
Corporate Liquidity Management under Moral Hazard∗

Barney Hartman-Glaser† Simon Mayer‡ Konstantin Milbradt§

April 1, 2019

Abstract

We present a model of liquidity management and financing decisions under moral hazard in

which a firm accumulates cash to forestall liquidity default. When the cash balance is high, a

tension arises between accumulating more cash to reduce the probability of default and provid-

ing incentives for the manager. When the cash balance is low, the firm hedges against liquidity

default by transferring cash flow risk to the manager via high powered incentives. Under mild

moral hazard, firms with more volatile cash flows tend to transfer less risk to the manager and

hold more cash. In contrast, under severe moral hazard, an increase in cash-flow volatility exac-

erbates agency cost, thereby reducing firm value, overall hedging and in particular precautionary

cash-holdings. Agency conflicts lead to endogenous, state-dependent refinancing costs related

to the severity of the moral hazard problem. Financially constrained firms pay low wages and

instead promise the manager large rewards in case of successful refinancing.
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1 Introduction

A firm’s current owners often have limited wealth and liability, and must therefore raise financing

in illiquid markets to forestall running out of cash. Consequently, firms often accumulate internal

cash balances to avert such a liquidity default. At the same time, accumulating a large cash balance

can cause an agency problem to occur, because such balances create a larger pool from which a

firm’s manager can divert cash (as argued in Jensen (1986)). In the standard principal-agent model

in corporate finance, for example, DeMarzo and Sannikov (2006), a firm’s owners have deep pockets

and can costlessly transfer cash into the firm at any moment to cover negative cash flow shocks.

The presence of liquidity management and default in such a model then purely pertains to providing

incentives to the firm’s manager and does not directly speak to the accumulation of cash balances.

We introduce a model in which a firm’s shareholders face a trade-off between accumulating cash

to prevent liquidity default and optimally providing incentives to the firm’s risk-averse manager.

The firm’s shareholders have limited liability, cannot transfer cash into the firm after inception,

and have only occasional refinancing opportunities. As a consequence, they hedge against liquidity

based default by optimally managing internal cash balances.

In the model, the firm requires a manager to operate. This manager can inefficiently divert from

both the flow and stock of cash within the firm and therefore requires incentives. The manager

has constant absolute risk averse (CARA) preferences, while the shareholders are risk neutral.

Nevertheless, due to the potential for liquidity default, the shareholders are effectively risk averse

over the cash stock of the firm. As such, the contracting problem between the shareholders and

the manager features two forces that shape the sensitivity of the manager’s pay to the performance

of the firm. When the firm is far from liquidity default, the manager is more risk-averse than

the shareholders, and incentive provision determines the manager’s optimal exposure to cash flow

shocks. When the firm is close to default, the shareholders are effectively more risk averse than the

manager, and the optimal contract will give the manager high-powered incentives, that is incentives

above what is required to prevent cash diversion. These high-powered incentives essentially hedge

the risk of liquidity default.

Our assumption that investors cannot costlessly transfer cash into the firm introduces a novel

restriction on the promise-keeping constraint in the standard dynamic principal-agent model (for

example, DeMarzo and Sannikov (2006)). Specifically, only cash within the firm and incentive

compatible promises of raising cash given the opportunity can be used to fulfill the promised value
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to the manager. Thus, the firm’s cash balance is a commitment device that serves as collateral for

the promise of future payments to the manager. In the extreme case where raising additional funds

is impossible, only promises that are sufficiently collateralized by cash fulfill the promise-keeping

constraint.

Under the optimal contract, negative cash-flow shocks not only reduce the firm’s cash position

but also lower the present value of compensation the firm owes to the manager. While the manager

requires some minimum level of incentives to avert cash flow diversion, the firm may hedge through

labor contracts and transfer more than this minimum level of risk by providing strong incentives.

Such risk-sharing or hedging demand by the firm dominates the agency problem for low cash

balances. Risk-sharing is not costless; however, as increasing the variability of the manager’s pay

increases risk-premium the manager requires to bear such risk. The agency problem dominates

hedging needs for high cash balances, leading to labor contracts that have the minimum cash-flow

sensitivity to keep the agent from stealing out of the cash-flows. Therefore our first key finding is

that the optimal contract provides weaker incentives when the firm holds more cash and in particular

incentives decrease after positive cash-flow realizations, put differently, we find that firms with low

cash-holdings provide more equity-like compensation.

In addition to hedging through labor contracts, the firm can hedge liquidity risks by delaying

dividend payouts and therefore accumulating more cash. Under the optimal contract, the optimal

payout policy calls for a dividend whenever the firm’s cash balance exceeds a threshold which we

call the dividend payout boundary. Our second key finding is that the optimal dividend payout

boundary decreases in the severity of the moral hazard problem. In particular, the manager’s ability

to divert from the firm’s cash balance means that some of her compensation must be deferred, which

leads to an endogenous carrying cost of cash via the risk premium that the manager applies to

deferred compensation. When the moral hazard problem is more severe, that is, when the manager

can divert cash with greater efficiency, the carrying cost of cash increases and the optimal dividend

payout boundary decreases.

Our third key finding is that under moderate moral hazard firms facing high cash-flow uncer-

tainty do not pass on this uncertainty to management via employment contracts, but instead hedge

liquidity risk by holding more cash.1 In contrast, firms with low cash-flow uncertainty hedge more

via labor contracts and provide stronger incentives to management. When moral hazard is suf-

ficiently severe, target cash-holdings are non-monotonic in cash-flow volatility. This result arises

1This is generally consistent with the findings of Bates et al. (2009).
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because an increase in cash-flow volatility also increases the cost of incentive provision, thereby

decreasing firm value and reducing the overall hedging demand.

Our model questions the widely held view that firms facing more severe agency conflicts should

provide stronger managerial incentives. In particular, our fourth key finding is that the relationship

between incentive pay and the level of moral hazard is state dependent. When the firm has a large

cash balance, the strength of incentives is increasing in the severity of the moral hazard problem.

This relationship reverses for firms with low cash holdings. Because more severe agency conflicts

decrease the value of the firm as a going concern, liquidation becomes (relatively) less costly,

decreasing a firm’s hedging demand decreases to liquidity default. Consequently, the firm transfers

less risk to the manager when its cash-balance is low, and the moral hazard problem is severe.

Refinancing in the presence of agency conflicts imposes an endogenously-derived flotation cost

to raising funds in the absence of physical refinancing costs. In our model, the firm’s ability

to refinance is constrained by search frictions in capital markets, as in, for example, Hugonnier

et al. (2014), which lead to uncertain refinancing opportunities.2 Under the assumption that the

firm can commit to a refinancing policy ex-ante, we find that the implied refinancing costs are

state-dependent, i.e., they depend on the current cash level of the firm. Ignoring for expositional

purposes possible second-order effects of different payout boundaries, our fifth key finding is that a

firm, depending on its cash-holdings, either refinances to below the first best, or refinances to the

first best but raises more money than necessary to pay the manager a lump-sum wage payment in

excess of what incentive constraints would imply. In other words, the presence of agency always

distorts the decision to raise cash away from the first-best. The key to understanding latter effect

is that large promises conditional on a state in which there is unlimited access to new cash lower

the required wages in states in which cash is tight without violating promise keeping, thereby

lowering the likelihood of liquidity default. Furthermore, in contrast to Hugonnier et al. (2014),

better refinancing opportunities do not reduce the firm’s hedging of liquidity risk. On the one hand,

increasing the firm’s access to refinancing leads it to accumulate and raise less cash. On the other

hand, it leads to increased hedging of liquidity risk through managerial incentive-pay in low cash

states.

Next, we find that when moral hazard is more severe, incentive compatibility demands high-

powered incentives on average. Under these circumstances, employment contracts then absorb a

2Since refinancing in practice involves cost, it occurs at infrequent times, as documented by Leary and Roberts
(2005).
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large part of the liquidity risk, resulting in outside equity becoming less volatile on average. We also

demonstrate that a firm’s stock return volatility need not be decreasing in the firm’s liquidity and

can follow a hump-shaped pattern since a financially constrained firm hedges cash-flow risk through

labor contracts to a greater extent, which in turn reduces stock return volatility. Depending on

how much risk the firm transfers to the manager, we get a different relationship between liquidity

and volatility of stock returns. These model predictions are novel and contrast with the findings of

related models of cash-management such as that of Décamps et al. (2011)), who find the relationship

between cash and equity return volatility to be unambiguously monotonic.

Finally, the technique we use to solve our model also represents a methodological contribution.

Dynamic agency problems usually introduce the manager’s promised future payments as a state

variable to track the agency problem. At the same time, liquidity management problems use the

firm’s stock of cash as a state variable to track the liquidity of the firm. Our problem thus would

appear to have two state variables. While dynamic stochastic optimization problems with more

than two state variables are usually hard to solve, we show how a small expansion of the allowed

wage space allows for the model to collapse to a one-dimensional optimization while maintaining

the liquidity-agency trade-off. The key observation is that allowing the manager to receive small

negative wages, in conjunction with allowing the manager to have a savings contract that is not

identically zero along the equilibrium path, relaxes the shareholders’ problem. Shareholders prefer

to manage liquidity, in the absence of refinancing, using costly small negative wages over holding

cash-buffers in excess of the incentive constraints.3 Cash net promised risk-adjusted future wage

payments readily measure the firm’s financial soundness and its distance to liquidity default

Related Literature

We draw on two main strands of literature. First, there is a large literature on dynamic agency

conflicts, such as DeMarzo and Sannikov (2006), DeMarzo et al. (2012), Biais et al. (2007, 2010),

Zhu (2012) or Williams (2011). Similar to He (2011), He et al. (2017), Marinovic and Varas

(2017) or Holmstrom and Milgrom (1987), we consider an agent with CARA-preferences. This

specification allows the problem to be analytical tractable. Relatedly, Ai and Li (2015), Ai et al.

(2013) and Bolton et al. (2017) study optimal executive compensation and investment under limited

commitment. Their papers do not feature agency conflicts.

3Importantly, this dimensionality reduction goes beyond the absence of wealth effects, as studied by related
papers considering a CARA-manager endowed with a savings technology (compare e.g. He (2011), He et al. (2017)
or Gryglewicz et al. (2017)), which usually focus without loss of generality on zero-savings contracts.
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Second, our model is linked to the literature on optimal cash-management within firms (some-

times referred to as optimal corporate cash management). Here, Bolton et al. (2011, 2013), Décamps

and Villeneuve (2007), Décamps et al. (2011); Decamps et al. (2016), Rochet and Villeneuve (2011),

Hugonnier et al. (2014), Gryglewicz (2011), Della Seta et al. (2017) and Hugonnier and Morellec

(2017) are the closest references, as they show how a firm, owned by risk-neutral shareholders, that

faces financing frictions optimally holds in-ternal cash-balances, even if these balances (exogenously)

return less than the risk-free rate. In contrast, in our model internal cash-balances are not inferior

in returns to the risk-free rate, but rather are costly in terms of the agency problem.

Our paper is also related to the literature analyzing risk-sharing between firms and their workers,

such as the theoretical studies of Berk et al. (2010) or Hartman-Glaser et al. (2017) or the empirical

study of Guiso et al. (2005), who document that firms insure their workers only partially against

cash-flow risk.

2 Model Setup

Cash-Flow & Earnings. We consider a 100% equity financed firm, owned by a mass of share-

holders, who we also collectively refer to as the principal. To operate the business and produce cash-

flows from assets, the firm has to hire a manager (agent, she). Up to firm liquidation/termination

at time τ , assets in place produce a cash-flow X that follows a controlled Arithmetic Brownian

Motion with drift µ and volatility σ:

dXt = µdt+ σdZt − dbt,

where Z is a standard Brownian Motion on the complete probability space (Ω,F ,P) with filtration

F = {Ft : t ≥ 0}. Cash-flow X is fully observable, but the agent can alter its realization through her

hidden action b, where dbt > 0, as in DeMarzo and Sannikov (2006), corresponds to the diversion

of funds. In our model, dXt > 0 represents operating profits and dXt < 0 operating cost or losses.4

Cash Holdings. The firm is liquidated when it is not able or willing to cover its operating cost,

in which case shareholders recover a liquidation value L with µ
r+δ ≥ L.5 Thus, liquidation entails

4Equivalently, we could assume that cash-flow X is only observable to the agent, who then reports cash-flow X̂
and keeps the difference X − X̂ for her own use.

5We additionally impose a lower limit in the appendix that ensures that liquidation is better than having the

agent run the firm, which is given by L ≥ max
{
µ−ρrσ2/2

r+δ
, 0
}
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deadweight costs, and the firm optimally retains earnings in the form of cash-holdings M to avert

liquidation. Cash-holdings M are observable to both parties. Liquidation occurs when the firm

runs out of cash, i.e., at time τ = inf{t ≥ 0 : Mt = 0}. At this point, we would like to stress that

the firm could also ask the agent – who is able to maintain a savings account – to cover operating

losses dXt < 0 when Mt = 0, but optimally does not do so and indeed prefers to default at time τ .

In the baseline version of our model, we assume that no refinancing is possible. Later, we introduce

refinancing opportunities at Poisson times and discuss the impact of agency frictions on optimal

refinancing policies.

Next, we assume that the firm is subject to an exogenous shock that wipes out its entire cash-

balance M and trigger immediate liquidation.6 The shock arrives according to a Poisson process

with intensity δ. This assumption is needed to ensure that the model is well-behaved, in that

dividend payments are not indefinitely delayed. Without loss of generality, N is observable to both

parties.7 One example of such a shock can be a large lawsuit – for example, Purdue Pharma (the

maker of OxyCotin) recently prepare to declare bankruptcy in response to a number of lawsuits

related to the Opioid crisis.

The cash-stock inside the firm grows through earned interest on the balance at the market rate

r > 0 and is directly affected by cash-flow from assets, dividend payouts to shareholders dDivt,

wage payments to the manager dwt, managerial cash-diversion dbt, and catastrophic shock dNt = 1:

dMt = rMt−dt− dDivt − dwt + µdt+ σdZt −Mt−dNt − dbt. (1)

Here, Mt− = lims↑tMt denotes the left limit of cash Mt. More intuitively, Mt− represents cash-

holdings just before the catastrophic event (a jump) dNt ∈ {0, 1} realizes.

Moral Hazard. We assume that the manager can secretly divert cash for her own use by the

following actions:

First, because firm performance is noisy, i.e., σ > 0, the manager can secretly steal some

infinitesimal amount dbt > 0 with dbt ∈ op(dt) from the firm’s cash-flow dXt. By doing so, she

appropriates fraction λ ≤ 1 per dollar diverted, so stealing is assumed inefficient. Conversely, the

6The exact nature of the shock is not relevant as long as it triggers default with positive probability and some
exogenous loss of cash. Instead of a fixed loss, we could equally assume that the shock size is exponentially distributed
like in Hugonnier and Morellec (2017), or impose an internal cost of carrying cash.

7If N were only observable to the agent, the model and its solution would be entirely the same. Equivalently, we
could model the disastrous shock also as cash-flow shock: dXt = µdt+ σdZt − dbt −Mt−dNt.
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agent can also put her own money into the firm and boost cash-flow through dbt < 0. This transfer

is not subject to efficiency losses. As long as dbt is infinitesimal and smooth – that is, dbt = b̂tdt

for some process b̂ – the principal cannot detect the agent’s hidden action and attributes the loss

b̂tdt due to the agent’s cash-flow diversion mistakenly to a lower cash-flow shock dZt.
8

Second, the manager can divert a lumpy amount of cash – smaller or equal than Mt – from the

firm’s cash-balance and in particular abscond with the entire cash-balance Mt, in which case Mt

jumps down. Importantly, this cash diversion is immediately detected by the principal, because

absent moral hazard cash-flow dXt is not subject to jump shocks and therefore continuous, and the

only exogenous jump in the model, dNt, is publicly observable. We assume that the agent’s benefit

from stealing from the cash-stock is a fraction κ per dollar diverted.

Throughout the paper, we denote the amount of cash stolen by the manager up to time t by bt

and the amount received by Bt, where Bt does not necessarily equal bt, as diversion is subject to

efficiency losses.9

Preferences. Shareholders are risk-neutral, have zero private wealth and are protected by limited

liability/commitment. That is, dividend payouts must be non-negative, that is, dDivt ≥ 0 for all

t ≥ 0.10 Shareholders discount at market rate r and maximize total firm value, which is given by

discounted cumulative dividend payouts. Because shareholders cannot fully commit, they could

at any time potentially pay out all cash Mt− , liquidate the firm and renege on the manager’s

promised payments. In case shareholders try to do so, we assume that the firm’s cash-stock is

divided between shareholders and manager according to the Nash-Bargaining protocol, where the

shareholders possess bargaining weight θ > 0. Likewise, shareholders cannot commit to any wage

payments dwt > 0 after liquidation for t > τ and optimally do not pay any wages after liquidation.

