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1 Introduction

Resilience has become a highly popular research topic over the last few decades in several
disciplines. As Bonanno, Romero and Klein (2015) report, the frequency with which the
term ‘resilience’ or one of its variants appear in the titles of articles published in social-
sciences journals has quadrupled from 2000 to 2010, jumping to 800 occurrences. A similarly
increasing trend is reported by Hodgson, McDonald and Hosken (2015) for the International
Statistical Institute’s Web of Science (ISI WoS) where its prevalence as a keyword in peer-
reviewed papers in the ecology category has been rising steadily since the early 1970s.
Particularly active contributors are psychologists and ecologists who routinely dedicate the
first few pages of their writings to a discussion of the definition of the term and mention that
it has taken on multiple meanings. The contributions of Ayed, Toner and Priebe (2018),
Fletcher and Sarkar (2013), Bonanno (2012), Bonanno, Romero and Klein (2015), among
others, are examples within the psychology literature; Hodgson, McDonald and Hosken
(2015) or Standish, Hobbs, Mayfield, Bestelmeyer, Suding, Battaglia, Eviner, Hawkes,
Temperton, Cramer, Harris, Funk and Thomas (2014), for example, can be consulted in
the context of ecology.

The etymology of the term ‘resilience’ has its roots in the Latin verb resilire, meaning
‘to jump back’ or ‘to recoil’ and it is defined in the Merriam-Webster dictionary as “the
capability of a strained body to recover its size and shape after deformation caused espe-
cially by compressive stress” or “an ability to recover from or adjust easily to misfortune or
change.” The first definition relates to the use of the term in materials science, whereas the
second describes it in relation to the social sciences. Both definitions help in visualizing
the subject matter of our contribution: resilience captures the response in terms of the
functioning of an individual when ‘squeezed’ by the occurrence of an adverse event such
as the death of a spouse, a divorce, a job loss, a terrorist attack, a natural disaster or a
severe injury. A resilient individual, once squeezed, is able to move toward the pre-event
functioning level quickly. The variable that is mostly used in psychology to capture the
functioning of an individual is his or her self-reported health status. Similar observations
apply to macro settings, such as an ecosystem whose equilibrium is perturbed by human
or natural activities.

An additional distinction in the psychological literature exists depending on the level
of functioning reached at the end of the process. Resilience is often associated with a full
recovery from the adverse event; the term thriving is applied when the person is better off
after overcoming adversity as compared to before the event occurred; see, among others,
Carver (1998). The latter phenomenon is also known as growth following adversity (Linley
and Joseph, 2004) or post-traumatic growth (Tedeschi and Calhoun, 2004) which can be at-
tributed to newly developed individual skills and a psychological sense of mastery following
the negative event.

The confusion with the uses (and abuses, as Bonanno, 2012, one of the leading re-
silience researchers within psychology, puts it) of the term resilience is rooted in the fact
that several contributors attempt to capture the characteristics of a resilient individual
or system, rather than focusing on the process described above. In other words, instead
of measuring the functioning process following an event, they focus on the predictors of
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resilient outcomes affecting the process; these predictors may be personal, social, or a no-
tion of system resources. This duality in the approaches to resilience is documented in the
systematic review of the mental health literature by Ayed, Toner and Priebe (2018). They
identify two broad categories of approaches to resilience, namely, processes and character-
istics. Bonanno, Romero and Klein (2015) offer an integrative framework of this duality by
discussing how the process of response to an event is influenced by characteristics, with the
process being the subject matter of resilience rather than the characteristics of individuals
or societies.

A similar duality of approaches to resilience is present in ecology. The term has been
used with different interpretations, leading to the “confusion of resilience” (Hodgson, Mc-
Donald and Hosken, 2015, p. 503). In the ecology literature, the majority of contributors
follow Holling (1973) in defining resilience as a measure of the ability of ecosystems to
absorb disturbances without changing identity. As Scheffer, Carpenter, Foley, Folke and
Walker (2001, p. 591) put it, resilience “corresponds to the maximum perturbation that
can be taken without causing a shift to an alternative stable state.” Pimm (1984, p. 322)
proposes an alternative process-oriented approach according to which resilience indicates
“how fast the variables return towards their equilibrium following a perturbation.” The
ecological literature defines Holling’s interpretation of resilience as ecological resilience and
Pimm’s as engineering resilience (Gunderson, Allen and Holling, 2009), and some contrib-
utors (see Standish et al., 2014) propose to relabel Holling’s definition by referring to it as
‘resilience’ and to name Pimm’s definition ‘recovery’ to reduce the confusion about these
two important concepts. We note that, in the field of ecology, there seems to be a preference
for the characteristics approach.

There are numerous contributions by economists that address resilience in ecology by
developing deterministic and stochastic models with regime shifts and estimating the un-
derlying system properties. These models have been used to describe resource-management
problems such as those pertaining to coral reefs, lakes, ocean-climate systems, woodland
preservation, among others. For an excellent review see Li, Crépin and Folke (2018).

However, there does not seem to be much of a literature within economics when it
comes to the measurement of individual resilience. This is somewhat surprising because
resilience appears to be linked to individual and social well-being—and to the high economic
costs associated with aversive events. Resilience is also at the basis of the new approaches
to economic challenges of the OECD (see http://www.oecd.org/naec/projects/resilience/)
aiming to better guide policymakers.

To the best of our knowledge, there are only two exceptions in this area of research,
firmly based on empirical issues. The first is Etilé, Frijters, Johnston and Shields (2017),
who propose an empirical measure of resilience estimating a dynamic finite-mixture model
for the Australian population. These authors derive individual-specific values of the pa-
rameters that govern individual heterogeneity in the psychological response to ten major
adverse events and identify three classes of individuals that differ in their responses to the
events. The second proposal is by Cissé and Barrett (2018), who implement an earlier
conceptualization of development resilience by Barrett and Constas (2014, p. 14626) as
“the capacity over time of a person, household or other aggregate unit to avoid poverty in
the face of various stressors and in the wake of myriad shocks.” Cissé and Barrett (2018)
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propose an econometric strategy for estimating multiple conditional moments of a welfare
function that enables the computation and forecasting of individual-specific conditional
probabilities of being out of poverty.

Measures of individual resilience have been proposed by psychologists in the form of
measurement scales, such as the Connor-Davidson Resilience Scale (CD-RISC), that cap-
ture characteristics of individuals; for detailed reviews of resilience measurement scales
see, for instance, Windle, Bennett and Noyes (2011) and Salisu and Hashim (2017). The
CD-RISC scale is based on 25 items evaluated on a five-point Likert scale ranging from 0
(never) to 4 (nearly all of the time). These ratings are added across the 25 categories to
arrive at a total score between 0 and 100, and higher scores indicate higher resilience. The
scores themselves are obtained from individual answers to questions on the ability to adapt
to change, the availability of close and secure relationships, the preference to take the lead
in problem solving, and similar attributes.

In this paper, we provide an axiomatic approach to the measurement of resilience,
thereby complementing the empirically oriented contributions alluded to above with a the-
oretical analysis. We are not aware of any earlier work that addresses the basic foundations
of measuring resilience and we hope that our observations and analysis provide a substan-
tial step towards filling this gap. Thus, our work plays a role similar to that of Esteban and
Ray’s (1994) seminal paper on the measurement of polarization. The notion of polarization
had been discussed in the literature prior to the publication of their article but Esteban and
Ray’s (1994) is the first contribution that provides a systematic theoretical examination of
the phenomenon.

Our approach to resilience and its measurement relates to the established literature by
focusing on the functioning of an individual following an adverse event rather than the
characteristics of the individual. Also, we concentrate on the ability to recover from a
disturbance rather than the ability to absorb or resist a shock. For these reasons, our
measure is an intuitively appealing index that represents an attempt to define and quantify
recovery resilience. Its simplicity makes it easy to operationalize in large-scale household
survey data where individual resistance to shocks cannot be explicitly separated from the
shocks themselves.

The starting point of our analysis is the notion of a stream that describes the functioning
of a system or individual over time. For the sake of concreteness, we will apply the term
health stream, that is, a stream of values of individual health variables over time. These
streams could be obtained by means of the mental health component of the Short-Form 12
Health Survey (SF-12), for instance, but our results are applicable to more general settings.
In the illustrations of our measure, the health streams we use consist of self-assessed health
status and satisfaction with own health. The objective is to establish an ordering defined
on these streams that ranks them with respect to their relative resilience. Thus, we propose
an ordinal measure of resilience. Ordinal approaches to social index numbers are rather
common in the theory of social index numbers. For instance, an ordinal approach to poverty
measurement is presented by Sen (1976), and Blackorby and Donaldson (1984) and Ebert
(1987) discuss ordinal inequality indices.

We propose a set of intuitively appealing properties of a resilience ordering and it
turns out that there is a single specific ordering that satisfies all of them. Although our
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proposal is ordinal in nature, we suggest how we can use the ranks of individuals to draw
conclusions regarding aggregate resilience. The measure is attractive because it can be
applied in empirical studies due to the availability of numerous datasets that are suited to
our approach, such as the German Socio-Economic Panel Study (SOEP).

