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Abstract

Ambiguity in the ordinary language sense is that available informa-
tion is open to multiple interpretations. We model this by assuming
that individuals are unaware of some possiblities relevant to the out-
come of their decisions and that multiple probabilities may arise over
an individual’s subjective state space depending on which of these
possibilities are realized. We formalize a notion of coherent multiple
priors and derive a representation result that with full awareness cor-
responds to the usual unique (Bayesian) prior but with less than full
awareness generates multiple priors. We show when information is
received with no change in awareness, each element of the set of priors
is updated in the standard Bayesian fashion (that is, full Bayesian
updating). An increase in awarenss, however, leads to an expansion
of the individual’s subjective state and (in general) a contraction in
the set of priors under consideration.
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1 Introduction

The idea that choices under uncertainty are subject to problems arising from

ambiguity was first put forward by Ellsberg (1961), drawing on the earlier

work of Knight (1921, 2006). Like Knight, Ellsberg argued that, in many

cases, decisionmakers do not, and could not be expected to, act as if they

assigned well-defined numerical probabilities to all the possible outcomes of

a given choice. His well-known thought experiments illustrating this argu-

ment formed the basis of a large subsequent literature both theoretical and

empirical.

In most of this literature, the term ‘ambiguity’ has been treated as a

synonym for what Knight called ‘uncertainty’namely the fact that relative

likelihoods are not characterized by well-defined numerical probabilities. The

standard method of dealing with ambiguity in decision theory is to endow

the decisionmaker with multiple priors as in Gilboa and Schmeidler (1989).

This approach may be combined with a variety of preference models, notably

including the maxmin model of Gilboa and Schmeidler (1989) and the smooth

model of Klibanoff, Marinacci, and Mukerji (2005).

For a non-specialist this is puzzling; there is no obvious link to the ordi-

nary meaning (or meanings1) of ambiguity as a characteristic of propositions

with more than one interpretation. In its normal usage, ambiguity is a lin-

guistic concept, but in decision theory it is typically treated as a property of

preferences.

The now-standard usage is quite different from that in Ellsberg’s original

1Empson (1930) famously distinguished seven types of ambiguity.
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article. Ellsberg treated ambiguity, not as a property of preferences or relative

likelihoods, but as a property of the information on which judgements of

relative likelihoods might be based

Responses from confessed violators [of the EU axioms] indicate

that the difference is not to be found in terms of the two factors

commonly used to determine a choice situation, the relative de-

sirability of the possible pay-offs and the relative likelihood of the

events affecting them, but in a third dimension of the problem

of choice: the nature of one’s information concerning the relative

likelihood of events. What is at issue might be called the am-

biguity of this information, a quality depending on the amount,

type, reliability and “unanimity”of information, and giving rise

to one’s degree of “confidence” in an estimate of relative likeli-

hoods.

In this paper, we argue that informational ambiguity, in the ordinary lan-

guage sense that the available information is open to multiple interpretation,

may be modelled using concepts from the literature on unawareness. When

individuals are unaware of some possibilities relevant to the outcome of their

decisions, there are multiple probability distributions that may be applicable,

depending on whether or not these possibilities are realised.

To represent this idea, we adopt a syntactic representation, in which

the state of the world is characterized by the truth values of a finite set

of elementary propositions P . The state space Ω is given by the set of all

logically possible combinations of truth values, that is, by the truth table for
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P . Any sentence ` in the language L generated by P corresponds to an event

E in Ω. In particular, any information that arrives at time t can be described

by a sentence in L and the corresponding event (that is, subset) of Ω.

An unboundedly rational decision-maker is aware of all the propositions in

P and sentences in L, and therefore has access to a complete and unambigious

description of the state space Ω. Assuming the Savage axioms are satisfied,

the decision-maker can assign a unique subjective probability π to any event

E, and update that probability in line with Bayes rule as new information is

received.

We represent a boundedly rational decisionmaker as one who is unaware

of at least some propositions in P . For simplicity, consider the case when

there is only one such proposition p∗. Now consider any sentence ` that does

not include p∗, but assigns a truth value to every other p. Such a sentence

is potentially ambiguous, since it might correspond to the state associated

with ` ∧ p∗ or alternatively to ` ∧ ¬p∗.

