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Abstract

A principal delegates the running of a project to an agent subject to moral hazard

over an infinite horizon, and cannot observe any of the outcomes. The agent sends

reports at each instant t; naturally reports may be manipulated. Eliciting truthful

revelation is necessary to the provision of effort, and is achievable by using audits and

penalties. It requires that the continuation value of the agent be kept large enough, and

the agent be terminated below a threshold; she receives an endogenous information rent.

That rent is completely determined by the parameters of the moral hazard problem.

The optimal audit trades off the expected audit cost again postponing termination

by lowering the information rent. The contract is implemented in standard financial

securities. The effect of the governance problem on the cost of capital is subtle: a

positive continuation utility at termination implies some recovery by financiers and so

decreases the credit spread. But a deterioration in governance increases that spread

sharply.
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1 Introduction

This paper is concerned with a problem of practical importance: how to design a contract

to overcome moral hazard when performance is not observed by the principal but instead

communicated by the agent, over time. The most obvious example is that of a CEO who

undertakes a sequence of payoff-relevant actions, the outcome of which is never observed by
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shareholders; instead s/he sends them accounting reports. This practice, of course, affords

the CEO the opportunity to manipulate this information. Indeed, “earnings management”

and its economic consequences are well documented, as for example by Kedia and Philippon

(2009).

The game I study is simple to lay out. A principal employs a wealthless agent to run a

project; the action (effort, diligence) of the agent is not observable and its outcome (drift)

may be confounded with some random noise (Brownian process). The outcome of the project

is also not observable, but the agent is asked to send a report to the principal at each instant

t. Thus a contract can only be conditioned on the history of those reports. An agent has

incentives to misreport to enhance payments and to conceal her lack of effort. Mitigating

misreporting requires auditing the reports, and imposing penalties upon the detection of

misreporting – a standard practice both in the real world and in models of it. Auditing is

costly. The penalty upon misreporting is termination without payment, which is the harshest

penalty that may be imposed on the (wealthless) agent.

In spite of the apparent complexity in eliciting private information from the agent in a

dynamic environment, intertemporal incentives help tremendously in solving it. The funda-

mental intuition is simple: time is helpful to the principal because it allows him to postpone

payment to the agent (“back-loading”). This delay introduces a wedge between the instanta-

neous expected benefit of misreporting (essentially, zero almost surely) and its instantaneous

expected cost; if this cost is always positive, lying does not pay. To keep this cost positive,

the agent must have something at stake at all times; that is, the principal must pay the agent

an information rent. The optimal contract is the one that i) induces effort from the agent,

ii) elicits truthful information revelation and iii) minimizes that rent, which is equivalent to

maximizing the value to the principal. All three of these characteristics have implications

in terms of social welfare. Effort is socially valuable by construction. Truthful information

revelation is necessary precisely to maintain the incentives for effort. Absent truthful reve-

lation the agent benefits from a double deviation: shirk and lie (to cover up the shirking).

Finally minimizing the information rent is socially valuable as it is tantamount to postpon-

ing termination, which is socially wasteful – but necessary to the provision of incentives.

An essential step is to find the best auditing policy, which determines the lowest possible

information rent.

The main results are twofold. First, truthful information revelation requires the contin-

uation utility of the agent to always remain large enough (in a sense made precise). It is
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intuitive that if the continuation value is zero, the agent may as well misreport since termi-

nation also yields zero. Thus an agent who has “failed” is terminated at a strictly positive

continuation value, and is paid out that continuation value; this is a golden parachute that is

necessary for truthful information revelation. A similar conclusion has been reached by In-

derst and Mueller (2010) in a two-period model with exogenous adverse selection (the CEO’s

type) – see details below. Importantly, here the information of the agent is completely en-

dogenous. So is the termination barrier, which is completely determined in equilibrium by

the variables of the moral hazard problem. This points directly at the source of the frictions.

Moral hazard requires the compensation of the agent to be made contingent on outcomes,

which generates the incentives for misreporting. Absent moral hazard the reporting problem

is moot. The more acute the moral hazard problem, the larger is the information rent.

Second, the optimal contract trades off the expected cost of auditing the agent with the

expected benefit of audit. These marginal quantities are to be understood over time. The

marginal cost is governed by a “probability” of audit – in fact, the intensity of a Poisson

random measure – that depends on the report of the agent. Whether truthful or manipulated,

that report is a stochastic process. Truthful revelation requires the intensity to be increasing

and convex in the report. The marginal benefit is the expected value of delaying termination.

It is socially and privately optimal to delay costly termination as long as possible. Delaying

termination requires as low a termination threshold (equivalently, an information rent) as

possible, which is achieved by auditing the agent; hence the trade-off between delay and

audit cost.

The contract is implemented using standard securities, which enables to connect the cost

of funds to frictions. Some results are subtle: the implied credit yield spread (on debt) is

lower in this model than absent the observability problem. Because the agent is terminated

at a positive continuation utility, financiers can also recover some of their investment: a

fraction of the debt is de facto secured. The credit spread depends on the parameters

of the moral hazard problem, and it increases more sharply than absent the observability

problem. This speaks to an increase probability of default that owes to earlier termination.

Understanding the underlying frictions allows the analyst to distinguish between the role of

recovery and probability of default summarised in a single term: the credit spread.

The problem of ex post audit and moral hazard has been studied in static models.

Mookherjee and Png (1989) essentially find first-best solutions by using enough instru-

ments; Roger (2013) provides a second-best solution when the principal cannot rely on all
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these instruments. In that second-best solution information is systematically distorted for

some outcomes and may be pooled for some others, with consequences for the provision of

effort. In this dynamic model information is truthfully reported in equilibrium, thanks to

the intertemporal incentives provided by the (optimal) contract – however at the cost of

“premature” termination (that is, at a continuation utility in excess of the outside option of

the agent).

Inderst and Mueller (2010) study a problem of CEO entrenchment over two periods.

The critical part is that at the beginning of period 2, the agent holds private exogenous

information as to her suitability for the job, hence about the (continuation) value of the

firm. To sort types, she is presented with a menu of contracts; the high-type selects the

steeper contract and the low type opts out with a golden parachute. There is no such hard,

exogenous, private information here but only endogenous private information. However, as

in Mueller and Inderst’s work, truthful revelation of that information remains essential to

the provision of effort incentives.

This paper nests in the growing literature on dynamic contracting, which started with the

works of Sannikov (2008), Biais et al. (2007) and DeMarzo and Sannikov (2006). The main

departure to all these models is, of course, the non-observability of the outcome process,

which requires communication from the agent instead. This gives rise to a new incentive

constraint that must be satisfied to elicit information revelation. That incentive constraint

also defines an endogenous boundary condition of the control problem of the principal. In

a working paper, Zhu (2018) studies the reverse problem: performance is observed only by

the principal, who must communicate it to the agent and compensate her accordingly. Zhu

(2018) shows a monitoring technology with weak statistical power but strong incentive power

(e.g. a Brownian process) may be counter-productive. Also related is Felipe Varas and

Skrzypacz (2018), who show that firms caring about their reputation are best subject to

random inspections, except for those “recently inspected”. Inspections reveal the true quality

of the firms; that quality is stochastic. The threat of inspection spurs effort, while actual

inspections also reveal the true information, which is payoff relevant. Here the threat of

termination compels truthful revelation; that in turn is essential to spur effort.
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2 Model

2.1 Basics

A principal deals with an agent over an infinite horizon; time is continuous. All parties

are risk-neutral; the principal discounts future payments at rate r > 0 and the agent is

(weakly) more impatient, as her discount rate ρ ≥ r. We are given a filtered probability

space (Ω,F ,P) on which a standard Wiener process Z is defined and induces the completed

filtration Ft. The agent controls the drift of the operating cashflow

dXa
t = µ(at)dt+ σdZt, X0 = x, (2.1)

where a is an (Ft)-predictable process taking values in {0, A}. The function µ(a) has a very

simple structure

µ(a) =

 µ if a = 0

µ+ A if a = A
,

but whether the agent exerts effort is not observable by the principal. Hence at all times

the agent may select the inefficiently low action and mislead the principal. Working costs

the agent only η ≤ 1 per unit of effort; thus it is socially efficient for the agent to work. To

avoid multiplicity of confusing cases, also suppose µ ≥ 0 – so that µ+ A > 0, and that σ is

not too large – in a sense to be made more precise later. Throughout attention is restricted

to processes in L∗, that is, to the class of processes such that

sup
t>0

E
[∫
〈B〉t

]
<∞, for any process B.

2.2 Information

The novelty of this model is that the (outcome) process Xa is observed by the agent but

never by the principal. Instead the agent is asked by the principal to report the process Xa;

this report is a process X̃, which may or may not be Xa. Unlike DS, the process X̃ is soft

information; it is a message from the agent to the principal rather than a cash flow that is

observable and verifiable. The difficulty then is this: on the one hand, to induce costly effort

a contract must feature transfers to the agent that are conditioned on the outcome, that

is, on the history of the process X. On the other, since the principal does not observe X,

said contract can only be conditioned on the history of reports X̃. Hence, irrespective of her

effort decision, the agent may have incentives to manipulate her report X̃ to the principal.
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To solve this problem the principal may use ex post audits at some strictly positive cost

k for each instance. However small, this cost generates a trade-off between auditing and

awarding rents, so that the principal never finds it optimal to audit the entire path of the

process X on any interval; it k is sufficient to ensure that perfect observation of the path of

X can never be restored. Upon auditing the report X̃ of the agent, the principal discovers

exactly whether X = X̃; if X̃t 6= Xt a penalty P may be extracted.

