
Quantization and clustering on Riemannian manifolds
with an application to air traffic analysis

Alice Le Briganta, Stéphane Puechmorela

aENAC, Université de Toulouse, Toulouse France

Abstract

The goal of quantization is to find the best approximation of a probability distribution by a discrete measure with
finite support. When dealing with empirical distributions, this boils down to finding the best summary of the data by a
smaller number of points, and automatically yields a K-means-type clustering. In this paper, we introduce Competitive
Learning Riemannian Quantization (CLRQ), an online quantization algorithm that applies when the data does not
belong to a vector space, but rather a Riemannian manifold. It can be seen as a density approximation procedure as
well as a clustering method. Compared to many clustering algorithms, it requires few distance computations, which
is particularly computationally advantageous in the manifold setting. We prove its convergence and show simulated
examples on the sphere and the hyperbolic plane. We also provide an application to real data by using CLRQ to create
summaries of images of covariance matrices estimated from air traffic images. These summaries are representative
of the air traffic complexity and yield clusterings of the airspaces into zones that are homogeneous with respect to
that criterion. They can then be compared using discrete optimal transport and be further used as inputs of a machine
learning algorithm or as indexes in a traffic database.
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1. Introduction

Most of the statistical tools developed so far are dedicated to data belonging to vector spaces, since it is the most
convenient setting for algorithms as well as for theoretical derivations. However, when dealing with real world ap-
plications, such a framework may not fit with the structure of the data. It is obviously the case for geostatistics over
world-sized datasets, but it is also true in many other fields: shapes in computer vision, diffusion tensor images in
neuroimaging, signals in radar processing do not belong to an Euclidean space, but rather to a differentiable manifold.
Riemannian geometry provides a convenient framework to deal with such objects. It allows a straightforward gener-
alization of basic statistical notions such as means and medians [2, 14, 18], covariances [29], Gaussian distributions
[31], and of methods based on linear operations, such as principal component analysis [12, 32]. The use of these
statistical tools has met a growing interest in various fields, including shape analysis [19], computational anatomy
[12], medical imaging [13], probability theory [4], and radar signal processing [1, 21].

In air traffic management (ATM), a major concern is the ability to infer an estimation of the complexity as per-
ceived by a controller from the knowledge of aircraft trajectories in a given airspace, as depicted in Fig. 1. Many
interdependent factors are involved in the cognitive process of a human controller, making the problem extremely
difficult to solve, if even possible. However, there is a consensus among the experts on the importance of traffic dis-
order. As detailed in [43], a good way to estimate traffic disorder is to assume the spatial distribution of the aircraft
velocities to be Gaussian and use the covariance function as an indicator for local complexity. This model requires to
estimate a covariance matrix at each sample point of the airspace, of which we adopt a planar representation through
a stereographic projection, and therefore yields a mapping from the plane to the space of symmetric, positive definite
(SPD) matrices. Such a mapping will be referred to as an SPD image in the sequel. Working directly with the SPD
images is an extremely computationally expensive task, that is unrealistic in practice. Moreover, the information pro-
vided is highly redundant, making it cumbersome to use in statistical analysis. To cope with this problem, we seek to
produce summaries of the images. To do so, we model an SPD image as a realization of a random field with values
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Fig. 1. Traffic in the French airspace during one-hour periods of time. Increasing variations of speed are shown from yellow to red.

in the space of SPD matrices. The values collected at each sample point in the image define an empirical probability
distribution, supported on the space of SPD matrices. We propose to produce a summary of this empirical distribution
using optimal quantization.

Optimal quantization is concerned with finding the best approximation, in the sense of the Wasserstein distance,
of a probability distribution µ by a discrete measure µ̂n with finite support |suppµ̂n| ≤ n (see [15] or the survey paper
[27], and references therein). When dealing with empirical distributions, this boils down to finding the best summary
of the data by a smaller number of points. In the same setting, quantization naturally yields a clustering of the data
points, which coincides with the solution given by the K-means algorithm. In our application, probability measures are
supported on the space of SPD matrices, and therefore points actually refer to SPD matrices. The main challenge lies
in the fact that SPD matrices do not form a vector space, but rather a Riemannian manifold [28], whereas most work
on optimal quantization is suited for vector data [6, 25], or functional data [3, 26]. Nonetheless, the case of probability
distributions on Riemannian manifolds has recently received attention [16, 20]. In particular, the asymptotic behavior
of the quantization error, i.e., the evolution of the error made by approximating µ by µ̂n as n→ ∞, was studied for the
manifold case in [16]. However, to the best of our knowledge, no numerical schemes have yet been introduced in this
setting.

In this work, we introduce Competitive Learning Riemannian Quantization (CLRQ), a Riemannian counterpart of
Competitive Learning Vector Quantization (see for example [27]). It is a gradient descent algorithm that computes
the best approximation µ̂n of a probability measure µ over a Riemannian manifold using observations sampled from
µ. For empirical distributions, this allows to summarize a manifold-valued dataset of size N by a smaller number
n � N of points, which additionally correspond to the centers of a K-means-type clustering. Recall that the classical
Riemannian K-means algorithm computes at each step a partition of the data space (of the size of the desired number
of clusters) and computes the geometric (Karcher) mean of each cell of the partition [34]. These two steps are
usually very computationally expensive in the Riemannian setting, where the geodesic distance doesn’t always have a
closed form and the mean can only be obtained by an iterative procedure. Other clustering procedures relying on the
estimation of distance-based kernels or graphs, such as mean-shift [33], or persistence-based clustering [10], require at
least the computation of the matrix of pairwise-distances between the data points, if not the distances from the current
(new) point to all the data points at each step. It is also the case of kernel-based approaches which first transport the
data into a Reproducing Kernel Hilbert Space (RKHS) before applying a clustering procedure, less expensive in the
vector setting. In [37], the authors propose to accelerate the procedure through random projections, which require to
compute the distance matrix of a small subset of points instead of the whole dataset. In contrast, CLRQ is an online
algorithm (i.e., processing one data point at a time) and requires at each step as many distance computations as the
number of desired clusters, which is usually very small compared to the number of data. This leads us to argue that
CLRQ is well-suited for large datasets.

After proving the convergence of CLRQ under the relevant assumptions, we use it to perform air traffic complexity
analysis as presented above. Applying the algorithm to the empirical distribution of an SPD image yields two desirable
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results: (1) a summary of the image through µ̂n, and (2) a clustering of the image, and thereby of the corresponding
airspace, into different zones homogeneous with respect to complexity. The latter means that to each point of the image
is assigned a level of complexity according to the class it belongs to, and the former, that different traffic images can
easily be compared through the comparison of their summaries, using the Wasserstein distance. This is an interesting
prospect, since it allows for the indexation of air traffic situations in view of creating automatized decision-making
tools to help air traffic controllers. Naturally, CLRQ can conceivably be applied to many other application-driven
problems, requiring either the construction of summaries or the clustering of geometric data. A natural example of
such data with a positive curvature is given by GPS positions on the Earth (spherical data); in negative curvature, one
can think of Gaussian distributions, which can be parameterized by the hyperbolic half-plane in the univariate case,
and by higher dimensional Riemannian symmetric spaces in the multivariate case [8, 22].

The paper is organized as follows. In Section 2, we introduce the Riemannian setting and give an example
of a statistical object on a manifold (the Riemannian center of mass), before introducing the context of optimal
quantization. In Section 3, we present the CLRQ algorithm and show its convergence. After showing some simple
illustrations on the circle, the sphere and the hyperbolic half-plane in Section 4, we present our main application in air
traffic management in Section 5.