The idea may be illustrated by the case of the Ellsberg one-urn problem,

as discussed by Billot and Vergopoulos (2018), though the interpretation

given here differs from theirs. In the Billot and Vergorpoulos example, the

color of the balls in the ‘ambiguous’urn is determined by the values of two

parameters i and j, where j ∈ {0, 1}. In particular, if i = 3, a ball added to

the urn will be black if j = 0 and white if j = 1. However, the decisionmaker

is unaware of the role of j. Thus, the information contained in the proposition

i = 3 is ambiguous and incomplete, in a way that the decisionmaker cannot

fully understand.

A multiple priors representation of probabilities reflects this ambiguity.
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Any complete probability distribution π over the pair (i, j) gives rise to two

conditional distributions π0 corresponding to π (i|j = 0) and π1 correspond-

ing to π (i|j = 1) . Although the decision-maker, being unaware of j, cannot

formulate the full probability distribution π, she may entertain both π0 and

π1, as well as any convex combination of the two, as prior beliefs about i.

Further diffi culties arise when we consider updating in the multiple prior

framework. As is well known from the works of Epstein and Breton (1993)

and Ghirardato (2002), in a dynamic setting, deviations from additive beliefs

require the relaxation of either consequentialism or dynamic consistency, or

alternatively, a restriction on the class of preferences. This has lead to three

different approaches to updating of multiple priors in the literature. The

first approach restricts preferences to be recursive (and thus, dynamically-

consistent and consequentialist) as in the case of recursive smooth ambiguity

aversion in Klibanoff, Marinacci, and Mukerji (2009), rectangular max-min

preferences in Epstein and Schneider (2003), and the generalization of their

approach to α-max-min preferences in Beissner, Lin, and Riedel (2016). The

second class of models preserves consequentialism, but relaxes dynamic con-

sistency, such as the full-bayesian updating axiomatized by Pires (2002), the

maximum-likelihood rule of Gilboa and Schmeidler (1993) and the general-

ized Bayesian updating rule for the α-max-min preferences by Ghirardato,

Maccheroni, and Marinacci (2008). Finally, a third approach consists in

preserving dynamic consistency, but relaxing consequentialism as in the up-

dating rule proposed by Hanany and Klibanoff (2007) for the smooth model

of ambiguity formulated by Klibanoff, Marinacci, and Mukerji (2005).

In this paper, we formalize this idea to derive a coherent multiple priors

4



(CMP) model. Our goals are twofold. First, we derive a representation theo-

rem for the CMP models and show that, with full awareness, it corresponds

to the usual Bayesian model. Second, we consider the problem of updat-

ing beliefs, which has proved problematic in the multiple-priors setting. In

our setting, updating may arise in response to the receipt of new informa-

tion or to increased awareness, represented as awareness of new elementary

propositions p. We show that when information is received with no change

in awareness, each element of the set of priors is updated in the standard

Bayesian fashion as in Ghirardato, Maccheroni, and Marinacci (2008). An

increase in awareness is represented by an expansion of the state space to

which the decision maker has access, and by a corresponding contraction in

the set of priors under consideration. We show that, as the decisionmaker

approaches full awareness, the set of priors contracts to a singleton {π}. Rel-

ative to π the set of priors at any time t is made of conditional probabilities,

depending on the truth values of propositions of which the decisionmaker is

unaware

The paper is organized as follows. We first set up the description of the

decisionmaking problem in both propositional (syntactic) and state-space

(semantic) terms. Awareness, information and acts are defined.

Next we consider preferences and ambiguity in a timeless setting. We re-

state the Ghirardato, Maccheroni, and Marinacci (2004) axioms. The crucial

result of this section is to show that preferences satisfying the Ghirardato,

Maccheroni, and Marinacci (2004) axioms may be derived from the prefer-

ences of a fully aware EU-maximizer, by introducing unawareness. The key

idea is that any set of truth values for the propositions of which the in-
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dividual is unaware, induces a conditional probability distribution over the

truth values of the propositions of which she is aware, and therefore over the

associated (awareness-constrained) state space.

We next consider updating in response to increases in information and

awareness. For changes in information with constant awareness, we show

that the preferences we derive display prior-by-prior Bayesian updating, as

in Ghirardato, Maccheroni, and Marinacci (2008) and Pires (2002). For

changes in awareness, we address the simplest case where the individual

becomes aware of a single additional proposition. We show that the result is

to expand the state space, dividing each existing state into two new states,

one in which the newly discovered proposition is true and the other in which

it is false. Conversely, any pair of priors conditioned on events that differ only

on the truth value of the new proposition is replaced by a convex combination

of the two. In the finite setting we have here, the state space doubles in size,

while the set of priors halves. Finally, we offer some concluding comments.

