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Abstract

This paper proposes a tractable model of Bayesian learning on social networks in which agents
choose whether to adopt an innovation. We study the impact of network structure on learning
dynamics and diffusion. In tree networks, we provide conditions under which all direct and indirect
links contribute to an agent’s learning. Beyond trees, not all links are beneficial: An agent’s
learning deteriorates when her neighbors are linked to each other, and when her neighbors learn
from herself. These results imply that an agent’s favorite network is the directed star with herself
at the center, and that learning is better in “decentralized” networks than “centralized” networks.

1 Introduction

How do groups of friends, organizations, or entire societies learn about innovations? Consider con-
sumers learning about a new brand of electric car from their friends, farmers learning about a novel
crop from neighbors, or entrepreneurs learning about a source of finance from nearby businesses. In
all these instances agents learn from others’ choices, so the diffusion of the innovation depends on the
social network. Does an agent benefit from a more highly connected network? Do agents learn more in
centralized networks or in decentralized networks? What network maximizes an agent’s information?

This project proposes a tractable, Bayesian model to answer these questions. The model separates
the role of social and private information as illustrated in the “social purchasing funnel” in Figure 1.
First, at an exogenous time, an agent develops a need for an innovation. For example, a person’s car
breaks down, and she contemplates buying a new brand of electric car. Second, at the consideration
stage, she observes how many of her friends drive the car and makes an inference about its quality.
Third, if the social information is sufficiently positive, she inspects the car by taking it for a test drive.
Finally, she chooses whether to adopt the car which, in turn, provides information for her friends.

We characterize the diffusion of innovation in the social network via a system of differential equa-
tions. In contrast to most papers in the literature (e.g. Acemoglu et al., 2011), our results speak to
learning dynamics at each point in time, rather than focusing on long-run behavior, as the number
of agents grows large. Understanding the full dynamics is important because empirical researchers
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Figure 1: The Social Purchasing Funnel.

must identify economic models from finite data, and because in practice, governments and firms care
about when innovations take off, not just if they take off. We thus recover the tractability of the
reduced-form models of diffusion (e.g. Bass, 1969) in a model of Bayesian learning.

Our main results describe how learning dynamics depend on the network structure. Starting with
a tree network, we show that an agent typically benefits when her neighbors have more links; but
beyond tree networks, backward and correlating links can muddle her learning. This implies that an
agent’s learning is maximized by a star network with herself at the center, and that “decentralized”
networks are superior to “centralized” ones. These results help us understand how diffusion changes
as social media raises interconnectedness, or when comparing the residents in a loosely connected city
to those in a tightly connected village. They also inform the impact of interventions that form new
social links to spread ideas (e.g. Cai and Szeidl, 2018).

In the model, we assume that agents consider a single innovation/product whose quality is high
or low; inspection reveals this common quality and agents’ idiosyncratic preferences for the product.
We additionally assume that an agent only adopts a product if it is high quality. Thus, when an
agent sees a neighbor adopt, she knows that quality is high, and so inspects herself. Conversely, if an
agent observes none of her neighbors adopt the product, she must infer whether (i) they have yet to
develop a need for the product, (ii) they developed a need, but chose not to inspect, (iii) they found
the quality to be high, but did not adopt for idiosyncratic reasons, or (iv) they found the quality to
be low. The agent’s inspection decision is thus based on the hypothesized inspection decisions of her
neighbors, which collectively generate her social learning curve (formally, the probability at least one
of her neighbors adopts as a function of time). In turn, her adoption decision feeds into the social
learning curves of her neighbors.

Our first main result characterizes the joint adoption decisions of all agents via a system of ordinary
differential equations. For a general network, the dimension of this system is exponential in the number
of agents, I, since one must keep track of correlations between individual adoption rates; e.g. if two
agents have a neighbor in common, their adoption decisions are correlated. This motivates us to study
directed tree networks, in which an agent’s neighbors receive independent information, as in a large
random network with finite degree. In such trees, it is sufficient to keep track of individual adoption
decisions, meaning the system reduces to I dimensions. Moreover, in a regular network, where everyone
has the same number of neighbors, behavior is described by a one-dimensional differential equation.
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We then use these differential equations to study adoption and learning rates across networks.
First we show that, given a mild condition on the hazard rate of inspection costs, an agent’s adoption
rate is increasing in her level of social information. In the context of tree networks, this implies
inductively that an agent’s adoption rate increases if she adds an extra neighbor, if her neighbors’
add extra neighbors, and so on. Moreover, these direct and indirect links all raise the agent’s utility.
We can even compare the value of direct and indirect links: for example, an agent prefers two direct
neighbors to an infinite chain where everyone has one neighbor.

Beyond tree networks, we show that agent i need not benefit from additional links of her neighbors.
First, adding a correlating link between two of i’s neighbors harms i’s learning because the correlation
raises the probability that neither of them adopts the product. Second, when we add a backward
link, from i’s neighbor j to i, this lowers j’s adoption rate and thereby i’s information and utility.
Intuitively, i cares about j’s adoption when she develops the need for the innovation; prior to this
time, j could not have seen i adopt, and so the backward link makes j more pessimistic and lowers
his adoption. All told, agent i’s favorite network is the directed star with herself at the center. These
results also imply that agents would prefer to have d links in a “decentralized” random graph than in
a “centralized”, complete network of d + 1 agents.

1.1 Literature

The literature on observational learning originates with the classic papers of Banerjee (1992) and
Bikhchandani, Hirshleifer, and Welch (1992). In these models, agents observe both a private signal
and the actions of all prior agents before making their decision. Smith and Sørensen (2000) show that
“asymptotic learning” arises if the likelihood ratios of signals are unbounded. Smith and Sørensen
(1996) and Acemoglu et al. (2011) dispense with the assumption that an agent can observe all prior
agents’ actions, and interpret the resulting observation structure as a social network. The latter paper
generalizes Smith and Sorensen’s asymptotic learning result to the case where agents are (indirectly)
connected to an unbounded number of other agents.

