with mean 1/q > 0. We show that the shape of the value function varies
qualitatively with different values of q and y. In particular, we show that for
certain values of q and y, some quantitatively different but traditional up-
crossing strategies are still optimal, while for other values we may have two
disconnected continuation regions, resulting in the optimality of two-sided
exit strategies. By deriving the joint distribution of the discounting factor and
the underlying process under a random discount rate, we give a complete
characterization of all optimal exercising thresholds. Finally, we present an
example with a compound Poisson process plus a drifted Brownian motion.

1. Introduction. We consider a market with a risky asset whose price is mod-
eled by eX , where X = (Xt)t≥0 is a spectrally negative Lévy process on a filtered
probability space (�,F,F = (Ft )t≥0,P). Here, F is the augmented natural filtra-
tion of X. Fix a positive constant q > 0, an Omega clock with rate q , which mea-
sures the amount of time when X is below a pre-specified level y ∈ R, is defined
as

(1.1) ω
y
t := q

∫
(0,t]

1{Xs<y} ds.

Let e1 be a unit mean exponential random variable which is independent of X

(in particular, also F∞), and denote by T0 the set of all F-stopping times. We are
interested in the following optimal stopping problem:

v(x;y) := sup
τ∈T0

Ex

[
e−rτ (

eXτ − K
)+1{ωy

τ <e1,τ<∞}
]
,
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where r > 0 is a discount rate,2 K > 0, and Ex is the expectation under Px , which
is the law of X given that X0 = x ∈ R. In other words, we look for the optimal ex-
ercising strategy for an American call option with strike K and a random maturity
given by the alarm of an Omega clock.

The study of random maturity American options was commenced by Carr [3],
where a Laplace transform method was introduced to finance to “randomize” the
maturity, a technique known as Canadization. Different from us, a Canadized
American option has a random maturity that is completely independent of the
underlying asset. On the other extreme, an American barrier option is a random
maturity American option with a maturity completely determined by the underly-
ing asset; see Trabelsi [25] for an example. One of our motivations in this study
is thus to build a general framework that concatenates the aforementioned special
cases, through an Omega clock that only accumulates time for maturity when the
underlying asset price is below the threshold ey .

The first use of occupation times in finance dates back to the celebrated work
of Chesney, Jeanblanc and Yor [5], who introduced and studied the so-called
Parisian barrier option. Since then, there has been a considerable amount of work
on Parisian ruins for both Lévy processes and reflected Lévy processes at the max-
imum; see, for example, [14, 17], among others. Other related path-dependent op-
tions, whose payoffs reflect the time spent by the underlying asset price in certain
ranges, were studied under Black–Scholes models by [10, 20]. The idea of us-
ing the cumulative occupation times originates from Carr and Linetsky’s intensity
based evaluation of executive stock options, or ESOs [4]. Interestingly, the same
idea has been applied later in insurance literature for studying the optimal dividend
payment threshold in the presence of a so-called Gamma-Omega model [1]. Sub-
sequent research using this concept in insurance and applied probability literatures
includes [13, 19, 26].

The problem addressed in this paper can be interpreted as the evaluation of an
American variant of ESOs, where the risk is not on the resignation or early liqui-
dation of the executives (as in the typical ESO setting), but is on the “impatience”
Omega clock. This is an American option, which takes into account the cumulative
amount of time that the underlying asset price is in a certain “bad zone” that re-
duces the holder’s confidence on the underlying, and hence shortens the statistical
time horizon of the problem. The aim of this novel formulation is to capture quanti-
tatively the accumulated impatience of decision makers in financial markets, when
the latter do not move in their favor. Our mathematical analysis and derivation of
optimal strategies can serve as an informative analytical tool for the commonly
observed financial transactions that are affected by impatience (we refer to [9] for
an extensive report on the role of impatience in finance).

Our problem can also be equivalently recast as an optimal stopping of a perpet-
ual American call option with a random discount rate. Indeed, by the independence

2The case r ≤ 0 can be handled using the measure change technique as in [15].
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between X and e1, we have Px(ω
y
τ < e1, τ < ∞|F∞) = exp(−ω

y
τ )1{τ<∞}, which

implies that

(1.2) v(x;y) = sup
τ∈T0

Ex

[
e−A

y
τ
(
eXτ − K

)+1{τ<∞}
]
,

where A
y
t is the occupation time

(1.3) A
y
t := rt + ω

y
t ∀t ≥ 0.

A European-type equivalent to the option (1.2) was considered by Linetsky [16]
under the Black–Scholes model, that he named a Step call option.

A study of general perpetual optimal stopping problems with random discount
rate is done in [7] [though the problem in (1.2) was not considered there], by ex-
ploiting Dynkin’s concave characterizations of the excessive functions for general
linear diffusion processes. However, this approach has limitations when dealing
with processes with jumps, due to the extra complication resulting from over-
shoots.

Part of our solution approach for the optimal stopping problem is inspired by
[2, 21] and the recent work [15]. As noted in [8, 15], while it may be standard
to find necessary conditions for candidate optimal thresholds, it is far from being
trivial to verify whether the associated value function satisfies the supermartingale
condition, a key step in the verification. On the other hand, [2, 21] solved the opti-
mal stopping problems for the pricing of perpetual American call and put options
by directly constructing a candidate value function and verifying a set of sufficient
conditions for optimality, using the Wiener–Hopf factorization of Lévy processes
and relying on neither continuous nor smooth fit conditions, reflecting the power
of this approach. Building on these ideas, [24] reduced an optimal stopping prob-
lem to an averaging problem, which was later solved in [15] by the equation that
characterizes the candidate optimal thresholds. In this paper, we primarily focus
on the case when the discounted asset price is a supermartingale and show that
such a connection, as described above, still holds, thus generalizing the approach
developed in [2, 15, 21, 24]. In particular, using this result we prove the optimality
of a certain up-crossing strategy for certain values of the parameters q and y of the
Omega clock, by also checking its dominance over the intrinsic value function.

However, under a random discount rate, up-crossing strategies may not be op-
timal for some set of model parameters. Intuitively, when the Omega clock has a
large rate q > 0, which results in a statistically shorter time-horizon if X spends
too much time below y, then it might be optimal to stop if X − y is too small. This
leads to the consideration of two-sided exit strategies (at which point the above
idea of averaging problem ceases to work). To be more precise, we prove that the
optimal stopping region and the continuation region can have two disjoint com-
ponents, which provides an interesting insight for the optimal exercising strategy,
which can be either a profit-taking-type exit or a stop-loss-type exit (relative to
the starting point), and varies qualitatively with the starting price. Moreover, the
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continuation and stopping regions appear alternately.3 In order to establish the re-
sult, we use a strong approximation technique as in [19] to explicitly derive the
value function of a general two-sided exit strategy (see Proposition 4.12 for this
new result), and then prove that, in cases of unbounded variation, the smooth fit
condition holds (regardless of σ > 0 or not) for the value function at every bound-
ary point of the optimal continuation region, echoing assertions in [2, 8]; in cases
of bounded variation, the smooth fit condition still holds at all boundary points but
one, where only continuous fit holds (see Proposition 4.13). As a consequence, in
Corollary 4.14 and Proposition 4.15, we obtain a novel qualitative characterization
of the upper continuation region (a�(y), b�(y)).

Building upon the above results, we also study the case when the discounted
asset price is a martingale and prove that for “small” y, the solution is trivial and
identical to the perpetual American call option case, that is, for y = −∞, studied
by Mordecki [21]. Surprisingly, for “large” y not only the solution is not trivial,
but takes significantly different forms, depending on the value of X. To be more
precise, the stopping region is a closed finite interval below y, which results in a
profit-taking exit at a lower value than the alternative stop-loss exit’s value, while it
is never optimal to stop if the asset price is above ey . Similar to the supermartingale
case, the stop-loss exit strategy may even not be a one-shot scheme if an overshoot
occurs.3 We also prove that when the discounted asset price is a submartingale, the
solution is the same trivial one as in Mordecki’s problem for y = −∞ [21].

The remaining paper is structured as follows. We begin with stating the main re-
sults of the paper, given by Theorems 2.4, 2.5 and 2.7, in Section 2, and devote the
remaining sections to the development of their proofs. In particular, in Section 3
we give some useful comparative statics for the value function. Then Section 4 is
devoted to the study of a supermartingale discounted asset price and the proofs
of Theorems 2.4 and 2.5. More specifically, in Section 4.1 we investigate can-
didate up-crossing exercising thresholds and the equation satisfied by them. The
optimality of these up-crossing and alternative two-sided exit strategies is estab-
lished in Sections 4.2–4.3. On the other hand, in Section 5 we study the cases of
a submartingale and a martingale discounted asset price and prove Theorem 2.7.
Next, we consider a compound Poisson process plus a drifted Brownian motion
in Section 6 and present numerical examples of a single and two disconnected
components of optimal stopping region, illustrated in Figure 1. Finally, Section 7
provides the conclusion of the paper. The proofs of a lemma and a proposition for
Section 2 are in Appendix. For the detailed exposition of some omitted technical
proofs and a collection of useful results on spectrally negative Lévy processes and
their scale functions, we refer to the extended version of this paper [23].

3Therefore, in the case when the underlying process X jumps from the upper continuation region
over the lower stopping region, it will then be optimal to wait until X increases to the upper boundary
of that lower continuation region. So the optimal exercising strategy cannot be expressed as a one-
shot scheme like a first passage or first exit time.
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2. Main results. In this section, we begin by setting the scene and stating the
main results, which we prove and present in greater detail in the subsequent Sec-
tions 3–5 and Appendix. We denote by (μ,σ 2,�) the Lévy triplet of the spectrally
negative Lévy process X, and by ψ its Laplace exponent. That is,

(2.1)
ψ(β) := 1

t
logE0

[
eβXt

]
= μβ + 1

2
σ 2β2 +

∫
(−∞,0)

(
eβx − 1 − βx1{x>−1}

)
�(dx),

for every β ∈ H
+ ≡ {z ∈ C : �z ≥ 0}. Here, σ ≥ 0, and the Lévy measure �(dx)

is supported on (−∞,0) with
∫
(−∞,0)(1 ∧ x2)�(dx) < ∞. In case X has paths of

bounded variation, which happens if and only if
∫
(−1,0) |x|�(dx) < ∞ and σ = 0,

we can rewrite (2.1) as

(2.2)

ψ(β) = γβ +
∫
(−∞,0)

(
eβx − 1

)
�(dx),

for β ≥ 0 and γ := μ +
∫
(−1,0)

|x|�(dx),

where γ > 0 holds. For any r ≥ 0, the equation ψ(β) = r has at least one positive
solution, and we denote the largest one by �(r). Then the r-scale function W(r) :
R 
→ [0,∞) is the unique function supported on [0,∞) with Laplace transform

(2.3)
∫
[0,∞)

e−βxW(r)(x)dx = 1

ψ(β) − r
, β > �(r).

