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LIFTED AND GEOMETRIC DIFFERENTIABILITY OF THE SQUARED

QUADRATIC WASSERSTEIN DISTANCE

AURÉLIEN ALFONSI AND BENJAMIN JOURDAIN

Abstract. In this paper, we remark that any optimal coupling for the quadratic Wasserstein
distance W 2

2 (µ, ν) between two probability measures µ and ν with finite second order moments

on R
d is the composition of a martingale coupling with an optimal transport map T . We

check the existence of an optimal coupling in which this map gives the unique optimal coupling
between µ and T #µ. Next, we prove that σ 7→ W 2

2 (σ, ν) is differentiable at µ in the Lions [14]
and the geometric senses iff there is a unique optimal coupling between µ and ν and this coupling
is given by a map. Besides, we give a self-contained proof that mere Fréchet differentiability of
a law invariant function F on L2(Ω,P;Rd) is enough for the Fréchet differential at X to be a
measurable function of X.

Introduction

In this paper, we are interested in the differentiability with respect to µ of the squared quadratic
Wasserstein distance W 2

2 (µ, ν) between µ and ν in the set P2(R
d) of probability measures with

finite second order moments on R
d. By definition, W 2

2 (µ, ν) = infπ∈Π(µ,ν)

∫

|y − x|2π(dx, dy)
where Π(µ, ν) denotes the set of coupling measures on R

d ×R
d with first and second marginals

respectively equal to µ and ν. There always exists an optimal coupling. According to [10], there
exists only oneW2-optimal coupling π between µ and each ν ∈ P2(R

d) and this coupling is given
by a map T (i.e. π = (Id, T )#µ where Id denotes the identity function on R

d) iff µ gives 0 mass
to the c− c hypersurfaces of dimension d−1. Even when µ does not satisfy this condition which
is implied by absolute continuity with respect to the Lebesgue measure, according to Proposition
5.13 [7], if ϕ : Rd → R is a C2 strictly convex function such that

∫

Rd |∇ϕ(x)|2µ(dx) < ∞, then
there is a unique W2-optimal coupling between µ and ν = ∇ϕ#µ and this coupling is given by
the map ∇ϕ. But there also exist measures ν ∈ P2(R

d) such that either the unique optimal
coupling (uniqueness holds in dimension d = 1 for instance) is not given by a map or there
exist distinct optimal couplings. In the latter case, any strictly convex combination of these
couplings is an optimal coupling which is not given by a map. In Section 1, we study optimal
couplings π which are not given by a map. By disintegration, π(dx, dy) = µ(dx)k(x, dy) for
some Markov kernel k on R

d (which is µ(dx) a.e. unique). Setting T (x) =
∫

Rd yk(x, dy) and
using the bias-variance decomposition under the kernel k, we obtain that π is the composition of
a martingale coupling between T #µ and ν with the map T which gives a W2-optimal coupling
between µ and T #µ. For φ : Rd → R a strictly convex function such that

∫

Rd φ(y)ν(dy) < ∞,

by minimizing
∫

Rd φ(T (x))µ(dx) over the W2-optimal couplings between µ and ν, we obtain
optimal couplings such that the associated map Tφ gives the only optimal coupling between µ
and Tφ#µ. There is a unique such coupling when φ(x) = |x|2. In Section 2, we investigate the
differentiability ofW 2

2 (µ, ν) with respect to µ in the sense introduced by Lions [14]. Gangbo and
Tudorascu [9] have recently proved that when the lifted probability space is the ball centered at
the origin of unit volume in R

d endowed with the Lebesgue measure, the Lions differentiability

Date: December 24, 2018.
This research benefited from the support of the “Chaire Risques Financiers”, Fondation du Risque.

1

http://arxiv.org/abs/1811.07787v2
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of a function f : P2(R
d) → R is equivalent to the geometric differentiability. We check that the

Lions differentiability of f does not depend on the lifted probability space by showing that the
Fréchet differentiability at X ∼ µ of the lift on an atomless probability space is enough for the
Fréchet derivative at X to be a.s. equal to a measurable function g of X. Last, we prove that
the map σ 7→ W 2

2 (σ, ν) is differentiable in the two equivalent senses iff there exists a unique
W2-optimal coupling between µ and ν and this coupling is given by a map.

Acknowledgements : We thank Pierre Cardaliaguet for pointing out the reference [9] to us.

1. Structure of quadratic Wasserstein optimal couplings

In this section, we are interested in characterizing the set

Πopt(µ, ν) = {π(dx, dy) ∈ P2(R
d × R

d) :µ(dx) =

∫

y∈Rd

π(dx, dy), ν(dy) =

∫

x∈Rd

π(dx, dy)

and W 2
2 (µ, ν) =

∫

Rd×Rd

|y − x|2π(dx, dy)}.

of optimal couplings between two probability measures µ, ν ∈ P2(R
d) for the quadratic cost.

This set is not empty : see e.g. [3] p. 133.

The refined version of the Brenier theorem in [10] ensures that Πopt(µ, ν) contains a single element
(Id, T )#µ which is given by a measurable transport map T : Rd → R

d for each ν ∈ P2(R
d) iff µ

does not give mass to the c − c hypersurfaces parametrized by an index i ∈ {0, . . . , d − 1} and
two convex functions f and g from R

d−1 to R :

{(x1, . . . , xi, f(x)− g(x), xi+1, . . . , xd−1) : x = (x1, . . . , xd−1) ∈ R
d−1}.

The next lemma deals with the case where Πopt(µ, ν) 6= {(Id, T )#µ} for some measurable trans-
port map.

Lemma 1.1. Let µ, ν ∈ P2(R
d). One of the two conditions holds:

• Πopt(µ, ν) = {(Id, T )#µ} for some measurable transport map T : Rd → R
d,

• ∃µ(dx)k(x, dy) ∈ Πopt(µ, ν) such that
∫

Rd×Rd |y −
∫

Rd zk(x, dz)|2k(x, dy)µ(dx) > 0.

Moreover, if any coupling in Πopt(µ, ν) is given by a map i.e. writes (Id, T )#µ for some mea-
surable function T : Rd → R

d, then Πopt(µ, ν) is a singleton.

Proof . If the set Πopt(µ, ν) has a single element µ(dx)k(x, dy), defining T (x) =
∫

Rd yk(x, dy) we

either have
∫

Rd×Rd |y − T (x)|2k(x, dy)µ(dx) > 0 or µ(dx)k(x, dy) = µ(dx)δT (x)(dy). Otherwise,

we can pick two distinct elements k1, k2 ∈ Πopt(µ, ν) and k(x, dy) = 1
2 (k1(x, dy) + k2(x, dy))

is such that µ(dx)k(x, dy) ∈ Πopt(µ, ν) and
∫

Rd×Rd |y −
∫

Rd zk(x, dz)|2k(x, dy)µ(dx) > 0. The

second statement easily follows.

Remarking that if ν is the Dirac mass at x ∈ R
d and νε the uniform distribution on the ball

centered at x with radius ε, then W2(ν, νε) ≤ ε, we deduce from the next proposition that for
any µ, ν ∈ P2(R

d), we can always find µε, νε ∈ P2(R
d) such that W2(µ, µε) ≤ ε, W2(ν, νε) ≤ ε

and ∃µε(dx)kε(x, dy) ∈ Πopt(µε, νε) such that
∫

Rd×Rd |y −
∫

Rd zkε(x, dz)|2kε(x, dy)µε(dx) > 0.

Proposition 1.2. Assume that ν ∈ P2(R
d) is not a Dirac mass. Then for all µ ∈ P2(R

d), there
exists a sequence (µn)n of elements of P2(R

d) such that limn→∞W2(µn, µ) = 0 and for each n,
there does not exist Tn : Rd → R

d measurable such that Πopt(µn, ν) = {(Id, Tn)#µn}.
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Proof . Let (Xi)i≥1 be an i.i.d. sequence of random variables with law µ, and (Yi)i≥1 an
independent i.i.d. sequence of uniform random variables on the unit ball {x ∈ R

d, |x| ≤ 1}. We
set µ̃n = 1

n

∑n
i=1 δXi the empirical measure and µn = 1

n

∑n
i=1 δXi+Yi/n. By construction, we

have W 2
2 (µn, µ̃n) ≤ 1

n

∑n
i=1 |Yi/n|2 ≤ 1/n2 and P(∃i 6= j,Xi + Yi/n = Xj + Yj/n) = 0, which

means that a.s. for each n ∈ N
∗, µn weights a.s. exactly n points. The law of large numbers

gives the almost sure weak convergence of µ̃n towards µ and the almost sure convergence of
1
n

∑n
i=1 |Xi|2 to E[|X1|2]. Proposition 7.1.5 in [3] ensures that W2(µ̃n, µ) →

n→+∞
0 almost surely.

