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Abstract

This paper analyzes supply tariffs that discriminate between resale in different

markets. In a setting with competing retailers that operate in multiple (independent

or interdependent) markets, we show that, all else equal, the supplier wants to dis-

criminate against resale in the market with the higher aggregate cross-seller diversion

ratio. We find that discrimination can improve allocative effi ciency and present suf-

ficient conditions, involving the pass-through rates and the inverse market demand

curvatures in the different markets, under which discrimination has positive effects

on output and welfare. Our insights are relevant for the policy treatment of vertical

restraints on online sales.
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1 Introduction

Starting with Pigou’s (1920) seminal work, a large literature in economics has studied the

effects of allowing sellers to charge different prices to different consumers (see, e.g., Robin-

son 1933; Schmalensee 1981; Varian 1985; Schwartz 1990; Aguirre et al. 2010; Bergemann

at al. 2015). Recognizing that many instances of price discrimination involve intermediate-

goods markets, the literature has also looked at the effects of allowing sellers to discriminate

between different downstream firms rather than final consumers (see, e.g., Katz 1987; De-

Graba 1990; Yoshida 2000; Inderst and Shaffer 2009). In both cases, though, the defining

feature of what constitutes price discrimination has been that the seller discriminates across

its buyers.

This paper considers a different form of price discrimination, one that is prevalent in

intermediate-goods markets but has not received much attention in the economics literature

thus far: price discrimination across resale markets, rather than across buyers. This form of

price discrimination occurs, for instance, when a supplier charges different wholesale prices

for goods and services resold in different geographic locations by the same downstream firms.

A prominent example in the pharmaceutical industry are contracts between manufacturers

and wholesalers in which the wholesale price of a drug depends on the country in which the

wholesaler resells the drug.1 Other examples include TV content providers charging fees

to downstream cable companies that depend on the subscriber’s location,2 and consumer-

goods manufacturers offering trade promotions to grocery retailers that are available in

only some of the regions in which a retailer operates.3

Discrimination across resale markets also encompasses situations in which multiple out-

puts are produced from a common input and input prices depend on which final output

is produced. For example, the licensing fees of many standards-essential patents depend

1This practice has been challenged in several cases in Europe involving manufacturers setting two whole-
sale prices when selling to wholesalers in Spain, one for reselling through the Spanish health care system,
and another, higher wholesale price for exporting. See Commission Decision 2001/79 1/EC; GlaxoSmithK-
line Services v Comission, T- 168/01, ECR, EU:T:2006:265; ECJ Judgment of 6 October 2009, cases C-501,
513, 515, 519/06 P; Spanish Competition Authority, Pfizer/Cofares, S/DC/0546/15, 19 January 2017.

2See Singer and Sidak (2007, p.387). We thank Ali Yurukoglu for bringing this example to our attention.
3Trade promotions involve discounts off invoice that are granted to retailers for a certain time period

(Coughlan et al. 2013). Reimbursements are typically made contingent on how much the retailer actually
sells in each market– verified through store level scanner data– as opposed to how much it orders.
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on the price or the type of the end product for which the patents are used, resulting in

different per-unit licensing fees for different products sold by the same downstream firms.4

Another example is Du Pont’s “value-in-use pricing”system, which specifies more than a

dozen different price points for the Kevlar fiber depending on end use.5 Input price dis-

crimination across resale markets also arises when supply contracts specify different terms

for products or services that are resold to different customer segments. An example of this

are patent licensing fees that depend on whether the downstream firms sell the end product

to a commercial-use customer or a home-use customer.6

An example of particular current policy relevance are input supply contracts that spec-

ify different terms for products resold in different distribution channels, especially when

such contracts discriminate against resale on the internet. In the European Union, charg-

ing a higher wholesale price for products that are intended to be resold by a distributor

online than for products that are intended to be resold off-line, a practice also known as

“dual pricing,”is a hardcore restriction of competition according to the 2010 Guidelines on

Vertical Restraints. The related practice of restricting the share of online sales in the total

sales made by a distributor, i.e., from “agreeing that the distributor shall limit its propor-

tion in overall sales made over the internet,” is treated as a hardcore restriction as well.7

Recent cases include Dornbracht, 2011, in which, in a three-layer distribution network, the

German Federal Cartel Offi ce prohibited contracts that required wholesalers to pay higher

4Licensing fees are often set as a fixed percentage of the final product’s selling price. While such fees have
generally been upheld in the U.S. courts (see Automatic Radio Manufacturing Co. v. Hazeltine Research,
Inc., 339 U.S. 827, 834 (1950)), the Indian Competition Commission recently challenged basing licensing
on a percentage of the sales price as being “prima facie discriminatory”(see Teece et al. 2017).

5A downstream firm that puts the input to a different end use than the one it was initially purchased for
is required to pay Du Pont an amount representing the difference between the initial purchase price and the
price for the ultimate end use. See Akzo NV v. USITC, 808 F.2d 1471 (1986). See also Carter-Wallace, Inc.
v. United States 449 F.2d 1374 (1971), where the manufacturer of the chemical compound meprobamate
charged a lower wholesale price for meprobamate used in combination drugs than for meprobamate resold
as a stand-alone drug.

6The license fees for the MPEG Surround standard, for instance, are higher
for professional PC software than for consumer PC software. See http://www.via-
corp.com/us/en/licensing/mpegsurround/licensefees.html (accessed on September 6, 2018).

7See paragraphs 52 (c) and 52 (d) of the Commission notice of 10 May 2010: Guidelines on vertical
restraints [SEC (2010) 411 final]. Hardcore restrictions give rise to the presumption that the agreement is
prohibited under Article 101(1) of the Treaty on the Functioning of the European Union. Although firms
can try to claim that such restrictions have pro-competitive effects under Article 101(3), it is considered
“unlikely that vertical agreements containing such hardcore restrictions fulfil the conditions of Article
101(3)”(Commission Regulation (EU) No 330/2010).
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input prices for products resold to online retailers as opposed to traditional offl ine retailers;

and Bosch-Siemens, 2013, in which the German Federal Cartel Offi ce prohibited Bosch-

Siemens’s practice of granting wholesale price discounts for household appliances that were

proportional to a retailer’s offl ine versus online sales.8

To analyze the drivers and welfare effects of input price discrimination across resale

markets, we consider a setting in which a monopolist supplier offers input supply tariffs

to competing downstream firms that operate in multiple downstream markets (e.g., online

and offl ine).9 The downstream firms (henceforth, retailers) then engage in resale to final

consumers. Allowing the final products sold to consumers to be substitutes or independent

across markets, we address three main questions: (i) why does the supplier want to dis-

criminate across resale markets?; (ii) which downstream market(s) does the supplier want

to discriminate against?; and (iii) what are the welfare effects of such discrimination?

In answer to our first question, we find that when the downstream markets are asym-

metric (in terms of how much market power the retailers have, for instance), supply tariffs

that depend on the total amount ordered by a retailer will not allow the supplier to achieve

its first-best outcome, even if the retailers themselves are symmetric and general non-

linear tariffs are feasible. Intuitively, although the supplier can control each retailer’s total

quantity through the tariff it offers, this is not enough because each retailer ignores the

externalities on the profits generated by rival retailers when deciding how to allocate its

total quantity across the different downstream markets. To correct for these externalities

and induce industry profit maximization, the supplier must therefore discriminate between

resale in different markets, e.g., by making its wholesale prices depend on the intended

resale market, or by imposing restrictions on the relative quantities sold in the different

markets.10

8For full case summaries, see Bundeskartellamt, “Fallbericht: Bundeskartellamt stellt sicher: Hochw-
ertige Sanitärarmaturen im Internet erhältlich,”B5-100/10, Dec. 12, 2011, for the Dornbracht case, and
Bundeskartellamt, “Fallbericht: Rabattsystem der Bosch Siemens Hausgeräte GmbH, München,”B7-11/13,
Dec. 23, 2013, for the Bosch Siemens case. See also Bundeskartellamt, “Vertical Restraints in the Internet
Economy,”Background Paper —Working Group on Competition Law, October 10, 2013.

9With single-market downstream firms, the distinction between discrimination across markets versus
across buyers is blurred. Nevertheless, our analysis also yields insights about discrimination by resale
market in settings with single-market downstream firms, as will be described in more detail below.
10Because our focus is on price discrimination in the input market, we assume that resale price mainte-

nance, which under some conditions can achieve similar effects (see Chen 1999), is infeasible.
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In answer to our second question, we find that three conceptually distinct factors de-

termine which downstream market(s) the supplier wants to discriminate against: the retail

prices that the supplier seeks to induce in the different markets, the intensity of competition

in each market (which, as we will show, can be measured by “market power parameters”

that depend on the product diversion ratios within and across markets), and marginal pro-

duction costs. We find that between two resale markets, the supplier wants to discriminate

against the more competitive market if the monopoly prices in the two markets are suffi -

ciently close, or if the monopoly price is higher in the more competitive market.11 The more

competitive market, in turn, is shown to be the market with the higher aggregate cross-

seller diversion ratio, which measures the fraction of the net loss in a retailer’s quantity

sold (taking into account that the retailer may sell a substitute product in the other mar-

ket) that goes to the rival retailers (in either market) after a price increase in the market.

Conversely, we find that if the intensity of competition is similar in the two markets, or if

competition is fiercer in the market with the higher monopoly price, the supplier wants to

discriminate against the market with the higher monopoly price.

Consistent with the examples on patent licensing and pharmaceuticals mentioned previ-

ously, these results suggest that we would expect to see suppliers charging higher licensing

fees and wholesale prices for resale in downstream markets that support higher prices (all

else equal). The results also suggest that contracts that discriminate against resale on the

internet may simply be a result of retailers having greater market power offl ine than online,

which can be explained by the lower importance of geographical differentiation in an online

setting, or by asymmetries in consumer search costs between online and offl ine markets.12 ,13

In answer to our third question, we establish conditions under which input price dis-

11By monopoly prices we mean the downstream prices that maximize total industry profits, i.e., the sum
of the supplier’s and the retailers’profits.
12See Lieber and Syverson (2012) for a detailed discussion of online versus offl ine competition.
13An alternative explanation for vertical restrictions on internet sales is that suppliers seek to mitigate

potential free-riding on the investment efforts of their retailers’brick-and-mortar stores—see Iacobucci and
Winter (2015) for a nice summary of this theory and a criticism of the EU Guidelines on its basis. Our
explanation does not rely on investment incentives to explain vertical restraints on online sales and thus also
applies to products for which free-riding on services may be less of a concern. Moreover, it also applies to
markets in which the same retailers operate both online and offl ine, so that no clear “victim”of free-riding
can be identified in the downstream market. Helfrich and Herweg (2017) and Dertwinkel-Kalt and Köster
(2017) offer explanations for why a supplier may want to ban online distribution of its products, building
on the assumption that consumer decisions are distorted by salient thinking as in Bordalo et al. (2013).
Our theory assumes that consumers are fully rational and applies to hybrid retailers.
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crimination by resale market has positive or negative effects on allocative effi ciency, total

output sold, and social welfare defined as the sum of profits and consumer surplus. As

in the case of monopolistic third-degree price discrimination in final-goods markets, which

arises as the limiting case of perfect competition in independent markets of our setting,

the total welfare effect of the price discrimination we consider can be decomposed into an

allocation effect and an output effect. But whereas the allocation effect is always negative

in the case involving final-goods markets, we find that in the case of input markets, it can

be positive.14 The reason is that the supplier’s optimal choice of wholesale prices in the

different markets can actually push the final-goods prices closer together, and will do so if

the monopoly prices are suffi ciently similar, paradoxically resulting in less discrimination

to final consumers than in the absence of input price discrimination. It follows that in our

setting welfare can rise with discrimination even if total output decreases.