2. Mathematical setup

2.1. Notions of Riemannian geometry

Let us begin by introducing some notations and reminding some basic notions of Riemannian geometry. We
consider a differentiable manifold M of dimension d equipped with a Riemannian metric, i.e., a smoothly varying
inner product 〈·, ·〉x defined on each tangent space TxM at x ∈ M. Recall that TxM is a linear approximation of M at
point x, and contains all tangent vectors to M at x. The subscript x in the metric will often be omitted and the norm
associated to the Riemannian metric 〈·, ·〉 will be denoted by ‖ · ‖. Vector fields on M are mappings X : M → T M that
associate to each point x a tangent vector Xx ∈ TxM. It is possible to take the derivative of a vector field with respect
to another using an affine connection, that is, a functional (X,Y) 7→ ∇XY that acts on pairs of vector fields according
to the following rules: for any vector fields X,Y,Z and smooth real-valued function f ,

∇ f X+YZ = f∇XZ + ∇YZ,

∇X( f Y) = X( f )Y + f∇XY, ∇X(Y + Z) = ∇XY + ∇XZ.

If a vector field is defined along a curve γ(t), i.e., V(t) := Xγ(t), then its covariant derivative along γ is denoted by
DV
dt (t) := ∇γ′(t)V . There is only one affine connection that is symmetric, meaning XY − YX = ∇XY − ∇Y X, and

compatible with the Riemannian metric, that is

d
dt 〈U,V〉 = 〈DU

dt ,V〉 + 〈U,
DV
dt 〉,

for any vector fields U,V along a curve γ. It is called the Levi-Civita connection and we will always take covariant
derivatives with respect to that connection. The geodesics of M are the curves γ satisfying the relation Dγ′

dt = 0,
which implies that their speed has constant norm ‖γ′(t)‖ = const. They are also the local minimizers of the arc length
functional l:

l : γ 7→
∫ 1

0
‖γ′(t)‖dt

where in the previous expression curves are assumed, without loss of generality, to be defined over the interval [0, 1].
The exponential map at point x is the mapping, denoted by expx, that maps a tangent vector v of an open ball B0 ⊂ TxM
centered in 0 ∈ TxM to the endpoint γ(1) of the geodesic γ : [0, 1]→ M verifying γ(0) = x, γ′(0) = v,

expx(v) = γ(1).

Intuitively, the exponential map moves the point x along the geodesic starting from x at speed v and stops after
covering the length ‖v‖. The image expx(B0) is called a normal neighborhood of x. Conversely, the inverse of the
exponential map associates to any y in this normal neighborhood the vector exp−1

x (y) that sends x on y through the
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exponential map, and will be denoted by the more intuitive notation −→xy. We assume that M is complete, i.e., that the
exponential map at x is defined on the whole tangent space TxM. By the Hopf-Rinow theorem, we know that M is also
geodesically complete, that is, any two points x, y ∈ M can be joined by a geodesic of shortest length. This minimal
length defines the geodesic distance between x and y, denoted in the sequel by d(x, y). For further details, we refer the
reader to standard textbooks such as [9] or [17].

2.2. The Riemannian center of mass
Before introducing optimal quantization, let us briefly give an example of generalization of a fundamental statisti-

cal notion to the manifold setting: the Riemannian center of mass of a probability distribution, also called the Fréchet
mean [14]. Consider a probability measure µ on M with density with respect to the Riemannian volume form and a
compact support K = suppµ. As a compact set, K is contained in a geodesic ball B(a,R) = {x ∈ M, d(a, x) < R}, and
we assume that this ball is convex, i.e., that for all points x, y ∈ B̄(a,R), there exists a unique minimizing geodesic
from x to y (sufficiently small geodesic balls are convex [11, Theorem 5.14]). Let X be a random variable following
the law µ. The Fréchet mean x̄ of X generalizes the minimum-square-error property of the Euclidean mean

x̄ = Eµ(X) = arg min
a∈M

∫
M

d(x, a)2µ(dx). (1)

It can be characterized as the point where the gradient of the above functional vanishes, which gives∫
M

−→
x̄xµ(dx) = 0. (2)

This is due to the fact that the gradient of the functional f : a 7→ d(x, a)2 is given by grada f = −2−→ax (see Lemma 1 in
the Appendix), and to the assumptions we made on M and supp µ. The same assumptions guarantee that x̄ exists and
is unique [29]. When µ is an empirical probability measure equally distributed on N data points x1, . . . , xN , the mean
can be computed using a gradient descent algorithm, where the update is given by

x̄← expx̄

 1
N

N∑
i=1

−→
x̄xi

 .
This algorithm [29] is sometimes denoted by the name Karcher flow.

2.3. Optimal Riemannian quantization
Optimal quantization addresses the problem of approximating a random variable X with distribution µ by a sim-

plified version q(X) where q : M → Γ ⊂ M is a measurable function with an image Γ of cardinal at most n. The
function q is called an n-quantizer and is chosen to minimize the Lp criteria, called the distortion function,

Eµ {d(X, q(X))p} . (3)

Since q takes only a finite number of values, the distribution of q(X) will be a finite sum of point measures. It is well
known that, since any n-quantizer q of image Γ ⊂ M satisfies for all x ∈ M, d(x, q(x)) ≥ infa∈Γ d(x, a), with equality if
and only if q(x) = arg mina∈Γ d(x, a), the optimal quantizer is the projection to the nearest neighbor of Γ. Moreover,
if |Γ| < n and |supp µ| ≥ n, one easily checks that q can always be improved, in the sense of criteria (3), by adding an
element to its image. This means that an optimal n-quantizer has an image of exactly |Γ| = n points. Therefore, the
optimal n-quantizer for criteria (3) is of the form qΓ : M → Γ = {a1, . . . , an}, where the ai’s are pairwise distinct, and

qΓ(·) =

n∑
i=1

ai1Ci(Γ)(·), Ci(Γ) = {x ∈ M, d(x, ai) ≤ d(x, a j)∀ j , i}.

The ties in Ci(Γ) are arbitrarily broken. The set Ci(Γ) is the ith Voronoi cell associated to Γ and the union of all these
cells form the Voronoi diagram. The quantization problem is therefore equivalent to the approximation of supp µ by
an n-tuple (a1, . . . , an) ∈ Mn minimizing the cost function Fn,p : Mn → R+,

Fn,p(a1, . . . , an) = Eµ

{
min
1≤i≤n

d(X, ai)p
}

=

∫
M

min
1≤i≤n

d(x, ai)pµ(dx). (4)
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This cost function is obtained by evaluating the distortion function (3) at q = qΓ. Notice that if we try to approximate
µ by a single point a ∈ M (i.e., n = 1) with respect to an L2 criterion (p = 2), we retrieve the definition (1) of the
Riemannian center of mass.

Finally, there is a third way, in addition to (3) and (4), of expressing the quantization problem. It is also equivalent
to the approximation of the measure µ by the closest discrete measure µ̂n supported by n points, with respect to the
Wasserstein distance of order p

Wp(µ, µ̂n) = inf
P

∫
d(u, v)pdP(u, v). (5)

Here the infimum is taken over all measures P on M × M with marginals µ and µ̂n. One can construct an optimal
discrete approximation µ̂n (i.e., a minimizer of (5)) from an optimal n-tuple (a1, . . . , an) (i.e., a minimizer of (4)), and
vice-versa, using

µ̂n =

n∑
i=1

µ {Ci(Γ)} δai , (6)

and then we have
Fn,p(a1, . . . , an) = Wp(µ, µ̂n).

