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Abstract

We analyze an auction model in which firms’ production capacities are pri-
vate information. The results shed light on the nature of the strategic interaction
between renewable generators, whose available capacities are subject to random
shocks. In equilibrium, firms bid above marginal costs, with markups decreasing
in their realized capacities. Capacity withholding is not optimal, unless a single
firm has excess capacity to cover total demand. Hence, supply functions shift out-
wards and downwards at times when there is more renewable energy, with market
prices smoothly converging towards marginal costs. We also analyze the effects of
switching from a uniform to a discriminatory auction format, and the effects of
fragmenting the market structure.
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1 Introduction

Ambitious environmental targets, together with decreasing investment costs, have

fostered the rapid deployment of renewable energy around the world. Installed renewable

capacity has more than doubled over the last ten years, and it is expected to further

increase during the coming decade.1 Indeed, Europe expects that over two thirds of

its electricity generation will come from renewable resources by 2030, with the goal of

achieving a carbon-free power sector by 2050 (European Commission (2012)). Likewise,

California has recently mandated that 100% of its electricity will come from clean energy

∗Both authors acknowledge finantial support from the European Research council, Consolidator
Project “Electric Challenges”. The second author also acknowledges the support of the Regional Gov-
ernment of Madrid through grant S2015/HUM-3491.

1The International Renewable Energy Agency estimates that compliance with the 2017 Paris Climate
Agreement will require overall investments in renewables to increase by 76% in 2030, relative to 2014
levels.
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sources by 2045. This global trend begs the question: how will electricity markets perform

in the future once renewables become the major energy source?

Whereas competition among conventional fossil-fuel generators is by now well under-

stood (e.g. Borenstein (2002); von der Fehr and Harbord (1993) Green and Newbery

(1992), among others), much less is known about competition among wind and solar

producers (which we broadly refer to as renewables).2 Competition-wise, there are two

key differences between these two technologies. First, the marginal costs of conventional

plants depend on their efficiency rate as well as on the price at which they buy the fossil

fuel. In contrast, the marginal costs of renewable generation equal zero as they produce

electricity out of freely available natural resources (e.g. wind or sun). Second, the avail-

able capacity of conventional plants is well known as they tend to be available at all

times (absent rare outages). In contrast, the availability of renewable plants is uncer-

tain as it depends on weather conditions that are difficult to forecast. Hence, the move

from fossil fuel generation towards renewables will imply a change in paradigm. Whereas

the previous literature has analyzed environments where marginal costs are private in-

formation but production capacities are publicly known, the relevant setting will soon

be one in which marginal costs are known (and zero) but firms’ capacities become pri-

vate information. By changing the type of private information held by firms, renewables

fundamentally change the nature of strategic interaction among electricity producers.

In this paper we build a theoretical model of competition among renewable producers

that captures this new paradigm in electricity markets: firms’ marginal costs are known

but their production capacities are private information.3 Each firm competes by submit-

ting a price-quantity pair (i.e., an inverted-L supply function), indicating the maximum

quantity that it is willing to produce and the minimum price at which it is willing to do

so. The auctioneer calls firms to produce in increasing price order until total demand is

2Strictly speaking, there are renewable energies other than wind and solar. However, these two are
the dominant ones. Not all renewable technologies share the same properties as wind and solar. For
instance, hydro electricity is storable (in contrast to wind and solar which are flow technologies); the
available capacity of biomass is known very much like a thermal plant, etc.

3A firm might also find it difficult to perfectly forecast its own availability. However, it knows exactly
how much output it has offered to the market, which is what matters to determine dispatched output
and prices.
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satisfied, and pays all accepted output at the highest accepted price offer.4 If the out-

put offered by the renewable producers is not enough, the auctioneer calls conventional

producers to cover the residual demand. Thus, the marginal cost of the conventional pro-

ducers (which for simplicity are assumed to behave competitively) serves as an implicit

price cap to the offers made by the renewable producers. Importantly, firms can exercise

market power by either bidding above marginal costs and/or withholding output, i.e.,

offer to produce below their available capacity.

Equilibrium outcomes differ as compared to when (i) capacities and costs are known

(as in von der Fehr and Harbord (1993), Fabra et al. (2006), de Frutos and Fabra (2012))

or when (ii) capacities are known but costs are private information (as in Holmberg and

Wolak (2018)). When production capacities are known, uniform-price auctions can give

rise to very high market prices. In equilibrium, one firm bids high while the others bid

low enough so as to make undercutting by the high bidder unprofitable. In this paper

we show that this logic extends to settings in which available capacities are random but

become common knowledge before firms submit their firms (i.e., in the absence of private

information). In this case, firms can use their capacity realizations to symmetrically

correlate their high and low bids, thus allowing them to evenly share profits.

These seemingly-collusive equilibria are ruled out when capacities are private infor-

mation. Simply put, firms cannot condition their strategies on each-others’ capacities.

Instead, as we show in this paper, bidding functions are decreasing in realized capacities

(i.e. the higher a firm’s realized capacity, the lower the price at which it is willing to

supply it). In a symmetric equilibrium, the price offers of the renewable producers range

from the marginal costs of the conventional technology (when the realized capacity is at

the lower bound) to their own marginal costs (when the realized capacity reaches the

upper bound). These equilibrium bid functions reflect the standard trade-off faced by

competing firms when choosing prices: reducing the price would allow the firm to sell

more (quantity effect), but it would also reduce the market price if all rivals bid below

(price effect). The fact that larger firms benefit more from the quantity effect, explains

4This mimics the actual uniform-price auction format used in most electricity markets in practice.
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why the equilibrium bid functions are decreasing in the firm’s realized capacity. Interest-

ingly, we show that firms never find it optimal to exercise market power by withholding

output, unless their available capacity is enough to cover total demand. In the latter case,

there exists an equilibrium in which large firms withhold output so as to produce slightly

below total demand. This allows them to bid low so as to sell almost total demand, while

still receiving the higher price set by the rival.

In sum, expected market prices are strictly below the marginal costs of the conven-

tional producers but strictly above the marginal costs of renewables. This suggests that

renewable energy mitigates market power, even if it does not fully eliminate it. This re-

sult is reminiscent to the literature on Treasury auctions (LiCalzi and Pavan, 2005) which

shows that introducing noise in the demand function rules out the seemingly collusive

equilibria that arise otherwise (Back and Zender, 2001).

We perform a comparative statics exercise with respect to increases in the installed

renewable capacity, changes in demand, and improvements in the precision of the ca-

pacity forecast. In particular, we show that the price depressing effect of renewables is

non-linear in the amount of installed renewable capacity. At the initial stages of the de-

ployment process, an additional unit of renewable capacity leaves the price almost always

unchanged at the marginal cost of the conventional technology; hence, the price impact of

renewables is expected to be small. However, in more advanced stages, an additional unit

of renewable capacity might displace the conventional technologies more often, thus lead-

ing to sharp reductions in the market price. As the investment in renewables increases,

the probability that the realized capacity of a single firm exceeds demand is larger, and

hence the mass that is placed at marginal costs goes up. Eventually, when the capacity of

both firms always exceeds demand, Bertrand competition drives prices down to marginal

cost. Hence, the price impact of renewables becomes small again.

We extend our baseline model in several directions. First, we study the effects of

firms’ entry and changes in market structure. We show that an increase in the number of

(symmetric) firms brings about a standard pro-competitive effect: the more firms there
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are, the bigger is the market share that a firm gains by slightly undercutting the rivals

(quantity effect) and the smaller is the residual demand that a firm serves if it is outbid

(price effect). Both effects lead to more competitive outcomes. If we leave total capacity

fixed and consider splitting it among a larger number of firms, an information-related

anti-competitive effect arises as smaller firms face more uncertainty regarding the rivals’

capacities. Although this mitigates the former pro-competitive effect, the price-depressing

effect of fragmenting the market structure dominates.

We also characterize equilibrium bidding in discriminatory auctions (that pay all

winning firms their price offers). Similarly to Holmberg and Wolak (2018), we show that

in this format firms submit higher bids than in uniform price auctions: firms are simply

discouraged from bidding low prices as they are paid as they bid. Thus, the choice of the

auction format introduces a trade-off, as uniform price auctions induce more competitive

bidding but pay winning bidders the highest accepted bid. In contrast with Holmberg

and Wolak (2018), we show that there is no revenue equivalence across auction formats.5

The main force driving our different predictions is that equilibrium quantities are affected

by private information on capacities, but not by private information on costs. Numerical

solutions indicate that the discriminatory auction typically leads to higher prices, for

example, when capacity availability arises from a Beta distribution.

Related Literature

Holmberg and Wolak (2018) analyze competition in electricity markets in a model in

which firms are privately informed about their marginal costs, rather than about their

capacities. In their model, private information moves supply functions up or down (when

realized costs are either high or low) while firms’ quantity offers remain unchanged (given

that capacities are assumed to be known and fixed).6 This is unlike our model in which

private information on capacities moves the supply functions up and to the left (when

5They find revenue equivalence across auction formats for the case of independent costs. When
marginal costs are positively affiliated, they also find, similarly to us, that the discriminatory auction
pays firms more.