Another fundamental difference between input price discrimination across resale mar-

kets and price discrimination across buyers in final-goods markets is that in our model,

the sign of the output effect depends not just on the curvatures of the market demand

functions, but also on the extent to which wholesale price changes are passed through to

final consumers.15 The pass-through rates, in turn, depend on the relative intensities of

competition in the downstream markets and on demand curvatures. This gives rise to a

previously unrecognized functional dependence, one that can generate a positive output

effect even in settings where, given existing results, one might have expected that there

would be no, or a negative, output change. With linear demands (and zero or symmetric

cross-market price effects), for instance, we find that discrimination against resale in the

more competitive downstream market has a positive output effect. This result contrasts

sharply with Pigou’s (1920) famous insight that price discrimination in final-goods markets

has no effect on output when demand functions are linear.16

14In the case of final-goods markets, price discrimination generates a misallocation of aggregate output
across consumers relative to uniform pricing, because output is not allocated to the consumers who value
it the most.
15Aguirre et al. (2010) offer a comprehensive analysis of the role played by demand curvature for the

output and welfare effects of monopolistic third-degree price discrimination in final-goods markets. In
Section 5, we will contrast the effects of input price discrimination by resale market with their results.
16The latter is true unless price discrimination leads to new markets being served. See, e.g., Tirole’s

(1988, p. 139) textbook treatment of third-degree price discrimination. Layson (1998) shows that the
result carries over to the case of interdependent markets with symmetric cross-market price effects.
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For the case of independent markets, we establish general suffi cient conditions under

which discrimination has a positive or negative output effect by combining the marginal

effects technique commonly used in the literature on third-degree price discrimination in

final-goods markets (e.g., Aguirre et al. 2010) with the exogenous quantity method proposed

by Weyl and Fabinger (2013). Total output sold increases with discrimination if the pass-

through rate from wholesale to retail prices is higher in the market where prices rise than in

the market where prices fall, and if the inverse market demand function is at least as convex

in the market where prices fall as in the market where prices rise. Conversely, if the pass-

through rate is lower in the market where prices rise and the inverse market demand function

is at least as concave in the market where prices fall as in the market where prices rise,

total output falls with discrimination. Regarding total welfare, we use the same method to

establish a suffi cient condition– involving the monopoly prices, the pass-through rates, and

the curvatures of the inverse market demand functions in the two markets– that guarantees

a positive welfare effect when the market demand functions satisfy the (commonly met)

increasing ratio condition of Aguirre et al. (2010). Given this condition and log-concave

market demand functions, so that more intense competition in a market is associated with

a higher pass-through rate, discrimination against resale in the more competitive market

raises welfare if the monopoly prices are not too far apart (or the monopoly price is higher

in the market where price falls) and the convexities of the inverse market demand functions

at the monopoly prices are suffi ciently similar (or inverse market demand is more convex

in the market where price falls).

While our primary focus is on the case of multi-market retailers, our insights are also

relevant for settings with single-market retailers, in which price discrimination across resale

markets implies price discrimination across buyers. This extension is useful because it

expands the policy relevance of our results, for instance, to Robinson-Patman Act cases

involving primary-line discrimination, where the focus is on understanding why retailers in

one market may have received lower prices than retailers in another market.17 Allowing the

supplier to deal with multiple retailers in each downstream market, our paper shows that

asymmetries in the intensity of between-retailer competition across downstream markets

can be a key driver of discriminatory input pricing in such cases. In contrast, previous

17The Robinson-Patman Act is the U.S. law that governs input price discrimination. In a primary-line
case, (actual or potential) rival sellers allege that they have been injured by a seller’s discriminatory prices.
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work on input price discrimination has considered settings in which there is either a single

downstream market or a single retailer in each market (see, e.g., Katz 1987; DeGraba 1990;

Inderst and Shaffer 2009).

In summary, our theory shows that input price discrimination across resale markets is a

natural consequence of asymmetries between the various markets in which the downstream

firms compete. Furthermore, our results suggest that if asymmetries in the intensity of

competition across markets are the primary driver of discrimination, it is reasonable to

expect that discrimination will have a positive effect on social welfare. In light of these

findings, the current treatment of vertical restraints on online sales in the EU appears

to be overly aggressive, because it severely restricts suppliers’ability to practice a form

of input price discrimination that may well improve welfare. As mentioned, our results

are also relevant for the U.S. policy on input price discrimination, especially primary-line

Robinson-Patman cases.18 In such cases, information about the downstream firms’market

power in different markets could help to identify drivers of input price discrimination that

are unrelated to whether other suppliers are also present in the market, and thus help to

establish the credibility (or lack thereof) of any alleged anti-competitive conduct.

The rest of this paper proceeds as follows. In the next section, we describe the frame-

work. Section 3 derives market power parameters that measure the intensity of competition

in each market allowing for cross-market demand interdependencies. These measures will

be useful for the subsequent analysis, and they may also prove to be independently useful

in other applications. Section 4 explains the problem faced by a supplier when compet-

ing retailers resell the supplier’s input in multiple markets and characterizes the optimal

wholesale prices that allow the supplier to overcome the problem. Section 5 analyzes the al-

location, output, and welfare effects of input price discrimination by resale market. Section

6 concludes. Proofs of the propositions and lemmas are relegated to Appendix A.

2 The model

We consider a setting with one supplier and n competing retailers. Each retailer operates

in the same two markets. The retailers are indexed by i = 1, 2, ..., n, and the markets are

18Currently, the focus in these cases is on whether the seller’s discriminatory prices were below-cost– and
therefore predatory– an assessment that is often diffi cult to measure by direct means.
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indexed by s = A,B.19 The retailers transform the supplier’s inputs into final outputs at

zero marginal cost using a one-to-one technology (i.e., one unit of input is used to make

one unit of output). The supplier has a constant marginal cost c ≥ 0.

Each retailer sets two prices, one for market A and one for market B. The demand for

retailer i in market s ∈ {A,B} is given by

Dsi (ps1, ps2, ..., psn, p−s1, p−s2, ..., p−sn) ,

where psj denotes retailer j’s price in market s and p−sj denotes retailer j’s price in market

−s 6= s. Consumers view the n × 2 final products as (weak) substitutes, and own-price

effects dominate cross-price effects. That is, for all i 6= j and s 6= −s, we have that

∂D−si
∂psi

,
∂Dsj

∂psi
,
∂D−sj
∂psi

≥ 0,

−∂Dsi

∂psi
>

∑
j 6=i

∂Dsj

∂psi
+

∑
k=1,2,...,n

∂D−sk
∂psi

.

This formulation allows for the possibility of demand-side interactions within and across

markets. Note that the special case of independent markets obtains if and only if there are

no cross-market price effects, i.e., if and only if ∂D−si
∂psi

=
∂D−sj
∂psi

= 0 for all i 6= j and s 6= −s.
To focus on demand-side asymmetries between markets, we assume that the retailers

are symmetric, so that in each market s,

Dsi (ps, ps, ..., ps, p−s, p−s, ..., p−s) = Dsj (ps, ps, ..., ps, p−s, p−s, ..., p−s)

for any (ps, p−s) and i 6= j ∈ {1, 2, ..., n}. This then allows us to denote the (per-retailer)

19Allowing firms to compete in more than one market distinguishes our model from much of the vertical
contracting literature, which typically assumes that the downstream firms compete in only one market. An
exception is Arya and Mittendorf (2010), who consider a setting with one multi-market and one single-
market retailer. In contrast to our paper, however, they consider discrimination across buyers rather than
across resale markets. Further distinguishing our work from theirs, we allow for interdependent demands
within and between all downstream markets and use general functional forms.
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quantity demanded in market s at symmetric prices by the market demand function20

Qs (ps, p−s) = Ds1 (ps, ps, ..., ps, p−s, p−s, ..., p−s) .

The marginal change in the (per-retailer) quantity demanded in market s when all retailers’

prices move in tandem is thus

∂Qs

∂ps
=

∂Dsi

∂psi
+
∑

j 6=i
∂Dsi

∂psj
=

∂Dsi

∂psi
+
∑

j 6=i
∂Dsj

∂psi
,

∂Qs

∂p−s
=

∂Dsi

∂p−si
+
∑

j 6=i
∂Dsi

∂p−sj
=

∂Dsi

∂p−si
+
∑

j 6=i
∂Dsj

∂p−si
,

where the second equality in each line follows from retailer symmetry.

Industry profits are equal to the sum of profits across the n× 2 final products:

Π (pA1, ..., pAn, pB1, ..., pBn) =
∑

i=1,2,...,n

∑
s=A,B

(psi − c)Dsi (ps1, ..., psn, p−s1, ..., p−sn) .

We assume the Hessian matrix of Π is negative definite, which implies that industry profits

are strictly concave in the retail prices. This and symmetry imply that there is a unique

symmetric pair of prices that maximize industry profits, which we denote by (p∗A, p
∗
B). In

what follows, we will also refer to (p∗A, p
∗
B) as the monopoly prices in the two markets. To

economize on notation, we let D∗si = Dsi

(
p∗s, ..., p

∗
s, p
∗
−s, ..., p

∗
−s
)
and Q∗s = Qs

(
p∗s, p

∗
−s
)
.

The game that we will analyze proceeds in two stages:

1. The supplier offers a (common) tariff T to the retailers. We consider two classes of

tariffs: (i) tariffs of the form T (qi), where qi is the total quantity ordered by retailer

i, and (ii) tariffs of the form T (qAi, qBi), where qsi is the quantity ordered by retailer

i for resale in market s. The retailers make simultaneous offer acceptance decisions.21

2. The retailers simultaneously set their downstream prices (pAi, pBi) in the two mar-

kets.22 Each retailer then orders suffi cient quantities to serve its demands and pays

20In the case of independent markets ( ∂Qs

∂p−s
= 0), Qs corresponds to Chamberlin’s (1933) DD demand

curve. See also Anderson, de Palma and Kreider (2001).
21Indifferences are broken in favor of contract acceptance.
22A retailer that rejected the supplier’s tariff offer sets both prices above some choke price level at which

its demands are zero.

9



the supplier according to the tariff T .23

Although we allow for general non-linear tariffs, it will prove useful to denote retailer

i’s variable profit given some constant marginal costs cA in market A and cB in market B

by

πi (pA1, ..., pAn, pB1, ..., pBn; cA, cB) =
∑
s=A,B

(psi − cs)Dsi (ps1, ..., psn, p−s1, ..., p−sn) .

We assume that for any vector (cA, cB) (below some choke level), the simultaneous-move

game in which each retailer i sets its prices (pAi, pBi) in order to maximize its variable profit

πi has a symmetric and stable Nash equilibrium.

In what follows, we will say that full channel coordination can be achieved if the two-

stage game (of input supply contracting in stage one followed by downstream pricing de-

cisions in stage two) has a subgame-perfect equilibrium in which all retailers charge p∗A in

market A and p∗B in market B.

3 Preliminaries

Our goal in this section is to obtain measures of where the retailers’market power in each

downstream market falls in the realm between perfect competition and monopoly. These

measures, which are developed by analyzing the downstream pricing game in isolation, will

be useful in the next section when we characterize optimal input supply tariffs. Our results

in this section may also prove to be independently useful in other applications that involve

price competition between multi-product firms.

In models of price competition with differentiated goods and only a single product per

firm, between-product diversion ratios, which capture the fraction of consumers that switch

from a product to an alternative after a price increase, are widely used to measure market

23We assume that retailers do not ration demand, which implies that they need access to suffi cient
quantities of the input after any history of prices. The latter can be guaranteed by imposing either that
tariffs permit retailers to order as many units as they wish, although possibly with lump-sum penalities
or high marginal prices for large quantities, or that retailers have access to an outside source of supply
in case their demand exceeds the maximum amount specified in the tariff. This assumption allows us to
circumvent the technical diffi culties associated with price competition under capacity constraints (Kreps and
Scheinkman 1983, Montez and Schutz 2018) and focus on the supplier’s optimal input price discrimination
instead.
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power.24 Using the analog of our notation for the case of symmetric single-product sellers,

i.e., letting Di (p1, p2, ..., pn) denote the demand of firm i as a function of the prices of the

n sellers and Q (p) the market demand function when all sellers charge p, the first-order

equilibrium condition can be written as

(p− c)
−∂Q

∂p

Q
= 1− d (1)

in this case, where d = −
∑

j 6=i
∂Dj
∂pi

/∂Di
∂pi

denotes the aggregate diversion ratio between

products (see also Weyl and Fabinger, 2013). The left-hand side of (1) is the elasticity-

adjusted Lerner index, which is equal to the price-cost margin multiplied by the semi-

elasticity of the market demand function. The right-hand side measures the firms’market

power: As 1−d rises from zero to one, market power varies between perfect competition and
monopoly.25 Products with weak differentiation face high diversion and fierce competition,

while products with strong differentiation face low diversion and weak competition.