We extend W(r) to the whole real line by setting W(r)(x) = 0 for x < 0. Hence-
forth, we assume that the jump measure �(dx) has no atom, thus W(r)(·) ∈
C1(0,∞) (see, e.g., [11], Lemma 2.4); lastly, we also assume that W(r)(·) ∈
C2(0,∞) for all r ≥ 0, which is guaranteed if σ > 0 (see, e.g., [11], Theo-
rem 3.10).4 The r-scale function is closely related to the first passage times of
X, which are defined as

(2.4) T ±
x := inf{t ≥ 0 : Xt ≷ x}, x ∈ R.

Please refer to [12], Chapter 8, for some useful results on this matter.
The infinitesimal generator L of X, which is well defined at least for all func-

tions F̃ (·) ∈ C2(R), is given by

LF̃ (x) = 1

2
σ 2F̃ ′′(x) + μF̃ ′(x)

+
∫
(−∞,0)

(
F̃ (x + z) − F̃ (x) − 1{z>−1}zF̃ ′(x)

)
�(dz).

In particular, Leβx = ψ(β)eβx for any β ≥ 0.

4However, σ > 0 is not a necessary condition for W(r)(·) ∈ C2(0,∞). For instance, a spectrally
negative α-stable process with α ∈ (1,2) satisfies this condition without a Gaussian component.
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Fix a y ∈ [−∞,∞], let us introduce the “stopping region” Sy , the set where the
so-called time value vanishes:

(2.5) Sy := {
x ∈ R : v(x;y) − (

ex − K
)+ = 0

}
.

In other words, the optimal exercise strategy for the problem (1.2) is given by the
stopping time

τy
� := inf

{
t ≥ 0 : Xt ∈ Sy}

.

Note that, the special cases when y = ∞ or y = −∞, namely the perpetual Amer-
ican call options with discount rates r + q or r , respectively, have been studied in
[21]. In what follows, we split our analysis in three parts, in which we study the
cases of the discounted asset price being a super-martingale, a martingale and a
sub-martingale.

We begin by assuming that the discounted asset price process (e−rt+Xt )t≥0 is a
(strict) Px -supermartingale, which is equivalent to the model parameters satisfying
r > ψ(1). In this case, it is well known (see, e.g, [21]) that

v(x) := sup
τ∈T0

Ex

[
e−(r+q)τ (

eXτ − K
)+1{τ<∞}

]
(2.6)

= 1{x≤k}e�(r+q)(x−k)(K − K) + 1{x>k}
(
ex − K

)
,

v(x) := sup
τ∈T0

Ex

[
e−rτ (

eXτ − K
)+1{τ<∞}

]
(2.7)

= 1{x≤k}e
�(r)(x−k)(K − K) + 1{x>k}

(
ex − K

)
,

and the optimal stopping regions take the form

(2.8) S∞ = [k,∞) and S−∞ = [k,∞),

where the exercising thresholds are given by

(2.9)

k = logK for K = �(r + q)

�(r + q) − 1
K and

k = logK for K = �(r)

�(r) − 1
K.

Notice that the fractions in (2.9) are well defined, because �(r + q) > �(r) > 1,
where the latter inequality follows from the standing assumption that r > ψ(1).

When y ∈ (−∞,∞), which is the subject of this work, the discount rate
changes between r and r +q . Hence, the value function v(x;y) should be bounded
from below by v(x) and from above by v(x) (see Proposition 3.1). As a conse-
quence, we know that the optimal stopping region Sy ⊂ S∞ = [k,∞), and we can
equivalently express the problem in (1.2) as

(2.10) v(x;y) = sup
τ∈T0

Ex

[
e−A

y
τ v(Xτ )1{τ<∞}

]
.

Notice that v(·) ∈ C1(R) ∩ C2(R\{k}).
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To state our result in the most general situation, it will be convenient to talk
about the following hypothesis as a key insight/conjecture for our problem.

HYPOTHESIS 2.1. Let O be any connected component of the continuation
region (Sy)c of problem (1.2),5 then O ∩ {x ∈ R\{k} : (L − r − q1{x<y})v(x) ≥
0} �=∅.

The following equivalence relation is crucial for deriving the solution to prob-
lem (1.2). It is proved in the Appendix using results from Section 3.

LEMMA 2.2. Hypothesis 2.1 is equivalent to the assertion that there is at most
one component of the stopping region that lies on the right-hand side of y.

REMARK 2.3. Hypothesis 2.1 is a natural conjecture for the obvious fact
within a diffusion framework, in which (by Dynkin’s formula) the (positive) time
value at any point in the continuation region is the expectation of a time integral of
e−A

y
t (L− r −q1{x<y})v(Xt) until entering the stopping region. For a general Lévy

process, even though jumps will nullify this argument, it is still peculiar if there
is a part of continuation region O that falls completely inside the super-harmonic
set of v(·): {x ∈ R\{k} : (L − r − q1{x<y})v(x) < 0}, because it would imply (by
Itô–Lévy’s formula) that, it is beneficial to continue when the underlying process
is in O , despite the fact that the expected gain in time value is negative at any in-
stance before entering into the stopping region. A complete characterization of the
applicability of Hypothesis 2.1 and alike for general Lévy models is beyond the
scope of this work.6 To give a concrete idea on the applicability of this conjecture,
we show in Proposition A.1 that a monotone density of the Lévy measure �(dx)

implies Hypothesis 2.1.

We now present the main results of this work. We first treat the case where
Hypothesis 2.1 is not needed as a sufficient condition, but on the contrary follows
as a conclusion from the results.

Let us define a positive function that will be useful afterwards:

(2.11) I(r,q)(x) :=
∫
(0,∞)

e−�(r+q)uW(r)(u + x)du ∀x ∈ R,

which is easily seen to be continuously twice differentiable over (0,∞), and sat-
isfies I(r,q)(x) = e�(r+q)x/q for all x ≤ 0.

5Independent of this hypothesis, in Proposition 3.1(ii) we prove that v(·;y) is continuous, so the
optimal stopping set Sy is a closed set and the continuation set (Sy)c is an open set, that is, a union
of disjoint open intervals.

6It is however possible to give a conclusive answer if we replace the indicator 1{x<y} with 1{x≥y}.
However, by doing so we lose the interesting trade-off and consequently the rich solution structures
in our problem.
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THEOREM 2.4. Suppose that the model parameters satisfy r > ψ(1), X has
paths of unbounded variation and

(2.12) I(r,q),′′(x) ≥ I(r,q),′(x) ∀x > 0.

Then the optimal stopping region of the problem (1.2) is given by Sy = [z�(y),∞),
at whose boundary the smooth fit condition holds. In particular,

(i) if y ∈ (−∞, k), then the optimal threshold z�(y) ∈ (k, k) is defined in
(4.13), and the value function is given by

v(x;y) = 1{x<z�(y)}
(
ez�(y) − K

)+ I(r,q)(x − y)

I(r,q)(z�(y) − y)

+ 1{x≥z�(y)}
(
ex − K

);(2.13)

(ii) if y ∈ [k,∞), then z�(y) = k and v(x;y) = v(x).

Thus, when X has paths of unbounded variation and (2.12) holds, the traditional
up-crossing threshold-type exercising strategy is still optimal and the optimal stop-
ping region is a connected set Sy = [z�(y),∞) ⊂ [y,∞), for some exercise thresh-
old z�(y) > k, when y < k. On the other hand, the optimal stopping region is the
connected set Sy = [k,∞) ≡ [k, y) ∪ [y,∞), when y ≥ k, which is identical to
the standard problem for y = ∞ presented above. In view of Lemma 2.2, Hypoth-
esis 2.1 holds true in both cases (i)–(ii).

In the following theorem, we consider all remaining cases not covered by The-
orem 2.4.

THEOREM 2.5. Suppose that the model parameters satisfy r > ψ(1) and ei-
ther X has paths of unbounded variation and (2.12) fails, or X has paths of
bounded variation. Then there exist constants ỹ, ym defined in (4.21) and (4.29)
satisfying ỹ < ym < k, such that:

(i) if y ∈ (−∞, ỹ), then Sy = [z�(y),∞), where the optimal threshold
z�(y) ∈ (k, k) is defined in (4.13), and the value function is given by (2.13);

(ii) if y ∈ [ym,∞), then Sy = [k,∞) and v(x;y) = v(x) is given by (2.6);
(iii) if y = ỹ [and Hypothesis 2.1 holds, when (2.12) fails], then ỹ > k and

S ỹ = {k} ∪ [z�(ỹ),∞), where z�(ỹ) ∈ (k, k) is defined in (4.13), and the value
function is still given by (2.13);

(iv) if y ∈ (ỹ, ym) and Hypothesis 2.1 holds, then ỹ > k and Sy = [k, a�(y)] ∪
[b�(y),∞), where the optimal thresholds satisfy k < a�(y) < y < ym < b�(y) <

z�(ỹ) and are given by (4.44), while the value function takes the form:

v(x;y) = v(x) + 1{x∈(a�(y),b�(y))}

(
x, a�(y);y)

,(2.14)

with v(x) given by (2.6) and 
(x,a;y) being the positive function defined in
(4.42).
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Moreover, the smooth fit condition always holds at all boundaries of Sy in parts
(i), (ii), (iii) and at k and b�(y) of part (iv). Furthermore, in part (iv), the smooth
(continuous, resp.) fit condition holds at the boundary a�(y) when X has paths of
unbounded (bounded, resp.) variation.

In the cases studied in Theorem 2.5, the level of y plays an important role in the
structure of the optimal stopping region. Specifically, for “small” values of y, the
traditional up-crossing threshold-type exercising strategy is still optimal and the
optimal stopping region is one connected component Sy = [z�(y),∞) ⊂ (y,∞),
for some exercise threshold z�(y) > y. Also for “large” values of y, the optimal
strategy is identical to the case y = ∞ and the optimal stopping region is the tradi-
tional connected set Sy = [k,∞) ≡ [k, y) ∪ [y,∞), as in Theorem 2.4. However,
for some “intermediate” values of y, the traditional threshold-type strategy is no
longer optimal. Instead, there are exactly two components of stopping region, one
inside [k, y) and another in (y,∞). Therefore, in all cases, except for the ones it
is used as a condition, we can apply Lemma 2.2 to conclude that Hypothesis 2.1
holds true.

It is also observed from part (iv) that, when x ∈ (a�(y), b�(y)), it is optimal
to follow a nontraditional two-sided exit strategy. Moreover, in the event of an
overshoot of X from the set (a�(y), b�(y)) to (−∞, k), it is not optimal to stop
immediately but wait until X increases to k. This means that, in contrast to most
optimal stopping problems in Lévy models literature with two-sided exit strategies
(see, e.g., [6]), the optimal stopping time for our problem may not be a one-shot
scheme like a first passage or first exit time. The target exercising threshold has to
be re-adjusted if an overshoot occurs.

It is seen that condition (2.12) plays a pivotal role in distinguishing Theorem 2.4
from Theorem 2.5 when X is of unbounded variation, and deciding whether Hy-
pothesis 2.1 is needed as a sufficient condition in Theorem 2.5(iii) when X is of
bounded variation. In order to facilitate the verification of whether (2.12) holds
or not, we will later provide in Remark 4.4 convenient equivalences to condition
(2.12), based on the sign of the quantity u defined by (4.12) (see also Lemma 4.5
for the relation of u with the problem’s parameters). If we limit ourselves only to
special classes of Lévy jump measures, we have the following criterion.