6More precisely, they assume that each firm might be unaware about its own capacity when it submits
its bids. However, expected capacities are uncorrelated to the cost realization. As a result, the equilibrium
outcomes are the same as if capacities were fixed and known at the time when firms submit their bids.
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realized capacities are low) or down and to the right (when realized capacities are high).

In our model, because we allow for capacity withhoding, changes in private information

also leave supply functions unchanged when firms find it optimal to behave as if their

realized capacity was slightly below total demand.

Vives (2011) studies a model of competition where firms offer linear supply functions

under imperfect information about marginal costs. Since firms’ marginal costs are corre-

lated, the market price aggregates firms’ private information. Firms’ willingness to learn

about their own costs from the market price induces them to submit steeper supply func-

tions, yielding less competitive outcomes. This effect is not present in our model since

we are dealing with a private value setup. In this respect, our model is less general than

Vives (2011)’s but it allows us to consider constant marginal costs up to capacity, which

is suitable for the case of renewable energy. This cost function contains kinks that would

make the linear supply-function approach intractable.

Other recent papers have also analyzed competition among renewables (Acemoglu

et al. (2017) and Kakhbod et al. (2018)). While they share with us the fact that capacities

are random, they differ from our approach in that they assume Cournot competition,

thus restricting firms to exerting market power only through capacity withholding. In

this paper we show that if firms are allowed to choose both prices and quantities, they

exercise market power by raising prices above marginal costs when they are capacity

constrained to serve total demand, and only resort to capacity withholding otherwise.

Acemoglu et al. (2017)’s analysis applies to markets at an earlier stage of renewables

deployment, with firms owning a portfolio of conventional and renewable plants. They

show that the common ownership of these two technologies mitigates the price depressing

effect of renewables as firms withhold more output from their conventional plants when

there is more renewable generation. This effect is not present in our model since renewable

capacity is often enough to cover total demand. Furthermore, in order to focus on the

strategic interaction among renewables, we assume that conventional power plants are
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owned by independent producers.7

Kakhbod et al. (2018)’s focus is on the impact on market outcomes of the heterogeneity

in stochastic renewable availability across locations. They show that firms withhold

more output when they are closely located (i.e., when their output is more positively

correlated). This implies that the market fails to induce investments at the optimal

locations.

Even though we have motivated our model in the context of electricity markets, it is

applicable to other relevant contexts. Notably, in the context of treasury auctions it is

typically assumed that bidders are privately informed about their valuation up to a fixed

number of units (Hortasu and McAdams, 2010). Our model would allow us to extend

those analyses to situations in which this limit is private information (e.g. bidders might

have different hedging needs that are unknown to their rivals) as long as it is positively

related to the bidders’ valuations.

The reminder of the paper is structured as follows. In Section 2 we describe the basic

model. In Section 3 we characterize the bidding equilibria when firms’ capacities are

private information and compare equilibrium outcomes with the ones that emerge when

capacities are publicly known. In Section 4 we interpret the model in the context of

electricity markets. Section 5 discusses extensions, including the discriminatory auction

and the effect of changing the number of firms. Section 6 concludes.

2 The Model

Two firms i = 1, 2 compete in a market to supply a perfectly price-inelastic demand,

denoted as θ > 0. Firms are capacity constrained. The capacity of firm i, denoted ki > 0,

is assumed to be random. In particular, ki ∈
[
k, k̄
]

for i = 1, 2 is distributed according

to the function G(ki) with density g(ki) > 0 in the whole interval. The capacity of both

firms is assumed to be independently distributed. For simplicity, we assume that firm i

can observe its own capacity but not that of its rival, i.e., available capacities are private

7If we allowed the independent conventional producers to exercise market power, an increase in
renewables would reduce the residual demand faced by the conventional producers, thus reducing their
incentives to increase prices.
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information. Each firm can produce at a constant marginal cost c ≥ 0 up to its capacity.

Firms compete on the basis of the bids submitted to an auctioneer. Each firm simul-

taneously and independently submits a bid specifying the minimum price at which it is

willing to supply the whole of its realized capacity, bi ∈ [0, P ] , i = 1, 2, where P denotes

the “market reserve price”. This price can be interpreted as the marginal cost of the next

available technology, as long as it is offered competitively, or as a regulated price cap.

The auctioneer ranks firms according to their price offers, and calls them to produce

in increasing rank order. In particular, if firms submit different bids, the low-bidding firm

is ranked first while the high-bidding firm is ranked second. If firms submit equal bids,

firm i is ranked first with probability α (ki, kj) and it is ranked second with probability

1 − α (ki, kj). We assume a symmetric function α (ki, kj) = α (kj, ki) ∈ (0, 1) so that

when their capacities are equal, α (k, k) = 1/2.8 If firm i is ranked first it produces

qi = min {θ, ki} , while if it is ranked second it produces qi = max {0,min {θ − kj, ki}}.

Firms receive a uniform price per unit of output, p, which is set equal to the highest

accepted price offer.9 If both firms jointly have enough capacity to cover total demand,

p = bj if bi ≤ bj and ki < θ; p = bi otherwise. If both firms’ aggregate capacity is below

demand, ki + kj < θ, the market price is set at P .

The profits made by each firm are computed as the product of their per unit profit

margin (p− c) and their output qi. As explained before, both p and qi are a function of

demand θ, the bids submitted by both firms (bi, bj), and their realized capacities (ki, kj) .

Firms, which are assumed to be risk neutral, bid so as to maximize their individual

expected profits, given their realized capacities.

Throughout the paper we solve for the symmetric Bayesian Nash Equilibria (BNE)

in pure-strategies, and whenever these do not exist, we allow for mixed strategies.

8We do not need to specify α (ki, kj) outside of the diagonal as it is inconsequential for equilibrium
bidding.

9In section 5.1 we characterize the equilibrium under a discriminatory auction, in which firms are
paid according to their bid.
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3 Equilibrium Characterization

In this section we characterize the symmetric Bayesian Nash Equilibria (BNE) of the

game in which capacities are private information. As a benchmark, we start by discussing

the case in which both capacity realizations are known to both firms.

3.1 Known capacities

Suppose that firms observe realized capacities prior to submitting their bids. Accord-

ingly, firms’ bids can be conditioned on realized capacities, i.e., bi(ki, kj) for i = 1, 2, and

j 6= i. We focus on the characterization of the symmetric equilibria of the game, i.e.,

bi(k
′, k′′) = bj(k

′, k′′) for any pair (k′, k′′).

Building on Fabra et al. (2006), the game with known capacities allows for potentially

many symmetric pure-strategy equilibria, all of which are ex-ante outcome equivalent,

i.e., the equilibrium market price is the same and firms make identical expected profits.

The next proposition characterizes such equilibrium outcome and provides equilibrium

bidding profiles that give rise to it. The results are illustrated in Figure 1.

Proposition 1. For given realized capacities (ki, kj), define k+ ≡ max(ki, kj) and k− ≡

min(ki, kj). Accordingly, let bi(k
+, k−) = b+ and bi(k

−, k+) = b−.

(i) If k− ≥ θ, in any pure-strategy equilibrium, p∗ = c. This outcome is sustained by

both firms bidding at marginal cost.

(ii) If k− < θ < k− + k+ and k− < k+, in any pure-strategy equilibrium, p∗ = P .

This outcome is sustained by pure-strategy equilibria with b+ = P and b− ≤ b =

c+ (P − c) θ−k−
k+
·

(iii) If k− < θ < k− + k+ and k− = k+, there does not exist a pure-strategy equilibrium.

At the unique symmetric mixed-strategy equilibrium, firms choose prices in [b, P ] ,

resulting in E [p∗] < P.

(iv) If θ ≥ k− + k+, in any pure-strategy equilibrium, p∗ = P . Any bid profile allows

both firms to sell all their capacity at P.
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To shed light on Proposition 1, it is useful to define the notion of pivotality : a firm

is pivotal if it faces a positive residual demand regardless of the bid of its rival, i.e., firm

i is pivotal if θ − kj > 0. Indeed, the equilibrium characterization critically depends on

whether firms are pivotal or not. When none of the firms is pivotal (as in part (i) of the

Proposition), total demand is served by the firm with the lowest bid. Standard Bertrand

arguments imply that the equilibrium market price equals marginal costs, c. In contrast,

when at least one of the two firms is pivotal, the equilibrium market price is (almost

always) equal to P .

When at least one firm is pivotal but there is excess capacity overall (parts (ii) and

(iii)), there exist multiple pure-strategy equilibria in all of which the market price is set

at P by a pivotal firm.10 The rival firm bids low enough (at or below some threshold

b) so as to make it unprofitable for the high bidder to undercut it. In equilibrium, the

low bidder makes higher profits than the high bidder, as the former sells at capacity

while the latter sells the residual demand. Hence, whenever the two firms are pivotal,

they face a coordination problem as they would both prefer to act as the low bidder. If

their realized capacities are asymmetric, firms can use them as a correlation device. For

instance, there exists a symmetric equilibrium in which the small (large) firm plays the

role of the low (high) bidder.11 Even if this equilibrium involves asymmetric bidding, it

is ex-ante symmetric as both firms are equally likely to be either the small or the large

firm.