In what follows, we first derive the analogs of the single-product firm oligopoly market

power parameter 1 − d for our more complex setting with multi-market firms and asym-
metries across markets, and then show how the relative market power parameters in the

downstream markets are linked to the aggregate cross-seller demand diversion ratios of

price changes in the two markets.

Hypothetical downstream monopolist

We begin by deriving implicit conditions for the retail prices that a hypothetical down-

stream monopolist would set. Because demands in each market are symmetric, the profit-

maximizing prices in each market will also be symmetric (i.e., pA1 = pA2 = ... = pAn = pA

and pB1 = pB2 = ... = pBn = pB). Given a constant marginal cost cA and cB for sales in

24Diversion ratios play a particularly prominent role in horizontal merger analysis– see Shapiro (1996),
Katz and Shapiro (2003), and Conlon and Mortimer (2018), among others.
251 − d is also sometimes referred to as the conduct parameter of the symmetric differentiated price-

competition model– see, for instance, Weyl and Fabinger (2013), who, following Genesove and Mullin’s
(1998) variation on Breshnahan (1989), set the elasticity-adjusted Lerner index equal to a conduct parame-
ter and then derive the expressions for the conduct parameter in a variety of different models of oligopoly
behavior, including differentiated price competition. We will use the term “market power parameter” in-
stead, so as to distinguish our approach, which measures the seller market power induced by the underlying
demand functions for a given model of oligopoly behavior, from empirical studies that seek to estimate the
type of oligopoly behavior or conduct in a particular industry.
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markets A and B, respectively, it follows that the monopolist’s first-order conditions can

be reduced to the following two conditions:

QA + (pA − cA)
∂QA

∂pA
+ (pB − cB)

∂QB

∂pA
= 0, (2)

QB + (pA − cA)
∂QA

∂pB
+ (pB − cB)

∂QB

∂pB
= 0. (3)

Solving the system of equations in (2) and (3) for the markups in the two markets yields

 pA − cA
pB − cB

 = −

 ∂QA
∂pA

∂QB
∂pA

∂QA
∂pB

∂QB
∂pB

−1  QA

QB

 , (4)

or, equivalently, for each s ∈ {A,B},

ps − cs =

Qs
−∂Qs/∂ps +Rs−s

Q−s
−∂Q−s/∂p−s

1−RABRBA

, (5)

where the cross-market diversion ratio

Rs−s (ps, p−s) ≡
∂Q−s/∂ps
−∂Qs/∂ps

∈ [0, 1)

can be thought of as the share of sales lost in market s that is captured by market −s when
ps increases.

With independent markets (RAB = RBA = 0), (5) simplifies to the standard monopoly

pricing formula, ps − cs = − Qs
∂Qs/∂ps

, whereas with interdependent markets, the monopoly

markup in market s depends also on the inverse semi-elasticity of demand in market −s,
Q−s

−∂Q−s/∂p−s . Intuitively, the monopoly markup in market s is higher when the semi-elasticity

of demand in market −s is lower, because the latter proxies for the profitability of sales in
market −s and the products sold in the two markets are substitutes.

Competitive pricing

Now consider the pricing decisions of n independent symmetric retailers. In a symmetric

equilibrium, pA1 = pA2 = ... = pAn = pA and pB1 = pB2 = ... = pBn = pB. It follows that

12



the first-order conditions, given marginal costs cA and cB, can be written as

QA + (pA − cA)
∂DAi

∂pAi
+ (pB − cB)

∂DBi

∂pAi
= 0, (6)

QB + (pA − cA)
∂DAi

∂pBi
+ (pB − cB)

∂DBi

∂pBi
= 0. (7)

Solving the system of equations in (6) and (7) for the markups in the two markets yields

 pA − cA
pB − cB

 = −

 ∂DAi
∂pAi

∂DBi
∂pAi

∂DAi
∂pBi

∂DBi
∂pBi

−1  QA

QB

 , (8)

which can be rewritten as pA − cA
pB − cB

 = −

 1
1−dA

∂QA
∂pA

1
1+dAB

∂QB
∂pA

1
1+dBA

∂QA
∂pB

1
1−dB

∂QB
∂pB

−1  QA

QB

 , (9)

where

ds (ps, p−s) ≡
∑

j 6=i
∂Dsj
∂psi

−∂Dsi
∂psi

(10)

measures the diversion of sales to the rival retailers in market s when psi changes, and

ds−s (ps, p−s) ≡
∑

j 6=i
∂D−sj
∂psi

∂D−si
∂psi

(11)

measures the diversion of sales to the rival retailers in market −s versus to the same retailer
in market−s when psi changes. One can think of the diversion ratios dA and dB as capturing
the strength of the within-market (intra-market) competitive externalities, and of dAB and

dBA as capturing the strength of the cross-market (inter-market) competitive externalities.

Writing the markups in non-matrix form, we obtain, for each s 6= −s ∈ {A,B},

ps − cs =
(1− ds) Qs

−∂Qs/∂ps + (1−dA)(1−dB)
1+ds−s

Rs−s
Q−s

−∂Q−s/∂p−s

1− (1−dA)(1−dB)
(1+dAB)(1+dBA)

RABRBA

. (12)

The markups in (12) are weakly smaller than the markups in (5), with equality if and only

13



if the within-market and the cross-market competitive externalities are zero for all s.26 The

reason is that, unlike in the case of monopoly, only the diversion of sales between markets

for the same retailer are internalized in the pricing decisions under competition.

Market power parameters

We are now in a position to assess the relative intensity of competition in the two markets.

Let ξs(ps, p−s) denote the right-hand side of (5), so that the implicit conditions for the

monopoly prices can be expressed as

ps − cs = ξs(ps, p−s). (13)

We can then define market power parameters for the two markets under competition by

rewriting (12) as

ps − cs = θs (ps, p−s) ξs(ps, p−s), (14)

where the market power parameters are

θs (ps, p−s) ≡ κ (pA, pB)
(1− ds) Qs

−∂Qs/∂ps + (1−dA)(1−dB)
1+dAB

Rs−s
Q−s

−∂Q−s/∂p−s
Qs

−∂Qs/∂ps +Rs−s
Q−s

−∂Q−s/∂p−s

, (15)

with

κ (pA, pB) ≡ 1−RABRBA

1− (1−dA)(1−dB)
(1+dAB)(1+dBA)

RABRBA

∈ (0, 1] . (16)

Our assumption that the final products are substitutes and that own-price effects dominate

cross-price effects imply that θs (ps, p−s) ∈ (0, 1]. The case θs = 1, which holds if and only

if the markets are independent (RAB = RBA = 0) and ds = 0, corresponds to monopoly

power in market s. As θs falls, the divergence between competitive pricing and monopoly

pricing rises. The limit case θs → 0 corresponds to perfect competition in market s.27

26This follows because the denominator in (12) is weakly larger than the denominator in (5) while the
weights on the semi-elasticities in the numerator in (12) are weakly smaller than the analog weights in (5).
27All else equal, θs is weakly decreasing in ds and ds−s because stronger competitive (within or cross-

market) externalities of price changes in market s put downward pressure on the prices in market s. θs is
also weakly decreasing in d−s and d−ss, all else equal, because the profit margins in market −s are weakly
decreasing in d−s and d−ss , which in turn makes raising prices in market s less attractive when some of
the demand lost in market s is diverted to the same retailer in market −s.
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The next lemma summarizes the main insights thus far:

Lemma 1 (i) The prices that maximize industry profits given a marginal cost cs in market

s satisfy, for each s 6= −s,

ps − cs = ξs(ps, p−s) ≡
Qs

−∂Qs/∂ps +Rs−s
Q−s

−∂Q−s/∂p−s
1−RABRBA

. (17)

(ii) There exist market power parameters θs (ps, p−s) ∈ (0, 1] such that the equilibrium

retail prices of competing multi-market retailers given a marginal cost cs in market s satisfy,

for each s 6= −s,
ps − cs = θs (ps, p−s) ξs(ps, p−s). (18)

With independent markets, the cross-market diversion ratios are all zero, and the market

power parameters are then simply θs = 1 − ds. With interdependent markets, however,

the expressions for the market power parameters incorporate the semi-elasticities in both

markets and the demand diversions between markets. This is because the profit impact

of a price change in one market depends on the profit margins in both markets, and the

latter can be asymmetric. The semi-elasticities of the market demand functions thus do

not cancel out of the market power parameter formulae, resulting in relatively long and

harder-to-interpret expressions than in single-product firm settings. In spite of this, as our

next result shows, the comparison of market power across the two markets boils down to a

comparison of readily interpretable aggregate cross-seller diversion ratios:

Lemma 2 Competition is locally less (more) intense in market A than in market B, i.e.,

θA (pA, pB) > (<)θB (pB, pA), if and only if DRA (pB, pA) < (>)DRB (pB, pA), where

DRs (ps, p−s) ≡

∑
j 6=i

(
∂DAj
∂psi

+
∂DBj
∂psi

)
−
(
∂DAi
∂psi

+ ∂DBi
∂psi

) .

The aggregate cross-seller diversion ratio DRs can be thought of as the share of the net

loss in retailer i’s quantity sold (taking into account that i sells a substitute product in

market −s) that goes to the rival retailers (in either market) when psi increases. As shown
in Lemma 2, the market with the higher aggregate cross-seller diversion ratio features more

intense competition as measured by the market power parameter defined in Lemma 1.
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4 Optimal input price discrimination by resale market

We now turn to the two-stage game in which the supplier can offer either a tariff of the form

T (qi), which does not discriminate by resale market, or of the form T (qAi, qBi), which does

discriminate by resale market, in stage one. Since we do not impose any other functional-

form restrictions on the tariffs, in both cases the supplier can extract all downstream vari-

able profits (by means of fixed fees, for instance) without affecting the retailers’pricing

incentives. The supplier thus obtains the entire industry profit in equilibrium, and hence

achieves its first-best outcome if it can induce the retailers to set the monopoly prices.

4.1 The channel coordination dilemma

Coordinating the decisions of multi-market retailers poses a fundamental problem for the

supplier. To see why, suppose that the supplier is restricted to offering a tariff of the form

T (qi). Suppose further that there exists a symmetric continuation equilibrium in which all

retailers set the prices (peA, p
e
B). Then, as we will now show, generically (peA, p

e
B) 6= (p∗A, p

∗
B).28

The key observation is that in the continuation equilibrium, it must be that no retailer

can gain by adjusting its retail prices so as to sell more in one market and less in the other

market without changing its total quantity sold. Formally, this means that for the prices

(peA, p
e
B) to arise in an equilibrium of the downstream pricing game, it must be that29

(peA, p
e
B) ∈ arg max

(pAi,pBi)
pAiDAi(pAi, pBi; p

e
A, p

e
B) + pBiDBi(pBi, pAi; p

e
B, p

e
A),

s.t. DAi(pAi, pBi; p
e
A, p

e
B) +DBi(pBi, pAi; p

e
B, p

e
A) = DAi(p

e
A, p

e
B; peA, p

e
B) +DBi(p

e
B, p

e
A; peB, p

e
A).

Notice that because we consider deviations in which a retailer changes its allocation of

quantity across the two markets without changing how much quantity it orders in total, no

restrictions on the functional form of the tariff T are required to make this argument.

