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Carbon taxes are commonly seen as a rational policy response to
climate change, but little is known about their performance from an
ex-post perspective. This paper analyzes the emissions and cost im-
pacts of the UK CPS, a carbon tax levied on all fossil-fired power
plants. To overcome the problem of a missing control group, we
propose a novel approach for policy evaluation which leverages eco-
nomic theory and machine learning techniques for counterfactual
prediction. Our results indicate that in the period 2013-2016 the
CPS lowered emissions by 6.2 percent at an average cost of e18
per ton. We find substantial temporal heterogeneity in tax-induced
impacts which stems from variation in relative fuel prices. An im-
portant implication for climate policy is that a higher carbon tax
does not necessarily lead to higher emissions reductions or higher
costs. (JEL C54, Q48, Q52, Q58, L94)

To avoid dangerous and costly climate change, the disposal space for carbon
dioxide (CO2) in the atmosphere is “scarce” and will soon be exhausted (McGlade
and Ekins, 2015; IPCC, 2018). In tackling this major 21st-century challenge, and
based on an elementary understanding of how today’s market-oriented systems
organize economic activity based on scarce resources, economists have long been
advocating for carbon pricing as an effective and efficient policy response (Nord-
haus, 1994; Goulder and Parry, 2008; Metcalf, 2009). About one quarter of global
CO2 emissions are currently regulated under some form of carbon pricing (World
Bank, 2018). While a plethora of studies offers ex-ante assessments of carbon pric-
ing using theoretical and quantitative simulation-based work1, surprisingly little
is known about the ex-post effects of carbon pricing. This, however, is pivotal for
designing effective and efficient climate policies in the future.

This paper contributes by providing an ex-post evaluation of a real-world policy
experiment of carbon pricing: the UK carbon tax, also known as the Carbon Price

∗ Abrell: Center for Energy and Environment of ZHAW Winterthur and Centre for Energy Policy
and Economics ETH Zurich, Switzerland (email: jan.abrell@zhaw.ch). Kosch: Center for Energy and
Environment of ZHAW Winterthur and Centre for Energy Policy and Economics ETH Zurich, Switzerland
(email: mirjam.kosch@zhaw.ch). Rausch: Department of Management, Technology and Economics, ETH
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1See, for example, Tavoni et al. (2014), Golosov et al. (2014), Liski and Gerlagh (2016), Goulder,
Hafstead and Williams III (2016), Bretschger et al. (2017), and a series of papers from multi-model
comparison studies carried out under the framework of the Stanford Energy Modeling Forum for the
U.S. (Fawcett et al., 2014) and Europe (Weyant et al., 2013).
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Support (CPS). The CPS was introduced to enhance economic incentives for CO2
abatement in the heavily fossil-based UK electricity sector. As the CPS affects
the output and operating decisions of all fossil-fueled generation facilities in the
UK electricity market, the main challenge arises that no suitable control group or
counterfactual exists against which the impact on treated units can be evaluated.
In order to estimate the causal effects of the CPS policy intervention, it is thus not
possible to use standard program evaluation methods based on comparing treated
and untreated units—such as difference-in-differences (DiD), regression disconti-
nuity design, and synthetic control methods (Angrist and Pischke, 2008; Athey
and Imbens, 2017). To overcome this problem, we develop and implement a new
approach which combines economic theory and machine learning (ML) techniques
to establish causal inference of a policy intervention in settings with observational,
high-frequency data when no control group exists. We apply our approach to an-
alyze the environmental effectiveness and costs of the UK carbon tax. To our
knowledge, this is the first paper in economics to incorporate ML methods to
conduct causal inference of carbon pricing.