In the following section we consider a simple environment which can be used to motivate
the properties that we impose on the resilience ordering. In this setting we can also suggest
how increased resilience as measured is desirable from the perspective of the individual
concerned as well as society at large. We also apply this simple environment as an idealized
benchmark for explaining modeling choices we will make when adapting the measure to
real-world data sets. In the subsequent Section 3 we then identify the notion of a down spell
in the context of streams that report an individual’s health value in a number of consecutive
periods. A down spell is interpreted as a set of time periods during which an adverse event
occurs and a subsequent (partial or full) recovery may or may not occur, and this concept
forms the foundation for our resilience measure. The identification of such down spells
are illustrated in a number of examples. The formal definitions of resilience orderings in
general and of our specific proposal are given in Section 4. The axioms (properties) that we
impose on a resilience measure are introduced and discussed in Section 5, and our result—a
characterization of the resilience ordering that possesses all of our properties—is contained
in Section 6. We conclude in Section 7 and establish the independence of our axioms in an
appendix.

2 Resilience in a simple environment

Consider a simple (or idealized) environment where the individual has a given level of
normal health and experiences a single adverse event, which we will refer to as a down
spell. Thereafter the individual might return to normal health. In this simple environment
we assume that it is impossible for the individual to exceed the level of normal health.
Moreover, we assume that the health variable is experienced in continuous time and that
the down spell occurs at an instance, with the health variable process being continuous
almost everywhere, so that it is Riemann integrable. The assumption that the down spell
occurs at an instance justifies an underlying assumption that the individual cannot resist
the instantaneous effect and can only react to the down spell through recovering back to
normal health. However, as we will assume also throughout the paper, measurement occurs
at discrete points in time with a constant time interval between each measurement.

Let (x(t))∞t=0 be the development of the non-negative health variable as a function of
continuous time. Assume that the level of normal health equals x0 > 0. Also, let time
0 equal the time at which the down spell occurs. Hence, α = x0 − x(0) is the amplitude
of the instantaneous down spell and β =

∫∞
0

(x0 − x(t))dt might be interpreted as an
additive measure that captures the negative consequences (the severity or the ‘badness’ )
of the down spell, since health would have stayed at the normal level x0 in the absence
of the down spell. This interpretation means that an alternative stream (x′(t))∞t=0 with
x′(t) ≥ x(t) for all t ≥ 0, α′ = x0 − x′(0) = α, and β′ =

∫∞
0

(x0 − x′(t))dt < β would
be preferable to (x(t))∞t=0 as the amplitude is the same but the negative consequences are
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smaller. This sensitivity will be captured in the general discrete-time environment by the
axiom of recovery monotonicity.

Furthermore, the interpretation of the integral β as a measure of the severity of the down
spell means that varying the timing of the effects of the down spell across time periods does
not matter as long as the integral remains the same. Such additivity of the measurement
of the severity of the down spell will be captured in the general discrete-time environment
by the axioms of recovery neutrality and recovery translation invariance. Integrating the
health variable over time requires that the scale of the health variable is unit comparable
between time periods, allowing for increasing affine transformations of the health variable
but not arbitrary (not necessarily affine) increasing transformations. This assumption is
needed to ensure that the axioms of recovery neutrality and recovery translation invariance
are meaningful. We note that this is a common and largely uncontroversial requirement
that is (at least implicitly) made in most approaches to social index numbers, such as
inequality or poverty orderings that are based on individual incomes.

The measurement of resilience as the ability to recover from a down spell will depend on
the relationship between its amplitude α and its severity β. We will provide structure to the
discussion of the question of how to measure resilience by proposing a model of exponential
resilience in the context of the simple environment discussed in this section. In particular,
we will assume that the ability to recover will be proportional to the difference between
normal health and experienced health. Formally, in the case of exponential resilience a
stream x is given by

x(t) =

{
x0 − αe−

ρ
1−ρ t for all t > 0 if ρ ∈ [0, 1),

x0 for all t > 0 if ρ = 1,

where ρ ∈ [0, 1] is a parameter expressing the resilience of the individual. Hence, a more
resilient individual has a higher value of ρ, with ρ = 0 corresponding to no recovery and
ρ = 1 corresponding to instantaneous recovery. For any ρ ∈ [0, 1), the absolute rate ẋ(t) of
recovery is proportional to the difference x0− x(t) between normal health and experienced
health, that is,

ẋ(t) = − ρ

1− ρ

(
−αe−

ρ
1−ρ t
)

=
ρ

1− ρ
(
x0 − x(t)

)
.

This implies that

β = α

∫ ∞
0

e−
ρ

1−ρ tdt =
α
ρ

1−ρ
[1− 0] = α · 1− ρ

ρ

for ρ ∈ (0, 1), while β = ∞ if ρ = 0 and β = 0 if ρ = 1. Thus, ρ can be measured in
continuous time by α and β according to the equality ρβ = α− ρα, implying that

ρ =
α

α + β
.

When recovery is governed by an exponential process with ρ ∈ [0, 1), then if the am-
plitude α is multiplied by some positive constant λ, so that x0 − x′(0) = α′ = λα =
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λ (x0 − x(0)), then the difference between normal health and realized health will be multi-
plied by the same positive constant λ also at all later times. This follows since

x0 − x′(t) = α′e−
ρ

1−ρ t = λαe−
ρ

1−ρ t = λ
(
x0 − x(t)

)
for all t > 0. The same holds when ρ = 1 since x0 − x′(t) = 0 = λ0 = λ (x0 − x(t)) for all
t > 0 in this case. Hence, for all ρ ∈ [0, 1],

β′ =

∫ ∞
0

(
x0 − x′(t)

)
dt = λ

∫ ∞
0

(
x0 − x(t)

)
dt = λβ

so that
α′

α′ + β′
=

α

α + β
= ρ.

Note that the health stream (x′(t))∞t=0 is derived from the original stream (x(t))∞t=0 by
applying an increasing affine transformation with a multiplicative constant λ > 0 and an
intercept µ = (1− λ)x0 so that

x′(t) = λx(t) + (1− λ)x0

for all t ≥ 0. This specific transformation has the property that the level of normal health
x0 is kept unchanged, x0 = λx0 +(1−λ)x0, which is important in the context of the simple
environment considered in this section. The property that applying an increasing affine
transformation to the health variable for all t leads to the same resilience will be captured
in our general discrete-time environment by the axiom of affine invariance.

Exponential resilience has the interesting feature that the resilience parameter ρ can
be perfectly measured even if the measurement of the health variable occurs at discrete
times with a constant interval between each measurement. Assume that, without loss of
generality, that these are unitary intervals with the first post-down-spell measurement at
∆ ∈ [0, 1). Letting

δ = e−
ρ

1−ρ ,

this leads to the stream of observations

x0 − αe−
ρ

1−ρ∆, x0 − δαe−
ρ

1−ρ∆, . . . , x0 − δtαe−
ρ

1−ρ∆, . . .

when ρ ∈ [0, 1), and x0 − α, x0, . . . , x0, . . . or the down spell is not detected when ρ = 1.
Hence, when ρ ∈ [0, 1), the measured amplitude a of the down spell is given by

a = x0 − x(∆) = αe−
ρ

1−ρ∆

and its measured severity b is given by

b =
∞∑
n=1

(x0− x(∆ + n)) = (δ+ δ2 . . .+ δt + . . .) · a =

{
∞ if ρ = 0,
δ

1−δ · a = e
− ρ

1−ρ

1−e−
ρ

1−ρ
· a if ρ ∈ (0, 1).
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Moreover, when ρ = 1 and the down spell is detected, measured amplitude a equals α and
measured severity b equals 0. Therefore, measured resilience r defined by r = a/(a + b) is
obtained as

r =
a

a+ b
=


0 if ρ = 0,

1
1+ δ

1−δ
= 1− δ = 1− e−

ρ
1−ρ if ρ ∈ (0, 1),

1 if ρ = 1.

It follows that r ∈ [0, 1] is an increasing and continuous function of ρ and, thus, ordinally
equivalent to ρ. The function does not depend on the times of measurement. In view of
the natural choice of ρ as the resilience value in this simple exponential model, this is a
powerful argument in favor of using r as a measurement of resilience, which is indeed what
we propose.

An alternative possibility that we will not pursue is that resilience is arithmetic. In
that case, a stream is given by

x(t) =

{
x0 −

(
α− ρ∗

2(1−ρ∗)t
)

for all t > 0 if ρ ∈ [0, 1),

x0 for all t > 0 if ρ∗ = 1,

where ρ∗ ∈ [0, 1] is a different parameter expressing the resilience of the individual. In
this alternative formulation, the individual is fully recovered at t = (2(1− ρ∗)/ρ∗)α if
ρ∗ ∈ (0, 1], while the individual never recovers if ρ∗ = 0. Then

β =

∫ 2(1−ρ∗)
ρ∗ α

0

(
α− ρ∗

2(1− ρ∗)
t

)
dt = α2

(
2(1− ρ∗)

ρ∗
− 1− ρ∗

ρ∗

)
= α2 · 1− ρ∗

ρ∗

for ρ∗ ∈ (0, 1), while β =∞ if ρ∗ = 0 and β = 0 if ρ∗ = 1. Thus, also in this alternative can
ρ∗ be measured in continuous time by α and β according to the relationship ρ∗β = α2−ρ∗α2,
implying that

ρ∗ =
α2

α2 + β
.