However, if firms’ realized capacities are symmetric (as in part (iii) of the Proposition),

firms can no longer use their capacities to designate who bids low and who bids high. The

alternative would have both firms submitting equal bids, but this cannot be sustained

in equilibrium as firms would have incentives to undercut each other. Hence, the unique

symmetric equilibrium involves mixed-strategy pricing, with firms randomizing bids in

the support [b, P ].12 Even though the expected market price falls below P , the probability

10In this region, there also exists a symmetric mixed strategy equilibrium. This equilibrium is Pareto
dominated by the pure-strategy equilibria.

11There is a continuum of such equilibria, but they are all payoff equivalent.
12Trivially, if firms could resort to an external correlation device, they could always correlate their

roles of high and low bidder with no need to play mixed strategies.
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kj

θ

θ

b∗i = b∗j = P

b∗i ≤ b

b∗j = P

b∗j ≤ b

b∗i = P

b∗i = b∗j = c

Figure 1: Equilibrium bids when capacities are known. The shaded region corresponds
to an equilibrium price p∗ = P .

that this situation occurs is zero (as it requires both capacity realizations to be equal).

Finally, if aggregate capacity is no greater than total demand (part (iv) of the Propo-

sition), the result is trivial since there is no competition: both firms sell total capacity at

P regardless of their bids.

3.2 Capacities are private information

In general, when firms’ capacities are private information, the equilibrium character-

ized above no longer exists. Simply put, a firm’s bidding strategy cannot be conditioned

on the rival’s capacity. There are only two trivial cases in which the equilibrium with

known and unknown capacities coincide. First, when k > θ, firms know that none of them

is ever pivotal, regardless of their realized capacities. Hence, as in part (i) of Proposition

1, equilibrium prices are driven down to marginal costs. Second, when k̄ < θ/2, firms

know that aggregate capacity is never enough to cover total demand. Again, as in part

(iv) of Proposition 1, both firms sell all their capacity at P with no need to compete.

In this section, we characterize the symmetric Bayesian Nash Equilibria of the game
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in the remaining non-trivial cases. We first focus on the cases in which (i) firms always

have enough renewable capacity to cover total demand, k > θ/2, and (ii) they are always

pivotal with certainty, k̄ < θ. We refer to this as the baseline model. We next relax these

assumptions to allow for cases in which (i) renewable capacity is not always enough,

k ≤ θ/2; and (ii) firms’ pivotality status is uncertain, k̄ ≥ θ.

3.2.1 Baseline model

We start by identifying two key properties that any equilibrium must satisfy.

Lemma 1. Assume θ/2 < k < k̄ < θ. In this case,

(i) All Nash Equilibria must be in pure strategies.

(ii) The optimal bid of firm i, bi(ki), must be non-increasing in ki.

The first part of the lemma rules out non-degenerate mixed strategy equilibria. The

underlying reason is simple: a firm’s profits at a mixed-strategy equilibrium depend on

its realized capacity, which is non-observable by the rival. If the competitor randomizes

its bids in a way that makes the firm indifferent between two different bids for a given

capacity realization, the same randomization cannot make the firm indifferent for other

capacity realizations as well. It follows that the equilibria must involve pure-strategies.

The second part of the above lemma rules out bids that are increasing in the firm’s

capacity. When a firm considers whether to reduce its bid marginally, two effects are at

play for a given bid of the rival: a profit gain due to the output increase (quantity effect),

and a profit loss due to the reduction in the market price (price effect). On the one hand,

the quantity effect is increasing in the firm’s capacity, as if its bid falls below the rival’s,

it would sell at capacity rather than just the residual demand. On the other hand, the

price effect is independent of the firm’s capacity as, contingent on bidding higher than

the rival, the firm always sells the residual demand. Combining these two effects, the

incentives to bid low are (weakly) increasing in the firm’s capacity, giving rise to optimal

bids that are non-increasing in ki.
13

13The incentives to bid low are strictly increasing in the firm’s capacity if marginally reducing the
bid implies a strictly positive probability of increasing the firm’s output, i.e., a strictly positive quantity
effect. This need not be the case if the equilibrium is asymmetric.
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Building on this result, we now turn to characterizing the symmetric Bayesian Nash

equilibria of the game. The first thing to note is that, at a symmetric equilibrium, the

optimal bid must be strictly decreasing in ki. The logic is simple: standard Bertrand

competition arguments imply that equilibrium bids never contain flat regions, as firms

would have incentives to slightly undercut such bids. This allows us to invert bj(kj) to

write the expected profits of firm i when firm j bids according to a candidate symmetric

equilibrium, as follows

πi(bi; ki, bj(kj)) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ k̄

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj.

When kj < b−1
j (bi), firm i has the low bid and hence sells up to capacity at the price set

by firm j. Otherwise, firm i serves the residual demand and sets the market price at bi.

Maximizing profits with respect to bi and applying symmetry we can characterize the

optimal bid at a symmetric equilibrium.

Proposition 2. Assume θ/2 < k < k̄ < θ. There exists a unique symmetric Bayesian

Nash equilibrium in pure-strategies: each firm i = 1, 2 chooses a bid that is strictly

decreasing in ki according to14

b∗(ki; k, k̄) = c+ (P − c) exp (−ω(ki)) , (1)

where

ω(ki) =

∫ ki

k

(2k − θ)g(k)∫ k̄
k

(θ − kj)g(kj)dkj
dk,

with b∗(k; k, k̄) = P and b∗(k̄; k, k̄) = c.

The optimal bid adds a markup above marginal costs that is strictly decreasing in ki,

as illustrated in Figure 2. In order to provide some intuition, it is useful to implicitly

re-write the optimal bid as follows

ω′(ki) =
(2ki − θ)g(ki)∫ k̄

ki
(θ − kj)g(kj)dkj

14Since this bid is optimal for all ki in k, k̄, we make this interval explicit as an argument of the optimal
bid. This notation will be useful to simplify the rest of the analysis.
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On the left-hand side, ω′(ki) captures the incentives to marginally reduce the bid, which

in turn reflect the trade-off between the quantity effect and the price effect, as described

before. These effects are represented by the ratio on the right-hand side of the above

equation.

The price effect (on the denominator), or price loss from marginally reducing the

bid, is relevant only when the firm is setting the market price, i.e., when the rival firm’s

capacity is above ki. In this case, reducing the bid implies that the firm keeps on selling

the expected residual demand,
∫ k̄
ki

(θ − kj)g(kj)dkj, but at a lower market price. The

quantity effect (on the numerator), or output gain from marginally reducing the firm’s

bid, is relevant only when the two firms tie in prices, i.e., when both firms have the same

capacity ki, an event that occurs with probability g(ki). In this case, reducing the bid

implies that the firm sells all its capacity rather than just the residual demand, i.e. its

output jumps up by ki − (θ − ki) = 2ki − θ.

The quantity effect is weighted by two forces. On the one hand, the quantity effect

is more relevant when the rival’s bid function is flatter, since a given reduction in the

firm’s bid makes it more likely that the firm will sell at capacity. On the other hand,

the quantity effect is less relevant when the mark-up on the increased sales is smaller.

Indeed, the ratio of the quantity and price effects can also be written as

− b′∗(ki)

b∗(ki)− c
=

(2ki − θ)g(ki)∫ k
ki

(θ − kj)g(kj)dkj

The optimal bid starts at P for the lowest possible capacity realization and ends at c for

the largest one. When ki = k, firm j is bigger by construction, so firm i sells the residual

demand and sets the market price with probability one. A bid below P could never be

part of an equilibrium as firm i could sell the same output at a higher price by bidding at

P . When ki = k̄, firm j is smaller by construction, so firm i never sets the market price.

Hence, the firm’s bid has no impact on the price and only the quantity effect matters.

Therefore, a bid above c could never be part of an equilibrium as firm i could expect to

sell more output at the same price by bidding at c.

Note that firms make higher profits when their realized capacities are larger. The
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Figure 2: Equilibrium bids when ki ∼ U [0.5, 0.9], with θ = 1, c = 0, and P = 0.5.

reason is simple. If a firm with capacity k′ > k bids at b(k) it makes more profits than

a firm with capacity k: if it has the low bid, it sells k′ > k at the rival’s price, whereas

if it has the high bid it serves the residual demand at b∗(k) in either case. By revealed

preference, equilibrium profits at k′ must exceed those at k.15

It is useful to compare this equilibrium with the one obtained in the game with known

capacities (Proposition 1). As in that case, for given realized capacities, the equilibrium

involves asymmetric bidding while it still preserves ex-ante symmetry (as firms’ capacities

are symmetrically distributed). However, unlike that case, firms cannot be certain as to

whether the rival firm’s capacity is larger or smaller than its own, and hence do not know

whether the rival is bidding below or above. In other words, uncertainty over capacities

induces uncertainty over the prices charged by the rival, just as if the rival were playing

a mixed strategy. Thus, the standard price versus quantity trade-off emerges, ruling out

an equilibrium market price equal to P .

As a result, while the expected equilibrium price equals P with known capacities, it is

strictly below P when capacities are private information. Therefore, the price comparison

across the two games is unambiguous.