LEMMA 2.6. Suppose that the scale function W(r)(·) ∈ C2((0,∞)) and the
tail jump measure of X, denoted by �(x) := �(−∞,−x) for x > 0, either has a
completely monotone density or is log-convex, then (2.12) holds if and only if

(2.15)
(
�(r + q) − 1

)(
�(r + q) − qW(r)(0)

) − qW(r)′(0+) ≥ 0.

PROOF. See the Appendix of [23]. �

Finally, we close this section by considering the cases of discounted asset price
process (e−rt+Xt )t≥0 being either a (strict) Px-submartingale or a Px-martingale,
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which are equivalent to the model parameters satisfying r < ψ(1) or r = ψ(1),
respectively.

THEOREM 2.7. If the model parameters satisfy:

(a) r < ψ(1), then it is never optimal to stop the process X, namely Sy = ∅, and
the value function of the problem (1.2) is v(x;y) = ∞ for all x, y ∈ R.

(b) r = ψ(1), then there exists a unique value y∞ ∈ (0,∞) given by (5.3), such
that:

(i) if y ∈ (−∞, y∞), then it is never optimal to stop the process X, namely
Sy = ∅, however, the value function v(x;y) of the problem (1.2) has a value
and is given by

(2.16) v(x;y) = (�(r + q) − 1)

�′(r)
eyI(r,q)(x − y);

(ii) if y = y∞, then Sy∞ = {k}, where k is given by (2.9) and v(x;y∞)

by (2.16);
(iii) if y ∈ (y∞,∞), then Sy = [k, a�∞(y)], where the optimal threshold

a�∞(y) is the unique solution of equation (5.4) and the value function is given
by

(2.17) v(x;y) = v(x) + 1{x∈(a�∞(y),∞)}

(
x, a�∞(y);y)

,

with 
(x,a;y) being the positive function defined in (4.42).

Recall from [21], that the solution to the perpetual American call option (y =
−∞) is trivial in both cases covered in Theorem 2.7. Namely, in case (a) we
have S−∞ = ∅ and v(x;−∞) = ∞, while in case (b) we have S−∞ = ∅ and
v(x;−∞) = ex . In this paper, we demonstrate that the problem in part (a) remains
identically trivial. Interestingly, the solution to the problem studied in part (b) is
on the contrary nontrivial. In fact, the optimal exercise strategy admits a surpris-
ing structure, which can be either an up-crossing or a down-crossing one-sided
exit strategy, depending on the starting value x, for y ∈ [y∞,∞). Furthermore, the
strategy may not be a one-shot scheme if an overshoot occurs, making the result
even more fascinating.

We devote the following sections to proving the aforementioned results and
providing an illustrating example.

3. Comparative statics of the value function v(·;y). In this section, we
present some useful stylized facts for the value function v(x;y) by comparative
statics. In view of (1.3) with (1.1), we can see that rt ≤ A

y
t ≤ (r + q)t holds for all

t ≥ 0 and y ∈ R. Using these inequalities together with (1.2), (2.6) and (2.7), we
obtain the following results for the monotonicity, continuity of the value function
v(x;y), and some information about the structure of the stopping region Sy .
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PROPOSITION 3.1. The value function v(x;y) satisfies the following proper-
ties:

(i) For any −∞ ≤ y1 < y2 ≤ ∞, we have

v(x) ≡ v(x;∞) ≤ v(x;y2) ≤ v(x;y1) ≤ v(x;−∞) ≡ v(x) ∀x ∈ R.

Moreover, it holds that S∞ ⊇ Sy2 ⊇ Sy1 ⊇ S−∞.
(ii) The function v(x;y) is strictly increasing and continuous in x over R, and

is nonincreasing and continuous in y over R.
(iii) If there is an a ∈ Sy such that a ≤ y, we must have y ≥ k and [k, a] ⊂ Sy .

PROOF. See the Appendix of [23]. �

REMARK 3.2. Proposition 3.1(i) concludes that the stopping region Sy is
sandwiched by two known intervals, namely, the optimal stopping regions for the
problems (2.6)–(2.7), but it is still highly nontrivial to determine the exact shape
of Sy . Proposition 3.1(ii) implies that the optimal stopping region Sy consists of
disjoint unions of closed intervals (including isolated points), and in view of con-
clusion (i), these intervals continuously “grow” with y, unless new components
of stopping region appear (we call this “branching”). Finally, Proposition 3.1(iii)
indicates the special role of k and the possibility for a unique stopping region com-
ponent that lies below y, which always takes the form [k, a] for some a ∈ [k, y].

4. Proofs of Theorem 2.4 and Theorem 2.5. In this section, we study the
case when the discounted asset price process (e−rt+Xt )t≥0 is a supermartingale
and we eventually prove Theorems 2.4 and 2.5. Note that, for r > ψ(1), (2.8)
and Proposition 3.1(i) imply that the optimal stopping region Sy should always
contain the region S−∞ ≡ [k,∞). Thus, in view of the equivalent expressions of
the problem in (1.2) and (2.10), we can further reduce the problem to

(4.1) v(x;y) = sup
τ∈T

Ex

[
e−A

y
τ
(
eXτ − K

)+1{τ<∞}
] ≡ sup

τ∈T
Ex

[
e−A

y
τ v(Xτ )1{τ<∞}

]
,

where T is the set of all F-stopping times which occur no later than T +
k

. We shall
focus on the problem (4.1) henceforth in this section.

4.1. The exercising thresholds for up-crossing strategies. We begin our analy-
sis by studying the expected discount factor up until a first passage time T +

z , which
can be proved similar to [19], Corollary 2(ii).

PROPOSITION 4.1. Recall the positive function I(r,q)(·) defined by (2.11),
which takes the form I(r,q)(x) = e�(r+q)x/q , for all x ≤ 0. We have

Ex

[
exp

(−A
y

T +
z

)] = I(r,q)(x − y)

I(r,q)(z − y)
∀z > x.
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It is possible to reinterpret the result in Proposition 4.1 as the upper tail proba-
bility of the running maximum of X at a random time. Indeed, let us consider the
left inverse of the additive functional Ay at an independent exponential time with
unit mean, e1:

(4.2) ζ ≡ (
Ay)−1

(e1) := inf
{
t > 0 : Ay

t > e1
}
.

Then by the independence, it is seen that, for any z > x,

(4.3)
Px(Xζ > z) = Px

(
T +

z < ζ
) = Ex

[
exp

(−A
y

T +
z

)]
= Ex

[
exp

(−A
y

T +
z

)
1{T +

z <∞}
]
,

where the last equality is due to A
y
t ≥ rt , which converges to ∞ as t ↑ ∞. Let us

introduce the “hazard rate” function7

(4.4) �(z;y) = 1

Px(Xζ > z)

Px(Xζ ∈ dz)

dz
∀z > x.

Then we have

(4.5)

�(z;y) ≡ �(z − y)

= I(r,q),′(z − y)

I(r,q)(z − y)

= �(r + q) − W(r)(z − y)

I(r,q)(z − y)
∀z > x.

Since W(r)(x) = 0 for all x < 0, we see that the function �(x) ≡ �(r + q) for
all x < 0. In the following lemma, we present some properties of �(x) for x ≥ 0,
which can be proved using [11] and a calculation of the derivative of �(·) given
by (4.5), Lemma 3.1.

LEMMA 4.2. The function �(·) given by (4.5) is strictly decreasing over
[0,∞), with

�(0) = �(r + q) − qW(r)(0) ≤ �(r + q) = �(0−) and �(∞) = �(r).

In other words, I(r,q)(·) is log-concave over R.

PROOF. See the Appendix of [23]. �

7It can be easily verified that the right-hand side of (4.4) is indeed independent of x.
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In what follows, we denote the value of an up-crossing strategy T +
z by

U(·;y, z), which will be the main topic of study in the remainder of this sub-
section, and is given by

U(x;y, z) = Ex

[
exp

(−A
y

T +
z

)(
exp(XT +

z
) − K

)+1{T +
z <∞}

]
= 1{x<z}

(
ez − K

)+
Ex

[
exp

(−A
y

T +
z

)] + 1{x≥z}
(
ex − K

)+
= 1{x<z}

(
ez − K

)+I(r,q)(x − y)

I(r,q)(z − y)
+ 1{x≥z}

(
ex − K

)
,

(4.6)

where the last equality follows from Proposition 4.1. Fixing an arbitrary x < k,
[which is definitely not inside Sy by Proposition 3.1(i)], we look for candidate
exercising thresholds greater than x. By taking the derivative of U(x;y, z) with
respect to z for z > x ∨ logK and using (4.3)–(4.4), we get

∂zU(x;y, z) = ez
Ex

[
exp

(−A
y

T +
z

)] + (
ez − K

) ∂

∂z
Ex

[
exp

(−A
y

T +
z

)]
= Ex

[
exp

(−A
y

T +
z

)]
�(z − y)

(
K − ez

(
1 − 1

�(z − y)

))

= Px(Xζ ∈ dz)

dz

(
K − ez

(
1 − 1

�(z − y)

))
.

Hence, a candidate optimal exercising threshold z� should satisfy

(4.7) K = eyg
(
z� −y

)
where g(u) = eu

(
1− 1

�(u)

)
= eu

(
1− I(r,q)(u)

I(r,q),′(u)

)
.

Notice that, since �(·) is monotone by Lemma 4.2, the function g defined in (4.7)
satisfies

eyg(z − y) < ek

(
1 − 1

�(r + q)

)
= K

�(r + q) − 1

�(r + q)
= K ∀z < k,

eyg(z − y) > ek

(
1 − 1

�(r)

)
= K

�(r) − 1

�(r)
= K ∀z ≥ k,

where the strict inequality in the second line is due to the fact that �(x) > �(r)

for all x ∈ R. Furthermore, g(·) is continuous over R, unless the process X has
paths of bounded variation, which gives rise to a negative jump at 0 (see [11],
Lemma 3.1):

(4.8) g(0) − g(0−) = −qW(r)(0)

�(r + q)(�(r + q) − qW(r)(0))
ey ≤ 0.

REMARK 4.3. It thus follows that there exists at least one candidate optimal
exercising threshold z� in [k, k), and there is no optimal exercising threshold in
R\[k, k). This is consistent with Proposition 3.1(i).
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Although Remark 4.3 confirms the existence of at least one candidate exercising
threshold, there is a possibility of multiple solutions to (4.7). We investigate this
possibility through the analysis of the derivative of g(u):

(4.9) g′(u) =

⎧⎪⎪⎨⎪⎪⎩
eu �(r + q) − 1

�(r + q)
> 0 ∀u < 0,

eu

(�(u))2
H(u) ∀u > 0,

where

(4.10)

H(u) := 1

I(r,q)(u)

(
I(r,q),′′(u) − I(r,q),′(u)

)
≡ (

�(r + q) − 1
)
�(u) − W(r)′(u)

I(r,q)(u)
∀u > 0.