Arithmetic resilience has the property that increased amplitude leads to a proportional
increase in recovery time, which could have been captured by an axiom postulating invari-
ance to proportional changes in amplitude and recovery time. However, under arithmetic
resilience, discrete-time measured resilience r∗ defined as r∗ = a2/(a2 + b) will depend
not only on the parameter ρ∗, but also on the time of measurement ∆. This undesirable
property is one reason why we do not pursue the alternative of arithmetic resilience any
further.

When we move beyond this simple environment in the remainder of the paper, we must
take into account the possibility that a down spell might last for several periods and that
the individual might improve his health status beyond the pre-down-spell level. We must
also acknowledge that measurement of the health variable might commence after a down
spell has started and stop before full recovery has been achieved. As we will explain in
more detail in subsequent sections, we will assume that the individual cannot resist the
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down spell even when the downward movement lasts for several periods, using measured
amplitude a as a measurement of the adverse event. And we will use measured severity b as
a measure for the consequences of the adverse event even though a down spell might have
negative consequences beyond the time at which full recovery occurs or the observations
cease.

3 Down spells in a general discrete-time environment

As mentioned before, our starting point is a socio-economic variable that we want to assess
with respect to the notion of resilience. We assume that the data for which the requisite
comparisons are to be performed consist of observed health values for a number of consecu-
tive time periods. In order to exclude degenerate cases, we restrict attention to streams of
health variables that cover at least three time periods. The finite length of a stream (and,
thus, the number of observations) is denoted by T so that T ∈ T, where T = N \ {1, 2} is
the set of positive integers excluding the numbers 1 and 2. For a possible stream length
T ∈ T, a health stream x = (x1, . . . , xT ) is composed of T observations, one for each period
from 1 to T . We assume that the observed health values are non-negative so that x is an
element of RT

+, the set of all T -dimensional vectors with non-negative components. The
length of a stream may vary so that the set from which x is chosen is the union ∪T∈TRT

+.
The variables we consider have to be interpreted in a way so that the resilience ordering

to be established is invariant with respect to increasing affine transformations of the health
variable but not with respect to arbitrary (not necessarily affine) increasing transformations.
This assumption is needed to ensure that some of our axioms are meaningful, as we have
already alluded to in Section 2. We will use several figures to illustrate health streams in
the remainder of this section. In these diagrammatic examples, the symbols σx, σx1 and σx2
are meant to indicate given down spells in the requisite stream x but this piece of notation
can be safely ignored for the time being; it will be formally introduced and discussed in
detail later on.

Consider a stream x of length T . To identify the down spells that are present in the
stream x, we begin by partitioning the full set of time periods {1, . . . , T} into three sets.
These three sets represent (i) the periods associated with sustained health; (ii) the time
periods in which down spells occur; and (iii) the set of time periods in which (possibly
partial) recoveries may or may not occur.

We denote the set of periods in x with sustained health by Sx. The idea is to include,
starting from the first period, all time periods among those in {1, . . . , T} that are associated
with maximal non-decreasing values in the health variable. Hence, if a decrease in the
health level occurs, the individual no longer experiences sustained health. Formally, this
set Sx is defined inductively as follows. The initial period (period 1) always belongs to this
set so that we have 1 ∈ Sx. Now let t ∈ {2, . . . , T} and assume that we have examined
each of periods 1 to t − 1 to determine whether it is a member of Sx. If xt ≥ xτ for all
τ ∈ Sx ∩ {1, . . . , t − 1}, then t ∈ Sx. Thus, if we reach period t and the level of health
does not drop when considering those periods between 1 and t− 1 that are already in the
set Sx, then period t is added to this set of periods with sustained health; if xt is below
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one the values of x1, . . . , xt−1 that have already been added to Sx in a previous step of the
iteration, then t does not belong to the set of periods with sustained health.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

t

xt

Figure 1: The health stream x = (3, 2, 1, 1, 3).
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...............

...............

...............

...........................

........................................................................

a(σx) b(σx)

To illustrate this construction, consider the health stream x = (3, 2, 1, 1, 3) ∈ R5
+ of

Figure 1. According to the iterative procedure just defined, the initial period 1 is always
in the set of periods with sustained health, that is, we have 1 ∈ Sx. To determine whether
period t = 2 is in Sx, we compare x2 to the values that correspond to the periods that have
already been added to Sx. In this case, the only comparison is that involving x1 because

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1} = {1}.

We have x2 = 2 < 3 = x1 and, therefore, 2 6∈ Sx. The same is true for periods 3 and 4. For
t = 3, we have

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, 2} = {1}

and x3 = 1 < 3 = x1 so that, according to our definition, 3 6∈ Sx. For t = 4, it follows that

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, 2, 3} = {1}

and x4 = 1 < 3 = x1 so that, again, 4 6∈ Sx. The final candidate for membership in Sx is
period t = T = 5. It follows that

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, . . . , 4} = {1}

and x5 = 3 ≥ 3 = x1 so that, by definition, 5 ∈ Sx and hence Sx = {1, 5}.
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Figure 2: The health stream x = (4, 2, 3, 1, 4).
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Figure 3: The health stream x = (3, 1, 1, 4).
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Figure 4: The health stream x = (3, 1, 1, 1).
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Figure 5: The health stream x = (3, 2, 3, 3, 1, 1, 1, 3).
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By using the same iterative procedure, we obtain that Sx = {1, 5} in the health stream
x = (4, 2, 3, 1, 4) ∈ R5

+ of Figure 2, Sx = {1, 5} in the health stream x = (3, 1, 1, 4) ∈ R4
+

of Figure 3, Sx = {1} in the health stream x = (3, 1, 1, 1) ∈ R4
+ of Figure 4, and Sx =

{1, 3, 4, 8} in the health stream x = (3, 2, 3, 3, 1, 1, 1, 3) ∈ R8
+ of Figure 5.

Next, we define the set Dx of time periods in which down spells occur for a stream x.
The construction of this set is intuitive: a period t is part of a down spell if there is an
earlier period τ in which there is sustained health such that the value of the health variable
is in decline between τ and t. That is, for any t ∈ {1, . . . , T}, t ∈ Dx if there exists a
period τ ∈ Sx ∩ {1, . . . , t− 1} such that xτ > · · · > xt. It follows by definition that the set
of periods that involve sustained health and the set of periods in which down spells occur
must be disjoint.

We use the stream x = (3, 2, 1, 1, 3) of Figure 1 again to provide an illustration of this
definition of Dx. For this example, we have Sx = {1, 5}. Consider first the period t = 2.
Because there exists a period τ ∈ Sx ∩ {1, . . . , t − 1} = {1} (namely, period τ = 1) such
that

xτ = x1 = 3 > 2 = x2,

it follows that period 2 is in Dx. Moreover, because 1 ∈ Sx ∩ {1, 2} and

xτ = x1 = 3 > 2 = x2 > 1 = x3,

period t = 3 must be a member of Dx as well. Because x3 = 1 ≤ 1 = x4, the last inequality
that defines membership in Dx is not satisfied for period 4 and, therefore, 4 6∈ Dx. Thus,
we obtain Dx = {2, 3} for this example.

By using the same iterative procedure, we obtain that Dx = {2} in the health stream
x = (4, 2, 3, 1, 4) ∈ R5

+ of Figure 2, Dx = {2} in the health stream x = (3, 1, 1, 4) ∈ R4
+ of

Figure 3, Dx = {2} in the health stream x = (3, 1, 1, 1) ∈ R4
+ of Figure 4, and Dx = {2, 5}

in the health stream x = (3, 2, 3, 3, 1, 1, 1, 3) ∈ R8
+ of Figure 5. Note in particular that

downward movement from period 3 to 4 for the example of Figure 2 is not part of the down
spell since the recovery from period 2 to 3 is only partial. Also, for the example of Figure
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4, only period 2 is in Dx even though no recovery occurs, since no downward movement
occurs between period 2 and period 3.

Finally, to complete the description of our partition, the set of periods Ux is defined as
the complement of the union Sx ∪Dx in {1, . . . , T}, that is,

Ux = {1, . . . , T} \ (Sx ∪Dx).

We refer to the set Ux as the recovery phase, that is, the set of time periods during which
recovery occurs. Note that Ux may be empty for some streams x. It is immediate that, in
the example of Figure 1, we obtain

Ux = {1, . . . , T} \ (Sx ∪Dx) = {1, . . . , 5} \ ({1, 5} ∪ {2, 3}) = {4}

and, for the example illustrated in Figure 5, it follows that

Ux = {1, . . . , T} \ (Sx ∪Dx) = {1, . . . , 8} \ ({1, 3, 4, 8} ∪ {2, 5}) = {6, 7}.

In particular, note that there is no recovery phase after the first down spell of this example,
as the recovery is immediate.

For the other examples, it follows that Ux = {3, 4} in the health stream x = (4, 2, 3, 1, 4) ∈
R5

+ of Figure 2, Ux = {2} in the health stream x = (3, 1, 1, 4) ∈ R4
+ of Figure 3, and

Ux = {3, 4} in the health stream x = (3, 1, 1, 1) ∈ R4
+ of Figure 4.

With the partition {Sx,Dx,Ux} of {1, . . . , T} in hand, we can now proceed to a precise
definition of a down spell. As seems natural, a down spell in stream x starts in a period in
the set Sx of sustained health if the following period belongs to the set Dx in which down
spells occur. Clearly, the number of down spells and their exact structure are stream-
dependent. For the time being, we use the notation σx to indicate a generic down spell in
x, without explicitly referring to the number of spells in a stream at this stage.