Our model departs from these papers in two ways. First, the “inspection” aspect of our model
separates the role of social and private information, endogenizing the latter. A few recent papers have
considered models with this flavor. Assuming agents observe all predecessors, Mueller-Frank and Pai
(2016) and Ali (2018) show asymptotic learning is perfect if experimentation costs are unbounded
below. In a network setting, Lomys (2018) reaches the same conclusion if, in addition, the network is
sufficiently connected.

Second, the “adoption” aspect of our model complicates agents’ inference problem when observing
no adoption.1,2 A number of papers have analyzed related problems in complete networks. Guarino,
Harmgart, and Huck (2011) suppose an agent sees how many others have adopted the product, but
not the timing of others’ actions or even her own action. Herrera and Hörner (2013) suppose an
agent observes who adopted and when they did so, but not who refrained from adopting. Hendricks,
Sorensen, and Wiseman (2012) suppose an agent knows the order in which others move, but only sees

1There is a wider literature on diffusion without learning. There are “awareness” models in which an agent becomes
aware of the product when her neighbors adopt it. One can view Bass (1969) as such a model with random matching;
Campbell (2013) studies diffusion on a fixed network. There are also models of “local network goods” where an agent
wants to adopt the product if enough of her neighbors also adopt. Morris (2000) characterizes stable points in such a
game. Sadler (2018) puts these forces together, and studies diffusion of a network good where agents become aware
from her neighbors.

2The inference problem is also related to a broader set of games in which agents move at privately known times (e.g.
Kamada and Moroni, 2018).
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the total number of adoptions; as in our model, the agent then uses this public information to acquire
information before making her purchasing decision. These papers characterize asymptotic behavior,
and find an asymmetry in social learning: good products may fail but bad products cannot succeed.
In Section 3.2 we show a similar result applies to our setting.

Our key contribution over this literature lies in the questions we ask. Traditionally, herding papers
ask whether society correctly aggregates information as the number of agents grows. In their survey
of observational learning models, Golub and Sadler (2016) write:

“A significant gap in our knowledge concerns short-run dynamics and rates of learning in
these models. [. . .] The complexity of Bayesian updating in a network makes this difficult,
but even limited results would offer a valuable contribution to the literature.”

In this paper we characterize such “short-run” learning dynamics in social networks. We then study
how an agent’s information varies with the form of the network, and characterize her preferences over
the network structure.

2 Model

Network. A finite set of I agents is connected via a commonly known, exogenous, directed network
G that represents which agents observe the actions of others.3 If i observes j we write i ! j or
(i, j) 2 G, say i is linked to j and call j a neighbor of i. We denote the set of i’s neighbors by Ni.
Agent j is successor of i if there exists a path i ! . . . ! j.

States. The agents seek to learn about the quality of a single product of quality ✓ 2 {L, H} = {0, 1}.
Time is continuous, t 2 [0, 1]. At time t = 0, agents share a common prior Pr(✓ = H) = ⇡0 2 (0, 1).

Game. Agent i develops a need for the product, or enters, at privately observed time ti ⇠ U [0, 1].4

She observes which of her neighbors have adopted the product by time ti and updates her belief about
the quality of the product. The agent then chooses whether or not to inspect the product at cost ci,
with cdf F and bounded pdf f . Finally, if she inspects the product, she adopts it with probability
↵ 2 (0, 1] if ✓ = H and probability 0 if ✓ = L. The parameter ↵ captures taste heterogeneity across
agents. Agents receive utility 1/↵ from adopting a product, so taking expectations over idiosyncratic
tastes, they have expected utility one from a high-quality product, and expected utility zero from
a low-quality product. Entry times ti, inspection costs ci, and idiosyncratic tastes are independent
within agents and iid across agents.

Remarks. The model makes several assumptions of note. First, we assume that an agent only
observes the adoption decisions of her neighbors, but not their entry times or inspection decisions.
Learning is thus asymmetric: If agent i sees that j has adopted, she knows that the product is high
quality. Conversely, if she sees that j has not adopted, she must infer whether (i) he has yet to develop
a need for the product, (ii) he developed a need, but chose not to inspect, (iii) he inspected and found
the quality to be high, but did not adopt for idiosyncratic reasons, or (iv) he inspected and found
the quality to be low. The assumption that only product adoption is observable is consistent with

3When analyzing regular tree networks in Section 4, we also allow for a countably infinite number of agents.
4The uniform distribution is a normalization: ti should not be interpreted as calendar time, but rather as time-

quantile in the product life-cycle.
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traditional observational learning models, and seems reasonable in several types of applications. An
agent may not know the people she observes (e.g. she sees people on the street wear a new fashion
item). The decisions may have small stakes (e.g. if she sees friends’ social media posts about a new
movie, she is unlikely to phone for further details). Or, there may be many possible alternatives (e.g.
if a friend buys a new car, she is unlikely to enquire about all the other cars they chose not to buy).

Second, we assume that the agent only purchases the product if it is high quality. This simplifies
the analysis since we need only keep track of whether an agent has seen at least one adoption. In
ongoing work we consider a model variant in which agents adopt low-quality products with positive
probability.

Third, we assume that the agent learns product quality perfectly by inspecting the good. Thus,
social information determines the inspection decision, but is rendered obsolete in the adoption deci-
sion. This makes the model more tractable than traditional herding models, where social and private
information need to be aggregated with Bayes’ rule.

Finally, we assume the agent must act at her exogenous entry time ti and cannot delay her
decision. For example, when the consumer’s current car breaks down she needs to buy a new one.
Methodologically, this means our model in the spirit of traditional herding models rather than timing
games such as Gul and Lundholm (1995).

2.1 Examples

The next two examples illustrate agents’ inference problem.

Example 1 (Directed pair i ! j). Suppose there are two agents, Iris and John. John has no
social information, while Iris observes John. Let xj,t be the probability that John adopts product H

by time t.5 Since he enters uniformly over t 2 [0, 1], ẋj,t equals the probability he adopts conditional
on waking up at time t. This is given by

ẋj,t = Pr(j adopt) = ↵Pr(j inspect)= ↵F (⇡0). (1)

Given his prior ⇡0, John’s expected utility from inspecting the good is ⇡0 � c. He thus inspects with
probability F (⇡0) and adopts with probability ↵F (⇡0).