By the triangle inequality, we get W2(µn, µ) →
n→+∞

0 almost surely.

Now, we consider (pn)n≥1 the increasing sequence of prime numbers. Suppose that ∃n0 ∈ N
∗,

such that T#µpn0
= ν. Then, ν weights at most pn0

points and the masses are equal to k/pn0

with 1 ≤ k ≤ pn0
− 1 since ν is not a Dirac mass. Then, if we had T#µpn = ν for some n > n0,

we would have k/pn0
= k′/pn with 1 ≤ k′ ≤ pn − 1. This would imply that pn0

divides kpn and
thus k, which is impossible since 1 ≤ k ≤ pn0

− 1. Thus, there is at most one n0 ∈ N
∗ such that

there is a transport map Tn0
satisfying Tn0

#µpn0
= ν.

Let us now give a necessary and sufficient condition for the existence of an optimal transport map
in dimension d = 1. We denote Fη(x) = η((−∞, x]) and F−1

η (u) = inf{x ∈ R : η((−∞, x]) ≥ u}
the cumulative distribution function and the quantile function of a probability measure η on
R. For µ, ν ∈ P2(R), by Theorem 2.9 in [15], the only element of Πopt(µ, ν) is the image of the
Lebesgue measure on [0, 1] by (F−1

µ , F−1
ν ). The next lemma characterizes the case when this

coupling is given by a map.

Lemma 1.3. Let µ, ν ∈ P2(R). There exists T ∈ L2(R, µ;R) such that Πopt(µ, ν) = {(I1, T )#µ}
iff for all x ∈ R such that µ({x}) > 0, F−1

ν is constant on (Fµ(x−), Fµ(x)]. Then, the unique
optimal transport map is T (x) = F−1

ν (Fµ(x)).

Proof . Let X ∼ µ and U be an independent random variable uniform on [0, 1]. The random
variable V = Fµ(X−) + U(Fµ(X) − Fµ(X−)) is such that P({Fµ(X−) < V ≤ Fµ(X)} ∪
{Fµ(X−) = V = Fµ(X)}) = 1. This is an uniform random variable on [0, 1]: for u ∈ (0, 1), u ∈
[Fµ(x−), Fµ(x)] for some x ∈ R and P(V ≤ u) = P(X < x) + P

(

X = x,U ≤ u−Fµ(x−)
Fµ(x)−Fµ(x−)

)

= u

since X is independent of U . Since F−1
µ (V ) = X for V ∈ (Fµ(X−), Fµ(X)] and F−1

µ (V ) ≤ X

for V = Fµ(X−) = Fµ(X), we have F−1
µ (V ) ≤ X a.s.. Since F−1

µ (V ) and X have the same law,

we necessarily have F−1
µ (V ) = X a.s.. By the inverse transform sampling, F−1

ν (V ) is distributed

according to ν. Let us assume that F−1
ν is constant on (Fµ(x−), Fµ(x)] for all x ∈ R such that

µ({x}) > 0. Then F−1
ν (V ) = F−1

ν (Fµ(X)) a.s., F−1
ν ◦ Fµ#µ = ν and

∫ 1

0
(F−1

µ (v)− F−1
ν (v))2dv = E[(X − F−1

ν (Fµ(X)))2] =

∫

R

(x− F−1
ν (Fµ(x)))

2µ(dx).

Hence T (x) = F−1
ν (Fµ(x)) is an optimal transport map. Conversely, if T is an optimal trans-

port map such that T#µ = ν, we have T (F−1
µ (v)) = F−1

ν (v), dv-a.e. For x ∈ R such that

µ({x}) > 0, F−1
µ is constant on (Fµ(x−), Fµ(x)], and therefore F−1

ν is necessarily constant on

(Fµ(x−), Fµ(x)].

Remark 1.4. Lemma 1.3 still holds true for µ, ν probability measures on R with finite moments
of order ρ ≥ 1, and a transport cost c(x, y) = h(|y − x|), with h : R+ → R strictly convex such
that ∃C < ∞, ∀x ∈ R, h(|x|) ≤ C(1 + |x|ρ). The same proof applies since, by Theorem 2.9
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in [15], the only optimal coupling for such a cost is the image of the Lebesgue measure on [0, 1]
by (F−1

µ , F−1
ν ).

The next proposition, which is one of the main results of this section, shows that anyW2-optimal
coupling can be written as the composition of a transport map and a martingale kernel i.e. a
Markov kernel k such that for all x ∈ R

d,
∫

Rd |y|k(x, dy) <∞ and
∫

Rd yk(x, dy) = x. Let us now
give the definition of the convex order on probability measures before recalling its link with the
existence of martingale couplings.

Definition 1.5. Let η, ν be two probability measures on R
d. We say that η is smaller than ν

in the convex order and write η ≤cx ν if for each convex function φ : Rd → R such that the
integrals make sense,

∫

Rd

φ(x)η(dx) ≤
∫

Rd

φ(y)ν(dy).

Notice that since a convex function φ on R
d is bounded from below by an affine function, for a

probability measure η on R
d with finite first order moment (and in particular for η ∈ P2(R

d)),
∫

Rd φ(x)η(dx) always makes sense possibly equal to +∞.

Theorem 8 in Strassen [16] ensures that, when
∫

Rd |y|ν(dy) < ∞, η ≤cx ν iff there exists a
martingale Markov kernel k such that η(dx)k(x, dy) ∈ Π(η, ν).

Proposition 1.6. Let µ, ν ∈ P2(R
d), µ(dx)k(x, dy) ∈ Πopt(µ, ν), T (x) =

∫

Rd yk(x, dy) and
η = T #µ. Then η ≤cx ν,

(1.1) W 2
2 (µ, ν) =W 2

2 (µ, η) +

∫

Rd

|y|2ν(dy)−
∫

Rd

|z|2η(dz)

and (Id,T )#µ ∈ Πopt(µ, η).

On the other hand, if η ≤cx ν is such that (1.1) holds, then combining µ(dx)q(x, dz) ∈ Πopt(µ, η)
with any martingale coupling η(dz)m(z, dy) between η and ν, we obtain a W2-optimal coupling
µ(dx)qm(x, dy) (where, as usual, qm(x, dy) =

∫

z∈Rd q(x, dz)m(z, dy)) between µ and ν.

The first part of this proposition is also a consequence of Theorem 12.4.4 in [3] : the barycentric
projection of µ(x)k(x, dy) is precisely (Id,T )#µ. Here, we present this result with a probabilistic
fashion. For µ(dx)k(x, dy) as in the first statement and (X,Y ) ∼ µ(dx)k(x, dy), by definition
of T , E[Y |X] = T (X) a.s. so that E[Y |T (X)] = T (X) a.s. and this optimal coupling is the
composition of the martingale coupling given by the law of (T (X), Y ) and the transport map
T . Related to this, Gozlan and Juillet [11] have recently studied optimal couplings that are
the composition of a martingale coupling and a deterministic transport map by considering
the barycentric optimal cost problem, which consists in minimizing for a given cost function
θ : R

d → R+ the quantity
∫

Rd θ(x −
∫

Rd yk(x, dy))µ(dx) among all couplings µ(dx)k(x, dy)
between µ and ν.

Proof . Let us first prove the second statement. Let η ≤cx ν, q be a Markov kernel such
that µ(dx)q(x, dz) ∈ Πopt(µ, η) and m be any martingale kernel such that ηm = ν. Then
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µ(dx)qm(x, dy) is a coupling between µ and ν such that

W 2
2 (µ, ν) ≤

∫

Rd×Rd

|y − x|2µ(dx)qm(x, dy) =

∫

Rd×Rd×Rd

|y − z + z − x|2µ(dx)q(x, dz)m(z, dy)

=

∫

Rd×Rd

|y − z|2η(dz)m(z, dy) +

∫

Rd×Rd

|z − x|2µ(dx)q(x, dz)

=

∫

Rd

|y|2ν(dy)−
∫

Rd

|z|2η(dz) +W 2
2 (µ, η)(1.2)

where we used the variance-bias decomposition under the martingale kernel m for the third
equality. Hence, if (1.1) holds, then µ(dx)qm(x, dy) ∈ Πopt(µ, ν).