An audit policy is a non-decreasing, random sequence of audit times (ζn)n≥1 that may

depend on the report of the agent. Let Mt := sup
{
n
∣∣ζn ≤ t

}
denote the counting process

associated with ζ. For completeness the filtration (Ft)t≥0 denotes the natural filtration

σ
(
X̃s,Ms

∣∣s < t
)

. Thus M is a Poisson random measure with intensity φ; we suppose this

intensity is continuous and smooth in its argument. Given a unique probability measure Pa,

this measure exists and is unique.1

2.3 Contract and payoffs

The principal maximizes the ex-ante value of the project. The contract is designed at date

t = 0; all parties can commit to it. A contract Ξ := (c, τ,M) consists of a consumption

process c(X̃) that depends on the history of reports X̃, a stochastic termination time τ and

the counting process M with associated (random) intensity φ. Given the wealth constraint

of the agent, admissible transfers consists of non-negative, predictable processes c such that

supt E |ct|
2 <∞. For a given contract Ξ the payoff to the agent is

U0(c, a) = E
[∫ ∞

0

e−ρs(dcs − ηasds)
]
,

which she maximizes by choosing action a and the report process X̃. A contract is incentive

compatible if the agent finds it optimal to (always) exert effort (at = A, ∀t ≥ 0) and to

never report anything different from X (i.e. {X̃t}t≥0 = {Xt}t≥0). The payoff of the principal

is

G0(Ξ) = E

[∫ ∞
0

e−rs(dXt − dcs)−
∞∑

ζn≥0

e−r(ζn)k

]
,

and the principal receives π ≥ 0 upon termination of the project, while the agent has outside

option 0. This latter assumption is not always innocuous and is discussed in Section 6.

1Details about the Poisson random measure and its construction are relegated to the Appendix, Section A.
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3 Incentive compatibility

Characterizing incentive compatibility requires conditions on both effort (action a) and on

information revelation (report process X̃). To address both it is sufficient to rely on prop-

erties of the continuation utility of the agent. This is the first order of business; with that

in hand one can then tackle incentive compatibility. To do so it is helpful, in Section 3.2, to

change the measure P to an equivalent measure under which the only relevant information

is that introduced by the stochastic process Z.

3.1 Continuation utility

Following Spear and Srivastava (1987) and Sannikov (2008), an incentive-compatible con-

tract can be characterized by the stochastic process W a =
{
W a
t , t ≥ 0

}
that describes the

continuation payoff to the agent when she chooses a strategy (a, X̃) and the contract Ξ is

executed. Rewrite

Ut(c, a) =

∫ t

0

e−ρs(dcs − ηas) + E
[∫ ∞

t

e−ρ(s−t)(dcs − ηas)
∣∣∣∣Ft]

=

∫ t

0

e−ρs(dcs − ηas) + e−ρtW a
t , (3.1)

where W a
t is the continuation payoff under action a. Under standard assumption of integra-

bility the term E
[∫∞
t
e−ρ(s−t)(dcs − ηas)

∣∣Ft] is a martingale; therefore so is Ut(c, a). Then

following the work of Sannikov (2008) we can make use of the Martingale Representation

Theorem to provide an alternative representation of Ua
t and derive the law of motion of the

continuation value W , however with two caveats. First, to provide an explicit representation

of the martingale Ua
t that allows us to characterize incentive compatibility, that martingale

must include jumps representing the penalty upon lying. A penalty must induce a jump

because auditing is not a continuous process; the principal does not audit with certainty at

each instant t. The intensity of these jumps is determined in equilibrium by the terms of

the contract but are not connected in any direct way to the underlying cash flow process X,

which is strictly continuous.2 Second, the intensity of these jumps may depend on the report

of the agent. It may be used to write the martingale representation of Ua
t as jump-diffusion

process

Ut(c, a) = U0 +

∫ t

0

e−ρsγsσdZs −
∫ t

0

e−ρsPs [dMs − φds] I{X̃ 6=X},

2See, for example, Bromberg-Silverstein, Moreno-Bromberg and Roger (2019) for such a direct connection.
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for some processes γ and P (sensitivities) to be determined, along with the intensity φ, which

is not completely defined yet. I{X̃ 6=X} denotes an indicator function that takes value 1 if the

condition X̃ 6= X is met and 0 otherwise. Nonetheless, for any such intensity φ,

Lemma 1 There exist processes γa and P such that the process W follows the stochastic

differential equation

dW a
t = (ρWt + ηat) dt−dct+γat

(
dX̃t − µ(at)dt

)
−Pt [dMt − φdt]·I{X̃ 6=X}, W0 = w , (3.2)

where γa ∈ L∗ and dMt − φdt is the compensated Poisson process.

The particulars of this SDE are well understood, up to the detail thatM is a random measure.

When dX̃t = dXt the term dX̃t − µ(at)dt = σdZt. The novelty of this paper is the reliance

on information provided by the agent, for which the penalty term is necessary. This reliance

on the information of the agent induces a new connection between that information and

the effort that can be induced in equilibrium. With this representation of the continuation

utility of the agent we can characterize incentive compatibility through conditions on the

key processes γ, P and M .

3.2 Information transmission

Fix a process M and recall the term dX̃t − µ(at)dt – and under truthful revelation, σdZa
t =

dXt−µ(at)dt. Because the drift of Xa and that of W a are known under the optimal contract,

the only information the principal needs to elicit is σdZt, rather than dXt. Let Q denote

the equivalent measure to P so that dXt = σdZt under Q, and denote by Y the message

process (equivalent to X̃) under the same equivalent measure Q. Note that this change of

measure does depend on what action is desired and enforced; that is, action and information

transmission interact.3 Given an action at, a history of reported outcomes dYs, s < t and a

true outcome dXt, Equations (3.1) and (3.2) imply that the agent sends a message dYt such

that, under Q:4

sup
dYt

γat
√

(dYt − dXt)2 − φ(Yt)Pt · I{Y 6=X}, Yt = Yt− + dYt (3.3)

where Pt is the penalty extracted by the principal, and P ≤ Wt by limited liability. With

a perfect audit technology it is optimal to exert maximal punishment (Baron and Besanko,

3That is, dP
dQ = e

∫ µ(at)
σ dZt−

∫
1
2

(
µ(at)
σ

)2
dt

, which depends on at.
4The square-root and square arrangement is a normalization: dYt ≥ dXt even if dYt < 0.
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1984); if for any t ≥ 0, dYt 6= dXt the wealthless agent is immediately terminated – so

Pt = Wt.

The only information the principal has access to is that reported by the agent: the process

Y . So the intensity φ of M should be conditioned on information contained in {Yt}t≥0. The

principal can also use the information afforded by the Law of Motion (3.2). For any action

at, any departure from dXt can only be an upward deviation because reporting dYt < dXt

i) decreases the continuation utility of the agent and ii) precipitates the time at which

termination occurs.5

Given the audit technology summarised by the smooth function φ(Yt), Problem (3.3)

gives rise to an optimality condition

γat − φYt(Yt)Wt · I{Y 6=X}, (3.4)

and an agent prefers reporting dXt (truthfully) over any other dYt as long as this expression

remains negative for all dYt. For this condition to either bind or induce dYt = dXt, one needs

φYt(Yt) > 0; for the solution dY ∗t to be a maximizer, φYtYt(Y
∗
t ) ≥ 0 as well – the function

φ(Yt) must be at least locally convex. It remains to define the domain of φ.

The continuation utility W naturally has a lower bound that corresponds either to the

outside option of the agent (exogenous) or to a termination barrier that is determined (en-

dogenously) by the terms of the contract. Denote this lower bound by W ; it may be a

function of time but the notation should not confuse. Given that the outside option of

the agent is 0, W ≥ 0. The continuation utility also must have an upper bound: an un-

bounded promise W is not credible. Indeed the social surplus of the relationship is finite:

V (W )+W ≤ (µ+A)/r, and so must be the wealth of the principal. Hence there exists some

upper bound W as well. For now these exist and need not be optimal values; it is presumed

that W < W so that the project does operate.

Next, on the open interval
(
W,W

)
the continuation utility follows the dynamics

dWt = (ρWt + ηat)dt− dct + γat σ[dXt − (µ+ at)dt], under P

= (ρWt + ηat)dt− dct + γat σdZt, under P

= (ρWt + ηat)dt− dct + γat dXt, under Q

as long as the agent is not terminated – that is, as long as she reveals her information

truthfully.6 Then the largest single variation in the process X (under Q) that remains

5The superscript a is dropped where confusion cannot arise.
6So far W is not set optimally, so dct need not be zero for W < W .
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payoff-relevant (so that W ∈ [W,W ]) is given by the condition

dWt = (ρW + ηat)dt− dct + γat dXt = [W −W ]dt.

Re-arranging this equation one has

dX t :=

{
W −W (1 + ρ)− ηat

}
dt+ dct

γat
.