Observe that by the definition of �(x) and its limit as x → ∞ in Lemma 4.2, we
have

(4.11) H(∞) = �(r)
(
�(r) − 1

)
> 0,

which implies that g(·) is ultimately strictly increasing to ∞. In view of this ob-
servation, we define

(4.12) u := inf
{
u ∈ R : g(·) is nondecreasing over [u,∞)

}
,

thus u is the largest local minimum of g (and is well defined). In all, (4.9) and
(4.12) imply that g(·) is strictly increasing over (−∞,0) and is nondecreasing
over (u,∞).

The value of u will be critically important in distinguishing the different possi-
bilities of solutions to problem (4.1). In particular, it is seen from the above anal-
ysis that there exist only three possible cases for the value of u, outlined in the
following remark.

REMARK 4.4. We have the following equivalences:

1. u = −∞, so that g(·) is nondecreasing over R, which is equivalent to con-
dition (2.12) and X having paths of unbounded variation (case treated in Theo-
rem 2.4);

2. u = 0, so that g(·) is nondecreasing over R\{0} with a negative jump at
0, which is again equivalent to condition (2.12) but X having paths of bounded
variation (case treated in Theorem 2.5);

3. u > 0, so that g(·) is not monotone over (0,∞), which is equivalent to con-
dition (2.12) failing (case treated in Theorem 2.5).
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In light of Remark 4.4 and the assertions of Theorem 2.5, the case u ≥ 0 will
be treated in a unified way in all parts of that theorem, apart from part (iii), where
we need to treat cases u = 0 and u > 0 differently. In order to further illustrate the
dependence of the value/sign of u on q , r and the Laplace exponent of the Lévy
process X, we use the definitions of ψ(·) in (2.1) and �(r + q), as well as the
value of H(0+) given by (4.10), to prove the following lemma. A combination of
the latter with Remark 4.4 also sheds light on the conditions of Theorems 2.4 and
2.5.

LEMMA 4.5. If ψ(1) > 0 and σ > 0, then for all q > (ψ(r/ψ(1))−r)∨0, we
have u > 0. Conversely, if σ > 0 and u = −∞, then either ψ(1) ≤ 0, or ψ(1) > 0
and q ∈ (0,ψ(r/ψ(1)) − r].

PROOF. See the Appendix of [23]. �

Using the monotonicity of the function g(·) over [u,∞), we define the follow-
ing y-value:

y =
{

log
(
K/g(u)

)
for u ≥ 0,

∞ for u = −∞
which makes u + y a solution to the first-order condition equation (4.7). Then, in
view of the facts that eyg(z − y) is strictly increasing in the parameter y [due to
the monotonicity of �(·)] and that u is a local minimum of g(·), we can conclude
that there is no solution to (4.7) greater than u + y for all y > y. Moreover, for all
finite y ≤ y, there exists a unique solution to (4.7) greater than or equal to u + y.
We define this candidate optimal threshold by

(4.13) z�(y) := y + inf
{
u > u : g(u) > Ke−y}

for y ≤ y.

From the observations above, it is also seen that z�(y) is the largest root to (4.7),
and strictly decreasing and continuously differentiable at y as long as g′(z�(y) −
y) �= 0. The limiting behaviour of z�(·) follows from the limiting behaviour of �(·)
in Lemma 4.2, which implies that

z�(y) = log
(

K�(z�(y) − y)

�(z�(y) − y) − 1

)
→ log

(
K�(r)

�(r) − 1

)
≡ k as y ↓ −∞,

and agrees with Remark 4.3. One important property of this root is that the function
g(·) is nondecreasing over [z�(y),∞), which will be used to show the supermartin-
gale property of the value function U(·;y, z�(y)) (see proof of Proposition 4.7).

Inspired by the analysis in [15], we investigate the connection between the equa-
tion (4.7), that a candidate optimal exercising threshold should satisfy, and the in-
trinsic value function. In particular, using (4.7) and (4.4) along with Proposition 4.1
and [11], Lemma 3.3, we can prove the following lemma.
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LEMMA 4.6. Recall the doubly stochastic time ζ defined in (4.2). We have

ex − K = Ex

[
eyg(Xζ − y)

] − K ∀x ∈ R.

PROOF. See the Appendix of [23]. �

We now present an alternative representation of the value of the candidate op-
timal up-crossing strategy T +

z�(y) defined by U(x;y, z�(y)) from (4.6) with (4.13),
for which we can prove some useful properties eventually leading to the optimality
of this strategy.

PROPOSITION 4.7. For all finite y ≤ y, let us define the positive function:

(4.14) V (x;y) := Ex

[(
eyg(Xζ − y) − K

)
1{Xζ >z�(y)}

]
.

Then we have:

(i) The process (exp(−A
y
t )V (Xt ;y))t≥0 is a supermartingale;

(ii) The process (exp(−A
y

t∧T +
z�(y)

)V (Xt∧T +
z�(y)

;y))t≥0 is a martingale;

(iii) V (x;y) = ex − K for all x ≥ z�(y);
(iv) V (x;y) = U(x;y, z�(y)) and ∂xV (x;y)|x=z�(y)− = ez�(y),

where U is the value of an up-crossing strategy defined in (4.6).

PROOF. In order to prove (i), we notice that

V (x;y) = Ex

[(
eyg(Xζ − y) − K

)
1{Xζ >z�(y)}

]
≥ Ex

[
1{t<ζ }

(
eyg(Xζ − y) − K

)
1{Xζ >z�(y)}

]
= Ex

[
Ex

[(
eyg(Xζ − y) − K

)
1{t<ζ }1{Xζ >z�(y)}|Ft

]]
= Ex

[
exp

(−A
y
t

)
Ex

[(
eyg

(
max{Xt,Xt,ζt }

− y
) − K

)
1{max{Xt ,Xt,ζt }>z�(y)}|Ft

]]
,

(4.15)

for t ≥ 0, where for an independent copy of e1, denoted by ẽ1, we have defined

Xt,ζt := sup
s∈[t,ζt ]

Xs and ζt := inf
{
s > t : Ay

s − A
y
t > ẽ1

}
.

Since the function (eyg(x − y) − K)1{x>z�(y)} is nondecreasing, we know from
max{Xt,Xt,ζt } ≥ Xt,ζt that

Ex

[(
eyg

(
max{Xt,Xt,ζt } − y

) − K
)
1{max{Xt ,Xt,ζt }>z�(y)}|Ft

]
≥ Ex

[(
eyg(Xt,ζt − y) − K

)
1{Xt,ζt >z�(y)}|Ft

] = V (Xt ;y).
(4.16)
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As a consequence, (i) follows from the fact that (4.15)–(4.16) imply

V (x;y) ≥Ex

[
exp

(−A
y
t

)
V (Xt ;y)

]
.

In order to prove (ii), we notice that

V (x;y) = Ex

[(
eyg(Xζ − y) − K

)
1{Xζ >z�(y)}

]
= Ex

[
Ex

[(
eyg(Xζ − y) − K

)
1{T +

z�(y)
<ζ }|Ft∧T +

z�(y)

]]
= Ex

[
Ex

[(
eyg(Xζ − y) − K

)
1{T +

z�(y)
<ζ }1{t∧T +

z�(y)
<ζ }|Ft∧T +

z�(y)

]]
= Ex

[
exp

(−A
y

t∧T +
z�(y)

)
Ex

[(
eyg(Xζ − y) − K

)
1{T +

z�(y)
<ζ }|Ft∧T +

z�(y)

]]
= Ex

[
exp

(−A
y

t∧T +
z�(y)

)
EX

t∧T
+
z�(y)

[(
eyg(M̃ζ − y) − K

)
1{M̃ζ >z�(y)}

]]
= Ex

[
exp

(−A
y

t∧T +
z�(y)

)
V (Xt∧T +

z�(y)
;y)

]
,

where M̃ζ is independent of Ft and has the same law as Xζ under PX
t∧T

+
z�(y)

. This

proves part (ii).
Given the representation in Lemma 4.6, it is straightforward to see that (iii)

holds.
Finally, we show that (exp(−A

y

t∧T +
z�(y)

)V (Xt∧T +
z�(y)

;y))t≥0 is a uniformly inte-

grable martingale, which implies (iv) by taking t → ∞. To this end, notice that,
Xζ − x ≤ X(A−∞)−1(e1)

− x, where the latter has the same law (under Px ) as an
exponential random variable with mean 1/�(r). Hence, it follows from (4.7) and
Lemma 4.2 that

V (x;y) ≤ Ex

[
eyg(Xζ − y)

]
≤ Ex

[
eXζ

]�(r + q) − 1

�(r + q)

= �(r)

�(r) − 1

�(r + q) − 1

�(r + q)
ex.

Using the fact that exp(−A
y
t ) ≤ e−rt for all t ≥ 0, we have

exp
(−A

y

t∧T +
z�(y)

)
V (Xt∧T +

z�(y)
;y)

≤ �(r)

�(r) − 1

�(r + q) − 1

�(r + q)
e
−r(t∧T +

z�(y)
)+X

t∧T
+
z�(y)

≤ �(r)

�(r) − 1

�(r + q) − 1

�(r + q)
eM,
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where M := supt∈[0,∞)(−rt +Xt) is exponentially distributed with mean 1/�̃(r).
Here, �̃(r) := sup{β ≥ 0 : ψ(β) − rβ ≤ 0}, which satisfies �̃(r) > 1 due to the
fact that r > ψ(1). The claimed uniformly integrability follows by the dominated
convergence theorem.

Lastly, the smooth fit condition holds at x = z�(y) since

ez�(y) − ∂xV (x;y)|x=z�(y)− = ez�(y) − ∂xU
(
x;y, z�(y)

)|x=z�(y)−

= ez�(y) − U
(
z�(y);y, z�(y)

)
�

(
z�(y) − y

)
= ez�(y) − (

ez�(y) − K
)
�

(
z�(y) − y

)
= �

(
z�(y) − y

)(
K − eyg

(
z�(y) − y

)) = 0,

where the last equality is due to the definition of z�(y). �

REMARK 4.8. Since Proposition 4.7 identifies U(x;y, z�(y)) ≡ V (x;y),
from (4.6) and (4.14), we can use the properties outlined in parts (i)–(iii) and the
classical verification method (see, e.g., proof of theorems in [2], Section 6), in or-
der to establish the optimality of the threshold strategy T +

z�(y), or equivalently that
the value function is given by v(x;y) = U(x;y, z�(y)). For this, it only remains
to verify the additional property that V (x;y) > ex − K for all x < z�(y). This is
equivalent to proving that

(4.17) R(x;y) < 1 ∀x < z�(y) where R(x;y) := ex − K

V (x;y)
.

Below, we examine the optimality of the threshold strategy T +
z�(y) in two sepa-

rate subsections, based on the possible values of u, and we provide the alternative
optimal strategies when T +

z�(y) is shown not to be optimal.