As hinted at above, a down spell σx in x starts in period s(σx) ∈ Sx if

(s(σx) + 1) ∈ Dx.

For example, if x = (3, 2, 1, 1, 3) as in Figure 1, it follows that s(σx) = 1 for the single spell
σx in x because (s(σx) + 1) = 2 ∈ Dx. Analogously, the stream x = (3, 2, 3, 3, 1, 1, 1, 3) of
Figure 5 has two down spells that start at s(σx1 ) = 1 and at s(σx2 ) = 4.

To identify the end of a down spell σx, we use the following definition. If

{s(σx) + 1, . . . , d(σx)} ⊆ Dx and (d(σx) + 1) 6∈ Dx,

then the down spell σx ends at d(σx). Note that this includes the possibility that d(σx) = T
if σx is the final down spell in the stream x. Thus, the down spell σx consists of the time
periods in the set

D(σx) = {s(σx) + 1, . . . , d(σx)}.

As is straightforward to verify, in the case of x = (3, 2, 1, 1, 3), we obtain d(σx) = 2 and,
for x = (3, 2, 3, 3, 1, 1, 1, 3), it follows that d(σx1 ) = 2 and d(σx2 ) = 5.
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If there exists u(σx) ∈ {d(σx), . . . , T − 1} such that

Sx ∩ {d(σx) + 1, . . . , u(σx)} = ∅ and (u(σx) + 1) ∈ Sx,

then a full recovery after the down spell σx occurs in time period u(σx) + 1. The set U(σx)
consists of the time periods after the down spell σx has finished and before a full recovery
(if any) has occurred, that is,

U(σx) = {d(σx) + 1, . . . , u(σx)},

where u(σx) < T if a full recovery occurs and u(σx) = T if a full recovery does not occur.
In particular, U(σx) = ∅ if d(σx) = u(σx) so that recovery is immediate when u(σx) < T
and no recovery is feasible when u(σx) = T owing to the constraint imposed by reaching
the final time period T . In the example of Figure 1, we obtain u(σx) = 4; for Figure 5, the
requisite time periods are u(σx1 ) = 2 and u(σx2 ) = 7. In the example of Figure 4, where no
recovery occurs, u(σx) = T = 4.

The size of the down spell σx is measured by

a(σx) = xs(σx) − xd(σx)

where the letter a is associated with the ‘a’ in amplitude of the down spell. Note that
the length of a decline does not matter, only the amplitude. Compared to the simple
environment introduced in Section 2, a(σx) might underestimate the size of the down spell
if (i) s(σ) = 1, but in fact the down spell started before the first time period of the health
stream; (ii) d(σ) = s(σ) + 1 and partial recovery had started already before the down spell
was observed; or (iii) d(σ) > s(σ) + 1 and the individual is able to partly resist the forces
that cause the down spell.

The severity (or badness) of the consequences of the down spell σx is measured by

b(σx) =
∑

t∈U(σx)

(
xs(σx) − xt

)
where the letter b represents the ‘b’ in badness. Compared to the simple environment
introduced in Section 2, b(σx) might underestimate the severity of the consequences of
the down spell if (i) the relevant counterfactual is that the health variable grows beyond
x(s(σx)); or (ii) full recovery has not been achieved by the last period T of the health
stream.

We restrict attention to streams with at least one down spell for which (partial) recovery
is not made infeasible by the time constraint—that is, after a drop from a sustained level of
health, there is at least one time period left before the final period T is reached. Let T ∈ T
and x ∈ RT

+, and consider all down spells σx in x for which recovery is not made infeasible
so that d(σx) < T . To exclude trivial cases, we only consider streams that contain at least
one such down spell.

Now denote the number of such down spells by mx and the ith of these spells by σxi .
Define

Σ(x) = {σx1 , . . . , σxmx}
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as the set of all down spells for which recovery is not made infeasible by the time constraint.
By assumption, this set is non-empty. To simplify our exposition, we write σx instead of
σx1 if mx = 1, that is, if there is only one permissible down spell in the stream x; this does
not create any ambiguity. The set HT defined by

HT = {x ∈ RT
+ | Σ(x) 6= ∅}

contains all streams of length T ∈ T for which the notion of resilience is well-defined in the
sense that recovery is not excluded by reaching the end of the sampling period T . Because
T may be any integer greater than or equal to three, the set of such streams of any length
is given by

Ω =
⋃
T∈T

HT .

Thus, the set Ω constitutes the set of streams that we want to be able to compare by means
of what we refer to as a resilience ordering.

4 Resilience orderings

A resilience ordering is a complete and transitive binary relation % defined on Ω with
the interpretation ‘at-least-as-resilient-as.’ Thus, for any two streams x and y in Ω, the
statement ‘x is at least as resilient as y’ is expressed by the relational statement x % y.
The relation % is complete if any two streams x and y in Ω can be compared, that is, if

x % y or y % x

for all x, y ∈ Ω. Transitivity requires that if x % y and y % z for any three streams
x, y, z ∈ Ω, it must also be true that x % z. The relation % can be partitioned into a
‘more-resilient-than’ relation � and an ‘as-resilient-as’ relation ∼, defined by letting, for
all x, y ∈ Ω,

x � y if [x % y and not y % x]

and
x ∼ y if [x % y and y % x] .

The specific resilience ordering %r that we propose and characterize in this paper is
based on comparing the values of a resilience measure r : Ω→ (0, 1] that is defined in terms
of the amplitudes a(σxi ) and the levels of severity b(σxi ) associated with the spells that are
present in a stream x ∈ Ω. This resilience measure is defined by letting, for all x ∈ Ω,

r(x) =

∑mx

i=1 a(σxi )∑mx

i=1 a(σxi ) +
∑mx

i=1 b(σ
x
i )
.

Hence, the measure depends on the sum of the amplitudes of the down spells, as measured
by a(σxi ) for i = 1, 2, . . . ,m, and the sum of the severity levels of the down spells as
measured by b(σxi ) for i = 1, 2, . . . ,m. Thus, r increases with the amplitude of a down spell
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and decreases with its severity during recovery: a ceteris-paribus (partial) recovery from a
larger drop is associated with higher resilience, and a ceteris-paribus increase in the severity
of recovery means that resilience is lower. Clearly, r(x) takes on values that are greater than
zero and smaller than or equal to one because a(σxi ) is positive and b(σxi ) is non-negative.
Furthermore, r(x) = 1 if recovery is always immediate, that is, if u(σxi ) = d(σxi ) for all
i ∈ {1, . . . ,mx}.

Our resilience ordering %r is defined by declaring x ∈ Ω to be at least as resilient as
y ∈ Ω if the value of the resilience measure r at x is greater than or equal to the value of
r at y. That is, for all x, y ∈ Ω,

x %r y ⇔ r(x) ≥ r(y).

We reiterate that the resilience measure r does not have any numerical significance—no
comparisons other than relative resilience rankings are permissible in the ordinal setting
considered throughout this paper.

The notion of vulnerability may be defined as the inverse of resilience, that is, as the
value of a function v : Ω→ [1,∞) defined by

v(x) =
1

r(x)

for all x ∈ Ω. Thus, for our particular measure, we obtain

v(x) =

∑mx

i=1 a(σxi ) +
∑mx

i=1 b(σ
x
i )∑mx

i=1 a(σxi )
=

mx∑
i=1

(
a(σxi )∑mx

j=1 a(σxj )
· a(σxi ) + b(σxi )

a(σxi )

)

for all x ∈ Ω, where a(σxi )/(
∑mx

j=1a(σxj )) is the endogenous weight given to down spell σxi ,
and (a(σxi ) + b(σxi ))/a(σxi ) is the vulnerability exhibited in down spell σxi . Thus, each spell
is weighted according to its fraction of the total amplitude—the sum of the amplitudes over
all spells. The vulnerability ordering associated with our resilience ordering %r is simply
its reverse ordering, that is, x ∈ Ω is at least as vulnerable as y ∈ Ω if y %r x.

We have already provided an intuitive foundation for the resilience measure

r(x) =
a(σx)

a(σx) + b(σx)

in the case of a single spell σx in the simple environment of Section 2, using a model of
exponential resilience where the ability to recover is proportional to the difference between
the pre-down-spell health and experienced health during recovery. In the subsequent sec-
tions we provide an axiomatic characterization of this measure in the case of a single down
spell by showing that our resilience ordering %r satisfies a number of properties and that
%r is the sole ordering that satisfies these properties.

Before doing so, we note how the resilience measure r and its inverse v have an intuitive
geometric interpretation in the case of a single spell σx by returning to our examples.
Consider first Figure 1. The stream of health values is given by x = (3, 2, 1, 1, 3). It follows
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that Sx = {1, 5}, Dx = {2, 3} and Ux = {4}. There is a singleton set Σ(x) = {σx} of down
spells with s(σx) = 1, d(σx) = 3 and u(σx) = 4. We obtain a(σx) = 2 and b(σx) = 2 so
that, as in the example of Figure 1,

r(x) =
2

2 + 2
=

1

2
and v(x) =

1

r(x)
= 2.