The manager discounts at market rate r and is risk-averse with CARA-utility

u(ct) = −1

ρ
exp(−ρct),

where ρ > 0 is the coefficient of absolute risk-aversion and ct is instantaneous consumption. The

8Any stochastic, i.e., non-smooth, stealing would immediately be revealed by the quadratic variation of the process,
and thus is not used by the agent.

9Formally, write dbt = b̂tdt + db1t , where the process b̂ is absolutely continuous. Then, dBt = max{0, b̂t}λdt +
min{0, b̂t}dt+ κdb1t .

10The zero private wealth assumption is simply to keep the shareholders from injecting cash into the firm to keep
it alive. Dispersed shareholders with positive wealth in the absence of coordination would also result in the absence
of cash injections due to a free-rider problem.
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manager cannot fully commit and may decide to leave the firm and abscond with the entire cash-

balance or any other amount, whenever she is better off from doing so.

In addition, we assume that the manager can maintain hidden savings S, so that her consump-

tion c is not observable to the principal. For tractability, we assume that the manager can borrow,

implying that St need not be positive. Savings S then earn/pay interest at rate r and are subject

to changes induced by wage payments dwt, diverted cash dBt, and consumption ct:

dSt = rSt−dt+ dBt + dwt − ctdt (2)

Endowing the agent with the possibility to accumulate savings is needed to ensure consumption

smoothing beyond any liquidation event. The manager maximizes expected, discounted utility and

possesses an outside option u0− . We normalize initial savings S0− = 0 and the agent’s outside

option in certainty equivalence terms (properly defined in the next subsection) W0− = 0.

We will make the following assumption on the wage process dw:

Assumption 1. We assume that cumulative wages must satisfy limε→0wt+ε − wt ≥ 0. That is,

wages have to be either continuous or exhibit upward jumps (lumpy payments to the manager), but

cannot exhibit downward jumps (lumpy cash infusions from the manager).

Note that this assumption does not preclude negative flow wages. We discuss the above and

alternative assumptions in more detail in Sections 3.2.3 and 3.2.4.

The Contracting Problem. At inception t = 0−, the manager is offered a contract C = (ĉ, w, b̂)

by the shareholders, who also decide on optimal cash-holdings and the payout process Div. The

contract C specifies the manager’s recommended consumption ĉ, wage payments w and diversion b̂.

We call C incentive compatible if ct = ĉt and b̂t = bt = 0, in that the manager does not (inefficiently)

steal from the firm’s cash-stock, and feasible if the principal can fully commit to it. Throughout the

paper, we focus on incentive compatible and feasible contracts and denote the set of these contracts

by C.

The agent solves

U0− = max
c,b

E
[∫ ∞

0
e−rtu(ct)dt

]
s.t. (2) (3)
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for some initial savings S0− while the shareholders’ objective is it to maximize firm value:

V0− = max
Div,C∈C

E
[∫ ∞

0
e−rtdDivt + e−rτL

]
, (4)

s.t. U0− ≥ u0, dDivt ≥ 0,Mt ≥ 0 for all t ≥ 0 and (1). (5)

To ensure the problem is well-behaved, we impose that the agent’s savings S must satisfy the

transversality condition, sometimes referred to as the No-Ponzi condition:

lim
t→∞

e−rtSt ≥ 0 almost surely wrt. P (6)

and certain other regularity conditions, which are collectively gathered in Appendix A. If ever

Sτ < 0, the transversality condition requires negative consumption to make up the savings shortfall.

3 Model Solution

In this section, we solve the model and derive the firm’s optimal payout and executive compensation

policy. First, we analyze the manager’s problem and characterize conditions for the contract to be

incentive compatible. In particular, we introduce the certainty equivalent Wt. Second, we focus on

the principal’s problem and show the restriction on the state- and strategy-space the principal faces.

In particular, due to CARA, the principal faces a 2-dimensional dynamic optimization problem

characterized by a PDE. Third, we show how under Assumption 1 on wages the model collapses

to a 1-dimensional dynamic optimization problem characterized by an ODE while maintaining a

liquidity-default trade-off.

3.1 The manager’s problem

3.1.1 The Continuation Value

As is standard in the dynamic agency literature, let us define for any incentive compatible contract

C the agent’s continuation value at time t

Ut := Et
[∫ ∞

0
e−r(s−t)u(cs)ds

]
(7)
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and denote the agent’s savings by St. By the martingale representation theorem, we get that

dynamics of U follow

dUt = rUt−dt− u(ct)dt+ βt(−ρrUt−) (dXt − µdt)︸ ︷︷ ︸
=σdZt

−αt(−ρrUt−)(dNt − δdt) (8)

for some (conveniently scaled) loadings α, β defined by the contract. Here, α captures the agent’s

exposure to disaster risk dNt and β the agent’s exposure to cash-flow shocks dZt.

First, note that in order to ensure that the agent does not deviate from the recommended

consumption path, the optimal contract has to respect the agent’s Euler equation, in that marginal

utility has to follow a martingale. Next, as shown in the appendix, the first order condition with

respect to consumption with the possibility of a savings account implies that u′(ct) = −ρrUt− > 0.

This in turn implies that Ut is a martingale. Further, let us define the certainty equivalent Wt as

the amount of wealth needed that would result in utility Ut if the agent only consumed interest

rWt, i.e.,

u′(rWt−) = −ρrUt− ⇐⇒ W (U) :=
− ln(−ρrU)

ρr
. (9)

Here, Wt is the agent’s continuation value in monetary terms while Ut is the agent’s continuation

value in utility terms.

By Ito’s Lemma, we obtain

dWt =
ρr

2
(βtσ)2︸ ︷︷ ︸

BM Risk-Premium

dt+ βt(dXt − µdt)

+ δ

(
αt −

ln(1 + ρrαt)

ρr

)
︸ ︷︷ ︸

Poisson Risk-Premium>0

dt− ln(1 + ρrαt)

ρr
(dNt − δdt). (10)

Because her compensation package is exposed to cash-flow shocks dXt and productivity shocks

dNt, the agent demands a risk premium, so that Wt has a positive drift. In other words, as Ut is a

martingale, Wt = W (Ut) has a positive drift due to the convexity of W (U) and Jensen’s inequality.

Essentially, (8) or equivalently (10) constitutes the so-called promise-keeping constraint. That is,

shareholders promise the agent’s continuation value W (resp. U) evolves according to (10) (resp.

(8)).
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3.1.2 Cash & Cash-Flow Diversion

In this section, we analyze the incentives the optimal contract has to provide to the manager in

order to preclude diversion of cash. In principle, the agent can pursue two actions.

First, she can steal some infinitesimal amount ε > 0 of cash. When this amount is sufficiently

small (on the order of dt), the principal mistakenly attributes the losses to an adverse cash-flow

shock dZt < 0 and can accordingly not detect this misbehavior. We refer to this action as cash-flow

diversion. Diverting and consuming amount ε > 0 from cash-flow increases flow utility by u′(ct)λε

while dXt falls by ε, so that on average the agent’s continuation value is reduced by (recall our

scaling of the loadings in the martingale representation) βt(−ρrUt−)ε = βtu
′(ct)ε. Thus, stealing ε

dollars is not optimal if

βt(−ρrUt−) ≥ λu′(ct)⇐⇒ βt ≥ λ. (11)

Therefore, the principal has to provide a minimum performance-pay in order to rule out the agent

diverts from cash-flow. In principle, the manager can also boost cash-flow dXt through putting

in additional cash from her savings account. To prevent a violation of promise keeping, any IC

contract needs to have βt ≤ 1. As we shall see, the constraint βt ≤ 1 never binds and does not

affect the principal’s maximization, in that the manager is optimally provided incentives βt < 1 for

all t ≥ 0.

Second, the agent can divert any larger amount cash 0 < dbt ≤ Mt− , in which case the firm’s

cash-balance jumps down by dbt > 0. We refer to this action as cash-stock diversion, because

cash-flow evolves continuously and is not subject to large shocks. Thus, absent any large shocks

dNt = 1, the principal immediately observes the agent’s misbehavior and can accordingly punish

her. It is important here to point out that the principal does not have access to the agent’s savings

account, so that any punishment has to arise from decreasing future wages. In order to have some

leeway to punish the agent, the principal must therefore defer compensation.

Hence, whenever the firm holds a positive amount of cash Mt− > 0, i.e., for t < τ , the optimal

contract must provide incentives by means of deferred compensation, in order to preclude that

the agent steals any amount from the cash-stock. Deferred compensation is represented by Yt− :=

Wt− −St− > 0, so that the agent’s promised compensation exceeds her savings. We interpret Yt as

the risk-adjusted value of future wages.11

11It is straightforward to show Yt = Et
[∫∞
t
e−r(s−t)

(
dws − ζsds

)]
where ζt := ρr

2
(βtσ)2 + δ

(
αt − ln(1+ρrαt)

ρr

)
is

the agent’s required risk premium.
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To see why Yt > 0 discourages cash diversion, imagine that the agent considers ’just before’

time t, i.e., at t−, to abscond with the entire cash-stock Mt− . Doing so, she receives κMt− dollars,

the firm is liquidated and the employment contract is terminated. Hence, after stealing, the agent

does not receive any future wages, but possesses the sum of her private savings and the diverted

cash St− +κMt− . The agent refrains from stealing if the value from staying with the firm is higher

than the value from stealing and leaving, that is if:12

Wt− = St− + Yt− ≥ St− + κMt− ⇐⇒ Yt− ≥ κMt− ⇐⇒ ϕt :=
Yt−

Mt−
≥ κ. (12)

By (12), high cash-holdings Mt within the firm exacerbate agency issues and tighten the IC con-

straint, which makes higher powered incentives by means of deferred payments Yt− necessary.

While deferring compensation by means of Yt− > 0 is necessary to align the manager’s incentives,

it comes at a cost. This is because during any time interval [t, t + dt] the firm might be hit by a

disastrous shock, which fully exhausts the available cash-stock. In this case, the firm is liquidated

and – due to the shareholders’ limited liability – the manager looses the previously promised amount

Yt− . By definition, at time of termination τ , the manager’s certainty equivalent Wτ must equal her

savings Sτ , i.e., Yτ = 0. Hence, upon a shock dNt = 1, it follows that the manager’s continuation

value jumps down immediately by amount Yt− , in that dWt = −Yt−dNt. Matching coefficients in

(10), this pins down the manager’s exposure to disaster risk in terms of Ut:

αt = A(Yt−) :=
exp(ρrYt−)− 1

ρr
≥ 0. (13)

Hence, deferring compensation exposes the manager to Poisson shocks, for which she requires a

risk-premium to be paid by the firm. Consequently, increasing Yt− is costly for shareholders as A(·)

is increasing and convex in its argument.

Because higher cash-holdings Mt− require by (12) more deferred compensation Yt− and therefore

a higher risk-compensation δA(Yt−) and flow wage for the manager, we obtain endogenous carry-

cost for internal cash-holdings.

To conclude this part, we summarize our findings in the following proposition.

Proposition 1. Let C solve (5). Then, the following holds true:

12In case the agent were able to enjoy an additional outside option O in monetary terms after leaving the firm, e.g.,
through finding a job at another firm or through extracting some of the liquidation value of the assets, the constraint
(12) would change to Yt− ≥ κMt− +O. Throughout our analysis, we consider without loss O = 0 and we normalize
the agent’s outside option to zero.
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i) The agent’s continuation value U , defined in (7) solves the SDE (8) for some F-progressive

processes (α, β) and W solves the SDE (10).

ii) Given a process Y the process α satisfies (13).

iii) The process β satisfies βt ∈ [λ, 1] for all t ≥ 0 and the process α is given through (13).

3.2 The shareholders’ problem

3.2.1 First reduction of the State Space

The problem of shareholders generally depends on three states. The agent’s continuation value

Ut− or equivalently Wt− , the agent’s savings St− and the firm’s cash-holdings Mt− , so that firm

value at time t− – or equivalently the shareholders’ continuation value – is given by a function

V̂ (Mt− ,Wt− , St−). Thanks to CARA-preferences and the absence of wealth effects, the exact values

of Wt− and St− become irrelevant for the principal’s problem, and only the difference Yt− =

Wt− − St− matters. Thus, we are left with the two state variables (Mt− , Yt−), and the principal’s

value can be written in the form V̂ (Mt− ,Wt− , St−) = V (Mt− , Yt−).

3.2.2 State constraints

Promised payments to the manager must be fully collateralized. Put differently, any uncollateralized

promise Yt− > Mt− is an empty promise. Sufficiently negative cash-flow shocks (e.g., dXt = −Mt−)

can wipe out the firm’s cash-balance within a short amount of time (t, t + dt), thereby leading

to Yt+dt > Mt+dt = 0. Under these circumstances, shareholders either renege on the promise

Yt+dt and default or ask the manager to fully absorb cash-flow risk through β = 1, in order avoid

liquidation. In the first case, promise keeping is violated.13 In the second case, the manager must

cover consumption needs ct = rWt and operating losses, until the firm is liquid again and financial

distress is resolved. Because the manager’s consumption rWt strictly exceeds the interest earned on

savings, rSt, and financial distress may prevail for an arbitrarily long time-span, she accumulates

excessive debt (with positive probability), which results into a violation of the no-Ponzi condition.

We conclude that the only way for promise-keeping and No-Ponzi condition to hold is to liquidate

13That is, the evolution of W is inconsistent with (10). This is because default at time t+dt leads to an immediate
jump of payments Yt+dt > 0, the manager expects to receive, down to zero. Equivalently, Wt+dt jumps down in
absence of a Poisson shock, contradiction (10).
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Figure 1: Schematic Representation of the state- and strategy space

as soon as Yt = Mt. Thus, the principal’s optimization is subject to the following state constraint:

(Y,M) ∈ B = {(Y,M) : 0 ≤ κM ≤ Y ≤M} . (14)

3.2.3 The general HJB-equation

We can now write the principal’s optimization as

(r + δ)V (Y,M) = max
β≥λ,dw,dDiv≥0

LY V (Y,M) + LMV (Y,M) +
〈
LC ,LM

〉
V (Y,M) (15)

subject to the state-constraint (Y,M) ∈ B. Here, LZ is the linear generator of an arbitrary

stochastic process Z, and 〈·, ·〉 is the quadratic variation.

Note that to respect the state-constraint (Y,M) ∈ B, the principal has to engage in certain

strategies when hitting the boundaries of B to keep the (Y,M) from exiting B. First, at Y = M

the principal has to pays out all cash to the agent and subsequently liquidates the firm to ensure

promise keeping. Second, at Y = κM , the principal has to pick wage and dividend payments in

such a way as to not have Y drop below κM as response to shocks or drift exposure of Y and M .

For this discussion, briefly ignore Assumption 1. Panel A in Figure 1 gives a graphical repre-

sentation of the problem of controlling the process to stay in B. Consider point A strictly inside

B. The principal has two strategies at his disposal: (1) Paying a dividend dDiv > 0, which shifts

A straight left, and (2) paying a wage dw 6= 0 which shifts A along the 45-degree line, for example

to point A′, as the continuation value Y shifts 1-for-1 with the current wage payment.
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Let us now discuss two natural restrictions one would consider imposing on the control problem:

• Consider restricting the agent savings to be non-negative, i.e., S ≥ 0. This, destroys the first

reduction in the state space, as S now has to be separably tracked. In other words, the problem

with (S,W,M) = (0,W0,M0) is now different from the problem (S,W,M) = (Z,W0 +Z,M0)

for any Z > 0. Consequently, the principal now faces a true 3-D optimization in the (S,W,M)

with an additional state-constraint.

• Consider restricting wages to be non-negative, i.e., dw ≥ 0, to keep the first dimensionality

reduction intact. This requires dividend payments after any shocks push (M,Y ) below the

Y = κM ray. This can be seen in Panel A in Figure 1 as moving from point B to point

B′′ – after a negative shift pushes O below the Y = κM ray to B, only dividend payments

are effective in returning (Y,M) to within the wedge B. Such a dividend payout magnifies

cash outflows, amplifying the specter of liquidity-based default. The firm will therefore want

to consider building up a cash-buffer to stay away from the Y = κM ray. Consequently,

the optimization is taking place on the full 2-D space (M,Y ) with a non-standard, as non-

perpendicular, reflection at Y = κM .

Thus, either of these restrictions leads to a relatively intractable problem requiring a numerical

solution. We will next show how Assumption 1 makes the problem tractable while maintaining the

key economic mechanism between liquidity and agency that we are after.

3.2.4 Second reduction of the State Space

Let us return to Panel A in Figure 1, and let us consider a shift of point O to below Y = κM brought

about by a negative cash-flow shock, to say point B. Recall from the discussion of non-negative

wages that a dividend payout at such a point, to point B′′ say, magnifies the cash-outflows, leading

to a heavy reliance on precautionary buffer cash and a full-fledged 2-D problem. Consider instead

paying a negative wage dw < 0, i.e., requiring the agent to contribute a small amount of her own

cash to the firm, in return for a higher Y . Importantly, this payment does not violate Assumption

1, as the shock is driven by a continuous process, a Brownian motion. In essence, we are shifting

the problem up along the 45-degree line to satisfy the state-constraint (Y,M) ∈ B, here to point

B′. Importantly, this strategy does not change the firm’s net-cash position C = M − Y ≥ 0 which

measures the firms distance from default. Such negative wage contributions of course are not free,

in that they entail higher deferred earnings, which in turn will require a larger risk-premium, i.e.,
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a higher drift of Y . Thus, we are replacing a hard constraint on cash with a weaker constraint that

essentially implies an increasing cost of cash the more the agent is made to contribute.