Let now µ(dx)k(x, dy) ∈ Πopt(µ, ν), T (x) =
∫

Rd yk(x, dy) and η = T#µ. Jensen’s inequality

immediately gives η ≤cx ν and thus η ∈ P2(R
d). We have

W 2
2 (µ, ν) =

∫

Rd

∫

Rd

|y − T (x) + T (x)− x|2µ(dx)k(x, dy)

=

∫

Rd

∫

Rd

|y − T (x)|2µ(dx)k(x, dy) +
∫

Rd

|T (x)− x|2µ(dx)

=

∫

Rd

∫

Rd

(|y|2 − |T (x)|2)µ(dx)k(x, dy) +
∫

Rd

|T (x)− x|2µ(dx)

=

∫

Rd

|y|2ν(dy)−
∫

Rd

|z|2η(dz) +
∫

Rd

|T (x)− x|2µ(dx),

where we used the variance-bias decomposition with respect to k(x, .) for the second equality.
With (1.2), we deduce that

∫

Rd |T (x) − x|2µ(dx) ≤ W 2
2 (µ, η) and T is a W2-optimal transport

map between µ and η.

For µ, ν ∈ P2(R
d), let us define the sets

Iνµ = {η ∈ P2(R
d) : η ≤cx ν and W 2

2 (µ, ν) =W 2
2 (µ, η) +

∫

Rd

|y|2ν(dy)−
∫

Rd

|z|2η(dz)},

Ĩνµ =

{

T#µ : ∃µ(dx)k(x, dy) ∈ Πopt(µ, ν),T (x) =

∫

Rd

yk(x, dy)

}

.

By Proposition 1.6, we have Ĩνµ ⊂ Iνµ and Ĩνµ 6= ∅ since Πopt(µ, ν) 6= ∅. Moreover, there exists an

optimal transport map between µ and any element of Ĩνµ. The measure T #µ associated with

an optimal coupling in Πopt(µ, ν) is possibly equal to ν, which always belongs to Iνµ.

Lemma 1.7. Let µ, ν ∈ P2(R
d). If η ∈ Iνµ, then for any η̃ such that η ≤cx η̃ ≤cx ν, η̃ ∈ Iνµ and

η ∈ I η̃µ. Moreover, Iνµ = {η ∈ P2(R
d) : ∃η̃ ∈ Ĩνµ , η̃ ≤cx η ≤cx ν}. Last, the set Iνµ is convex.

Proof . Let η ∈ Iνµ and η̃ be such that η ≤cx η̃ ≤cx ν. We have

(1.3) W 2
2 (µ, ν) =W 2

2 (µ, η) +

∫

Rd

|y|2ν(dy)−
∫

Rd

|z̃|2η̃(dz̃) +
∫

Rd

|z̃|2η̃(dz̃)−
∫

Rd

|z|2η(dz).

Now, we consider µ(dx)k(x, dz) ∈ Πopt(µ, η) and η(dz)m(z, dz̃) a martingale coupling between η
and η̃. Then,W 2

2 (µ, η̃) ≤
∫

(Rd)3 |z̃−z+z−x|2µ(dx)k(x, dz)m(z, dz̃) =W 2
2 (µ, η)+

∫

Rd |z̃|2η̃(dz̃)−
∫

Rd |z|2η(dz). This inequality cannot be strict: otherwise, by combining an optimal coupling
between µ and η̃ and a martingale coupling between η̃ and ν, we would contradict (1.3). The

equality gives η ∈ I η̃µ and η̃ ∈ Iνµ by using (1.3).
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If η̃ ∈ Ĩνµ, since Ĩνµ ⊂ Iνµ, by the first statement, each probability measure η such that η̃ ≤cx

η ≤cx ν belongs to Iνµ . Hence {η ∈ P2(R
d) : ∃η̃ ∈ Ĩνµ , η̃ ≤cx η ≤cx ν} ⊂ Iνµ . On the other

hand, for η ∈ Iνµ, µ(dx)q(x, dz) ∈ Πopt(µ, η) and a martingale coupling η(dz)m(z, dy) between η

and ν, we have µ(dx)qm(x, dy) ∈ Πopt(µ, ν), by the second assertion in Proposition 1.6. Since,
by the martingale property,

∫

Rd yqm(x, dy) =
∫

Rd

∫

Rd ym(z, dy)q(x, dz) =
∫

Rd zq(x, dz) setting

T (x) =
∫

Rd zq(x, dz), we have T #µ ∈ Ĩνµ, by the first assertion in Proposition 1.6. Since

T#µ ≤cx η, we conclude that Iνµ ⊂ {η ∈ P2(R
d) : ∃η̃ ∈ Ĩνµ, η̃ ≤cx η ≤cx ν}.

Last, let us consider η1, η2 ∈ Iνµ and λ ∈ (0, 1). Using a convex combination of couplings in

Πopt(µ, η1) and Πopt(µ, η2), we obtain thatW 2
2 (µ, λη1+(1−λ)η2) ≤ λW 2

2 (µ, η1)+(1−λ)W 2
2 (µ, η2).

Since η1, η2 ∈ Iνµ, we deduce that

W 2
2 (µ, ν) ≥W 2

2 (µ, λη1 + (1− λ)η2) +

∫

Rd

|y|2ν(dy)−
∫

Rd

|z|2(λη1 + (1− λ)η2)(dz).

Since λη1 + (1− λ)η2 ≤cx ν, there exists a martingale coupling between λη1 + (1− λ)η2 and ν.
Composing it with an element of Πopt(µ, λη1 + (1− λ)η2), we obtain a coupling between µ and
ν which ensures that

W 2
2 (µ, ν) ≤W 2

2 (µ, λη1 + (1− λ)η2) +

∫

Rd

|y|2ν(dy)−
∫

Rd

|z|2(λη1 + (1− λ)η2)(dz).

Hence λη1 + (1− λ)η2 ∈ Iνµ .

In dimension d = 1, since Πopt(µ, ν) is a singleton, we can specify the sets Iνµ = {T #µ} and

Ĩνµ = {T #µ}.
Proposition 1.8. Let µ, ν ∈ P2(R) and

(1.4) T (x) =

∫ 1

0
F−1
ν (Fµ(x−) + u[Fµ(x)− Fµ(x−)])du.

We have Ĩνµ = {T #µ} and Iνµ = {η ∈ P2(R) : T #µ ≤cx η ≤cx ν}. Moreover, Πopt(µ,T #µ) =
{(I1,T )#µ} and there is a unique martingale coupling between T #µ and ν and it is W2-optimal.

Proof . By the second assertion in Lemma 1.7, the characterization of Iνµ easily follows from

the one of Ĩνµ, which, with the definition of Ĩνµ , the first statement in Proposition 1.6 and

the uniqueness of the optimal coupling in dimension d = 1, also implies that Πopt(µ,T #µ) =
{(I1,T )#µ}. Let U,U ′ be two independent uniform random variables on [0, 1]. We define

(1.5) V = Fµ(F
−1
µ (U)−) + U ′[Fµ(F

−1
µ (U)) − Fµ(F

−1
µ (U)−)],

and have by construction

(1.6) F−1
µ (V ) = F−1

µ (U) a.s..

For u ∈ (0, 1), u ∈ [Fµ(x−), Fµ(x)] for some x ∈ R and

P(V ≤ u) = P(F−1
µ (U) < x) + P

(

F−1
µ (U) = x,U ′ ≤ u− Fµ(x−)

Fµ(x)− Fµ(x−)

)

= u

since U ′ is independent of U . Hence V is uniformly distributed on [0, 1]. According to Theorem
2.9 [15], the law of (F−1

µ (V ), F−1
ν (V )) is the unique element of Πopt(µ, ν). From (1.5), we get

E[F−1
ν (V )|U ] = T (F−1

µ (U)) and by (1.6),

E[F−1
ν (V )|F−1

µ (V )] = E[E[F−1
ν (V )|U ]|F−1

µ (V )] = E[T (F−1
µ (V ))|F−1

µ (V )] = T (F−1
µ (V )).
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Hence the single element of Ĩνµ is the law T#µ of T (F−1
µ (V )). Since T is nondecreasing,

T (F−1
µ (V )) = F−1

T #µ(V ) a.s. and E[F−1
ν (V )|F−1

T #µ(V )] = F−1
T #µ(V ) a.s.. Hence the law of

(F−1
T #µ(V ), F−1

ν (V )), which is the single element of Πopt(T #µ, ν), is a martingale coupling.

Since all the martingale couplings share the quadratic cost
∫

R
y2ν(dy) −

∫

R
(T (x))2µ(dx), each

martingale coupling belongs to Πopt(T #µ, ν) and is therefore equal to the previous one.

In dimension d = 1, there is a single element η ∈ Ĩνµ, a unique element in Πopt(µ, η) and the
unique martingale coupling between η and ν is W2-optimal. We now provide an example in
dimension d = 2 where these properties fail.