The term dX t measures the largest possible swing in the continuation utility W starting at

W and reaching W . Similarly I can determine a lower bound on the process X:

dWt = (W −W )dt =⇒ dX t :=

{
W −W (1 + ρ)− ηat

}
dt+ dct

γat
,

which is the variation in X taking W from W down to W . Because these are bounds for

the true innovation X (under Q), they also bound the signal process Y sent by the agent

(again, such that the signal remains pay-off relevant): dY t = dX t and dY t = dX t.

The appropriate intensity φ is then defined on the support
[
W/γat ,W/γat

]
, which clearly

allows for the variations dY t, dY t to arise. With this in hand, return to the marginal condi-

tion (3.4):

γat − φYt(Yt)Wt,

which can only bind at 0 for some positive value of Wt, given the intensity φ(·) is increasing

and convex. Fix some Wt and suppose the condition does bind at 0, when φ(·) is a convex

function, for any true increment dXt there exists a unique optimal message dY ∗t := dY ∗t (Wt).

However, whether the agent optimally reveals the true state or optimally misreports depends

on whether, at a solution dY ∗t (Wt) of equation (3.4),

γat
√

(dY ∗t − dXt)2 > (≤)φ(Y ∗t )Wt · I{Y 6=X}, Y ∗t = Yt− + dY ∗t (3.5)

that is, on whether the LHS and the RHS of (3.5) ever cross. In the first case they do at least

once; the agent prefers misreporting.7 In the second one she truthfully reveals the state.

A problem with Condition (3.5) is that it depends on the true realization dXt. A large

increment dZt of the Brownian driver necessarily increases the probability of audit (since only

dYt ≥ dXt is ever reported). Likewise it also increase Wt through the law of motion (3.2)

(again, because only dYt ≥ dXt is ever reported). Thus for large enough an increment dXt,

truthful revelation is optimal. The converse is true for a low realization of the increment dXt.

This is depicted in Figure 1 below. Panel (a) of Figure 1 depicts the marginal conditions of the

7The two curves depicted by the LHS and the RHS of (3.5) either cross twice (>), are just tangent (=),

or never cross (<).
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γ

dYtdY ∗
t (Wt)dY ∗∗

t (Wt)

φYWt

(a) Marginal conditions

dZt
dZdZ dZ∗

Lie Truth-telling

φ(Y )Wt

γ(dYt − σdZt)

dY ∗
t (Wt)

(b) No truthful revelation below dX∗
t .

Figure 1: Optimal message and information revelation

reporting decision of the agent, for two different marginal costs – that is, two different values

of the RHS of equation (3.4). The marginal cost functions may differ because of different

continuation values Wt. While Panel (a) shows there is a unique optimal message, Panel (b)

shows that whether the agent reports this message or the truth depends on the state dXt: the

dotted line is the benefit of misreporting depending on different state realizations. For a low

state (below dX∗t ) it is optimal to always report dY ∗t ; above dX∗t the agent reports truthfully.

Thus reporting depends on the state because the benefit γat
√

(dYt − dXt)2 depends on the

state.

To overcome this problem the principal must put a lower bound on the continuation value

of the agent – not only for Condition (3.4) to bind at zero, but also for the resulting message

to be truthful. Increasing Wt lifts the expected cost φ ·Wt of misreporting in Figure 1(b).

Returning to Figure 1(a), increasing Wt also shifts the optimal message dY ∗t left to dY ∗∗t .

The lower bound W that is required is a fixed-point that emerges from Condition (3.5).

Proposition 1 For some Wt, let dY ∗t (Wt) solve

γat − φYt(Yt) ·Wt = 0.

For any true dXt, the agent reports truthfully (dY ∗t = dXt) as soon as Wt ≥ W , with W

determined by the fixed-point condition

W =
γat [dY ∗t (W )− dX t]

φ(Y ∗t )
<∞, (3.6)
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increasing in γat and decreasing in φ. To enforce truthful reporting the principal must termi-

nate the agent as soon as Wt ≤ W .

Proposition 1 shows a lot can be accomplished by relying on intertemporal incentives, that is,

by simply deferring the compensation of the agent. The intuition is that a contemporaneous

lie does not pay immediately; it only improves the continuation utility of the agent. But

it does cost immediately as the agent may lose her entire continuation utility if discovered

misreporting to the principal.

Of course there is a cost to enforcing truthful revelation. The term W is the information

rent of the agent; it is what she must be paid to truthfully reveal her information. This

is a golden parachute that the agent receives upon termination. Furthermore this golden

parachute implies (inefficiently) early termination of the agent by the principal, so incentive

compatibility carries a social cost. However it is obvious from (3.3) and (3.4) that setting

W = 0 is impossible.

The threshold W is a function of the terms of the contract – the endogenous process γ

and the intensity φ. That is, it is determined by the cost of providing incentives for effort

(and the audit technology of course), not by any exogenous private information. The rent is

increasing in γat . As the moral hazard problem worsens (γ increases), so does the information

revelation problem. With a worse moral hazard problem, the principal must present the agent

with more powerful incentives (larger γ). This generates stronger incentives to misreport

information ex post, and so requires a larger information rent.8 Importantly, W is also

decreasing in the intensity φ: the more likely is an audit at any period of time, the lower

the information rent to elicit truthful revelation. This trade-off is central to the optimal

contract. The conditions corresponding to Proposition 1 are depicted below.

Figure 2(a) replicates 1(a) however with the optimum choice of the rent W (for a fixed

intensity φ(Y )). It shows that the marginal benefit of misreporting is always below its

marginal cost, even at dY t : γat < φYt ·W . Likewise with Figure 2(b) replicating Figure 1(b):

given outcome dX t, at the optimal message dY ∗t (W ) the gain from misreporting is exhausted

by its cost – and any other message is strictly dominated. For any other outcome (i.e.

dXt > dX t), γ
a
t

√
(dY ∗t − dXt)2 < φ(Y ∗t ) ·W . That is, while dY ∗t (W ) does maximize the

payoff to the agent who decides to misreport, that payoff is weakly dominated by truthful

8There is a direct (obvious) effect of increasing γat ; there is also an indirect effect through the intensity

φ(·).
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γ

dYtdY ∗
t (Wt)

φYWt

(a) New marginal conditions

dZt
dZdZ

Truth-telling

φ(Y )Wt

γ(dYt − σdZt)

dY ∗
t (Wt)

(b) Truthful revelation from dX on.

Figure 2: Optimal message and truth-telling

revelation given dX t and strictly dominated for all other values of dXt.

Figure 3 shows the message profile as a function of the true realization dXt for varying

values of the continuation utility Wt. Truthful revelation (dY ∗t = dXt) in all states is only

achieved on the right-most panel, for Wt large enough. Panels 3(a) and 3(b) show the optimal

dZt

dY ∗(Wt)

dZ∗
tdZt

(a) Low continuation.

dZt

dY ∗(Wt)

dZ∗
tdZt

(b) Higher continuation.

dZt

dY ∗(Wt)

dZ∗
t = dZt

(c) Continuation Wt = W .

Figure 3: Message profiles.

message dY ∗t is unique for all increments below dZ∗t .

Remark 1 It is possible to implement any threshold dX∗t , not just dX∗t = dX t. However

dX∗t > dX t implies the worst outcomes (below dX∗t ) are never truthfully reported. But these

are also precisely the outcomes that matter the most to the principal because decisions – such

as termination – have to be made following poor outcomes.
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3.3 Incentive compatibility

In a truth-telling contract the agent never lies. The message process Y therefore is exactly

the process X and the law of motion of W follows

dWt = (ρWt + ηat)dt− dct + γat dXt, W0 = w (3.7)

under the measure Q, as long as Wt ≥ W . Under Q, E[dXt] = 0 only if at = A; the next

result is quite intuitive.

Proposition 2 The agent exerts effort as long as both

γat ≥ η and Wt ≥ W,

and Wt ≤ W triggers termination.

To induce effort the principal must expose the agent to the risky process X, and thus at

least to the tune of η, as in DS or in Sannikov (2008). However this relies on observing the

process X. In the present model, it requires that the agent truthfully reveal that process X.

Truthful revelation is guaranteed (jointly) by the condition Wt > W and termination at W ,

and effort by γat ≥ η – provided truthful revelations also holds. That is, the conditions of the

Proposition must hold simultaneously to deter a “double deviation”. If Wt < W , not only

does the agent have nothing to lose by misreporting, she also has no incentive to work any

more – precisely because her lack of effort is optimally confounded by a false report. Hence

both truthful revelation and inducing effort require Wt ≥ W .

Remark 2 Note that Wt = W always results in termination by the principal. The intuition

is that once W reaches the barrier W it crosses it with probability 1. This is formalized as

part of the proof of Proposition 1.

4 Value function and optimal contract

4.1 Overview

It may be helpful to the reader to lay out the steps taken to solve this problem. First

one solves the “artificial problem” corresponding to (3.3) where I{Y 6=X} = I{Y=X} ≡ 1,

which delivers an optimal message dY ∗t (Wt) for any Wt and given an arbitrary intensity

φ(·). From this one deduces that φ(·) must be a convex function. Then, still given φ(·)

14



(now restricted to be convex), one selects some W such that i) the optimal message dY ∗t (W )

solves Condition (3.3) and ii) Condition (3.5) binds at zero for dXt = dX t. With this,

the optimal message dY ∗t (W ) is at least weakly dominated by truthful revelation. This is

the construction of Sections 3.1 and 3.2. From there on incentive compatibility is easily

characterized in Section 3.3. Now comes optimization over the terms of the contract; the

novel parts are the selection of the function φ and the optimization over the threshold W .