Now consider Iris. She learns by observing whether John has adopted. We thus interpret xj,t as
Iris’s social learning curve. Her adoption rate is given by

ẋi,t = Pr(i adopt) = ↵ Pr(i inspect) = ↵ [1 � Pr(i not inspect)]
= ↵ [1 � Pr(j not adopt) ⇥ Pr(i not inspect|j not adopt)]

= ↵
h
1 � (1 � xj,t)(1 � F (⇡;

t ))

i
,

where Iris’s posterior that the quality is high given John has not adopted is given by Bayes’ rule,

⇡;
t := ⇡;

(1 � xj,t) :=

(1 � xj,t)⇡0

(1 � xj,t)⇡0 + (1 � ⇡0)
. (2)

5Since no agent adopts when ✓ = L, it suffices to keep track of the adoption probability conditional on ✓ = H.
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Figure 2: Iris’s Social Learning and Adoption Curves from Example 1. This figure assumes inspection costs
are c ⇠ U [0, 1], high-quality goods are adopted with probability ↵ = 1, and the prior is ⇡0 = 1/2.

Writing ˜F (1 � xj,t) := F (⇡;
t ),6 Iris’s adoption curve becomes

ẋi,t = ↵
h
1 � (1 � xj,t)(1 � ˜F (1 � xj,t))

i
. (3)

This equation plays a central role throughout the paper. Figure 2 illustrates Iris and John’s adoption
curves, as well as Iris’s choices. One sees that conditional on seeing John fail to adopt, Iris becomes
more pessimistic over time, and her adoption probability falls. Overall, John provides useful informa-
tion to Iris, and her adoption curve lies above his. 4

Example 2 (Chain). Suppose there is an infinite chain of agents, so Kata observes Lili, who
observes Moritz, and so on ad infinitum. All agents are in identical positions, so it is natural to
consider equilibria where they have the same adoption curve, xt. Analogous to Iris’s adoption in
equation (3), this is governed by the ODE

ẋt = ↵
h
1 � (1 � xt)(1 � ˜F (1 � xt))

i
. (4)

This captures the idea that Kata’s decision takes into account Lili’s decision, which takes into account
Moritz’s decision, and so on. The simplicity of the adoption curve is in stark contrast to the cyclical
behavior seen in traditional herding models when agents only observe the previous agent (Celen and
Kariv, 2004). One can show that the adoption curve is convex, lying above xi,t in Figure 2, meaning
an agent’s adoption increases when her neighbor observes more information. We generalize this ob-
servation in Theorem 3. 4

3 General Networks

Consider an arbitrary, finite directed network G and suppose agent i enters at time ti. Let x�i
Ni,t

be
the probability that one (or more) of i’s neighbors adopts by time t  ti. This acts as a summary

6We write the argument of F̃ as (1 � x) since the likelihood ratio given Iris sees “no adoption” is (1 � x)/1. We
generalize this approach in Section 3.
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statistic of other agents’ adoption decisions, so we call it i’s social learning curve. As in equation (3),
i’s adoption is governed by

ẋi,t = ↵
h
1 � (1 � x�i

Ni,t
)(1 � ˜F (1 � x�i

Ni,t
))

i
. (5)

Inspired by the examples in Section 2, one might hope to derive agent i’s social learning curve x�i
Ni,t

from the adoption curves of her neighbors, xj,t for j 2 Ni. Unfortunately, this is not possible in
general.

The first reason is the correlation problem. To illustrate, suppose i observes both j and k, j

observes only k, while k has no information. We can determine k’s adoption curve, xk,t, using equation
(1) and j’s adoption curve, xj,t, using equation (3). Agent i’s inspection decision in turn depends on
the probability j or k adopts (or both). Since j observes k, their adoption decisions are correlated
and it is not enough to keep track of the marginal adoption probabilities, xj,t and xk,t; rather we must
keep track of the joint distribution.

The second reason is the self-reflection problem. To illustrate, suppose i and j observe each other.
When making her inspection decision at time ti, agent i must infer whether or not j has already
inspected. However, since she just entered, agent i knows that agent j cannot have seen i adopt.
Thus, i conditions j’s adoption curve x�i

j,t on the event that i has not yet adopted, which differs from
j’s actual, i.e. unconditional, adoption curve xj,t. We return to these issues in Section 5.

Despite the problems of correlation and self-reflection, we can still show:

Theorem 1. In any network G, there exists a unique equilibrium.

Proof. We establish Theorem 1 by characterizing equilibrium adoption via a system of ODEs, albeit
in a large state space. Denote the state of the network by � = {�i}i2I , where �i 2 {;, a, b}. Let
�i = ; if i has yet to enter, t  ti; �i = a if i has entered and adopted; and �i = b if i has entered and
not adopted. In state �, agent i’s information set is given by ⇤(i, �) = {�0

: �0
i = �i, �j = a iff �0

j =

a for all j 2 Ni}; namely, i knows her own state and whether (or not) her neighbors have adopted.
We can then describe the distribution over states at time t conditional on quality ✓ by z = (z✓

�,t), and
the probability of sets of states ⇤ by z✓

⇤,t :=

P
�2⇤ z✓

�,t. Given state �, let ��i denote the same state
with �i = ;.

Figure 3 illustrates the evolution of the state via a Markov chain. Suppose there are three agents
and � = (�i, �j , �k) = (;, a, b). Then probability mass moves into state � from states ��j as agent
j enters and adopts, and from ��k as agent k enters and doesn’t adopt. Similarly, probability mass
moves out of state �, and into states (a, a, b) and (b, a, b), as agent i enters.