28The same result would hold if the supplier could make buyer-specific offers of the form Ti (qi).
29In what follows, Dsi

(
psi, p−si; p

e
s, p

e
−s
)
denotes the demand of retailer i in market s when i sets the

prices (pAi, pBi) and all other retailers charge (peA, p
e
B). Moreover, De

si = Dsi

(
pesi, p

e
−si; p

e
s, p

e
−s
)
.
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The equilibrium prices (peA, p
e
B) must thus satisfy the following first-order conditions:

De
Ai + (peA − λ)

∂DAi(p
e
A, p

e
B; peA, p

e
B)

∂pAi
+ (peB − λ)

∂DBi(p
e
B, p

e
A; peB, p

e
A)

∂pAi
= 0, (19)

De
Bi + (peA − λ)

∂DAi(p
e
A, p

e
B; peA, p

e
B)

∂pBi
+ (peB − λ)

∂DBi(p
e
B, p

e
A; peB, p

e
A)

∂pBi
= 0. (20)

Given that the constraint fixes the total quantity sold across the two markets, the Lagrange

multiplier λ in the above expressions plays the role of a “shadow marginal cost” in each

market. Using Lemma 1(ii), conditions (19) and (20) can thus be expressed as

peA − λ = θA (peA, p
e
B) ξA(peA, p

e
B), (21)

peB − λ = θB (peB, p
e
A) ξB(peB, p

e
A). (22)

Full channel coordination requires that there exists a λ such that both conditions hold

at (peA, p
e
B) = (p∗A, p

∗
B). Setting (peA, p

e
B) = (p∗A, p

∗
B) and using Lemma 1(i), conditions (21)

and (22) become

p∗A − λ = θ∗A (p∗A − c) , (23)

p∗B − λ = θ∗B (p∗B − c) , (24)

where θ∗s ≡ θs
(
p∗s, p

∗
−s
)
. It follows that unless the retailers have monopoly power in both

markets (in which case λ = c), or p∗A = p∗B and θ∗A = θ∗B (in which case conditions (23)

and (24) reduce to a single condition), the supplier will be unable to achieve its first-best

outcome with a tariff of the form T (qi). The following proposition summarizes this insight:

Proposition 1 If the supplier is restricted to offering a tariff of the form T (qi), then full

channel coordination cannot be achieved unless θ∗s = 1 for all s or p∗A = p∗B and θ
∗
A = θ∗B.

No discrimination is needed to obtain full channel coordination when the markets are

symmetric or the retailers have monopoly power in both markets. In all other cases, how-

ever, (23) and (24) are conflicting because (generically) p∗A 6= p∗B if the market demand

functions (QA (·) and QB (·)) are asymmetric, and θ∗A 6= θ∗B if retailer i’s product demand

functions (DAi (·) and DBi (·)) are asymmetric across markets A and B (even if QA (·) and
QB (·) are symmetric).
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The channel coordination problem arises because each retailer allocates its total quantity

across the two markets with the goal of maximizing its own profit rather than industry

profit. Even if the supply tariff induces each retailer to order and sell a total quantity of

D∗Ai + D∗Bi, full channel coordination will thus fail because the total quantity will not be

allocated optimally across the two markets from an industry profit standpoint. Full channel

coordination therefore requires a supply tariff that distinguishes between resale in A and

B– sales in one market must be discriminated against relative to sales in the other market.

4.2 Profit-maximizing input price discrimination

One way for the supplier to achieve full channel coordination is to offer each retailer a

“dual two-part tariff” that combines a fixed fee with two different (per-unit) wholesale

prices, one for resale in market A and another for resale in market B. Our next proposition

characterizes the optimal dual wholesale prices in such a tariff:

Proposition 2 If the supplier can offer a tariff of the form T (qAi, qBi), then the game has

an equilibrium with full channel coordination in which the supplier offers the dual two-part

tariff

T (qAi, qBi) = πi (p
∗
A, ..., p

∗
A, p

∗
B, ..., p

∗
B;w∗A, w

∗
B) + w∗AqAi + w∗BqBi, (25)

where, for each s ∈ {A,B},
w∗s = θ∗sc+ (1− θ∗s) p∗s. (26)

As shown in (26), the optimal dual wholesale price for resale in market s is a weighted

average of the monopoly price in that market and the supplier’s marginal cost, where the

weight on the supplier’s marginal cost equals the retailers’market power parameter in s

evaluated at the monopoly prices.30

The polar cases of monopoly or perfect competition are easily understood. In the case

of monopoly power (θ∗s = 1) in market s, the supplier optimally sets w∗s = c. The retailers’

pricing decisions in market s have no vertical externality on the supplier when the upstream

margin is zero, which, given the absence of any horizontal externalities in the monopoly

case, implies that each retailer’s incentives are aligned with collective incentives. At the

30Positive downstream costs can be incoporated easily. If the retailers face a constant marginal cost
k > 0, then w∗s = θ∗sc+ (1− θ∗s) (p∗s − k).
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other extreme, as pricing in market s approaches perfect competition (θ∗s → 0), the retailers

pass on whatever wholesale price they receive; hence, the supplier can induce industry profit

maximization by setting its wholesale price equal to the monopoly price.

Our characterization of the optimal dual wholesale prices shows that– between the polar

cases of monopoly and perfect competition– the optimal dual wholesale price in market s

is increasing in the (local) intensity of competition in market s, for a given monopoly price

p∗s.
31 Intuitively, as retailer competition intensifies in a market, the supplier needs to raise

its wholesale price in that market in order to offset the erosion in the retailers’downstream

margins that would otherwise cause the retail prices to fall.

Characterizing the wholesale prices in this way extends the literature on vertical control

in two directions: (i) by showing that intuitions about the impact of downstream com-

petition on the optimal wholesale price in a two-part tariff, which have been obtained by

considering polar cases or specific functional forms in settings with just a single downstream

market,32 hold for general demand functions and extend to multi-markets settings; and (ii)

by explaining how the optimal dual wholesale prices in our multi-market setting depend on

the retailers’relative market power and the monopoly prices in the two markets.

It follows from equation (26) in Proposition 2 that w∗A < w∗B if and only if

(1− θ∗A) (p∗A − c) < (1− θ∗B) (p∗B − c) , (27)

which implies that if the monopoly prices in the two markets are suffi ciently close, or if the

monopoly price is higher in the locally more competitive market, then the supplier optimally

discriminates against resale in the locally more competitive market. Moreover, (27) also

shows that if the retailers’local market power is suffi ciently greater in one market than in

the other, then discrimination against resale in the locally more competitive market can be

optimal for the supplier even if the monopoly price there is lower. In the limiting case of

monopoly power in one market but less than monopoly power in the other market (e.g.,

31For an example of a demand specification for which the market power parameters can vary indepen-
dently of the monopoly prices, see Section 5.2, which considers linear demand functions derived from a
representative-consumer quadratic-utility model. Changes in the parameters measuring retailer substi-
tutability affect the market power parameters without affecting the monopoly prices in this case.
32As far as the optimal wholesale price in a two-part tariff is concerned, single-market settings with

symmetric firms correspond to the special case of independent markets of our framework.
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θ∗B < θ∗A = 1),33 the supplier optimally discriminates against resale in the more competitive

market (e.g., B) regardless of the monopoly prices. Conversely, if the local market power

parameters are suffi ciently close, or if the market that has the higher monopoly price is

locally more competitive, then the supplier optimally discriminates against resale in the

market with the higher monopoly price.34

Before turning to the welfare effects of discrimination, we offer two additional remarks.

Remark 1: Alternative tariffs

Many tariffs of the form T (qAi, qBi) allow the supplier to achieve its first-best outcome.

For example, suppose that the optimal dual wholesale price is higher in market B than

in market A. Then, the supplier can also achieve its first-best outcome by combining a

(single) two-part tariff with wholesale price

w =
Q∗A

Q∗A +Q∗B
w∗A +

Q∗B
Q∗A +Q∗B

w∗B

with an upper limit of Q∗B
Q∗A+Q

∗
B
on the proportion of each retailer’s sales that can be sold

in market B (see Appendix B for a formal proof). That is, instead of using two wholesale

prices, the supplier can use a relative quantity restriction to control each retailer’s share of

sales in the market that it wants to discriminate against. Alternatively, the supplier can

achieve its first-best outcome by imposing a restriction on the absolute quantity sold in one

of the markets. For example, if w∗A < w∗B, the supplier can obtain its first-best outcome

by combining a two-part tariff with wholesale price w∗A with a penalty for sales above D
∗
Bi

in market B, or by combining a two-part tariff with wholesale price w∗B with a penalty for

33The case of θ∗B < θ∗A = 1 holds if the markets are independent, dA = 0, and dB > 0.
34Is is worth noting that the market with the higher monopoly price need not be the market with the

lower elasticity of market demand, because a multi-market monopolist internalizes demand diversion to its
products in the other market when setting prices. Using the formulae for the monopoly margins in (5), we
obtain that p∗A < p∗B if and only if

−∂Q∗B/∂pB
Q∗B

(1−RBA) <
−∂Q∗A/∂pA

Q∗A
(1−RAB) . (28)

In the presence of demand interdependencies between the two markets (Rs−s 6= 0), the market demand
elasticities (28) are weighted by (what can be thought of as) the share of demand that would be lost
altogether (i.e., that would not be captured in market −s) if the prices in market s increase slightly.
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sales below D∗Ai in market A.
35

Remark 2: Single-market retailers

While our analysis focuses on multi-market retailers, the characterization of the optimal

wholesale prices in Proposition 2 is also relevant for settings with single-market retailers.

To see this, suppose that there are n symmetric retailers in each of the two downstream

markets, making for a total of n× 2 retailers. We first derive the market power parameters

for this setting. Given marginal costs cA and cB in markets A and B, the first-order

conditions that determine the competitive prices in the two downstream markets can be

written as

QA + (pA − cA)
∂DAi

∂pAi
= 0, (29)

QB + (pB − cB)
∂DBi

∂pBi
= 0. (30)

Solving for the competitive markups in the two markets yields

ps − cs = (1− ds)
Qs

−∂Qs/∂ps
(31)

for each s ∈ {A,B}. The markups of a hypothetical downstream monopolist selling all

n× 2 final products remain unchanged, as given in (5). The market power parameters thus

become, for each s 6= −s ∈ {A,B},

θ̃s (ps, p−s) = (1−RABRBA)
(1− ds) Qs

−∂Qs/∂ps
Qs

−∂Qs/∂ps +Rs−s
Q−s

−∂Q−s/∂p−s

. (32)

With independent markets (RAB = RBA = 0), the market power parameters are θ̃s =

1−ds, as in the case of multi-market retailers. With interdependent markets, θ̃s (ps, p−s) <

θs (ps, p−s), because single-market retailers do not take into account any of the competitive

externalities on substitute products in the other market, whereas multi-market retailers

internalize the effects on their own products in the other market. Comparing across markets,

35A potential drawback of restrictions on absolute quantities, as opposed to relative quantities or dual
wholesale pricing, is the retailers’loss of flexibility in responding to unexpected fluctuations in demand.
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we obtain a result analogous to that in Lemma 2: θ̃A (pA, pB) > θ̃B (pA, pB) if and only if

∑
j 6=i

∂DAj
∂pAi

+
∑n

j=1
∂DBj
∂pAi

−∂DAi
∂pAi

<

∑
j 6=i

∂DBj
∂pBi

+
∑n

j=1
∂DAj
∂pBi

−∂DBi
∂pBi

.

The aggregate diversion ratio is now the sum of the diversion ratios to the (n× 2) − 1

competing retailers, as each retailer only considers the profits from its own product.

Given the single-market market power parameters θ̃A and θ̃B, the supplier can achieve its

first-best outcome by means of discriminatory two-part tariffs, with the retailers in market

s paying a fixed fee Fs = (p∗s − w∗s)Qs

(
p∗s, p

∗
−s
)
and a wholesale price

w∗s = θ̃
∗
sc+

(
1− θ̃

∗
s

)
p∗s,

where θ̃
∗
s = θ̃s

(
p∗s, p

∗
−s
)
. Hence, as in the case of multi-market retailers, the optimal whole-

sale price in market s is a weighted average of the supplier’s marginal cost and the monopoly

price in market s, where the weight on the marginal cost equals the (single-market-firm)

market power parameter in s evaluated at the monopoly prices.