4.2. The case u = −∞: Proof of Theorem 2.4. As mentioned in Remark 4.8,
the only nontrivial part remaining in order to prove the optimality of T +

z�(y) is to
show that the inequality (4.17) holds true. As soon as we prove this, we will know
by Proposition 4.7 and Remark 4.8, that v(x;y) = V (x;y) = U(x;y, z�(y)) and
smooth fit holds at the exercise threshold x = z�(y).

To this end, we notice that R(z�(y);y) = 1 and that for all x < z�(y), we have

(4.18) ∂xR(x;y) = �(x − y)

V (x;y)

(
K − eyg(x − y)

)
.

Using the fact that g(·) is increasing in this case, we conclude that K − eyg(x −
y) > K − eyg(z�(y) − y) = 0 for x ∈ (−∞, z�(y)), so that (4.18) implies that
∂xR(x;y) > 0, and thus R(x;y) < R(z�(y);y) = 1 for all x ∈ (−∞, z�(y)).
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4.3. The case u ≥ 0: Proof of Theorem 2.5. Recall that in both cases u = 0
and u > 0, g(·) is not monotone, hence there is no guarantee for the validity of
inequality (4.17). In fact, we can show that (4.17) fails to hold for y = y. To see
this, observe that z�(y) ≡ y + u, where u is a local minimum of g(·). We thus
know that eyg(u − ε) > K for any sufficiently small ε > 0. As a result, for all
x ∈ (z�(y) − ε, z�(y)), we get from (4.18) that ∂xR(x;y) < 0, which yields that
R(x;y) > R(z�(y);y) = 1 in a sufficiently small left neighborhood of z�(y) and
(4.17) fails. It is therefore crucial to find the critical y-interval, such that (4.17) re-
mains valid, thus the up-crossing threshold strategy T +

z�(y) is optimal and establish
Theorem 2.5(i).

PROOF OF PART (I) OF THEOREM 2.5. We begin by using the fact that g(·) is
ultimately increasing, in order to define

(4.19) y0 := inf
{
y ≤ y : sup

u∈(−∞,u]
g(u) = e−yK

}
.

Since u is a local minimum of g(·), we have y0 < y. Then, for any fixed y ≤ y0,
we have

g(u) ≤ e−yK ∀u ∈ (−∞, u].
In addition, for any fixed y ≤ y0, by z�(y) − y ≥ z�(y0) − y0 > z�(y) − y = u and
the fact that g(·) is nondecreasing over [u,∞), we know [by constructions of y0
and z�(y)] that

g(u) < g
(
z�(y) − y

) = e−yK ∀u ∈ [
u, z�(y) − y

)
.

All together, we have for any fixed y ≤ y0, that

eyg(x − y) ≤ K ∀x ∈ (−∞, z�(y)
)
,

where the inequality is strict at least when x ∈ [y + u, z�(y)). Combining this
with (4.18), we see that R(·;y) is nondecreasing over (−∞, y + u], and is strictly
increasing over [y + u, z�(y)), which yields that

(4.20) R(x;y) < R
(
z�(y);y) ≡ 1 ∀x ∈ (−∞, z�(y)

)
for y ∈ (−∞, y0].

Hence, for any fixed y ≤ y0, the threshold type strategy T +
z�(y) is optimal.

For y ∈ (y0, y), although R(·;y) is still increasing over [y + u, z�(y)) [by the
constructions of u and z�(y), and (4.18)], R(·;y) is not monotone over (−∞, y +
u] and has at least one local maximum in this interval. Also, note that for every
fixed y ∈ [y0, y) and fixed x ∈ (−∞, z�(y)), R(x; ·) is strictly increasing over
(y0, y). To see this, use the facts that ∂zU(x;y, z) vanishes at z = z�(y) and that
z�(y) is nonincreasing to calculate

dy logR(x;y) = −∂yU(x;y, z�(y))dy + ∂zU(x;y, z)|z=z�(y) · dyz
�(y)

U(x;y, z�(y))

=
{
�

(
z�(y) − y

)
dy for x ∈ (−∞, y),(

�(x − y) − �
(
z�(y) − y

))
dy for x ∈ [

y, z�(y)
)
,
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which implies that ∂y logR(x;y) is well defined and is strictly positive, due to
�(·) being strictly decreasing over [0,∞) (see Lemma 4.2). The monotonicity of
R(x; ·) implies that the inequality (4.17) will fail for some values of y larger than
y0. In view of these observations, we can define

(4.21) ỹ := inf
{
y ≤ y : sup

x<u+y

R(x;y) = 1
}
.

By the definition (4.19) of y0 and the discussion on y at the beginning of this
subsection, we know that ỹ is well defined and satisfies ỹ ∈ (y0, y). Moreover,
recall that g(·) is increasing over (u,∞), so for each fixed y < y, z�(y) is a local
maximum of R(·;y). On the other hand, recall that R(·;y) is strictly increasing
over [u + y, z�(y)) and that R(z�(y);y) = 1, so we know that, for any fixed y ∈
(y0, ỹ),

(4.22) R(x;y) < 1 ∀x ∈ (−∞, z�(y)
)
.

Hence, for any fixed y ∈ (y0, ỹ), the threshold type strategy T +
z�(y) is optimal. The

proof of Theorem 2.5(i) is complete by combining inequalities (4.20) and (4.22).
�

We have proved that when y is sufficiently small, that is, y < ỹ, the optimal
stopping region Sy = [z�(y),∞) has only one connected component. On the other
hand, a similar situation occurs if y is sufficiently large, in which case the optimal
stopping region Sy = S∞ ≡ [k,∞). To show this, we demonstrate below the proof
of Theorem 2.5(ii), namely that, v(·) is the value function of the problem (4.1) for
some y. We will demonstrate the analysis of the remaining, most challenging,
proofs for parts (iii) and (iv) of Theorem 2.5 afterwards.

Let us introduce the following functions h(·) and f (·), which play a crucial role
in the rest of the paper [as v(·) is also part of (4.1)]. We first define

(4.23) h(x) := v(x) − (
ex − K

) ∀x ∈ R,

which is a nonnegative function that is vanishing for all x ≥ k and is uniformly
bounded from above by K [using the obvious fact that v(x) < ex for all x ∈ R].
Then we also define

(4.24)

f (x) :=
∫
(−∞,k)

h(z)�(−x + dz)

≡
∫
(−∞,k−x)

h(x + w)�(dw), x ≥ k,

which has the following properties, that can be proved by using the definition
(4.24) of f (·), the aforementioned properties of h(·) from (4.23) as well as that
h(·) is strictly decreasing over (−∞, k), and the definition (2.1) of ψ(·).
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LEMMA 4.9. The function f (·) is nonnegative, decreasing, continuous over
[k,∞), and is in C1[k + δ,∞) for any δ > 0. Moreover,

(4.25)
f (k) = (

r + q − ψ(1)
)
K − (r + q)K − 1

2
σ 2�(r + q)K and

f (∞) = 0.

PROOF. See the Appendix of [23]. �

PROOF OF PART (II) OF THEOREM 2.5. In order to show that the value func-
tion is given by v(·;y) = v(·) for some y ≥ y(> ỹ), we adopt the method of proof
through the variational inequalities, summarized below.

LEMMA 4.10. Let y ∈ R and a function w : R → (0,∞) in C1(R) ∩
C2(R\{θ1, . . . , θk}) for some θ1, . . . , θk ∈ R, such that w(x) ≥ (ex − K)+ and is
superharmonic, that is, it satisfies the variational inequalities:

(4.26)
max

{
(L− r − q1{x<y})w(x),

(
ex − K

)+ − w(x)
} = 0

∀x ∈ R\{θ1, . . . , θk}.
Then, by using Itô–Lévy lemma and the compensation formula, we know that
v(x;y) ≡ w(x) is the value function of the problem (4.1) for this y ∈ R.

PROOF. See, for example, [22], or [8], Section 3.3, for a precise example. �

We already know that v(x) satisfies all conditions of Lemma 4.10 for {θ1} = {k},
apart from (4.26). We thus need to identify all the y-values for which (4.26) holds
true. On one hand, using the explicit formula of v(x) for x < k as given in (2.6),
we know that (L − r − q)v(x) = 0 on (−∞, k). In conjunction with Lemma 4.9,
which implies for all x > k, that

(4.27)
(L− r − q)v(x) = (r + q)K − (

r + q − ψ(1)
)
ex + f (x)

≤ (r + q)K − (
r + q − ψ(1)

)
K + f (k) ≤ 0,

we have that (4.26) holds true and v(·) is indeed superharmonic with respect to the
discount rate r + q for x < y. In order to examine if v(·) is still superharmonic
with respect to discount rate r for x ≥ y, we use the functions h(·) and f (·) from
(4.23)–(4.24) and the above analysis, to define and calculate

(4.28) χ(x) := (L− r)v(x) =
{
rK − (

r − ψ(1)
)
ex + f (x) ∀x ≥ k,

qv(x) ∀x < k.

We clearly have χ(x) > 0 for all x < k, with χ(−∞) = 0. Moreover, recalling the
standing assumption that r > ψ(1), we know from (4.28) and Lemma 4.9 that the
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function χ(·) is strictly decreasing over [k,∞), with χ(∞) = −∞. Hence, there
exists a unique critical y-value, denoted by ym, such that

(4.29) (L− r)v(x) ≡ χ(x) =
{
> 0 if x < ym,

≤ 0 if x ≥ ym.

In words, ym is the smallest y-value such that v(·) is superharmonic with respect
to discount rate r . So we obviously have ym < k. Overall, in light of the above
observations, we know that v(·) satisfies the variational inequalities (4.26) for all
y ≥ ym.

Note that, the above analysis also implies that ym ≥ y. To see this we argue
by contradiction, supposing that ym < y. Then, for any x in a sufficiently small
left neighborhood of z�(ym) [defined in (4.13)], waiting until T +

z�(ym) will yield a
strictly better value than stopping immediately, so this x must be in the continua-
tion region (−∞, k). But then, by the arbitrariness of x, we must have z�(ym) = k,
and consequently, by the monotonicity of z�(·), we have

k − ym = z�(ym) − ym > z�(y) − y = u ≥ 0 ⇒ ym < k.

However, the last inequality implies from (4.28) that χ(ym) = qv(ym) > 0, which
contradicts with the definition of ym in (4.29). �

We now prove the case when y = ỹ.

PROOF OF PART (III) OF THEOREM 2.5. It follows from the proof of Theo-
rem 2.5(i) and the definition (4.21) of ỹ, that the inequality (4.17) fails at some
point x0 < u + ỹ, which satisfies

(4.30) R(x0; ỹ) = sup
x<u+ỹ

R(x; ỹ) = 1.

Moreover, x0 is a stationary point of R(·; ỹ) and solves K = eỹg(x0 − ỹ). Hence,
for y = ỹ, there is branching of the optimal stopping region due to the facts that
{x0}∪[z�(ỹ),∞) ⊂ S ỹ and (u+ ỹ, z�(ỹ)) ⊂ (S ỹ )c. Below we examine the two dis-
tinct scenarios corresponding to the cases u = 0 and u > 0 (see also Remark 4.4).