This is the central trade-off of the optimal contract: the principal may spend more on audit,

or award a larger information rent, to achieve information revelation.

4.2 Analysis

As has become standard one may call on dynamic programming to solve this problem, where

the continuation utility of the agent is used as a state variable, along with the revealed process

Y . This is where working under the measure Q is helpful: the process X = σZ (also = Y

in equilibrium) is confined to the interval
[
W,W

]
– modulo a known multiplier. There is

no need to keep track of the drift of X, as one would under P. To state the payoff to the

principal, recall the intensity φ(Yt) = φ(Xt) by Proposition 2. The principal thus maximizes

value

F (W ) := sup
W,c,β

E
[∫ τ

0

e−rs
(
dXs − dcs − inf

φ
[k · φ(Xs)ds]

)]
, γat ≥ η, Wt > W. (4.1)

where one notes that the incentive constraint Wt > W is endogenous to the problem. The

problem can be separated in a first pass. Thus before studying the Bellman equation of this

problem it is helpful to focus on the expected cost E
[∫ τ

0
e−rsk · φ(X)ds

]
, which the principal

seeks to minimize by choice of the function φ(·) (subject to incentive compatibility). Fix

some W for now; under the measure Q, Ito’s Lemma yields

k · rφ(X)dt = k · EQ

[
φX(X)dX +

1

2
φXX(X)dt

]
. (4.2)

So the intensity φ is a function that is the solution to the boundary value problem

rφ(X) =
1

2
φXX(X), φ(X) = φ > 0, φ(X) = φ, φX(X

+
) = 0, (4.3)

for some boundary conditions φ, φ at the boundaries of the domain of X, and subject to

the convexity conditions:

φX(X) > 0, φXX(X) ≥ 0.
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The values of φ, φ need to be specified optimally (later) as part of the solution to the cost

minimization. The conditions at X (and X
+

) are simple: there is no need to further increase

φ past φ since W reflects then. This reflection implies there is no benefit to report anything

higher than X but there can only be a cost. The function φ can be explicitly solved for

φ(X) = Aeλ1X +Beλ2X , λ1 = −λ2 =
√

2r, (4.4)

and we know there are constants A,B such that the solution φ(·) is increasing convex.

The boundary conditions of Problem (4.3), together with the definitions X := W/γat and

X := W/γat are used to determine the constants A,B:

A =
1

1− e2λ1(X−X)

[
φ

eλ1X
− φ

e−λ1X
ee

−2λ1X

]
B =

φ

e−λ1X
− e2λ1X

1− e2λ1(X−X)

[
φ

eλ1X
− φ

e−λ1X
ee

−2λ1X

]
.

For a fixed W the constants φ, φ are the only controls that may be exerted on the function

φ(·). These constants must be chosen to guarantee the function φ(·) is increasing and convex,

which amounts to

e2λ1X ≥ B

A
and e2λ1X ≥ −B

A
. (4.5)

Given W the pair (φ, φ) satisfying these conditions thus characterizes the cost-minimizing

intensity φ; let it be denoted φM(X;φ, φ).

Of course cost minimization is the not goal of the principal; rather maximizing his payoff

is. For any function φ solving (4.4), modulo the constant cost k, applying Ito’s Lemma to

E
[∫ τ

0

e−rsk · φ(Xs)ds

]
yields (4.2), which can therefore be used as an envelope condition on F . In a second step,

this leaves the simpler problem

V (W ) := sup
c,τ,γ

E
[∫ τ

0

e−rs (dXs − dcs)
]
, γat ≥ η, Wt > W. (4.6)

for some W . Under the measure Q this value function satisfies the Bellman equation:

rV (Wt)dt = E [dXt] + sup
c,τ

{
− dct + E

[
VW (Wt)dWt +

(γat )2

2
VWW (Wt)dt

]}
, (4.7)

subject to the incentive compatibility constraints, and where W follows the Law of Mo-

tion (3.7). Auditing does enter this problem, however only through the threshold W that

the principal still has to select. Since φ is parametrized by W , the choice of W affects the
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cost of audit and also the surplus V generated by the relation with the agent via the termi-

nation hurdle. The lower that hurdle, the longer the project may be run, but the higher the

audit cost. So the optimal contract hinges on the optimal choice of W . To characterize the

function V (W ) I first take W fixed and rewrite the preceding Bellman equation as

rV (Wt)dt = sup
c,τ

{
− dct +

[
(ρW + ηat)dt− dct

]
VW (Wt) +

(γat )2

2
VWW (Wt)dt

]}
, (4.8)

using E [dXt] = 0 and the definition (3.7). Then,

Proposition 3 Fix γat and φ, and suppose σ is not too large so that W < W . The function

V (W ) is the unique solution to the ODE

rV (W ) = (ρW + ηa)VW (W ) +
(γat )2

2
VWW (W ), a ∈ {0, A} (4.9)

on the domain
[
W,W

]
, with boundary conditions

V (W ) = π −W, VW (W ) = −1.

W is absorbing and W is reflecting. The function V (W ) is concave in W over [W,W ]. The

transfer process c is the local time of W and satisfies

dct = max
{

0,Wt −W
}
,

where the payment barrier W is pinned by the super-contact condition VWW (W ) = 0

The lower boundary of V (W ) is π −W : the information rent of the agent is paid out by

the principal. It is not just a simple transfer to the agent, for it has consequences on the

solution V . To determine the threshold W it is helpful to first find the optimal sensitivity

γat and the action a. To this end it is more transparent to revert to the measure P, under

which (4.8) rewrites

rV (Wt)dt = sup
c,τ

{
µ+ a− dct +

[
ρW + ηat − dct

]
VW (Wt)

+
(γat σ)2

2
VWW (Wt)dt

]}
, (4.10)

Proposition 4 It is always optimal for the principal to induce effort and to set the cash

flow sensitivity as low as possible: a = A and γat = η.

Given η ≤ 1 < at = A is optimal; it Pareto-dominates and the gain can be efficiently

shared through transfers. Conditional on inducing effort, concavity of the value function
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immediately implies the sensitivity γat should be set to the lowest level possible – that is,

η. To see that inducing effort is optimal, consider the direct marginal impact of effort on

the payoff of the principal: from the right-hand side of (4.10), 1 + ηVW , with VW ≥ −1 and

η ≤ 1, so clearly 1 + ηVW ≥ 0 (strictly for W < W ). There is an indirect effect too through

W that is more difficult to characterize. However it is easy to see that if the principal

prefers not inducing effort he can do so by simply offering the agent a flat wage. In this case

misreporting has no object, and neither does the information rent W .

A further consequence of Proposition 4 is that the boundary W := W (γa, φ) is time

invariant (since γa is constant) – but it does depend on the action the principal chooses to

induce. Since W is time invariant, so is the upper boundary W .

Because both γa and a are constant, the problem is clearly stationary. With this in-

formation about the value function one can turn to the task of determining the optimal

termination barrier W and the optimal audit intensity φ (through the constants φ, φ). To

do so it is helpful to call on the stochastic representation of the solution V (Feynman-Kac

formula) under the measure Q. For any W , let

τ(W ) := inf {t ≥ 0|Wt = W} ,

denote the first passage of time at W from above. Then use the representation

V (W ) =
1

r
EQ

[∫ τ

0

e−rt
(
−dct + VW (W )(ρW − dct) +

(γa)2σ2

2
VWW (W )

)]
, (4.11)

to establish that
∂

∂W
V (W ) = −VW (W )EQ

[
e−rτ(W )

]
. (4.12)

On the equilibrium path the Law of Motion (3.7) of W is a transient Ornstein-Uhlenbeck pro-

cess (since the parameter ρ is positive); the Laplace transform EQ
[
e−rτ(W )

]
of the stopping

time τ(W ) admits a known representation:

EQ
[
e−rτ(W )

]
= eρ(W 2

0−W
2
)H−r/ρ(W0

√
ρ)

H−r/ρ(W
√
ρ)
,

for some initial condition W0. The function Hθ(·) is the Hermite function with parameter θ:

Hθ(u) =
21+θ

Γ((1− θ)/2)

∫ ∞
0

e−s
2

s−θ(s2 + u2)θ/2ds.

Then it is immediate that

EQ
[
e−rτ(W )

]
= eρ(W 2

0−W
2
)

∫∞
0
e−s

2
sr/ρ(s2 +W 2

0 ρ)−r/2ρds∫∞
0
e−s2sr/ρ(s2 +W 2ρ)−r/2ρds
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is decreasing in W , so that by (4.11) and (4.12) the solution V (W ) is decreasing in the

termination barrier W . To pin the solution, one may exploit the fact that the problem is

now time-invariant; it reduces to a static parametric optimization problem. Construct the

Lagrangean

Λ(W,φ, φ) := V (W ;W )− k · E
[
φM(X;W,φ, φ)

]
(4.13)

+ ν0 [φ(Y ∗)W − γa[dY ∗(W )− dX]] + ν1φ
M
X (X;φ, φ) + ν2φ

M
XX(X;φ, φ)

to be maximized by choice of W,φ, φ, and where ν0, ν1, ν2 are Lagrange multipliers. Clearly

one of either ν1 or ν2 is zero given the conditions laid out in (4.5). A solution to this problem

exists. First the constraint set is never empty; second, the objective function is continuous

and defined on [0,W ] × R × R, where however φ and φ are known to be finite. Last, this

objective function is continuous in W and differentiable with respects to all the instruments.