5 Welfare analysis

We now turn to the effects on social welfare of allowing tariffs that discriminate between

resale in A and B. To this end, we will compare welfare when the supplier offers the optimal

dual two-part tariff to welfare when the supplier is restricted to offering a standard two-part

tariff of the form T (qi) = F +wqi to the retailers. Restricting attention to two-part tariffs

is without loss of generality in both cases, as shown in Appendix B.

The first part of this section will focus on the case of independent markets. This enables

us to derive results that hold for general functional forms, and it facilitates comparison to

previous results on monopolistic third-degree price discrimination in final-goods markets.

Later, in Section 5.2, we will show that key qualitative insights carry over to the case of

interdependent markets.
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5.1 Independent markets

5.1.1 Model and additional notation

With independent markets, the market demand function Qs (ps, p−s) is independent of

p−s. Hence, to simplify the notation, we will let Qs (ps) = Qs (ps, p−s). The curvature of

the inverse market demand function in market s (as a function of price) is then given by

σs (p) ≡ Qs (p) Q′′s (p)

(Q′s(p))
2 . Note that Qs (ps) is (locally) log-concave if and only if σs (ps) < 1.

In the downstream pricing game, the equilibrium retail price in market s given the

wholesale price ws for resale in s is implicitly defined by the first-order condition ps−ws =

θs (ps)
−Qs(ps)
Q′s(ps)

where θs = 1− ds (see Lemma 1(ii)), and will be denoted by pes (ws). By the

definition of w∗s , p
e
s (w∗s) = p∗s. The pass-through rates, which will play crucial roles in the

analysis, are given by:36

ρs (ps) ≡
∂pes
∂ws

=
1

1 + θs(ps) (1− σs(ps))− ∂θs(ps)
∂ps

Qs(ps)
−Q′s(ps)

> 0.

The pass-through rate ρs depends on the retailers’market power and the curvature of the

market demand function in market s. In the case of monopoly power (θs = 1), ρs (ps) =

1
2−σs(ps) , and in the limiting case of perfect competition, ρs = 1. The pass-through rate

under monopoly is less than the pass-through rate under perfect competition if and only if

Qs (ps) is locally log-concave.

The industry profit generated in market s given a common price ps is denoted by

Πs (ps) = n (ps − c)Qs (ps). Our assumptions of symmetry between retailers and nega-

tive definiteness of the Hessian matrix of Π(pA1, ..., pAn, pB1, ..., pBn) imply that Π′′s < 0.

Profits as a function of wholesale rather than retail prices will be denoted by

πs (ws) = Πs (pes (ws)) ,

36Applying the implicit function theorem to the first-order condition ps − ws = θs (ps)
−Qs(ps)
Q′s(ps) yields

the expression for the pass-through rate. Positivity of the pass-through rate is implied by the stability
condition for the downstream pricing game (see also Anderson, de Palma and Kreider 2001).
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with first and second derivatives

π′s (ws) = ρs (pes (ws)) Π′s (pes (ws)) ,

π′′s (ws) = ρs (pes (ws)) [ρs (pes (ws)) Π′′s (pes (ws)) + ρ′s (pes (ws)) Π′s (pes (ws))] .

We assume that π′′s (ws) < 0, which ensures that the second-order conditions hold for the

supplier’s maximization problems. Given that Π′′s < 0, a suffi cient (but not necessary)

condition for π′′s < 0 is a constant pass-through rate in market s.

When the supplier can discriminate between resale in A versus B, it sets the optimal

dual wholesale prices (w∗A, w
∗
B) so that π′s (w∗s) = 0 for each s. For the remainder of the

analysis, we focus on cases in which

w∗A < w∗B.

As mentioned earlier, a suffi cient condition for w∗A < w∗B is monopoly power in A (θ
∗
A = 1)

and some competition in B (θ∗B < 1).

When the supplier is constrained to setting a uniform wholesale price, it sets the whole-

sale price w such that37

π′A (w) + π′B (w) = ρAΠ′A (peA (w)) + ρBΠ′B (peB (w)) = 0.

Concavity of each profit function and the first-order condition imply that w ∈ (w∗A, w
∗
B).

5.1.2 Analysis

Adopting a technique commonly used in the context of third-degree price discrimination in

final-goods markets,38 we assume that the supplier chooses its wholesale prices subject to the

constraint that wB−wA ≤ r where r ∈ [0, w∗B − w∗A] is the degree of discrimination allowed.

The supplier’s objective function is πA (wA) + πB (wA + r) and the first-order condition is

π′A (wA) + π′B (wA + r) = 0 when the constraint binds. When r = 0, the supplier sets the

non-discriminatory wholesale price w. As r rises between 0 and r∗ ≡ w∗B−w∗A, the wholesale

37We assume that both markets are served at the supplier’s optimal uniform wholesale price.
38See Schmalensee (1981), Holmes (1989), and Aguirre et al. (2010), among others.
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price in market A falls and the wholesale price in market B rises:

w′A (r) =
−π′′B

π′′A + π′′B
< 0; w′B (r) =

π′′A
π′′A + π′′B

> 0, (33)

which implies that the retail price falls in market A falls and rises in market B:

dpeA
dr

= ρAw
′
A (r) < 0;

dpeB
dr

= ρBw
′
B (r) > 0.

The marginal change in social welfare as more discrimination is allowed is

W ′ (r) = (peA (wA (r))− c)Q′A (peA (wA (r))) ρA (wA (r))w′A (r) (34)

+ (peB (wB (r))− c)Q′B (peB (wB (r))) ρB (wB (r))w′B (r) .

Denoting the marginal effect of discrimination on total output by Q′ (r) = Q′AρAw
′
A (r) +

Q′BρBw
′
B (r), (34) can be rewritten as

W ′ (r) = (peA − peB)Q′A
dpeA
dr︸ ︷︷ ︸

allocation effect

+ (peB − c)Q′ (r)︸ ︷︷ ︸
(value of) output effect

(35)

The first term represents the marginal allocation effect, and the second term the marginal

output effect. Integrating (35) over r ∈ [0, r∗] gives the total welfare effect of input price

discrimination by resale market. In what follows, we will first analyze the allocation and

the output effect separately and then turn to the total welfare impact of discrimination.

Allocation effect Since the retail price in market A falls with r and the retail price in

market B rises with r, discrimination has a positive marginal allocation effect if and only

if peA (wA (r)) > peB (wB (r)), in which case a marginal increase in r brings the retail prices

closer together. It follows that if p∗A ≥ p∗B, then the marginal allocation effect is positive for

all r and hence the total allocation effect, obtained by integrating the first term in (35) over

r ∈ [0, r∗], is positive. If peA (w) > peB (w) but p∗A < p∗B, then the marginal allocation effect

is first positive and then negative as r rises, making the sign of the total allocation effect

ambiguous. Finally, if peA (w) ≤ peB (w), then peA (wA (r)) ≤ peB (wB (r)) for all r ∈ [0, r∗];

hence, the marginal allocation effect is negative throughout and the total allocation effect
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is negative. The next lemma summarizes these observations:

Lemma 3 Suppose w∗A < w∗B. (i) Input price discrimination by resale market has a positive

allocation effect if p∗A ≥ p∗B. (ii) Input price discrimination by resale market has a negative

allocation effect if peA(w) ≤ peB(w). (iii) Input price discrimination by resale market can

have a positive or a negative allocation effect if peA(w) > peB(w) and p∗A < p∗B.

The relative market power parameters in the two markets play important roles both

for the ranking of the optimal dual wholesale prices and for the ranking of the equilibrium

retail prices when the supplier cannot discriminate. If the retailers have (close enough to)

monopoly power in market A but there is (close enough to) perfect competition in market

B, then w∗A < w∗B and p
e
A(w) > peB(w); hence, either case (i) or case (iii) of Lemma 3

applies: either the marginal allocation effect will be positive throughout, or the marginal

allocation effect will be first positive and then negative as more discrimination is allowed.

Output effect The method we use to analyze the output effect combines the “marginal

effects”technique used thus far with the “exogenous quantity”approach proposed by Weyl

and Fabinger (2013). Later we use the same method to analyze the welfare effect directly.

For each degree of discrimination allowed and associated retail prices, we determine the

amounts of exogenous quantity in each market that would make the supplier want to induce

the same retail prices if it could discriminate freely. The total output effect is then found

by aggregating the marginal effects of changes in the exogenous quantities on the total

quantity sold in each market. This method will allow us to derive suffi cient conditions for

a positive or negative output effect that involve straightforward comparisons of the inverse

market demand curvatures and the pass-through rates in the two markets.39

To begin, note that for given any r ∈ [0, r∗], the supplier’s optimal wholesale prices

wA (r) and wB (r) = wA (r) + r satisfy

ρA (peA (wA (r))) Π′A (peA (wA (r))) + ρB (peB (wB (r))) Π′B (peB (wB (r))) = 0, (36)

39In contrast, if in our setting we were to use the main method used by Aguirre et al. (2010), which
would involve substituting the expressions for the marginal price changes into Q′ (r) and then establishing
conditions under which the marginal effect is either positive or negative throughout, we would obtain less
general conditions that also depend on the slopes of the pass-through rates.
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which is equivalent, for each s 6= −s ∈ {A,B}, to

(pes (ws (r))− c)Q′s (pes (ws (r)))+Qs (pes (ws (r)))+
ρ−s

(
pe−s (w−s (r))

)
ρs (pes (ws (r)))

Π′−s
(
pe−s (w−s (r))

)
n

= 0.

(37)

Now suppose that the supplier can discriminate freely but that an exogenous per-retailer

quantity q̃s enters market s. The profit that the supplier can extract in market s becomes

n (ps − c) (Qs − q̃s), where Qs denotes the total quantity sold in market s– a positive ex-

ogenous quantity can be thought of as competition in the form of a capacity-constrained

competitive fringe that reduces the demand of each retailer by q̃s, while a negative exoge-

nous quantity corresponds to additional per-retailer demand of −q̃s at any price ps. Facing
an exogenous per-retailer quantity q̃s but no limits on discrimination, the supplier optimally

chooses its wholesale price in market s to induce the retail price ps (q̃s) that solves

(ps (q̃s)− c)Q′s (ps (q̃s)) +Qs (ps (q̃s))− q̃s = 0. (38)

Comparison of (37) and (38) shows that

pes (ws (r)) = ps (q̃s (r)) ,

where

q̃s (r) ≡ −
ρ−s

(
pe−s (w−s (r))

)
ρs (pes (ws (r)))

Π′−s
(
pe−s (w−s (r))

)
n

=
Π′s (pes (ws (r)))

n
. (39)

The supplier’s choice of ws (r) thus induces the same retail price in market s that the

supplier would induce if there were no limits on discrimination but an exogenous per-retailer

quantity of q̃s (r) was present in market s.

Full discrimination corresponds to zero exogenous quantity in each market, i.e., q̃s (r∗) =

0 for all s. When the scope for discrimination is limited (i.e., r < r∗), then

q̃A (r) < 0 < q̃B (r) . (40)

A limit on discrimination is thus equivalent to adding exogenous quantity to market B,

which pushes price down in that market, while removing exogenous quantity from market

A, which pushes price up in that market.
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Applying the implicit function theorem to (38) yields the marginal effect of exogenous

quantity on the retail price in a market:

dps
dq̃s

=
1

2Q′s + (ps (q̃s)− c)Q′′s
=

1

2Q′s − (Qs − q̃s) Q′′s
Q′s

< 0. (41)

The total effect of discrimination on the output sold in market s is equal to40

∫ q̃s(r∗)

q̃s(0)

Q′s
dps
dq̃s

dq̃s =

∫ q̃s(r∗)

q̃s(0)

1

2− Qs(ps(q̃s))−q̃s
Qs(ps(q̃s))

σs (ps (q̃s))
dq̃s. (42)

Adding up the output effects in the two markets after substituting for the limits of the

exogenous quantities, and noting that Π′B (peB (w)) > 0, yields the following expression for

the effect of discrimination on the total output sold in the two markets:

∫ r∗

0

Q′ (r) dr =

0∫
−
ρB(peB(w))
ρA(peA(w))

Π′
B(peB(w))

n

1

2− QA(pA(q̃A))−q̃A
QA(pA(q̃A))

σA (pA (q̃A))
dq̃A (43)

−

Π′B(p
e
B(w))
n∫
0

1

2− QB(pB(q̃B))−q̃B
QB(pB(q̃B))

σB (pB (q̃B))
dq̃B.