First, if X has paths of bounded variation and (2.12) holds (i.e., u = 0), then
by (4.9)–(4.10) and (4.18), we know that ∂xR(x; ỹ) > 0 over (ỹ, z�(ỹ)), implying
that x0 < ỹ. Therefore, by observing that

(4.31) K = eỹg(x0 − ỹ) = �(r + q) − 1

�(r + q)
ex0 ⇒ x0 = k,

we conclude, in view of Proposition 3.1(iii), that S ỹ = {k} ∪ [z�(ỹ),∞). Second,
if (2.12) does not hold (i.e., u > 0), we have in view of Lemma 2.2 the following
equivalence:

(4.32)
Hypothesis 2.1 holds true for y = ỹ

⇔ The point x0 given by (4.30) satisfies x0 ∈ (−∞, ỹ).
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REMARK 4.11. As it will be shown later on, an additional unique connected
component of Sy inevitably appears in (−∞, y) for some y ≥ ỹ, independently
of how many disjoint connected components of Sy exist in [y,∞). In order to
present the main ideas in a concise manner, for the purpose of this paper, we do
not expand in the direction where Hypothesis 2.1 fails.

Now, when x0 ∈ (−∞, ỹ) ∩S ỹ holds, we have similar to (4.31) that x0 = k and
so S ỹ = {k} ∪ [z�(ỹ),∞).

Finally, in order to complete the proof, it remains to show that the smooth fit
condition holds at x = k when y = ỹ. However, this follows directly from the
smoothness of v(x;y) ≡ U(x; ỹ; z�(ỹ)). �

The above analysis, together with (4.21) and the monotonicity of R(k;y) in
y, outlined in the proof of Theorem 2.5(i), implies that the critical value ỹ is the
smallest y-value such that k ∈ Sy , provided that Hypothesis 2.1 holds whenever
(2.12) fails. Consequently, we know from Proposition 3.1(i) that

(4.33) {k} ∪ [
z�(ỹ),∞) ⊂ Sy and (−∞, k) ⊂ (

Sy)c ∀y ∈ [ỹ,∞).

Moreover, it follows from this observation, Remark 3.2 and Theorem 2.5(ii), that
the disjoint components of stopping region will merge into one when y ≥ ym.
Taking into account all the above, we are ready to study the only remaining case,
when y ∈ (ỹ, ym).

PROOF OF PART (IV) OF THEOREM 2.5. Provided that Hypothesis 2.1 holds
for ỹ (so that ỹ > k and k ∈ S ỹ ), a combination of (4.33), Proposition 3.1(iii) and
the observation from (4.29) that (y, ym) ⊂ (Sy)c, dictates the consideration of the
following pasting points, for all y ∈ (ỹ, ym):

a�(y) := sup
{
x ∈ [k, y] : v(x;y) = ex − K

}
,(4.34)

b�(y) := inf
{
x ∈ [

ym, z�(ỹ)
] : v(x;y) = ex − K

}
.(4.35)

In fact, Proposition 3.1(iii) implies that [k, a�(y)] ∈ Sy . Hence, for any x ∈
(a�(y), b�(y)), it is optimal to wait until T −

a�(y) ∧ T +
b�(y). To be more precise, stop-

ping immediately is optimal when either the event {T +
b�(y) < T −

a�(y)} or {T −
a�(y) <

T +
b�(y),XT −

a�(y)
∈ [k, a�(y)]} occurs. However, an immediate stop is not optimal

when {T −
a�(y) < T +

b�(y),XT −
a�(y)

< k} occurs due to an overshoot; waiting until X

increases to k would then be optimal. Taking these into account, the value function
v(·;y) in (4.1), for all x ∈ (a�(y), b�(y)), takes the form:

v(x;y) = Ex

[
exp

(−A
y

T −
a�(y)

∧T +
b�(y)

)
v(XT −

a�(y)
∧T +

b�(y)
)
]

=: V (
x;y, a�(y), b�(y)

)
.

(4.36)
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In view of deriving the above value, we use a result from [19], Theorem 2, for
the occupation time at the first up-crossing exit. For any r ≥ 0, q > 0, and x ≤ b

with a ≤ y ≤ b, we have

Ex

[
exp

(−A
y

T +
b

)
1{T +

b <T −
a }

] = W(r,q)(x, a)

W(r,q)(b, a)
,

where we define the nonnegative function (see [19], (6)–(7))

W(r,q)(x, a) := W(r+q)(x − a)
(4.37)

− q

∫
(y,x∨y)

W(r)(x − z)W(r+q)(z − a)dz

= W(r)(x − a)
(4.38)

+ q

∫
(a,y)

W(r)(x − z)W(r+q)(z − a)dz.

In addition, we prove and use the following proposition, which also provides a
generalization of the case with deterministic discounting r in [18], Theorem 2, to
the case with state-dependent discount rate r + q1{Xt<y}.

PROPOSITION 4.12. Let F(·) be a positive, nondecreasing, continuously dif-
ferentiable function on R, and further suppose that F(·) has an absolutely contin-
uous derivative with a bounded density over (−∞, b] for any fixed b if X has paths
of unbounded variation. We have for all a ≤ y < b and x ∈ (a, b) that

Ex

[
exp

(−A
y

T −
a ∧T +

b

)
F(XT −

a ∧T +
b

)
]

(4.39)
= F(x) +

∫
(a,b)

u(r,q)(x,w;y, a, b) · (L− r − q1{w<y})F (w)dw,

Ex

[
exp

(−A
y

T −
a

)
F(XT −

a
)1{T −

a <T +
b }

]
= F(x) − W(r,q)(x, a)

W(r,q)(b, a)
F (b)(4.40)

+
∫
(a,b)

u(r,q)(x,w;y, a, b) · (L− r − q1{w<y})F (w)dw,

where

u(r,q)(x,w;y, a, b)

:= 1{w∈(a,y)}
(

W(r,q)(x, a)

W(r,q)(b, a)
W(r,q)(b,w) − W(r,q)(x,w)

)

+ 1{w∈[y,b)}
(

W(r,q)(x, a)

W(r,q)(b, a)
W(r)(b − w) − W(r)(x − w)

)
.
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PROOF. See the Appendix of [23]. �

Therefore, if u ≥ 0 and y ∈ (ỹ, ym), we have for all k ≤ a ≤ y < b that the
function V (x;y, a, b) defined in (4.36) for all x ∈ (a, b) with a ≥ k, is given by

V (x;y, a, b) = v(x) +
∫
(a,b)

u(r,q)(x,w;y, a, b)

· [
χ(w) − q1{w<y}v(w)

]
dw,

(4.41)

where χ(·) is defined in (4.28). In view of this explicit formula, one can easily
see that the mapping x 
→ v(x;y) ≡ V (x;y, a�(y), b�(y)) is in C1(a�(y), b�(y)).
If X has bounded variation, then we already know from Proposition 3.1(ii) that
continuous fit should hold at a�(y) and b�(y). However, if X has unbounded vari-
ation, by exploiting the optimality of thresholds a�(y) and b�(y), we show in what
follows that the smooth fit conditions must hold as well. Remarkably, using a sim-
ilar argument, we show that smooth fit holds at b�(y) even when X has bounded
variation.

PROPOSITION 4.13. The following smooth fit properties holds:

(i) If u ≥ 0, then for any y ∈ (ỹ;ym), smooth fit holds at b�(y), that is,

lim
x↑b�(y)

(
∂xv(x;y)

) = eb�(y).

(ii) If X has unbounded variation, u > 0 and y ∈ (ỹ, ym), then y /∈ Sy and
smooth fit holds at a�(y), that is,

lim
x↓a�(y)

(
∂xv(x;y)

) = ea�(y).

PROOF. See the Appendix of [23]. �

Therefore, using the fact that we have smooth/continuous fit at the optimal ex-
ercising thresholds a�(y) and b�(y) by Propositions 3.1 and 4.13, as well as using
(4.36)–(4.41), we derive a necessary condition for the pair (a, b) to be identified
with the optimal (a�(y), b�(y)).

COROLLARY 4.14. For the case u ≥ 0 and y ∈ (ỹ, ym), the optimal thresh-
olds a�(y) and b�(y) solve the following system:


(b,a;y) = ∂b
(b, a;y) = 0 for (a, b) ∈ [k, y) × [
ym, z�(y)

]
,

where, with χ(·) defined in (4.28), we have

(4.42)


(x,a;y) :=
∫
(a,y)

W(r,q)(x,w) · [
qv(w) − χ(w)

]
dw

−
∫
[y,x∨y)

W(r)(x − w) · χ(w)dw.
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PROOF. Bounded variation case: Letting x ∈ (a�(y), y) and using (4.37), we
can conclude from (4.41) and some straightforward calculations that

V
(
x;y, a�(y), b�(y)

)
= ex − K + 


(
x, a�(y);y) − W(r+q)(x − a�(y))

W(r,q)(b�(y), a�(y))



(
b�(y), a�(y);y)

.

On one hand, it is easily seen from (4.36) that V (x;y, a�(y), b�(y))|x=a�(y)+ =
ea�(y) −K holds by construction. On the other hand, suppose 
(b�(y), a�(y);y) �=
0 in the above equation, then since W(r+q)(0) > 0 due to [11], Lemma 3.1, the
continuous fit condition at a�(y) will not hold, which is a contradiction. The other
equality can be straightforwardly obtained from the smooth fit condition satisfied
by V at b�(y).

Unbounded variation case: In this case, W(r+q)(0) = 0 by [11], Lemma 3.1,
thus the above equation in Step 1 is satisfied immediately. However, we can derive
from it, for x ∈ [a�(y), y], that

∂xV
(
x;y, a�(y), b�(y)

)
= ex + ∂x


(
x, a�(y);y) − W(r+q)′(x − a�(y))

W(r,q)(b�(y), a�(y))



(
b�(y), a�(y);y)

.

We know from (4.36) and Proposition 4.13(ii) that ∂xV (x;y, a�(y),

b�(y))|x=a�(y)+ = ea�(y) holds. By supposing that 
(b�(y), a�(y);y) �= 0 in the
above equation and using that W(r,q)(b�(y), a�(y)) > 0 and W(r+q)′(0+) > 0 due
to [11], Lemma 3.2, we conclude that the smooth fit condition at a�(y) does not
hold, which is a contradiction. Hence, a�(y) and b�(y) solve 
(b,a;y) = 0. The
other equality can be straightforwardly obtained from the smooth fit condition
satisfied by V at b�(y). �

This corollary states that x = b�(y) is both a zero and a stationary point for the
function 
(x,a�(y);y). Based on these facts, we notice from (4.36)–(4.41) that

(4.43)
v(x;y) = V

(
x;y, a�(y), b�(y)

)
= 


(
x, a�(y);y) + ex − K ∀x ∈ [

a�(y), b�(y)
]
.