To reduce the state-space further, we (1) rotate the state-space and (2) relax the problem:

1. Rotate the state space from (Y,M) to (C,ϕ), so 1 ≥ ϕ = Y/M ≥ κ and C = M − Y ≥ 0

are now representing B. In Figure 1, this rotation is represented by Panel B. Again, consider

point A, which has a slack constraint Y ≥ κM . In the (C,ϕ) space, we see that paying out

wages simply results in a vertical shift down, to point A′. Similarly, consider point B. A

dividend payment would shift the point in a north-west direction, to say point B′′, whereas

a negative wage payment simply results in a vertical shift up to say point B′.

2. Relax Assumption 1 by allowing lumpy wage payments of any sign. With unconstrained

wages, ϕ can be freely adjusted up and down without affecting the firms default outlook C

as discussed in point 1. Consequently, ϕ has now become a control. Assumption 1 is satisfied

in the relaxed specification if the optimal control ϕ(C) is continuous (absent refinancing).

Thus, we recast the principal’s problem as a maximization over controls β and ϕ with the

one-dimensional state C. Throughout the remainder of the paper, we refer to C also as net cash

or liquidity (reserves). Utilizing (10), (2), dBt = 0, ct = rWt, and Y = ϕ
1−ϕC, for any IC and

implementable contract we have

dCt = rCt−dt−
ρr

2
(βtσ)2dt− δA

(
ϕt−

1− ϕt−
Ct−

)
dt+ µdt+ (1− βt)σdZt − dDivt − Ct−dNt. (16)

Note that so far dw has not been explicitly specified – it will be defined as the residual that

implements the optimal choice of ϕ.

3.2.5 Optimization and the HJB-equation

To derive the HJB, let us write the value function v(C) = v(M − (W − S)) = V (M,W − S) =

V̂ (M,W,S). Next, we conjecture that dividend payouts only occur at an upper boundary C. On

the conjectured continuation region C ∈ (0, C), we have the following HJB:

(r + δ)v(C) = max
β≥λ,1≥ϕ≥κ

{
v′(C)

(
rC − ρr

2
(βσ)2 − δA

(
ϕC

1− ϕ

)
+ µ

)
+
σ2(1− β)2

2
v′′(C)

}
. (17)
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First, maximizing w.r.t. ϕ, as v′(C) > 0 in equilibrium, and
∂A

(
ϕC
1−ϕ

)
∂ϕ > 0, we optimally set

ϕ(C) = κ, (18)

i.e., we pick the minimum level of cash that implements no-stealing from cash stock. With ϕ

continuous, the solution to the relaxed problem is indeed the solution to the full problem.

Second, maximizing w.r.t. β, the first-order conditions and the IC constraint imply that

β(C) = max{λ, β∗(C)} with β∗(C) :=
−v′′(C)

ρrv′(C)− v′′(C)
< 1. (19)

Raising incentives β transfers risk to the agent and reduces the volatility of C, thereby lowering the

likelihood of liquidation. Consequently, it can be optimal to provide more incentives β than required

by incentive compatibility when C is low, as discussed in more detail in the next subsection.

Note that the solutions to ϕ and β imply that the firm never experiences agency-based default,

i.e., default triggered by C = 0 with M = Y > 0.

Boundary Conditions. The standard boundary conditions14 of value-matching at default C = 0

and smooth-pasting at the dividend payout boundary C = C are given by

v(0) = L and v′(C) = 1. (20)

Recall that shareholders are not able to fully commit to their promises, and may decide to

trigger liquidation if it is beneficial to them. Liquidating yields a cash payout – due to the Nash-

bargaining assumption – of θM = θ
1−κC in addition to the liquidation value L to the principal,

while paying (1− θ)M = 1−θ
1−κC to the agent. Thus, for any feasible contract, we must have15

v(C) ≥ θ

1− κ
C + L. (21)

If constraint (21) is slack, the payout boundary satisfies the optimality or super-contact condition

v′′(C) = 0 (22)

14Observe that a positive unit cash-flow shock to M at C = C leads to an increase in C of (1−β), and unit payouts
of (1− β) as dividends and β as wages. Re-norming, a unit shock to C then leads to a unit dividend payout.

15Strictly speaking, we must have v(C) ≥ θ
1−κC + L for all C ∈ [0, C], but from v′(C) ≥ 1 ≥ 0 ≥ v′′(C) it is

sufficient to check this condition at C = C.
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In other words, if payouts are optimally made at C = C with (21) slack, then the shareholders’

effective risk-aversion vanishes at C.

Thus, whenever (21) holds with equality and v′′(C) < 0, the shareholders’ limited commitment

combined with moral hazard κ constrain the firm in optimally managing liquidity risks. Note that

constraint (21) is always slack if θ
1−κ < 1, which is the case when a liquidation would not violate

promise keeping, as (1− θ)M < Y ⇐⇒ 1 < θ
1−κ .16 For θ

1−κ > 1, we simply check condition (21)

at the candidate payout boundary C
∗

defined by (22).

Proposition 2. Let C solve (5). Then, the following holds true:

i) The shareholders’ value function V (·) satisfies V (·) = v(C), where the function v(·) is twice

continuously differentiable, i.e., v ∈ C2.

ii) The principal’s payoff is given by a function v, that solves the HJB-equation (17) subject to

v(0)− L = v′(C)− 1 = 0 and either v′′(C) = 0 or v(C) = θC/(1− κ) + L.

iii) The value function v is strictly concave [0, C) with v′′′(C) > 0.

4 Analysis

Unless specified otherwise, we assume that parameters are such that the payout boundary is opti-

mally determined by the super-contact condition, i.e., v′′(C) = 0.17

4.1 Performance-Pay & Hedging Through Labour Contracts

In this section, we analyze the pay-performance sensitivity β. For clarity of exposition, let us for

the time being assume that λ = θ = 0, so that β = β∗. The assumption λ = 0 is equivalent to the

absence of the agency problem in terms of stealing out of cash-flow, but does not preclude stealing

from cash-stock, i.e., κ > 0.

Absent liquidity concerns, it is optimal for the principal not to expose the risk-averse manager

to any cash-flow shocks, i.e., to set β∗ = λ = 0. However, in the presence of liquidity concerns,

shareholders become increasingly risk-averse as cash-reserves dwindle and would optimally like to

hedge liquidity risk through labour contracts by setting incentive pay β∗ > 0.

16This is because v(C̄) − L = v(C̄) − v(0) > C̄, as v′(C) ≥ 1 with the inequality being strict for some C. Hence,
the super contact condition holds if θC̄ ≥ C̄θ

1−κ .
17As mentioned in the preceding footnote, a sufficient condition for this is θ < 1− κ.
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Figure 2: Benchmark value function: The parameters are µ = 0.25, r = 0.1, δ = 0.25, λ = κ =
0.4, σ = 0.75, θ = 0 and ρ = 7.

Incentive pay transfers risk to the agent, in that the volatility of the liquidity reserves, dC/dX =

σ(1− β), decreases in β for β < 1. Consider the benefit of increasing β:

∂v(C)

∂β
∝ −v′(C)ρrβσ2︸ ︷︷ ︸

Risk-Compensation;<0

+ (1− β)σ2(−v′′(C))︸ ︷︷ ︸
Reduction in Cash-Flow volatility;>0

.

Increasing β makes C less volatile and reduces the likelihood that the firm runs out of cash but

also requires a risk-compensation to the agent, as her wage has become more volatile. When the

firm has low cash holdings, a reduction in volatility is particularly beneficial, since −v′′(C) is large.

On the other hand, the marginal value of cash of the firm v′(C) is pronounced under distress, so

that the drift of promised wages required as risk-compensation is also very costly.

Intuitively, the optimal β∗ implements a risk-sharing solution that balances the agent’s con-

stant absolute risk-aversion ρ against the shareholders’ state-dependent absolute risk-aversion

−v′′(C)/v′(C). The firm hedges more strongly through labour contracts for low net-cash posi-

tions, i.e., β∗(C) > 0 for C > 0, whereas it absorbs all risk at the payout boundary, β∗(C) = 0.

That is, compensation becomes more equity like when the firm undergoes financial distress and has

little cash. In practice, firms with little cash often are start-ups and young firms, where it is indeed

well documented that their employees are often rewarded with stock.

When λ > 0, the firm’s risk-sharing is constrained by β ≥ λ. Thus, risk-sharing is constrained

for high levels of C in that due to IC constraint the principal can never fully insure the agent, even

at the payout boundary as β∗(0) = λ.

Furthermore, the incidence of negative wages dw < 0 rises for low C, in that 0 = dϕ = d(Y/M)
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implies dw = µwdt + β(C)−κ
1−κ σdZ. In other words, the model predicts an increased propensity of

managers to pledge private assets in response to negative cash-flow shocks for low liquidity firms,

something that is common in both start-ups and firms in financial distress. In the special case

of λ = κ, we have β(C)−κ
1−κ σ ≥ 0. Therefore, negative wages in response to cash-flow shocks occur

exactly when the risk-sharing considerations outweigh the agency issues.

We summarize our findings in the following corollary.

Corollary 1. Let C solve (5). Then, the following holds true:

i) There exists C ′ ∈ [0, C), so that the pay-performance sensitivity β∗ (weakly) decreases in on

[C ′, C]. In particular, ∂β∗(C)
∂C < 0 on [C ′, C]. If σ is sufficiently low, then C ′ = 0

ii) There exists a unique value Ĉ ∈ [0, C], such that β(C) > λ for C < Ĉ. If λ is sufficiently

small, it follows that Ĉ > 0.

iii) The loading of wages on the cash-flow shocks is given by β(C)−κ
1−κ σ and thus negative wages are

more prevalent for low-cash firms. If κ = λ, wages are always positive, i.e., dwt ≥ 0 ∀ t ≥ 0,

for σ or ρ sufficiently large

4.2 Risk-sharing vs retained earnings as liquidity management tools

In our setting, the firm has two distinct but connected tools to manage liquidity risks:

• The firm can hedge liquidity risk through labour contracts and provide particularly high-

powered incentives β during financial distress when C is close to zero.

• The firm can increase retained earnings accumulation, as proxied by the dividend boundary

C. All else equal, a higher payout boundary C implies higher average net-cash holdings.

Let us first establish the following analytic results regarding comparative statics:

Corollary 2 (Hedging through high powered incentives). For a firm under distress, i.e., C ' 0,

β(C), the analytic comparative statics are summarized in the first row of Table 1.

Corollary 3 (Hedging through cash reserves). For the target cash-holdings C̄, the analytic com-

parative statics are summarized in the second row of Table 1.

Next, we will show numerically that these two liquidity management tools are substitutes by

analyzing the following experiments: consider constraining the principal to a sub-optimal strategy in
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β (C ≈ 0) C

κ − − (κ sufficiently large)

σ − + (ρ, λ sufficiently low), − otherwise

µ +

ρ − (low ρ), 0 (otherwise) − (low ρ), + (high ρ)

λ − (low λ), + (otherwise) − (low & high λ)

δ − − (κ sufficiently large)

θ − (high θ, κ), 0 (otherwise) − (high θ, κ), 0 (otherwise)

Table 1: Comparative statics.

one of the two liquidity management tools – (i) an exogenously too high β(C), or (ii) an exogenously

too low C. From our previous discussions, a situation in which the IC constraint (19) is binding is

essentially experiment (i) and can thus be proxied for by comparative statics w.r.t. λ, whereas a

situation in which the commitment constraint (21) is binding is essentially experiment (ii) and can

thus be proxied for by comparative statics w.r.t. θ. In our discussion below, ”avg β” refers to the

equal-weighted integral
∫ C

0 β(C)dC/C.

Changing λ = κ. Let us consider varying the degree of agency friction as measured by the

stealing efficiency λ = κ. Column 1 of Figure 3 shows the behaviour of C and avg β (solid black

lines) when varying λ = κ. The avg β increases mechanically as we are raising the floor on β(C)

(dashed red line) via the IC constraint. In response to this increased risk-sharing through labor

contracts, the need for retained earnings decreases and C optimally shrinks. Moreover, more severe

moral hazard reduces firm value and thereby also overall hedging demand. Not shown here is that

numerically there is almost no movement in β(0).

Changing θ. Let us consider varying the degree of commitment by the manager as measured

by the bargaining weight θ. As long as (21) is slack changes in θ have no impact on any of the

principal’s choices. However, once θ is high enough and (21) starts binding the firm has to use

an inefficiently low payout boundary C. Column 2 in Figure 3 illustrates. Constraint (21) starts

binding at θ ≈ .85, and any further increase in θ reduces the payout-boundary C. To counteract

this deterioration in liquidity management via retained earnings, the principal increases hedging

through labor contracts by increasing the pay-performance sensitivity of wages, as indicated by an

increase in avg β.

22



0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1
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Changing σ. Let us discuss changing the dynamics of the cash-flow generating process. Here, the

effects are more complex in that some non-monotonicity appears. First, consider an increase in σ. A

higher σ in a pure risk-sharing model, that is with λ = 0, will lead to a higher payout boundary C as

default has now become more likely, holding everything else constant. Non-monotonicity can only

arise when the commitment constraint (21) starts binding and then follows closely the explanations

in the discussion regarding θ. Column 1 in Figure 8 shows the situation in which λ > 0. We see that

C is non-monotone even in the absence of (21) binding. The intuition is as follows: higher σ raises

the risk of liquidation and requires more intense risk-management, so that C and avg β increase.

However, due to agency conflicts, the agent must be provided costly incentives β ≥ λ, even if this is

not optimal from a pure risk-management perspective. Consequently, severe agency conflicts drain

the firm value and reduce the overall hedging demand. The latter effect dominates, when σ and λ

are sufficiently large and the agent requires a high risk-premium in response to performance-pay.

Changing ρ, δ and µ. The comparative statics of ρ, δ and µ are relegated to appendix E. Since

δ essentially captures carry-cost of cash, C not surprisingly decreases in δ. Moreover, when the

agent is more risk-averse, incentive-pay and therefore hedging through labour contracts becomes

more costly, so that the firm hedges more through retained earnings instead, in that C increases in

ρ. On the other hand, moral hazard has more bite for larger ρ, which in turn implies that overall

firm value decreases in ρ. As a result, liquidation gets less inefficient, which calls for less hedging

of liquidity risks. This leads to non-monotonic comparative statics of C wrt. ρ.

4.3 Stock Return Volatility and Agency Conflicts

In this section, we discuss how firm agency conflicts impact the firm’s stock returns:

dRt =
dDivt + dv(Ct−)

v(Ct−)
= r + δ +

dDivt
v(Ct−)

+ ΣtdZt. (23)

Of particular interest is the stock-return volatility Σt = Σ(Ct) where

Σ(C) = σ(1− β(C))× v′(C)

v(C)
. (24)

Recall our assumption that the firm is 100% equity financed and that we do not take a stance

on the implementation of the manager’s contract. In case the contract is implemented via stock,

vesting stock or stock options, dRt is best interpreted as the return on outside equity, owned by
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shareholders, rather than inside equity, owned by management.

First, contrary to the existing literature on dynamic cash-management (compare e.g. Décamps

et al. (2011)) the firm’s stock return volatility does not necessarily decrease in the firm’s level of

financial slack.18 In fact, we find that firms with relatively low levels of cash can have less volatile

stock returns than otherwise comparable firms with high cash-levels. The reason is that in our model

firms hedge liquidity risk intensely through labor contracts under financial distress. Under these

circumstances, the agent’s compensation package is highly contingent on cash-flow realizations and

firm performance, so that a substantial amount of risk is absorbed through labor contracts. This

in turn lowers the stock return volatility Σt of outside equity owned by shareholders. Especially

when cash-flow uncertainty σ is low, the agent’s compensation scheme is exposed to a considerable

amount of cash-flow risk, so that stock-return volatility may follow a hump-shaped pattern in C.

As a consequence of intense hedging through labour contracts, stock-return volatility is then even

lowest under financial distress.

Second, we find that the nature of agency conflicts determines its impact on the firm’s stock

return volatility. Severe moral hazard λ over cash-flows requires the manager to be sufficiently

exposed to cash-flow realizations dX by means of high-powered incentives β, thereby leading to a

low stock-return volatility. In contrast, severe moral hazard κ over cash-holdings or high δ imply

large carry cost of cash. This leads to little hedging of liquidity risks and thereby a high stock-return

volatility.

Corollary 4. Stock return volatility Σ(C) decreases in a neighbourhood of C, and also decreases

for low levels of C when L is sufficiently low. Further, we have the following comparative statics:

i) More severe moral hazard λ reduces the stock return volatility:

– For any C, Σ(C) decreases in moral hazard, provided λ is sufficiently large. That is, for

all C ≥ 0 there exists λ̄ ∈ (0, 1), such that ∂Σ(C)
∂λ < 0 for λ ≥ λ̄.