The proposed approach to estimate treatment effects in the absence of a control
group comprises three main steps. We first derive a structural causal model of
the observed outcomes (electricity output by power plant) based on an economic
model of wholesale market activity. We then use ML techniques optimized for out-
of-sample prediction (Mullainathan and Spiess, 2017) to train the causal model,
i.e. to estimate a predictor function for electricity output of each plant in the market
given fuel prices, available capacities, and demand. We train the model based on
both pre- and post-intervention data combining hourly panel data of electricity
output at the plant level with market information on hourly demand, production
capacities by power plant, fuel and carbon prices, temperature. As the UK CPS
is adjusted annually, thereby only providing four tax rate levels over our sample
period, we exploit the variation in the relative market prices for coal and natural gas
in order to overcome the problem of insufficient variation in the treatment variable.
As the market substitution from carbon-intensive coal-fired power plants to less
polluting natural gas plants hinges on relative fuel prices, we identify the impact of
the CPS on plant output by using the carbon price-inclusive fuel price ratio as the
pseudo-treatment variable. The core idea of our approach, following Pearl (2009)
and his “do()” operator concept, rests on performing a counterfactual intervention
based on a causal model: we predict the outcome for a counterfactual value of
the treatment using a causal and ML-trained model in which one can control the
treatment variable. Given the objective to evaluate the electricity market impacts
of the UK CPS, we estimate the treatment effect for each power plant as the
difference between predicted outcomes with and without the CPS policy. In doing
so, we account for the potential impacts stemming from unobserved variables as
well as systematic prediction errors related the ML algorithm.

An important advantage of our approach that is based on a causal, ML-trained
model is its ability to explicitly represent the channels through which the policy
intervention affects the outcome variable. As our pseudo-treatment variable—the
carbon price-inclusive fuel price ratio, which trivially contains the case of no CPS
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policy—is already observed before the CPS policy is introduced, we can use ob-
servations from both the pre- and post-treatment period to train the model. This
improves the basis for learning about the key mechanisms between input prices
and output through which the policy intervention impacts the economic behavior
of firms’ output. In addition, the application of ML techniques enables the devel-
opment of nonparametric predictors and thus the nonparametric identification of
treatment effects. Beyond the estimation of total treatment effects, we can perform
simulations with the causal, ML-trained model to assess the impacts of different
(hypothetical) treatment intensities—a feature we exploit to analyze the empirical
determinants of the environmental effectiveness and abatement costs of a carbon
tax policy.

Our ex-post evaluation of the UK carbon tax policy yields the following main in-
sights. First, our analysis provides strong evidence that a carbon tax is an effective
regulatory instrument to reduce CO2 emissions: the CPS induced a substitution
away from “dirty” coal to cleaner natural gas-fired power plants—replacing about
15 percent or 46 TWh of coal-based generation and reducing emissions by 6.2 per-
cent between 2013 and 2016. Second, the abatement of one ton of CO2 has brought
about on average additional costs of e 18.2 in total for consumers and fossil-based
electricity producers. Third, we find that there is substantial heterogeneity in the
carbon tax-induced abatement quantity and costs impacts over time. Simulating
the machine-learned model, we characterize the empirical conditions which influ-
ence the environmental effectiveness and costs of the tax policy. We find that the
heterogeneity is mainly driven by the variation in the relative carbon tax-exclusive
prices for coal and natural gas and only to a limited extent by the carbon tax
rate itself. The important implication for climate policy is that a higher carbon
tax does not necessarily deliver higher emissions reductions. At the same time, a
higher carbon tax need not necessarily result in higher abatement costs.2

Our paper contributes to the literature in several important ways. First, we add
to the recent and emerging literature on the use of ML techniques in economics
and quantitative social science. Traditionally, ML methods have been used for
pure prediction problems such as demand estimations (Bajari et al., 2015). More
recently, ML methods have provided important new tools to improve the estima-
tion of causal effects from observational data in high-dimensional settings as they
enable to flexibly control for a large number of covariates (for overview articles see,
for example, Varian, 2014; Athey, 2017; Athey and Imbens, 2017; Mullainathan
and Spiess, 2017). Burlig et al. (2017) and Cicala (2017) are two recent exam-
ples using ML algorithms to estimate causal effects. Our approach differs in two
important ways. First, they deal with discrete treatment leading to a change in
the data generating process (DGP) between the pre- and the post-treatment pe-
riod. They, therefore, use the pre-treatment period to train a model predicting