Example 1.9. Let µ = 1
2

(

δ(−1,0) + δ(1,0)
)

and ν = 1
2

(

δ(0,−1) + δ(0,1)
)

. Since |(0,−1)−(−1, 0)| =
|(0, 1) − (−1, 0)| = |(0,−1) − (1, 0)| = |(0, 1) − (1, 0)|, any coupling between µ and ν is W2-
optimal. The couplings write µ(dx)kp(x, dy) with kp((−1, 0), dy) =

(

pδ(0,−1) + (1− p)δ(0,1)
)

(dy)

and kp((1, 0), dy) =
(

(1− p)δ(0,−1) + pδ(0,1)
)

(dy) for p ∈ (0, 1). One has Tp((−1, 0)) = (0, 1 −
2p), Tp((1, 0)) = (0, 2p − 1), and ηp = 1

2

(

δ(0,1−2p) + δ(0,2p−1)

)

. Any coupling between µ and ηp
is W2-optimal and as soon as p 6= 1/2, there is an optimal coupling different from (I2,Tp)#µ.
Moreover, unless p ∈ {0, 1/2, 1}, the martingale coupling between ηp and ν is not W2-optimal.

According to the next theorem, we can find elements η in Ĩνµ such that Πopt(µ, η) = {(Id, T )#µ}
for some measurable transport map T by minimizing over Iνµ the integral of a strictly convex
function.

Theorem 1.10. Let µ, ν ∈ P2(R
d), φ : Rd → R be strictly convex such that

∫

Rd φ(y)ν(dy) <∞
and Iνµ,φ := {η ∈ Iνµ :

∫

Rd φ(z)η(dz) = infη∈Iν
µ

∫

Rd φ(z)η(dz)}. We have ∅ 6= Iνµ,φ ⊂ Ĩνµ and

for each η ∈ Iµ,φ, Πopt(µ, η) = {(Id, T )#µ} for some measurable transport map T : Rd → R
d.

Moreover, there is a single ηφ ∈ Iνµ,φ such that
∫

Rd |z|2ηφ(dz) = infη∈Iν
µ,φ

∫

Rd |z|2η(dz). Last,

there is a single element η in Iνµ,|x|2.

This theorem permits to select extreme elements of Iνµ and provides the following characteriza-
tion of the existence of a minimal element for the convex order in this set.

Corollary 1.11. For µ, ν ∈ P2(R
d), there exists η0 ∈ P2(R

d) such that Iνµ = {η0 ≤cx η ≤cx ν}
if and only if

{

ηφ : φ : Rd → R
d strictly convex and such that

∫

Rd φ(y)ν(dy) <∞
}

= {η} and
then η0 = η.

Let us show the corollary before proving the theorem.
Proof of Corollary 1.11. The necessary condition is obvious. Let us show that it is sufficient.
It is enough to check that for any φ : Rd → R convex such that ∃C < ∞, ∀x ∈ R

d, |φ(x)| ≤
C(1 + |x|), we have ∀η ∈ Iνµ ,

∫

Rd φ(x)η(dx) ≤
∫

Rd φ(x)η(dx) (see e.g. Lemma 3.13 [1]). For such

a function φ and for ε > 0, φε(x) := φ(x) + ε|x|2 is strictly convex and, since ηφε = η, we have

∀η ∈ Iνµ ,
∫

Rd

φε(x)η(dx) ≤
∫

Rd

φε(x)η(dx).

We conclude by letting ε→ 0 using the dominated convergence theorem.

To prove Theorem 1.10, we will need the following Lemma

Lemma 1.12. Let ν be a probability measure on R
d such that

∫

Rd |y|ν(dy) <∞ and φ : Rd → R

a convex function such that
∫

Rd φ(y)ν(dy) <∞. Then the family of probability measures {φ#η :
η ≤cx ν} is uniformly integrable.
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Proof of Lemma 1.12. Let us first suppose that φ is nonnegative. LetM ∈ (0,+∞), η ≤cx ν
and m be a martingale kernel such that

∫

x∈Rd η(dx)m(x, dy) = ν(dy). Using Jensen’s inequality
for the first inequality and the Markov inequality combined with η ≤cx ν for the third one, we
obtain that

∫

Rd

φ(x)1{φ(x)≥M}η(dx) ≤
∫

Rd

∫

Rd

φ(y)m(x, dy)1{φ(x)≥M}η(dx)

≤
∫

Rd×Rd

(

φ(y)1{φ(y)≥
√
M} +

√
M1{φ(x)≥M}

)

m(x, dy)η(dx)

=

∫

Rd

φ(y)1{φ(y)≥
√
M}ν(dy) +

√
M

∫

Rd

1{φ(x)≥M}η(dx)

≤
∫

Rd

φ(y)1{φ(y)≥
√
M}ν(dy) +

1√
M

∫

Rd

φ(y)ν(dy).

Hence limM→∞ supη≤cxν

∫

Rd φ(x)1{φ(x)≥M}η(dx) = 0. In particular, the family {|x|#η : η ≤cx ν}
is uniformly integrable. When the sign of φ is not constant, we obtain a nonnegative convex
function φ̃ such that

∫

Rd φ̃(y)ν(dy) < ∞ by addition to φ of a suitable affine function ψ. The
conclusion follows from the uniform integrability of both the families {ψ#η : η ≤cx ν} and

{φ̃#η : η ≤cx ν}.
Proof of Theorem 1.10. Let (ηn)n∈N be a sequence in Iνµ minimizing

∫

Rd φ(z)η(dz). For

n ∈ N, let µ(dx)qn(x, dz) ∈ Πopt(µ, ηn) and ηn(dz)mn(z, dy) be a martingale coupling between
ηn and ν. By the second part in Proposition 1.6, µ(dx)qnmn(x, dy) ∈ Πopt(µ, ν). Up to ex-
tracting a subsequence, we may suppose that (µ(dx)qn(x, dz)mn(z, dy))n converges weakly to
µ(dx)r∞(x, dz, dy) where µ(dx)

∫

z∈Rd r∞(x, dz, dy) ∈ Πopt(µ, ν). Let T∞(x) =
∫

Rd×Rd yr∞(x, dz, dy)

and η∞ = T∞#µ. By the first part of Proposition 1.6, η∞ ∈ Ĩνµ. Moreover, by the above weak
convergence and the uniform integrability deduced from Lemma 1.12,

∫

Rd×Rd×Rd

φ(z)µ(dx)r∞(x, dz, dy) = lim
n→∞

∫

Rd

φ(z)ηn(dz).

Taking the limit n → ∞ in the equality
∫

Rd×Rd×Rd ϕ(x, z)(y − z)µ(dx)qn(x, dz)mn(z, dy) = 0,

we obtain that
∫

Rd×Rd×Rd ϕ(x, z)(y − z)µ(dx)r∞(x, dz, dy) = 0 for any continuous and bounded

function ϕ : Rd × R
d → R. Hence, for (X,Z, Y ) distributed according to µ(dx)r∞(x, dz, dy),

Z = E[Y |(X,Z)] and T∞(X) = E[Y |X] = E[E[Y |(X,Z)]|X] = E[Z|X]. By using Jensen
inequality for the conditional expectation, we get

∫

Rd

φ(z)η∞(dz) ≤
∫

Rd×Rd×Rd

φ(z)µ(dx)r∞(x, dz, dy) = lim
n→∞

∫

Rd

φ(z)ηn(dz).

Thus, η∞ satisfies
∫

Rd φ(z)η∞(dz) = infη∈Iν
µ

∫

Rd φ(z)η(dz). Hence Iνµ,φ 6= ∅.

Let η ∈ Iνµ,φ. We now check that η ∈ Ĩνµ and Πopt(µ, η) is a singleton. Let µ(dx)q(x, dz) ∈
Πopt(µ, η) and η(dz)m(z, dy) be a martingale coupling between η and ν. By the second as-
sertion in Proposition 1.6, µ(dx)qm(x, dy) ∈ Πopt(µ, ν) and, by the first assertion, for T (x) =
∫

Rd yqm(x, dy), T #µ ∈ Ĩνµ. By the martingale property of m, T (x) =
∫

Rd zq(x, dz) so that

T#µ ≤cx η. Since T #µ ∈ Iνµ and η ∈ Iνµ,φ implies that
∫

Rd φ(z)T #µ(dz) ≥
∫

Rd φ(z)η(dz),

we deduce with the strict convexity of φ that η = T#µ and µ(dx)q(x, dz) = µ(dx)δT (x)(dz).