2 Setup.

2.1 The state of the world: propositional and state-
space descriptions

Information and awareness evolve over time. However, we will initially con-

sider an individual with fixed information and awareness, suppressing time

subscripts.

The world is described by the truth values of a finite set of elementary

propositions P =
{
p1 , ... , pN

}
. The closure of this set under negation and

conjunction defines a language L with elements `, referred to as sentences.
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Individuals have bounded awareness, represented by a set A ⊆ P of ele-

mentary propositions which they can express. The restricted language con-

sisting of expressible propositions is denoted LA ⊆ L. Information available

to the individual is represented by a sentence `∗ ∈ LA which states the con-

junction of all the propositions (not necessarily elementary) they know to be

true. Awareness and information are mutually dependent. On the one hand,

as will be described in more detail below, the individual’s awareness depends

on the information they have. On the other hand, that information must be

expressed in terms of propositions p ∈ A ⊆ P expressible by the individual.

This propositional description of the world may be represented equiva-

lently in state space terms more familiar to decision theorists. The state

space associated with the truth table for P may be represented by Ω = 2N

with ω ∈ {0 , 1}N a representative element / state. Similarly, for an individ-

ual with awareness A the state space of which she is aware can be expressed

as

SA = 2A,

with a generic element sA.

Let Ā = P\A be the set of propositions of which the individual is unaware.

The “complementary state space”of which she is unaware can be expressed

as S̄A = 2Ā, with generic element s̄A. Notice that Ω = SA × S̄A.

Furthermore, each (awareness) state sA ∈ SA corresponds to the event{
sA
}
× S̄A in Ω and each s̄A ∈ S̄A corresponds to the event SA ×

{
s̄A
}
in

Ω. That is, awareness of the form described above leads to a ‘coarsening’

of the state space (as, for example, in Quiggin (2016)), represented by the

projection of Ω onto SA.
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Unawareness in this sense may be distinguished from the case of ‘reduc-

tion’or ‘restriction’of the state space, in which some possible elements of Ω

are disregarded or, equivalently, in which some propositions that are possi-

bly true are implicitly assumed to be false. This leads to the possibility of

‘surprise’(see, for example, Grant and Quiggin (2015)).

2.2 Acts

Acts will be represented in the usual way as mappings from states to out-

comes.2 We consider only predictions, and thus concentrate on a set com-

prising just two outcomes X = {0, 1}. Let ∆ denote the set of all lotteries

on X, with a generic element denoted by x ∈ [0, 1], yielding the (‘good’) out-

come 1 with probability x and the (‘bad’) outcome 0 with complementary

probability 1− x.

An act α maps Ω to ∆. The set of possible acts is denoted A. Let C

denote the set of all constant acts. Let B denote the set of ‘bets (on events)’,

that is, α ∈ B iff α (ω) ∈ {0, 1} for all ω ∈ Ω.

The outcomes of acts considered by an individual with limited awareness.

must be conditional on propositions of which the individual is aware. Hence,

for given awareness A, any act α must be measurable with respect to SA, and

we denote by AA the subset of such acts. Each act in AA induces a mapping

of elements of SA into lotteries on {0, 1}. In particular, for any sA an action

α specifies the probability of obtaining 1, which with slight abuse of notation

2It would be possible to describe actions entirely in propositional terms. If the language
includes statements of the form ‘receive outcome x’, then actions are propositions of the
general form ‘if proposition p , then ‘receive outcome x’obtains. However, this does not
appear to be a useful step for the purposes of the current analysis.
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we shall denote by α
(
sA
)
.

As is standard, convex mixtures of actions are defined as state-by-state

probability mixtures:

(λα + (1− λ)α′) (ω) = λα (ω) + (1− λ)α′ (ω)

3 Preferences and ambiguity

For any given level of awareness A we define preferences on AA by %A.

3.1 The GMM approach

We first impose the Ghirardato, Maccheroni, and Marinacci (2004) (here-

after, GMM) axioms: for any given AA, we assume the preferences %A sat-

isfies:

Axiom 1. (A1) Completeness and transitivity

Axiom 2. (A2) Archimedean axiom: if α �A α′ �A α′′, then there are λ

and µ ∈ (0; 1) such that

λα + (1− λ)α′′ �A α′ �A µα + (1− µ)α′′.