In Figure 2, we have x = (4, 2, 3, 1, 4). It follows that Sx = {1, 5}, Dx = {2} and
Ux = {3, 4}. There is a singleton set Σ(x) = {σx} of down spells with s(σx) = 1, d(σx) = 2
and u(σx) = 4. We obtain a(σx) = 2 and b(σx) = 1 + 3 = 4 so that

r(x) =
2

2 + 4
=

1

3
and v(x) =

1

r(x)
= 3.

In the example of Figure 3, the requisite stream is x = (3, 1, 1, 4). We obtain Sx = {1, 4},
Dx = {2} and Ux = {3}. There is a singleton set Σ(x) = {σx} of down spells with
s(σx) = 1, d(σx) = 2 and u(σx) = 3. Furthermore, we have a(σx) = 2 and b(σx) = 2 so
that

r(x) =
2

2 + 2
=

1

2
and v(x) =

1

r(x)
= 2.

There is no recovery in Figure 4. The stream of health values is x = (3, 1, 1, 1). We have
Sx = {1}, Dx = {2} and Ux = {3, 4}. There is a singleton set Σ(x) = {σx} of down spells
with s(σx) = 1, d(σx) = 2 and u(σx) = 4. It follows that a(σx) = 2 and b(σx) = 2 + 2 = 4
so that

r(x) =
2

2 + 4
=

1

3
and v(x) =

1

r(x)
= 3.

In the case of two down spells as depicted in Figure 5, the stream of health values is
x = (3, 2, 3, 3, 1, 1, 1, 3). We have Sx = {1, 3, 4, 8}, Dx = {2, 5} and Ux = {6, 7}. There is a
set of two down spells Σ(x) = {σx1 , σx2}. For the first spell, we obtain s(σx1 ) = 1, d(σx1 ) = 2
and u(σx1 ) = 2. It follows that a(σx1 ) = 1 and b(σx1 ) = 0. The requisite numbers for the
second spell are s(σx2 ) = 4, d(σx2 ) = 5, u(σx2 ) = 7, a(σx2 ) = 2 and b(σx2 ) = 2 + 2 = 4. Thus,
we obtain

r(x) =
1 + 2

1 + 2 + 0 + 4
=

3

7
and v(x) =

1

r(x)
=

7

3
.

Thus, according to our resilience ordering %r, the most resilient streams are those of Figures
1 and 3 (with a resilience value of 1/2), followed by that of Figure 5 (with a resilience of
3/7). At the bottom, the least resilient (and thus most vulnerable) streams are those in
Figures 2 and 4 with a resilience level of 1/3.

5 Properties of a resilience ordering

In our characterization, we focus on the restriction of the resilience ordering to streams
with a single down spell. Thus, we define the sets

H1
T = {x ∈ HT | |Σ(x)| = 1}
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for all T ∈ T, and the domain considered in our main result is given by

Ω1 = {x ∈ Ω | |Σ(x)| = 1}.

The restriction of a resilience ordering to streams with a single down spell is referred to as
a single-spell resilience ordering.

For some of our properties, it is convenient to employ the following definition and
notation. Two streams x, y ∈ H1

T have the same timing structure if Sx = Sy, Dx = Dy

and Ux = Uy. If x, y ∈ H1
T have the same timing structure, we write s := s(σx) = s(σy),

d := d(σx) = d(σy), u := u(σx) = u(σy), and U := Ux = Uy. Note that, in this case,
U = {d+ 1, . . . , u} and |U| = u− d.

Four of the six properties have already been discussed at an informal level in the simple
environment introduced in Section 2. One of the two properties that are added here, am-
plitude and recovery consistency, is of crucial importance when we move beyond the simple
environment and consider the general discrete-time environment introduced in Section 3;
the other, continuity, ensures that small changes in the health values do not lead to large
changes in resilience.

5.1 Recovery neutrality

We begin with a property that ensures that all periods in the recovery phase are treated
equally by our measure. This implies, in particular, that no discounting can be employed.
Thus, if the order of the health-variable values that occur during recovery is changed, this
is a matter of equal resilience. In other words, the property ensures that our measure treats
all time periods in which recovery occurs equally, paying no attention to the order in which
the requisite health-variable values appear in a stream.

Recovery neutrality. For all T ∈ T and for all x, y ∈ H1
T with the same timing structure,

if xτ = yτ for all τ ∈ {1, . . . , T} \U and (yτ )τ∈U is a permutation of (xτ )τ∈U, then

x ∼ y.

To illustrate this property, consider the streams x = (5, 1, 2, 4, 3, 5) and y = (5, 1, 3, 2, 4, 5).
The two streams have the same timing structure with U = {3, 4, 5} and, because y3 = 3 =
x5, y4 = 2 = x3 and y5 = 4 = x4, it follows that (y3, y4, y5) is obtained from permuting
(x3, x4, x5). Thus, recovery neutrality requires that

(5, 1, 2, 4, 3, 5) = x ∼ y = (5, 1, 3, 2, 4, 5).

5.2 Recovery translation invariance

Translation invariance is a commonly-imposed condition in the design of social index num-
bers; for example, absolute measures of inequality such as those of Kolm (1976) or Blackorby
and Donaldson (1980) are translation invariant. In our setting, the property is defined for
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pairs of streams with the same timing structure. Although the label translation invari-
ance typically refers to situations in which the same value is added to all components, our
version goes beyond that by allowing these additions to be specific to each time period.
Nevertheless, we use the term translation invariance because it captures the motivation
underlying the axiom. Note that the property is analogous to the axiom of independence
of income source employed by Weymark (1981) in the context of social welfare functions
and inequality measures defined on income distributions. See also Blackorby, Bossert and
Donaldson (2005, p. 118) who use a related axiom that they label incremental equity in a
characterization of utilitarianism.

Recovery translation invariance as defined below demands that adding or subtracting
the same vector of health values to the recovery phase of two streams without changing the
common timing structure does not affect the relative ranking of the two streams.

Recovery translation invariance. For all T ∈ T, for all x, y ∈ H1
T with the same timing

structure and for all z ∈ RT such that xτ = yτ and zτ = 0 for all τ ∈ {1, . . . , T} \U, if
(x+ z), (y + z) ∈ H1

T and U(x+z) = U(y+z) = U, then

(x+ z) % (y + z) ⇔ x % y.

Again, we employ an example to illustrate this axiom. Let x = (5, 1, 2, 4, 3, 5) and y =
(5, 1, 3, 3, 3, 5). The two streams have the same timing structure with U = {3, 4, 5}. Defin-
ing z = (0, 0,−1,−1, 1, 0) ∈ R6, it follows that (x+z), (y+z) ∈ H1

T and U(x+z) = U(y+z) =
U. Therefore, recovery translation invariance requires that

(5, 1, 1, 3, 4, 5) = (x+ z) % (y + z) = (5, 1, 2, 2, 4, 5)

if and only if
(5, 1, 2, 4, 3, 5) = x % y = (5, 1, 3, 3, 3, 5).

5.3 Recovery monotonicity

We assume that our resilience ordering possesses a plausible monotonicity property with
respect to the health-variable values experienced in the recovery phase. In particular,
if all values in the recovery phase increase (while all other health-variable values remain
unchanged), resilience increases.

Recovery monotonicity. For all T ∈ T and for all x, y ∈ H1
T with the same timing

structure such that U 6= ∅, if xτ > yτ for all τ ∈ U and xτ = yτ for all τ ∈ {1, . . . , T} \U,
then

x � y.

For example, if x = (5, 2, 3, 5, 4, 6) and y = (5, 1, 2, 4, 3, 6), recovery monotonicity requires
that (5, 2, 3, 5, 4, 6) = x � y = (5, 1, 2, 4, 3, 6) because xτ > yτ for all τ ∈ U = {3, 4, 5} and
xτ = yτ for all τ ∈ {1, 2, 6}.
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5.4 Amplitude and recovery consistency

The following axiom requires that certain movements along a stream leave the value of vul-
nerability unchanged; in particular, only the amplitude and the severity are of importance.
The duration of a downwards movement is irrelevant—all that matters is the amplitude of
the drop. Furthermore, we do not distinguish between full recovery and excess recovery;
any recovery that takes us beyond the pre-drop level is treated in the same way as a recov-
ery to the pre-drop level. Finally, anything that happens prior to the down spell plays no
role.

Amplitude and recovery consistency. For all T, T ′ ∈ T, for all x ∈ H1
T and for all

y ∈ H1
T ′ such that |Ux| = |Uy|, if there exists t ∈ Z such that xs(σx) = ys(σy), xd(σx) = yd(σy)

and xτ = yt+τ for all τ ∈ Ux, then
x ∼ y.

Let x = (3, 1, 2) and y = (2, 3, 1, 2, 4). We have s(σx) = 1, s(σy) = 2, d(σx) = 2, d(σy) = 3,
Ux = {3} and Uy = {4}. Because

x1 = y2 = 3 and x2 = y3 = 1 and x3 = y4 = 2,

amplitude and recovery consistency requires that x ∼ y.

5.5 Continuity

We employ a mild continuity property that ensures that small changes in the values of the
health variables do not lead to large changes in resilience provided that the time period in
which down spell ends does not change. This is another well-established condition that is
employed throughout the literature concerned with the design of social index numbers.