2A by-product of our ex-post evaluation of the UK CPS is the derivation of empirical marginal abate-
ment cost (MAC) curves for the UK electricity sector, i.e. relationships between tons of emissions abated
and the CO2 price. MACs have been widely used as reduced-form tools to inform policy-making and to
illustrate simple economic concepts such as the benefits of emissions trading (Ellerman and Decaux, 1998;
Klepper and Peterson, 2006; Morris, Paltsev and Reilly, 2012).
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the post-treatment outcome without the intervention. In contrast, we deal with
a setting with an invariant DGP and continuous treatments. Therefore, we are
able to train the model on the full sample, but at the same time have to rely on
the continuity of treatment or, alternatively, have to identify a (continuous) vari-
able with the same causal impact as the treatment variable. Second, ML based
predictions have to deal with prediction errors. Burlig et al. (2017) and Cicala
(2017) assume that prediction errors have similar trends across treatment and con-
trol groups. Therefore, they use a DiD estimator to eliminate biases caused by
prediction errors. In contrast, we eliminate this bias comparing predicted values
of observed and counterfactual values, i.e. we assume that prediction errors are in-
dependent of treatment levels. This allows us to estimate the impact of treatment
without a control group. Varian (2016) mentions the possibility of estimating treat-
ment effects by constructing the unobserved counterfactual when no control group
is available. To the best of our knowledge this paper provides the first empirical
implementation of this idea in economics.

Second, there exists only a handful of studies using econometric and program
evaluation methods to quantify the environmental impacts of carbon pricing, be
it through a tax- or quantity-based approach to regulation.3 An overview of the
work focusing on the EU ETS is provided by Martin, Muûls and Wagner (2016).
The paper by McGuinness and Ellerman (2008) estimate the impact of permit
prices on the output of power plants in the UK. Using a panel regression, they
quantify the emissions offset in the British power sector for the pilot trading period
of the EU ETS. Martin, De Preux and Wagner (2014) analyze the impacts of
the Climate Change Levy on manufacturing plants in the UK. Using panel data
on manufacturing plants in the UK, their identification strategy builds on the
comparison of outcomes between plants subject to the full tax and plants paying
only 20 percent of the tax. Leroutier (2019) estimates the impact of the UK
carbon price floor on CO2 emissions using a synthethic control group method
which relies on constructing a “no-policy” counterfactual UK power sector from a
combination of other European countries.4 With this paper, we contribute to the
scarce empirical evidence on the economic impacts of carbon taxes by applying an
estimation strategy which can be used in a setting without a control group.

Third, a recent and growing literature, following the U.S. shale gas boom after
2005, uses the variation in natural gas prices to empirically estimate the impact of
fuel prices on CO2 and other pollutants stemming from electricity generation (see,
for example, Knittel, Metaxoglou and Trindade, 2015; Linn, Muehlenbachs and
Wang, 2014; Holladay, Soloway et al., 2016; Holladay and LaRiviere, 2017). Cullen
and Mansur (2017) and Lu, Salovaara and McElroy (2012) exploit the fact that
the introduction of a carbon price impacts emissions through the same economic

3The likely reason for the scarce literature is that it is difficult to find a good “no-policy” counterfactual.
This is particularly true for the power sector where carbon pricing policies typically cover almost all carbon-
emitting installations (Leroutier, 2019).

4Fowlie, Holland and Mansur (2012) evaluate the NOx emissions reduction delivered by the Southern
California’s emission trading program. To construct the counterfactual, they exploit program-specific par-
ticipation requirements allowing them to match regulated facilities with similar facilities in nonattainment
areas.
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mechanism as a change in gas prices. Similar to our approach, these studies use
the variation in natural gas prices to estimate the impact of a hypothetical carbon
pricing policy on emissions. We contribute with an ex-post assessment of a real-
world carbon tax policy.