Axiom 3. (A3) Certainty independence: if ᾱ ∈ C, then α %A α′ iff λα +

(1− λ) ᾱ %A λα′ + (1− λ) ᾱ for all λ ∈ [0, 1].

Axiom 4. (A4) Monotonicity: if α
(
sA
)
≥ α′

(
sA
)
for all sA ∈ SA, then

α %A α′.

Axiom 5. (A5) Non-degeneracy: there are α and α′ such that α �A α′.
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Following GMM, we have

Lemma 1. Axioms A1-A5 are equivalent to:

(i) The existence of a capacity ρ : sA → [0, 1] such that for any α, α′ ∈ B,

α %A α′ iff ρ
(
sA | α

(
sA
)

= 1
)
≥ ρ

(
sA | α′

(
sA
)

= 1
)
.

(ii) The existence of a unique convex and (weak*) closed set of priors Π

such that for any two acts α and α′, Independence (that is, α %A α′ iff

λα + (1− λ)α′′ %A λα′ + (1− λ)α′′ for all λ ∈ (0, 1) and all α′′ ∈ A)

holds if and only if∑
sA∈SA

π
(
sA
)
α
(
sA
)
≥
∑
sA∈SA

π
(
sA
)
α′
(
sA
)
for all π ∈ Π. (1)

Whenever (1) is satisfied for two acts α and α′, we write α %A
∗ α

′.

Since each constant act can be identified with the probability x ∈ [0, 1],

with which it results in the outcome 1 in every state, we write αx ∈ C. As in

GMM, define:

CE∗ (α) =

{
x ∈ [0, 1] | for any y ∈ [0, 1] , αy %A

∗ α implies y ≥ x and
α %A

∗ αy implies x ≥ y

}
GMM show that x ∈ CE∗ (α) iff

min
π∈Π

∑
sA∈SA

π
(
sA
)
α
(
sA
)
≤ x ≤ max

π∈Π

∑
sA∈SA

π
(
sA
)
α
(
sA
)

3.2 Unawareness and ambiguity

The preferences described in the previous section are normally interpreted

in terms of ambiguity. Given our setup, there is a natural interpretation in
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terms of awareness. Consider any EU preferences over A, %, described by a
a probability distribution π.3

For any s̄A ∈ S̄A, that is, for any set of truth values for the propositions

of which the individual is unaware, π induces a conditional probability dis-

tribution πs̄A = π
(
·|s̄A

)
over SA. Correspondingly % induces conditional

preferences %s̄A over AA, given by α %s̄A α
′ iff

∑
sA∈SA

πs̄Aα
(
sA
)
≥
∑
sA∈SA

πs̄Aα
′ (sA)

Now consider preferences %A which satisfy axioms A1—A5 and

Axiom 6. (A6) Unanimity α %A
∗ α

′ if and only if α %s̄A α
′ for all s̄A ∈ S̄A.

This property may be viewed as a version of the sure-thing principle.

If the act induced on Ω by α would be preferred to that induced by α′,

regardless of which s̄A obtained, then α must be preferred unconditionally.

Recalling that α and α′ are measurable wrt SA, the only effect of s̄A is to

determine the conditional probability distribution πs̄A . So, we are evaluating

α and α′ with respect to a set of probability distributions. A6 says that if α

is preferable with respect to each such distribution, then it must be preferred

unambiguously.

Lemma 2. Under axioms A1—A6, the set of probabilities Π in Lemma 1 is

CH
{
π
(
·|s̄A

)
|s̄A ∈ S̄A

}
.

Note that we do not expect the converse to hold. As we shall show, in the

absence of changes in awareness, the probabilities Π derived as conditional

3Without loss of generality, we assign utilities 0 and 1 to the payoffs 0 and 1.
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distributions based on unawareness follow Bayesian updating in response to

the arrival of new information. Axioms A1—A6 are insuffi cient to ensure this

—we need additional properties as discussed by Ghirardato, Maccheroni, and

Marinacci (2008).

4 Time, information and histories.

We now consider changes in information as well as awareness over time, and

the induced changes in beliefs and preferences. Time t = 0, 1, 2, . . . , T is

discrete and finite.

Information is modeled by partitions: where Ft denotes a partition of Ω

at time t. Each f ∈ Ft is an event in Ω.4 The element of Ft that obtains

at time t is denoted ft ∈ Ft. The collection {Ft}Tt=0 constitutes a filtration.