Proposition 3. Assume θ/2 < k < k̄ < θ. Expected equilibrium market prices are lower

15Furthermore, if we allowed firms to choose both prices as well as quantities, this shows that firms
never want to mimic smaller types, i.e., they never want to withhold capacity. It follows that the same
equilibrium would prevail as the one presented here.
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in the game in which capacities are private information as compared to the game in which

capacity realizations are known.

3.2.2 When renewables are not always enough

Allowing for k < θ/2 implies that the capacity of both firms might not always be

enough to cover total demand. If that is the case, both firms sell at capacity regardless

of their bids. In this section we show that the equilibrium characterized above naturally

extends to encompass this case.

In particular, as shown in the next Proposition, the optimal bid is flat at P up to

ki = θ/2 and it subsequently takes the same shape as in Proposition 2.

Proposition 4. Assume k < θ/2 < k̄ < θ. There exists a unique symmetric Bayesian

Nash equilibrium in pure-strategies. Each firm i = 1, 2 chooses a bid that is non-increasing

in ki. If ki < θ/2, the optimal bid is P . Otherwise, the optimal bid is b∗(ki; θ/2, k̄) as

defined in (1), where b∗(θ/2; θ/2, k̄) = P and b∗(k̄; θ/2, k̄) = c.

The equilibrium strategy calls firms to bid at P whenever their realized capacities

are at or below θ/2. To understand this result, assume that firm i’s realized capacity is

exactly equal to θ/2. If the rival’s capacity was at or below θ/2, reducing the price below

P would not allow firm i to increase its profits as both firms would sell all capacity at P

regardless of their bids. In contrast, if the rival’s capacity was above θ/2, firm i would

serve the residual demand at its own bid. Hence, it would be optimal for firm i to raise

the market price up to P , as stated in the Proposition. A similar reasoning implies that

bidding at P is optimal when the firm’s capacity is below θ/2.

Figure 3 depicts the equilibrium bid in this case. As compared to Figure 2, the optimal

bid simply adds a flat region at P for all ki ≤ θ/2.

3.2.3 When firms are not certain to be pivotal

Allowing for k̄ ≥ θ implies that, for certain realizations, the capacity of a single firm is

enough to cover total demand. In other words, firms are no longer certain to be pivotal.

This has a dramatic impact on the bidding incentives. First, conditionally on having the
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Figure 3: Equilibrium bids when ki ∼ U [0.4, 0.9], with θ = 1 , c = 0, and P = 0.5.

high bid, a firm produces nothing if its rival’s capacity is at or above θ. Second, the bid of

a firm whose capacity exceeds θ is payoff relevant even if it has the low bid, as in this case

the firm serves total demand at its own bid. The former effect intensifies competition,

whereas the second induces firms to charge higher prices.

To describe more clearly how the equilibrium bids change when k̄ ≥ θ, we split

the equilibrium characterization in two cases, depending on whether the firm’s realized

capacity is above or below θ.

Lemma 2. Assume k̄ ≥ θ. There does not exist a Bayesian Nash Equilibrium in pure

strategies. Furthermore, in any equilibrium, for ki ≥ θ, firm i randomizes its bid in a

support
[
b, b̄
]

independently of ki, where b > c and b̄ < P.

If ki ≥ θ, firm i is never capacity constrained. Since its expected profits do not depend

on its realized capacity, its optimal bid at a candidate pure-strategy equilibrium is the

same for all capacity realizations above θ. However, this would give rise to ties with

positive probability and it is thus ruled out by standard Bertrand-Edgeworth arguments.

More specifically, ties cannot be part of an equilibrium as firms would be better off by

slightly undercutting any price above marginal costs in order to sell more output with only

(if any) a slight reduction in the price. Furthermore, tying at marginal cost is ruled out

as firms could make positive profits by selling the expected residual demand at P . Thus,

at a symmetric equilibrium, firms must randomize their bids for all capacity realizations
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above θ.

The previous argument implies, of course, that the symmetric Bayesian Nash Equi-

librium of the game must be in mixed strategies, as at least for ki ≥ θ firms randomize

their bids. One distinctive feature of this equilibrium is that the upper bound of the price

support does not go all the way up to P . The reason is that when firms have a capacity

ki ≥ θ, they face a downward sloping residual demand, induced by the downward sloping

bid function of the rival when its capacity realization is below θ. We now turn to char-

acterizing the equilibrium in this case. The next proposition describes the optimal bid,

and Figure 4 illustrates it.

Proposition 5. Assume k̄ ≥ θ. In the unique symmetric Bayesian Nash Equilibrium,

if ki < θ, the optimal bid for firm i is

(i) b∗(ki; k, θ) for ki ∈
[
k, k̂
]

and ki ∈
[
k̃, θ
)

, as defined in (1).

(ii) b̂(ki; k, θ) for ki ∈
(
k̂, k̃
)

, strictly decreasing in ki and strictly lower than b∗(ki; k, θ).

(iii) bi ∼ F (bi) with density f(bi) in a support [b, b̄].

The thresholds k̂ and k̃ are implicitly defined as b∗(k̂; k, θ) = b̄ and b∗(k̃; k, θ) = b, where

b and b̄ are defined in Lemma 2.

The optimal bid when ki belongs to either
[
k, k̂
]

or
[
k̃, θ
)

is similar to the one in the

baseline model. The sole difference is that, from firm i’s point of view, firm j’s relevant

capacities now range from k to θ given that firm i’s profits are constant when kj ≥ θ. In

particular, for such capacities, firm j randomizes its bid in the support (b, b̄) and, thus,

prices are limited above by b∗(k̂; k, θ) = b̄ and below by b∗(k̃, k, θ) = b. Hence, if kj ≥ θ,

firm i does not produce anything if ki belongs to
[
k, k̂
]
, while firm i sells at capacity at

the price set by firm j if ki belongs to
[
k̃, θ
)

. It follows that firm i’s marginal profits are

zero whenever kj ≥ θ, and hence its bidding incentives are equal to those in the base line

model with k̄ arbitrarily close to θ.

This result is in contrast to the case where ki ∈
[
k̂, k̃
)

. For these realizations, firm i

might have the low or the high bid depending on the bid chosen by firm j when playing its
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Figure 4: Equilibrium bids and probability density when ki ∼ U [0.5, 1.1], with θ = 1,
c = 0, and P = 0.5.

mixed strategy. In particular, firm i’s incentives to bid low are now stronger as compared

to the baseline model, given that by reducing the b it can outbid the rival for a larger

range of capacity realizations, including kj ≥ θ.

The previous equilibrium bidding function is not monotonic in ki, particularly around

θ. The optimal bid converges to c to the left of θ as the firm is certain to be selling at

capacity at the price set by the rival. In contrast, the bid jumps above c when ki > θ, as

the firm is aware that its bid is always payoff relevant.16

Allowing k̄ to increase above θ shows how the equilibrium bid schedules approach the

competitive outcome. Suppose that capacities are uniformly distributed in
[
k, k̄
]
, and

consider moving the whole capacity support to the right. For capacity realizations above

θ, the equilibrium mixed strategy puts increasingly more weight on the lower bound of

the price support, which converges towards c. In turn, the range
(
k̂, k̃
)

widens up. This

16We do not allow firms to withhold capacity, which might become a concern, particularly, when ki > θ.
It is easy to see that firms are indifferent between offering any capacity above or at θ. With capacity
withholding over this range, firms would have a distribution with a mass point at θ but it would not
affect the results in any way. Matters might be different if firms have incentives to withhold capacity
and offer a capacity slightly below θ at marginal cost. In this case, the firm would sell more (it would
produce almost total demand with probability one) but possibly at a lower price.
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process continues until k reaches θ, in which case the equilibrium bid functions become flat

at marginal costs. Figure 5 depicts this process of convergence towards the competitive

outcome.

4 Interpreting the model

In the description of the model, the private information regarding ki, for i = 1, 2,

stems from a capacity realization that is known to firm i but not to firm j 6= i. That is,

the distribution G(ki) reflects the private information of firm i. Although we have cast

the model as appropriate to describe the electricity market, the same setup can be applied

to other markets. In this section we discuss some other interpretations of the model. We

also show how the setup can accommodate some important institutional features that are

specific the electricity market.

Our setup directly applies to other markets where agents bid for multiple units of

a good in an auction or in a marketplace. In our private-values setting, however, the

uncertainty does not reflect private information regarding the valuation (or cost) of those
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agents as in most papers of the auction literature, but rather, the quantity that they

are willing to buy or sell. This applies to a variety of examples: how many financial

derivatives a bank is willing to buy depends on its hedging needs, which in turn depends

on how many loans and deposits it has; how much oil an oil producer is willing to sell

depends on how much oil there remains in its well; how many available Uber cars there

are depends on how many drivers are on service, net of those who are already occupied;

how many rooms a hotel is willing to offer online depends on how many rooms have

already been booked through other channels; how much cloud computing space a firm is

willing to offer depends on how much excess capacity it has above its own data needs; or

how much olive oil a firm is willing to sell depends on whether its harvest was good or

bad.