Continuity. For all T ∈ T, for all sequences 〈xk〉k∈N, with xk ∈ H1
T for all k ∈ N and

limk→∞ x
k = x ∈ H1

T , and for all y ∈ H1
T ,[

xk % y for all k ∈ N and lim
k→∞

d(σx
k

) = d(σx)
]
⇒ x % y

and [
y % xk for all k ∈ N and lim

k→∞
d(σx

k

) = d(σx)
]
⇒ y % x.

Consider the sequence 〈xk〉k∈N defined by letting xk = (5, 1, 2, 4, 3 − 1/k, 5) for all k ∈ N.
Furthermore, let x = (4, 1, 3, 2, 3, 4). It follows that

lim
k→∞

xk = (5, 1, 2, 4, 3, 5).

Continuity demands that if xk % (4, 1, 3, 2, 3, 4) for all k ∈ N, then

lim
k→∞

xk = (5, 1, 2, 4, 3, 5) % (4, 1, 3, 2, 3, 4)

and, likewise, if (4, 1, 3, 2, 3, 4) % xk for all k ∈ N, then

(4, 1, 3, 2, 3, 4) % (5, 1, 2, 4, 3, 5) = lim
k→∞

xk.
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5.6 Affine invariance

Our final axiom is affine invariance. This requirement demands that resilience is invariant
with respect to the application of a common increasing affine transformation to all health-
variable values. In the present context, this property is of particular appeal because it is
a consequence of the conformity of our measure with the case of exponential recovery in
the simple continuous-time model described in Section 2. In the following definition, the
symbol 1T is used to denote the T -tuple that consists of T ones.

Affine invariance. For all T ∈ T, for all x ∈ H1
T , for all λ ∈ R++ and for all µ ∈ R such

that (λ · x+ µ · 1T ) ∈ H1
T ,

(λ · x+ µ · 1T ) ∼ x.

For x = (5, 1, 2, 4, 3, 5), λ = 1/2 and µ = 1, affine invariance requires that

(7/2, 3/2, 2, 3, 5/2, 7/2) = (λ · (5, 1, 2, 4, 3, 5) + µ · 16) ∼ (5, 1, 2, 4, 3, 5).

6 A characterization

Our main result is the following characterization of the resilience ordering %r.

Theorem 1. A single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance, recovery monotonicity, amplitude and recovery consistency, con-
tinuity and affine invariance if and only if %=%r.

Proof. If. To show that %r satisfies recovery neutrality, assume that T ∈ T and x, y ∈ H1
T

have the same timing structure. If xτ = yτ for all τ ∈ {1, . . . , T} \ U and (yτ )τ∈U is a
permutation of (xτ )τ∈U, it follows immediately that r(x) = r(y) and hence x ∼r y.

Now we establish recovery translation invariance. Let T ∈ T, x, y ∈ H1
T and z ∈ RT

be such that x and y have the same timing structure, xτ = yτ and zτ = 0 for all τ ∈
{1, . . . , T} \U, (x+ z), (y + z) ∈ H1

T and U(x+z) = U(y+z) = U. It follows that

a(σx+z) = a(σy+z) = a(σx) = a(σy),

b(σx+z) = b(σx)−
∑

t∈U zt,

b(σy+z) = b(σy)−
∑

t∈U zt.

Therefore,

(x+ z) %r (y + z) ⇔ a(σx+z)

a(σx+z) + b(σx+z)
≥ a(σy+z)

a(σy+z) + b(σy+z)

⇔ a(σx)

a(σx) + b(σx)−
∑

t∈U zt
≥ a(σx)

a(σx) + b(σy)−
∑

t∈U zt

⇔ b(σx) ≤ b(σy)

⇔ x %r y.
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Next, we prove that %r satisfies recovery monotonicity. Assume that T ∈ T and
x, y ∈ H1

T have the same timing structure with U 6= ∅. Furthermore, assume that xτ > yτ
for all τ ∈ U and xτ = yτ for all τ ∈ {1, . . . , T} \ U. This immediately implies that
b(σx) < b(σy) and, because %r decreases in the severity, it follows that x �r y.

Now consider amplitude and recovery consistency. Let T, T ′ ∈ T, x ∈ H1
T and y ∈ H1

T ′

be such that |Ux| = |Uy|. Furthermore, assume that there exists t ∈ Z such that xs(σx) =
ys(σy), xd(σx) = yd(σy) and xτ = yt+τ for all τ ∈ Ux. By definition, this implies that

a(σx) = xs(σx) − xd(σx) = ys(σy) − yd(σy) = a(σy)

and
b(σx) =

∑
τ∈U

(
xs(σx) − xτ

)
=
∑
τ∈U

(
ys(σy) − yt+τ

)
= b(σy)

and hence r(x) = r(y), which implies x ∼r y.

That continuity is satisfied follows immediately from the continuity of the restriction
of the function r to H1

T for all T ∈ T, provided that we require that limk→∞ x
k = x ∈ H1

T

and limk→∞ d(σx
k
) = d(σx).

Finally, we prove that %r satisfies affine invariance. Let T ∈ T, x ∈ H1
T , λ ∈ R++ and

µ ∈ R be such that (λ · x+ µ · 1T ) ∈ H1
T . It follows that

a(σλ·x+µ·1T ) = λ · xs(σx) − λ · xd(σx) = λ ·
(
xs(σx) − xd(σx)

)
= λ · a(σx)

and
b(σλ·x+µ·1T ) =

∑
t∈Ux

(
λ · xs(σx) − λ · xt

)
= λ ·

∑
t∈Ux

(
xs(σx) − xt

)
= λ · b(σx).

Therefore, r(λ · x+ µ · 1T ) = r(x) and hence (λ · x+ µ · 1T ) ∼r x.

In the only-if part of the proof, we proceed in several steps to illustrate how adding one
axiom at a time successively narrows down the set of possible orderings until we arrive at
the desired conclusion.

We begin by showing that the conjunction of recovery neutrality and recovery transla-
tion invariance implies that the criterion is insensitive to the distribution of health values
in the recovery phase provided that the sum of the health values in the recovery phase
remains unchanged.

Lemma 1. If a single-spell resilience ordering % satisfies recovery neutrality and recovery
translation invariance, then, for all T ∈ T and for all x, y ∈ H1

T with the same timing
structure, if xτ = yτ for all τ ∈ {1, . . . , T} \U and

∑
τ∈U xτ =

∑
τ∈U yτ , then

x ∼ y.
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Proof. Assume that x, y ∈ H1
T have the same timing structure,

∑
τ∈U xτ =

∑
τ∈U yτ and

xτ = yτ for all τ ∈ {1, . . . , T} \U.
It is trivially true that x ∼ y if |U| = u− d equals 0 or 1.
Now assume that |U| = u− d ≥ 2. Define the vectors x0, . . . , xu−d−1 by x0 = x and

xk = xk−1 + wk for all k = 1, . . . , u− d− 1,

where, for all k = 1, . . . , u − d − 1, wk ∈ RT is given by wku−k+1 = yu−k+1 − xk−1
u−k+1,

wku−k = −wku−k+1 and wkτ = 0 for {1, . . . , T} \ {u− k, u− k + 1}. Note that

xu−d−1
d+1 = xd+1 − yd+2 + xu−d−2

d+2 = · · · = xd+1 +
u∑

τ=d+2

(xτ − yτ ) = yd+1

since, by assumption,
∑u

τ=d+1 yτ =
∑u

τ=d+1 xτ , while, by construction, xu−d−1
τ = yτ for all

τ ∈ {d+ 2, . . . , u}. Hence, xu−d−1 = y.
It remains to be shown that xk ∼ xk−1 for all k ∈ {1, . . . , u− d− 1}. Note that

xk−1
u−k + xk−1

u−k+1 = xku−k + xku−k+1

since wku−k = −wku−k+1. Hence, we can define the scalars αk and βk as follows.

αk = 1
2
·
(
xk−1
u−k + xk−1

u−k+1

)
= 1

2
·
(
xku−k + xku−k+1

)
,

βk = 1
2
·
(
xk−1
u−k − x

k
u−k
)

= 1
2
·
(
xku−k+1 − xk−1

u−k+1

)
.

Let zk ∈ RT be given by

zku−k+1 = αk − 1
2
·
(
xk−1
u−k+1 + xku−k+1

)
,

zku−k = αk − 1
2
·
(
xk−1
u−k + xku−k

)
and zkτ = 0 for all τ ∈ {1, . . . , T} \ {u− k, u− k + 1}. Then

xku−k+1 + zku−k+1 = αk + 1
2
·
(
xku−k+1 − xk−1

u−k+1

)
= αk + βk

= αk + 1
2
·
(
xk−1
u−k − x

k
u−k
)

= xk−1
u−k + zku−k

and

xk−1
u−k+1 + zku−k+1 = αk − 1

2
·
(
xku−k+1 − xk−1

u−k+1

)
= αk − βk

= αk − 1
2
·
(
xk−1
u−k − x

k
u−k
)

= xku−k + zku−k.

By recovery neutrality and recovery translation invariance, it follows that xk ∼ xk−1 for all
k ∈ {1, . . . , u− d− 1} and hence x ∼ y by transitivity.