By the definitions of a�(y) and b�(y) [see (4.34) and (4.35)], we have 
(x,a�(y);
y) > 0 for all x in a sufficiently small left neighborhood of b�(y), from which
we conclude that b�(y) is either a local minimum or an inflection point of the
function V (·;y, a�(y), b�(y)). By exploiting this observation, we are able to give
a complete characterization of (i.e., sufficient conditions for determining) the pair
(a�(y), b�(y)).



BEATING THE OMEGA CLOCK 2131

PROPOSITION 4.15. Assuming that u ≥ 0 and y ∈ (ỹ, ym), we have:

(i) 
(a,a;y) = 0, for any fixed a ∈ [k, y). If X has unbounded variation, then
we also have ∂x
(x, a;y)|x=a+ = 0. Moreover, 
(x,a;y) > 0 for all x ∈ (a, y];

(ii) Let N a := {x ∈ (y, z�(ỹ)] : 
(x,a;y) ≤ 0}, which is a closed set for each
a ∈ [k, y). Then a�(y) ∈ (k, y), such that

(4.44) a�(y) = inf
{
a ∈ [k, y) : N a �= ∅

}
and b�(y) = infN a�(y).

That is, b�(y) is a global minimum point of the function 
(·, a�(y);y) over
(a�(y), z�(ỹ)), and a�(y) is the unique a ∈ (k, y) such that infx∈(y,z�(ỹ)] 
(x,a;
y) = 0.

PROOF. Claim (i) follows from the construction of 
(x,a;y). To see this, let
x ∈ (a, y) and use (4.42) and (4.37) to see that


(x,a;y) =
∫
(0,x−a)

[
qv(x − z) − χ(x − z)

]
W(r+q)(z)dz.

The smoothness follows by combining the above with (4.43) and Proposition 4.13.
Using also the monotonicity of f (·) [and hence χ(·)] from Lemma 4.9, (4.25) and
the fact that r > ψ(1), we have for all z ∈ (0, x − a) that

qv(x − z) − χ(x − z) ≥ qv(a) − χ(a) ≥ qv(k) − χ(k)

= −(L− r − q)v(x)|x=k ≥ 0.
(4.45)

Hence, the first claim is proved.
In order to prove claim (ii), we let a(y) := inf{a ∈ [k, y) : N a �= ∅}. First, re-

call from Theorem 2.5(ii), that a�(ỹ) = k and b�(ỹ) = z�(ỹ), hence a(ỹ) = k and

(x, k; ỹ) ≥ 0 for all x ∈ [k, z�(ỹ)]. Then, for any fixed x > y > a ≥ k, using
(4.37), (4.38) and (4.43) we have

∂y
(x, a;y)

= qW(r)(x − y)

(
v(y)

+
∫
(a,y)

W(r+q)(y − w)
[
qv(w) − χ(w)

]
dw

)
= qW(r)(x − y)

(
v(y) + 
(y,a;y)

)
> 0,

(4.46)

where we used the conclusion from (i) in the last inequality. It thus follows that,
for all y > ỹ, we have

inf
x∈(y,z�(ỹ)]
(x, k;y) > 0,

which implies that N k = ∅ hence a(y) > k, for y > ỹ. On the other hand, since
b�(y) ∈ N a�(y), we know that k < a(y) ≤ a�(y). Suppose now that a(y) < a�(y)
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and since N a(y) �= ∅, let b(y) = infN a(y). By the definition of b(y) and claim
(i), we conclude that 
(x,a(y);y) > 0 for all x ∈ (a(y), b(y)). However, for any
fixed x > a�(y), taking the derivative of 
(x,a;y) with respect to a ∈ (k, y) we
get

(4.47) ∂a
(x, a;y) = −W(r,q)(x, a)
(
qv(a) − χ(a)

)
< 0,

where the inequality follows from (4.45). Thus, we have that 
(x,a(y);y) >


(x, a�(y);y) ≥ 0 for all x ∈ (a�(y), b�(y)] so b(y) > b�(y). However, from
(4.36)–(4.41), we know that for these x,

v(x;y) ≥ Ex

[
exp

(−A
y

T −
a(y)∧T +

b(y)

)
v(XT −

a(y)∧T +
b(y)

)
]

= 

(
x, a(y);y) + v(x) > 


(
x, a�(y);y) + v(x) = v(x;y),

which is a contradiction. Hence, the only possibility is to have a�(y) = a(y) ∈
(k, y), and thus b�(y) = infN a�(y) and infx∈(y,z�(ỹ)] 
(x,a�(y);y) = 0. Finally,
since 
(x, ·;y) is strictly decreasing for every fixed x > y, we know that there is
no other a ∈ (a�(y), y) such that infx∈(y,z�(ỹ)] 
(x,a;y) = 0. This completes the
proof. �

Notice that Proposition 4.15 proves that a�(y) ∈ (k, y), if u ≥ 0 and y ∈ (ỹ, ym),
where a�(y) is the smallest a-value such that the curve 
(·, a;y), emanating from
the x-axis at x = a, will revisit the x-axis, so that 
(·, a�(y);y) > 0 for all x ∈
(a�(y), b�(y)). Recalling from Proposition 3.1(iii) and Remark 3.2 that [k, a�(y)]
is the only component of stopping region in the interval (−∞, y), we know from
Proposition 3.1(ii) that a�(·) is necessarily continuous over [ỹ, ym). Furthermore,
recall from (4.33) that S ỹ = {k}∪ [z�(ỹ),∞) ≡ [k, a�(ỹ)]∩ [b�(ỹ),∞) ⊆ Sy , that
is, there is no continuation region in [b�(ỹ),∞) for all y ∈ [ỹ, ym). Hence, recall-
ing Lemma 2.2, we have the following equivalence:

(4.48)
Hypothesis 2.1 holds true for y ∈ (ỹ, ym)

⇔ b�(·) given by (4.44) is continuous over (ỹ, ym).

REMARK 4.16. Equivalence 4.48 implies that, if Hypothesis 2.1 fails for
some y1 ∈ (ỹ, ym), namely the function b�(·) experiences a jump at y1, then in
view of (4.44) and Proposition 3.1(i), we will have further branching of the stop-
ping region inside (y1,∞). In other words, we will have Sy1 = [k, a�(y1)] ∪
{b�(y1)} ∪ [b�(y1−),∞).

Indeed, the right-hand side of (4.48) is equivalent to the fact that [b�(y),∞) is a
component of Sy for all y ∈ [ỹ, ym). Overall, if y ∈ (ỹ, ym), then Sy = [k, a�(y)]∪
[b�(y),∞), and the value function of the problem (4.1) is given by (2.14), which
completes the proof. �
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REMARK 4.17. In view of Proposition 3.1(i), we know that, under Hypothe-
sis 2.1, the mapping y 
→ a�(y) [y 
→ b�(y), resp.] is continuous and increasing
(decreasing, resp.) in y. Moreover, we know from the proof of Proposition 4.15
[more specifically, equation (4.46)], that the monotonicity is strict. Furthermore,
because Sym = [k,∞) [see Theorem 2.5(ii)], we know that

lim
y↑ym

a�(y) = lim
y↑ym

b�(y) = ym.

5. Proof of Theorem 2.7.

PROOF OF PART (A) OF THEOREM 2.7. Let us first consider the case r <

ψ(1), so that (e−rt+Xt )t≥0 is a Px-submartingale. In this case, we have

Ex

[
e−A

y
t
(
eXt − K

)+]
≥ Ex

[
exp

(
Xt − rt − q

∫
(0,t]

1{Xs<y} ds

)]
− KEx

[
exp

(
−rt − q

∫
(0,t]

1{Xs<y} ds

)]
≥ ex

Ex

[
exp

(
(Xt − x) − ψ(1)t

) · exp
((

ψ(1) − r
)
t

− q

∫
(0,t]

1{Xs<y} ds

)]
− K

= ex+(ψ(1)−r)t
E

1
x

[
exp

(
−q

∫
(0,t]

1{Xs<y} ds

)]
− K.

(5.1)

Since X drifts to ∞ under P
1
x (see [12], (8.3), for c = 1), we know from [19],

Corollary 3, that the expectation in the last line of (5.1) remains bounded as t →
∞. However, the prefactor ex+(ψ(1)−r)t → ∞ as t → ∞, so we know that the
value function v(x;y) = ∞ for all x, y ∈ R. �

PROOF OF PART (B) OF THEOREM 2.7. We now assume r = ψ(1), so
that (e−rt+Xt )t≥0 is a Px -martingale. In this case, recall from [21] that v(x) ≡
v(x;−∞) defined in (2.7) takes the form v(x) = ex , so we know that v(x;y) is
finite, due to Proposition 3.1. On the other hand, we also have that v(x;y) ≥ v(x)

holds, where v(x) ≡ v(x;∞) is given by (2.6) as in the previous section since
r + q > ψ(1). Therefore, recalling from [21] that the problem (2.7) for v(x) has
no optimal stopping region, we get using Proposition 3.1(i) that ∅ = S−∞ ⊆ Sy ⊆
S∞ = [k,∞), so (−∞, k) should always belong to the continuation region. In
view of this observation, we can treat v(·) as the reward function and consider the
representation (2.10) of the value function v(·;y). We thus have for all x ≥ k ∨ y

[see also (4.28) for the definition of χ(·)], that(
L− (r + q1{x<y})

)
v(x) = χ(x) = rK + f (x) ≥ rK > 0.
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Hence, it will always be beneficial to continue as long as X stays over k ∨ y. In
view of this and the fact that Sy ⊂ [k,∞), we either have Sy = ∅ if y < k, or
Sy ⊂ [k, y] if y ≥ k. By Proposition 3.1(iii), if the stopping region exists, then it is
at most one connected interval of the form [k, a(y)] for some a(y) ∈ [k, y]. Thus,
it will be crucial to identify the smallest y-value such that k ∈ Sy . To this end, we
calculate the value of waiting forever:

V∞(x;y) = lim
t→∞Ex

[
e−A

y
t
(
eXt − K

)+]
≥ lim

t→∞Ex

[
e−A

y
t
(
eXt − K

)]
= ex

E
1
x

[
exp

(
−q

∫
(0,∞)

1{Xs<y} ds

)]
= ψ ′(1)

(
�(r + q) − 1

)
eyI(r,q)(x − y),

where we used [19], Corollary 3. One can similarly establish the reverse inequality,
so the above is in fact an equality. It follows that

V∞(x;y) = (�(r + q) − 1)

�′(r)q
ey+�(r+q)(x−y) for all x < y.(5.2)

For any fixed x, the function V∞(x; ·) is obviously strictly decreasing over (x,∞),
since �(r + q) > �(r) = 1 in this case. In particular, we notice that there exists a
unique value y∞ ∈ (k,∞) that solves

(5.3)

V∞(k;y∞) = ek − K

⇔ y∞ = k + 1

�(r + q) − 1
log

(
�(r + q)(�(r + q) − 1)

�′(r)q

)
.

It can be verified using the convexity of ψ (see, e.g., [12], Exercise 3.5), that
y∞ > k indeed holds. Moreover, for any x ∈ [k, y∞), we have

∂x log
(

ex − K

V∞(x;y∞)

)
= �(x − y∞)

ex − K

(
K − ex

(
1 − 1

�(x − y∞)

))

= �(r + q)

ex − K

(
K − �(r + q) − 1

�(r + q)
ex

)
.