This is well known for the vector case [15] and applies verbatim to measures on manifolds. In the sequel, we will
focus on the second formulation (4) of the quantization problem.

The first question that arises is the existence of a minimizer of (4). Since we have assumed that µ has compact
support, this existence is easily obtained.

Proposition 1. Let M be a complete Riemannian manifold and µ a probability distribution on M with density and a
compact support. Then the distortion function Fn,p is continuous and admits a minimizer.

Proof. Just as in the vector case [27, Proposition 1.1], for any x ∈ M, the function Mn → R+, α = (a1, . . . , an) 7→
min1≤i≤n d(x, ai) is 1-Lipschitz for the distance d′(α, β) := max1≤i≤n d(ai, bi), where β = (b1, . . . , bn). Therefore it
is continuous, and so is its pth power. Since K = supp µ is compact, for all α ∈ Mn and all β in a neighborhood
B(a1, r1) × . . . × B(an, rn) of α, we have

∀x ∈ K, min
1≤i≤n

d(x, bi)p ≤ min
1≤i≤n

{
sup
y∈K

d(y, ai) + ri

}p

< ∞.

So by dominated convergence, Fn,p is continuous. Recall that as a compact set, K is contained in a geodesic ball
B(a,R). If α = (a1, . . . , an) ∈ Mn is such that d(a, ai) > 2R for at least one ai, then for all x ∈ K, d(x, ai) ≥
d(a, ai) − R > R, and so the same n-tuple where a replaces ai is a better candidate to minimize Fn,p. We can therefore
limit our search to B̄(a, 2R), which is a closed and bounded subset of the complete manifold M, and thus compact.
The continuous function Fn,p reaches a minimum on this compact, which is an absolute minimum. The elements
of a minimizer α = (a1, . . . , an) are called optimal n-centers of µ. The minimizer α is in general not unique, first of all
because any permutation of α is still a minimizer, and secondly because any symmetry of µ, if it exists, will transform
α into another minimizer of Fn,p. For example, any rotation of the optimal n-centers of the uniform distribution on
the sphere preserves optimality.

The second question that comes naturally is: how does the error one makes by approximating µ by µ̂n (as given by
(6)) evolve when the number n of points grows ? The nth quantization error is defined by

Vn,p(µ) = inf
(a1,...,an)∈Mn

Fn,p(a1, . . . , an) = inf
(a1,...,an)∈Mn

∫
M

min
1≤i≤n

d(x, ai)pµ(dx).

In the vector case, Zador’s theorem [15, Theorem 6.2] tells us that it decreases to zero as n−p/d, and that the limit
of np/dVn,p(µ) can be expressed in terms of the pth quantization coefficient, i.e., the limit (which is also an infimum)
when µ is the uniform distribution on the unit square of Rd

Qp

(
[0, 1]d

)
= lim

n≥1
np/dVn,p

{
U

(
[0, 1]d

)}
.

5



More precisely, if µ has an absolutely continuous part (with respect to the Lebesgue measure) with density h, then
the limit of the nth quantization error is equal to Qp([0, 1]d)‖h‖d/(d+p). Moreover, when µ has no singular part, the
asymptotic empirical distribution of the optimal n-centers is proportional to hd/(d+p).

In the case of a Riemannian manifold M, the moment condition of the flat case generalizes to a condition involving
the curvature of M. The following term measures the maximal variation of the exponential map at x ∈ M when
restricted to a (d − 1)-dimensional sphere S ρ ⊂ TxM of radius ρ

Ax(ρ) = sup
v∈S ρ,w∈TvS ρ,‖w‖=ρ

∥∥∥dv expx(w)
∥∥∥ .

The following generalization of Zador’s theorem to Riemannian quantization was proposed by Iacobelli [16].

Theorem 1 ([16, Theorem 1.4 and Corollary 1.5]). Let M be a complete Riemannian manifold without boundary,
and let µ = h dvol + µs be a probability measure on M, where dvol denotes the Riemannian volume form and µs the
singular part of µ. Assume there exist x0 ∈ M and δ > 0 such that∫

M
d(x, x0)p+δdµ(x) +

∫
M

Ax0 {d(x, x0)p}dµ(x) < ∞.

Then
lim
n→∞

np/dVn,p(µ) = Qp

(
[0, 1]d

)
‖h‖d/(d+p),

where ‖ · ‖r denotes the Lr-norm. In addition, if µs = 0 and (a1, . . . , an) are optimal n-centers, then

1
n

n∑
i=1

δai

D
−→ λhd/(d+p)dx as n→ ∞,

where
D
→ denotes convergence in distribution and λ is the appropriate normalizing constant.

In this work, we are interested in finding numerical schemes to compute the optimal n-centers α = (a1, . . . , an) in
practice from potentially large sets of data. To do so, we will search for the critical points of the distortion function.

3. Competitive Learning Riemannian Quantization

3.1. Differentiability of the distortion function

We assume that the only knowledge that we have of the probability measure µ that we want to approximate is
through an online sequence of i.i.d. observations X1, X2, . . . sampled from µ. A classical algorithm used for quadratic
(p = 2) vector quantization is the Competitive Learning Vector Quantization algorithm, a stochastic gradient descent
method based on the differentiability of the distortion function Fn,2. We propose here a natural extension of this
method to our setting, i.e., a compactly-supported probability measure on a complete Riemannian manifold. It relies
on the differentiability of the distortion function.

Proposition 2. Let α = (a1, . . . , an) ∈ Mn be an n-tuple of pairwise distinct components and p > 1. Then Fn,p is
differentiable and its gradient in α is

gradαFn,p =

−p
∫

C̊i(α)
‖
−→
aix‖p−1

−→
aix

‖
−→
aix‖

µ(dx)


1≤i≤n

∈ TαMn,

where C̊i(α) is the interior of the ith Voronoi cell of α and
−→
xy := exp−1

x (y) denotes the vector that sends x on y through
the exponential map. In particular, the gradient of the quadratic distortion function is given by

gradαFn,2 =

(
−2

∫
C̊i

−→
aix µ(dx)

)
1≤i≤n

= −2
(
Eµ1{X∈C̊i}

−→

aiX
)

1≤i≤n
. (7)
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Remark 1. The first observation we can make is that optimal n-centers are Riemannian centers of mass of their
Voronoi cells, as characterized by (2). Hence, the term n-centers is as appropriate in the Riemannian setting as it is in
the vector case. More generally, for any value of p, each ai, i ∈ {1, . . . , n}, is the p-mean of its Voronoi cell, i.e., the
minimizer of

a 7→
∫

C̊i(α)
d(x, a)pµ(dx).

Therefore, the optimal n-centers are always contained in the compact support of µ.

Remark 2. The second observation is that the opposite direction of the gradient is, on average, given by the vectors
inside the expectation. Competitive learning quantization consists in following this direction at each step k, that is,
updating only the center ai corresponding to the Voronoi cell of the new observation Xk, in the direction of that new
observation. In the Riemannian setting, instead of moving along straight lines, we simply follow geodesics using the
exponential map.