Denote the solution to Problem (4.13) by (W ∗, φ∗, φ
∗
).

Proposition 5 The optimal contract features random audit with penalties Pt = Wt and

termination at W (γa, φ∗). The intensity of audit φ∗ and the optimal termination barrier

W ∗) are jointly determines as solutions to the maximization problem (4.13) and the fixed-

point condition (3.6).

At the risk of repetition, the termination barrier W := W (γa, φ∗) is endogenous in this

problem; it is determined as part of the optimal contract and depends on the severity of the

moral hazard problem (through γa = η). Indeed, in equilibrium

W (γa, φ∗) = W (η, φ∗)

which makes it transparent that the information revelation problem, and the information

rent, are borne out of the effort incentive problem. The use of penalties follows from Propo-

sition 1 and 2.

The solution to (4.13) trades-off the expected cost of audit with the benefit of that audit.

The benefit is to decrease the termination threshold W (Proposition 1), which (i) limits the

transfer W to the agent upon termination and (ii) extends the duration of the project. A

project that is inherently more valuable triggers more frequent audits, precisely to postpone

termination as long as possible. Likewise, a project with a value that is very responsive to

the continuation utility of the agent is the subject of more frequent audit; as an imperfect

analogy, its option value is large around W , and so its termination should be postponed. It

is immediate from (4.13) that the auditing intensity φ must decrease as its cost k increases.
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While a more frequent, or cheaper, audit postpones termination, it also precipitates

releasing cash to the agent.

Corollary 1 Let W parametrize the function V (W ;W );

dW

dW
> 0

Even though delaying termination is socially valuable, having r < ρ still implies that pay-

ment cannot be arbitrarily postponed. That is, the time horizon until payment cannot be

stretched. Starting from a lower boundary W ′ < W , it necessarily implies the corresponding

W
′

is also lower then the original W .

5 Implementation and corporate finance

In line with the motivating example the contract may be implemented in the context of

executive compensation using standard securities and a severance payment upon termination.

The “principal” is a metaphor for a population of diffuse outside investors. Any collective

action problem between these investors is abstracted from. Our main result in this section

is subtle; it pertains to the default risk. This subtlety shows that understanding frictions

in the details matters for correctly assessing and pricing risk. Throughout this section the

measure P is used.

Securities. The agent is awarded a fraction η of the equity of the firm, whereas the balance

1 − η is held by (diffuse) shareholders. The agent cannot sell her shares; this enforces the

commitment assumption. Let Mt denote the book value of equity. The law of motion of M

is then

dMt = rMtdt+ dX̃a
t − dct − dIt, M0 = m > 0

= (rMt + µ(a))dt+ σdZa
t − dct − dIt, (5.1)

where c is the payment stream to the agent and I that to the investors. Already one can

see that truthful revelation is important: dMt is the true law of motion of book equity only

if dX̃a
t = dXa

t . Define Wt = ηMt; this is the stake of the agent, who purchases – either for

cash or against a loan – a fraction η of the project (the firm). Combining with the law of

motion of W , one has an equivalent representation of dMt that tracks the law of motion of
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W on the equilibrium path:

dMt = ρMtdt+ σdZa
t −

1

η
dct, (5.2)

Thus the value M of the book value of equity can be used to represent the continuation value

of the agent, and decisions can be made using M as an equivalent state variable – as long as

the agent reports information truthfully. The payment c is activated when Mt = M := W/η,

and termination is triggered as soon as Mt = M := W/η > 0. The lower bound M is strictly

positive: a poor-performing CEO is terminated before the firm vanishes, otherwise she cannot

be compelled to truthfully inform investors, nor to exert any costly effort. The financiers act

prudently and do not allow the continuation utility to enter a territory where the behavior

of the CEO can go unchecked. In what follows I set π ≡ 0 to ease comparisons with other

results, in particular those of Biais et al. (2007).

The firm issues debt in the form of bonds at date 0 and continuously pays a coupon

µ(a) − (ρ − r)Mt regardless of the cashflow realization. Equations (5.1) and (5.2) can only

hold if distributions to the collection of investors (stockholders and debt-holders) are

dIt = [µ(a)− (ρ− r)Mt]dt+
1− η
η

dct. (5.3)

The equity only pays when c is activated; its value is the NPV of the dividend stream dct

St = E
[∫ τ

t

e−r(s−t)
dcs
η

∣∣∣∣Ft] , (5.4)

where St := s(m) is the solution to the problem

rs(m) = ρms′(m) +
σ2

2
s′′(m), s(M) = 0, s′(M) = 1

on
[
M,M

]
and that of the debt is

Dt = E
[∫ τ

t

e−r(s−t)µ(s)− (ρ− r)Msds

∣∣∣∣Ft] , (5.5)

solving, on the same interval, Dt := d(m)

rd(m) = µ(a)− (ρ− r)m+ ρmd′(m) +
σ2

2
d′′(m), d(M) = (1− η)M, d′(M) = 0

The notable aspect of these solutions is that they terminate at M > 0. Here the debt-

holders (optimally) receive the liquidation value at termination; this is captured by the

boundary condition D(M) = (1 − η)M . That liquidation value is their share of the book

value of the firm at the termination threshold. In contrast stock holders receive nothing
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upon termination. This maximises the ex ante value of the debt, and therefore how much

may be borrowed in the first place. Note also that V (W ) = 0 here (since π = 0 in this

section), but d(M) > 0. That is, at W the continuation value V (W ) of the firm is zero, but

its liquidation value is positive (to debt-holders).

The quantities S,D and M satisfy the equality

V (Wt) + (1− η)Mt = (1− η)St +Dt,

which differs from Biais et al. (2007) as only a fraction 1 − η of the book value M accrues

to financiers, while a fraction η is set aside to meet the promise made to the agent to pay

out the continuation W at termination.9

Default risk. One avenue to measure default risk, or more precisely to assess the expected

cost of default risk, is to value the credit risk spread that is implied by holding the debt

indefinitely. At each instant t ∈ [0, τ), this is implicitly defined by the relation∫ ∞
t

e−(r+∆t)(s−t)ds = E
[∫ τ

t

e−r(s−t)ds

∣∣∣∣Ft]+ (1− η)Me−r(τ−t) (5.6)

where (1−η)Me−r(τ−t) is the fraction of the book value (i.e. of the break up value) accruing

to financiers. By Problems (5.4) and (5.5), all if it is awarded to debtholders. Noting that

e−r(τ−t) = 1− r
∫ τ

t

e−r(s−t)ds,

Equation (5.6) implies

Proposition 6 The credit default spread is given by

∆t =
rLt − (1− η)Mre−r(τ−t)

(1− Lt) + (1− η)Mre−r(τ−t)
, Lt = E

[
e−r(τ−t)ds

∣∣∣∣Ft] , (5.7)

and it is lower than under a standard contract where M = 0. The credit spread ∆t is a

decreasing and convex function of M , and is strictly positive.

Somewhat paradoxically, a worse contracting environment (M > 0 to elicit information

revelation) renders the debt less risky – in the sense of a lower credit spread. The reason

is that the contract requires termination at positive values of M ; this implies a positive

book value of equity upon liquidation, which can be liquidated for cash and returned to the

financiers. Thus by solving its governance problem, the firm lowers its financing cost. This

9Most of the results they show also hold here; they are therefore not repeated.
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result is borne out in the data. For example Brown et al. (2008), Brown et al. (2012) study

governance problems in hedge funds and find that a fund that is perceived by investors to

have good governance has a lower cost of funds. This silver lining has limitations though in

that

Corollary 2 For any level of Mt the credit spread ∆t increases in the effort cost η and in

the audit cost k. It increases faster than if M = 0.

The first part of this result can also be found in Biais et al. (2007). Here it is worsened by the

problem of information revelation; that is, the credit spread ∆t grows faster in this model

than when M = 0 is sufficient, even though the term (1 − η)Mre−r(τ−t) initially depresses

it (see Equation (5.7)). It is precisely this new term that accelerates the increase in credit

spread. While the quantity M := M(η, k) is increasing in η, the share (1 − η) left to the

financiers decreases, and the termination time τ necessarily arrives sooner. These latter

effects countervail the former.

These two results combined seem puzzling. However one should recall that the credit yield

spread is a measure of the cost of expected losses. At best it is a summary statistic of the

probability of a loss, together with the magnitude of a loss conditional on the event occurring.

Here conditional on termination debt holders receive some proceeds; this mitigates the loss

upon default and so decreases the spread. However, as the governance problem worsens

(higher η and/or higher k), termination is bound to arrive sooner – its probability increases.

This increases the spread.

6 Discussion

This part suggests four points for a brief discussion.

The audit ignores history. In this model the audit technology captures contemporaneous

departures from Xt; at time t it is blind as to the history of report X̃s, s < t. In practice

auditors typically look backwards as well as examining contemporaneous information, and

so may have access to more information than the technology used here. In extending the

auditing horizon one must be careful to not render the problem trivial: if the principal can

perfectly observe past history, it is as if observing the process itself. On the other hand,

for a finite “memory” of the audit process, the audit decision of the principal becomes
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complicated. That decision becomes akin to choosing a time interval for review; should it

follow a period of high reports? If so, a sequence of high reports may be tempered by some

bad ones; so we see there is tremendous freedom for information manipulation. This is an

interesting problem that is left for future research. One could conceive of an imperfect audit

technology that may be improved at a cost; the trade-off between that cost and the benefit

of auditing is essentially already captured by Proposition 4.