To quantify these effects, suppose quality is high. Agent i enters uniformly over time [t, 1], meaning
probability mass escapes at flow rate zH

t /(1� t). Similarly, in state ��i, agent i enters uniformly over
time [t, 1], compares the likelihood ratio of the quality to the cost, and thus adopts with probability
↵ ˜F

⇣
zH
⇤(i,��i),t/zL

⇤(i,��i),t

⌘
; this inflow is then weighted by the mass zH

��i,t in state ��i. The equilibrium
distribution over the states � thus evolves according to the ODE

żH
�,t = � 1

1 � t

X

i:�i=;

zH
�,t +

1

1 � t

X

i:�i=a

zH
��i,t↵

˜F

 
zH
⇤(i,��i),t

zL
⇤(i,��i),t

!
+

1

1 � t

X

i:�i=b

zH
��i,t

"
1 � ↵ ˜F

 
zH
⇤(i,��i),t

zL
⇤(i,��i),t

!#

(6)
with initial condition zH

�,0 = 1 if �i = ; for all i, and 0 otherwise. When quality is low, the calculation
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Figure 3: Illustrative Markov Transitions underlying Theorem 1.

is easier since no agents ever adopt, and the state distribution is determined solely by the exogenous
entry process:

zL
�,t = (1 � t)|{i:�i=;}|t|{i:�i=b}|

0

|{i:�i=a}|. (7)

To establish existence of a unique equilibrium via the Picard-Lindelöf theorem, we need to argue
that the RHS of (6) is Lipschitz continuous in z. In states � where at least one of i’s neighbors
has adopted, we have zL

⇤(i,��i),t = 0, meaning that the likelihood ratio is infinite and the inspection

probability is ˜F
⇣
zH
⇤(i,��i),t/zL

⇤(i,��i),t

⌘
= 1. In states � where none of i’s neighbors has adopted,

�j 6= a for all j 2 Ni, the denominator in (6) is constant, equal to zL
⇤(i,��i),t = 1, and the inspection

probability simplifies to ˜F
⇣
zH
⇤(i,��i),t

⌘
. Since the density f(c) is bounded, one can verify that ˜F (z) is

Lipschitz, as is the RHS of equation (6).

The system of ODEs (6) implies equilibrium existence and uniqueness, but is less useful as a tool
to compute equilibrium numerically since the state is 3

|I| dimensional. For this reason we impose more
structure on networks in the following sections, where we can provide simple formulas for diffusion
that can be easily computed.

3.1 Social Learning and Adoption Curves

Having established existence and uniqueness in Theorem 1, we return to equation (5) to analyze
how an agent’s learning and adoption evolves over time. We will also use these tools to perform
comparative statics on networks in later sections.

Recall that x�i
Ni,t

is the probability that one (or more) of i’s neighbors adopt the high-quality
product by time t  ti. We can illustrate i’s information structure by the following table:

� 1 adopt 0 adopt
✓ = H x�i

Ni,t
1 � x�i

Ni,t

✓ = L 0 1

If x�i
Ni,t

= 1, then agent i has perfect information about the state, whereas if x�i
Ni,t

= x it is as if
the signal has been lost with probability 1 � x. It follows that an increase in x�i

Ni,t
Blackwell-improves

agent i’s information and thereby increases her expected utility. This implies:

Lemma 1. In any network, any agent’s information Blackwell-improves over time.
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Proof. Adoption is irreversible, so the number of agents who have adopted the product increases over
time. Hence, if we consider agent i, the probability that one (or more) of her neighbors adopt, x�i

Ni,t
,

also increases over time, and her information Blackwell-improves.

Lemma 1 implies that agent i prefers to move later since the adoption of others (or lack thereof)
provides useful information.

Next, we study the effect of information on adoption.

Assumption: The distribution of costs has a bounded hazard rate (BHR) if

f(c)

1 � F (c)
 1

c(1 � c)
for c 2 [0, ⇡0].

Lemma 2. If F satisfies BHR then i’s adoption rate ẋi,t increases in her information x�i
Ni,t

. Thus, if
i’s information x�i

Ni,t
increases for all t, then so does her adoption xi,t.

Under BHR, Lemmas 1 and 2 thus imply that i’s adoption rate ẋi,t rises over time. That is, her
adoption curve xi,t is convex in t, as shown in Figure 2. This result partly reflects our normalization
that entry times are uniform on [0, 1]; if agents enter according to a Poisson process, adoption curves
would look more like the familiar “S-shape” seen in diffusion models, e.g. Bass (1969).

Proof. Rewriting the ODE (5) as ẋi,t = ↵�(x�i
Ni,t

), we differentiate to obtain

�0
(x) = (1 � F (⇡;

(1 � x))) � (1 � x) · r⇡;
(1 � x) · f(⇡;

(1 � x))

= (1 � F (⇡;
(1 � x))) � ⇡;

(1 � x) · (1 � ⇡;
(1 � x)) · f(⇡;

(1 � x)),

where the second equality uses Bayes’ rule (2),

(1 � x) · r⇡;
(1 � x) = (1 � x)

⇡0(1 � ⇡0)

[1 � x⇡0]
2

=

(1 � x)⇡0

1 � x⇡0

1 � ⇡0

1 � x⇡0
= ⇡;

(1 � x) · (1 � ⇡;
(1 � x)).

Since ⇡;
(1 � x) is the belief after seeing “no adoption”, it has range [0, ⇡0]. Thus, BHR implies that

�0
(x) � 0 for all x  ⇡0. Thus, better information x�i

Ni,t
means higher slope ẋi,t and level xi,t.

For an intuition, recall that adoption probabilities x are conditional on high quality ✓ = H. The
expected value of the posterior E[⇡t|H] thus exceeds the prior ⇡0 and the adoption probability tends
to increase in the amount of social information x�i

Ni,t
. But since the posterior after “no adoption”

⇡;
t falls in x�i

Ni,t
, this intuition does not apply to all cost distributions, and Lemma 2 requires as-

sumption BHR. Formally, BHR is satisfied if f is weakly increasing;7 this includes c ⇠ U [0, 1] as a
special case. For other densities f , BHR is automatically satisfied when c ⇡ 0 since the RHS in-
creases to infinity. For higher costs, BHR states that the density does not decrease too quickly. In
particular, BHR holds with equality if f(c) / 1/c2, meaning that it is satisfied if d log f(c)/dc � �2/c.