That is, for each t = 0, . . . , T−1, Ft+1 is a refinement of Ft, or equivalently,

if ft+1 ∈ Ft+1 then ft+1 ⊆ ft for some ft ∈ Ft. We write Ft (f) for the

element of the partition at time t which contains f ⊆ Ω (provided such an

element exists). That is,

Ft (f) = {ft ∈ Ft | f ⊆ ft}

We assume that no uncertainty is resolved at date t = 0, that is, F0 = {Ω}

and all uncertainty is resolved by date T , so that for each ω ∈ Ω, {ω} ∈ FT .5

The evolution of the individual’s awareness is modeled as a dated-event

process, in which for each time t = 0, . . . , T −1, and each event ft ∈ FT ,
4Observe that each event f corresponds to a sentence ` ∈ L and vice versa.
5Alternatively, we may assume that logical contradictions such as ‘the weather is

sunny’AND ‘the weather is rainy’are ruled out at t = 0, and that information received
after t = 0 relates only to conceivable states, which may therefore be assumed to have
non-zero probability.
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the set of propositions of which the individual is currently aware is taken to

be A (t, ft) ⊆ P . As awareness is (weakly) increasing we require A (t, ft) ⊆

A (t′, ft′), for every t′ > t and ft′ ∈ Ft′ such that ft′ ⊆ ft.

Furthermore, to simplify notation and without any essential loss of gen-

erality, we will assume that information is updated only in odd-numbered

periods while awareness may only increase in even numbered periods. That

is, for any period t > 0 and any event ft ∈ Ft, if t is odd then ft ∈ Ft+1, else

if t is even then A (t+1, ft+1) = A (t, ft), where ft+1 ∈ Ft+1 and ft+1 ⊆ ft.

This means that any new information in an odd-numbered period t must be

expressed in terms of propositions expressible in period t−1. The sequence

of updating is therefore:

(i) At time t (odd) the individual observes information ft measurable

with respect to her level of awareness in period t−1.

(ii) At time t (even), she revises her awareness in the light of new infor-

mation and the passage of time.

Informally, we may interpret this as saying that the individual first ob-

serves new information, then considers new propositions suggested by this

information. Given her current awareness A, the first stage of the process

(odd t) reduces the size of the state space, eliminating as impossible ‘states’

in SA corresponding to states in Ω− ft. The second stage (even t) enriches

the state space, by expanding the set of propositions that define possible

states that the individual can conceive.

Thus, changes in information and awareness may be described by a se-

quence of partial histories, where each history h =
(
th, fh, Ah

)
is a triple

consisting of a date th ∈ {0, 1, 2, . . . , T} an information set fh ∈ Fth and an
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awareness level Ah = A
(
th, fh

)
.

As already noted above, awareness and information are interdependent.

Awareness Ah at history h depends on the information set fh, while the

information set fh must be measurable with respect to SA
h
.

We shall denote by h−1 the (unique) immediate predecessor of a history

h =
(
th, fh, Ah

)
. Notice that by construction th−1 = th−1, fh−1 = Fth−1

(
fh
)

(with fh−1 = fh, if th is even) and Ah−1 ⊆ Ah. We define Nh = Ah − Ah−1 ,

the set of propositions of which the individual becomes newly aware at h,

noting that Nh = ∅ if th is odd.

Lemma 3. Given the alternate updating of awareness and information, for

each history h =
(
th, fh, Ah

)
, Fth+1 is measurable with respect to SA

h
.

We may therefore define the set of one-step-ahead (conceivable future)

histories Hh
+1 considered possible at h as

Hh
+1 =

{
h+1 =

(
th + 1, f, Ah

)
|Fth (f) = fh

}
.

At history h, the set of one-step-ahead actions available to the individual

is:

Ah+1 =
{
α : Hh

+1 → [0, 1]
}
.

That is, for each one-step-ahead history h+1 ∈ Hh
+1 an action specifies the

probability of obtaining the good outcome 1, as being α (h+1).

Note that at history h, the decision maker is fully aware of all actions in

Ah+1. In contrast, actions in Ah+t for t > 1 might only be expressible in terms

of higher levels of awareness. For a given history h and a given period t > 1,
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let Fh+t, be the finest coarsening of Fth+t measurable w.r.t. SA
h
. As above,(

Fh+t
)
t
defines a filtration of events.