Regarding the application of our model to the electricity market some important

comments are in order. First, our model implicitly assumes that firms own a unique

plant. Obviously, the results would be unchanged if ki were interpreted as the total

production and G(ki) as the distribution of this production, accounting for the potential

correlation between the capacity of each plant. Second, our model setup assumes that

firms know exactly their available capacity before bids are placed. This assumption can

be understood as a simplification made to capture the asymmetry in the information

available to the competitors. In practice, however, firms bid in the day-ahead market,

offering at a given hour of the following day a fixed production ki at a price bi. In this

market, the equilibrium price is computed ahead of production using all firms’ committed

quantities. This is what the model aims to explain.

Since the realized capacity is unknown to firms one day in advance, this quantity will

typically differ from the one that a firm has offered. Other markets close to the time of

production allow firms to buy or sell energy in order to adjust their total quantity to the

committed production. In general, participation in these markets leads to less favorable

prices for the firms, which means that in the day-ahead market they typically have in-

centives to bid a production that corresponds to their expected available capacity. This
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quantity is estimated using the firm’s own weather forecast model, which is unavailable

to the competitor. In this context, the distribution G(ki) can be interpreted as the un-

certainty that the competitor has on the forecast of the firm, which is based on the local

information it has gathered.

Finally, system operators might provide some information on the expected aggregate

production. This source of information can be accommodated in the model by assuming

that the expected available capacity of firm i, ki, has a common component θ and an

specific one αi + εi. The parameter αi is a known component specific of plant i. The

system operator publishes a forecast of θ, E(θ), and firms use their weather forecast to

obtain their estimate of εi. This means that the expected available capacity of firm i can

be written as

ki = αi + E [θ] + εi.

Firm j, however, only observes the public information and its best estimate corresponds

to

E [ki|Ωj] = αi + E [θ] + E [εi] = αi + E [θ] ,

where Ωj indicates the information available to j. Hence, the function G can be in-

terpret as the distribution of εi shifted by αi + E [θ] and ki ∈
[
k, k̄
]

is equivalent to

ki ∈ [αi + E [θ] + ε, αi + E [θ] + ε̄] .

5 Extensions

In this section we consider three extensions to the baseline model. We allow for

affiliated capacities, we characterize and compare the equilibria with the one that would

arise if firms were paid according to their own bids (discriminatory auction), and we

extend the equilibrium to allow for an arbitrary number of firms.

5.1 Discriminatory Auctions

In this section we characterize equilibrium bidding under the discriminatory auction

in which each firm is paid according to its own bid.
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Figure 6: Comparison between the optimal bid function under the uniform auction
(dashed line) and the discriminatory auction (solid line). Parameter values: ki ∼
U [0.5, 0.9], c = 0, P = 0.5 and θ = 1.

Proposition 6. Assume θ/2 < k < k̄ < θ. In the discriminatory auction, there exists

a unique symmetric Pure Strategy Equilibrium: each firm i = 1, 2 chooses a bid that is

strictly decreasing in ki according to the function

b∗d(ki; k, k̄) = c+ (P − c) exp (−ωd (ki)) ,

where

ωd (ki) =

∫ ki

k

(2k − θ)g(k)

kG(k) +
∫ k̄
k

(θ − kj)g(kj)dkj
dk,

with b∗d(k) = P .

Firms now face stronger incentives to increase their bids. Unlike the uniform auction,

a higher bid under the discriminatory auction always translates into a higher price, even

when the firm bids below the rival. In other words, the price effect is always stronger. In

particular, in this case for k = k the optimal bid is strictly above marginal cost, unlike

in the uniform auction.

Since firms submit higher bids under the discriminatory auction, it follows that the

highest accepted bid is higher than under the uniform auction. However, this does not

necessarily imply that firms make higher profits under the discriminatory auction. The

reason is that they receive their own bid rather than the highest.
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When costs rather than capacities are private information Holmberg and Wolak (2018)

provide a revenue equivalence result between the two auction formats. We now show that

this is not the case when there is private information regarding the capacity.

Lemma 3. The uniform and the discriminatory auction are not revenue equivalent.

Suppose that the private information is on cost, as in Holmberg and Wolak (2018). In

the symmetric equilibrium, small changes in costs affect prices, but due to the Envelope

Theorem, this effect on profits is zero. Furthermore, contingent on having either the low

or the high cost, the quantity is independent of the private information. Thus, to the

extent that the probability that two firms have the same cost is zero, the cost ranking and

quantities are not affected. Hence, revenue stays unchanged. The only effect of private

information on profits is through changes in the costs of production, but this effect is the

same across auction formats.

Matters are different when private information is on capacities, as changes in k affect

firms’ profits through their profit margin. In turn, since this profit margin is not the same

across the two auctions, the impact of private information on revenues differs depending

on the auction format in place (Lemma 3). Beyond this, it is difficult to arrive at general

conclusions regarding the revenue ranking across auctions. However, numerical results

suggest that the less competitive bidding under the discriminatory auction dominates over

the fact that the uniform auction pays the highest bid to all units. Thus, at leasts when

capacities are distributed according to a Beta distribution (Figure 6), the discriminatoy

auction results in higher payments to firms.

5.2 N Firms

In this section we extend our equilibrium analysis to allow for an arbitrary number

of firms, N ≥ 2. This increase in the number of firms allows us to carry out two kinds

of exercises: the effects of entry and the effects of changes in the market structure.

Regarding the first, an increase in the number of firms brings in new capacity into the

market. In the second case, a fixed distribution of capacity is allocated among a different
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auction when k ∼ Beta(α, β) in the support [0.5, 0.7].

number of firms.

For this purpose, we need some extra notation. Let kj be the minimum capacity

among those of firm i’s rivals, i.e., kj = min {..., ki−1, ki+1} . Its cumulative distribution

function and density are

Φ (kj) = 1− (1−G (kj))
N−1

ϕ (kj) = (N − 1) g (kj) (1−G (kj))
N−2

We are going to focus on the case in which firms are pivotal. As a result, all firms

but the one with the highest bid (and the smallest capacity) will sell at capacity. This

means that from the point of view of firm i the N -firm problem can be reinterpreted as

if it was only facing the smallest competitor.

The following result extends Proposition 2 to N firms.

Proposition 7. Assume θ
N
< k < k̄ < θ

N−1
. There exists a unique symmetric Pure

Strategy Equilibrium: each firm i = 1, ..., N chooses a bid that is strictly decreasing in ki

according to the function

b∗(ki) = c+ (P − c) exp
(
−ω

(
ki; k, k̄, N

))
,
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Figure 8: Comparison between N = 2 and N = 4. The dashed line corresponds to
the maximum of the bids of two firms when N = 4 and their capacities are uniformly
distributed, ki ∼ U [0.25, 0.5]. The solid line is the equilibrium bid of a firm when N = 2
and each firm has two plants that have the previous capacity distribution. The rest of
parameters are c = 0, P = 0.5 and θ = 1.

where

ω
(
ki; k, k̄, N

)
=

∫ ki

k

(
2k +

∫ k̄
k

(N − 2) kg(k)dk − θ
)
ϕ(k)∫ k̄

k

(
θ − kj −

∫ k̄
kj

(N − 2) kg(k)dk
)
ϕ(kj)dkj

dk,

with b∗(k) = P and b∗(k̄) = c.

As compared to the solution in the duopoly case, N enhances the quantity effect

because the loss in production from marginally increasing the bid is higher the more

competitors there are in the market. At the same time the price effect is reduced because

the firm only benefits from increasing the bid through the residual demand, which is now

smaller. Both effects imply that the optimal bid goes down with N and so does the

equilibrium price.

The model also allows us to understand what is the effect of changing market structure

for a given total capacity distribution. Suppose that N is the number of plants and

consider a situation in which we move from single-plant firms to a fewer number of firms

owning multiple plants. In this case there are two different effects. As the number of

firms decreases and each becomes bigger, they tend to behave less competitively and

increase their bids. However, a second effect arises, as a decrease in the number of firms

changes the distribution of the rivals’ capacity. The capacity of a firm owning multiple
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plants tends to take an intermediate value since smaller realizations of one plant are

compensated with larger realizations of another. Instead, in the single plant case what

matters is the realization of the smallest capacity which is smaller than the average

capacity. Firms face multiple plant competitors need to behave more aggressively as they

expect them to submit lower bids.

Figure 8 provides an example of how the previous two forces shape the equilibrium

with N = 2 as compared to the case with N = 4. The dashed line corresponds to the case

with N = 4 and capacities are uniformly distributed between U [0.25, 0.5], as described

at the beginning of this section. The dashed line displays, b̂(k), the average highest bid

of the two of these firms given a total capacity k defined as

b̂(k) =

∫ 2k

2k

max[b(x), b(k − x)]g(x)g(k − x)dx.

The solid line is the equilibrium bid of a firm that owns two of the plants and competes

with another firm that owns the other two. Hence, the difference between both cases is

only due the ownership of the plants and not the distribution of the capacity available.

This example illustrates how an increase in the number of firms translates in lower bids

only when capacity is low, whereas the reverse is true when firms have a large aggregate

capacity. The equilibrium price is lower when N increases.

6 Concluding Remarks

In this paper we have analyzed equilibrium bidding in multi-unit auctions when

bidders’ production capacities are private information. Furthermore, we have allowed

changes in capacity to shape the bidding functions, both through changes in the prices

and the quantities offered by firms. This is unlike other papers in the literature which

typically assume that the private information is on costs (or bidders’ valuations) and

which, with few exceptions, do not allow bidders to act on both the price and quantity

dimensions. We have shown that the nature of private information and the strategies

available to firms have a key impact on equilibrium behaviour.