Hence any coupling in Πopt(µ, η) is given by a map. By the second statement in Lemma 1.1, we
conclude that this set is a singleton.
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By repeating the first argument with (φ,Iνµ) replaced by (|x|2,Iνµ,φ) , we obtain the existence of

ηφ ∈ Iνµ such that
∫

Rd |z|2ηφ(dz) ≤ infη∈Iν
µ,φ

∫

Rd |z|2η(dz). Since the construction also reduces

the integral of φ, ηφ ∈ Iνµ,φ.

Let us now check that if η̃ ∈ Iνµ,φ is such that
∫

Rd |z|2η̃(dz) = infη∈Iν
µ,φ

∫

Rd |z|2η(dz), then

η̃ = ηφ. By the first statement, Πopt(µ, ηφ) = {(Id, Tφ)#µ} and Πopt(µ, η̃) = {(Id, T̃ )#µ} for

measurable transport maps Tφ and T̃ : Rd → R
d. One has

∫

Rd |z|2η∞(dz) =
∫

Rd |z|2η̃(dz) and

therefore, since ηφ, η̃ ∈ Iνµ, W 2
2 (µ, ηφ) = W 2

2 (µ, η̃). Let now η̄ =
ηφ+η̃

2 . One has
∫

Rd |z|2η̄(dz) =
∫

Rd |z|2ηφ(dz) =
∫

Rd |z|2η̃(dz). The coupling µ(dx)12

(

δTφ(x)(dz) + δT̃ (x)(dz)
)

between µ and η̄

implies that W 2
2 (µ, η̄) ≤W 2

2 (µ, ηφ) =W 2
2 (µ, η̃). Since ηφ ∈ Iνµ , we deduce that

W 2
2 (µ, ν) ≥W 2

2 (µ, η̄) +

∫

Rd

|y|2ν(dy)−
∫

Rd

|z|2η̄(dz).

Moreover, η̄ ≤cx ν and combining a coupling in Πopt(µ, η̄) with a martingale coupling be-
tween η̄ and ν, we deduce that the previous inequality is an equality so that η̄ ∈ Iνµ and

µ(dx)12

(

δTφ(x)(dz) + δT̃ (x)(dz)
)

∈ Πopt(µ, η̄). As ηφ, η̃ ∈ Iνµ,φ,
∫

Rd φ(z)η̄(dz) = infη∈Iν
µ

∫

Rd φ(z)η(dz)

and η̄ ∈ Iνµ,φ. By the first assertion, Πopt(µ, η̄) = {(Id, T̄ )#µ} for some measurable transport

map T : Rd → R. Therefore µ(dx) a.e., Tφ(x) = T̃ (x) and ηφ = η̃. For the choice φ(x) = |x|2,
we deduce that Iνµ,|x|2 is a singleton.

From the equality W 2
2 (µ, ν) = W 2

2 (µ, η) +
∫

Rd |y|2ν(dy) −
∫

Rd |z|2η(dz) valid for η ∈ Iνµ, we

see that minimizing
∫

Rd |z|2η(dz) over Iνµ is equivalent to minimizing W 2
2 (µ, η). Therefore the

probability measure η can be seen as the W2-projection of µ on the set Iνµ. It is in general
different from the W2-projection µP(ν) of µ on the set P(ν) := {η : η ≤cx ν}, which has been
studied recently in dimension d = 1 by Gozlan et al. [12] and in general dimension d by Alfonsi
et al. [1] (who also give an explicit formula for the antiderivative of the quantile function of
this projection when d = 1), Alibert et al. [2], Gozlan and Juillet [11] and Backhoff-Veraguas et
al. [4]. Notice that since Iνµ ⊂ P(ν), one always has W2(µ, µP(ν)) ≤W2(µ, η).

Example 1.13. For µ and ν the respective uniform distributions on [0, 1] and [0, 2], we have
Iνµ = {ν} and thus η = ν. By using the characterization in Proposition 3.4 [1], we obtain that
the W2-projection µP(ν) of µ on the set P(ν) is the uniform distribution on [1/2, 3/2].

The next example shows that the set
{

ηφ : φ : Rd → R
d strictly convex and such that

∫

Rd

φ(y)ν(dy) <∞
}

may contain distinct elements.

Example 1.14. Let µ = 1
2(δ(−1,0) + δ(1,0)) and ν = 1

4(δ(−1,−1) + δ(0,−1) + δ(0,1) + δ(1,1)).
Any optimal coupling between µ and ν can be written as µ(dx)kp(x, dy) with kp((−1, 0), dy) =
1
2(δ(−1,−1)+ pδ(0,−1)+(1− p)δ(0,1))(dy) and kp((1, 0), dy) =

1
2(δ(1,1) +(1− p)δ(0,−1)+ pδ(0,1))(dy)

for p ∈ [0, 1]. One has Tp((−1, 0)) = (−1/2,−p) and Tp((1, 0)) = (1/2, p). The measures
ηp = 1

2(δ(−1/2,−p) + δ(1/2,p)) are not comparable for the convex order since for p 6= p′ there is
no martingale coupling between ηp and ηp′. Moreover, for each p ∈ [0, 1] the unique optimal
transport plan δ((−1,0),(−1/2,−p)) + δ((1,0),(1/2,p)) between µ and ηp is given by a map. For this

example, η = η0 = 1
2

(

δ(−1/2,0) + δ(1/2,0)
)

and ηp = ηφp, with φp(x) = x21 + (x2 − 2px1)
2. The

W2-optimal couplings between η and ν can be written as η0(dz)kp(2z, dy) for p ∈ [0, 1] and in
particular the unique martingale coupling η0(dz)k0(2z, dy) is optimal.
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The last example shows that, unlike in the previous one, the martingale couplings between η

and ν are not necessarily W2-optimal (even when Πopt(µ, ν) is a singleton).

Example 1.15. Let µ = 1
2

(

δ(−1,0) + δ(1,0)
)

, νa = 1
4

(

δ(−1,−1) + δ(−1,2a+1) + δ(1,−2a−1) + δ(1,1)
)

with a ∈ R. The uniqueW2-optimal coupling between µ and νa is µ(dx)ka(x, dy) with ka((−1, 0), dy) =
1
2(δ(−1,−1)+δ(−1,2a+1))(dy) and ka((1, 0), dy) =

1
2(δ(1,−2a−1)+δ(1,1))(dy) so that ηa =

1
2

(

δ(−1,a) + δ(1,−a)
)

.

Since |(−1,−1) − (−1, a)|2 − |(1, 1) − (−1, a)|2 = (a+ 1)2 − 4− (a− 1)2 = 4(a− 1), for a > 1,

W 2
2 (ηa, νa) =

1

2

(

(a+ 1)2 + 4 + (a− 1)2
)

< (a+ 1)2 =
1

2

(

3 + (2a+ 1)2
)

− (1 + a2)

=

∫

|y|2νa(dy)−
∫

|z|2ηa(dz),

so that the martingale coupling between ηa and νa is not W2-optimal.

2. Differentiability of the squared quadratic Wasserstein distance

In this section, we study the differentiability of the squared Wasserstein distance, and first
consider the geometric differentiability in the sense of Definition 5.62 in [7] that we now recall.

Definition 2.1. • For µ ∈ P2(R
d), the tangent space Tanµ(P2(R

d)) is defined as the

closure in L2(Rd, µ;Rd) of the gradients of infinitely differentiable functions from R
d to

R with compact support.
• A function ξ ∈ Tanµ(P2(R

d)) is said to belong to the superdifferential ∂+f(µ) (resp.

subdifferential ∂−f(µ)) of f : P2(R
d) → R at µ if for all µ′ ∈ P2(R

d)

f(µ′) ≤ f(µ) + inf
π∈Πopt(µ,µ′)

∫

Rd×Rd

ξ(x).(y − x)π(dx, dy) + o(W2(µ, µ
′)),(2.1)

(

resp. f(µ′) ≥ f(µ) + sup
π∈Πopt(µ,µ′)

∫

Rd×Rd

ξ(x).(y − x)π(dx, dy) + o(W2(µ, µ
′))

)

.(2.2)

• The function f : P2(R
d) → R is said to beW -superdifferentiable (resp. W -subdifferentiable,

W -differentiable) at µ if ∂+u(µ) (resp. ∂−f(µ), ∂+f(µ) ∩ ∂−f(µ)) is non empty.

Let us recall in the next proposition results stated in Theorem 8.5.1 [3] and Proposition 5.63 [7]
that we will need later.

Proposition 2.2. For µ ∈ P2(R
d), the tangent space Tanµ(P2(R

d)) is equal to the closure in

L2(Rd, µ;Rd) of {λ(Id − T ) : T ∈ L2(Rd, µ;Rd) s.t. (Id, T )#µ ∈ Πopt(µ, T#µ), λ > 0} where
Id : R

d → R
d denotes the identity function.