Proof. Let α = (a1, . . . , an) ∈ Mn be an n-tuple of pairwise distinct components, w = (w1, . . . ,wn) ∈ TαMn a tangent
vector to α, and let (−ε, ε) 3 t 7→ α(t) = (a1(t), . . . , an(t)) be a variation of α in the direction given by w, i.e., such
that ai(0) = ai et a′i(0) = wi for all i = 1, . . . , n. The functional t 7→ min1≤i≤n d(x, ai(t))p is differentiable for all
x < ∪1≤i≤n∂Ci(α(t)), that is µ-almost everywhere since µ(∂Ci(α(t))) = 0 for all i (this is shown in the Appendix,
Lemma 2). Its derivative in t = 0 is given by

d
dt

∣∣∣∣∣
t=0

min
1≤i≤n

d(x, ai(t))p =

n∑
i=1

1{x∈C̊i}

d
dt

∣∣∣∣∣
t=0

d(x, ai(t))p = −

n∑
i=1

1{x∈C̊i}

p
2

[
d(x, ai(0))2

]p/2−1
2
〈
−−−−→
ai(0)x, a′i(0)

〉
= −

n∑
i=1

1{x∈C̊i}
p‖−−→aix‖p−2

〈
−−→aix,wi

〉
.

To go from the first to the second equality, we have used the well known property that for any given x, the gradient
of the function f : a 7→ d(x, a)2 is given by grada f = −2 exp−1

a x = −2−→ax (see Lemma 1 in the Appendix). We obtain
by Cauchy-Schwarz, since x ∈ B(a,R) and ai ∈ B(a, 2R) (recall that any n-tuple containing a coordinate outside of
B(a, 2R) is a worse candidate than the same n-tuple where a replaces ai),∣∣∣∣∣ d

dt

∣∣∣∣∣
t=0

min
1≤i≤n

d(x, ai(t))p
∣∣∣∣∣ ≤ p

n∑
i=1

‖
−−→aix‖p−1‖wi‖ ≤ p(3R)p−1

n∑
i=1

‖wi‖.

Therefore, by dominated convergence, t 7→ ψn,p(α(t)) is differentiable and its differential in α at w is given by

TαFn,p(w) =

n∑
i=1

〈
−2

∫
1{x∈C̊i}

‖
−→
aix‖p−1

−→
aix

‖
−→
aix‖

µ(dx),wi

〉
= 〈〈gradαFn,p,w〉〉,

where 〈〈·, ·〉〉 denotes the L2 metric on Mn, which gives the desired result for the gradient.

3.2. The algorithm

Assume that we have access to independent and identically distributed (i.i.d.) observations X1, X2, . . . sampled
from µ. We choose a sequence of positive steps (γk)k≥1 ⊂ (0, 1) satisfying the usual conditions∑

k≥1

γk = +∞,
∑
k≥1

γ2
k < +∞. (8)

We propose a procedure called Competitive Learning Riemannian Quantization, described in Algorithm 1. The steps
are chosen to be in [0, 1] so that at each iteration, the center that is updated stays in the same Voronoi cell, guaranteeing
that the centers stay pairwise distinct (if initially pairwise distinct).

Now we show the convergence of Algorithm 1, using a theorem from Bonnabel [5].

7



Algorithm 1 Competitive Learning Riemannian Quantization

Input: X1, X2, . . . sampled from µ, {γk}k≥1 satisfying (8)
Output: µ̂n summary of µ

k ← 0, select {a1(0), . . . , an(0)} at random
repeat

i← argmin j d(Xk+1, a j(k))

ai(k + 1)← expai(k)

{
γk+1
−−−−−−−→
ai(k)Xk+1

}
a j(k + 1)← a j(k) ∀ j , i.
k ← k + 1

until convergence
{C1, . . . ,Cn} ← Voronoi diagram of {a1(k), . . . , an(k)}
µ̂n ←

∑n
i=1 µ(Ci)δai(k)

Proposition 3. Assume that the injectivity radius of M is uniformly bounded from below by some I > 0, and let
(α(k))k≥0 be computed using Algorithm 1 and samples from a compactly supported distribution µ. Then Fn,2(α(k))
converges a.s. and gradα(k)Fn,2 → 0 as k → ∞ a.s.

Proof. The proof relies on [5, Theorem 1], and therefore we adopt the same notations. The cost function Fn,2 and its
gradient can be respectively expressed as expectations of the functions

Q(x, α) = min
1≤i≤n

d(x, ai)2,

H(x, α) = gradαQ(x, α) =
(
−2 1C̊i

(x)−−→aix
)

1≤i≤n
.

This is once again due to Lemma 1, given in the Appendix. As stated in Remark 1, the n-centers α(k) = (a1(k), . . . ,
an(k)) are each the barycenter of their Voronoi cell and therefore always stay in the same compact ball B(a,R) as the
data X1, X2, . . .. Since ‖1C̊i(x)

−→yx‖ ≤ 2R for all y, x ∈ K ⊂ B(a,R) and i = 1, . . . , n, the gradient H is bounded on K × K.
That is, all the assumptions of [5, Theorem 1] are verified and Algorithm 1 converges.

3.3. Link to clustering

Notice that if the measure µ one wants to approximate is the empirical measure of a dataset x1, . . . , xN , N � n,

µ =
1
N

N∑
k=1

δxk ,

then the weight of the atom ai in the optimal approximation is simply given by the proportion of data points that fall
inside its Voronoi cell, that is,

µ̂n =

n∑
i=1

|Ci(Γ)|
N

δai .

The atoms a1, . . . , an minimize the distortion function, i.e., in this case, the sum of the squared geodesic distances
within each Voronoi cell

Fn,2(a1, . . . , an) =

n∑
i=1

∑
xk∈Ci

d2(xk, ai). (9)

Notice that this is exactly the cost function of K-means clustering, an algorithm that iteratively replaces the current
center of each cluster by the cluster center of mass until achieving convergence. Algorithm 1 (where the observations
Xk are simply chosen randomly among x1, . . . , xN) is an online version of the K-means algorithm in the Riemannian
setting. Just as for classical K-means, the clusters are given by the Voronoi cells.
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Fig. 2. Quantization of the uniform (top) and von Mises (bottom) distributions. From left to right: initial positions of the n-centers, final positions
of the n-centers, associated Voronoi diagram, and evolution of the L1-Wasserstein distance between the initial distribution and its quantized version.

4. Examples

Now let us show some toy examples on manifolds of constant sectional curvature: the circle, the 2-sphere and the
hyperbolic plane. Fig. 2 shows results of optimal quantization of size n = 6 of the uniform (top row) and the von Mises
(bottom row) distributions on the circle. The considered von Mises distribution is centered in 0 with concentration
parameter K = 5. From left to right, Fig. 2 shows the initialization of Competitive Learning Riemannian Quantization
(CLRQ), the optimal centers obtained after convergence, and the clustering (or Voronoi diagram) of the data taken
as input of the algorithm. The centers are initialized uniformly on (−π, π] and [−π/2, π/2] respectively, S 1 being
identified with (−π, π]. In order to reduce dependency on the initialization, each step k is repeated a certain number m
of times. In other words, the same step size is used several times. In the uniform case, m = 10 is sufficient to obtain a
visually satisfying result. For the von Mises distribution, we choose m = 50.

On the right-hand side of Fig. 2, we plot the evolution of the Wasserstein distance between the initial distribution
and its quantized version. Recall that the quantization cost function (5) involves the L2-Wasserstein distance. As
shown in [30], the computation of the Lp-Wasserstein distance between two measures on the circle can be reduced to
the same operation in the unit interval [0, 1] by "cutting" the circle at a certain point s ∈ S 1, i.e., by identifying it with a
unit length fundamental domain for R/Z. However, when the two measures are not evenly distributed, the optimal cut
is easier to find in the L1 case, therefore we choose to compute the weaker L1-Wasserstein (or Kantorovich-Rubinstein)
distance using the algorithm introduced in [7]. We plot the distance between the measure µ and its approximation at
each step k of Algorithm 1,

µ̂n(k) =

n∑
i=1

µ{Ci(k)}δai(k),

where (a1(k), . . . , an(k)) are the n-centers at step k, C1(k), . . . ,Cn(k) are the corresponding Voronoi cells, and δx is
the Dirac distribution at x ∈ M. Assuming that N � n, we can approximate µ by the empirical measure of the
observations x1, . . . , xN ,

µ̂ =
1
N

N∑
i=1

δxk .