We have motivated the model in the context of electricity markets, in which renewable
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technologies have constant and zero marginal cost but their capacity is subject to fluctua-

tions that are difficult to forecast by competitors. However, its approach and insights are

also applicable to other multi-unit auction settings in which the quantity dimension (e.g.

bidders’ maximum willigness to buy or sell) need not be common knowledge, as typically

assumed. Treasury auctions and the auctions for emissions permits are two examples,

among others.

Understanding competition among renewable producers is key to predict the perfor-

mance of future electricity markets as conventional technologies are being substituted

by renewables. The profitably of current investments critically depends on the future

prices at which firms expect to sell their renewable generation. Whereas in the past firms

were often paid according to fixed prices (i.e., the so-called feed-in tariffs), the European

Commission (in line with other jurisdictions) is now advocating to expose renewables

to the time-varying prices set in wholesale electricity markets. Thus, to assess whether

market revenues will be enough to induce the desired investments, regulators need to un-

derstand firms’ price setting incentives if such investments indeed take place. Concerns

over the profitability of renewable investments, have led regulators in several countries

to pay them some sort of market premia that are set through auctions. Likewise, firms

need to understand the future market performance in order to determine how to bid in

the auctions for the new investments.

The standard approach to assess these issues has been to assume that renewable

producers offer their output in the wholesale market at marginal costs. However, this

approach tends to overestimate the price-depressing effect of renewables, therefore un-

derestimating firms’ investment incentives. As we have shown in this paper, since strate-

gic producers add a markup to their marginal costs, the price impact of renewables is

smoothed out, thus making investments more profitable than would otherwise be assumed

under perfect competition. Likewise, the assumption of either competitive or strategic

bidding also has implications for the expected price volatility, ultimately affecting invest-

ment incentives of risk averse firms. While in this paper we do not model investment
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decisions, analyzing equilibrium market outcomes for given capacities is a necessary first

step to characterize equilibrium investment in the future.
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A Proofs

Proof of Proposition 1: See Fabra et al. (2006). Unlike their paper, the fact

that capacities are random and observable allows to symmetrize the equilibrium through

perfect correlation between the two asymmetric pure strategy equilibria.

Proof of Lemma 1: For part (i) of the lemma, suppose that firm j chooses a bid

according to a distribution Fj(b, kj) in the interval c to P . Denote this mixed strategy as

σj(kj). The probability that the bid of firm i, bi is lower than the bid of j, h(bi, σj(kj))

is non-increasing in bi.

Profits for firm i can be written as

πi(bi, σj(kj), ki) =

∫
kj

[(σj(kj)− c)kih(bi, σj(kj)) + (bi − c)(θ − kj)(1− h(bi, σj(kj)))] g(kj)dkj.

Towards a contradiction, consider two bids bi and b′i > bi for which firm i randomizes.

Then, it must be that firm i is indifferent and, thus,

πi(b
′
i, σj(kj), ki)− πi(bi, σj(kj), ki) =

∫
kj

{ki [bj(kj)− c] [h(b′i, σj(kj))− h(bi, σj(kj))] (2)

+(θ − kj) [(b′i − c)(1− h(b′i, σj(kj)))− (bi − c)(1− h(bi, σj(kj)))]} g(kj)dkj = 0.

Since j cannot condition its strategy on ki, then σj(kj) must be such that the previous

expression holds for all ki. Hence, either bj(kj) = c for all kj, in which case σj(kj) would

be a degenerate mixed strategy, or∫
kj

[h(b′i, σj(kj))− h(bi, σj(kj))] g(kj)dkj = 0.

Because the function h is non-increasing in the bid of firm i, this expression can only

hold if h(bi, σj(kj)) = h(b′i, σj(kj)) for all kj. But in this case, from equation (2),

πi(b
′
i, σj(kj), ki) > πi(bi, σj(kj), ki) leading to a contradiction.

Regarding part (ii) of the lemma, using the previous result we can focus on firm j

choosing a pure strategy. As a result, it is enough to show that the function πi(bi, bj(kj), ki)

has non-increasing differences in bi and kj. Using the previous expression and taking the

derivative with respect to ki we have

∂ [πi(b
′
i, bj(kj), ki)− πi(bi, bj(kj), ki)]

∂ki
=

∫
kj

[bj(kj)− c] [h(b′i, bj(kj))− h(bi, bj(kj))] g(kj)dkj ≤ 0.
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In words, larger firms gain (weakly) less from increasing their bids. Hence, the optimal

bid function is non-increasing in ki.

Proof of Proposition 2: First, we show that in a symmetric equilibrium the bid of

firm i has to be strictly decreasing in ki. Towards a contradiction, suppose that this is

not the case. From Lemma 1, this implies that there is a region [ka, kb] such that both

firms choose the same bid, bi = bj. At least one of the firms would not sell all its capacity

for some capacity realizations. The standard Bertrand argument implies that this cannot

be part of an equilibrium, as the firm that sells below capacity could increase its profits

by slightly undercutting the competitor in order to sell at capacity.

Suppose, therefore, that bj is strictly decreasing in kj. As a result, the optimal bid

for firm i can be characterized as bi ∈ arg maxbi πi(ki; bi, bj(kj)) where

πi(ki; bi, bj(kj)) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ k̄

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj. (3)

Firm i has the low bid when kj < b−1
j (bi) and hence sells up to capacity at the price set

by firm j. Otherwise, it sets the market price since it has the high bid.

The first-order condition that characterizes the optimal bid of firm i can be written

as

∂πi
∂bi

= b−1′
j (bi)g(b−1

j (bi))(bi − c)(ki + b−1
j (bi)− θ) +

∫ k̄

b−1
j (bi)

(θ − kj)g(kj)dkj = 0. (4)

Furthermore, around the candidate equilibrium, the profit function is strictly con-

cave.17

Under symmetry, bj(k) = bi(k). Accordingly, we can rewrite the expression as

1

b′i(ki)
g(ki)(bi(ki)− c)(2ki − θ) +

∫ k̄

ki

(θ − kj)g(kj)dkj = 0. (5)

The first term is negative and the second term is positive, so an interior solution exists.

Indeed, the first order condition takes the form

b′i(ki) + a(ki)bi(ki) = ca(ki)

17The proof is available from the authors upon request.
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where

a(k) =
(2k − θ)g(k)∫ k̄

k
(θ − kj)g(kj)dkj

· (6)

If we multiply both sides by e
∫ k
k a(s)ds and integrate from k to ki we obtain∫ ki

k

(
e
∫ k
k a(s)dsb′i(k) + a(k)e

∫ k
k a(s)dsbi(k)

)
dki = c

∫ ki

k

a(ki)e
∫ k
k a(s)dsdki.

We can now evaluate the integral as

e
∫ k
k a(k)dkbi(k)

]ki
k

= ce
∫ k
k a(s)ds

]ki
k
.

This results in

e
∫ ki
k a(k)dkbi(ki)− bi(k) = ce

∫ ki
k a(k)dk − c.

Solving for bi(ki) we obtain

bi(ki) = c+ Ae−
∫ ki
k a(k)dk = c+ Ae−ω(ki),

where A ≡ bi(k)− c and ω (ki) ≡
∫ ki
k
a(k)dk,

A necessary condition for this to constitute an equilibrium is that equilibrium profits

are at or above the minmax, which the firm can obtain by bidding at P. Hence, a necessary

and sufficient condition for equilibrium existence is that

πi(ki) ≥ (P − c)(θ − E [k]) (7)

for all ki. Since equilibrium profits are increasing in ki, whereas the minmax is independent

of ki, it follows that this condition is binding for ki = k. Note that the profits of ki = k

can be written as

πi(k) = (bi(k)− c)(θ − E [k])

Hence, to satisfy condition (7), we must have bi(k) = P, implying A = P − c. Since any

lower A would violate condition (7), the equilibrium is unique:

b∗i (ki) = c+ (P − c) e−ω(ki).
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Finally, we need to verify that the candidate equilibrium, indeed, maximizes profits

for each of the firms. From the first order condition in (4) we can compute the second

derivative of the profit function of firm i, when firm j uses a bidding function bj(kj) as

g(b−1
j (bi))

b′j (kj)

(
−

b′′j (kj)(
b′j (kj)

)2 (bi − c)(ki + b−1
j (bi)− θ) +

1

b′j (kj)

g′(b−1
j (bi))

g(b−1
j (bi))

(bi − c)(ki + b−1
j (bi)− θ)

+(ki + b−1
j (bi)− θ) +

1

b′j (kj)
(bi − c)− (θ − b−1

j (bi))

)
.

Once we substitute the candidate equilibrium bi(k) = bj(k) the previous expression be-

comes

∂2πi
∂2bi(ki)

=
g(ki)

b∗′ (ki)

1

a (ki)
< 0.

While this rules out local deviations, we still need to verify that firms do not have

incentives to bid at c.

Proof of Proposition 3: The proof follows the same logic as in Fabra et al. (2006).

The difference between the two games is that in Fabra et al. (2006) capacities are known

but fixed, so that firms cannot use their capacities as a correlation device.