– For ρ or λ sufficiently small, Σ(C) decreases in λ for C close to C.

ii) More severe moral hazard κ increases the stock return volatility. For C close to C, Σ(C)

increases in κ.

18In dynamic liquidity management models without labor contracts, stock return volatility is given by v′(C)
v(C)

σ where
C is the firm’s cash stock. Since the value function is regardless of labor contracts strictly increasing and concave,
stock return volatility always decreases in financial slack.
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Figure 4: Stock Return is non-monotonic in C and increases in λ. The left panel depicts the case
of low volatility, σ = 0.8, and the right panel the case of high volatility, σ = 0.9. The Parameters
are µ = 0.25, r = 0.1, δ = κ = 0.25, θ = 0, L = 0.25, λLow = 0.5 < 0.75 = λHigh and ρ = 7.

5 The Model with Refinancing

In this section, we introduce the possibility of refinancing. Similar to Hugonnier et al. (2014),

we assume that there are search frictions in capital markets, in that finding new outside investors

requires some time and search effort. In particular, conditional on seeking refinancing, the firm finds

investors willing to contribute funds with probability πdt during a short-period of time [t, t + dt],

so that a financing opportunity arrives according to some jump process dΠ with intensity π ≥ 0.

Upon finding investors, we assume without loss of generality that there are no further cost to

refinancing – the firm can issue equity at a fair price to raise cash and therefore appropriates all

generated surplus.19 In particular, when the firm raises an amount ∆ of cash from outside investors,

these outside investors obtain equity worth exactly ∆. For simplicity, looking for investors is costless

and not subject to moral hazard, and for technical reasons we suppose that dΠt = 0 with probability

one at all times t, where the firm chooses ∆t = 0.20

Since refinancing raises the amount of cash the manager can steal from, the optimal contract

must align her incentives during the refinancing event. This alignment of incentives could in

principle be reached via three mechanisms: (1) rewarding the manager with a (lumpy) increase

in future promised payments Γ (sometimes referred to as ”payment for luck”), (2) rewarding the

19If outside investors and existing shareholder were to split the surplus according to the Nash-Bargaining protocol
with respective weights η, 1− η, then the problem were isomorphic to one where the arrival rate is altered from π to
ηπ, so that the choice η = 1 is indeed wlog.

20This means that either shareholders look for new investors or the manager does so, in which case her search
activity is observable and contractible to shareholders. Furthermore, it is straightforward to incorporate monetary
search cost but as endogenous cost due to agency arise, this modification is unlikely to alter our findings.
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manager with a (lumpy) wage payment, and (3) requiring the agent to contribute a prescribed

amount of funds. Recall that Assumption 1 restricts cumulative wages to limε→0wt+ε − wt ≥ 0,

which leads to two outcomes: it rules out (3) and make ϕ a state-variable in the refinancing event

as it cannot be adjusted freely anymore.21 For the following discussion, let us briefly ignore (2),

the lumpy wage payments.

Let us now consider a firm at time t−, i.e., just before time t, with cash-holdings Mt− and

Ct− = Mt− − Yt− . Assume for the moment that the firm is not refinancing all the way to the

payout boundary so that dDiv = dw = 0. When a refinancing opportunity arises, i.e., dΠt = 1,

the agent can potentially abscond with the total cash-balance just after outside investors put in

amount ∆t. From doing so, she receives κ(Mt− + ∆t) but loses her deferred compensation Yt− and

the lump-sum reward Γt, so that stealing is not optimal if

κ(Mt− + ∆t) ≤ Yt− + Γt ⇐⇒ ϕt− :=
Yt−

Mt−
≥ κ(Ct− + ∆t)− Γt

Ct− + κ∆t − Γt
(25)

or equivalently

Γt ≥
κ∆(1− ϕt−)− (ϕt− − κ)Ct−

1− ϕt−
. (26)

Hence, in order to align incentives during a financing round, the principal must either give the

agent a high reward Γt or must have chosen higher deferred compensation Yt− > κMt− beforehand,

resulting in ϕt− > κ, both of which are costly. Since the incentive constraint (25) tightens when

more funds ∆t are raised, the firm might decide to raise less funds due to agency conflicts. At the

optimum, inequalities (25) and (26) hold as equalities, which essentially means that the principal –

ceteris paribus – designs the contract to minimize carry cost of cash and flotation cost of refinancing.

Cash-holdings and the firm’s financial slack in a refinancing event change according to

dMt

dΠt
= ∆t and

dCt
dΠt

=
dMt

dΠt
− dYt
dΠt

= ∆t − Γt.

Because the manager is paid for luck Γ ≥ 0 upon refinancing, she requires a lower flow wage and

Wt features a lower required drift by π(1−e−ρrΓt )
ρr > 0. Essentially, Γ > 0 shifts part of the manager’s

compensation from distress states towards states, in which the firm is flush with liquidity. While

this is beneficial from a risk-management point of view, it comes at the cost of exposing the agent

21Without this Assumption 1 there would be a complete separation between ϕ, the variable controlling cash-holding
in the firm, and (∆,Γ), the amount of cash raised and the payment for luck required. This difference does not matter
as for most of our analysis ϕ ≥ κ holds with equality.
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to jump risk dΠ.

The dynamics of C then follow

dCt = µCtdt+ (1− βt)dZt + (∆t − Γt)dΠt − dDivt (27)

with

µCt := rCt− + µ− ρr

2
(βtσ)2 − δA

(
ϕtCt−

1− ϕt

)
+
π(1− e−ρrΓt)

ρr
. (28)

We again consider the relaxed problem (allowing ϕ to be freely chosen on [κ, 1] outside a

refinancing event) via the following HJB equation:

(r + δ)v(C) = max
β≥λ,ϕ,Γ,∆

{
v′(C)µC + π

[
v(C + ∆− Γ)− v(C)−∆

]
+
v′′(C)(1− β)2

2

}
(29)

subject to

ϕ ≥ max

{
κ,
κ(Ct− + ∆t)− Γt
Ct− + κ∆t − Γt

}
.

Define

C∗(C) := C + ∆(C)− Γ(C), (30)

A firm’s refinancing policy is then given by two of C∗(C),∆(C),Γ(C). Next, we have to consider

two scenarios: (1) shareholders can ex-ante commit to a refinancing policy or (2) shareholders

cannot commit ex-ante, but instead maximize their refinancing policy conditional on a refinancing

opportunity arising. We will discuss these scenarios in turn. Importantly, in the discussions we

maintain the counter-factual assumption that the same C applies in all considered scenarios for ease

of comparison. Of course, once fully solved, different payout thresholds apply in different scenarios.

Lastly, it is during the refinancing event that our restriction on the wage process, Assumption

1, possibly has bite: A slack ϕ > κ helps the firm raise more ∆ for the same amount of pay-for-luck

Γ by relaxing constraint (26), as the firm cannot freely adjust ϕ during the refinancing event. For

expositional clarity, however, we assume parameters that result in ϕ = κ for all C ∈ [0, C] in our

discussion below.

5.1 No ex-ante commitment and constant proportional flotation costs

Suppose shareholders cannot ex-ante commit to any refinancing policy. This means that upon

finding outside investors, i.e., dΠt = 1, the firm raises the ex-post optimal amount ∆ rather than
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the ex-ante one. More specifically, inspecting the HJB, it is as if the shareholders ignore the impact

that the optimal Γ has on the drift of C, i.e., they ignore ∂µCt
∂Γ , and maximize the static problem

max
∆≥0,Γ

{
v(C + ∆− Γ)− v(C)−∆

}
s.t. (26).

Inspecting the FOC, we see that this results in an implied constant proportional flotation cost

v′(C + ∆− Γ︸ ︷︷ ︸
=:C∗LC

) = 1 +
κ

1− κ︸ ︷︷ ︸
Flotation Cost

. (31)

Further, the firm refinances to the same target cash-level C∗LC < C regardless of current C, and

there is no lumpy wage payment. Consider κ = 0. The FOC implies v′(C∗FB) = 1, which in turn

implies C∗FB = C > C∗LC . Absent agency conflicts, the firm refinances to the payout boundary.

5.2 Ex-ante commitment and state-dependent flotation costs

In the ex-ante commitment case, the principal optimally takes into account that any choice of

(∆,Γ) via Γ affects increases the drift µCt. Let Ĉ∗(C) solve the resulting FOC:

v′(Ĉ∗(C)) = 1 +
κ

1− κ

[
1− v′(C)e−ρr

κ
1−κ [Ĉ∗(C)−C]

]
︸ ︷︷ ︸

State-Dependent Flotation Cost

. (32)

The shareholders essentially commit to act as if they are facing an endogenously lower state-

dependent flotation cost than in the static optimization problem above. Note that (marginal)

flotation cost ceteris paribus decrease in Ĉ∗(C). If Ĉ∗(C) is strictly lower than C, then it is the

optimal refinancing level, i.e., C∗(C) = Ĉ∗(C). In this case, flotation cost are strictly positive but

less than in the ex-ante commitment case, and the marginal value of cash after refinancing equals

marginal cost of raising funds.

If however, Ĉ∗(C) > C, we have negative flotation cost, which occurs exactly when

ln(v′(C))× (1− κ)

ρrκ
+ C ≥ C, (33)

This is more likely to for low C firms, as then v′(C) is high. Consider refinancing all the way

to Ĉ∗(C) > C. This would trigger immediate dividend and wage payouts to reset to C. The
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key observation now is that such dividend payouts would be a wash22 but the required jump in

managerial compensation, Γ + dwrefi, is not. Consequently, define

C∗(C) := min{Ĉ∗(C), C}. (34)

The jump in managerial compensation in a refinancing event, Γ + dwrefi, is then given by

Γ =
κ

1− κ
[C∗(C)− C] ≥ 0 as well as dwrefi = 1{Ĉ∗(C)>C}

[
ln(v′(C))

ρr
− κ

1− κ
(C − C)

]
≥ 0, (35)

there is no dividend payments, and the firm raises an amount of cash of

∆(C) = C∗(C)− C + Γ + dwrefi =


1

1−κ [Ĉ∗(C)− C] Ĉ∗(C) ≤ C

κ
1−κ [Ĉ∗(C)− C] + 1

1−κ [C − C] Ĉ∗(C) > C

. (36)

We note that pay-for-luck is excessive, as it is more — by κ
1−κ [Ĉ∗(C)− C] — than the amount of

cash needed to reset to C while simultaneously preserving incentive compatibility.

Figure 5 demonstrates that the refinancing threshold C∗(C) can be non-monotonic in C. While

the target refinancing level follows a U-shaped pattern, the amount raised within a financing round,

∆(C), unambiguously decreases in C.

Corollary 5. Under full ex-ante commitment to a refinancing strategy:

i) The amount raised ∆ and Γ decrease in C

ii) The target level C∗(C) increases in a neighbourhood of C

iii) The target level C∗(C) decreases in a neighbourhood of zero, provided κ or ρ is sufficiently

small.

Setting κ = 0 implies the first-best C∗FB = C. In the ex-ante commitment scenario, v′(C) > 0

and holding the payout boundary constant, the principal commits to more aggressive refinancing

than implied by the static problem, i.e., C∗FB ≥ C∗(C) ≥ C∗LC . Committing to over-refinancing

and even excessive pay-per-luck, the firm increases the drift of C and thus relaxes the liquidity

problem at the cost of larger than statically optimal payments to agent in the event of refinancing.

22Any dollar raised to be used for an immediate dividend payment is paid for by shareholders themselves. Thus, a
small exogenous refinancing cost would eliminate any part of refinancing used for such immediate dividend payouts.
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Figure 5: Optimal Refinancing under full ex-ante commitment w.r.t. the refinancing strategy.
Parameters are µ = 0.25, r = 0.1, κ = λ ∈ {0.4, 0.5}, θ = 0, L = 0, σ = 0.8, δ = 0.25, π = 0.2 and
ρ = 7.. The upper three panels use λ = κ = 0.4, the lower three panels λ = κ = 0.5.
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However, as the marginal utility of cash to the shareholders is higher pre- than post-refinancing

due to v′′(C) ≤ 0, this is a beneficial trade-off.

5.3 Capital Market Access and Hedging

How does the possibility to raise funds in capital markets impact the firm’s risk-management? Intu-

itively, one could argue that better refinancing opportunities render altogether less hedging needed,

as demonstrated in e.g. Hugonnier et al. (2014). However, our model yields a different prediction.

Under less frictional capital markets, finding outside investors becomes easier and liquidation less

likely, so that there is less need to hold large liquidity reserves, in that C decreases in π. In ad-

dition, the access to outside funds boosts the firm’s going concern value and liquidation becomes

more inefficient. Thus, conditional in being in a low C state, shareholders have more incentives to

avert termination when π is high, in which case it becomes optimal to hedge more intensely via

labour contracts. Furthermore, surviving the next instant [t, t+dt] entails the additional benefit of

possibly having a refinancing opportunity, which happens with probability πdt, further increasing

the hedging demand. Inspecting the first-order conditions for both the ex-ante commitment and

no commitment case, we see that π only indirectly affects the choice of C∗(C) via v(·), but does

not directly enter either (31) or (32).

Therefore, firms with better access to capital markets tend to hedge less through internal cash

but more through labor contracts. This holds true regardless of the commitment structure. When

shareholders cannot commit to a refinancing policy, they also raise less cash during a single financing

round, when financing opportunities arrive more frequently, i.e., C∗ decreases in π. We summarize

these findings in the following corollary.

Corollary 6. For a firm under distress, i.e., C ' 0, β(C) increases in π. Target cash-holdings C̄

decrease in π. In the limited commitment case, the refinancing target C∗ decreases in π.

6 Conclusion

We present a model of liquidity management and financing decisions under moral hazard in which a

firm accumulates cash to forestall liquidity default. When the cash balance is high, a tension arises

between accumulating more cash to reduce the probability of default and providing incentives for

the manager. When the cash balance is low, the firm hedges against liquidity default by transferring

cash flow risk to the manager via high powered incentives. This risk transfer occurs even though the
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manager is risk averse and the firm’s owners are risk neutral because default is costly. Firms with

more volatile cash flows transfer less risk to the manager and hold more cash. Agency conflicts lead

to endogenous flotation costs related to the severity of the moral hazard problem, even in a market

with no physical cost of raising financing. These flotation costs are state-dependent, lead to raising

more than a static optimization would imply, and sometimes even lead to large cash-payouts to the

agent in case of successful refinancing. Finally, because the manager’s incentive-pay absorbs part

of the liquidity risk, the firm’s stock return volatility can be non-monotonic in the level of cash and

decreases in the severity of moral hazard.
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Appendix

A Preliminaries

A.1 Regularity Conditions

Throughout the paper and for all problems, we impose finite utility for any consumption process c

E
[∫ ∞

0
e−rt|u(ct)|dt

]
<∞

and square integrability conditions of dividend payouts Div and payments w:

E
[∫ ∞

0
e−rtdDivt

]2

<∞ and E
[∫ ∞

0
e−rtdwt

]2

<∞. (A.1)

Finite utility implies that

lim
t→∞

e−rtUt(·) ≡ lim
t→∞

e−rtE
[∫ ∞

t
e−r(s−t)u(cs)ds

]
= 0, (A.2)

where Ut(·) represents the agent’s continuation value under any, admissible strategy, suppressed
for convenience. Condition (A.2) is also known as the transversality condition for the co-state,
when solving the contracting problem by means of Pontryagin’s maximum principle (compare e.g.
Williams (2015)).

Next, note that

Ŝt =

∫ t

0
er(t−s)dws −

∫ t

0
er(t−s)ĉsds+ Ŝ0e

rt

for the consumption process ĉ specified by contract C, while c is the agent’s actual consumption.
Savings Ŝ corresponds to consumption ĉ and savings S to consumption c.

We impose the no-Ponzi condition for all feasible consumption processes c, ĉ:

P( lim
t→∞

e−rtSt ≥ 0) = P( lim
t→∞

e−rtŜt ≥ 0) = 1.

Further, c, ĉ must satisfy the transversality condition:

lim
t→∞

e−rtEu′(ct)St = 0 = lim
t→∞

e−rtEu′(ct)St = 0

Due to finite utility it follows that marginal utility – which is proportional to flow utility – must
also be finite P-almost surely, so that one can disregard u′(ct) in the transversality condition, which
leads to

lim
t→∞

e−rtESt = lim
t→∞

e−rtEŜt = 0.

Combined with the no-Ponzi condition, it follows after invoking Fatou’s Lemma in fact that

P( lim
t→∞

e−rtSt = 0) = P( lim
t→∞

e−rtŜt = 0) = 1,

which we refer to as the transversality condition, even though it emerges as a combination of
transversality and No-Ponzi condition. By the triangle inequality:

lim
t→∞

e−rt|St − Ŝt| = 0 P− a.s. =⇒ lim
t→∞

e−rt|ĉt − ct| = 0 P− a.s.