Outside option. The outside option (say, U) of the agent is 0 in this model. As long as

U < W nothing changes. If U ≥ W the very constraint W ≥ W becomes irrelevant: it is

implied by the participation constraint of the agent. A wealthy agent, or an agent with good

outside opportunities, quits before the incentive constraint Wt ≥ W induces termination. In

that case one has W ≤ U and the agent no longer receives an information rent.

Contractual forms. Zhu (2013) extends the work of Sannikov (2008) by noting that,

depending on the value of effort, the principal may prefer either rewarding (at W ) or pun-

ishing (at W ) the agent by suspending the contract at these boundaries. The present paper

abstracts from these considerations to focus on the new problem of information revelation.

I conjecture that much the same dynamics would arise at both barriers because the point

of suspension is to ignore the information provided by the Brownian process. In this model

it implies ignoring the reports X̃ of the agent at the boundaries W or W ; these reports

therefore do not influence W at these bounds (and so there cannot be any crossing). If the

principal ignores the reports, the agent has no incentive to misreport. Thus, if the “Quiet

Life” and “Baseline Renegotiation” contracts are ever optimal under observable X, it is

reasonable to conjecture they also are when X is not observed.

Sampling for information versus information revelation. In this paper the agent

is asked to communicate information to the principal. This premise is in part motivated

by practice: a CEO reports information to shareholders, who may choose to verify it. It

also maps into the canonical mechanism design construction. Alternatively the principal

may not elicit communication from the agent but instead directly sample information. This

eliminates the need for an information rent W but introduces a new friction instead and new

technical considerations.

The new friction stems from the very sampling problem: upon sampling outcomes
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Xs, Xt, Xu... the principal wants to infer the action a of the agent. In doing so he nec-

essarily makes mistakes and may incorrectly terminate the agent. The technical difficulties

are the mixing of continuous and discrete processes, and the loss of the Markovian property

of the value function of the principal.10 Goldys and Roger (2018) study a (different) model

where these problems arise.

7 Conclusion.

In this paper a principal seeks to induce costly effort on the part of an agent, when in

addition he does not observe the process resulting from the action of the agent. Instead the

principal relies on information that is transmitted by the agent, and that is therefore subject

to manipulation. Observability is restored through a combination of audit and penalties.

This environment is a stylised version of the relation between a CEO or entrepreneur and

her shareholders/investors.

The only feasible penalty is termination, and to have bite it must occur when the agent

still has a stake in the project (or the firm). That is, it occurs at a positive value of the

continuation of the agent. Then truthful revelation holds for all state realizations. Truthful

revelation is also necessary for the provision of effort; without it, the agent can manipulate

the information to look as if she were diligent. Truthful revelation is socially costly in that

it requires early termination (above zero continuation utility) in equilibrium.

The optimal contract always induces effort, which is socially valuable, always elicits

truthful revelation and trades off the cost of an audit with its marginal benefit. That

marginal benefit is the value of keeping the project going one more instant; that is, its drift.

The contract is implemented using standard securities: equity, debt and a termination

clause. This termination clause has intricate effects on the financing costs. On the one hand,

it reduces the implied credit yield spread because the positive termination value implies some

recovery by creditors. On the other hand, the credit spread increases more sharply when

governance problems worsen. This points to a need to understand what precisely drives the

cost of financing.

10A time series of observations is required for inference, so one must keep track of history; the current

state is not sufficient.
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Appendix

A Additional material

A.1 The Poisson random measure.

This section of the Appendix contains details of the construction of the Poisson Random

Measure (PRM). It chiefly relies on the following theorem, stated without proof (see, Cinlar

(2011) for example). A Radon measure is a generalization of the Lebesgue measure.

Definition 1 Let (E,B) be a measurable space with E ⊂ Rd. A Radon measure on (E, E)

is a measure ν such that for all compact subsets B ∈ E , ν(B) <∞.

Examples of a Radon measure include the Lebesgue measure as a special case; it differs

from the Lebesgue measure in that it need not have measure zero on a single point. The

Dirac measure is a Radon measure. Importantly for our purposes, a probability measure is

a Radon measure.

Theorem 1 For any Radon measure ν on a measurable space E with σ-algebra E, there

exists a unique Poisson Random Measure M(E) with intensity ν.

To construct the PRM,

1. take iid random variables ∆Yi = Yt − Ys so that Pr(∆Yi ∈ A) = ν(A)
ν(E)

for A ⊂ E ⊆ R.

Set ν(A)
ν(E)

= f(Yt), the Beta density;

2. let M(E) be a Poisson random variable on the probability space (Ω,F ,P) with mean

ν(E);

3. define M(A) :=
∑M(E)

i=1 IA(Yi), ∀A ∈ E ;

4. scale by a factor λ as required.

The point of the construction is that the properties of the audit probability can be con-

densed in the PRM, including the dependence of the audit probability to variables of the

environment. With this PRM the law of motion of the continuation utility W of the agent

can be correctly derived for any probability of audit.
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B Proofs

Proof of Lemma 1: The martingale

Ut(c, a) =

∫ t

0

e−ρs(dcs − ηas) + E
[∫ ∞

t

e−ρ(s−t)(dcs − ηas)
∣∣∣∣Ft]

=

∫ t

0

e−ρs(dcs − ηas) + e−ρtWt,

has equivalent representation

Ut(c, a) = U0 +

∫ t

0

e−ρsγsσdZs −
∫ t

0

e−ρsPs [dMs − φds] ,

where the processes γt and Pt are known to exist (given the measure M) by application of the

Martingale Representation Theorem, and M is known to exist by application of Theorem 1.

To obtain the law of motion of the process W , equate the two, differentiate w.r.t. t and

re-arrange.

Proof of Proposition 1: First it must be shown that dealing with the Law of Motion (3.2)

is equivalent to solving (3.3); that is, finding the best report dYt in (3.3) also maximizes the

change in W . Fix the action a and the continuation utility Wt > 0, and change from measure

P to Q. Let UY
t denote the payoff to the agent under message Yt:

UY
t = UX

t +

∫ t

0

e−ρsγas (dYs − dXs)−
∫ t

0

e−ρsPsφsds,

for some penalty process P ; this is tantamount to (3.3).

The incentives at the margin are given by Condition (3.4) binding at zero; denote the

solution by dY ∗t (Wt). But this is not quite sufficient; one needs

∀dZt, γt
√

(dY ∗t − dXt)2 ≤ φ ·Wt.

In other words, the benefit function and the cost function may cross; whether they do

determines the incentives to misreport. When the above-mentioned condition is satisfied

they either are just tangent (at the optimal message dY ∗t ) or they do not cross at all.

Because φ(·) must be convex, and γt(dYt − dXt) is linear, if these functions do cross, they

cross twice. There are two cases to distinguish, given Wt and dXt:

1. They cross twice. In this case, there exist two values dY 0 < dY 1 of dYt such that

γt
√

(dY i − dXt)2 = φ(Y i) ·Wt, i = 0, 1 and γt > φ(Y 0)Y 0 ·Wt but γt < φ(Y 1)Y 1 ·Wt.

There also exists a value dY ∗t (Wt) such that (3.4) binds at 0.
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2. They never cross. Then either

(a) they are just tangent. Then there exists the same value dY ∗t (Wt) such that (3.4)

binds at 0 and simultaneously γt
√

(dY ∗t − dXt)2 = φ(Y ∗t ) · Wt. The agent is

indifferent between truth-telling and misreporting, and has no incentives to change

her misreporting.

(b) they are never tangent. Then there exists no value of dYt such that (3.4) binds;

in addition, γt
√

(dY ∗t − dXt)2 < φ(Y ∗t ) ·Wt.

Case 2a is “ideal”: the first-order condition (3.4) defines Y ∗(Wt) and the condition γt
√

(dY ∗t − dXt)2 =

φ(Y ∗t ) ·Wt pins W (dZt) exactly, given dZt. It is immediate to see that it is sufficient for

this condition to hold at dZt to deter misreporting for all dZt. Let W (γat , φ) be defined by

γt
√

(dY ∗t − dXt)2 = φ(Y ∗t ) ·Wt. Re-arranging, the condition

W =
γat

φ(Y ∗t )

√
(dY ∗(W )− σdZt)

2 =: ϕ(W )

defines W as a fixed point of the mapping ϕ. This fixed point exists and is unique since first,

dϕ(W )

dW
=

γt
φ(Y ∗t )

dY ∗t (W )

dW

[
1 +

φY (Y ∗t )

φ(Y ∗t )

√
(dY ∗(W )− σdZt)

2

]
,

where
φY (Y ∗

t )

φ(Y ∗
t )
≥ 0 by convexity of φ(·); hence the sign depends on that of

dY ∗
t

dWt
only. Second,

from the FOC (3.4), the derivative
dY ∗
t

dWt
exists by the Theorem of the Maximum, which allows

the application of the implicit function theorem, and

dY ∗t
dWt

= − 1

Wt

φYt
φYtYt

< 0,

again, by convexity, so that,
dϕ(W )

dW
< 0 < 1

necessarily, and one must conclude ϕ is a contraction.