Define

Hh

+t =
{
h̃ =

(
th̃ + t, f h̃, Ah

)
| f h̃ ∈ Fht , Fth

(
f h̃
)

= fh
}
.

as the set of histories that t-step succeed h and which the decisionmaker can

express in terms of his awareness at history h. As above,
(
Hh

+t

)
t
defines a

filtration of events and we denote byHh
= ∪tH

h

+t the set of all such histories.

The actions of which the decisionmaker is aware at h are those measurable

w.r.t. to this perceived partition t-steps ahead:

Ah+t =
{
α : Hh

+t → [0, 1]
}
.

This is a subset of all possible actions —in particular, the decision maker is

not allowed to condition on different changes in awareness in the future and

following information revelation.

Convex mixtures, constant acts and binary acts are defined as before.

Non-trivial actions arise only when t is odd, and this will be assumed

unless otherwise stated in the sequel.

We assume that the decision maker can form preferences over such actions

conditional on history h, i.e. we define %h over the set of actions ∪tA
h

+t

and impose the same set of axioms A1—A5 as the ‘static’preferences above.

Hence, we can guarantee the existence of a set of priors Πh on SA
h
with the

properties stated in Lemma 1.

Unambiguous preferences %h
∗ are defined in analogy to %h

∗ .
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5 Coherent MP model and Bayesian updat-
ing

In our setting, updating may arise in response to the receipt of new informa-

tion or to increased awareness, represented as awareness of new elementary

propositions p. We first consider new information, arriving at odd-numbered

periods. We will show that, in the absence of changes in awareness, individ-

uals satisfying A1-A6 will respond to new information by applying Bayesian

updating to each of the conditional probability distributions π
(
·|s̄A

)
in Π.

Hence, we refer to the model of preferences under bounded awareness as a

coherent multiple priors model.

5.1 Updating with Constant Awareness

Suppose we move from h =
(
th, fh, Ah

)
with th even to h+1 =

(
th + 1, fh+1 , Ah

)
where fh = Fth

(
fh+1

)
. That is we refine the information in fh to fh+1

and leave awareness unchanged. A fully aware individual with prior prob-

abilities π replaces the conditional πh = π
(
·|fh

)
with πh+1 = π

(
·|fh+1

)
,

which is well-defined provided fh+1 is not null with respect to the prefer-

ences %h. Hence, any conditional probability πhs̄A = πh
(
·|s̄A

)
is replaced by

π
h+1
s̄A

= πh+1
(
·|s̄A

)
. Alternatively, we may replace any πhs̄A by the conditional

probability π̃hs̄A = πhs̄A
(
·|fh+1

)
. We observe that πhs̄A

(
·|fh+1

)
= πh+1

(
·|s̄A

)
.

The Coherent MP holder thus has a set of beliefs, each corresponding to

what her probability assessment would be conditional on her explicit knowl-

edge and a particular ‘state’in the ‘unaware state space’obtaining. In order

to ensure these set of beliefs are well-defined we require in the following all
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information events to be non-null.

Axiom 7. (A7) Non-null (information-)events: For any h and any h̃ ∈ Hh

+t,

for the bet α ∈ Ah+t ∩ B defined as α−1 (1) = h̃, we have α �h α0.

As mentioned above, we want to characterize a decisionmaker, who absent

changes in awareness behaves as a Bayesian and thus updates each of his

priors using the Bayesian rule in view of the new information. We thus adapt

the axioms suggested by Ghirardato, Maccheroni, and Marinacci (2008) to

our setting, requiring conditional preferences to be consequentialist and to

satisfy dynamic consistency whenever awareness remains unchanged.

For a given h such that th is even, let H ⊆ Hh

+t. We define preferences

over actions Ah+t that pay at time th + t conditional on an event H ⊆ Hh

+t as

%h
H .

We assume that conditional preferences%h
H satisfy the same set of axioms,

A1—A5, as the unconditional preferences above. Unambiguous preferences

%h
∗H are defined in analogy to %h

∗ .

Axiom 8. (A8) Consequentialism: For h such that th is even, let H ⊆ Hh

+t.

For any actions α and α′ ∈ A+t such that α
(
h̃
)

= α′
(
h̃
)
for all h̃ ∈ H,

α ∼hH α′.

Axiom 9. (A9) Dynamic consistency of %∗hH : Let h be such that th – even.