Our next proposition follows from the fact that (43) is positive if the following two conditions

hold: (i) ρB (peB (w)) ≥ ρA (peA (w)), so that discrimination corresponds to a larger absolute

change in exogenous quantity in market A than in market B; and (ii) σA ≥ σB ≥ 0

throughout the relevant range of prices, so that the integrand in the first term of (43)

exceeds that in the second term for all q̃A ∈ [q̃A (0) , 0] and q̃B ∈ [0, q̃B (0)], meaning that a

marginal change in exogenous quantity has a greater impact on the quantity sold in market

A than in market B throughout the relevant range. Conversely, if the inequalities in (i)

and (ii) are reversed, the total output effect is negative.

40In their paper, Weyl and Fabinger (2013) state that the marginal effect of exogenous quantity on the
total output sold in a market is equal to the monopoly pass-through rate, i.e., that Q′s

dps
dq̃s

= 1
2−σs . However,

as (42) shows, the expression in their paper holds only for marginal changes starting at zero, that is, for
q̃s = 0. In ongoing work, we study the implications of this insight for applications of pass-through analysis
discussed in Weyl and Fabinger (2013).
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Proposition 3 Suppose w∗A < w∗B.

(a) Output increases with input price discrimination by resale market if (i) the inverse

market demands are convex and more so in market A (σA ≥ σB ≥ 0 throughout the

relevant range of prices), and (ii) the pass-through rate is higher in market B than in

market A (ρB (peB (w)) ≥ ρA (peA (w))).

(b) Output decreases with input price discrimination by resale market if (i) the inverse

market demands are concave and more so in market A (0 ≥ σB ≥ σA throughout the

relevant range of prices), and (ii) the pass-through rate is lower in market B than in

market A (ρB (peB (w)) ≤ ρA (peA (w))).

Proposition 3 encompasses previous results in the literature on the output effect of

price discrimination in final-goods markets. In the limiting case of perfect competition

in each market, the pass-through rates are ρA = ρB = 1, and input price discrimination

by resale market is equivalent to monopolistic third-degree price discrimination where A

is the ‘weak’market featuring a monopoly price p∗A = w∗A and B the ‘strong’market

featuring a monopoly price p∗B = w∗B > p∗A. By Proposition 3, output thus increases with

discrimination if σA ≥ σB ≥ 0 and falls with discrimination if 0 ≥ σB ≥ σA, which

replicates results by Aguirre et al. (2010, Proposition 4). Intuitively, when price falls in

a market with a relatively convex inverse demand function, it leads to a large increase

in output in that market, whereas when price rises in a market with a relatively concave

inverse demand function, it leads to small decrease in output in that market. The case of

linear demand functions in both markets lies at the boundary of cases (a) and (b), which

confirms Pigou’s (1920) famous insight that the output effect of monopolistic third-degree

price discrimination is zero when the demand functions are linear.

When the competition between retailers is imperfect in one or both markets, however,

the output effect of input price discrimination by resale market depends not just on the

inverse market demand curvatures, but also on the comparison of the pass-through rates

in the two markets. The latter, in turn, depend on the retailers’market power (in addition

to the demand curvatures). In the case of linear market demand functions in each market,

Proposition 3 implies that the output effect is positive if and only if ρB > ρA, which, in

turn, holds if and only if competition between retailers is less intense in market A than
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in market B (θB < θA). Thus, discrimination against resale in the more competitive

downstream increases the total output sold when the market demand functions are linear.

More generally, if 1 > σA ≥ σB ≥ 0, part (a) of Proposition 3 implies that the output effect

is positive when there is (close enough to) monopoly power in market A and (close enough

to) perfect competition in market B.

The intuition for why the retailers’relative market power in the two markets matters

for the output effect is as follows. Suppose that the retailers’market power rises in market

A, without any change in the market demand functions. The direct effect of greater retailer

market power in A is a higher retail price, and thus less output sold, in market A for any

given wholesale price wA. If the supplier can discriminate freely, however, it will adjust its

wholesale price in market A downwards to fully compensate for the rise in market power in

A– hence, total quantity sold will be unaffected. If there are limits to the supplier’s ability

to discriminate, on the other hand, adjustments in wA will necessarily have repercussions in

market B, which implies that the change in market power in market A will affect quantities.

And with log-concave market demand functions, greater market power in Amakes adjusting

the wholesale price downwards relatively less attractive (for a given pA) because it leads to

a lower pass-through rate from wholesale to retail price in market A.41 The direct effect

dominates in these cases and total output in the non-discriminatory regime falls. By the

same reasoning, given log-concave market demand functions, more intense competition in B

implies a higher pass-through rate in B, which (for a given pB) makes upward adjustments

in the non-discriminatory wholesale price more attractive for the supplier.

Total welfare effect So far, we have analyzed the total welfare effect indirectly by estab-

lishing conditions under which the allocation and the output effect are positive or negative.

If both effects can be signed as positive (negative), welfare rises (falls). We now use the

same technique as in the analysis of the output effect to analyze the welfare effect directly.

Our analysis makes use of the following assumption, which was introduced by Aguirre

et al. (2010) in the context of monopolistic third-degree price discrimination:

41In fact, it is straightforward to construct numerical examples in which the supplier optimally raises
the non-discriminatory wholesale price when market power in A rises, which means that output in both
market falls as the supplier adjusts its optimal non-discriminatory wholesale price to account for the greater
market power in A.
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Increasing ratio condition: zs (ps) ≡ (ps−c)Q′s
2Q′s+(ps−c)Q′′s

is increasing in ps in each market s.

As discussed by Aguirre et al. (2010), the increasing ratio condition (henceforth IRC)

is met by a large class of demand functions (in our setting, market demand functions).

It holds if the inverse market demand functions have constant positive curvature, which

includes linear, exponential, and constant-elasticity functions. It also holds if the direct

market demand functions have constant curvature (of either sign), or if the market demand

functions are derived from the normal, the logistic, or the lognormal distribution.

Noting that, by (41),

zs (ps (q̃s)) = (ps (q̃s)− c)Q′s (ps (q̃s))
dps
dq̃s

(ps (q̃s)) ,

we can use the exogenous quantity method to write the total welfare effect as

∫ r∗

0

W ′ (r) dr =

0∫
−
ρB(peB(w))
ρA(peA(w))

Π′
B(peB(w))

n

zA (pA (q̃A)) dq̃A −

Π′B(p
e
B(w))
n∫
0

zB (pB (q̃B)) dq̃B (44)

Since ps is decreasing in q̃s and zs is increasing in ps, zA (pA (q̃A)) ≥ zA (pA (0)) = zA (p∗A)

and zB (pB (q̃B)) ≤ zB (pB (0)) = zB (p∗B) for all q̃A ≤ 0 ≤ q̃B, which implies that

∫ r∗

0

W ′ (r) dr ≥
(
ρB (peB (w))

ρA (peA (w))
zA (p∗A)− zB (p∗B)

)
Π′B (peB (w))

n
. (45)

The right-hand-side of (45) has the same sign as

zA (p∗A)

ρA (peA (w))
− zB (p∗B)

ρB (peB (w))
=

p∗A − c
ρA (peA (w)) (2− σA (p∗A))

− p∗B − c
ρB (peB (w)) (2− σB (p∗B))

, (46)

where the equality follows from (41) and q̃s (r∗) = 0. Our main result on the total welfare

effect of input price discrimination follows from this analysis:

Proposition 4 Suppose w∗A < w∗B. Given IRC, welfare rises with input price discrimina-

tion by resale market if

p∗A − c
ρA (peA (w)) (2− σA (p∗A))

≥ p∗B − c
ρB (peB (w)) (2− σB (p∗B))

. (47)
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Condition (47) holds for a larger set of monopoly prices and pass-through rates if inverse

market demand is more convex in the market where price falls than in the market where

price rises (σA (p∗A) > σB (p∗B)), which is consistent with insights from the literature on

monopolistic third-degree price discrimination in final-goods markets.

A first fundamental difference to discrimination in final-goods markets, however, is that

the market in which price rises when input price discrimination by resale market is allowed

need not be the market with the higher monopoly price. For instance, it can be that

w∗A < w∗B although p
∗
A ≥ p∗B, if competition is suffi ciently more intense in market B than

in market A. It follows that (47) can hold even if inverse market demand in the market

where price falls is less convex than in the market where price rises (σA (p∗A) ≤ σB (p∗B)).42

Input price discrimination by resale market has a positive allocation effect in this case (see

Lemma 3(i)), which implies that total welfare can rise with discrimination even if total

output falls.

The second fundamental difference to monopolistic third-degree price discrimination in

final-goods markets is that the pass-through rates play important roles in our setting. Even

when p∗A < p∗B and σA (p∗A) ≤ σB (p∗B), so that the allocation effect is potentially negative

and inverse market demand is less convex in the market where price falls, condition (47) still

holds if the pass-through rate in the market where prices rises is suffi ciently large relative

to the pass-through rate in the market where price falls.

The pass-through rates, in turn, depend on the retailers’market power and on the inverse

market demand curvatures in the two market. To fix ideas, suppose that the market power

parameters and inverse market demand curvatures are constant.43 Condition (47) can then

be rewritten as

1 + θA (1− σA)

2− σA
(p∗A − c) ≥

1 + θB (1− σB)

2− σB
(p∗B − c) , (49)

42In comparison, the analog to (47) in Aguirre et al. (2010, Proposition 2) is the condition

p∗A − c
2− σA (p∗A)

≥ p∗B − c
2− σB (p∗B)

, (48)

which ensures monopolistic third-degree price discrimination in the final-goods market raises welfare when
p∗A < p∗B and IRC holds. Because p∗A < p∗B , (48) can only be satisfied if σA (p∗A) > σB (p∗B).
43Many common functional forms in industrial organization, including the linear, exponential, and

constant-elasticity forms in Bulow and Pfleiderer (1983)’s seminal paper about pass-through in monopoly,
satisfy the constant curvature assumption.
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which depends on the market power parameters, the inverse market demand curvatures,

and the monopoly margins in the two markets. If the market demand functions are log-

concave (σs < 1 in each market s), more intense competition in a market is associated

with a higher pass-through rate. Because of this, the left-hand side of (49) is higher for

less intense competition in market A (larger θA) while the right-hand side of (49) is lower

for more intense competition in market B (smaller θB). All else equal, given log-concave

market demand functions, the suffi cient condition for a positive welfare effect is thus more

likely hold for more intense competition in the market where price rises (market B) and

less intense competition in the market where price falls (market A).

5.2 Interdependent markets

With interdependent markets, we denote the equilibrium retail prices given the wholesale

prices (wA, wB) by peA (wA, wB) and peB (wA, wB). The pass-through rate from the wholesale

price wt (t = A,B) on the equilibrium retail price in market s is denoted by ρts:

ρAA =
∂peA
∂wA

, ρBA =
∂peA
∂wB

, ρAB =
∂peB
∂wA

, ρBB =
∂peB
∂wB

.

Total industry profits as a function of the wholesale prices are denoted by

πw (wA, wB) = Π (peA (wA, wB) , ..., peA (wA, wB) , peB (wA, wB) , ..., peB (wA, wB)) .

Subscripts will be used to denote derivatives, e.g., πwA = ∂π
∂wA

and πwAB = ∂2π
∂wA∂wB

.