In the third case one simply has Wt > W ; the condition is simply slack. In the first case

Wt < W . Then the principal needs to enforce Wt ≥ W ; since W := inf Wt, one then reverts

to case 2a. To enforce this condition, the principal terminates the agent at W . Finally to

establish that W is necessarily bounded, note that φ(Y t) > 0 and that φ(·) is increasing. It

is also convex, therefore Y ∗t is always finite. Hence the RHS of (3.5) is bounded.

To show termination must occur as soon as Wt = W , consider the following Lemma.
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Lemma 2 The distributions of the first-visitation and the first-crossing times

τv := inf
{
t ≥ 0|Wt = W

}
and τc := inf

{
t ≥ 0|Wt < W

}
,

respectively, are identical.

Proof: Away from the boundary W , the agent’s continuation utility evolves according to

dWt = [ρWt + ηat]dt− dct + γat dYt

under the measure Q, and where dYt need not equal dXt. Let us assume that for some date t̄

it holds that Wt̄ = W and that at that point there is no termination. Then, instantaneously

the dynamics of W are

dWt = [ρWdt+ ηat]dt− dct + γtdYt, Wt̄ = W.

Let us consider the auxiliary process defined via the equation

dbt = ρdt+ γtdYt, bt̄ = 1

and define, for ε > 0,

B(ε) := inf
s∈[t̄,ε]

{
bs | Wt̄ = 1

}
.

Using the Cameron-Martin theorem we know there is an equivalent measure Q̃ under which

b is a standard Brownian Motion. From Chesney et al. (2009), page 147, we have that for

any α ≤ 1,

Q̃
{
B(ε) > α

}
= Φ

(−(α− 1) + ρε

γt
√
ε

)
− e2(α−1)ρΦ

((α− 1) + ρε

γt
√
ε

)
, (B.1)

where Φ is the standard normal cumulative distribution function. Letting α→ 1 we obtain

that for all ε > 0

Q̃
{
B(ε) > 1

}
= 0,

which, as Q and Q̃ are equivalent, implies Q
{
B(ε) > 1

}
= 0. Therefore, for all ε > 0 it holds

that

Q
{

inf
[t̄,t̄+ε]

{
Ws|Wt̄ = W

}
> W

}
= 0,

which concludes the proof of the Lemma.

This finally concludes the proof of the Proposition.
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Proof of Proposition 2: Under measure Q the law of motion of the continuation utility

of the agent write

dW a
t = [ρWt + ηat]dt− dct + γtdYt −Wt[dMt − φdt].

Suppose Wt ≥ W , so that dYt = dXt, then the law of motion becomes

dW a
t = [ρWt + ηat]dt− dct + γtdXt.

On the premise that the principal wants to induce effort (a = A) – that is, under the measure

Q, in this expression E[dXt] = 0, only if actually a = A. If a = 0, E[dXt] = −At and W has

motion

dW a=0
t = [ρWt + (η − γt)at]dt− dct + γtdYt −Wt[dMt − φdt].

Therefore, to maximize the expected change in her continuation utility the agent selects

a = A > 0 if and only if γt ≥ η.

For the second statement, suppose truthful revelation does not hold: Wt < W and there

is no termination. The agent can replicate

dW a
t = [ρWt + ηAt]dt− dct + γtdXt −Wt[dMt − φdt]

by selecting a = 0 but by reporting dYt = dXt + γtAdt, while EQ[dXt] = −Atdt.

Proof of Proposition 3: Fix γat , λ and a, and suppose W < W ; on
(
W,W

)
there is no

termination and dct ≡ 0, which immediately yields the differential equation (4.9). Under the

measure Q that differential equation is homogenous, so the solution V (W ) is also a solution

of the homogeneous equation

rh(W ) = [ρW + ηa]h′(W ) +
γ2γ2

t

2
h′′(W ). (B.2)

Let us denote by h0 and h1 the particular solutions to Equation (B.2) that satisfy h0(W ) =

1, h1(W ) = 0, h′0(W ) = 0 and h′1(W ) = 1. Using these basis functions we may write

V (W ) = b0h0(W ) + b1h1(W ), W ∈ (W,W ),

for some W > W (at this point W need not be optimal). To determine b0 and b1 I use the

boundary conditions V (W ) = π−W ≡ B ≥ 0 (where W is fixed for now) and VW (W ) = −1 :

b0h0(W ) + b1h1(W ) = B ⇒ b0 = B and

b0h
′
0(W ) + b1h

′
1(W ) = −1,⇒ b1 = − 1

h′1(W )

[
1 +Bh′0(W )

]
.
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Therefore, using W as a parameter,

V (W ;W ) = Bh0(W )−
[
1 +Bh′0(W )

] h1(W )

h′1(W )
, (B.3)

which satisfies the boundary condition V (W ;W ) = B. Next one needs to show that for

W given, there exists a unique W ≥ W and a unique corresponding function V (·;W ) such

that VWW (W,W ;W ) = 0. To this end I show that the function h1(·) is strictly increasing

for all W ≥ W . Indeed, if this were not the case, there would exist some Ŵ such that

h′1(Ŵ ) = 0 and h′1(W ) ≤ 0, W ∈ (Ŵ , Ŵ + ε) for some ε > 0. In other words, W would be a

local maximum of h1(·); thus, h′′1(Ŵ ) ≤ 0. From the latter and Equation (B.2) one obtains

that h1(Ŵ ) ≤ 0. However, by construction h1(·) is strictly increasing on [W, ŵ), so that

h1(Ŵ ) > h1(W ) = 0. This is a contradiction so it must be that h′1(W ) > 0 for all W ≥ W .

Next I show that the W that satisfies VWW (X,W ;W ) = 0 and the corresponding function

V (X, ·;W ) are jointly unique. Define ψ(W ) := h0(W )h′1(W ) − h1(W )h′0(W ) and observe

that ψ(W ) = 1. Using the boundary condition VW (W ;W ) = −1,

γ2σ2

2
VWW (W ) = rV (W ) + [ρW + ηa]

= [ρW + ηa] + rB

(
h0(W )h1(W )− h1(W )h′0(W )

h′1(W )

)
− rh1(W )

h′1(W )

= [ρW + ηa] + rB
ψ(W )

h′1(W )
− rh1(W )

h′1(W )
(B.4)

where the second line follows from substituting Equation (B.3) and the third one from a

simple rearrangement of terms. Now, the boundary-value problem

ψ′(W ) = h0(W )h′′1(W )− h1(W )h′′0(W )

=
2[ρW + ηa]

(γσ)2
[h1(W )h′0(W )− h′1(W )h0(W )]

= −2[ρW + ηa]

(γσ)2
ψ(W ), ψ(W ) given (B.5)

where the second line uses Equation (B.2), together with the boundary condition ψ(W ) = 1

can be solved in closed form:

ψ(W ) = exp

{
− 1

(γσ)2

(
ρ(W 2 −W 2) + 2[(η − γt)a](W −W )

)}
.

Next multiply both sides of Equation (B.4) by h′1(W )/ψ(W ) and re-arrange to obtain

γ2σ2

2
VWW (W )

h′1(W )

ψ(W )
= [ρW + ηa]

h′1(W )

ψ(W )
− rh1(W )

ψ(W )
+ rB.
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We want to show that VWW (W ) = 0, for which we need that the function

ϕ(W ) := [[ρW + ηa]h′1(W )− rh1(W )]
1

ψ(W )

satisfies ϕ(W ) = −rB. Observe that it must hold that ϕ(W ) + rB > 0, otherwise the

principal cannot even hire the agent, and ϕ(W ) = [ρW + ηa]. Hence, it is enough to show

that ϕ(·) is strictly decreasing on [W,∞). Differentiating and using Equation (B.2) one has

ϕ′(W ) = e
1

(γσ)2
[ρ(W 2−W 2)+2[(η−γt)a](W−W )]

×
[
[ρW + ηa]h′′1(W )− rh′1(W )

+
2[ρW + ηa]

(γσ)2
([ρW + ηa]h′1(W )− rh1(W ))

]
= −e

1
(γσ)2

[ρ(W 2−W 2)+2[(η−γt)a](W−W )]rh′1(W ) < 0,

where the last inequality follows from the fact that h′1 > 0. Similarly

ϕ′′(W ) = e
1

(γσ)2
[ρ(W 2−W 2)+2[(η−γt)a](W−W )]

[
−rh′′1(W )− 2(ρW + ηa)

γ2σ2
rh′1(W )

]
= −e

1
(γσ)2

[ρ(W 2−W 2)+2[(η−γt)a](W−W )]r

[
h′′1(W ) +

2(ρW + ηa)

γ2σ2
h′1(W )

]
= −e

1
(γσ)2

[ρ(W 2−W 2)+2[(η−γt)a](W−W )]r
2

γ2σ2
h1(W ) < 0

where the last line uses Equation (B.2) again. Hence ϕ(·) is decreasing and strictly concave

on [W,∞), so W is unique. The condition VWW (W ) = 0 corresponds to the (optimality)

super-contact condition in Dumas (1991).