Let H ⊆ Hh

+t. For any actions α and α
′ ∈ A+t such that α

(
h̃
)

= α′
(
h̃
)
for

all h̃ 6∈ H, α %h
∗H α′ iff α %h

∗ α
′.

Proposition 1. Coherent MP preferences satisfy consequentialism and dy-

namic consistency in relation to changes in information.
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Proof: To see that Consequentialism holds, note that generalized Bayesian

updating implies that conditional on H, all h̃ 6∈ H are assigned 0-probability

under all π ∈ Πh
H . Furthermore, by the definition of a and a

′ in A8, we have

that

min
π∈Πh

H

∑
h′∈H

π (h′)α (h′) = min
π∈Πh

H

∑
h′∈H

π (h′)α′ (h′) and

max
π∈Πh

H

∑
h′∈H

π (h′)α (h′) = max
π∈Πh

H

∑
h′∈H

π (h′)α′ (h′)

so that CEh∗
H (α) = CEh∗

H (α′) and thus, α ∼h∗H α′ which implies α ∼hH α′.

As for dynamic consistency of %∗hH , note that for any actions a and a′ as
defined in A9 and every π ∈ Πh

∑
h′∈Hh+1

π (h′)α (h′)−
∑

h′∈Hh+1

π (h′)α′ (h′)

=
∑
h′∈H

π (h′)α (h′)−
∑
h′∈H

π (h′)α′ (h′)

= π (H)

[∑
h′∈H

π (h′ | H)α (h′)−
∑
h′∈H

π (h′ | H)α′ (h′)

]
.

α %h
∗ α

′ holds iff the first difference is positive for all π ∈ Πh and this is

clearly equivalent to the last difference being positive for all π ∈ Πh, or to

α %h
∗H α′.

The following corollary follows from the main result in Ghirardato, Mac-

cheroni, and Marinacci (2008):

Corollary 1. If
(
%h
H

)
{h,H} satisfy Axioms A1—9, then for changes in infor-

mation, beliefs are updated according to the generalized Bayesian updating

rule, i.e., for every h with th — even and H ⊆ Hh
+2 such that for every
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h+2 ∈ H, awareness remains unchanged, Ah+2 = Ah, the set of posteriors

conditional on H, Πh
H is given by the generalized Bayesian updating of Πh:

Πh
H =

{
π (· | H) | π ∈ Πh

}
.

5.2 Changes in awareness

We now consider pure changes in awareness. Consider a history h = (t, f, A)

with th odd. To simplify the exposition, we first consider the case in which the

individual becomes aware of a single new proposition p. Suppose the individ-

ual’s beliefs at h can be represented by a set of coherent probability measures

Πh ⊂ ∆
(
SA
)
generated by the prior probability π ∈ ∆ (Ω). Now suppose the

individual becomes aware of a proposition p ∈ Ā at h+1 = (t+1, f, A′) ∈ Hh
+1

so that A′ = A ∪ {p}.6 Consider any sA ∈ SA corresponding to a sentence

` ∈LA. For each such `, the individual at h+1 considers two possible sentences

` ∧ p, ` ∧ ¬p corresponding to the truth or falsity of p.

Noting that sA ∈ {0, 1}|A| is a binary number, we may define the states(
sA, 1

)
(for p true) and

(
sA, 0

)
(for p false) in SA

′
. Similarly, any s̄A

′ ∈ S̄A′

corresponds to two complementary states
(
s̄A
′
, 1
)
(for p true) and

(
s̄A
′
, 0
)

(for p false) in S̄A.

Proposition 2. For changes in awareness involving a single proposition, that

is, for every h with th —odd, and
∣∣Nh+1

∣∣ = 1, the coherent MP representation

of preferences at h+1 is given by the set of priors

Πh+1 = CH
{
π
(
·|s̄A′

)
|s̄A′ ∈ S̄A′

}
(2)

6Given the alternating dates setup the individual at h+1 does not learn whether p is
true, although this may be resolved by subsequent revelation of information.
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where the prior

π
(
·|s̄A′

)
= k

(
s̄A
′
)
π
(
·|
(
s̄A
′
, 1
))

+
(

1− k
(
s̄A
′
))

π
(
·|
(
s̄A
′
, 0
))

(3)

Proof: Notice that

π
(
s̄A
′
)

= π
(
s̄A
′
, 1
)

+ π
(
s̄A
′
, 0
)

where π is the probability on Ω and its arguments are considered as events.