Example 3 (Information can lower adoption). Assume the distribution F (c) has support [0, ⇡0];
this violates BHR since the denominator of the RHS, 1�F (⇡0), vanishes. Without social information,
agent i inspects with probability 1. With social information x�i

Ni,t
2 (0, 1), agent i inspects with prob-

ability 1 if some neighbor adopts, and below 1 if no neighbor adopts, since ⇡;
t < ⇡0. After observing

7For then f(c)  E[f(z)|z � c] = 1�F (c)
1�c  1�F (c)

c(1�c) .
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the extra information, agent i’s inspection and adoption rate thus drop, contradicting Lemma 2. 4

3.2 Herding in Large Complete Networks

Much of the literature on social learning focuses on the asymptotic properties of learning, when agents
observe many predecessors. When agents have imperfect information about the timing of other agents’
moves, several papers have found that the asymmetry in the inference problem after observing adoption
and non-adoption translates into an asymmetry of asymptotic learning.8 In particular, they find that
bad products never succeed while good products sometimes fail. To connect our model to this strand
of the literature, we show the analogous result holds in our model.

Let c be the minimum cost in the support of F . Also, let p✓
I be the ex-ante probability that an

agent in a complete network of I agents will inspect a product of quality ✓.

Theorem 2. In large complete networks: Bad products always fail, limI!1 pL
I = 0; Good products

always succeed, limI!1 pH
I = 1, iff c = 0.

Proof. See Appendix A.1.

Intuitively, no-one ever adopts a low-quality product, so agents become pessimistic and stop in-
specting. With a high quality-product, there exists a choke point x̄ such that, when the probability
someone adopts hits x̄, then seeing “no adoption” makes agents sufficiently pessimistic that they no
longer inspect; that is, ⇡;

(1 � x̄) = c. If c = 0, then x̄ = 1 and some agents will keep inspecting
until someone adopts the high-quality product. While, if c > 0, the fate of the high-quality product
in a large market is decided immediately after the product launch, t = 0. With probability x̄, an
early-mover inspects and adopts the product, and everybody else follows suit. With probability 1� x̄,
there is no such early-mover, and the posterior belief about product quality drops to c before anybody
adopts, and the product fails.

We now move on to the heart of our paper: studying the impact of network structure on social
learning and diffusion.

4 Tree Networks

We have argued that the analysis is complicated by (i) self-reference and (ii) correlation. This mo-
tivates us to study learning in tree networks, where such problems do not arise. Tree networks are
realistic in some applications such as hierarchical organizations where the information flow is uni-
directional. They are also a good approximation of large random networks;9 these are relevant when
a consumer learns about electric cars by observing the number on the road, or about movies through
friends’ posts on social media.

We say that network G is a tree if any two agents i and j are connected by at most one path
i ! . . . ! j. Since i’s neighbors do not observe i, and since they have independent information, i’s

8See Guarino, Harmgart, and Huck (2011), Hendricks, Sorensen, and Wiseman (2012) and Herrera and Hörner
(2013).

9Suppose there are I agents on a random directed graph G with out-degree distribution �; for large I, such a network
can be constructed, say, by the configuration model (Jackson, 2010, Section 4.1.4). If we look within n links of agent i,
then i’s “n-local” network is almost surely a tree as I grows large, and so i’s social learning curve in the random network
G converges to the one on the tree with out-degree distribution �.
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social learning curve depends only on the individual adoption probabilities of her neighbors x�i
Ni,t

=

xNi,t = 1 �
Q

j2Ni
(1 � xj,t). Thus, her adoption probability is

ẋi,t = ↵


1 �

Y

j2Ni

(1 � xj,t)

✓
1 � ˜F

✓ Y

j2Ni

(1 � xj,t)

◆◆�
. (8)

This forms an I-dimensional, time-invariant first-order ODE, which is easy to compute.
We say a tree G is regular with degree d if every node has d links (i.e. each agent observes d

agents). Such a system has |I| = 1 agents, so Theorem 1 does not apply as stated. Nevertheless,
joint adoption probabilities (xi) 2 [0, 1]

1 equipped with the sup-norm define a Banach-space, so an
infinite-dimensional version Picard-Lindelöf theorem (e.g. Deimling, 1977, Section 1.1) implies that a
unique equilibrium exists. Agents are symmetric, so equilibrium adoption is the same for all agents,
and we write it as xt. The probability no neighbor adopts is (1 � xt)

d, so agent i’s adoption curve is
given by a one-dimensional ODE,

ẋt = ↵
h
1 � (1 � xt)

d
(1 � ˜F ((1 � xt)

d
))

i
. (9)

This generalizes equation (4) by allowing for more than one neighbor per agent.

4.1 Comparative Statics

Clearly, an agent benefits when they add more neighbors since they can always ignore the extra links.
But what if their neighbors add more links? Moreover, is it possible to compare learning in different
tree networks? For example, would an agent learn more from an infinite chain of agents, or two
independent, uninformed agents? In this section we answer these questions. This is in contrast to
traditional herding models where behavior is too complicated for simple comparative statics.

Figure 4 illustrates the social learning curves as we add links to the network. The left panel
compares a lone agent (John in Example 1), an agent with one link (Iris in Example 1) and an infinite
chain (Kata in Example 2). The social learning curves shift up as neighbors add more links, and so
the Blackwell-ranking implies that Kata is better off than Iris, who is better off than John. The right
panel shows the social learning curves in regular networks with d = 1 (i.e. an infinite chain), d = 5 and
d = 20. Again these social learning curves shift up, so agents benefit from making the tree denser. We
now show that, if the BHR assumption holds, an agent always benefits from both direct and indirect
links.

Write adoption rates in tree networks G, ˆG as x, x̂, and recall that agent i’s social learning in
network ˆG is (Blackwell) superior to her social learning in network G if x̂Ni,t � xNi,t for all t, implying
that i prefers network ˆG over G.

Theorem 3. Consider trees G ⇢ ˆG and assume BHR holds. For any agent, social learning is superior
in the larger tree,

xNi,t  x̂N̂i,t
for all t. (10)

Hence all agents prefer the larger tree ˆG.