Our next step consists of adding recovery monotonicity to the two axioms of the above
lemma. As a consequence, it follows that an additive criterion must be used to compare
any two streams with the same timing structure and with identical health-variable values
in the periods prior to the recovery phase.
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Lemma 2. If a single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance and recovery monotonicity, then, for all T ∈ T and for all x, y ∈ H1

T

with the same timing structure, if xτ = yτ for all τ ∈ {1, . . . , T} \U, then

x � y ⇔
∑
τ∈U

xτ ≥
∑
τ∈U

yτ .

Proof. Assume that x, y ∈ H1
T have the same timing structure and xτ = yτ for all τ ∈

{1, . . . , T} \ U. Note that the equivalence stated in the lemma is trivially true if |U| =
u− d = 0. Thus, we can without loss of generality assume that |U| = u− d > 0. In view
of Lemma 1, we only have to prove that, under the assumptions of the lemma statement,
the inequality ∑

τ∈U

xτ >
∑
τ∈U

yτ

implies x � y.
The implication follows directly from recovery monotonicity if |U| = u− d = 1.
Now assume that

∑
τ∈U xτ >

∑
τ∈U yτ and |U| = u − d ≥ 2. Define x′, y′ ∈ H1

T as
follows. Let y′d+1 = yd+1 and choose x′d+1 ∈ (yd+1, xs) such that x′d+1−yd+1 <

∑
t∈U(xt−yt).

Moreover, define

x′τ =
1

u− d− 1
·

(∑
t∈U

xt − x′d+1

)
and y′τ =

1

u− d− 1
·

(∑
t∈U

yt − y′d+1

)

for all τ ∈ {d + 2, . . . , u}, and let x′τ = y′τ = xτ = yτ for all τ ∈ {1, . . . , T} \ U. By
definition, x′ and y′ have the same timing structure as x and y and, moreover, we have∑

τ∈U

x′τ =
∑
τ∈U

xτ and
∑
τ∈U

y′τ =
∑
τ∈U

yτ

as well as x′τ > y′τ for all τ ∈ U. By Lemma 1, x′ ∼ x and y′ ∼ y. By recovery monotonicity,
x′ � y′ and hence x � y by transitivity.

If the axiom of amplitude and recovery consistency is employed in addition to the
properties previously imposed, it follows that knowledge of the severity levels b(σx) and
b(σy) is sufficient to rank the streams x and y, provided that they are associated with
recovery phases of the same length and share the same amplitudes.

Lemma 3. If a single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance, recovery monotonicity and amplitude and recovery consistency, then,
for all T, T ′ ∈ T, for all x ∈ H1

T and for all y ∈ H1
T ′ such that |Ux| = |Uy|, if xs(σx) = ys(σy)

and xd(σx) = yd(σy), then
x % y ⇔ b(σx) ≤ b(σy).
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Proof. Assume that T, T ′ ∈ T, x ∈ H1
T and y ∈ H1

T ′ are such that |Ux| = |Uy|, xs(σx) =
ys(σy) and xd(σx) = yd(σy). Let u = |Ux|+ 2 = |Uy|+ 2 and define x′, y′ ∈ H1

u as follows. Let
x′1 = y′1 = xs(σx) = ys(σy), x

′
2 = y′2 = xd(σx) = yd(σy), x

′
τ = xd(σx)−2+τ +max{0, ys(σx)−xs(σy)}

and y′τ = yd(σy)−2+τ +max{0, xs(σx)−ys(σy)} for all τ ∈ {3, . . . , u}. Hence, s(σx
′
) = s(σy

′
) =

1, d(σx
′
) = d(σy

′
) = 2 and Ux′ = Uy′ = {3, . . . , u}. Note that, by construction, x′τ ≥ xτ ≥ 0

and y′τ ≥ yτ ≥ 0 for all τ ∈ {1, . . . , u}. By amplitude and recovery consistency, x′ ∼ x and
y′ ∼ y and, by Lemma 2,

x′ % y′ ⇔ b(σx
′
) = (u− 2) · x′1 −

u∑
τ = 3

x′τ ≤ (u− 2) · y′1 −
u∑
τ=3

y′τ = b(σy
′
)

because x′1 = y′1. The result follows since b(σx) = b(σx
′
) and b(σy) = b(σy

′
) and % is

transitive.

The next property to be added is continuity. This axiom allows us to extend the result
of the previous lemma to any two streams x and y with the same amplitudes; the recovery
phases associated with x and y may now differ in length.

Lemma 4. If a single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance, recovery monotonicity, amplitude and recovery consistency and con-
tinuity, then, for all T, T ′ ∈ T, for all x ∈ H1

T and for all y ∈ H1
T ′, if xs(σx) = ys(σy) and

xd(σx) = yd(σy), then
x % y ⇔ b(σx) ≤ b(σy).

Proof. Assume that T, T ′ ∈ T, x ∈ H1
T and y ∈ H1

T ′ are such that xs(σx) = ys(σy) and
xd(σx) = yd(σy).

If |Ux| = |Uy|, then the result follows from Lemma 3.
Now assume that |Ux| 6= |Uy|; without loss of generality, assume that |Ux| < |Uy|.

Let u = |Uy| + 2 and define x′, y′ ∈ H1
u as follows. Let x′1 = y′1 = xs(σx) = ys(σy), x

′
2 =

y′2 = xd(σx) = yd(σy), x
′
τ = xd(σx)−2+τ + max{0, ys(σx) − xs(σy)} for all τ ∈ {3, . . . , |Ux| + 2},

x′τ = x′1 for all τ ∈ {|Ux| + 3, . . . , u} and y′τ = yd(σy)−2+τ for all τ ∈ {3, . . . , u}. Hence,
s(σx

′
) = s(σy

′
) = 1, d(σx

′
) = d(σy

′
) = 2, Ux′ = {3, . . . , |Ux| + 2} and Uy′ = {3, . . . , u}.

Note that, by construction, x′τ ≥ xτ ≥ 0 and y′τ ≥ yτ ≥ 0 for all τ ∈ {1, . . . , u}. By
amplitude and recovery consistency, x′ ∼ x and y′ ∼ y.

If |Ux| = 0 (and, by assumption, |Uy| > 0), then b(σx
′
) = 0 < b(σy

′
). Construct

the sequence 〈xk〉k∈N by letting, for all k ∈ N, xk be defined by xk1 = x′1, xk2 = x′2 and
xkτ = x′1 − ε/k for all τ ∈ {3, . . . , u}, where (u − 2) · ε < b(σy

′
), so that b(σy

′
) > b(σx

1
) >

· · · > b(σx
k
) > b(σx

k+1
) > · · · > b(σx

′
) = 0. Note that |Uxk | = |Uy|. By Lemma 3,

σy
′ � σx

k
for all k ∈ N and σx

k � limκ→∞ σ
xκ = σx

′
for all k ∈ N by continuity because

limκ→∞ x
κ = x′ and b(σx

k
) is strictly decreasing in k. Hence,

x ∼ x′ � y′ ∼ y

because % is transitive.
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Finally, assume that |Ux| > 0. Construct the sequence 〈xk〉k∈N by letting, for all
k ∈ N, xk be defined by xk1 = x′1, xk2 = x′2, xk3 = x′3 + (u − |Ux| − 2) · ε/k, xkτ = x′τ
for all τ ∈ {4, . . . , |Ux| + 2} and xkτ = x′1 − ε/k for all τ ∈ {Ux| + 3, . . . , u}, where
(u − |Ux| − 2) · ε < x′1 − x′3, so that xk2 ≤ x′3 < xk3 < xk1. It follows that |Uxk | = |Uy|. By
construction, b(σx

1
) = · · · = b(σx

k
) = b(σx

k+1
) = · · · = b(σx

′
). Combined with Lemma 3,

it follows that σx
k ∼ σx

′
for all k ∈ N by continuity; note that limκ→∞ x

κ = x′. Hence, by
Lemma 3 and transitivity,

x′ ∼ xk % y′ ⇔ b(σx
′
) = b(σx

k

) ≤ b(σy
′
)

for all k ∈ N so that

x ∼ x′ % y′ ∼ y ⇔ b(σx) = b(σx
′
) ≤ b(σy

′
) = b(σy).

We are now ready to prove the only-if part of our axiomatization. All that remains to
be done is to use affine invariance to arrive at the ordering %r represented by the resilience
measure r.

Proof. Only if. Assume that � is an ordering that satisfies the axioms of the theorem
statement. Let T, T ′ ∈ T, x ∈ H1

T and y ∈ H1
T ′ .

(i) First, we prove that if xs(σx) − xd(σx) = ys(σy) − yd(σy), then

x % y ⇔ b(σx) ≤ b(σy).

Assume that this equality is true and let λx = λy = 1, µx = yd(σy) and µy = xd(σx). By
definition, (λx·x+µx·1T ) = (x+yd(σy)·1T ) ∈ H1

T and (λy·y+µy·1T ′) = (y+xd(σx)·1T ′) ∈ H1
T ′ .

By affine invariance,

x ∼ (x+ yd(σy) · 1T ) and y ∼ (y + xd(σx) · 1T ′).

By construction, writing x′ = (x + yd(σy) · 1T ) and y′ = (y + xd(σx) · 1T ′), it follows that
x′
s(σx′ )

= xs(σx)+yd(σy) = ys(σy)+xd(σx) = y′
s(σy′ )

and x′
d(σx′ )

= xd(σx)+yd(σy) = yd(σy)+xd(σx) =

y′
d(σy′ )

. Hence, by Lemma 4 and transitivity, x ∼ y.