Proof of Proposition 4: We first show that the profit function is submodular. We

need to distinguish three cases. First, if ki < θ − k̄, profits are always (P − c) ki since

there is not enough aggregate capacity. Since profits do not depend on bi, the cross

derivative of profits with respect to bi and ki is zero.

Second, if θ − k̄ < ki < θ − k, profits are

πi (bi, bj, ki) =

∫ θ−ki

k

(P − c) kig (kj) dkj

+

∫ k̄

θ−ki
((bj − c) kih(bi, bj(kj)) + (bi − c) (θ − kj) (1− h(bi, bj(kj))) g (kj) dkj

Taking derivatives,

∂πi (bi, bj, ki)

∂bi
=

∫ k̄

θ−ki
((bj − c) ki − (bi − c) (θ − kj))h′ (bi, bj(kj))

+ (θ − kj) (1− h (bi, bj(kj))) g (kj) dkj

∂πi (bi, bj, ki)

∂bi∂ki
=

∫ k̄

θ−ki
(bj − c)h′ (bi, bj(kj)) g (kj) dkj

+ (bj (θ − ki)− bi) kih′ (bi, bj(kj)) + ki (1− hi (bi, θ − ki)) ≤ 0.
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Note that the second and third terms are evaluated at kj = θ − ki. The second term

is non-positive given that for these values θ > ki + kj so that bj (θ − ki) = P ≥ bi and

h (bi, bj(kj)) is non-increasing. The last term is zero since, again θ > ki + kj, so that

hi (bi, θ − ki) = 1. Hence, the profit function is submodular.

Last, if ki > θ − k, the proof is as in the proof of Lemma 1.

Now, we characterize the symmetric equilibrium. Consider equilibria with the follow-

ing shape:

b̃j (kj) =

{
P if kj < k̃

bj (kj) if kj ≥ k̃

where bj (kj) is strictly decreasing kj (recall that Bertrand arguments rule out flat regions).

We first show that k̃ cannot be lower than θ/2. Argue by contradiction and suppose

k̃ < θ/2, or rearranging, k̃ < θ− k̃. This cannot part of a symmetric equilibrium since for

ki ∈
(
k̃, θ − k̃

)
aggregate capacity is not enough to cover total demand, implying that

the best response of firm i includes P , a contradiction.

We now show that k̃ cannot be greater than θ/2. Argue by contradiction and suppose

k̃ > θ/2. This cannot be part of a symmetric equilibrium since for ki ∈
(
θ/2, k̃

)
firm i

would be better off undercutting P . If the rival firm’s capacity falls in the interval kj ∈(
θ − ki, k̃

)
, the two firms would tie at P and each would sell below capacity. By slightly

undercutting P, expected profits would increase by (P − c)
(
G
(
k̃
)
−G (θ − ki)

) (
ki − θ

2

)
.

It follows that we must have k̃ = θ/2.

In turn, note that this implies that we only have ties at P when both firms have

capacity below θ/2 so that aggregate capacity is not enough to cover total demand.

Otherwise, when at least one firm is selling below capacity, we never have ties at P .

Expected profits are

πi (bi, bj, ki) = (P − c) kiG (θ − ki)+
∫ b−1

j (bi)

max(θ−ki,k)

(bj(kj)−c)kig(kj)dkj+

∫ k̄

b−1
j (bi)

(bi−c)(θ−kj)g(kj)dkj

As compared to the profit expression in (3), there are only two differences: the first term,

which reflects profits when aggregate capacity is not enough to cover total demand; and

the lower limit of the integral in the second term, which now becomes max (θ − ki, k)
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instead of k. None of these two differences affect marginal profits, which remain as in (5).

If ki ≤ θ/2, the first term in the first order condition (5) is always positive, hence it is

optimal to bid at P. If ki > θ/2, the first term of the first order condition (5) is negative

and the second term is positive, so an interior solution exists.

The proof follows the same steps as in the proof of Proposition 2, simply replacing

k with max (k, θ/2) in all expressions. In this case, minmax profits depend on ki. In

particular, they are given by

πi (bi, bj, ki) = (P − c) kiG (θ − ki) +

∫ k̄

max(θ−ki,k)

(P − c)(θ − kj)g(kj)dkj.

Hence, to rule out deviations to P, we now need to prove that minmax profits increase

less in ki as compared to equilibrium profits. First, suppose ki ≤ θ/2. Equilibrium profits

are exactly equal to the minmax as in equilibrium the firm bids at P . Second, suppose

θ/2 < ki < θ − k. The derivative of the minmax with respect to ki is

(P − c)G (θ − ki) .

The derivative of profits is

(P − c)G (θ − ki) +

∫ b−1
j (bi)

θ−ki
(bj(kj)− c)kig(kj)dkj

The other terms of the derivative cancel out because of continuity and because of the

envelope theorem. Clearly, this derivative is greater than that of the minmax.

Last, suppose ki > θ − k. The derivative of the minmax is

(P − c) (G (θ − ki)− g (θ − ki) ki) .

The derivative of profits is

(P − c) (G (θ − ki)− g (θ − ki) ki) +

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj.

Again, this derivative is greater than that of the minmax.

It follows that deviations to P are not profitable since equilibrium profits are always

strictly greater than the minmax, except for ki ≤ θ/2 when equilibrium profits are exactly

equal to the minmax.
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Proof of Lemma 2: We first prove the non-existence of a pure-strategy equilibrium

when ki ≥ θ. By way of contradiction, assume that there exists one. Following the same

steps as in the proof of Lemma 1, it is easy to show that it must be non-increasing in ki.

Suppose, therefore, that bj is non-increasing in kj. As a result, the optimal bid for firm

i can be characterized as bi ∈ arg maxbi πi(ki; bi, bj(kj)).

If bi > bj (θ) , expected profits are

πi(ki; bi, bj(kj)) = (bi − c)

(∫ b−1
j (bi)

k

θg(kj)dkj +

∫ θ

b−1
j (bi)

(θ − kj)g(kj)dkj

)
.

Instead, if bi ≤ bj (θ) ,

πi(ki; bi, bj(kj)) = (bi − c)
∫ b−1

j (bi)

k

θg(kj)dkj.

In both cases, profit functions do not depend on ki. Therefore, the optimal bid is the

same for all ki ≥ θ. Thus, at the candidate pure strategy equilibrium, b∗ (ki) = b∗ (θ) for

all ki ≥ θ.

However, this is ruled out by standard Bertrand-Edgeworth arguments. First, if

b∗ (θ) > c, firm i would have incentives to slightly undercut b∗ (θ). If kj ≥ θ, this would

allow firm i to serve total demand, rather than a share of it, at only a slightly lower

price, with almost no effect on firm i’s profits if kj < θ. Second, if b∗ (θ) = c, the market

price would always be c. Hence, firm i would make zero profits regardless of kj and would

rather deviate to P in order to make positive profits over the expected residual demand.

It follows that the equilibrium must involve mixed strategies. Standard arguments imply

that firms choose prices in a compact support
[
b, b̄
]
.

Proof of Proposition 5: A symmetric Bayesian Nash Equilibrium must have the

following properties. First, using the same arguments in Proposition 2, the optimal bid

must be strictly decreasing in ki for ki < θ. Second, from Lemma 2 it must involve a

mixed strategy when ki ≥ θ.

To make things simpler, we first assume b̄ ≤ b (k) and b ≥ b (θ) . At the end of the

proof we will show that this assumption must hold in equilibrium. We define k̃ = b−1
j (b̄)

and k̂ = b−1
j (b). Since bj (kj) is decreasing, it follows that

[
k̃, k̂
]
⊆ [k, θ] . We consider

four capacity regions:
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Region I. If ki ∈
[
k, k̃
]
, expected profits are

πi(bi; ki, bj(kj)) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ θ

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj

Firm i has the low bid when kj < b−1
j (bi) and, hence sells up to capacity at the price

set by firm j. Otherwise, either it sells the residual demand and sets the price or, if

kj > theta the rival will serve all the market.

Taking derivatives, we obtain a similar First Order Condition as in equation (5),

with the only difference that k̄ is replaced by θ. Hence, the solution is the same as in

Proposition 2, with the only difference that k̄ is replaced by θ in equation (6). Hence,

the optimal bid in this region is

b∗(ki) = c+ (P − c) e−ω(ki), (8)

where ω (ki) ≡
∫ ki
k
a(k)dk, and

a(k) =
(2k − θ)g(k)∫ θ

k
(θ − kj)g(kj)dkj

· (9)

Using the optimal bid in (8), for given b̄, k̃ is implicitly defined by

b∗
(
k̃
)

= b̄.

Region II. If ki ∈
[
k̃, k̂
]
, expected profits are

πi(bi; ki, bj(kj)) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ θ

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj

+ (1−G (θ))

∫ b̄

bi

(bj − c)kifj (bj) dbj.

The profit expression now adds a third term as the firm will serve all its capacity at the

price set by the rival whenever kj ≥ θ and bi < bj.