In order to compare two discrete measures with the same number of points, we then identify µ̂ and µ̂n(k) with the
measures obtained on the reunion of their supports by completing with zero masses. For both the uniform and the von
Mises examples, the Wasserstein distance decreases as expected.

Next, we show examples on the sphere. Fig. 3 displays, in the same order as Fig. 2, the initialization and results
of the CLRQ algorithm applied to the von Mises distribution with concentration parameter K = 5, where each step
contains m = 20 iterations at the same step size. Finally, to show an example in the negative curvature setting, we
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Fig. 3. Quantization of the von Mises distribution on the 2-sphere. From left to right: initialization of the centers, optimal centers, and the associated
Voronoi diagram.

Fig. 4. Quantization of the Gaussian distribution on the hyperbolic half-plane. From left to right: initialization of the centers, optimal centers, and
the associated Voronoi diagram.

use the work of Said et al. [31] regarding the definition and generation of Gaussian distributions on the space of
SPD matrices to generate Gaussian samples on the hyperbolic half-plane. Recall that the hyperbolic half-plane is
one of the models of 2-dimensional hyperbolic geometry, and can be identified with the complex upper-half plane
H2 = {z = x + iy, (x, y) ∈ R ×R∗+} where the length of an infinitesimal element dx + idy at point x + iy is measured by

ds2 =
dx2 + dy2

y2 .

The special linear group SL2 acts on H2 from the left through the Moebius transformation: SO2 ×H2 → H2, defined
by (

a b
c d

)
· z =

az + b
cz + d

.

This action is transitive since for all (x, y) ∈ R × R∗+,(
y1/2 xy−1/2

0 y−1/2

)
· i = x + iy.

Noticing that SO2 is the stabilizer of i, we can identify H2 with SL2/SO2, which is also homeomorphic to the space
of 2 × 2 SPD matrices of determinant 1 [17]. The space of SPD matrices of determinant 1 is therefore homeomorphic
to H2, and the homeomorphism is given by Φ : P 7→ L · i, where L is the upper-triangular matrix of the Cholesky
decomposition of the SPD matrix P = L>L. To generate a Gaussian sample in H2, we generate a Gaussian sample
of SPD matrices using [31, Proposition 6], renormalize and transport them to the hyperbolic half-plane using Φ. The
first row of Fig. 4 shows the initialization and results of the CLRQ algorithm applied to observations sampled from
the Gaussian distribution centered in i and with standard deviation σ = 0.5. Each step contains m = 20 iterations.
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5. Application to air traffic complexity analysis

5.1. Context

This work was motivated by complexity analysis in air traffic management (ATM). ATM deals with the means
of organizing the aircraft trajectories in a given airspace so as to ensure both safety and efficiency. One of the most
important part of ATM is the air traffic control (ATC) that acts on flying or taxiing aircraft in such a way that separation
norms are satisfied at all time. Nowadays, most of the ATC is surveillance based, relying primarily on information
coming from the radars to give instructions to planes. Even in country-sized airspaces the amount of traffic to be
controlled is far beyond the limits of a single operator and the area under the responsibility of an air traffic controller
(ATCO) has to be kept tractable. As a consequence, the whole airspace must be divided into elementary cells, known
as control sectors, that are allotted to a team of ATCOs. A major concern arising in the design of such sectors is
to ensure that the ATCOs workload is equally balanced over the airspace. Highly complex areas, involving many
flows crossings and altitude changes, like those encountered close to the largest airports, must be kept small, while
low complexity ones, with either a small aircraft density or a simple airspace structure may be made large. Finding
a complexity indicator that can be computed using only airspace and traffic information and that closely mimics the
perceived workload is a difficult, still unsolved problem [39, 40].

In France, the current operational indicator is the number of aircraft present in a control section at a given time. It
is used by the European network manager to compute departure slots so that the value given is unlikely to be exceeded.
This crude indicator is known to be too coarse as in some situations, ATCOs are willing to accept more aircraft than
the threshold, while in others, they experience control overload with fewer aircraft. This is mainly due to differences
in the traffic structure, that may be highly organized, thus easy to control, or on the contrary close to random and
requiring a lot of attention. It is worth noticing that an incomplete knowledge of the complexity perceived by the
ATCOs induces unnecessary delays, as some take-off slots would have been improved if the real acceptable number
of aircraft in control sectors had been known.

In research, one of the most widely used indicators is the dynamic density [38]. It combines influential factors,
like the number of maneuvering aircraft, the number of level changes and so on, to output a single positive real value
representing the complexity level. Although quite pertinent from an operational point of view, the dynamic density
is a tool requiring a lot of tuning, involving experiments with a panel of ATCOs. These experiments would be costly
to implement in practice and cannot be adapted to different airspaces without having to re-tune from scratch. For the
same reason, it is quite difficult to use dynamic density for assessing the performance of new concepts, since in such
a case there is no reference situation or existing operational context that may be used to perform the tuning phase.

On the other hand, purely geometrical indicators have been introduced [41, 42], that are free of the dynamic density
limitations. While perfectly suited to infer an intrinsic notion of complexity, they do not model all the aspects of the
workload, as perceived by a human operator. The approach taken in the present work may be viewed as a mixture
between the two previous ones: it relies on an intrinsic description of traffic, but does not produce a complexity value.
Instead, a summary of the situation is issued, that serves as an input to a classification or machine learning algorithm.
Even if this last phase looks very similar to a kind of dynamic density evaluation, it is far less complex:

• The traffic summary itself requires no tuning, while the influential factors taken into account in the dynamic
density have weights that must be adjusted during the learning phase.

• Complexity classes are computed instead of complexity levels: a clustering algorithm will first segment the
traffic dataset into homogeneous subsets, then a workload value will be associated by experts to each of them.
This process is lightweight, since only the representative in each class has to be expertized.

• Adaptation to different airspaces is an easy task for the same reason: experts will evaluate only the representative
situation in each class.

The first step is to model the spatial distribution of the aircraft velocities as a Gaussian law. Then, the covariance
function is used as an indicator of traffic complexity. This assumption makes sense from an operational point of view
as it represents the local organization, that is the most influential factor on ATCCO workload.
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5.2. Estimating the covariance matrices
Although we will in practice consider time-windows, we start by considering a given airspace at a fixed time

t containing N aircraft either flying or taxiing. We respectively denote by zi and vi the position and speed of the
aircraft i, 1 ≤ i ≤ N, at time t. Since the altitude of an aircraft plays a special role and does not appear on controllers
displays, we choose to disregard it and adopt a planar representation through a stereographic projection. An underlying
Gaussian field model is assumed for the relation between the velocity and the position, whose variance function will
be interpreted as a pointwise measure of the traffic complexity.

A non parametric Nadaraya-Watson type approach [24, 35] was taken to estimate the mean and variance functions
at point z:

m̂(z) =

∑N
i=1 viKh(z − zi)∑N
j=1 Kh(z − z j)

,

Σ̂(z) =

∑N
i=1{vi − m̂(z)}{vi − m̂(z)}>Kh(z − zi)∑N

j=1 Kh(z − z j)
.