Moreover, if f : P2(R
d) → R is W -differentiable at µ, then the sets ∂+f(µ) and ∂−f(µ) coincide

and contain one element only. This element is called the Wasserstein gradient of f at µ and
denoted ∇µf .

Let us now check that P2(R
d) ∋ σ 7→ W 2

2 (σ, ν) is always W -superdifferentiable at µ.

Proposition 2.3. Let µ, ν ∈ P2(R
d), k be a Markov kernel such that µ(dx)k(x, dy) ∈ Πopt(µ, ν)

and T (x) =
∫

Rd yk(x, dy). Then 2(Id − T ) ∈ ∂+µW
2
2 (µ, ν).

With Proposition 2.2, we get that if Ĩνµ is not a singleton, then P2(R
d) ∋ σ 7→W 2

2 (σ, ν) is neither

W -subdifferentiable nor W -differentiable at µ. If Ĩνµ = {η} (η being defined in Theorem 1.10),

then, according to Proposition 1.6 and Theorem 1.10, for each µ(dx)k(x, dy) ∈ Πopt(µ, ν),
∫

Rd yk(x, dy) is µ(dx) a.e. equal to the unique optimal transport map between µ and η.
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Proof of Proposition 2.3. By the first assertions in Proposition 1.6 and Proposition 2.2,
2(Id−T ) ∈ Tanµ(P2(R

d)). Let µ′ ∈ P2(R
d), π ∈ Πopt(µ, µ′) and (X,X ′, Y ) ∼ π(dx, dx′)k(x, dy).

One has a.s. E[Y |(X,X ′)] =
∫

Rd yk(X, dy) = T (X). Moreover Y ∼ ν so that the law of (X ′, Y )
is a coupling between µ′ and ν. Hence

W 2
2 (µ

′, ν) ≤ E[|Y −X ′|2] = E[|Y −X|2] + 2E[(Y −X).(X −X ′)] + E[|X −X ′|2].
By the tower property of the conditional expectation

E[(Y −X).(X −X ′)] = E[E[(Y −X).(X −X ′)|(X,X ′)]] = E[(E[Y |(X,X ′)]−X).(X −X ′)]

= E[(T (X)−X).(X −X ′)].

Hence

W 2
2 (µ

′, ν) ≤W 2
2 (µ, ν) + 2

∫

Rd×Rd

(x− T (x)).(x′ − x)π(dx, dx′) +W 2
2 (µ, µ

′).

Taking the infimum over π ∈ Πopt(µ, µ′), we deduce that 2(Id − T ) ∈ ∂+µW
2
2 (µ, ν).

We now present the notion of differentiability introduced by Lions [14]. Let f : P2(R
d) → R. We

consider an atomless probability space (Ω,A,P) and denote by L2(Ω,P;Rd) the set of Rd-valued
square integrable random variables on this space. The lift of the function f on L2(Ω,P;Rd) is
the function F : L2(Ω,P;Rd) → R such that

∀X ∈ L2(Ω,P;Rd), F (X) = f(L(X)),

where L(X) ∈ P2(R
d) is the probability distribution of X. The atomless property is equivalent

to the existence of a random variable U : Ω → R uniformly distributed on [0, 1] (see e.g.
Proposition A.27 in [8]). By the fundamental Theorem of simulation (see e.g. Bouleau and
Lépingle [5], Theorem A.3.1 p. 38), it ensures the existence on (Ω,A,P) of a random variable
distributed according to each probability measure on each Polish space, and in particular of
X : Ω → R

d distributed according to µ, for each µ ∈ P2(R
d).

Definition 2.4. A function f : P2(R
d) → R is LΩ-differentiable at µ ∈ P2(R

d) if there exists
X ∈ L2(Ω,P;Rd) such that X ∼ µ and F is Fréchet differentiable at X.

For f real-valued, the Fréchet differentiability amounts to the existence of a bounded linear
operator DF

X : L2(Ω,P;Rd) → R such that F (X + Y ) = F (X) + DF
X(Y ) + ‖Y ‖2εX(Y ), where

εX(Y ) → 0 as ‖Y ‖2 → 0. By the Riesz representation theorem, there is a unique DF (X) ∈
L2(Ω,P;Rd) such that ∀Y ∈ L2(Ω,P;Rd), DF

X(Y ) = E[DF (X).Y ], and we will call later on
DF (X) the Fréchet derivative of F at X. From Theorem 6.2 in [6], if f is LΩ-differentiable
at µ ∈ P2(R

d), F is Fréchet differentiable at X for all X ∈ L2(Ω,P;Rd) such that µ = L(X).
Besides, the law of (X,DF [X]) does not depend on X by Proposition 5.24 in [7]. Let us now
check that, as one may expect, the notion of LΩ-differentiability does not depend on the choice
of the lifted probability space Ω.

Proposition 2.5. Let (Ω,A,P) and (Ω̃, Ã, P̃) be two atomless probability spaces. The function
f : P2(R

d) → R is LΩ-differentiable at µ ∈ P2(R
d) iff it is LΩ̃-differentiable at µ. We then

say that f is L-differentiable at µ and there exists a measurable function g ∈ L2(Rd, µ;Rd) such

that the lift F̂ of f on any atomless probability space (Ω̂, Â, P̂) satisfies DF̂ [X̂] = g(X̂) for each

X̂ ∈ L2(Ω̂, P̂;Rd) such that X̂ ∼ µ under P̂.

The proof relies on the following lemma, which states that the Fréchet derivative of the lift
at X is given by a measurable function of X. This was proved under the additional continuous
differentiability assumption in Theorem 6.5 [6], and by Wu and Zhang (Proposition 1, [18]) when
X is discrete.
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Lemma 2.6. Let F : L2(Ω,P;Rd) → R be law invariant. If F is Fréchet differentiable at X ∼ µ,
then its Fréchet derivative is equal to g(X) for some measurable function g ∈ L2(Rd, µ;Rd) and

it is differentiable with Fréchet derivative g(X̃) at each X̃ ∼ µ in L2(Ω,P;Rd).

Proof of Lemma 2.6. Based on Lions [14], Cardaliaguet proved in Theorem 6.2 [6] that if

F is Fréchet differentiable at X ∼ µ, then it is also Fréchet differentiable at all X̃ ∼ µ and the
Fréchet derivatives DF (X) and DF (X̃) have the same law. As remarked in Proposition 5.24 [7],

the proof actually ensures that the couples (X,DF (X)) and (X̃,DF (X̃)) also share the same
distribution.

By the fundamental theorem of simulation (see e.g. Bouleau and Lépingle [5], Theorem A.3.1 p.
38), since the lifted probability space supports a random variable with uniform distribution on

[0, 1], it also supports a couple (X̃, U) with X̃ ∼ µ and U an independent random variable uni-

formly distributed on [0, 1]. Let for i ∈ {1, . . . , d}, DF (X̃)i denote the i-th coordinate of DF (X̃)
and Pi(x, dz, du) with respective marginals Qi(x, dz) and Ri(x, du) denote a regular version of

the conditional law of (DF (X̃)i, U) given X̃ = x. Let gi(x) = inf{z ∈ R : Qi(x, (−∞, z]) ≥ 1/2}
be the median of Qi(x, dz). Notice that, by property of the median, E[|DF (X̃)i − gi(X̃)||X̃ ] ≤
E[|DF (X̃)i − E[DF (X̃)i|X̃]||X̃ ] so that

E[|gi(X̃)|] ≤ E[|DF (X̃)i|] + E[|DF (X̃)i − gi(X̃)|]
≤ E[|DF (X̃)i|] + E[|DF (X̃)i − E[DF (X̃)i|X̃ ]|] <∞.

Let

v±i (x) = inf{u ∈ [0, 1] : Pi(x, {gi(x)} × [0, u]) ≥ (Qi(x, (−∞, gi(x)))−Qi(x, (gi(x),+∞)))±}.
By independence of X̃ and U , there is a Borel subset A of Rd with µ(A) = 0 such that for x /∈ A,
Ri(x, du) is the Lebesgue measure on [0, 1]. Since

Qi(x, (−∞, gi(x)))∨Qi(x, (gi(x),+∞)) ≤ 1

2
≤ Qi(x, (−∞, gi(x)))∧Qi(x, (gi(x),+∞))+Qi(x, {gi(x)}),

for x /∈ A, Pi(x, {gi(x)} × [0, v±i (x)]) = (Qi(x, (−∞, gi(x))) −Qi(x, (gi(x),+∞)))±.