Proof of Proposition 4: The use of penalties and of the termination condition follow

immediately from Propositions 1 and 2. Since the solution V (W ) is concave in W, VWW < 0

and the coefficient γat should be made as small as possible while still satisfying incentive

compatibility – hence γat = η to induce at = A. Under the equivalent measure P the

optimality of high effort is immediate from the marginal condition of the principal

1 + VW (W )η ≥ 0,

since VW ≥ −1, W ≤ W and η ≤ 1. Finally to set the optimal audit intensity φ I solve the

optimization problem

max
W

(π −W )e−W
√

2r − kEQ [φ(Y )]

with the transformation φ =
γat
W

(dY ∗t − σdZt). Since φ is increasing convex, the truth-

telling condition is slack beyond dZt. Differentiation yields the first-order condition of the
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Proposition. To check for a maximiser it is enough to notice that

γat
W 2 [dY ∗t − σdZt] =

φ

W 2

γat
φ

[dY ∗t − σdZt] =
φ

W 2ϕ(W ) =: ψ(W )

and

ψW (W ) = ϕW +
ϕ

W 2

[
φWW

2 − 2Wφ
]
< 0.

Proof of Corollary 1: Let the parametrized value function V (W ;W ) for some W . At W

this function satisfies

VW (W ;W ) = −1, VWW (W ;W ) = 0

so that the HJB equation yields rV (W ;W ) + ρW = µ+ a(1− η). Differentiate with respect

to W :

r

(
dV (W ;W )

dW
+ VW (W )

)
+ ρ

dW

dW
= 0

re-arrange using the boundary condition VW (W ) = −1:

dW

dW
= − r

ρ− r
dV

dW
, where

dV

dW
= −VW (W )E

[
e−rτ |W0 = w

]
< 0.

Proof of Proposition 6: The very definition of ∆t readily establishes it is an increasing,

convex function of the quantity Lt, with ∆t ≤ 0 at Lt = 0 – the other terms are constant in

Lt. Therefore it is sufficient to show L > 0,L′ < 0,L′′ > 0 over the interval [M,M ]. Define

Lt := L(Mt) with

rL(m) = ρmL′(m) +
σ2

2
L′′(m), L(M) = 1, L′(M) = 0

and consider a candidate solution to this homogenous equation:

L(m) = a0H0(m) + a1H1(m), m ∈ [M,M ],

with the conditions H0(M) = 1, H ′0(M) = 0, H1(M) = 0, H ′1(M) = 1. One checks that the

Wronksian product WH0H1(M) = H0(M)H ′1(M)−H1(M)H ′0(M) = 1 > 0 so that H0, H1 are

appropriate basis functions. Using the boundary condition L(M) = 1 implies a0 = 1, and

using L′(M) = 0 yields a1 = H ′0(M)/H ′1(M). Then

L(m) = H0(m)− H ′0(M)

H ′1(M)
H1(m).
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which immediately yields that L(M) > 0 – since WH0,H1 >. Then from

rL(M) = ρmL′(M) +
σ2

2
L′′(M) and L′(M) = 0

L′′(M) > 0. Now combining L′(M) = 0 together with L′′(M) > 0 and L(M) > 0 imply

L′(m) < 0 over at least an interval (M − ε,M), ε > 0 but small. Otherwise it would have

curvature at M and one would have L′(M) > 0 as well. Suppose L′(·) > 0, m < M − ε; let

m̃ := sup
{
m < M − ε

∣∣L′(m) ≥ 0
}
.

Since L(M) > 0 and L′(m) < 0 over (m̃,M), one has L(m̃) > 0 and L′(m̃) = 0. Therefore

L′′(m̃) ≤ 0 as m̃ is a turning point of L. Then

rL(m̃) = ρmL′(m̃) +
σ2

2
L′′(m̃) ≤ 0,

which is a contraction and one must conclude L′(m) < 0 over the whole interval. Next, since

L is everywhere decreasing in L(M) > 0, L(m) > 0 ∀m over the interval. Finally from

rL(m) = ρmL′(m) +
σ2

2
L′′(m) > 0 ∀m

one must conclude that L′′(m) > 0 as well.

Proof of Corollary 2: Inspection of the function ∆t shows it is strictly increasing in Lt,

and Lt = L(Mt). Thus we need to investigate the behavior of the function L with respect

to η and k, and of the terms (1− η)Mre−r(τ−t). Unlike in Biais et al. (2007), the function L

depends on η, k through both M and directly through M .

Define the basis function h1 as in the Proof of Proposition 3; we know then that W is

the solution to

[ρWh′1(W )− rh1(W )]e
ρW2

η2σ2 = µ(a)

so equivalently M = ηW is the solution to

[ρηMh′1(ηM)− rh1(ηM)]e
ρM2

η2σ2 = µ(a).

Define H1(M) := h(ηM); given the properties of H1 : H1(M) = 0, H ′1(M) = 1 one has

H1 = ηh1 and this rewrites

[ρMH ′1(M)− rh1(M)]e
ρM2

η2σ2 =
µ(a)

η
.

The LHS is an increasing function of M that is independent of µ(a), η, so that when the

equation holds (at M) the quantity M must be increasing in µ(a) and decreasing in η. Next
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define the function ψ := ∂L/∂M ; we know this function satisfies the differential equation

and boundary conditions

rψ(m) = ρmψ′(m) +
σ2

2
ψ′′(m), ψ(M) = 0, ψ′(M) = −L′′(M).

Immediately one has ψ′(M) < 0; to show ψ′(m) ≤ 0 ∀m, note that if ψ′(m) > 0 for at least

some m ∈ [M,M ], ψ must turn at lest once (since ψ′(M) < 0). That is, there must be at

last some m̂ such that

rψ(m̂) = ρmψ′(m̂)︸ ︷︷ ︸
=0

+
σ2

2
ψ′′(m̂) ≤ 0;

which contradicts that ψ(m) increases from M . Thus ψ(m) < 0, m ∈ (M,M ]; that is,

the function L is strictly decreasing in M . Finally combine with M increasing in µ(a) and

decreasing in η.

To show the role of η and k on M – which affects both Lt and M – I study the behavior

of the function L as M changes. First define the function ζ := ∂L/∂M , as for ψ at M ; it

satisfies the equation and boundaries:

rζ(m) = ρMζ ′(m) +
σ2

2
ζ ′′(m), ζ(M) = −L′(M), ζ ′(M) = 0.

At M these conditions imply

rζ(M) =
σ2

2
ζ ′′(M),

and either rζ(M) = σ2

2
ζ ′′(M) < 0 so that ζ(M) < 0 and ζ is locally concave: ζ ′′(M) < 0,

and M is a local maximizer. Or rζ(M) = σ2

2
ζ ′′(M) ≥ 0, therefore with ζ(M) ≥ 0 and ζ is

locally convex. Suppose ζ is locally concave and therefore that ζ(M) < 0; because ζ(M) > 0,

the function ζ must also have a local minimizer m0 ∈ (M,M). At that point,

ζ ′(m0) = 0, ζ ′′(m0) ≥ 0 =⇒ ζ(m0) ≥ 0,

which contradicts ζ < 0, and therefore contradicts the premise that ζ is locally concave at

M . So ζ must be locally convex and positive around (M); if it is locally convex, ζ ′(M) ≤ 0

too. To extend this to the entire interval we must rule out ζ ′ > 0 anywhere else. Suppose so

ζ ′ > 0 for some M ∈ [M,M), then it must

1. either start increasing at M , have at least a local maximum and an inflexion point;

2. or start decreasing at M , have at least a local minimum followed by a local maximum.
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In the first case, take ζ ′(M) > 0 then ∃ m0 such that

ζ ′(m0) = 0, ζ(m0) > 0, ζ ′′(m0) < 0,

but the differential equation

rζ(m) = ρMζ ′(m) +
σ2

2
ζ ′′(m),

shows this is a contradiction. Next, for there to be a local minimum with ζ > 0, the following

conditions must hold:

ζ ′(M) < 0, ζ ′(m0) = 0, ζ(m0) > 0, ζ ′′(m0) > 0,

and it must be followed by a local maximum at some point m1 > m0, with conditions:

ζ ′(M) < 0, ζ ′(m1) = 0, ζ(m1) > 0, ζ ′′(m0) < 0.

Again the differential equation

rζ(m) = ρMζ ′(m) +
σ2

2
ζ ′′(m),

shows this is another contradiction. Finally one can likewise rule out a local minimum with

ζ < 0, for then the conditions

ζ ′(M) < 0, ζ ′(m2) = 0, ζ(m2) < 0, ζ ′′(m2) > 0,

are also contradicted by the differential equation. Hence the function ζ(M) can only be a

monotonically decreasing, convex function over the interval [M,M ], and the function L(M)

is necessarily decreasing in the bound M . We know from Proposition 1 that M increases in

both η and k.

The last step verifies that the quantity (1− η)Mre−r(τ−t) is decreasing in η. Recall that

M is a construction: M = W/η. The quantity (1 − η)W/η vanishes at η = 1, and is not

defined at η = 0 (there is no moral hazard problem then). Using L’Hospital Rule,

d

dη

(
dW

η

) ∣∣∣∣
η=0

=
dW

dη
> 0,

d

dη

(
1− η
η

) ∣∣∣∣
η=0

= −1

and since (1 − η)/η is everywhere decreasing and W everywhere increasing, (1 − η)W/η

is everywhere decreasing. Finally e−r(τ−t) increase as τ decreases; and τ decreases as W

increases. Therefore ∆t decreases in η, k, as claimed.
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