(10)

The weights are given by a kernel function K, i.e., a positive, symmetric function integrating to one, scaled by a factor
h > 0: Kh(x) = h−1K(x/h). Since most kernels have compact support, the estimations are based in practice on a
number of observations much smaller than the size N of the sample. The estimator Σ̂ has been studied in [36] where
it is shown to be asymptotically normal. Evaluating it at positions z1, . . . , zN yields a series of symmetric, positive
definite matrices Σ̂(z1), . . . , Σ̂(zN) with empirical distribution

µ̂ =
1
N

N∑
i=1

δΣ̂(zi),

where δΣ denotes the Dirac mass at Σ. In order to obtain a summary of the traffic complexity, we propose to quantize
µ̂ using the CLRQ algorithm on the space of SPD matrices.

5.3. The geometry of SPD matrices
For the sake of completeness, let us briefly recall the most commonly used Riemannian structure [28] on the space

Pd of d × d symmetric, positive definite matrices. Note that in this application, we are simply interested in the case
d = 2. The Euclidean dot product on the spaceMd of square matrices of size d is given by the Frobenius inner product
Σ1 · Σ2 = tr(Σ>1 Σ2), where tr denotes the trace function. As an open subset of the vector spaceMd, Pd is a manifold
where the tangent vectors are symmetric matrices. It can be equipped with a Riemannian metric invariant with respect
to the action of the general linear group GLd × Pd → Pd, (A,Σ) 7→ A>ΣA. At the identity, this metric is given by the
usual Euclidean scalar product 〈W1,W2〉Id = W1 ·W2 = tr(W>1 W2), and at Σ, we ask that the value of the scalar product
does not change when the tangent vectors are transported back to the identity via the action of A = Σ−1/2, i.e.,

〈W1,W2〉Σ = 〈Σ−1/2W1Σ−1/2,Σ−1/2W2Σ−1/2〉Id = tr(Σ−1/2W1Σ−1W2Σ−1/2). (11)

As shown in [28], the associated geodesic distance is given by

d(Σ1,Σ2) =

√√√ d∑
i=1

log2
(
λi(Σ

−1/2
1 Σ2Σ

−1/2
1 )

)
, (12)

where we use the notation λi(Σ), i = 1, . . . , d, to denote the eigenvalues of Σ. Recall that in order to update the centers
of the discrete approximation in the CLRQ algorithm, we need the exponential map, i.e., a mapping that associates to
each point Σ and tangent vector W at Σ the end point of the geodesic starting from Σ at speed W. In the case of metric
(11), it is given by

expΣ(W) = Σ1/2exp
(
Σ−1/2WΣ−1/2

)
Σ1/2,

where the exp on the right-hand side denotes the matrix exponential. Finally, we also need the inverse mapping, i.e.,
the logarithm map

logΣ1
(Σ2) =

−−−→
Σ1Σ2 = Σ

1/2
1 log

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)
Σ

1/2
1 ,
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where the log on the right-hand side denotes the matrix logarithm. Note that the matrix logarithm is well defined
for any symmetric matrix Σ due to the factoring out, in the logarithm series, of the rotation matrices of the spectral
decomposition Σ = UDU>, yielding log(UDU>) = U log(D)U>. Endowed with this Riemannian structure, the space
of SPD matrices is a geodesically complete Riemannian manifold with infinite injectivity radius at every point (i.e.,
no cut locus), and so all the exposed theoretical results are valid in this case.

5.4. Real data analysis
5.4.1. Segmenting and constructing summaries

We now have all the tools to construct summaries of the traffic complexity in a given airspace during a certain time
period. As input, we consider an image such as the ones displayed in the first row of Fig. 5, showing the traffic over
Paris, Toulouse and Lyon during a one-hour period of time. The color is related to the norm of the velocity, increasing
from yellow to red. To simplify, we center and reduce the velocities vi. The samples (zi, vi) are seen as observations
arriving in a random order, and the covariance matrix at zi is estimated according to (10) using a truncated Gaussian
kernel K(x) = 1/

√
2π e−x2/21|x|<r. The truncation of size r avoids useless computations. The procedure is described

in detail in Algorithm 2.

Algorithm 2 CLRQ for air traffic complexity analysis

Input: positions z1, . . . , zN and speeds v1, . . . , vN , steps {γk}k≥1 satisfying (8)
Output: summary µ̂n and clustering {c1, . . . , cn}

select z′1, . . . , z
′
n randomly among {z1, . . . , zN} and compute Σ̂(z′1), . . . , Σ̂(z′n) using (10)

k ← 0, Ai(0)← Σ̂(z′i) for i ∈ {1, . . . , n}
repeat

choose z′ randomly among {z1, . . . , zN} and compute Σk+1 = Σ̂(z′) using (10)
i← argmin j d(Σk+1, A j(k))

Ai(k + 1)← expAi(k)

{
γk+1
−−−−−−−−→
Ai(k)Σk+1

}
A j(k + 1)← A j(k) ∀ j , i
k ← k + 1

until convergence
{C1, . . . ,Cn} ← Voronoi diagram of {A1(k), . . . , An(k)}
ci ←

{
zk | Σ̂(zk) ∈ Ci

}
for i ∈ {1, . . . , n}

µ̂n ←
∑n

i=1
|Ci |

N δAi(k)

In practice, we usually look for n = 3 centers, i.e., the best approximation by three points. Indeed, we have found
that generically, the centers can be ordered for the Loewner order when n = 3 but not always for n > 3. (Recall that
the Loewner order is a partial order on the space of SPD matrices, according to which A ≥ B if A − B is positive
semi-definite.) This can be explained by the fact that the Riemannian metric (11) sorts by rank, and therefore the
covariance matrices are segmented into those with both eigenvalues close to zero (since the velocities are centered
with respect to the neighborhood average, parallel velocities yield an estimated covariance matrix close to zero), those
with only one eigenvalue close to zero, and the others. In the second row of Fig. 5, these clusters are respectively
shown in green, blue and red. As could be expected, the first cluster corresponds to zones with either an isolated
trajectory or parallel trajectories, the second to simple crossings or variations of speed in a given trajectory, and the
third to zones with high density and crossings involving many trajectories. Naturally, the choice of the size r of the
kernel’s support has a great influence on the clustering, and it should be adjusted according to the minimum distance
authorized between two aircraft in a zone considered as non conflictual.

5.4.2. Importance of the Riemannian structure
In Fig. 6, we consider the whole French airspace over different one-hour periods of time. The clusterings obtained

using CLRQ is shown in the middle column. To illustrate the importance of the Riemannian setting with respect
to the Euclidean one, we show results of Competitive Learning Vector Quantization (CLVQ) on the same datasets,
i.e., the same algorithm where the centers are updated using straight lines (linear interpolations between the matrix
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Fig. 5. Traffic in the airspaces over Paris (top left), Toulouse (top middle) and Lyon (top right) during a one-hour period of time. Increasing
variations of speed are shown from yellow to red. Clustering of these airspaces is achieved using CLRQ (bottom row). The zones in red correspond
to covariance matrices of high Loewner order, in blue of intermediate Loewner order and in green low order. They can be interpreted as zones of
decreasing complexity.

coefficients) and the distances are computed using the Frobenius norm. These results are shown in the right column
of Fig. 6, and are less convincing. Many crossings and convergence points of different trajectories, such as the area
around Paris, are put in the same class as isolated trajectories by the algorithm. This is contrary to what we want,
since the former present a high level of complexity for controllers in contrast to the latter. Moreover, unlike with
CLRQ, the matrices obtained as centers of the CLVQ clustering cannot be ordered in general, and thus the clusters
cannot be interpreted as representing increasing levels of complexity. In Fig. 7, we show that the initialization has
little influence on the segmentation of the airspace, which is satisfactory.