The random variables ξi+ = 1{DF (X̃)i>gi(X̃)}+1{DF (X̃)i=gi(X̃),U≤v+i (X̃)} and ξ
i
− = 1{DF (X̃)i<gi(X̃)}+

1{DF (X̃)i=gi(X̃),U≤v−i (X̃)} are such that (X̃, ξi+) and (X̃, ξi−) have the same distribution: indeed,

conditionally on X̃ = x, these are Bernoulli random variables of parameter Qi(x, (−∞, gi(x)))∨
Qi(x, (gi(x),+∞)). Therefore E[gi(X̃)ξi+] = E[gi(X̃)ξi−] and, denoting by ei the i-th vector of

the canonical basis of Rd, for each ε ∈ [0, 1], X̃+εξi+ei and X̃+εξi−ei have the same distribution

so that F (X̃ + εξi+ei) = F (X̃ + εξi−ei). Hence E(ξi+DF (X̃)i) = E(ξi−DF (X̃)i). We deduce that

0 = E[(DF (X̃)i − gi(X̃))(ξi+ − ξi−)] = E[|DF (X̃)i − gi(X̃)|]

and conclude that P
(

DF (X̃) = g(X̃)
)

= 1.

Proof of Proposition 2.5. By symmetry, it is enough to prove that the LΩ-differentiability
implies the LΩ̃-differentiability and the Fréchet derivatives are given by the same function in

L2(Rd, µ;Rd). Let us assume that f is LΩ-differentiable at µ. The atomless property and the fun-
damental theorem of simulation ensure the existence on the original lifted space (Ω,A,P) of ran-
dom variables (U,X) such that U is uniformly distributed on [0, 1] and independent from X ∼ µ.
Then, F is Fréchet differentiable at X and there exists a measurable function g ∈ L2(Rd, µ;Rd)
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such that DF [X] = g(X) by Lemma 2.6. We consider F̃ : L2(Ω̃, P̃;Rd) → R another lift on an

atomless probability space (Ω̃, Ã, P̃) and X̃ ∼ µ under P̃. Let Ỹ ∈ L2(Ω̃, P̃;Rd) and R(x, dy)

denote a regular version of the conditional law of Ỹ given X̃ = x. By Lemma 2.22 [13], there
exists a measurable function ρ : Rd × [0, 1] → R

d such that for all x ∈ R
d, ρ(x,U) is distributed

according to R(x, dy). Then, Y = ρ(X,U) is such that (X,Y ) has the same law under P as

(X̃, Ỹ ) under P̃, and therefore Y ∈ L2(Ω,P;Rd). We then have

F̃ (X̃+Ỹ )−F̃ (X)−Ẽ[g(X̃).Ỹ ] = F (X+Y )−F (X)−E[g(X).Y ] = F (X+Y )−F (X)−E[DF [X].Y ].

With E[|Y |2] = Ẽ[|Ỹ |2], we deduce that the Fréchet differentiability of F at X implies the

Fréchet differentiability of F̃ at X̃ and DF̃ [X̃ ] = g(X̃).

For Bd the ball centered at the origin of unit volume in R
d endowed with the Lebesgue measure,

Gangbo and Tudorascu ([9], Corollary 3.22) have proved the equivalence between the LBd
-

differentiability and the W -differentiability of f at µ and the equality DF [X] = ∇µf(X) for

X ∈ L2(Bd,Leb;R
d) such thatX ∼ µ. Reasoning like in the proof of Proposition 2.5, this implies

that the LBd
-differentiability implies the LΩ-differentiability for each atomless probability space

(Ω,A,P). Nevertheless, the converse implication is not obvious without the use of Lemma 2.6.
Combining their result with Proposition 2.5, we get the following theorem.

Theorem 2.7. Let f : P2(R
d) → R and µ ∈ P2(R

d). Then, f is W -differentiable at µ iff f
is L-differentiable at µ. In this case, for each lift F : L2(Ω,P;Rd) → R of f on an atomless
probability space, we have DF [X] = ∇µf(X) for each X ∈ L2(Ω,P;Rd) such that L(X) = µ.

We now state our main result that characterizes the differentiability of the square quadratic
Wasserstein distance. To deal with the L-differentiability, we exhibit the lift of the Wasserstein
distance. Let µ, ν ∈ P(Rd). From the atomless property, there exist random variables X ∼ µ
and Y ∼ ν on (Ω,A,P). The dual formulation (see for instance Theorem 5.10 in [17])

(2.3) W 2
2 (µ, ν) = sup

ψ∈L1(µ),ψ̃∈L1(ν):ψ(x)+ψ̃(y)≤|x−y|2
E

[

ψ(X) + ψ̃(Y )
]

=: W2
2(X,Y )

permits to lift W 2
2 to L2(Ω,P;Rd).

Theorem 2.8. For µ, ν ∈ P2(R
d), the mapping P2(R

d) ∋ σ 7→W 2
2 (σ, ν) isW or L-differentiable

at µ iff there exists a measurable function T : Rd → R
d such that Πopt(µ, ν) = {(Id, T )#µ} and

then ∇µW
2
2 (µ, ν) = 2(Id − T ).

Remark 2.9. • In particular, since the only coupling π ∈ Πopt(ν, ν) is (Id, Id)#ν, P2(R
d) ∋

σ 7→W 2
2 (σ, ν) is differentiable at ν with ∇µW

2
2 (ν, ν)(x) = 0.

• According to Proposition 1.2, if ν is not a Dirac mass, then there is no µ ∈ P2(R
d) such

that P2(R
d) ∋ σ 7→W 2

2 (σ, ν) is continuously differentiable in a neighbourhood of µ.

The differentiability properties of the power ρ of the Wasserstein distance with index ρ > 1 (and
in particular of the squared quadratic Wasserstein distance) are investigated by Ambrosio, Gigli
and Savaré in [3] Section 10.2. A superdifferentiability property slightly different from the one
introduced in Definition 2.1 is obtained in Theorem 10.2.2. The subdifferentiability is proved in
Theorem 10.2.6 under the assumption that Πopt(µ, ν) = {(Id, T )#µ} and the differentiability in
Corollary 10.2.7 under the stronger assumption that µ is absolutely continuous with respect to
the Lebesgue measure, which, according to Theorem 6.2.4 [3], ensures that for each η ∈ P2(R

d),
Πopt(µ, ν) = {(Id, Tη)#µ} for some measurable function Tη (see also [10]). Notice that combining
the subdifferentiability property stated in Theorem 10.2.6 [3] with Proposition 2.3, one obtains
the sufficient condition in Theorem 2.8. We are going to give a self-contained proof of this
sufficient condition relying on the next lemma.
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Lemma 2.10. Let µ, ν ∈ P2(R
d) be such that there exists T : Rd → R

d measurable such that
Πopt(µ, ν) = {(Id, T )#µ}. Let also (µn)n be a sequence of elements of P2(R

d) converging weakly
to µ and such limn→∞W2(µn, ν) = W2(µ, ν). If (on a single probability space), X ∼ µ and for

n ∈ N, (Xn, Yn) is such that Xn ∼ µn, Yn ∼ ν, W 2
2 (µn, ν) = E

[

|Xn − Yn|2
]

and Xn
Pr−→ X as

n→ ∞, then
lim
n→∞

E
[

|Xn −X|2 + |Yn − T (X)|2
]

= 0.

Remark 2.11. The fact that limn→∞ E
[

|Xn −X|2
]

= 0 implies that limn→∞W2(µn, µ) = 0.

Proof of Theorem 2.8. Let us first assume Πopt(µ, ν) 6= {(Id, T )#µ}. The existence on the
lifted probability space of a random variable uniformly distributed on [0, 1] combined with [5]
Theorem A.3.1. and Lemma 1.1 ensures the existence on this space of (X,Y ) with X ∼ µ,
Y ∼ ν, W 2

2 (µ, ν) = E[|Y − X|2] and E[|Y − E[Y |X]|2] > 0. Let ξ = Y − E[Y |X]. One has
E[ξ|X] = 0 a.s. so that for h : Rd → R

d measurable and such that h(X) is square integrable,

(2.4) E[h(X).ξ] = E[h(X).E[ξ|X]] = 0.

On the other hand, denoting by µn the distribution of X + ξn where ξn = ξ
n , we have

W
2
2(X + ξn, Y ) =W 2

2 (µn, ν) ≤ E[|X + ξn − Y |2] = E[|X − Y |2] + 2

n
E[(X − Y ).ξ] +

E[|ξ|2]
n2

=W 2
2 (µ, ν)−

2

n
E[Y.ξ] +

E[|ξ|2]
n2

= W
2
2(X,Y )−

(

2

n
− 1

n2

)

E[|Y − E[Y |X]|2],

where we used (2.4) for the second equality and the definition of ξ for the third. If σ 7→W 2
2 (σ, ν)

was L-differentiable at µ, then (2.4) combined with Lemma 2.6 would imply that, as n→ ∞,

W
2
2(X + ξn, Y )−W

2
2(X,Y ) = o(‖ξn‖2),

which does not hold since ‖ξn‖2 = E1/2[|Y−E[Y |X]|2]
n .