(ii) Now let x ∈ H1
T and y ∈ H1

T ′ be arbitrary. Let µx = µy = 0 and define

λx =
1

xs(σx) − xd(σx)

=
1

a(σx)
and λy =

1

ys(σy) − yd(σy)

=
1

a(σy)
.

Let x′ ∈ H1
T and y′ ∈ H1

T ′ be defined by x′ = λx · x and y′ = λy · y. By affine invariance,

x ∼ x′ and y ∼ y′.
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We have that

x′
s(σx′ )

− x′
d(σx′ )

=
xs(σx) − xd(σx)

a(σx)
= 1 =

ys(σy) − yd(σy)

a(σy)
= y′

s(σy′ )
− y′

d(σy′ )
,

thus, by part (i) of the proof,

x′ % y′ ⇔ b(σx)

a(σx)
= b(σx

′
) ≤ b(σy

′
) =

b(σy)

a(σy)

⇔ 1 +
b(σx)

a(σx)
≤ 1 +

b(σy)

a(σy)

⇔ a(σx) + b(σx)

a(σx)
≤ a(σy) + b(σy)

a(σy)

⇔ a(σx)

a(σx) + b(σx)
≥ a(σy)

a(σy) + b(σy)
.

As established above, we also have x ∼ x′ and y ∼ y′ so that we obtain

x ∼ x′ % y′ ∼ y ⇔ x %r y,

using transitivity and the definition of %r.

That our axioms are independent is established in the appendix.

7 Concluding remarks

In this paper, we propose and axiomatize a measure of resilience based solely on the proper-
ties of the health streams—the fundamental determinants of our notion of resilience. More
specifically, our approach treats down spells as the crucial experiences that reflect an in-
dividual’s ability to recover. Implicit in our definition is the assumption that, in a down
spell, the amplitude of the down movement matters but not its duration. Likewise, our
properties imply a specific way of identifying the dividing line between a downwards move-
ment and the recovery phase. In particular, we assume that the individual cannot resist the
down spell before the recovery phase starts. These features represent modeling choices that
we consider attractive in the measurement of resilience. Of course, there are alternative
methods of defining the size of a down spell and the transition from a drop to the period in
which recovery can occur, and it may be useful to explore some of these in future work. A
more general approach is to enrich the framework by taking into consideration information
concerning the influencing forces that precipitate a down spell. Similarly, future work could
disentangle individual resilience from network and community effects. However, this would
require enriched data which might not be as easily available, in the context of large-scale
household surveys, as the health streams on which our resilience ordering is based.

Our measure of resilience has a drawback at the level of the individual of not being
continuous when a sequence of health streams converges to a health stream for which the
down spell ends in a different period. To exemplify, consider Figure 2 and the let the health
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value in period 3 (instead of having the value 3) approach the health value 2 from below.
To be specific, consider the sequence 〈xk〉k∈N of streams with xk = (4, 2, 2−1/(k+ 1), 1, 4),
so that x = limk→∞ xk is given by x = (4, 2, 2, 1, 4). For each element of this sequence,
d(σx

k
) = 4, meaning that the down spell ends in period 4 and our measure of resilience

r(xk) equals 1, since full recovery is immediate. However, in the limit, d(σx) = 2 and
r(x) = 2/7, since full recovery now takes two periods.

By not relying on information at the individual level concerning the forces that pre-
cipitate the individual down spells, our measure of resilience can be used for measuring
the resilience of large populations of subjects. At such an aggregate level, the issue of
whether the measure is continuous at the individual level loses much of its importance.
Thus, the measure of resilience that we propose might be well-posed to identify the effects
of interventions designed to improve mental-health resilience. This can be accomplished
by studying populations of subjects some of whom are treated and some of whom remain
untreated. The interventions in question are not meant to avoid, for example, divorces or
lay-offs, but to reduce the consequences in terms of negative effects that follow such events.

Although our measure is ordinal in nature (and, thus, statements regarding arithmetic
means or similar statistics are not well-defined without further assumptions), we have
already suggested in Section 4 how the measure of resilience can be aggregated over different
down spells experienced by the same individual. In particular, we proposed to consider a
weighted average of the inverse of resilience, vulnerability, with weights corresponding to
the amplitudes of the down spells. Implicit in suggesting this method is the assumption
that the requisite values are intra-personally unit-comparable. If this procedure were to
be extended to down spells experienced by different individuals, these values would have
to be not only intra-personally but also inter-personally unit comparable, a considerably
stronger assumption. However, it is perfectly legitimate within our ordinal framework to
aggregate across individuals by employing criteria that are based on quantiles, for example.

A possible concern is that our ordinal measure of resilience may not allow for a suffi-
cient degree of differentiation across individuals. Nevertheless, this may not pose a serious
problem, as demonstrated by the results when applying our measure to the German Socio-
Economic Panel. The SOEP is an ongoing panel survey with yearly re-interviews (see
http://www.diw.de/gsoep). It is a representative longitudinal micro-level study providing
a wide range of demographic and socio-economic information on private households and
all household members. The first data was collected in 1984 from a sample of randomly-
selected adult respondents in the Federal Republic of Germany. Since then, the same
individuals have been surveyed annually. In 1990 the survey was expanded to include the
states of the former German Democratic Republic. New samples were included later on
to collect information on specific population groups or to boost the sample size. Every
year since 1994, individuals are asked to rate their health by responding to the question
“How would you describe your current health?” with possible answers on a five-point scale,
ranging from “bad” (1) to “very good” (5). They are also asked “How satisfied are you
with your health?” where responses are given on an 11-point scale from 0 (“completely
dissatisfied”) to 10 (“completely satisfied”). We analyzed the years from 1994 to 2016 and
restricted the sample to respondents for whom we have at least six consecutive observa-
tions, leaving us with 15,015 individuals. A histogram representing the relative frequencies
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of the attained resilience levels is provided in Figure 6 for self-assessed health status and
in Figure 7 for health satisfaction. As is evident from these diagrams, there is considerable
variation in both cases.

We conclude by noting that our approach is general enough to accommodate the assess-
ment of resilience in the context of other variables. These could be both at an individual
level, such as equivalent household income, and aggregate variables of economic perfor-
mance, such as unemployment rates and GDP growth rates of countries. In addition, in
cases where the resilience measurement is applied to a variable with an underlying positive
growth trend, one could allow for recovery back to a level that is not fixed at the pre-down-
spell level but which increases with time, by first detrending the stream in question and
then applying our measure.
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Figure 6: Self-assessed health
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Figure 7: Health satisfaction
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A Appendix: Independence of the axioms

For each of the six axioms employed in our characterization, we provide an example that
violates the axiom and satisfies the remaining properties. We note that the five examples
that satisfy recovery monotonicity also satisfy the following stronger property.

Strong recovery monotonicity. For all T ∈ T and for all x, y ∈ H1
T with the same timing

structure such that U 6= ∅, if xτ ≥ yτ for all τ ∈ U with at least one strict inequality and
xτ = yτ for all τ ∈ {1, . . . , T} \U, then

x � y.

Thus, the examples also show that strengthening the monotonicity axiom in this way does
not affect the independence of the axioms. Note that our ordering %r possess this stronger
property.

A.1 Recovery neutrality

Let δ ∈ (0, 1) and define, for all x ∈ Ω1,

r1(x) =
a(σx)

a(σx) +
∑

t∈U(σx) δ
t−d(σx) · (xs(σx) − xt)

and, for all x, y ∈ Ω1, x %1 y if and only if r1(x) ≥ r1(y). The ordering %1 satisfies all our
axioms except for recovery neutrality.

A.2 Recovery translation invariance

Let δ ∈ (0, 1) and define, for all x ∈ Ω1,

r2(x) =
a(σx)

a(σx) +
∑

t∈U(σx) δ
t−d(σx) · (xs(σx) − xπ(t))

,

where π : U(σx)→ U(σx) is a bijection satisfying xπ(t) ≤ xπ(t+1) for all t ∈ U(σx)\{u(σx)},
and, for all x, y ∈ Ω1, x %2 y if and only if r2(x) ≥ r2(y). The ordering %2 satisfies all our
axioms except for recovery translation invariance.

A.3 Recovery monotonicity

Let %3 be the universal indifference relation, that is, for all x, y ∈ Ω1, x ∼3 y. The ordering
%3 satisfies all our axioms except for recovery monotonicity.
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A.4 Amplitude and recovery consistency

Define, for all x ∈ Ω1,

r4(x) =
a(σx) · (d(σx)− s(σx))

a(σx) · (d(σx)− s(σx)) + b(σx)

and, for all x, y ∈ Ω1, x %4 y if and only if r4(x) ≥ r4(y). The ordering %4 satisfies all our
axioms except for amplitude and recovery consistency.

A.5 Continuity

Define, for all x ∈ Ω1,

r5(x) =
a(σx)

a(σx) + |Ux| · b(σx)
and, for all x, y ∈ Ω1, x %5 y if and only if r5(x) ≥ r5(y). The ordering %5 satisfies all our
axioms except for continuity.

A.6 Affine invariance

Define, for all x, y ∈ Ω1, x %6 y if and only if b(σx) ≤ b(σy). The ordering %6 satisfies all
our axioms except for affine invariance.
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