For technical reasons, we postulate that the processes β, α are almost surely bounded, so that
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|βt|, |αt| < M almost surely, i.e. P
(
|ψt| < M

)
= 1 for ψ ∈ {α, β}, for any t. The equivalence of

the measures P,Pb (to be discussed in the next paragraph) ensures that the sensitivities are almost
surely bounded under each probability measure used throughout the paper. We assume M ∈ R+ to
be sufficiently large, so that this imposed constraint actually never binds in optimum. Furthermore,
we impose that β and α are of bounded variation.

Let us further assume throughout the appendix that the agent cannot own the firm. Otherwise,
it would be

vτ = max

{
L,
µ− ρrσ2/2

r + δ

}
,

so that whenever vτ > L, the shareholders would sell the firm to the agent, who would run it
forever. The above assumption is always satisfied for L, ρ or σ sufficiently large.

A.2 Change of Measure

To start with, fix a probability measure P, such that dXt = µdt + σdZt with a F-progressive
standard Brownian Motion Z under the measure P. Take a progressive process b, that is absolutely
continuous and one can write dbt = b0tdt for some process b0. Define the process χ via χt = dbt

σdt for
all t ≥ 0, almost surely. Further, let

Γt = Γt(b) = exp
(∫ t

0
χudZu −

1

2

∫ t

0
χ2
udu

)
.

Assuming that the so-called Novikov condition is satisfied, i.e.,

E
[
exp

(
1

2

∫ τ

0
χ2
tdt

)]
<∞,

it follows that Γ follows a martingale. Given our restriction of bounded sensitivities, the Novikov-
Condition is evidently met. Due to E[Γ0] = 1, it is evident that Γ is a progressive density process
and defines a probability measure Pb via the Radon-Nikodym derivative(

dPb

dP

)∣∣∣∣
Ft

= Γt = Γt(b).

Under the probability measure Pb, the process Zb with

Zbt = Zt −
∫ t

0
χudu =

Xt − µt−
∫ t

0 b
0
udu

σ

follows a standard Brownian Motion up to the stopping time τ . All measures {P,Pb : b} are
equivalent for suitable absolutely continuous processes b, that satisfy the above stated conditions,
such that the measures share the same null sets.

Girsanov’s theorem is only applicable if b is absolutely continuous P-almost surely, in which
case Zb follows a Brownian Motion under Pb.

B The Agent’s Problem: Proof of Proposition 3

We split up the proof in two parts. First, we establish the representation of U by means of a
stochastic differential equation, given a contract C. From there, we proceed to show the claim
regarding incentive compatibility.
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B.1 Martingale Representation: Proof of Proposition 1 i)

Proof. Let in the following C = (ĉ, w, b̂) represent the manager’s contract with C ∈ C. We denote
the manager’s continuation value by

Ut = Ut(C) = Et
[∫ ∞

t
e−r(s−t)u(ĉs))ds

]
,

where ĉ is prescribed consumption, which might differ from actual consumption c. Define

At ≡ Et
[∫ ∞

0
e−rtu(ĉs)ds

]
=

∫ t

0
e−rsu(ĉs)ds+ e−rtUt(C) (B.1)

By construction, {At : 0 ≤ t ≤ ∞} is a square integrable martingale, progressive with respect to F
under P. By the martingale representation theorem, there exist now F-predictable processes α, β, Γ̂
such that

ertdAt = (−ρrUt−)βt
(
dXt − µdt

)
− (−ρrUt−)αt

(
dNt − δdt

)
+ (−ρrUt−)Γt(dΠt − πdt)1{Ct−<C∗}.

and therefore

dUt = rUt−dt− u(ĉt)dt+ (−ρrUt−)βt
(
dXt − µdt

)
− (−ρrUt−)αt

(
dNt − δdt

)
+ (−ρrUt−)Γ(dΠt − πdt)1{Ct−<C∗}.

B.2 Incentive Compatibility: Proof of Proposition 1 ii) and iii)

We consider for brevity the case π = 0. It is straightforward to adapt the proof for π > 0.

Proof. We prove first the following auxiliary Lemma

Lemma 1. Fix a F-predictable process ĉ and let S ∈ R. Consider the problem

Ut = max
{cs}s≥t

Et
[∫ ∞

t
e−r(s−t)u(cs)ds

]
subject to d∆s = r∆sds+ dĉsds− csds,∆t = 0 and lim

s→∞
e−r(s−t)|∆t −∆s| = 0 a.s.

Next consider the problem

U ′t = max
{c̃s}s≥t

Et
[∫ ∞

t
e−r(s−t)u(c̃s)ds

]
subject to d∆s = r∆sds+ dĉsds− c̃sds,∆t = S and lim

s→∞
e−r(s−t)|∆t −∆s| = 0 a.s.

Then, ct + rS = c̃t and U ′t = e−ρrSUt.

Proof. Suppose that there exists a process c′ 6= c̃, which satisfies the transversality condition, such
that

U ′t(c
′) > U ′t(c̃) = e−θrSUt.
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Define the process c′′ via c′′t = c′t − rS. Then c′′ satisfies the transversality condition and

Et
[∫ ∞

t
e−r(s−t)u(c′′s)ds

]
= eρrSU ′t({c′}) > Ut,

a contradiction.

Next, we provide necessary and sufficient conditions for C to be incentive-compatible, in that
Ŝt = St and b̂t = bt = 0 for all t ≥ 0 holds almost surely.

For this sake write, dbt = (b0t −b2t )dt+db1t , where b0 and b2 are absolutely continuous and almost

surely positive, i.e, write dbt = b̂tdt + db1t , where b0t = max{0, b̂t} and b2t = −min{0, b̂t}. Here, b0

corresponds to cash-flow diverted, while b2 is the amount by which cash-flow is boosted by means
of the agent’s savings account. Define ∆t ≡ St − Ŝt the deviation state with ∆0 = 0 and note that

d∆t = r∆tdt+ ĉtdt− ctdt+ λb0tdt+ κdb1t − b2tdt,

where ĉ is the prescribed consumption and is such that St = Ŝt, i.e. ∆t = 0 for all t. Note that
dZbt ≡ (dXt − µdt + b0tdt)

/
σ is the increment of a standard Brownian Motion under the measure

Pb. We rewrite for t < τ :

dUt = rUt−dt− u(ĉMt )dt+ (−ρrUt−)βt
(
dZbt + b0tdt

)
− (−ρrUt−)αt

(
dNt − δdt

)
.

Let Û the agent’s actual continuation value, so that

Ût(c) = Ût ≡ Ebt
[∫ ∞

t
e−r(s−t)u(cs)ds

]
,

where the expectation Ebt is taken under the measure Pb, induced by the choice of b.

Define the agent’s certainty equivalent Wt = − ln(−ρrUt)
ρr and Yt ≡Wt − St.

First, let us consider the agent deviates at time t− through specifying Mt− ≥ db1t > 0, so
that dbt 6∈ o(dt). The principal can detect this deviation and accordingly punish the agent through
reducing her certainty equivalent by the same amount. The agent can either leave the firm and avoid
the punishment or take the punishment and stay, in which case the deviation does not yield any
profit for her. In case she leaves the firm, her savings equal St = St− + κdb1t , yielding continuation
value by Lemma 1: ∫ ∞

t
e−r(s−t)u(cs)ds =

u[r(St− + κdb1t )]

r
,

as the agent perfectly smoothes consumption after contract termination and consumes at each time
flow interest of savings. The continuation value is maximized for db1t = Mt− . The deviation is not
profitable, if and only if

u[(r(St− + κdb1t )]

r
≤ Ut− ⇐⇒ Yt− ≥ κMt− .

Hence, a necessary condition for the contract C to be incentive compatible is that Yt− ≥ κMt− with
probability one for all times t ≥ 0.

Second, let us turn to strategies where db1t = 0 for all t ≥ 0. Let t > 0 and suppose the manager
follows the recommended policy from time t onwards, in that b0s = 0 and cs = ĉs + r∆t for all s ≥ t
by Lemma 1. The payoff from following this strategy is represented by the auxiliary gain process

GMt ≡ GMt (c, b) =

∫ t

0
e−rsu(cs)ds+ e−ρr∆te−rtUt
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and by means of Lemma 1, it suffices to consider deviations of this type, which yield weakly higher
payoff than deviations of any other type. In addition, Ûs = e−ρr∆tUs for s ≥ t.

Next, note that the transversality condition and finite utility imply that e−ρr∆Ut < ∞ for all
t ≥ 0, so that limt→∞ Ebe−ρr∆te−rtUt = 0 for any possible strategy of the manager. which implies
that the manager’s actual payoff equals

Û0− = max
c,b0

Eb
∫ ∞

0
e−rsu(cs)ds = max

c,b0
EbGM∞ = max

c,b0
Eb lim

t→∞
GMt .

By Itô’s Lemma:

eρr∆tertdGMt

=

(
u(ct)e

ρr∆t − u(ĉt)− ρrUt−(r∆t + ĉt − ct + λb0t − b2t )− (−ρrUt−)βtb
0
t

)
dt

+ (−ρrUt−)βtdZ
b
t − (−θrUt−)αt(dNt − δdt)

≡ µMtG(·)dt+ (−ρrUt−)βtdZ
b
t − (−ρrUt−)αt(dNt − δdt)

Observe that, because α, β are bounded and finite utility is imposed, we have

Eb
(∫ t

0
e−rsβs(−ρrUs−)dZbs

)
= Eb

(∫ t

0
e−rsαs(−ρrUs−)(dNs − δds)

)
= 0,

for any absolutely continuous b. It is then evident that by choosing b0t = 0, ct = ĉt, the manager
can ensure that ∆t = µMtG(·) = 0 for all t ≥ 0, in which case {GM (ĉ, 0)} follows a martingale under
P with last element GM∞(·), such that E|GM∞(ĉ, 0)| <∞ due to the regularity conditions we impose.
Hence, by optional sampling

Û0− = max
c,b0

EbGM∞(c, b0) ≥ EGM∞(ĉ, 0) = lim
t→∞

EGMt (ĉ, 0) = U0− .

Next, observe that the highest value that µMtG(·) can obtain given ∆t is given by the maximization
over ct and b0t , where the solution satisfies the following FOC:

u′(ct)e
rρ∆t = −ρrUt− ,

which implies

u(ct + r∆t) = rUt− ,

and b0t = b2t = 0 if and only if:

λ∆ρru(ct)e
ρr∆t − λρrUt− + (ρrUt−)βt ≤ 0 and ∆ρru(ct)e

ρr∆t + ρrUt− + (ρrUt−)βt ≤ 0.

If C is such that rUt−e
−ρr∆t = u(ĉt) and 1 ≥ βt ≥ λ hold for all t ≥ 0, it follows ct = ĉt and

b0t = b1t = 0 for all t ≥ 0, in which case ∆t = µMtG(·) = 0. Indeed, because the deviation gains are
concave in the state ∆, the first order conditions are sufficient.

Hence, any other strategy tuple (c, b0) makes the process GM (c, b0) a supermartingale under
the measure Pb, i.e.

U0− = GM0 (ĉ, 0) ≥ EbGMt (c, b0)

Because our regularity conditions ensure that GM (c, b0) is bounded from below, we can thus take
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limits on both sides and apply optional sampling to obtain

U0− ≥ lim
t→∞

EbGMt (c, b0) = Eb lim
t→∞

GMt (c, b0) = EbGM∞(c, b0)

and in particular
U0− ≥ max

c,b0
EbGM∞(c, b0) = Û0− .

While we focused on strategies (c, 0, b0) and (ĉ, b1, 0) separately, it follows immediately – as
there is no persistent deviation state and db1t > 0⇒ t = τ – that

U0− ≥ max
c,b0

EbGM∞(c, 0, b0) and U0− ≥ max
b1

EbGM∞(ĉ, b1, 0) =⇒ U0− ≥ max
c,b1,b0

EbGM∞(c, b1, b0).

This is because the maximal utility the agent can obtain at time t equals e−ρr∆tUt− under any
consumption c, while the deviation utility is given by

e−ρr∆t
u[(r(St− + κdb1t )]

r
,

which is smaller than e−ρr∆tUt− if and only Yt− ≥ κMt− .

Therefore, U0− = Û0− and (ct, bt) = (ĉt, 0) for all t ≥ 0 is the optimal strategy for the agent if
and only if 1 ≥ βt ≥ λ, rUt− = u(ĉt), Yt− ≥ κMt− are satisfied for all t ≥ 0 with probability one. In
this case, the contract C is incentive compatible.

C The Principal’s Problem: Proof of Proposition 2

C.1 Reduction of the State Space: Proof of Proposition 5 i)

Per se, the state space is three dimensional and we have to keep track of three state M,W,S.
Due to the absence of wealth effects, it is clear that the value function takes the form V (M,Y ) =

V (M,W − S) = V̂ (M,W,S). This relationship is straightforward to verify and we omit this here,
to conserve space. We go on now to demonstrate that the state spaceM within an optimal contract
must be one-dimensional.

Let us for simplicity assume that π = 0. We start with the following auxiliary Lemma, which
analyzes the value function V (M,Y ).

Lemma 2. Let V (M,Y ) = V the principal’s value function and define τ = inf{t ≥ 0 : Mt− = 0}.
Then, under the optimal contract C the space of states M ⊂ R2, which are reached with positive
probability before time τ , must be one-dimensional, i.e., a one dimensional manifold. In particular,
there exists a mapping ϕ so that Y = ϕ(M)M for M > 0.

Proof. Assume to the contrary the state spaceM is two-dimensional. In order to maintain incentive
compatibility, it must be that Y ≥ M for all (M,Y ) ∈ M. For any interior point (M,Y ) ∈ M
with M > 0, Y ≥ κM , the firm’s value function is given by:

rV = max
dDiv≥0,dw≤M,β

{
dDiv + VM

(
µ+ rM − dw − dDiv

)
+
VMMσ

2

2

+ VY

(
rY +

ρr

2
(βσ)2dt+ δA(Y )− dw

)
+
VY Y (βσ)2

2
+ VMY βσ

2

}
Since Y ≥ κM > 0, the IC-constraint does not bind, it must be that VM + VY = 0. Otherwise, the
principal would optimally move from state (M,Y ) to state (M − ε, Y − ε) through setting some
non-infinitesimal adjustment dw = −ε for some ε. The adjustment dw is feasible, as long as the
constraint Y ≥ κM and M ≥ 0 does not bind.
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The relation VM + VY = 0 must hold for any interior point over the whole state space, when
the state space M is a two-dimensional subspace of R2. Differentiating on this space the identity
VM + VY = 0 yields:

VMM + VMY = VY Y + VMY =⇒ VMM = VY Y = −VMY .

In order to satisfy the above relation, the function V must be such that V (M,Y ) = v(M − Y ) for
some function v ∈ C2 and therefore for C ≡M − Y :

(r + δ)v(C) = max
β,dDiv≥0

{
dDiv + v′(C)

(
rC − ρr

2
(βσ)2dt− δA (Y ) + µ

)
+
σ2(1− β)2

2
v′′(C)

}
.

As dividend payouts dDiv > 0 are always possible but not necessarily optimal, the marginal value
of cash must satisfy VM = v′ ≥ 1. However, for δ > 0 and due to A′ > 0 it follows that

V (M − ε, Y − ε)− V (M,Y ) = v′(C)δ(A(Y )−A(Y − ε)) > 0

for any ε > 0 with M − ε > 0, which contradicts VM +VY = 0. Hence, within the optimal contract
(M,Y ) cannot be an interior point of M and in particular M cannot have interior points, so that
this set must be one-dimensional.

The previous Lemma shows that the state space is one-dimensional before time τ and therefore
can be parameterized by

M = {(M,ϕ(M)M) : M ≥ 0}
for some function ϕ, determined by the optimal contract. We show in the following Lemma that
Yt− ≤Mt− or equivalently ϕ(Mt−) ≤ 1 must hold for all t ≥ 0.

Lemma 3. Let C a contract and Div a dividend process. Further, define tF = inf{t ≥ 0 : Mt− <
Yt−}. The contract is feasible, only if P(tF =∞) = 1 and in particular P(τ > tF ) = 1. Hence, the
event {Yt > Mt} must have zero probability.

Proof. Fix the dividend process Div. Take a contract C ∈ C and assume to the contrary that there
exists a time tF < τ with P(tF <∞) > 0 and Yt−F

> Mt−F
.

If the principal terminates the firm at time tF , i.e., τ = tF , and sets optimally dwt = 0 for
t ≥ tF , the manager receives due to Nash-Bargaining amount (1−θ)Mt−F

< Yt−F
and promise keeping

is violated as Yτ > 0, evidently contradicting C ∈ C.
If the principal does not terminate, set τF = inf{t ≥ tF : Mt = Yt} and note that a contract

C ∈ C must satisfy P(τF ≤ τ) = 1, i.e., promise-keeping and in particular Yτ = Mτ = 0. We
consider now different cases.

i) First, let us assume thatMt−F
= 0 < Yt−F

and the principal would not like to specify dwt−F
= −ε,

in order to continue at state (ε, Yt−F
+ ε) for some non-infinitesimal ε > 0 with ε 6∈ op(dt).