Now, we assume that Πopt(µ, ν) = {(Id, T )#µ} for some measurable transport map T : Rd → R
d.

Let, on the lifted probability space, X ∼ µ, Y ∼ ν and (ξn)n be a sequence of square integrable
R
d-valued random vectors such that ‖ξn‖2 := E

1/2
[

|ξn|2
]

tends to 0 as n → ∞. We denote by

µn the law of X + ξn. Let Yn ∼ ν such that W 2
2 (µn, ν) = E[|X + ξn − Yn|2] be defined on a

possible enlargement of the lifted probability space. We have

W 2
2 (µn, ν) ≤ E[|X + ξn − T (X)|2] = E[|X − T (X)|2] + 2E[(X − T (X)).ξn] + E[|ξn|2]

=W 2
2 (µ, ν) + 2E[(X − T (X)).ξn] + E[|ξn|2].

On the other hand,

W 2
2 (µ, ν) ≤ E[|X − Yn|2] = E[|X + ξn − Yn|2]− 2E[(X − Yn).ξn]− E[|ξn|2]

=W 2
2 (µn, ν)− 2E[(X − T (X)).ξn]− E[|ξn|2] + 2E[(Yn − T (X)).ξn].

Combining the two equations with Cauchy-Schwarz inequality, we deduce that

|W 2
2 (µn, ν)−W 2

2 (µ, ν)− 2E[(X − T (X)).ξn]| ≤ ‖ξn‖2 (‖ξn‖2 + ‖Yn − T (X)‖2) .
Note that from (2.3) the left-hand side is equal to |W2

2(X+ξn, Y )−W
2
2(X,Y )−2E[(X−T (X)).ξn]|

and is thus well defined on the original lifted probability space, as required by the definition of
the Lions derivative. Now, Lemma 2.10 applied with Xn = X + ξn ensures that limn→∞ ‖Yn −
T (X)‖2 = 0 so that σ 7→ W 2

2 (σ, ν) is L-differentiable at µ with ∂µW
2
2 (µ, ν)(x) = 2(x− T (x)).
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Proof of Lemma 2.10. Let ηn and η
n
34 respectively denote the distributions of (X,T (X),Xn, Yn)

and (Xn, Yn). Since (µn)n converges weakly to µ, this sequence is tight and we deduce that
(ηn)n is tight. Let us consider a subsequence weakly converging to η∞ and that we still in-

dex by n for notational simplicity. From the convergence Xn
Pr−→ X as n → ∞, we deduce

that (X,T (X),Xn)
Pr−→ (X,T (X),X). Hence the marginal η∞123 of the triplet of the three first

coordinates under η∞ is η∞123 = (Id, T, Id)#µ. Next, the marginal η∞34 of the couple of the
two last coordinates is a coupling between µ and ν such that

∫

Rd×Rd |x − y|2η∞34(dx, dy) ≤
lim infn→∞

∫

Rd×Rd |x − y|2ηn34(dx, dy). Since
∫

Rd×Rd |x − y|2ηn34(dx, dy) = E
[

|Xn − Yn|2
]

=

W 2
2 (µn, ν) converges to W2(µ, ν) as n → ∞, η∞34 ∈ Πopt(µ, ν). Therefore η∞34 = (Id, T )#µ

and µ(dw) a.e. the conditional law of the fourth coordinate given that the third is equal to
w is δT (w)(dz). Since under η∞123 the two first coordinates are a function of the third one,
this is also the conditional law of the fourth coordinate given that the three first coordinates
are equal to (w, T (w), w). Hence η∞(dx, dy, dw, dz) = µ(dw)δ(w,T (w))(dx, dy)δT (w)(dz) so that
η∞ = (Id, T, Id, T )#µ. Since the weak limit does not depend on the subsequence, the whole
sequence (ηn)n converges weakly to (Id, T, Id, T )#µ.
Since |Yn − T (X)| ≤ 2|Yn|1{|Yn|≥|T (X)|} + 2|T (X)|1{|Yn |<|T (X)|}, for m > 0, we have

|Yn − T (X)|21{|Yn−T (X)|≥m} ≤ 4|Yn|21{|Yn|≥m/2} + 4|T (X)|21{|T (X)≥m/2}.

Hence

E
[

|Yn − T (X)|21{|Yn−T (X)|≥m}
]

≤ 8

∫

Rd

|x|21{|x|≥m/2}ν(dx)

which provides the uniform integrability needed to conclude that limn→∞ E
[

|Yn − T (X)|2
]

= 0.

The convergence of E
[

|Xn − Yn|2
]

= W 2
2 (µn, ν) to W 2

2 (µ, ν) = E
[

|X − T (X)|2
]

as n → ∞
together with the convergence in probability of (Xn, Yn) to (X,T (X)) implies that

lim
n→∞

E
[

||X − T (X)|2 − |Xn − Yn|2|
]

= 0

and therefore that the random variables (|Xn − Yn|2)n are uniformly integrable. From the
inequality |Xn −X|2 ≤ 3(|Xn − Yn|2 + |Yn|2 + |X|2) and the convergence of (Yn)n to T (X) in
quadratic mean, we deduce that the random variables (|Xn − X|2)n are uniformly integrable.
With the convergence in probability of (Xn)n toX, we conclude that limn→∞ E

[

|Xn −X|2
]

= 0.

We have written the proof of Theorem 2.8 by considering only the L-differentiability. Of course,
it is also possible to work with the equivalent W -differentiability. The necessary condition for
the W -differentiability can be checked by using constant speed geodesics.

Lemma 2.12. Let µ, ν ∈ P2(R
d), π ∈ Πopt(µ, ν) and µα denote the image of π by (x, y) 7→

x+α(y−x) for α ∈ R. When 0 ≤ α ≤ β ≤ 1, the image πα,β of π by (x, y) 7→ (x+α(y−x), x+
β(y − x)) belongs to Πopt(µα, µβ) and W2(µα, µβ) = (β − α)W2(µ, ν).

This lemma states that [0, 1] ∋ α 7→ µα is a so-called constant speed geodesic and is a conse-
quence of Proposition 5.59 [7] or Theorem 7.2.2 [3], the last one not restricted to the qua-
dratic Wasserstein distance, and their proofs. Now, let us now suppose that Πopt(µ, ν) 6=
{(Id, T )#µ}. Then, by Lemma 1.1, there exists µ(dx)k(x, dy) ∈ Πopt(µ, ν) such that

∫

Rd×Rd |y−
T (x)|2µ(dx)k(x, dy) > 0 for T (x) =

∫

Rd yk(x, dy). Let α ∈ [0, 1] and µα, π0,α and πα,1 be defined
as in the statement of Lemma 2.12 for π(dx, dy) = µ(dx)k(x, dy). We are going to prove that
σ 7→ W 2

2 (µ, ν) is not differentiable along the constant speed geodesic [0, 1] ∋ α 7→ µα. Using
Lemma 2.12 for the first equality, the bias-variance decomposition under the kernel k(x, dy) and
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the definition of T for the third one and the equality α(y − x) = (x + α(y − x)) − x together
with the definition of π0,α for the fourth, we obtain that

W 2
2 (µα, ν) =(1− α)2W 2

2 (µ, ν) = (1 + α2)W 2
2 (µ, ν)− 2α

∫

Rd×Rd

|y − x|2µ(dx)k(x, dy)

= (1 + α2)W 2
2 (µ, ν)− 2α

∫

Rd×Rd

(|y − T (x)|2 + (T (x)− x).(y − x))µ(dx)k(x, dy)

=(1 + α2)W 2
2 (µ, ν)− 2α

∫

Rd×Rd

|y − T (x)|2µ(dx)k(x, dy)

+

∫

Rd×Rd

2(x− T (x)).(z − x)π0,α(dx, dz)

Since, by Lemma 2.12, W2(µ, µα) = αW2(µ, ν), the right-hand side does not write

W 2
2 (µ, ν) +

∫

Rd×Rd

2(x− T (x)).(z − x)π0,α(dx, dz) + o(W2(µ, µα))

in the limit α → 0 as would be the case if σ 7→ W 2
2 (σ, ν) was W -differentiable at µ since, by

Proposition 2.3, 2(Id − T ) ∈ ∂+µW
2
2 (µ, ν).
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