5.4.3. Comparing summaries
We now propose a way to compare different summaries. A natural way to do so is through discrete optimal

transport, which allows one to compute the distance between two discrete measures

µ =

m∑
i=1

µiδAi and ν =

n∑
j=1

ν jδB j.

In our case, the Ai’s and B j’s are SPD matrices. Optimal transport seeks to transport the mass from µ to ν in a way that
minimizes a certain cost. Formally, a transport plan between µ and ν is a matrix π = (πi j)i, j with non-negative entries
that verifies the two following properties for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},

n∑
j=1

πi j = µi and
m∑

i=1

πi j = ν j.

The set of transport plans between µ and ν is denoted by Γ(µ, ν). Intuitively, the value πi j represents the part of the
mass µi transported from Ai to B j to reconstruct ν j. Here, we measure the cost of transporting an infinitesimal unit of
mass from Ai to B j by the corresponding geodesic distance d(Ai, B j). The optimal transport plan is chosen to minimize
the global cost, i.e., to be a solution of the following minimization problem

W2(µ, ν) = min


m∑

i=1

n∑
j=1

πi jd(Ai, B j)2; π ∈ Γ(µ, ν)

 . (13)
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Fig. 6. Traffic in the French airspace during one-hour periods of time (left column). Increasing variations of speed are shown from yellow to red.
We compare the clustering of these airspaces obtained using Riemannian quantization (middle column), versus vector quantization (right column).
In the former case the affine-invariant distance (12) is used, and in the latter the Froebenius norm.
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Fig. 7. Clustering of the French airspace with 3 different initializations. The neighborhoods chosen to compute the initial centers are shown by red
circles (top row), and the corresponding clustering are shown below (bottom row).

The value of this minimal cost is the discrete L2-Wasserstein distance between µ and ν. In general, the linear pro-
gramming problem (13) is difficult and many different algorithms have been developed to solve it in various special
cases [23]. However, in our setting, the discrete measures involved are supported by a very small number of points
(3 in the examples shown) and problem (13) presents no difficulties. The matrix of distances between the summaries
corresponding to the clusterings shown in the middle column of Fig. 6 is

0.00 1.92 6.74 4.55
1.92 0.00 8.31 6.07
6.74 8.31 0.00 1.22
4.55 6.07 1.22 0.00

 .
As expected, the first two situations are deemed similar but very different from the third one which has a much more
complex traffic. The last situation is intermediary. In comparison, the different summaries of Fig. 7 obtained for
the same traffic situation but different initializations are at small distances from one another, as can be seen from the
following distance matrix 0.000 0.033 0.031

0.033 0.000 0.016
0.031 0.016 0.000

 .
5.4.4. Evaluation of the quantization results

The French territory is divided in five en-route control centers (North, East, West, South-East and South-West),
which are responsible for controlling aircraft in the corresponding area of the French airspace. Each of them is
partitioned into airspace blocks, known as elementary control sectors, and designed in such a way that the heaviest
expected traffic is still manageable. For that purpose, the geometry of the elementary sectors is carefully chosen, so
that the number of aircraft is small enough, but at the same time crossing points are far from the boundaries. Since
elementary control sectors are adapted to worst-case situations, they are no longer optimal for light to medium loaded
traffic. Grouping of sectors is then triggered, to obtain larger airspace blocks thus reducing the number of ATCOs
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Fig. 8. Clustering of the French Eastern control center from 6:36 to 6:51 AM, obtained by 3 different clustering methods (from left to right): CLRQ,
Riemannian K-means, and Kernalized Gaussian Random Projection.

needed. On the other hand, when the traffic starts to densify, degrouping occurs to cope with the increased load. This
mechanism has a major effect on controllers workload, and is easily observed when conducting experiments with
control simulators. It is also a good a posteriori indicator of complexity.

We evaluate the performance of the CLRQ algorithm on a dataset corresponding to the air traffic over the Eastern
control center during a time period of a few hours. First, we compare the clustering given by quantization to other
clustering methods. Fig. 8 shows, from left to right, the clusterings obtained for a fifteen-minute time slot by CLRQ,
Riemannian K-means, and Kernelized Gaussian Random Projection (KGRP) [37]. Recall, the K-means algorithm
iteratively replaces the current center of each cluster by the cluster center of mass (as defined in Section 2.2) until
achieving convergence. CLRQ is an online version of the Riemannian K-means algorithm. KGRP projects the data
points in a RKHS (Reproducing Kernel Hilbert Space) generated by a randomly selected subset of the data points,
before performing K-means in that vector space. This enables to use the less computationally expensive vector version
of K-means on non-vector data. As suggested in [37], we use a Gaussian kernel, we set the dimension of the RKHS
to 300, and we use a subset of 100 points to generate it. Without optimizing any of the corresponding codes, CLRQ
improves computation time by a factor of at least 10 with respect to K-means and KGRP. Both of these could be
made faster with a better optimized computation of the Voronoi diagrams computed at each step, but CLRQ could
also be optimized through parallel computations. Comparison of optimized versions of these codes is postponed to
future work. As expected, the clustering results of CLRQ and K-means are very similar, and both algorithms attain
approximately the same value of intra-cluster variance (9) (6.489 and 6.481 respectively), meaning that the online
version (CLRQ) compares well to the offline version. In contrast, the KGRP method yields a much larger value
(approximately 12.3), since K-means is performed in the projection space instead of the space of SPD matrices.

Finally, we confront our results to the perception of an ATCO. For this dataset, we have access to an ATCO’s
perception of the complexity of the traffic, evaluated every five minutes, in real time, in the form of an index between
0 and 5. Since the ATCO’s perception of the traffic complexity can be influenced by the recent past as well as by
the anticipation of upcoming situations, it is not easy to infer the true real-time complexity of the traffic from it. In
other words, a non-zero time interval between reality and human reaction seems inevitable. Keeping this in mind,
we compare this perceived complexity index, shown in Fig. 9 by the blue curve in the fifth row, to mean complexity
indices computed using the summaries obtained for the three different clustering algorithms (CLRQ, K-means and
KGRP) and for m = 15 time slots of fifteen minutes each. Note that comparison to CLVQ (online vector K-means) is
not pursued because the centers cannot be ordered in that case. At each time tk, k = 1, . . . ,m, and for each summary
µ̂n(tk) = w1(tk)δA1(tk) + w2(tk)δA2(tk) + w3(tk)δA3(tk), the mean complexity is computed through a weighted sum of three
different complexity levels λ1, λ2, λ3, where the weights are those of the clusters

cλ(tk) = λ1w1(tk) + λ2w2(tk) + λ3w3(tk).

Here, the weights are numbered according to the order of the corresponding cluster center (w1,w2,w3 correspond to
A1 < A2 < A3 with respect to the Loewner order) and are given by the proportions wi(t) = |Ci(t)|/N of matrices in the
dataset belonging to the clusters. For each algorithm, λ = (λ1, λ2, λ3) is chosen to minimize the mean square error to
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the human perception I(t) of the complexity

λ = arg min
λ

m∑
k=1

|cλ(tk) − I(tk)|2.