Proof. First consider the leaves of G, who have no information in the small tree. By definition
xNi,t = 0  x̂N̂i,t

. Now, consider some agent i with neighbors Ni in the small tree. By induction,
assume that (10) holds for all j 2 Ni. By Lemma 2, such neighbors adopt more in the larger network,
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Figure 4: Social Learning Curves in Tree Networks. This figure assumes c ⇠ U [0, 1], ↵ = 1, and ⇡0 = 1/2.

xj,t  x̂j,t. Additionally, agent i has more neighbors in the large tree. Hence,

xNi,t = 1 �
Y

j2Ni

(1 � xj,t)  1 �
Y

j2N̂i

(1 � x̂j,t) = x̂N̂i,t

as required.10

Theorem 3 is proved by induction and hence applies to any finite tree. But the analogous result
holds for (infinite) regular trees, as illustrated in Figure 4. That is, an increase in d raises the
probability one neighbor adopts and, using BHR, raises the RHS of the law-of-motion (9). Thus, the
adoption xt also increases for all t.

Theorem 3 is silent about the quantitative impact of direct and indirect links. The next example
shows that adding one direct link is more important than adding a whole chain of indirect links.

Example 4 (Two Links vs Infinite Chain). Compare an agent with two uninformed neighbors,
and an agent in an infinite chain where everyone has one neighbor, as shown in in Figure 5. When
agent i has two uninformed neighbors j, k, each neighbor has an adoption curve xj,t = xk,t =

˜F (1)↵t.
Hence the probability that at least one of them adopts is

x{j,k},t = 1 � (1 � ˜F (1)↵t)2. (11)

With an infinite chain, agent i’s social learning curve is given by

ẋt = ↵
h
1 � (1 � xt)(1 � ˜F (1 � xt))

i
 ↵

h
1 � (1 � xt)(1 � ˜F (1))

i
= ↵

h
(1 � ˜F (1))xt +

˜F (1)

i
.

Solving this ODE,

xt 
˜F (1)

1 � ˜F (1)

⇣
exp

⇣
(1 � ˜F (1))↵t

⌘
� 1

⌘
. (12)

In Appendix A.2, we show that (11) exceeds (12) for any ˜F (1), ↵, t 2 [0, 1], as required.
10Without the BHR assumption, the result can break down. In Example 3, an agent observing agent i would prefer

that she not see agent j’s action.
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Figure 5: Direct vs Indirect Links. This figure illustrates the two networks compared in Example 4.

Intuitively, if i ! j ! k, then agent k only affects i’s action if k enters first, then j enters, and
then i enters. Thus, the chance of learning information from the nth removed neighbor in the chain is
(1/2)

n, meaning that an infinite chain of signals is worth at most two direct signals. However, these
indirect signals are intermediated (i.e. k’s signal must pass through j) which reduces their information
value. Put differently, two direct links are better for t ⇡ 0 since k can communicate directly, rather
than having to wait for j to enter. Over time, the information value of the chain increases and the
slope of the social learning curve catches up, but the level never does. 4

5 Network Structure

In this section we move beyond trees, and study other aspects of network structure. In tree networks,
Theorem 3 establishes that agents benefit from both direct and indirect links. Do they also benefit
from backwards and correlating links? We first provide two examples and then present a more general
theorem that combines these forces. See Figure 6 for illustrations.

Example 5 (Adding Correlating Links). First assume that agent i observes two uninformed
agents, j and k. Given high quality, agent i sees no adoption with probability Pr(k not adopt) ⇥
Pr(j not adopt) since j and k are independent. Now suppose we then add a link from j to k,
correlating their adoption outcomes. The chance i sees no adoption rises to Pr(k not adopt) ⇥
Pr(j not adopt|k not adopt), thereby reducing i’s social learning.11 Intuitively, agent i just needs
one of her neighbors to adopt. Adding the link j ! k makes j more pessimistic and lowers his adop-
tion probability exactly in the event when his adoption would be informative for i, namely when k

has not adopted. 4

Example 6 (Adding Backward Links). Recall Example 1 where agent i observes an uninformed
agent j, and add a backwards link j ! i. When agent i enters the market at ti, she knows that j

cannot have seen her adopt; however, j does not know the reason for i’s failure to adopt. Let x�i
j,t be

j’s adoption curve conditional on t  ti. Equation (5) implies that i’s adoption curve is given by

ẋi,t = ↵
h
1 � (1 � x�i

j,t)(1 � ˜F (1 � x�i
j,t))

i
.

To solve for the adoption of the “ignorant j” agent, x�i
j,t , note that he in turn knows that i cannot

11Formally, when agents j and k are independent, Pr(j not adopt) = 1� ↵F̃ (1)t. However, when agent j observes k,
Pr(j not adopt|k not adopt) = 1�

R t

0
↵F (1� xk,s)ds.
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Figure 6: Networks from Examples 5 and 6. The left panel adds a correlating link. The right panel adds a
backward link.

have seen him adopt at t  tj , so thinks he is learning from an “ignorant i” agent, x�j
i,t . The ignorant

agents i and j thus have adoption curves

ẋ�i
j,t = ↵ ˜F (1 � x�j

i,t ) and ẋ�j
i,t = ↵ ˜F (1 � x�i

j,t). (13)

It follows that ẋ�i
j,t  ↵ ˜F (1), and so x�i

j,t  ↵ ˜F (1)t, which is j’s adoption curve if he does not observe
i. Thus, the link j ! i lowers i’s social learning curve, and her utility. Intuitively, when i makes her
decision, j cannot have seen her adopt; the link j ! i thus makes j more pessimistic in this event
and reduces his adoption. 4

We generalize these examples in the following theorem. Define an i-tree G as a network where no
j 2 Ni is its own successor, and no j, j0 2 Ni have a common successor. In particular, such a network
has no backward links Bi = {j ! i} for j 2 Ni, and correlating links Ci = {j ! j0} for j, j0 2 Ni. We
now consider adding such links, by considering networks ˆG ⇢ G [ Bi [ Ci with G ( ˆG.