The other case will be – among others – analyzed in part ii) of the proof. Note that tF < τ ,
which requires βtF = 1, as a termination policy τ > tF implies the agent must cover potential
operating losses. Next, define τ0 = inf{t ≥ tF : Mt > 0}. For all t < τ0 ∧ τ , it must be βt = 1
and as the agent covers operating losses:

dYt
dXt

=
dWt

dXt
− dSt
dXt

= 0,

so that Yt has zero volatility for t < τ0 ∧ τ . Furthermore, under contract C, the agent
consumes rWt while earning interest rSt < rWt, so that the agent must borrow amount
−r(St −Wt) = −rYt > and therefore EdSt < 0, while EdWt > 0 owing to the risk-premia
earned. Hence, EdYt ≥ rYtdt > 0. Since Yt grows at least at rate r, also the growth rate of
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the agent’s borrowings is bounded from below by r, so that savings St shrink at least at rate r

for tF ≤ t ≤ τ0. In particular, St = StF −
∫ t
tF
er(t−s)rYsds. However, with positive probability

there is a sample path of shocks {Z}t≥tF , in which case τ0 =∞. Then, either τ0 > τ promise
keeping is violated with Yτ > 0 or

lim
t→∞

e−rtSt ≤ lim
t→∞

e−rt
(
−
∫ t

tF

er(t−s)rYsds

)
= lim

t→∞

(
−
∫ t

tF

e−rsrYsds

)
< 0

with positive probability, so that the no-Ponzi condition (6) is violated. Hence, C 6∈ C, a
contradiction.

ii) Let us now consider Mt−F
> 0. Define now t0 = inf{t ≥ tF : Yt− > Mt− = 0}. Since CtF < 0

and vol(dCt) = σ(1 − βt), there must exist a random time τ1 < t0 a.s. and P(τ1 < τ) > 0
such that βτ1 > 1, in order to ensure that P(t0 > τ) = 1. However, when βτ1 > 1 the agent
would like to boost cash-flow and incentive compatibility is violated. Since τ1 is reached with
positive probability (before time τ), it follows that C 6∈ C.

Hence, continuing from time tF , it must be that t0 is reached with positive probability. By
step i), we get either a violation of the no-Ponzi condition, in which case C 6∈ C, or the
principal asks the agent to put in money into the firm through setting dwt0 = −ε0 < 0, in
which case the game continues at state (ε0, Yt0 + ε0). The principal has then cash-reserves
compensate the agent for her lack of interest earned rYt− , so that we may consider that the
principal does so. Moreover, we may now without loss of generality assume, that at each
time the firm runs out of cash, the principal asks the manager to put in some strictly positive
amount of cash.

However, then there exists a sequence of random times (tn)n≥1 and discrete amount (εn)n≥0,
defined via

tn = inf{t ≥ tn−1 : 0 = Mt− < Yt−} and εn = −dwtn > 0.

All tn are reached with positive probability before time τF ≤ τ , so that PtF (tn < τF ) > 0 for
all n ≥ 0. With positive probability for any chosen sequence (εn)n≥0, we get

Ot ≡
∫ τ∧t

t0

er(t−s)
∑
ti≤s

εtids 6∈ o(ert)

or equivalently Ot 6∈ op(e
rt), in that the manager puts cash into the firm on a rate higher

than r with positive probability. As a consequence

lim
t→∞

e−rtSt ≤ lim
t→∞

e−rt(−Ot) < 0

with positive probability and the no-Ponzi condition is violated.

By the previous Lemma, {Yt > Mt} must be a zero probability event. Hence, the firm must be
terminated at time τ = inf{t ≥ 0 : Mt− = Yt−} = inf{t ≥ 0 : Ct− = 0} or the principal eliminates
volatility through setting vol(dCτ ) = 0 ⇔ βτ = 1, in order to prohibit that a state with Ct < 0 is
reached with positive probability.

We show now in the following Lemma that the principal never would like to refinance by the
agent when it runs out of cash, in that it does not ask the agent to put in any non-infinitesimal
amount −dwτ0 at any time τ0 with Mτ−0

= 0 and in fact the equivalence Mt− = 0⇔ Ct− = 0.

Lemma 4. Let C the optimal contract. Then, at any time tF = inf{t ≥ 0 : Ct− = 0} it follows
that dwt is infinitesimal, that is, dwt ∈ op(dt), and the principal does not raise any strictly positive
amount of debt from the agent. Moreover, Mt− = 0⇔ Ct− = 0.
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Proof. We prove now that once C = M − Y = 0 with M = Y = 0, the principal cannot profitably
switch to a state (M,M) with M > 0. Let us assume the principal sets τ > tF with MtF = YtF = 0
and in particular dwtF = ∆w 6∈ op(dt) and let payoff under this strategy be v(∆w,∆w) with dividend
payouts Div.

Let τF > tF a stopping time, as follows. The principal can improve upon setting dwtF =
−∆w + ε > 0 and setting dwτF = −ε < 0, where τF = inf{t ≥ tF : Mt− = ∆w − δ} for some
arbitrary δ > 0. Then, P(τF > tF ) = 1 and P(τF − tF > δ′) > 0 for some arbitrary δ′ > 0. Setting

payouts under the new strategy for tF ≤ t ≤ τF according to dD̂ivt = δ(A(Yt)−A(Yt−ε))dt+dDivt.
All other features of the previous strategy will be mimicked. Then, the payoff under the modified
strategy equals

v(∆w,∆w) + EtF

(∫ τ∧τF

tF

δ(A(Yt)−A(Yt − ε))dt
)
> v(∆w,∆w).

As this holds for any ε < ∆w, it follows that the best the principal can do is to just raise the
amount needed, that is set βt = 1 and dwt ∈ op(dt) for tF ≤ t ≤ τ0 with τ0 = inf{t ≥ 0 : Ct− > 0},
in case τ > tF is indeed optimal.

The second claim of the Lemma is immediate by the previous arguments. This is because being
at state (M,M), the principal prefers to set payouts dw = M and switch to state (0, 0). Because
Y > M is not feasible, this implies the equivalence Mt− = 0⇔ Ct− = 0 for all t ≥ 0.

As a consequence, we obtain M = 0 ⇔ C = 0, so that C indeed summarizes the whole
contract relevant history and serves as the only relevant state-variable. Hence, firm value – i.e., the
principal’s payoff – can be written as a function v = v(C) of the state C only. The state space by
means of C is contained in R+, i.e., C exceeds zero.

Either the firm defaults if and only if it runs out of cash and therefore τ = inf{t ≥ 0 : Ct− =
Mt− = 0}. Or there is an absorbing state, so that βt = 1 whenever Ct− = c ≥ 0 for some constant
c. As we verify, in the next section, there will not be an absorbing state, in that βt < 1 for all t ≥ 0
with probability one.

C.2 Verification: Proof of Proposition 5 ii)

Proof. A formal existence proof of the solution is beyond the scope of the paper and therefore
omitted. Therefore, we assume v(·) is twice continuously differentiable and solves uniquely (29).

We verify that v(Ct−) indeed represents shareholders’ profit in optimum.
Let C ∈ C the optimal contract and Div the optimal payout policy, solving the principal’s

problem and consider any other contract Ĉ ∈ C and any other payout policy D̂iv.
For convenience, let the contract contain the optimal refinancing sum ∆. We denote the n’th

refinancing time by τn. Ex-post optimality owing to the shareholders’ limited commitment pins
down at time τn for each n ≥ 1:

max
∆,Γ

(
v(C + ∆− Γ)− v(C)−∆

)
s.t. (26),

given the solution v.
We show now that the value function v(·) solving (17) represents the principal’s optimal profit,

in that the contracts C, the payout policy Div and the refinancing quantity ∆ outlined in the
Proposition are indeed optimal.

Let us for brevity write:

dCt = µCtdt+ σtCdZt + (∆t − Γt)dΠt − dDivt
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with

µCt ≡ rCt− + µ− ρr

2
(βtσ)2 − δA

(
ϕtCt−

1− ϕt

)
+ π

1− e−ρrΓt
ρr

and σtC = (1− βt)σ,

where we suppress the dependence of drift and volatility on controls and model parameters. In-
troduce the linear functional L, operating on functions dependent on C ≥ 0 with Lf(C) =

f ′(C)µC +
σ2
Cf
′′(C)
2 . Define for t < τ the auxiliary gain process upon following an arbitrary strategy

(Ĉ, D̂iv) up to time t and then switching to (C, Div)

GPt = GPt (Ĉ, D̂iv) =

∫ t

0
e−rsdD̂ivs + e−rtv(Ct−).

By Itô’s Lemma:

ertdGPt =

{
− (r + δ + π)v(Ct−) + Lv(Ct−) + π

[
v(Ct− + ∆t − Γt)−∆t

] }
dt

+
(
1− v′(Ct−)

)
dD̂iv + σtCv

′(Ct−)dZt − v(Ct−)(dNt − δdt)
≡ µGt (Ĉ, D̂iv)dt+

(
1− v′(Ct−)

)
dD̂iv + σtCv

′(Ct−)dZt − v(Ct−(dNt − δdt).

By the HJB equation (29), the drift term in curly brackets is zero under the optimal controls
under contract C and optimal dividend payout Div, while each other strategy/contract will make

this term (weakly) negative, i.e µGt (Ĉ, D̂iv) ≤ 0. Because the process D̂iv is almost surely increasing
and the fact that v′(Ct−) ≥ 1, the term

(
1−v′(Ct−)) is (weakly) negative under any dividend payout

policy D̂iv and zero under the payout policy Div.
Next, our regularity conditions ensure that α, β are bounded and so is σC . Further, v′ and v

must be bounded over (0,∞). Evidently, v < µ/r. If now v′ were not bounded, then v could not
be bounded either. Hence, there exists ∞ > K > 0 with v, v′ < K. Hence:

E
(∫ t

0
e−rsσtCv

′(Ct−)dZs

)
= E

(∫ t

0
e−rsv(Ct−)(dNs − δds)

)
= 0

for all t < τ . Therefore, GP (Ĉ, D̂iv) follows a supermartingale, while GP (C, Div) follows a martin-

gale under the measure P and so do the stopped processes {GP (Ĉ, D̂iv)t∧τ} and {GP (C, Div)t∧τ}.
Hence, the payoff under strategy (Ĉ, D̂iv) satisfies

v̂(C0−) ≡ GP0−(Ĉ, D̂iv) ≥ EGPt∧τI (Ĉ, D̂iv)

Then it follows for any t:

v̂(C0−) = E
(∫ τ

0
e−rsdD̂ivs + e−rτL

)
= EGPτ (Ĉ, D̂iv) + e−rτL

= E
(
GPt∧τI (Ĉ, D̂iv) + 1t≤τ

[ ∫ τ

t
e−rsdD̂ivs + e−rτL− e−rtv(Ct−)

])
= EGPt∧τ (Ĉ, D̂iv) + e−rtEt1t≤τ

(∫ τ

t
e−r(s−t)dD̂ivs + e−r(τ−t)L− v(Ct−)

)
≤ v(C0−) + e−rt

(
vFB − L

)
,

where we used the supermartingale property and the fact that

Et
(∫ τ

t
e−r(s−t)dD̂ivs + e−r(τ−t)L

)
≤ vFB ≡ µ

r
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and v(Ct−) ≥ L.

From the above arguments, we readily obtain v̂(C0−) ≤ v(C0−) for any contract Ĉ and any

payout policy D̂iv. On the other hand, under (C, Div) the principal’s payoff v̂(C0−) achieves
v(C0−), as the above weak inequality holds in equality when t→∞. This concludes the proof.

C.3 Concavity of value function: Proof of Proposition 2 iii)

Proof. Wlog, we prove the claim only under limited commitment w.r.t. a refinancing strategy. The
proof for full commitment works analogously. Note that in optimum C+∆−Γ = C∗ for a constant
C∗. Differentiating the above identity yields

0 = 1 +
∂∆

∂C
− ∂Γ

∂C
= 1 +

∂∆

∂C
− ∂Γ

∂∆

∂∆

∂C
=⇒ ∂∆

∂C
= − 1

1− κ
,

because by (26) – which is tight in optimum – it follows that ∂Γ
∂∆ = κ. By the envelope theorem:

v′′′(C) =
2

(1− β)2σ2

×
{[
δ + π +

δϕ1{ϕ=κ}

(1− ϕ)
A′
(

ϕC

1− ϕ

)
+
πκe−ρrΓ

1− κ
1{ϕ=κ}1{∆>0}

]
v′(C)− v′′(C)µC −

π

1− κ
1{∆>0}

}
Let us evaluate v′′′(·) at the boundary, in which case ∆ = 0 due to κ > 0 and therefore ϕ = κ.

First, assume that v′′(C̄) = 0 and the super-contact condition holds. Due to A′ ≥ 1, v′′(C̄) =
v′(C̄)− 1 = 0 and β = λ, it is immediate that v′′′(C̄) > 0. Hence, by continuity, there exists ε > 0,
so that v′′ < 0 on an interval (C̄ − ε, C̄). Second, assume v′′(C̄) 6= 0. If v′′(C̄) > 0, there exists a
point C ′ < C̄ with v′(C ′) < 1, a contradiction to C̄ being the payout boundary. Hence, also in this
case v′′ < 0 on an interval (C̄ − ε, C̄).

Let us assume that v is not strictly concave on [0, C̄) and define C ′ ≡ sup{C ∈ [0, C̄] : v′′(C) >
0}. By assumption, the set over which we take the supremum is non-empty, so that C ′ < ∞. As
v′′ < 0 in a left-neighbourhood of C̄, we also have that C ′ < C̄. Due to continuity, v′′(C ′) = 0. As
∆ > 0 implies v′(C) ≥ 1/(1 − κ), it follows that v′′′(C ′) > 0, so that there exists C ′′ > C ′ with
v′′(C ′′) > 0, a contradiction to the definition of C ′. Hence, v′′ < 0 on [0, C̄). In addition, strict
concavity of v implies v′′′ > 0 on [0, C̄], thereby concluding the proof.

D Additional Analytic Results

D.1 Proof of Corollary 1

D.1.1 Claims i) and ii)

Proof. Differentiating the expression for β̂ w.r.t. C yields

∂Cβ
∗(C) =

∂β∗(C)

∂C
∝ −v′(C)v′′′(C) + v′′(C)v′′(C),

so that there exists C ′ := inf{C ≥ 0 : ∂Cβ
∗(C) < 0} < C̄ with ∂Cβ

∗(C) < 0 on [C ′, C̄) and β∗

strictly decreases in an open left neighbourhood of C̄. Further, it is immediate to verify that

∂C

(
−v′′(C)

v′(C)

)
∝ (β∗)′(C).

As σ → 0, clearly C̄ → 0. By the super-contact condition, v′′(C) = o(C̄), while v′(C)v′′′(C) 6= o(C̄).
Hence, C ′ ↑ 0 as σ → 0, which proves that for σ sufficiently low β∗ decreases on [0, C̄).
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Let Ĉ = inf{C ∈ [0, C̄ : β∗(C) ≥ λ}. It is obvious that Ĉ ≤ C̄. Since β∗(C) > 0 for all C < C̄

and C̄ → C̄ ′ > 0 as λ → 0, it follows that Ĉ → 0. Thus, for λ sufficiently small, it must be that
Ĉ < C̄ and there exists exactly one value solving the equation β(C) = λ, which completes the
proof.

D.1.2 Claim iii)

Proof. Let us postulate that wages w follow a continuous Ito process, when there is no refinancing:

dwt = µwtdt+ σwtdZt + Jt−dΠt.

The manager receives strictly positive payouts only in case of refinancing dΠt = 1, so that by virtue
of section 5:

Jt− =
ϕt

1− ϕt

(
Ĉ∗ − C

)
.

In the following we may ignore the jump term and wlog assume π = EdΠt
dt = 0.

It remains to determine the drift µwt and volatility σwt under the assumption ϕt = κ ∀ t ≥ 0
with probability one. By definition: Yt = ϕtCt

1−ϕt . Using (10):

dWt =
ρr

2
(βtσ)2dt+ βt(dXt − µdt)

+ δ

(
αt −

ln(1 + ρrαt)

ρr

)
dt− ln(1 + ρrαt)

ρr
(dNt − δdt).

and (2):
dSt = rSt−dt+ dBt + dwt − ctdt with ct = rWt,

it is straightforward calculate:

dYt = rYt−dt− Yt−dN +
ρr

2
(βtσ)2dt+ δA(Yt−)dt+ βtσdZt − dwt.

On the other hand, because ϕ = κ is constant:

dYt =
ϕtdCt
1− ϕt

.

Taking (16):

dCt = rCt−dt−
ρr

2
(βtσ)2dt− δA

(
ϕt−

1− ϕt−
Ct−

)
dt+ µdt+ (1− βt)σdZt − dDivt − Ct−dNt,

we obtain after rearranging and collecting terms:

dwt =
1

1− ϕt
×
[
ρr

2
(βtσ)2 + δA

(
ϕt−

1− ϕt−
Ct−

)
− ϕtµ

]
︸ ︷︷ ︸

=µwt

dt+
βt − ϕt
1− ϕ

σ︸ ︷︷ ︸
=σwt

dZt.