Hence, we know that the mapping x 
→ (ex −K)/V∞(x;y∞) is strictly decreasing
over [k, y∞). As a result, we know that Sy = ∅ for y < y∞, Sy∞ = {k} and the
value function is given by (2.16) in both cases.

For y > y∞, in view of Proposition 3.1(i) and Proposition 3.1(iii), we know
that the stopping region Sy = [k, a�∞(y)] for some a�∞(y) ∈ (k, y). To determine
a�∞(y), we consider the value of the threshold type strategy T −

a . This can be done
by taking the limit of (4.39) in Proposition 4.12 as b → ∞. Then, similarly as in
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Corollary 4.14, we can obtain a characterization for the optimal threshold a�∞(y) ∈
(k, y):

(5.4)


∞
(
a�∞(y);y) = 0 where


∞(a;y) :=
∫
(a,y)

T (r,q)(w)
(
χ(w) − qv(w)

)
dw

+
∫
[y,∞)

e−wχ(w)dw,

where T (r,q)(a) := e−a + q
∫
(k,y) e−zW(r+q)(z − a)dz. We refer the reader to [23]

for a more detailed proof of this last part. �

6. Example. In this section, we study the optimal stopping problem (1.2) us-
ing the compound Poisson model, also used in [19]. In particular, we assume that
the Lévy process X is given by

Xt = X0 + γ t + σBt −
Nt∑
i=1

Yt ,

where γ = 0.3, σ = 0.2, B ≡ (Bt )t≥0 is a standard Brownian motion, (Nt)t≥0
is a Poisson process with intensity λ = 0.6 independent of B and Y1, Y2, . . . are
i.i.d. positive hyper-exponential random variables with density given by p(z) =
1{z>0}ηe−ηz, where η = 1 is the intensity of the exponential distribution. We also
let r = 0.05, q = 1 and K = 10. Using this data, we can compute that u = 0.1665,
ψ(1) = 0.02, ỹ = 2.7870 and ym = 3.7383, which correspond to Theorem 2.5.

We thus consider three values for y representing the cases: (i) y < ỹ; (ii) y = ỹ;
(iii) y ∈ (ỹ, ym), which are illustrated in three panels in Figure 1. In panels (a) and
(b) of Figure 1, we obtain the optimal threshold z�(y) through its definition (4.13),

FIG. 1. Illustrations of v(x;y). In all panels, the horizontal axis indicates the underly-
ing price level ex (in the absolute price scale) and the vertical axis indicates the value;
Black solid line: the value function v(x;y); gray dashed line: the intrinsic value func-
tion (ex − K)+. Panel (a): for y = 2.7 < ỹ = 2.7870, the optimal stopping region is
exp(Sy) = [54.1636,∞). Panel (b): for y = ỹ = 2.7870, the optimal stopping region is
exp(Sy) = {13.3081} ∪ [50.9883,∞). Panel (c): y = 3 ∈ (ỹ, ym) ≡ (2.7870,3.7383), the optimal
stopping region is exp(Sy) = [13.3081,19.1801] ∪ [47.7146,∞).
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while in panel (c) of Figure 1, we numerically solve for the optimal thresholds
a�(y) and b�(y) through their definition (4.44) in Proposition 4.15. From these
plots, it is seen that the value functions are no longer convex in the absolute price
scale. In addition, the optimal exercising region exp(Sy) indeed “grows” with in-
creasing y-values [as indicated in Proposition 3.1(i)], there is branching (as in-
dicated in Theorem 2.5) and we can compare it in each of the above cases with
exp(S±∞), given by [K,∞) = [13.3081,∞) and [K,∞) = [77.7536,∞).

7. Conclusions. We have studied an optimal stopping problem with a ran-
dom time-horizon that depends on the occupation time of the underlying process.
The problem is equivalent to the evaluation of a perpetual American call option
with a random discount rate. To the best of our knowledge, our work is the first
that addresses optimal stopping with a random discount rate under such general
Lévy models. Moreover, the results reveal a rich class of optimal stopping strate-
gies. As seen in Theorem 2.4 and Theorem 2.5(i)–(ii), up-crossing strategies may
still be optimal under certain circumstances. However, in some cases as in Theo-
rem 2.5(iii)–(iv), both the optimal stopping region and the continuation region can
have two disconnected components, and the optimal exercising strategy can be
two-sided and may not be a one-shot scheme if overshoot occurs; which are both
interesting new features. Lastly, because of the random discount factor, there are
nontrivial optimal exercising strategies in the martingale case, as opposed to the
standard perpetual American call option [21]. Precisely, as seen in Theorem 2.7,
the optimal stopping region is always connected, but the one-sided optimal exer-
cising strategy can be either an up-crossing or a down-crossing exit, with the latter
even possibly not being a one-shot scheme, which are all surprising results.

In order to characterize the optimal exercising thresholds in Theorem 2.5(iv)
and Theorem 2.7, we obtain the joint distribution of the discounting factor and
the underlying process at the first exit time, when the discount rate is random
(see Proposition 4.12). This novel result can be applied to solve optimal stopping
problems with alternative payoffs under that random discount rate. These could be
natural directions for future research.

APPENDIX: PROOFS

PROOF OF LEMMA 2.2. By Proposition 3.1(i), the continuation region must
include (−∞, k). Thus it remains to study the possibility of other parts of the
continuation region in [k,∞). To that end, we first notice from Proposition 3.1(iii)
that there cannot exist any component of continuation region that lies strictly in
the interior of the set [k, y], where the property (L− (r +q1{x<y}))v(x) < 0 holds
due to the calculation (4.27). Therefore, the only two possibilities are either for the
whole set [k, y] to be part of the continuation region, or a subset (k0, y] of it for
some k0 ∈ (k, y).



BEATING THE OMEGA CLOCK 2137

Hence, in what follows we let (a, b) be a maximal component of the continua-
tion region, such that −∞ ≤ a < y < b < ∞ and b > k [if there is no such b, then
in light of Proposition 3.1(i), we must have [k,∞) ⊂ Sy]. Then it holds that

(A.1)
(
L− (r + q1{x<y})

)
v(x)|x=b ≤ 0,

for otherwise, it will not be beneficial (by the Itô–Lévy lemma) to wait until X

reaches a level where the above inequality does not hold. At this point, we notice
that [using (4.28)]

(A.2)
(
L− (r + q1{x<y})

)
v(x) = χ(x) − q1{x<y}v(x) ∀x ∈ (k,∞).

Using the monotonicity of f (·) [and hence χ(·)] from Lemma 4.9, we can con-
clude that (L − (r + q1{x<y}))v(x) is strictly decreasing for all x ∈ (k,∞)\{y}.
Combining this with (A.1), we know that(

L− (r + q1{x<y})
)
v(x) < 0 ∀x > b.

If Hypothesis 2.1 holds, then there cannot be any continuation region in (b,∞),
which means that [b,∞) is the only component of stopping region that lies on
the right of y. If Hypothesis 2.1 does not hold, then from the above discussion
we know that, there exists a component of continuation region that lies on the
right of b. Proposition 3.1(i) implies in this case that there are two components of
stopping region on the right of y. �

PROPOSITION A.1. Suppose the value function v(·;y) is sufficiently smooth,
then Hypothesis 2.1 holds if the jump tail measure, �(x) ≡ �(−∞,−x) for
x > 0, has a monotone density, that is, for all x > 0, �(x) = ∫

(−∞,−x) π(y)dy

and π(−x) is nonincreasing for x ∈ (0,∞).

PROOF. By Proposition 3.1(i), the continuation region must include (−∞, k).
Thus it remains to study the possibility for other continuation regions in (k,∞).
To that end, we notice from (A.2) and Lemma 4.9 that (L − (r + q1{x<y}))v(x)

is strictly decreasing for all x ∈ (k,∞)\{y}. By Proposition 3.1(iii), we know that
there cannot be any component of continuation region that completely falls inside
{x ∈ (k, y] : (L − (r + q1{x<y}))v(x) < 0}. Therefore, we only need to verify the
assertion of Hypothesis 2.1 for x ∈ (y ∧ k,∞).

Let (a, b) be the maximum component of a continuation region such that
b > y ∧ k and a ∈ [−∞, b). Let 
(x;y) := v(x;y) − v(x), then 
(x;y) > 0
for all x ∈ (a, b). We also notice that 
(x;y) = 0 for all x ∈ (−∞, a]. This is
because, if a > −∞, then by Proposition 3.1(i) and Proposition 3.1(iii), we know
that a ∈ (k, y), and [k, a] is the only component of the stopping region Sy that
lies below y. Overall, (a, b) is the only interval in (−∞, b) where the time value
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(x;y) is positive. To complete the proof, we demonstrate that there is no contin-
uation region in (b,∞). To this end, consider the function

ṽ(x;y) := v(x;y)1{x≤b} + v(x)1{x>b}
≡ v(x) + 
(x;y)1{x∈(a,b)}
≡ v(x) + 
(x;y)1{x∈(−∞,b)}.

By construction, it holds that ṽ(x;y) ≥ v(x) ≥ (ex − K)+ for all x ∈ R, thus in
view of Lemma 4.10, we only need to show that ṽ(x;y) satisfies the variational in-
equalities (4.26) for {θ1, θ2, θ3} = {k, a, b}, to conclude that it is the value function
and consequently [b,∞) is a component of stopping region.

Suppose v(·;y) is sufficiently smooth, then ṽ(x;y) is also continuously differ-
entiable in x over R. Moreover,

(A.3)

(
L− (r + q1{x<y})

)
ṽ(x;y)

= (
L− (r + q1{x<y})

)
v(x;y) = 0 ∀x ∈ (a, b).

Letting x ↑ b in (A.3), and using smooth fit of ṽ(x;y) at x = b, we have

(A.4) 0 = χ(b) + 1

2
σ 2∂2

x
(x;y)
∣∣∣
x=b

+
∫
(a−b,0)


(b + z;y)�(dz).

If σ > 0 and ∂2
x
(x;y) is continuous in x with a finite limit as x ↑ b, then because

∂x
(x;y)|x=b− = 0 and 
(x;y) > 0 in the small left neighborhood of b, we know
that 
(x;y) is convex at x = b if σ > 0, so (A.4) leads to

0 ≥ χ(b) +
∫
(a−b,0)


(b + z;y)π(z)dz

= χ(b) +
∫
(a,b)


(w;y)π(−b + w)dw.

(A.5)

Thanks to the monotonicity of χ(x) and π(x), (A.5) implies for any x > b, that

0 ≥ χ(x) +
∫
(a,b)


(w;y)π(−x + w)dw

= χ(x) +
∫
(a−x,b−x)


(x + z;y)π(z)dz

= χ(x) +
∫
(−∞,b−x)


(x + z;y)π(z)dz

= (L− r)ṽ(x;y).

In summary, we know that (4.26) holds true, thus v(x;y) ≡ ṽ(x;y) and the proof
is completed. �
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