Theorem 4. Adding backward and correlating links to an i-tree reduces i’s social learning at all t > 0,
x̂�i

N̂i,t
< x�i

Ni,t
, and her utility.

Proof. See Appendix A.3.

The intuition is the same as in the examples. Adding a backward link j ! i makes j more
pessimistic conditional on t  ti, reducing j’s adoption probability and thereby i’s social learning.
Adding a correlating link j ! j0 makes j less likely to adopt when j0 does not adopt, which is exactly
when j’s information is valuable to i.

We have seen that i benefits from “independent” links (Theorem 3), but is harmed by backward
and correlating links (Theorem 4). The effect of adding other links is less clear.

Example 7 (The “Niece” link). Take the four-person tree network with links i ! j, k and j ! l

(so l is k’s “niece”), and consider the effect of adding the link k ! l on i’s social learning. This new
link has two effects: it provides extra information to k and can raise her adoption; it also correlates
the decisions of j and k.

If costs have support [0, ⇡0], as in Example 3, then both effects lower i’s social learning and utility.
However, if BHR holds, these forces counteract one another, and the niece link can benefit agent i.
For an example, suppose costs have the following bi-modal distribution:
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f(c) =

8
>><

>>:

f for c 2 [0, ⇡0
]

0 for c 2 [⇡0, ⇡0]

¯f for c 2 [⇡0, 1]

where ⇡0 < ⇡0 is small, and the constants f, ¯f are such that BHR holds. Here, the link k ! l always
increases k’s probability of adopting: If l adopts, this induces k to adopt, which is useful if j has
not yet adopted; if l does not adopt this makes k more pessimistic, but does not lower his inspection
probability because his belief remains above ⇡0 (recall that ⇡0 is small). 4

5.1 Applications

We now address the implications of the economic forces we have identified. So far we have seen that
an agent benefits from direct and indirect links (Theorem 3), prefers direct to indirect links (Example
4), but is harmed by self-reflecting and correlating links (Theorem 4). This suggests that agent i’s
optimal network is the i-star, in which agent i observes all other agents, and other agents observe
nobody.

Theorem 5. Among all networks with |I| agents, the i-star maximizes agent i’s social learning, x�i
Ni,t

,
and her utility.

Proof. First, consider the i-star, and suppose i sees no adoption of the high-quality good. It must be
the case that any agent j who enters before i, tj < ti, and has favorable idiosyncratic preferences,
chooses not to inspect, cj > ⇡0. We now argue that for the same realizations of costs, entry times,
and idiosyncratic preferences, agent i observes no adoption in any other network G.

To prove the result, we consider the L agents who move before i and have favorable idiosyncratic
preferences, relabel them by their entry times t1 < t2 < ... < tL, and argue by induction over
` 2 {1 . . . L}. Agent ` = 1 moves first and thus sees no adoption in network G; since c` > ⇡0

he chooses not to inspect, and thus does not adopt. Continuing by induction, agent ` also sees no
adoption in G; the lack of adoption is bad news, ⇡;

(1 � x�`
N`,t`

)  ⇡0 < c`, so he also does not inspect
or adopt. Thus i’s social learning curve is higher in the i-star than in any other network, as is her
utility.

Do agents learn more when learning from disparate sources, where each agent has many “weak ties”,
or in a network where connections are clustered and lessons are reinforced? The famous “strength of
weak ties” hypothesis (Granovetter, 1973) argues that social behavior spreads more quickly in loosely
connected networks (as in a big city), whereas Centola’s (2010) experiment suggests that clusters may
be important for learning and diffusion (as in a tight-knit village).

To address this question, consider two networks in which all agents have d links. In the centralized
network there are d + 1 agents, all linked to one another. In the decentralized network there is an
infinite number of agents connected via a random network.

Theorem 6. Assume BHR holds and all agents have d neighbors. Social learning in the decentralized
network is superior to the centralized network.

Proof. Consider network G where agent i has d neighbors, who have no links themselves (i.e. an
i-star). Since the decentralized network is a regular tree (see footnote 9), Theorem 3 implies that i’s
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learning in the decentralized network is superior to G. In contrast, the centralized network is obtained
from G by adding all self-reflecting and correlating links. By Theorem 4, i’s learning in G is superior
to the centralized network. Finally, observe that both these networks treat all agent symmetrically,
so all agents prefer the decentralized network to the centralized network.

6 Conclusion

Social learning plays a crucial role in the diffusion of new products (e.g. Moretti, 2011), financial
innovations (e.g. Banerjee et al., 2013), and new production techniques (e.g. Conley and Udry, 2010).
This paper proposes a tractable model of social learning on networks, describes behavior via a system of
differential equations, and studies the effect of network structure on learning dynamics. We show that
an agent benefits from more direct and indirect links, but is harmed by correlating and backwards
links. We also characterize an agent’s optimal network, and show that agents prefer decentralized
networks over centralized networks.

The paper has three broad contributions. First, it develops intuition for how network structure
affects learning. Second, it can be used to structurally estimate diffusion in real-world networks while
maintaining Bayesian rationality. Third, it provides a base to understand policy experiments that
affect network structure and the information of participants.

Our ongoing work pushes this paper into three different directions. Given the current model,
we are interested in characterizing aggregate behavior (e.g. welfare, diffusion) across a variety of
networks. We are also extending the model to allow for more general learning structures, whereby
agents sometimes adopt low-quality products. Finally, we are studying diffusion when agents know
their neighbors, but not the entire network structure.
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Appendix

A Omitted Proofs

A.1 Proof of Theorem 2

When the probability of observing an adoption hits x̄ := sup{x :

˜F (1 � x) > 0}, the absence of an
adoption makes agents sufficiently pessimistic to shut down inspection completely, no matter the cost.
Using the definition of ˜F , this cutoff satisfies ⇡;

(1 � x̄) = c, so x̄ = 1 iff c = 0. We also assume that
⇡0 > c so x̄ > 0; else, no agent ever inspects for any I, and the theorem is trivially true.