The first-order condition that characterizes the optimal bid of firm i can be written

as

1

b′j(kj)
g(b−1

j (bi))(bi−c)(ki+b−1
j (bi)−θ)+

∫ θ

b−1
j (bi)

(θ−kj)g(kj)dkj−(1−G (θ)) (bi−c)kifj (bi) = 0.
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This expression is similar to equation (5), where k̄ replaces θ, plus an additional third

term, which is negative. If follows that the optimal bid that solves the above equation is

lower than the optimal bid in the baseline case.

Using symmetry, the optimal bid is the solution to(
1− (1−G (θ)) (b(k)− c)kf (b(k))

(2k − θ)g(k)
a(k)

)
b′(k) + a(k)b(k) = ca(k),

where a(k) is defined as in equation (9). Note that if G (θ) = 1 we would obtain the same

solution as in the baseline model. Since we now have G (θ) < 1, the solution is lower.

Region III. If ki ∈
[
k̂, θ
]
, expected profits are

πi(bi; ki, bj(kj)) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ θ

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj

+ (1−G (θ))

∫ b̄

b

(bj − c)kifj (bj) dbj.

The first-order condition that characterizes the optimal bid of firm i is the same as

in Region I as the last term does not depend on bi. Hence, the solution is also given by

expressions (8) and (9). Hence, (8), for given b, k̂ is implicitly defined by b∗(k̂, k, θ) = b.

Region IV. Last, consider ki ∈
[
θ, k̄
]
. Expected profits are given by,

πi(bi; ki, bj(kj)) = (bi−c)

(∫ b−1
j (bi)

k

θg(kj)dkj +

∫ θ

b−1
j (bi)

(θ − kj)g(kj)dkj + (1− Fj (bi)) (1−G (θ)) θ

)
(10)

As argued above, this profit function does not depend on ki, so the optimal bid must be

constant in ki.

At the upper bound of the support, Fj
(
b̄
)

= 1. Hence, b̄ maximizes

πi(b̄, ki) = (b̄− c)

(∫ b−1
j (b̄)

k

θg(kj)dkj +

∫ θ

b−1
j (b̄)

(θ − kj)g(kj)dkj

)

= (b∗
(
k̃
)
− c)

(
θG (θ)−

∫ θ

k̃

kjg(kj)dkj

)
Taking derivatives with respect to b̄,

θG (θ)−
∫ θ

b−1
j (b̄)

kjg(kj)dkj + (b̄− c) 1

b′j(kj)
g(b−1

j (b̄))b−1
j (b̄) = 0
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Using the definition of k̃ above, it can be re-written as

θG (θ)−
∫ θ

k̃

kjg(kj)dkj + (b̄− c) 1

b∗′j (k̃)
g(k̃)k̃ = 0.

From the analysis of the case with certain pivotality we know that

b′i(ki) + a(ki)bi(ki) = ca(ki)

so that

b′j(kj) = − (bi(ki)− c) a(ki)

Hence,

θG (θ)−
∫ θ

k̃

kjg(kj)dkj − (b̄− c) 1(
b∗(k̃)− c

)
a(k̃)

g(k̃)k̃

Since b∗(k̃) = b̄,

θG (θ)−
∫ θ

k̃

kjg(kj)dkj −
g(k̃)k̃

a(k̃)
= 0

Using the expression for a(k) in equation (9),

θG
(
k̃
)
− θ − k̃

2k̃ − θ

∫ θ

k̃

(θ − kj) g(kj)dkj = 0,

which defines k̃. Note that we must have an interior solution, k̃ ∈ (k, θ). For k̃ = k, the

first term is zero so the left hand side would be negative; whereas for k̃ = θ, the second

term is zero so the left hand side would be positive.

At the lower bound of the support, Fj (b) = 1. Expected profits are

πi(b, ki) = (b− c)

(
θ −

∫ θ

b−1
j (b)

kjg(kj)dkj

)

= (b
(
k̂
)
− c)

(
θ −

∫ θ

k̂

kjg(kj)dkj

)
Since the firm must be indifferent between all the prices in the support, profits at the

lower and upper bounds must be equal,

(b̄− c)

(
θG (θ)−

∫ θ

b−1
j (b̄)

kjg(kj)dkj

)
= (b− c)

(
θ −

∫ θ

b−1
j (b)

kjg(kj)dkj

)
= π∗

Using the definitions for b̄ and b,

(b∗
(
k̃
)
− c)

(
θG (θ)−

∫ θ

k̃

kjg(kj)dkj

)
= (b∗

(
k̂
)
− c)

(
θ −

∫ θ

k̂

kjg(kj)dkj

)
= π∗
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which defines k̂. Hence, equilibrium profits are well defined π and we can treat them like

a constant.

By the above equality, when k̄ is just above θ, k̃ is arbitrarily close to k̂. Instead,

when k is so large that G (θ) = 0, then b
(
k̂
)

= c.

Now, we can use the above expression for equilibrium profits to solve for F (b) in

equation (10),

F (b) =
1

(1−G (θ)) θ

(
θ −

∫ θ

b∗−1(b)

kg(k)dk − π∗

(b− c)

)
where b∗(k) is defined above by expressions (8) and (9).

Computing the density,

f (b) =
1

(1−G (θ)) θ

(
π∗

(b− c)2
+

k

b∗′(k)
g(k)

)
.

Proof of Proposition 6: Expected profits under the discriminatory auction are

given by:

πi(ki; bi, bj(kj)) = (bi − c)

(∫ b−1
j (bi)

k

kig(kj)dkj +

∫ k̄

b−1
j (bi)

(θ − kj)g(kj)dkj

)
. (11)

Maximization with respect to bi implies,(∫ b−1
j (bi)

k

kig(kj)dkj +

∫ k̄

b−1
j (bi)

(θ − kj)g(kj)dkj

)
+(bi−c)b−1′

j (bi)
(
g(b−1

j (bi))(ki + b−1
j (bi)− θ)

)
= 0.

Under symmetry, bj(k) = bi(k). Accordingly, we can rewrite the expression as

kiG(ki) +

∫ k̄

ki

(θ − kj)g(kj)dkj + (bi − c)
1

b′i(ki)
g(ki)(2ki − θ) = 0

This expression is the similar as equation (5) for the uniform auction, but is has an

additional term, kiG(ki), reflecting the fact that the firm is always paid according to its

bid, also when it is the large firm and hence has the low bid. The rest of the proof follows

the same steps as the proof of Proposition 2.

Proof of Lemma 3: Suppose that profits under the uniform and the discriminatory

auction, determined by equations (3) and (11), are equal for all ki. Since the bid of the
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discriminatory auction is higher than the uniform one, b∗u (ki) < b∗d (ki), where we denote

the latter as b∗u, it then follows that the first term of the two profit equations must be

such that ∫ ki

k

(bu(kj)− c)kig(kj)dkj >

∫ ki

k

(bd(ki)− c)kig(kj)dkj

which implies ∫ ki

k

(
bu(kj)− bd(ki)

)
g(kj)dkj > 0.

It can be verified that the previous expression is equal to ∂πu(k)
∂k
− ∂πd(k)

∂k
. Using the

Fundamental Theorem of Calculus and the fact that πu (k) = πd (k) it follows that πu(k) >

πd(k) which contradicts that profits are equal and, hence, there is no revenue equivalence.

Proof of Proposition 7: Profits for firm i are:

πi(ki) =

∫ b−1
j (bi)

k

(bj(kj)−c)kiϕ(kj)dkj+

∫ k̄

b−1
j (bi)

(bi−c)

(
θ − kj −

∫ k̄

kj

(N − 2) kg(k)dk

)
ϕ(kj)dkj

The first-order condition that characterizes the optimal bid of firm i can be written as

∂πi
∂bi(ki)

= b−1′
j (bi)ϕ(b−1

j (bi))(bi − c)

(
kj +

∫ k̄

kj

(N − 2) kg(k)dk + b−1
j (bi)− θ

)

+

∫ k̄

b−1
j (bi)

(
θ − kj −

∫ k̄

kj

(N − 2) kg(k)dk

)
ϕ(kj)dkj = 0.

Under symmetry, bj(k) = bi(k), we can rewrite the expression as

∂πi
∂bi(ki)

=
1

b′i(ki)
ϕ(ki)(bi(ki)− c)

(
2ki +

∫ k̄

ki

(N − 2) kg(k)dk − θ

)

+

∫ k̄

ki

(
θ − kj −

∫ k̄

kj

(N − 2) kg(k)dk

)
ϕ(kj)dkj = 0

Reorganizing it,

b′i(ki) + bi(ki)a(ki) = ca(ki)

where a(ki) does not depend on bi,

a(ki) =

(
2ki +

∫ k̄
ki

(N − 2) kg(k)dk − θ
)
ϕ(ki)∫ k̄

ki

(
θ − kj −

∫ k̄
kj

(N − 2) kg(k)dk
)
ϕ(kj)dkj

·
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Hence, the solution is the same as above:

b∗i (ki) = c+ (P − c) e−ω(ki)

where ω (ki) ≡
∫ ki
k
a(k)dk.

43


	Introduction
	The Model
	Equilibrium Characterization
	Known capacities
	Capacities are private information
	Baseline model
	When renewables are not always enough
	When firms are not certain to be pivotal


	Interpreting the model
	Extensions
	Discriminatory Auctions
	N Firms

	Concluding Remarks
	Proofs