In what follows, continue to assume that w∗A < w∗B. Adopting the same method of

analyzing marginal effects as in the case of independent markets, we assume that the sup-

plier chooses its wholesale prices subject to the constraint that wB − wA ≤ r where r ∈
[0, w∗B − w∗A] is the degree of discrimination allowed. The objective function is πw (wA, wA + r)

and the first-order condition is πwA (wA, wA + r) + πwB (wA, wA + r) = 0 when the constraint

is binding. We assume that the second-order condition, πwAA+2πwAB+πwBB < 0, is satisfied.44

44The second-order condition is satisfied in the linear-demand case.
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For r ∈ (0, r∗),

w′A (r) = − πwAB + πwBB
πwAA + 2πwAB + πwBB

, w′B (r) =
πwAA + πwAB

πwAA + 2πwAB + πwBB
.

The marginal effects on the retail prices follow from the marginal effects on the wholesale

prices and the pass-through rates:

dpeA
dr

= ρAAw
′
A (r) + ρABw

′
B (r) ,

dpeB
dr

= ρBAw
′
A (r) + ρBBw

′
B (r) .

The marginal change in social welfare as more wholesale price discrimination is allowed

is

W ′ (r) = (peA (wA (r) , wB (r))− c)Q′A (r) + (peB (wA (r) , wB (r))− c)Q′B (r) ,

where Q′s (r) is the marginal effect on total output in market s ∈ {A,B}. Denoting the
marginal effect on total output by Q′ (r) = Q′A (r) + Q′B (r), the marginal effect on social

welfare can again be decomposed into two effects, an allocation and an output effect:

W ′ (r) = (peA − peB)Q′A (r)︸ ︷︷ ︸
allocation effect

+ (peB − c)Q′ (r)︸ ︷︷ ︸
(value of) output effect

The sign of the first term is determined by the change in output in market A and the

relative retail prices. If πwAB + πwBB < 0 and πwAA + πwAB < 0, so that dpeA
dr

< 0 <
dpeB
dr

for r ∈ (0, r∗), then Q′A (r) > 0.45 As in the case of independent markets, the marginal

consumption allocation effect is then positive if and only if peA > peB, and the insights from

Lemma 3 about the sign of the allocation effect apply.

Further insights into the signs of the output and welfare effects can be gained by as-

suming linear demands and symmetric cross-market effects:

Proposition 5 Suppose w∗A < w∗B and that the demand functions are linear with symmetric

45Given w∗A < w∗B , the wholesale price in market A decreases and that in market B increases as r rises
if and only if πwAB + πwBB < 0 and πwAA + πwAB < 0. If the markets are asymmetric and πwAB > 0, then one
of these conditions may be violated, in which case either both wholesale prices increase or both wholesale
prices decrease. (See Layson 1998 for a related discussion of the direction of price changes in the context
of third-degree price discrimination in final-goods markets with interdependent markets.) Our discussion
focuses on cases in which w′A (r) < 0 < w′B (r) for r ∈ (0, r∗).
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cross-market effects (∂QA
∂pB

= ∂QB
∂pA
).

(i) Input price discrimination by resale market raises total output if and only if

−
(
ρBA − ρAA

)
< ρBB − ρAB. (50)

(ii) Input price discrimination by resale market raises welfare if

p∗A − c
ρAA + ρAB

>
p∗B − c
ρBB + ρBA

. (51)

Condition (50) can be interpreted as requiring that an increase in wB has a greater

positive impact on peB − peA than a decrease in wA of the same magnitude. Condition (51)
generalizes the suffi cient condition for a welfare increase in the case of independent markets

and linear demands, p
∗
A−c
ρA

>
p∗B−c
ρB

(see Proposition 4), to the case of interdependent markets

where each wholesale price affects the retail prices in both markets.

Quadratic-utility linear-demand example To illustrate how asymmetries in the in-

tensity of competition between the two markets affect the pass-through rates and the welfare

effects of input price discrimination by resale market in the case of interdependent markets,

suppose that there are two retailers and that the representative consumer has the following

quadratic-utility function:

U (qA1, qA2, qB1, qB2) = αA (qA1 + qA2)−
βA
2

(
q2A1 + q2A2

)
− γAqA1qA2

+αB (qB1 + qB2)−
βB
2

(
q2B1 + q2B2

)
− γBqB1qB2

−γC (qA1qB1 + qA2qB2)− γD (qA1qB2 + qA2qB1) .

The parameter γs measures the degree of intra-market inter-retailer substitutability in

market s, γC measures the degree of inter-market intra-retailer substitutability, and γD

measures the degree of inter-market inter-retailer substitutability. We assume that βA >

γA > γC , βB > γB > γC , γC ≥ γD ≥ 0, and (βA − γA) (βB − γB) > (γC − γD)2. These

assumptions are suffi cient to ensure that the Hessian of the utility functions is (strictly)

negative definite. The special case of independent markets corresponds to γC = γD = 0.
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Maximizing the utility function subject to a budget constraint yields the following linear

inverse demand functions:46

Psi (qsi, qs−i, q−si, q−s−i) =
∂U

∂qsi
= αs − βsqsi − γsqs−i − γCq−si − γDq−s−i.

The monopoly prices depend on the intercepts of the inverse demand functions, but not on

the parameters that measures inter- and intra-retailer substitutability:

p∗s =
αs + c

2
. (52)

To isolate the role played by asymmetries in intra-market inter-retailer substitutability

between the two markets, focus on cases in which

γB > γA,

but the markets are symmetric otherwise: αA = αB = α and βA = βB = β. We then have

that p∗A = p∗B and

θA =
β + γC − (γA + γD)

β + γC
> θB =

β + γC − (γB + γD)

β + γC
,

which together imply that

w∗A < w∗B.

Moreover, discrimination leads to a lower pA and a higher pB, as is easy to check. Together,

these observations imply that input price discrimination that is motivated by asymmetries

in the intra-market substitution parameters has a positive allocation effect.

46Direct demands in the region where all four demands are positive are given by

Dsi = as − bspsi + csps−i + hp−si + gp−s−i,

where as =
αs(β−s+γ−s)+α−s(γC+γD)

∆+
, bs = 1

2

(
β−s−γ−s

∆−
+

β−s+γ−s
∆+

)
, cs = 1

2

(
β−s−γ−s

∆−
− β−s+γ−s

∆+

)
, h =

1
2

(
γC−γD

∆−
+ γC+γD

∆+

)
, g = 1

2

(
−γC−γD∆−

+ γC+γD
∆+

)
, ∆− = (βA − γA) (βB − γB) − (γC − γD)

2, and ∆+ =

(βA + γA) (βB + γB) − (γC + γD)
2. Our parameter assumptions imply that bs > cs > 0 and h > 0.

Moreover, there exists some γ̂ ∈ (0, γC) such that g > 0 if and only if γD > γ̂.
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Figure 1: Output, welfare and consumer surplus effects of dual pricing (αB = 2, γA =
0.4, γC = 0.2, γD = 0.18, c = 0)

To evaluate the output effect, we compute the pass-through rates:

ρss =
β
(
2β − γ−s

)
− γC (2γC − γD)

(2β − γA) (2β − γB)− (2γC − γD)2
, (53)

ρst =
γsγC − βγD

(2β − γA) (2β − γB)− (2γC − γD)2
. (54)

It is easy to check that γB > γA implies ρ
B
B+ρBA > ρAA+ρAB. By Proposition 5(i), input price

discrimination by resale market motivated by asymmetries in intra-market substitutability

therefore has a positive output effect. Given that the allocation effect is positive as well,

discrimination thus raises total welfare. The next proposition summarizes these insights:

Proposition 6 In the quadratic-utility linear-demand setting, input price discrimination by

resale market that is motivated by asymmetries in intra-market substitutability has positive

allocation and output effects and thus raises total welfare.

Figure 1 provides a graphical illustration of the output effect, total welfare effect, and

consumer surplus effect of discrimination in our linear-demand specification. Market B
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features greater retailer substitutability than market A if and only if γB > γA = 0.4. The

parameter αA captures the “size” of market A, which affects the monopoly retail price:

p∗A > p∗B if and only if αA > αB = 2. The region of interest lies above the black area

(otherwise w∗A ≥ w∗B). In the dark-shaded region in the north-east corner, discrimination

has positive effects on output, welfare, and consumer surplus. In the medium-shaded region,

discrimination raises output and total welfare, but decreases consumer surplus. In the

light-shaded region, the output effect is positive, but discrimination lowers total welfare

and consumer surplus. In the unshaded region, all three effects are negative.

When the markets differ only in the intra-market inter-retailer substitutability, i.e., for

αA = αB = 2, the output effect and the welfare effect are both positive, illustrating the

insight of Proposition 6. Discrimination also has a positive effect on consumer surplus

in this case. For αA > αB = 2, discrimination raises output and welfare provided that

γB is high enough to ensure w
∗
B > w∗A although p

∗
A > p∗B. In this region, discrimination

has a positive allocation effect (because p∗A > p∗B) and a positive output effect (because

γB > γA). If αA < αB, the total welfare effect can be negative due to a negative allocation

effect. In particular, there exists an area in which the output effect is positive but welfare

falls nonetheless because discrimination worsens the allocation of output across markets.

However, if γB exceeds γA suffi ciently, the positive output effect again compensates for the

negative allocation effect and welfare rises with discrimination.

6 Conclusion

We conclude by discussing some policy implications of our findings and by highlighting

some directions for future research. As discussed previously, our findings are relevant for

the current policy treatment of vertical restraints on online sales in Europe. The view in

the current EU Guidelines on Vertical Restraints is that such restraints, which are treated

as hardcore restrictions of competition, are tantamount to output restrictions because they

limit distributors’ ability “to reach more and different consumers than will be reached

when only more traditional sales methods are used.”47 According to this view, removing

restraints on online sales, by banning practices like dual wholesale pricing and relative

47See Paragraph 52 of the Guidelines, which talks about the internet as a powerful sales tool.
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quantity restrictions, will necessarily result in more sales. This view, however, ignores

that suppliers will have an incentive to adjust their supply terms depending on the policy

regime in place, i.e., on whether vertical restraints on online sales are allowed. It also

fails to consider why a manufacturer might want to specifically limit the online sales of its

distributors. If restricting output were the goal, then presumably the manufacturer could

achieve this goal by imposing high wholesale prices on all of a retailer’s sales, not just on

the retailers’sales that are intended for the online market.

The explanation for vertical restraints on online sales that we propose follows from the

fact that online and offl ine markets typically differ in their demand characteristics, in par-

ticular, the intensity of competition between retailers. Viewed as input price discrimination,

vertical restraints on online sales have ambiguous welfare effects a priori, with discrimina-

tion leading to higher prices online, but at the same time also lower prices offl ine. And,

as our analysis shows, discrimination that is motivated mainly by asymmetries in retailer

market power across markets tends to increase output and welfare. In summary, our results

suggest that suppliers may impose vertical restraints on online sales for price discrimination

reasons, and that the welfare effects of such restraints may well be positive. The current

policy treatment of such restraints in the European Union therefore appears to be overly

aggressive.

Our findings also have implications for U.S. policy on input price discrimination. Cases

involving discrimination across resale markets, where the downstream firms in each market

may differ, often hinge on whether the supplier’s discriminatory terms are found to be

predatory.”48 Typically, making this assessment entails determining whether the supplier’s

prices to the retailers in the favored market were below some appropriate measure of costs.

Since these costs may be diffi cult for the courts to determine, it is useful to consider whether

the supplier would have wanted to discriminate in the alleged manner even in the absence

of any upstream competitors to predate. Our analysis suggests the factors that would be

relevant for such consideration, including the intensity of competition in each market and

a sense of the relative retail prices that the supplier would want to support.