The details of the summary weights are shown in the three first rows (w1 in green, w2 in blue, w3 in red). As expected,
CLRQ and K-means give very similar results. The minimal errors (i.e., mean square errors to the ATCO’s perception)
for CLRQ and K-means are very close (58.0 and 58.7 respectively), and they are lower than that of KRGP (73.4),
which probably looses precision in the projection phase. Moreover, the two drops of complexity perceived by the
ATCO around 7:21 and 8:51 are clearly visible from the CLRQ and K-means mean complexities, and more so than
from that of KGRP. The first of these two time periods corresponds to a decision to regroup, probably motivated by
the simplification of the traffic.

Also, it is important to notice that the complexity perceived by the ATCO is not directly indexed on the number
of aircraft in the considered airspace (shown on the last row), and neither are the clustering summaries. For example,
using the Wasserstein distance we can notice that the summary of the 10th time slot (from 8:36 to 8:51) is slightly
more similar to (at distance 1.49 of) the CLRQ summary of the last time slot (from 9:51 to 10:06), despite an increase
of 42% in the number of aircraft, than to the summary of the following 11th time slot (8:51 to 9:06, at distance 1.57),
which represents an increase of only 8%. This is already a significant improvement on the operational complexity
index based on the number of aircraft.

6. Conclusion and future work

We have proposed a gradient descent type algorithm to find the best finite discrete approximation of a probability
measure on a Riemannian manifold. This algorithm is adapted to large sets of data as it is online, and yields a
clustering on top of a finite summary of the non-Euclidean data of interest. It is convergent when the manifold is
complete and when its injectivity radius is uniformly bounded from below by a positive constant. We have used it to
compute summaries of air traffic images in the form of a small number of covariance matrices representing different
levels of local complexity, with associated weights corresponding to the occurrence of these levels of complexity in
the images. These summaries can then be compared through discrete optimal transport, yielding a simple way to
compare and index air traffic situations.

A still open question is to find an optimal number of centers for the quantization procedure. A possible approach
is to use the associated clustering and to apply standard quality indicators like the silhouette [44]. In such a case, one
starts with a minimal guess on the number of centers and increases it until the clustering is good enough.

In future work, we will also consider best finite constrained quantization, i.e., restriction to finite approximations
with equal weights. Within this frame, one wants to find an optimal set of centers (a1, . . . an) such that the distribution:

1
n

n∑
i=1

δai

best approximates the true sample density. In the air traffic complexity application, this may be used for finding an
optimal segmentation of the airspace in areas of equal complexity, thus making the process of control sector design
fully automatic. It may also be used in a dynamic way, since the quantization process presented above is an online
procedure and will self-adapt to changing situations. Changes in the shape of control sectors must however be limited
to allow ATCOs to seamless switch to new airspace partitions. This last point is currently under investigation in the
context of manual or semi-automatic dynamic airspace design, so that our procedure may benefit from the results of
this study.

Finally, only the covariance information was used in the application, but the mean function that yields the expected
direction, and the local density bear some important information. Working on the product manifold R+×Rd×Pd (with
d = 2 or d = 3 for the air traffic framework) allows taking them into account. The gradient algorithm is readily adapted
to this case, since geodesics on products are easily seen to be curves whose projections on factors are geodesics. A
fully fledged complexity indicator may then be issued.
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Fig. 9. Comparison of CLRQ to Riemannian K-means and Kernelized Gaussian Random projection (KGRP), and to the expertise of an ATCO.
The first three rows show the weights w1 (green), w2 (blue), and w3 (red) of the summaries performed on the French Eastern control center for 15
time slots of 15 minutes each and for each different method. The fourth row shows the mean complexity indexes computed from these summaries
to best fist the perceived complexity index of an ATCO shown on the fifth row. The last row shows the evolution of the number of aircrafts.
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Appendix

Lemma 1. Let x ∈ M. The gradient of the function f : a 7→ d2(x, a) is given by

grada f = −2 loga x = −2−→ax.

Proof. Let a ∈ M, u ∈ TaM, and construct a curve (−ε, ε) 3 t 7→ a(t) passing through a(0) = a at speed a′(0) = u, so
that the differential of f at a in u is written, in terms of the norm associated to the Riemannian metric,

Ta f (u) =
d
dt

∣∣∣∣∣
t=0

f {a(t)} =
d
dt

∣∣∣∣∣
t=0

d2(x, a(t)) =
d
dt

∣∣∣∣∣
t=0
‖v(t)‖2 ,

where v(t) :=
−−−→
xa(t) = logx a(t). Consider the sheave of geodesics

γ(t, s) := expx{sv(t)}, (t, s) ∈ (−ε, ε) × [0, 1],

starting at γ(t, 0) = x and ending at γ(t, 1) = a(t). The vector field J(s) := ∂γ/∂t(0, s) then defines a Jacobi field along
γ(s) := γ(0, s), measuring the way the geodesics spread out from x, and its initial velocity is given by ([9], p.113)

DJ
ds

(s) =
D
ds

[
∂

∂t

∣∣∣∣∣
t=0

expx{sv(t)}
]

=
D
ds

[
d(expx)sv(0){sv′(0)}

]
=

D
ds

[
s d(expx)sv(0){v′(0)}

]
.

Identifying the tangent spaces TxM � Tv(0)(TxM), we get

DJ
ds

(0) = d(expx)0{v′(0)} + 0 ×
D
ds

∣∣∣∣∣
s=0

d(expx)sv(0){v′(0)} = v′(0),

and so,

Ta f (u) = 2
〈
v′(0), v(0)

〉
= 2

〈DJ
ds

(0), γ′(0)
〉
.

Since J verifies the classical Jacobi equation in terms of the curvature tensor R of M, D2J/ds2 = −R(J, γ′)γ′, we get
〈D2J/ds2, γ′〉 = 0, leading to the scalar product 〈DJ/ds, γ′〉 being constant (since Dγ′/ds = 0). This gives, since
J(0) = 0, 〈

J(s), γ′(s)
〉

=

〈DJ
ds

(0), γ′(0)
〉

s +
〈
J(0), γ′(0)

〉
=

〈DJ
ds

(0), γ′(0)
〉

s,

yielding 〈DJ/ds(0), γ′(0)〉 = 〈J(1), γ′(1)〉. To conclude, notice that J(1) = ∂γ/∂t(0, 1) = u and, setting γ̃(s) = γ(1− s),
that γ′(1) = −γ̃′(0) = −−→ax and so finally

Ta f (u) = −2〈u,−→ax〉,

which completes the proof.

Lemma 2. Let µ be a probability measure with density with respect to the Riemannian volume form on M, α =

(a1, . . . , an) ∈ Mn and Ci(α) denote the Voronoi cell associated to ai for all i ∈ {1, . . . , n}. No mass is assigned by µ to
the boundaries of the Voronoi diagram

µ{∂Ci(α)} = 0.

Proof. For any n-tuple α = (a1, . . . , an), the ith Voronoi cell can be written

Ci(α) = ∩ j,iH(ai, a j), where H(a, b) = {x ∈ K, d(x, a) ≤ d(x, b)},

which gives
∂Ci(α) = Ci(α) ∩ C̊i(α)c = Ci(α) ∩ {∩ j,iH̊(ai, a j)}c = ∪ j,i∂H(ai, a j) ∩Ci(α).

Now for any i , j, the subset ∂H(ai, a j) = {x ∈ K, d(x, ai) = d(x, a j)} defined as the kernel of the submersion x 7→
d(ai, x)−d(a j, x) is a submanifold of M of codimension 1, yielding µ{∂H(ai, a j)} = 0 and therefore µ{∂Ci(α)} = 0.
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