Fourth, studies investigating the environmental impact of carbon pricing in the
electricity sector are abundant but the vast majority of the work relies on nu-
merical simulation methods based on strong theory-driven behavioral assumptions
and, sometimes, insufficiently validated empirical hypotheses (see, for example,
Delarue, Ellerman and D’Haeseleer, 2010b; Delarue, Voorspools and D’Haeseleer,
2008; Rausch and Mowers, 2014; Goulder, Hafstead and Williams III, 2016; Abrell
and Rausch, 2016). Some of the economic mechanisms at work, which we empiri-
cally identify in our analysis, have already been analyzed using ex-ante policy anal-
ysis based on analytical and simulation models. For example, Kirat and Ahamada
(2011) show that the high permit prices induced a switch in the merit order from
coal to gas. Delarue, Ellerman and D’Haeseleer (2010a) show that abatement does
not only depend on the level of carbon prices but also on demand and the ratio
between coal and gas prices. Some studies model the fuel switching potential for
hypothetical carbon pricing policies as in Pettersson, Söderholm and Lundmark
(2012) for the EU ETS and Chevallier et al. (2012) for the UK.

The remainder of this paper is organized as follows. Section I presents our
methodological framework to estimate the treatment effects of a policy intervention
in the absence of a control group. Section II details how we apply the framework
to assess the CO2 abatement quantity and costs of the UK carbon tax, including
a description of data sources. Section III scrutinizes the validity our approach for
estimating the causal effects of the policy intervention. Section IV presents our
main findings. Section V analyzes the determinants of environmental effectiveness
and costs of the UK carbon tax. Section VI concludes.

I. Conceptual Framework

A. Overview

We begin by providing a conceptual description of our proposed framework to
estimate the causal effects of a policy intervention when a suitable control group
does not exist and when treatment intensity varies over time but not across treated
units. The framework comprises three major steps:

Step 1: Deriving a structural model of the observed outcomes based on economic
theory which is invariant to the policy intervention;

Step 2: Using machine-learning (ML) techniques to train the causal model, i.e. to
estimate a predictor of outcomes based on the causal model;

Step 3: Estimating the treatment effect as the difference between predicted out-
comes under observed and counterfactual values of the policy intervention
(while holding other controls constant).
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Before turning to a detailed description of each of the three steps, two general
features of our proposed method are important to emphasize. First, it does not
rely on the existence of multiple units. The estimation of the predictor function
requires sufficient data for a single unit. As a consequence, we derive a time-unit
specific treatment effect which can also be computed for a single unit. Second, by
relying on ML techniques we allow for non-parametric predictors and therefore for
the non-parametric identification of treatment effects.

B. The Causal Model

Consider a population model according to which the outcome yit of unit i in
period t is generated according to

yit = fi (xit, hit, zt ) + εit ,(1)

where zt is the treatment received by all units at time t. xit and hit are vectors
of observed and unobserved control variables, respectively. εit is a random noise
which is distributed with zero mean, E[εit ] = 0 and variance σ2

ε , εit ∼ (0, σ2
ε ). εit is

independent of controls and treatment:

εit y (xit, hit, zt ) ∀i, t .(2)

For each unit i, we observe a sample of outcomes Yi := (yi1, yi2, · · · , yiT )> and
control variables Xi := (xi1, xi2, · · · , xiT )> of size T , where T is the number of time
periods. While outcomes and controls are observed at the unit level, observed
treatment levels are uniform across the population, i.e. we only observe the sam-
ple of treatment levels Z := (z1, z2, · · · , zT )>—as is, for example, the case for an
environmental tax which is levied equally on all units in the market.