Wages dwt are almost surely positive at all times t if and only if:

σwt = 0 ∀ t ≥ 0⇐⇒ βt = ϕt ∀t ≥ 0

µwt ≥ 0 ∀ t ≥ 0⇐= ρr(λσ)2 ≥ κµ,

because A,A′, A′′ ≥ 0. These conditions can be satisfied, only if κ = λ. In this case, wages are
almost surely positive, provided ρ or σ is sufficiently large.
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D.2 Proof of Corollaries 2 and 3

Here, η is an arbitrary model parameter and define ∂η(·) ≡ ∂(·)
∂η . Throughout, let us consider

the limit case θ → 0, so that shareholders cannot profitably deviate by paying out the entire
cash-balance and the payout threshold satisfies the satisfies the smooth-pasting condition.

We start with an auxiliary lemma:

Lemma 5. For τ = inf{t ≥ 0 : Mt = 0} the following holds:

∂v(C)

∂η
∝ E

[∫ τ

0
e−(r+δ)t

(
v′(Ct)

(
∂ηrCt − ∂η

ρr

2
(βtσ)2dt− ∂ηδA

(
ϕtCt

1− ϕt

)
+ ∂ηµ

)

+ ∂η
σ2(1− βt)2

2
v′′(Ct) + ∂ηδL

)
dt+ ∂ηe

−(r+δ)τL

∣∣∣∣∣C0 = C

]

Proof. Let η a model parameter and β, ϕ the optimal controls in optimum. Let C ∈ [0, C̄] and take
the derivative

dv(C)

dη
= ∂ηv(C) + ∂C̄v(C)× ∂ηC̄ = ∂ηv(C),

where ∂C̄v(C) = 0 by means of the envelope theorem, provided the super-contact condition v′′(C̄) =
0 holds. Accordingly, differentiating (17) w.r.t. η yields:

∂η(r + δ)v(C) =− (r + δ)vη(C) + v′(Ct)

[
∂η(µ+ rC)− ∂η

ρr

2
(βσ)2 − ∂ηδA

(
ϕtCt

1− ϕt

)]
+ v′η(C)

[
rC + µ− ρr

2
(βσ)2 −−∂ηδA

(
ϕtCt

1− ϕt

)]
+
σ2(1− β)2

2
v′′η(C) + ∂η

σ2(1− β)2

2
v′′(C)

where ∂βv(C) = ∂ϕv(C) = 0 by the envelope theorem. The boundary conditions are v′η(C̄) =

v′′η(C̄) = 0 and vη(0) = ∂ηL. Provided our smoothness conditions, we can interchange the order of
differentiation, such that:

v′η(C) ≡ ∂

∂η

∂v(C)

∂C
=

∂

∂C

∂v(C)

∂η
and v′′η(C) ≡ ∂

∂η

∂2v(C)

∂C2
=

∂2

∂C2

∂v(C)

∂η
.

Invoking the Feynman-Kac formula and integrating yields the desired expression.

Next, note that
βη ∝ −v′(C)v′′η(C) + v′′(C)v′η(C), (D.1)

so that sign(βη(C)) = sign(RAη(C)) for RA(C) = −v′′(C)/v′(C). Provided the super-contact
condition v′′(C̄) = 0 holds, we evaluate the HJB-equation at the boundary C = C̄:

(r + δ)v(C̄) =

(
rC̄ − ρr

2
(λσ)2 − δA

(
ϕC̄

1− ϕ

)
+ µ

)
(D.2)

In the following, we derive our comparative statics for various model parameters. In each of the
following subsections, we prove all claims regarding one particular parameters, so that one of the
following subsections then proves one part of corollary 3 and 2 simultaneously. When deriving
comparative statics for β with C close to zero, we implicitly assume β(C) ≥ λ does not bind for
low values of C, unless otherwise mentioned.
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D.2.1 Volatility: σ

Proof. To start with, invoke the implicit function theorem to differentiate (D.2), which yields

(r + δ)vσ(C̄) + (δ + r)C̄σ + ρrσλ2 = rC̄σ −
δκC̄σ
1− κ

A′
(

κC̄

1− κ

)
Next,

vσ(C) = ∂σv(C) = E

[∫ ∞
0

e−(r+δ)t
(
− ρrβ2

t σv
′(Ct) + σ(1− βt)2v′′(Ct)

)
dt

∣∣∣∣∣C0 = C

]

As the integrand is almost everywhere negative, it follows that vσ(C) < 0 and therefore C̄σ > 0,
provided the smooth pasting condition holds and λ or ρ are sufficiently small.

Because zero is an absorbing state it must further be that v′σ(C) < 0 in a neighbourhood of
zero. Next, let us evaluate the HJB-equation at some value C, in order to obtain:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

. (D.3)

By the envelope theorem, we obtain:

RAσ(C) =− 4

(1− β(C))2σ3
E − 2ρrβ(C)2

(1− β(C))2σ
v′(C)

+
2

(1− β(C))2σ2
× (r + δ)

−v′(C)vσ(C) + v(C)v′σC()

(v′(C)2

The first two terms are unambiguously negative. To sign the third term, note that vσ(C) =
vσ(0) +v′σ(C)C+o(C2) = o(C), as v(0) = L is an identity. The third term is then also negative for
C sufficiently small, as v′σ(C) < 0 in a neighbourhood of zero. As a consequence, it must be that
RAσ(C) < 0 in a neighbourhood of zero and therefore βσ(C) < 0, which completes the proof.

D.2.2 Moral Hazard: κ

Proof. Note that the incentive constraint ϕ ≥ κ binds everywhere, provided π = 0. Let us differ-
entiate (D.2), to obtain

−(r + δ)vκ(C̄) = δ

(
κC̄κ
1− κ

+
C̄

(1− κ)2

)
A′
(

κC̄

1− κ

)
+ δC̄κ, (D.4)

so that

C̄κ ∝ −(r + δ)vκ(C̄)−A′
(

κC̄

1− κ

)
C̄

(1− κ)2
.

Moreover:

vκ(C) = ∂κv(C) = −E

[∫ ∞
0

e−(r+δ)t
(
A′(Dt)v

′(Ct)
Ctδ

(1− κ)2

)
dt

∣∣∣∣∣C0 = C

]
(D.5)
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and therefore vκ(C) < 0. Next, note that the integrand of (D.5) possesses derivative w.r.t. C:

−A′
(

κC

1− κ

)
v′′(C)

C

(1− κ)2
− C2κ

(1− κ)3
ρreρrκC/(1−κ)v′(C)− A′(D)v′(C)

(1− κ)2

∝ −v′′(C)C − C2κρrv′(C)

1− κ
− v′(C) = −v′(C) + o(C)

For C ' 0, the third term dominates and the integrand of (D.5) decreases in C. For C > 0,
and κ sufficiently large, the second term dominates. Thus, there exists κ̄ ∈ [0, 1), such that the
integrand of (D.5) decreases in κ for κ ≥ κ̄ for all C ≥ 0. This readily implies that −(r+δ)vκ(C̄) <

A′
(
κC̄
1−κ

)
C̄

(1−κ)2 and it follows that C̄κ < 0 for κ ≥ κ̄.

Next, let us rewrite the HJB-equation:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

.

The envelope theorem yields then after some simplifications:

sign(RAκ(C)) = sign
(

(−v′(C)vκ(C) + v(C)v′κ(C) + o(C)
)

= sign
(
− v′(C)(vκ(0) + v′κ(C)C + o(C2)) + v(C)v′κ(C) + o(C)

)
For C in a neighbourhood of zero, it is then immediate that sign(RAκ(C)) = sign(v(C)v′κ(C)).
Since vκ(C) < 0 and v(0) = L is an identity independent of κ, it must also be that v′κ(C) < 0,
which implies RAσ(C) for C ' 0. Hence, βκ(C) < 0 in a neighbourhood of zero, i.e., for C ' 0,
which concludes the proof.

D.2.3 Cash-Flow Rate: µ

Proof. Observe that

vµ(C) = ∂µv(C) ∝ E

[∫ ∞
0

e−(r+δ)tv′(Ct)dt

∣∣∣∣∣C0 = C

]
> 0

and upon differentiating (D.2) it follows that

C̄µ ∝ −(r + δ)vµ(C̄)− 1.

Differentiating

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

w.r.t. µ yields after simplifications:

sign(RAµ(C)) = sign
(
1 + v(C)v′µ(C) + o(C)

)
.

Since vµ(C) > 0, it is clear that v′µ(C) > 0 close to zero and therefore RA(C) and β(C) must
increase in a neighbourhood of zero, i.e., for C ' 0, which concludes the proof.
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D.2.4 Risk-aversion: ρ

Proof. Note that

vρ(C) = ∂ρv(C) ∝ E

[∫ ∞
0

e−(r+δ)tv′(Ct)
[
−r/2(βtσ)2 − δAρ(Dt)

]
dt

∣∣∣∣∣C0 = C

]
,

where Aρ(·) = ∂ρA(·) > 0. Clearly, vρ(C) < 0. Differentiating (D.2) yields that

C̄ρ ∝ −(r + δ)vρ(C̄)− r(λσ)2

2
− δAρ(D̄) = −(r + δ)vρ(C̄)− r(λσ)2

2
− δ

For λ and δ sufficiently small, it follows that C̄ρ > 0. Further, for ρ sufficiently large, the term
Aρ explodes for any argument and owing to D̄ ≥ Dt with the inequality being strict on a set with
positive measure, it must be that C̄ρ < 0 for ρ ≥ ρ̄ for some value ρ̄ > 0 Moreover, in the limit
case ρ→ 0, it is clear that all risk is shared with the agent, in that C̄ → 0 for ρ→ 0. Hence, there
exists ρ > 0 with C̄ρ < 0 for ρ < ρ.

Taking C with β(C) > λ, differentiating (D.3) and doing some algebra, we get that

sign(βρ(C)) = sign(RAρ(C)) = sign
(
−r(β(C)σ)2/2 + v(C)v′ρ(C) + o(C)

)
.

For C sufficiently close to zero, it follows that v′ρ(C) < 0, so that β(C) must decrease in ρ in a
neighbourhood of zero, i.e., for C ' 0. Since β(C) = λ for all C for high values of ρ, it follows that
β(C) is constant in ρ for large values of ρ or λ and decreases otherwise.

D.2.5 Moral Hazard: λ

Proof. Observe that

vλ(C) = ∂λv(C) = E

[∫ ∞
0

e−(r+δ)t
[
−rρλσ2v′(Ct)− (1− λ)σ2v′′(Ct)

]
1βt=λdt

∣∣∣∣∣C0 = C

]
,

Whenever
−rρλv′(C)− (1− λ)v′′(C) > 0,

it is clear that β(C) > λ, so that vλ(C) ≤ 0. Next, because β decreases it must be that also vλ(C)
decreases, so that v′λ(C) < 0. Implicitly differentiate (D.2) to obtain

C̄λ ∝ −(r + δ)vλ(C̄)− ρrλσ2

For λ = 0, it follows that βt ≥ λ for all t with equality if and only if C̄ = Ct, so that vλ(C) = 0.
Furthermore, for any ε > 0 there exists λ ∈ o(ε) such that β(C) = λ exactly for all C ∈ (C̄ − ε, C̄].
On the interval (C̄ − ε, C̄], we have that v′(C) = 1 + o(ε) and v′′(C) = o(ε). Thus,

vλ(C) = E

[∫ ∞
0

e−(r+δ)t
[
−rρλσ2

]
1{βt=λ}dt

∣∣∣∣∣C0 = C

]
+ o(ε),

so that there exists ε > 0, such that C̄λ < 0, which also means owing λ ∈ o(ε), that C̄ decreases in
λ for λ sufficiently small. Taking the extreme case λ = 1, we immediately see that C̄ = 0, so that
C̄ must decrease in λ when λ is sufficiently large.

Next, we show the claim regarding β. First, assume that β ≥ λ does not bind in a neighbourhood
of zero, which is the case for ρ or λ sufficiently low. Differentiating (D.3) and doing some algebra,
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we get that
sign(βλ(C)) = sign(RAλ(C)) = sign

(
v(C)v′λ(C) + o(C)

)
.

For C sufficiently close to zero, it follows that v′λ(C) < 0, so that β(C) must decrease in ρ in
a neighbourhood of zero, i.e., for C ' 0, which concludes the proof. Second, assume that β =
λ everywhere, which is the case for ρ or λ sufficiently large. Under these circumstances, β(C)
mechanically increases in λ.

D.2.6 Disaster Risk: δ

Proof. Differentiating boundary yields

C̄δ ∝ −(r + δ)vδ(C̄)− v(C̄)−A(D̄).

Next, observe that

vδ(C) = ∂δv(C) ∝ −E

[∫ ∞
0

e−(r+δ)t
(

(v(Ct)− L) + v′(Ct)(Dt)
)
dt

∣∣∣∣∣C0 = C

]
− e−(r+δ)τL,

so that vδ(C) < 0, which readily implies v′δ(C) < 0 for C close to zero. Let us wlog assume L = 0.
It is clear that

(r + δ)E

[∫ ∞
0

e−(r+δ)tv(Ct)dt

∣∣∣∣∣C0 = C

]
< v(C̄),

as C = 0 is an absorbing state, that is reached at an P almost surely finite time, and v is mono-
tonically increasing. Next, let us consider the derivative of A(D)v′(C) with respect to C:

κ

1− κ
v′(C)eρrD + v′′(C)A(D).

For κ sufficiently large, the first term must dominate owing to v′ ≥ 1. Under this condition:

A(D̄)

r + δ
≥ E

[∫ ∞
0

e−(r+δ)tv′(Ct)A(Dt)dt

]
for D̄ =

κC̄

1− κ
.

From there, it follows that for κ sufficiently large the payout boundary must decrease in δ, i.e.,
C̄δ < 0. Furthermore, we know that for sufficiently large κ, the absolute value of the integrand
increases and since the integrand is negative, this means that v′δ(C) < 0.

To prove the claim regarding β we differentiate (D.3) and simplify, to get:

sign(RAδ(C)) = sign
(

(r + δ)v(C)v′δ(C)− v(C)v′(C) + o(C)
)
.

For C ' 0, it follows that sign(RAδ(C)) < 0, so that β(C) decreases in δ for C ' 0, provided a
loose IC-condition β(C) > λ.

D.2.7 Commitment θ

Proof. It is evident that ∂C
∂θ = 0 as well as ∂v(C)

∂θ = 0, whenever v(C) > θC
1−κ + L. The latter

inequality is always satisfied if θ < 1 − κ. Let us therefore consider the case θ ≥ 1 − κ and

v(C) = θC
1−κ + L. Differentiating this identity wrt. θ yields:

v′(C)
∂C

∂θ
+ vθ(C) =

C

1− κ
+

θ

1− κ
∂C

∂θ
.
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Since θ affects firm value only through the boundary conditions: vθ(C) = 0. Owing to v′(C) = 1:

∂C

∂θ
=

C

1− κ
×
(

1− θ

1− κ

)−1

≤ 0

with the inequality being strict if θ > 1− κ. We take the risk-aversion:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

.

Close to zero v(C) ' L. Moreover, it must be that dv(C)
dθ ) < 0 for C in a neighbourhood of zero,

while dv(0)
dθ = 0 as the identity v(0) = L holds. Therefore: dv′(C)

dθ < 0 in neighbourhood of zero, so
that RA(C) and therefore also β(0) decrease in θ for C ' 0.

D.3 Stock-Return Volatility

The formula for the stock-returns follows upon invoking Ito’s Lemma:

dRt =
dDivt + dv(Ct−)

v(Ct−)

=
dDivt + Lv(Ct−) + v′(Ct−)σCtdZt +

[
v(C∗)−∆− v(Ct−)

]
dΠt1{Ct−<C∗}

v(Ct−)

= r + δ + 1{Ct−<C∗}

(
π − π(v(C∗)−∆t)

v(Ct−)

)
+
dDivt
v(Ct−)

+
v′(Ct−)

v(Ct−)
× σ(1− βt)︸ ︷︷ ︸

≡Σt=Σ(Ct− )

dZt +

[
v(C∗)−∆− v(Ct−)

]
dΠt

v(Ct−)
1{Ct−<C∗},

where we used the HJB-equation under the optimal controls:

(r + δ)v(Ct−) = dDivt + Lv(Ct−) + π
[
v(C∗)−∆− v(Ct−)

]
1{Ct−<C∗}.

D.3.1 Proof of Corollary 4

i) Proof. To start with, for all C with β(C) we rewrite:

Σ(C) = (1− β)σ
v′(C)

v(C)
= σρr × (v′(C))2

v(C)
(
ρrv′(C)− v′′(C)

) ,
so that

Σ′(C) ∝ 2v(C)
(
ρrv′(C)− v′′(C)

)
v′(C)v′′(C)

− (v′(C))2 ×
[
v′(C)

(
ρrv′(C)− v′′(C)

)
+ v(C)

(
ρrv′′(C)− v′′′(C)

)]
= −(v′(C))3 ×

(
ρrv′(C)− v′′(C)

)
+ o
(
v(C)

)
It follows then that Σ′(C) < 0 in a neighbourhood of zero, provided the scrap value L ≥ 0 is
sufficiently low.