48Primary-line cases (alleged injury to rivals of the seller offering the discriminatory price) turn on showing
predatory conduct by the defendant. See, e.g., Brooke Group Ltd. v. Brown & Williamson Tobacco Corp.,
113 U.S. 2578 (1993), where the Court ruled that a claim of primary-line injury under the Robinson-Patman
Act is of the same general character as a predatory pricing claim under Section 2 of the Sherman Act.
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This paper offers the first analysis of what we have called input price discrimination by

resale market, and as such it uses a relatively stylized model in order to capture some of

the key drivers of this type of discrimination. Future research could extend our model in

various directions. For example, throughout the paper we have assumed that the supplier

is able to monitor resale and prevent arbitrage across resale markets. In practice, suppliers

do rely on various strategies to monitor resale and enforce contracts that discriminate

across resale markets, for instance, by requiring retailers to use supplier-managed inventory

systems or by asking them to provide scanner-data evidence of their sales in different

markets. Nonetheless, such monitoring can be costly and imperfect, which may affect

optimal input pricing. Another promising direction for future research could be to extend

the model to allow for competition between multiple suppliers or for a mix of multi-market

and single-market firms downstream. Yet another direction would be to analyze input price

discrimination by resale market in the presence of contracting ineffi ciencies that could arise

due to restrictions on the class of available tariffs or due to information asymmetries.
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Appendix

A Proofs

Proof of Lemma 2. Given the definition of ξs (·), ξA(pA, pB) < ξB(pB, pA) if and only if

QA

−∂QA/∂pA
(1−RBA) <

QB

−∂QB/∂pB
(1−RAB) ,

which can be rewritten as

eB
1− dB − dOB − dCB

1− dB
< eA

1− dA − dOA − dCA
1− dA

, (55)

where es ≡ −∂Qs/∂ps
Qs

and, for each s 6= −s,

dOs ≡
∂D−si
∂psi

−∂Dsi
∂psi

, dCB ≡
∑

j 6=i
∂D−sj
∂psi

−∂Dsi
∂psi

.

Using the fact that DRs = ds+dCs
1−dOs

to rewrite (55) and rearranging yields that

1 <
ξB(pB, pA)

ξA(pA, pB)
(56)

⇐⇒
1−DRB

1−DRA

<
eA (1− dB)

(
1− dOA

)
eB (1− dA) (1− dOB)

. (57)

Next, using the definitions of θs, ξs, and d
O
s , we obtain that

θA (pA, pB)

θB (pB, pA)
<

ξB(pB, pA)

ξA(pA, pB)
(58)

⇐⇒

1 <
eA (1− dB)

(
1− dOA

)
eB (1− dA) (1− dOB)

. (59)

If θA = θB, then (56) and (58) coincide, hence (57) and (59) must be equivalent, which

implies that DRB = DRA. Similarly, if DRB = DRA, then (57) and (59) coincide, hence

(56) and (58) must be equivalent, which implies that θA = θB. In summary, θA = θB if and

only if DRB = DRA.
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Next, we show that θA > θB implies DRB > DRA. Suppose first that θA > θB and (58)

holds. Given θA > θB, (58) implies (56), hence (59) must imply (57). Since DRB = DRA

if and only if θA = θB, the latter in turn implies that DRB > DRA. Now suppose that

θA > θB and (58) is violated (i.e., θAθB ≥
ξB
ξA
). There are two subcases to consider, depending

on whether (56) holds or not. If (56) is violated (i.e., 1 ≥ ξB
ξA
), then (56) implies that θA

θB
≥ ξB

ξA

for any θA > θB, hence 1−DRB
1−DRA ≥

eA(1−dB)(1−dOA)
eB(1−dA)(1−dOB)

must imply that 1 ≥ eA(1−dB)(1−dOA)
eB(1−dA)(1−dOB)

. From

the latter, it follows that DRA ≤ DRB. Since DRB = DRA if and only if θA = θB, we

can conclude that DRB > DRA if θA > θB and both (56) and (58) are violated. If (58) is

violated but (56) holds, then it must be that

1−DRB

1−DRA

<
eA (1− dB)

(
1− dOA

)
eB (1− dA) (1− dOB)

≤ 1,

which again implies that DRB > DRA. In summary, if θA > θB then DRB > DRA.

The proofs of the “only if”part of the statement and the case θA < θB proceed in the

same manner and are therefore omitted.

Proof of Proposition 2. Suppose the supplier offers the retailers a tariff of the form

T (qAi, qBi) = F + wAqAi + wBqBi. If all retailers accept the offer, the downstream price

competition game has an equilibrium in which the retailers charge the monopoly prices

(p∗A, p
∗
B) if and only if the wholesale prices wA and wB are such that

∂πi
∂pAi

(p∗A, ..., p
∗
A, p

∗
B, ..., p

∗
B;wA, wB) = 0, (60)

∂πi
∂pBi

(p∗A, ..., p
∗
A, p

∗
B, ..., p

∗
B;wA, wB) = 0. (61)

Using Lemma 1, (60) and (61) are equivalent to p∗s − ws = θ∗s(p
∗
s − c) for each s, which is

true if and only if ws = w∗s ≡ θ∗sc + (1− θ∗s) p∗s for each s. It follows that the game has an
equilibrium in which the supplier offers a dual two-part tariffwith wholesale prices (w∗A, w

∗
B)

and a fixed fee F = πi (p
∗
A, ..., p

∗
A, p

∗
B, ..., p

∗
B;w∗A, w

∗
B), and earns the industry monopoly profit

Π (p∗A, ..., p
∗
A, p

∗
B, ..., p

∗
B).

Proof of Proposition 5. With constant pass-through rates, as is the case when the
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demand functions are linear, the marginal output effect can be written as follows:

Q′ (r) =

[(
∂QA

∂pA
+
∂QB

∂pA

)
ρAA +

(
∂QA

∂pB
+
∂QB

∂pB

)
ρBA

]
w′A (r) (62)

+

[(
∂QA

∂pA
+
∂QB

∂pA

)
ρAB +

(
∂QA

∂pB
+
∂QB

∂pB

)
ρBB

]
w′B (r) .

Using the expression for w′A (r) and w′B (r) and assuming that demands are linear with

symmetric cross-market effects (∂QA
∂pB

= ∂QB
∂pA
), Q′ (r) simplifies to

Q′ (r) =

(
ρAAρ

B
B − ρBAρAB

) (
∂QA
∂pA

∂QB
∂pB
− ∂QA

∂pB

∂QB
∂pA

)
Πw
AA + 2Πw

AB + Πw
BB︸ ︷︷ ︸

<0

[(
ρAA + ρAB

)
−
(
ρBB + ρBA

)]
. (63)

Since the first term in (63) is negative, Q′ (r) > 0 if and only if

−
(
ρBA − ρAA

)
< ρBB − ρAB. (64)

Similarly, the marginal welfare effect can be written as

W ′ (r) =

[
(peA − c)

(
∂QA

∂pA
ρAA +

∂QA

∂pB
ρBA

)
+ (peB − c)

(
∂QB

∂pA
ρAA +

∂QB

∂pB
ρBA

)]
w′A (r)

+

[
(peA − c)

(
∂QA

∂pA
ρAB +

∂QA

∂pB
ρBB

)
+ (peB − c)

(
∂QB

∂pA
ρAB +

∂QB

∂pB
ρBB

)]
w′B (r) ,

when the pass-through rates are constant. In the case of linear demand with symmetric

cross-market effects (∂QA
∂pB

= ∂QB
∂pA
), this further simplifies to

W ′ (r) =

(
ρAAρ

B
B − ρBAρAB

) (
∂QA
∂pA

∂QB
∂pB
− ∂QA

∂pB

∂QB
∂pA

)
πwAA + 2πwAB + πwBB︸ ︷︷ ︸

<0

[(
ρAA + ρAB

)
(peB − c)−

(
ρBB + ρBA

)
(peA − c)

]
,

(65)

which has the sign of
peA − c
ρAA + ρAB

− peB − c
ρBB + ρBA

. (66)
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If (66) holds for r∗, that is, if49

p∗A − c
ρAA + ρAB

>
p∗B − c
ρBB + ρBA

, (67)

then W ′ (r) > 0 for all r.

B Additional results

Proposition 7 Given w∗A < w∗B, the game has an equilibrium with full channel coordination

in which the supplier offers a tariff of the form

T (qAi, qBi) =

 F + wqi if qBi ≤ Q∗B
Q∗A+Q

∗
B
qi,

S + F + wqi if qBi >
Q∗B

Q∗A+Q
∗
B
qi,

,

where

w =
Q∗A

Q∗A +Q∗B
w∗A +

Q∗B
Q∗A +Q∗B

w∗B.

Proof. Let w∗A < w∗B. Suppose the supplier offers a tariff of the form specified in the

proposition, with S large enough so that violating the constraint is unprofitable for the

retailers. If the retailers accept the supplier’s offer, the downstream pricing game has an

equilibrium in which the retailers set the monopoly prices if and only if

(p∗A, p
∗
B) ∈ arg max

(pAi,pBi)
(pAi − w)DAi(pAi, pBi; p

∗
A, p

∗
B) + (pBi − w)DBi(pAi, pBi; p

∗
A, p

∗
B)

s.t. DBi(pAi, pBi; p
∗
A, p

∗
B) ≤ Q∗B

Q∗A +Q∗B
(DAi(pAi, pBi; p

∗
A, p

∗
B) +DBi(pAi, pBi; p

∗
A, p

∗
B)) .

The Kuhn-Tucker first-order conditions, evaluated at the monopoly prices, are

∂πi
∂pAi

(
p∗A, ..., p

∗
A, p

∗
B, ..., p

∗
B;w − λ Q∗B

Q∗A +Q∗B
, w + λ

(
1− Q∗B

Q∗A +Q∗B

))
= 0, (68)

∂πi
∂pBi

(
p∗A, ..., p

∗
A, p

∗
B, ..., p

∗
B;w − λ Q∗B

Q∗A +Q∗B
, w + λ

(
1− Q∗B

Q∗A +Q∗B

))
= 0, (69)

λ ≥ 0, (70)

where λ is the Lagrange multiplier of the constraint. By the definition of (w∗A, w
∗
B), (68)

49This follows because with linear demand functions peA decreases and p
e
B increases with r.
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and (69) hold if and only if

w − λ Q∗B
Q∗A +Q∗B

= w∗A, (71)

w + λ

(
1− Q∗B

Q∗A +Q∗B

)
= w∗B. (72)

Substituting w =
(

1− Q∗B
Q∗A+Q

∗
B

)
w∗A +

Q∗B
Q∗A+Q

∗
B
w∗B into (71) and (72) and solving for λ yields

λ = w∗B − w∗A.

Hence, w∗A < w∗B implies that (70) holds. The supplier can thus obtain the integrated

monopoly profit Π (p∗A, ..., p
∗
A, p

∗
B, ..., p

∗
B) by offering both retailers a tariff of the form spec-

ified in the proposition, with F = πi (p
∗
A, ..., p

∗
A, p

∗
B, ..., p

∗
B;w∗A, w

∗
B) and S large enough to

make violating the constraint on relative quantities unprofitable.

Two-part tariffs are without loss of generality If tariff of the form T (qAi, qBi) are

permitted, the supplier can achieve its first-best by means of the dual two-part tariff in

Proposition 2, hence there is no loss of generality in restricting attention to two-part tariffs.

If only tariffs of the form T (qi) are permitted, then there must exist a λ such that the

equilibrium retail prices (peA, p
e
B) satisfy

∂πi (p
e
A, ..., p

e
A, p

e
B, ..., p

e
B;λ, λ)

∂pAi
=
∂πi (p

e
A, ..., p

e
A, p

e
B, ..., p

e
B;λ, λ)

∂pBi
= 0, (73)

otherwise, as discussed in Section 4.1, each retailer would have a profitable unilateral devi-

ation to different prices. Now suppose that instead of T (qi), the supplier offers the retailers

a two-part tariff with wholesale price w = λ and fixed fee

F = T (qei )− w (QA (peA, p
e
B) +QB (peA, p

e
B)) .

The retailers are willing to accept this two-part tariff if they were willing to accept the tariff

T (qi), and each will order QA (peA, p
e
B) + QB (peA, p

e
B) units. The supplier’s profit with the
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two-part tariff becomes

n (T (qei )− c (QA (peA, p
e
B) +QB (peA, p

e
B))) ,

which is (at least) as much as the profit it would have earned by offering T (qi).50

50The two profits are the same if the quantity ordered qe = QA(peA, p
e
B) + QB(peB , p

e
A). If qe >

QA(peA, p
e
B) + QB(peB , p

e
A), the two-part tariff yields a higher profit for the supplier because it implies

lower upstream variable costs.
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