If we take

k
(
s̄A
′
)

=
π
(
s̄A
′
, 1
)

π (s̄A′)

π
(
s̄A
′
, 0
)

π (s̄A′)
= 1− k

(
s̄A
′
)

then Πh+1 as expressed in the proposition is obtained.

Proposition 3. If
(
%h
H

)
{h,H} satisfy Axioms A1—A9, beliefs are updated

according to CMP. In particular, for changes in awareness involving a single

proposition, i.e., for every h with th —odd, and Nh+1 =
{
sh+1 ∈ {0, 1}

}
,

(i) α %h−1
∗ α′ if and only if α %h+1

sh+1
α′ for sh+1 ∈ {0, 1};

(ii) if Hsh+1 = fh−1 ∩
{
sh+1

}
∈ Hh+1 for sh+1 ∈ {0, 1},

Πh−1 = CH

({
π (· | Hsh+1 ) | π (· |) ∈ Π

h+1
H
s
h+1

}
sh+1∈{0;1}

)
.

(iii) Πh+1 satisfies conditions (2) and (3).

Proof: Parts (i) is an immediate consequence of axiom A6, whereas (ii)

follows from Lemma 2. Finally, part (iii) follows from (ii) combined with

the argument given in the proof of Proposition 2.
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The Proposition shows that under A6, Unanimity, the set of priors the

decisionmaker entertains at h−1, before becoming aware of a certain set of

propositions Nh+1 is given exactly by the convex hull of the posteriors condi-

tional on the truth values of these propositions once he has become aware of

them at h+1. Using the fact that under A1-A9, conditional beliefs are formed

via Bayesian updating, we obtain the CMP representation of beliefs.

Remark: Note that the assumption
∣∣Nh+1

∣∣ = 1 is without loss of gener-

ality, since we can have several subsequent periods during which information

remains unchanged at each even period, but awareness increases by exactly

one proposition at each odd period.

Finally, since for each history h = (t, ft, A), the extreme points of the set

Πh are derived from conditional probabilities obtained from the (full aware-

ness) prior π ∈ ∆ (Ω), conditioning on ft and in turn each s̄A in S̄A, it follows

that π (·|ft) ∈ Πh, since from the iterative law of expectations, we have:

π (·|ft) =
∑

s̄A∈S̄A
π
(
s̄A|ft

)
π (·|ft) .

More generally, for any history h = (t, ft, A), with t odd, and with an imme-

diate successor h+1 = (t+ 1, ft, A
′) embodying a pure increase in awareness

(that is, A ⊂ A′), we have from the construction that Πh ⊂ Πh+1 . That is,

the mapping from Πh to Πh+1 may be viewed as a contraction with π (·|ft)

as a fixed point.

6 Conclusion

Beginning in the late 1970s, alternatives to and generalizations of Expected

Utility theory have proliferated in response to behavioral violations of EU
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predictions and theoretical criticism of the axiomatic foundations of EU.

Examples have included probability weighting models for choice under risk

(Allais (1953),Kahneman and Tversky (1979), Quiggin (1982), Yaari (1987)),

ambiguity models for choice under uncertainty (Gilboa and Schmeidler (1989),

Schmeidler (1989), Ghirardato, Maccheroni, and Marinacci (2004), Klibanoff,

Marinacci, and Mukerji (2005)) and the rapidly growing literature on un-

awareness (Schipper (2014)). Kochov (2017) and Piermont (2017) identify

behavioral conditions, which distinguish between ambiguity and unaware-

ness in a dynamic axiomatic framework. Dominiak and Tserenjigmid (2017)

model a decision maker who upon learning about a new state of the world,

but not its probability, might entertain ambiguous beliefs about this state.

Thus, in their model, ambiguity can increase as the decision maker becomes

more aware.

There have been some attempts to at unification. For example, Mukerji

(1997) shows that probability weighting may be derived from a decision-

maker’s anticipation that her perception of future contingencies is incom-

plete. Similarly, in this paper, we have shown that the invariant biseparable

model of Ghirardato, Maccheroni, and Marinacci (2004) model of choice un-

der ambiguity (which incorporates α-maxmin EU as a special cases), may

be derived from the preferences of an EU maximizer with coarse awareness.

Updating in response to both new information and refined awareness is well-

behaved.

This development raises the possibility of a more general unified theory of

EU behavior with bounded awareness that might encompass a wide range of

observed behavior as well as being consistent with the fundamental postulate
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that all humans have bounded cognitive capacity.
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