The key argument in the proof is that the adoption probability x�i
Ni,t

converges to the choke-point
x̄ instantaneously as the number of agents grows large. Formally, we claim that:

lim

I!1
x�i

Ni,t
= x̄ for any t > 0 (14)

Intuitively, as long as x�i
Ni,t

< x̄, some low cost types c 2 [c, ⇡(1 � x�i
Ni,t

)] are willing to inspect,
pushing x�i

Ni,t
up as I grows; as x�i

Ni,t
approaches x̄, the inspection probability vanishes, so clearly

x�i
Ni,t

 x̄. To formalize this argument, suppose agent i moves at time ti = t > 0. Since the
network is symmetric and adoption rises over time, the inspection probability of any agent j with
tj < t (conditional on the most negative event that j observes no adoption) is bounded below by
˜F (1 � x�j

Nj ,tj
) � ˜F (1 � x�i

Ni,t
). Thus the ex-ante probability that agent i observes no adoption is

bounded above by 1 � x�i
Ni,t

 (1 � ↵t ˜F (1 � x�i
Ni,t

))

I�1, where t is the probability an agent j moves
before i and ↵ is the probability he has a favorable idiosyncratic preference. Now, if for a subsequence
I⌫ we had lim⌫!1 x�i

Ni,t
< x̄  1, we run into the contradiction that

0 < lim

⌫!1
(1 � x�i

Ni,t
)  lim

⌫!1
(1 � ↵t ˜F (1 � x�i

Ni,t
))

I�1
= 0.

This establishes (14).
Now consider a low quality product, ✓ = L. Since ˜F is continuous, the inspection probability

vanishes at any t > 0, limI!1 ˜F (1 � x�i
Ni,t

) =

˜F (1 � x̄) = 0, and thus its expected value pL
I =

R 1
0

˜F (1 � x�i
Ni,t

)dt vanishes, too. For a high quality product, ✓ = H, the inspection probability at any
t > 0 converges to limI!1(1� (1�x�i

Ni,t
)(1� ˜F (1�x�i

Ni,t
))) = x̄, which equals 1 iff c = 0. Thus, good

products succeed with probability x̄; this implies that good products succeed with certainty iff x̄ = 1,
as required.

A.2 Example 4: Two Links vs Infinite Chain

Here, we provide the calculations for Example 4, arguing that x(↵t) := x{j,k},t = 1 � (1 � ˜F (1)↵t)2

exceeds y(↵t) :=

F̃ (1)

1�F̃ (1)

⇣
exp

⇣
(1 � ˜F (1))↵t

⌘
� 1

⌘
which, in turn, exceeds the social learning curve

in the infinite chain.
It suffices to show this inequality for ↵t = 1. To see this, note that the difference x � y is (i)

concave in ↵t since x is concave and y is convex,12 and (ii) increases at ↵t = 0 since x0
(0) = 2

˜F (1) >

12Intuitively the marginal benefit from two links eventually falls because of double-counting, while the marginal benefit
from the infinite line increases with the increased likelihood of benefiting from the indirect links.
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˜F (1) = y0
(0).13 Abbreviating � := 1� ˜F (1), we thus need to show x(1) = 1��2 � 1��

� (e� �1) = y(1).

Multiplying by �/(1� �), this is equivalent to 1+ �(1+ �) � e�
= 1+ � + �2/2+ �3/6+ .... Subtracting

(1 + � + �2/2), and dividing by �2/2, the LHS becomes 1, while the RHS equals �
3 +

�2

12 + ... 
2

�
1
3! +

1
4! + ...

�
= 2(e � 2

1
2) < 0.5.

A.3 Proof of Theorem 4

Consider the original network G and suppose that i sees no adoption of the high quality good. It
must be that for every j 2 Ni with tj < ti and favorable idiosyncratic preference: (i) agent j does not
see an adoption, �k,tj 6= a for all k 2 Nj , and (ii) agent j has relatively high costs, cj � ⇡(1 � x�j

Nj ,tj
).

We now argue that for the same realization of costs, entry times and idiosyncratic preferences, i also
sees no adoption in ˆG.

To prove the result, we consider the L neighbors of i who move before i and have favorable
idiosyncratic preferences, relabel them by their entry times t1 < t2 < ... < tL, and argue by induction
over ` 2 {1 . . . L}. First, we establish that agent ` = 1 does not observe an adoption in ˆG. By
supposition (i) we know the “original neighbors” k 2 N1 do not adopt by t1; since their inspection
decision only depends on their successors, they also do not adopt in ˆG. Moreover, the “new neighbors”
of ` = 1, which may include both i’s neighbors and i herself, have not yet entered and hence not
adopted.

Second, we show ` = 1 does not inspect in ˆG if none of his neighbors has adopted. By supposition
(ii) we know that ` = 1 does not inspect in G. The adoption probability of the original neighbors
N1 does not depend on the additional links in ˆG; but the lack of adoption by the additional links
provides additional bad news for ` = 1, meaning he has less incentive to inspect in ˆG. Formally,
⇡;

(1 � x̂�1
N̂1,t1

)  ⇡;
(1 � x�1

N1,t1
) < c1, where the first inequality is strict if ` = 1 has an extra neighbor

in ˆG. All told, agent ` = 1 does not adopt.
Now suppose by induction that agents 1, ..., `� 1 have not adopted and consider agent `. First, he

does not see an adoption in ˆG. This is because his “new neighbors” either move later, or move earlier
and have not adopted, by induction. Second, the lack of adoption from the new neighbors makes him
more more pessimistic in ˆG and less likely to inspect conditional on seeing no adoption.

Summing up, we have argued that if i does not observe an adoption in network G, he does not
observe an adoption in network ˆG either, and so x̂�i

N̂i,t
 x�i

Ni,t
. The strict inequality obtains since at

least one of i’s neighbors j has an additional link in ˆG, and so there are some realizations of entry
times and idiosyncratic preferences such that for costs cj 2 [x�j

Nj ,tj
, x̂�j

N̂j ,tj
], agent j adopts in G but

not in ˆG.
13Intuitively, the twice removed link in the infinite chain is only half as useful as a direct link since agents need to

enter in the right order, while further removed links are initially useless.
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