Next, note that in a neighbourhood of C̄, we have that β(C) = λ, provided λ > 0, in which
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case it is clear that

Σ(C) = (1− λ)σ
v′(C)

v(C)

decreases in this neighbourhood of C̄.

ii-1) Proof. Note that in the limit λ→ 1, the firm value converges to,

µ− ρr/2σ2

r + δ
+M0− ,

where all cash (the firm is born with) is paid out immediately as dividends to shareholders
and continuation value from time 0 onwards is deterministic, as the agent absorbs all cash-
flow risk. Hence, for λ→ 1, it follows that Σ(C)→ 0 for any C, so that by continuity, there
exists λ̄ ∈ (0, 1), so that Σ(C) decreases in λ for λ > λ̄, thereby concluding the proof.

ii-2) Proof. Fix λ ∈ (0, 1). For all ε > 0 we can pick ρ > 0 small enough such that β(C) = λ
exactly for all C ∈ (C̄ − ε, C̄]. On the interval (C̄ − ε, C̄], we have that v′(C) = 1 + o(ε) and
v′′(C) = o(ε). As a consequence:

vλ(C) = E

[∫ ∞
0

e−(r+δ)t
[
−rρλσ2

]
1βt=λdt

∣∣∣∣∣C0 = C

]
+ o(ε) <

−rρλσ2

r + δ
+ o(ε).

On the interval (C̄ − ε, C̄]:

Σ(C) =
1 + o(ε)

v(C)
× (1− λ)σ

=⇒ Σλ(C) ∝ o(ε)− v(C)− vλ(C)(1− λ) > o(ε) +
−rρλσ2(1− λ)

r + δ
− v(C).

Note that we can pick ρ or λ arbitrarily small, so as to achieve Σλ(C) < 0, which concludes
the proof.

iii) Proof. For λ > 0, there exists ε > 0, so that on (C̄ − ε, C̄]:

Σ(C) = (1− λ)σ
v′(C)

v(C)
+ o(ε) = (1− λ)σ

1 + o(ε)

v(C)
+ o(ε),

so that
∂Σ(C)

∂κ
∝ o(ε)− vκ(C)(1 + o(ε)) > 0

for ε > 0 sufficiently small, thereby concluding the proof.

D.4 Proof of Corollary 6

We split the proof in three parts. The first part proves the claims regarding C. The second part
proves the claims regarding β(0) and the third part the claim regarding C∗. We will not introduce
additional notation, so that C∗ is a constant under limited commitment w.r.t. refinancing strategy
and a function of C under full commitment w.r.t. the refinancing strategy/
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D.4.1 Part 1

Proof. First, obtain

vπ(C) = ∂πv(C) = E

[∫ ∞
0

e−(r+δ)t
(
v′(Ct−)

1− e−ρrΓt
ρr

+
[
v(Ct− + ∆t − Γt)− v(Ct−)−∆t

]︸ ︷︷ ︸
>0

)
dt

∣∣∣∣∣C0− = C

]
,

from where it is obvious that vπ(C) > 0 for any C > 0. Continuity and the identity v(0) = L imply
then that v′π(C) for C in a neighbourhood of zero. Let us differentiate the HJB-equation at the
boundary w.r.t. π (i.e., (D.3)), which yields:

0 = (r + δ)vπ(C̄) + δC̄π +
δκC̄π
1− κ

A′
(

κC̄

1− κ

)
=⇒ C̄π ∝ −vπ(C̄) < 0.

Note that the argument did not make use of any assumed commitment structure, so that the claim
holds true regardless of the commitment structure.

D.4.2 Part 2

Proof. Second, denoting the fixed value C∗ = Ct− + ∆t − Γt, let us rewrite the HJB-equation:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+ µC + π[v(C∗)− v(C)−∆

])
︸ ︷︷ ︸

≡E>0

.

One can show that
∂

∂π

−(r + δ)v(C)

v′(C)
∝ v(C)v′π(C) + o(C),

which is strictly positive for C in a neighbourhood of zero.
Let us assume now limited commitment w.r.t. to the refinancing strategy. Then:

∂

∂π

(
µC + π[v(C∗)− v(C)−∆

])
=

1− e−ρrΓt
ρr

+
[
v(C∗)− v(C)−∆

]
+ π

[
v′(C∗)

∂C∗

∂π
− vπ(C)− ∂∆

∂π

]
Utilizing v′(C∗) = 1

1−κ , ∂∆
∂C∗ = 1

1−κ and ∂∆
∂π = ∂∆

∂C∗ ×
∂C∗

∂π , the above expression simplifies to:

1− e−ρrΓt
ρr

+
[
v(C∗)− v(C)−∆

]
− πvπ(C)︸ ︷︷ ︸

=o(C)

.

Thus, for C sufficiently close to zero, the above expression is positive, which implies that RA(C)
decreases in π for C ' 0. Provided a loose IC-condition β ≥ λ in a neighbourhood of zero, also
β(C) increases in π for C close to zero.

Last, we assume full commitment to a refinancing strategy is possible. Then, the envelope
theorem applies, so that:

∂

∂π

(
µC + π[v(C∗)− v(C)−∆

])
=

1− e−ρrΓt
ρr

+
[
v(C∗)− v(C)−∆

]
> 0,
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so that RA(C) increases in π close to zeros and so does β(C). This concludes the proof of the
second part.

D.4.3 Part 3

Proof. Third, we show the claim regarding C∗. First, note that for C > C∗, we can write

vπ(C) = Ee−(r+δ)τ∗vπ(C∗) < vπ(C∗)

for τ∗ = inf{t ≥ 0 : Ct− = C∗}. Hence, v′π(C) < 0 for C ∈ [C∗, C̄], since there is no refinancing in
this region and vπ(C) > 0. By continuity, it even follows that v′π(C) < 0 for C ∈ [C∗ − ε, C̄] for
some ε > 0. We differentiate the identity v′(C∗) = 1

1−κ , which yields:

v′π(C∗) + v′′(C∗)
∂C∗

∂π
= 0 =⇒ ∂C∗

∂π
=

v′π(C∗)

−v′′(C∗)
< 0,

thereby concluding the proof.

D.5 Proof of Corollary 5

Proof. To prove part i), assume to the contrary there exist C1 < C2 with ∆(C1) ≤ ∆(C2). This
clearly implies C∗(C2) > C∗(C1), so that v′(C∗(C2)) < v′(C∗(C1)) by concavity. Likewise: v′(C2) <
v′(C1). Wlog, we may assume C > C∗(C2), as otherwise the claim is trivial. However, it is easy to
verify that (33) cannot hold for both C1 and C2, contradicting the optimality of the hypothesized
strategy.

Part ii) follows immediately from the fact that C∗(C) ≥ C by definition. Thus, either C∗(C) =
C ∀ C ∈ [C − ε, C] for appropriate ε > 0, in which case the claim is trivially true, or there exist
ε > 0, C < C with C∗(C) < C ∀ C ∈ [C − ε, C], in which case the claim follows by continuity and
limC→C C

∗(C) = C.

For Part iii), we can wlog focus on the case where C∗(C) < C throughout. We implicitly
differentiate (32), in order to obtain:

v′′(C∗)
∂C∗

∂C
=
κe−ρr

κ
1−κ [C∗−C]

1− κ

[
−v′′(c) +

ρrκ

1− κ
v′(C)

(
∂C∗

∂C
− C

)]
,

which can be solved for:

∂C∗

∂C
∝ v′′(C) +

ρrκ

1− κ
C = v′′(C) + o(ρκ),

so that C∗ decreases for small C, provided ρ or κ are sufficiently low.

E Further comparative statics

In Figures 6, 7, and 8 we present the full numerical comparative statics of the baseline model
without refinancing.

Changing ρ. Next, varying the agent’s CARA coefficient ρ makes hedging via labor contracts
more expensive as agents require higher risk-premia for variability in their certainty equivalent
wages Yt. In response, as Column 3 in Figure 8 shows, the firm reduces its usage of pay-performance
sensitivity, reducing avg β, and instead increases its average cash-holdings, raising C. On the other
hand, moral hazard has more bite for larger ρ, which in turn implies that overall firm value decreases
in ρ. As a result, liquidation gets less inefficient, which calls for less hedging of liquidity risks. This
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Figure 6: Comparative statics w.r.t. λ (Column 1), w.r.t. λ = κ (Column 2), w.r.t. θ (Column
3), top row C, middle row β(0), bottom row (σ-scaled) avg β. The solid black lines depict the
object described on the y-axis, the dashed red line depicts the IC constraint (19), the thin vertical
dashed red line depicts the parameter value in our benchmark.
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Figure 7: Comparative statics w.r.t. κ (Column 1), w.r.t. δ (Column 2), top row C, middle row
β(0), bottom row avg β. The solid black lines depict the object described on the y-axis, the dashed
red line depicts the IC constraint (19), the thin vertical dashed red line depicts the parameter value
in our benchmark.
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Figure 8: Comparative statics w.r.t. σ (Column 1), w.r.t. µ (Column 2), w.r.t. ρ (Column 3),
top row C, middle row β(0), bottom row (σ-scaled) avg β. The solid black lines depict the object
described on the y-axis, the dashed red line depicts the IC constraint (19), the thin vertical dashed
red line depicts the parameter value in our benchmark.
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leads to the non-monotonic behavior of C in ρ. Again, numerically there is only a very mild
reduction in β(0).

Changing µ, κ and δ As Column 2 in Figure 8 show, the comparative statics w.r.t. µ exhibit
non-monotonicity of C. As pointed out in Décamps et al. (2011), this already occurred in a model
absent IC considerations, i.e., λ = 0. Intuitively, for low µ, the project is not worth a lot as a going
concern, and thus it is better to drain cash quickly in terms of dividends. As µ starts increasing, the
project value increases, making shareholders more willing to accumulate cash and delay dividend
payments. This is the first effect. A second effect is highlighted for very high µ: Here, the optimal
payout boundary C declines. Intuitively, negative cash-flow shocks can be more easily overcome by
the drift, and the need to hold expensive cash balances shrinks. Another way to express this second
effect is that all else equal, a higher µ leads to more of the probability mass to be close to C, and
thus average cash-holdings to increase. Lowering average cash-holdings thus requires decreasing C.
The (scaled) β(0) and avg β both inherit the non-monotonicity of C.

Last, δ and κ essentially determine endogenously arising carry cost of cash. Not surprisingly,
we find that increases in either κ and λ make cash-holdings more costly, thereby reducing C. As a
result, firm value decreases, which makes liquidation less inefficient and therefore also curbs hedging
through labour markets.

F Details on the numerical solution

F.1 Determining the payout boundary

Wlog, we consider here the case π = 0, to describe the procedure. We utilize a shooting method to
solve for the value function. We shoot from C towards C = 0, iterating on the condition v(0) = L.

First, define

B (C) :=
θ

1− κ
C + L

D (C) := rC + µ− δA
(

κC

1− κ

)
Next, write the ODE with optimized ϕ = κ as

(r + δ) v (C) = v′ (C)

[
D (C)− ρrσ

2

2
β (C)2

]
+
σ2

2
(1− β (C))2 v′′ (C)

Suppose for the moment that β∗ (C) = −v′′(C)
ρrv′(C)−v′′(C) > λ. Then, after plugging in for β∗ (C) and

cancelling out terms, we have the non-linear ODE

(r + δ) v (C) = v′ (C)D (C) + ρr
σ2

2

v′ (C) v′′ (C)

ρrv′ (C)− v′′ (C)

= v′ (C)− ρrσ
2

2
v′ (C)β∗ (C)

whereas when β∗ (C) < λ, we have the linear ODE

(r + δ) v (C) = v′ (C)

[
D (C)− ρrσ

2

2
λ2

]
+
σ2

2
(1− λ)2 v′′ (C)

Next, let us consider the boundary conditions. Note that we have v (0) = L and v′
(
C
)

= 1 in
any scenario. We have to consider two scenarios:
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1. Suppose first that v
(
C
∗
)
> B

(
C
∗
)

, where C
∗

is defined by v′′
(
C
∗
)

= 0. Then, at C = C
∗

we have

(r + δ) v
(
C
)

= 1×
[
D (C)− ρrσ

2

2
λ2

]
+
σ2

2
(1− β (C))2 × 0

which implies that

v
(
C
)

=
D (C)− ρr σ2

2 λ
2

r + δ

and we initialize the shooting algorithm at C with v
v′

v′′

(C) =

 D(C)−ρr σ
2

2
λ2

r+δ
1
0



2. Suppose next that v
(
C
∗
)

=
D(C

∗
)−ρr σ

2

2
λ2

r+δ < B
(
C
∗
)

, which implies that the payout bound-

ary cannot be chosen via the super-contact condition. Then, we need to initialize the shooting
algorithm at C with  v

v′

v′′

(C) =

 B
(
C
)

1
v′′
(
C
)


where v′′
(
C
)

is given by the continuous function

v′′
(
C
)

=


(r+δ)B(C)−D(C)+ρr σ

2

2
λ2

σ2

2
(1−λ)2

, C ≥ Cλ
ρr[(r+δ)B(C)−D(C)]

ρr σ
2

2
+(r+δ)B(C)−D(C)

, C < Cλ

and where the constant Cλ solves

−v′′
(
Cλ
)

ρr − v′′
(
Cλ
) = λ ⇐⇒ − λρr

1− λ
= v′′(Cλ) =

(r + δ)B
(
Cλ
)
−D

(
Cλ
)

+ ρr σ
2

2 λ
2

σ2

2 (1− λ)2

The derivation is straightforward. Note that v
(
C
)

= B
(
C
)

as well as v′(C) = 1 by assump-
tion. There are two cases w.r.t. β∗ (C):

(a) When β∗
(
C
)

=
−v′′(C)
ρr−v′′(C)

< λ ⇐⇒ v′′ (C) > − λρr
1−λ , we have

(r + δ)B
(
C
)

=

[
D
(
C
)
− ρrσ

2

2
λ2

]
+
σ2

2
(1− λ)2 v′′

(
C
)
.

(b) Next, for β∗
(
C
)

=
−v′′(C)
ρr−v′′(C)

> λ ⇐⇒ v′′ (C) < − λρr
1−λ , we have

(r + δ)B
(
C
)

= D
(
C
)

+ ρr
σ2

2

v′′
(
C
)

ρr − v′′
(
C
) .

As v′′′(C) > 0, the partition on C ≷ Cλ results.
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F.2 Determining the optimal refinancing policy

To start with, note the model solution is fully characterized by an equilibrium domain, which is
fully described by the payout boundary C, the value function v, the controls β, ϕ on this domain
as well as the refinancing policy (C∗,Γ∗). We solve for the optimal refinancing policy iteratively.
That is to say, we perform the following steps:

1. Solve the model without refinancing, i.e., for π = 0, which yields the solution triple (v0, β0, C
0
).

Set i 7→ 1. Set the default refinancing policy C∗0 ≡ 0 and Γ∗0 ≡ 0 and ϕ0 = κ.

2. Solve the HJB-equation, taking the optimal refinancing policy Γ∗i and C∗i and ϕi as given.

This yields the solution (v, C, β).

3. Given (v, C, β), calculate the optimal refinancing policy and control ϕ (C∗,Γ∗, ϕ∗).

4. Set i 7→ i+ 1 and (vi, βi, C
i
, C∗i ,Γ

∗
i ) 7→ (v, β, C,C∗,Γ∗)

5. If
||vi − vi−1||[0,∞)

∞ < ε

for some tolerance ε > 0, the solution is obtained. Otherwise go back to step 2. Here, || · ||[a,b]∞
is the supremum norm on the interval [a, b].

G Steady-state KFE

To evaluate the average β of a firm w.r.t. to a density implied by the process C, we want to derive
the steady-state density induced by resetting all liquidating firms to C = C. Let us write the
dynamics of C on the equilibrium path as

dCt = µC(Ct)dt+ σC(Ct)dZt,

and define sC(C) := (σC(C))2. Then, the stationary density f(·) on (0, C) solves

0 =
1

2
∂CC [sC(C)f(C)]− ∂C [µC(C)f(C)]− δf(C)

The boundary conditions are given by
f(0) = 0 (G.1)

as well as

0 =
1

2
∂C [sC(C)f(C)]C=C − µC(C)f(C) + δ − 1

2
sC(0)f ′(0) (G.2)

Here, the first two terms are the traditional reflection boundary conditions, the third term is the
inflow from the (state-independent) Poisson defaults at rate δ, and the fourth term is the inflow
from the liquidity defaults at C = 0.

Recall that along the equilibrium path (assuming ϕ = κ) on (0, C) we have

dCt =

[
rCt− −

ρr

2
(β(Ct−)σ)2 − δA

(
κ

1− κ
Ct−

)
+ µ

]
dt+ [1− β(Ct−)]σdZt − Ct−dNt. (G.3)
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