We are interested in identifying the causal effect on outcome which is induced
by a change in the treatment level from its observed value zt to a specific value
zt . To derive the effect of a change in the treatment variables z, we make use
of an important assumption on the data generating process given by equation
(1): the function fi is invariant to changes in the treatment and control variables
(Peters, Bühlmann and Meinshausen, 2016) or, put differently, fi is assumed to
be autonomous (Haavelmo, 1944; Aldrich, 1989). Given the invariance property,
we are able to change the treatment variable and use the autonomous process
to calculate the outcome under the changed treatment. The treatment effect is
then defined as the difference between observed outcomes yit , which realized under
observed treatment levels zt , and counterfactual outcomes yzit under hypothetical
treatment levels zt :

δzit := yit − yzit ∀i, t(3)

The fundamental problem of causal inference (Holland, 1986), often also referred
to as the missing data problem (Rubin, 1974), is that we do not observe yzit and
hence cannot directly calculate the treatment effect. If the treatment level varies
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across units, for example, matching or difference-in-differences (DiD) methods have
been put forward to solve this problem by exploiting the existence of treated and
untreated, i.e. control, units. The fundamental challenge of our policy evaluation
problem is, however, that the treatment (i.e., the carbon tax in the electricity
sector) is uniform across the entire population (i.e., it is imposed equally on all
power plants in the market). We are thus charged with the problem of finding a
way to estimate the causal effect of the policy intervention without the possibility
of relying on an untreated control group.

We propose to overcome the missing data problem by making use of counter-
factual simulation which can create the unobserved outcomes yzit . The main idea
of our proposed approach is to predict the outcome for a counterfactual level of
the treatment using a causal model for which we can change, i.e. control, the
treatment variable. Pearl (2009) conceptualizes such a counterfactual intervention
based on a causal model by his do () operator. Given the possibility to perform
do ()-interventions, we can re-write the treatment effect as:

δzit := yit − fi (xit, hit, do (zt = zt )) − εit ∀i, t .(4)

In order to calculate counterfactual outcomes, the following two assumptions
concerning the interaction between controls and the treatment variable have to be
satisfied:

ASSUMPTION 1: Observed controls are independent of the changes in the treat-
ment variable: xit y zt .

ASSUMPTION 2: Unobserved controls are conditionally independent to changes
in the treatment variable given the observed controls: hit y zt |xit .

Assumption 1 rules out effects of the treatment variable on observed controls.
This assumption is necessary as the observed controls are held constant in the
counterfactual simulation. Otherwise, if z influences x, there would be an indirect
effect on the outcome, which would bias our estimate of the treatment effect.

Assumption 2 rules out effects of the treatment variable on unobserved variables
after controlling for the observed variables. Again, if z would influence h, there
would be an indirect effect on the outcome. It is important to note that Assump-
tion 2 does not rule out an effect of unobserved controls. It only implies that once
we include all observed controls into the model, the impact of unobserved variables
is independent of the treatment level, and, thus, a change in the treatment does
not affect the outcome indirectly by changing unobserved variables.

C. Using Machine Learning for Prediction Models

To predict counterfactual outcomes yzit , we need an estimator f̂i of the function
fi that produces reliable out-of-sample predictions. We harness the power of ML
methods which—in contrast to traditional econometric methods focused on consis-
tently estimating in-sample parameters of f —are optimized to predict the value
of the outcome variable (Mullainathan and Spiess, 2017).
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Out-of-sample optimization is typically achieved by minimizing the expected
prediction error. We use the mean squared error (MSE) as a measure of prediction
quality whose expected value can be decomposed as follows (see, for example,
Hastie, Tibshirani and Friedman, 2008; Gareth et al., 2013):

E[MSEi] = E[
(
yi − f̂i

)2
] = σ2

ε +
(
E[ f̂i] − fi

)2︸          ︷︷          ︸
= Bias2( f̂i)

+E[
(
E[ f̂i] − f̂i

)2
]︸              ︷︷              ︸

= Variance( f̂i)

.(5)

The expected prediction error thus consists of three parts: an irreducible popula-
tion error, which corresponds to the variance of the random noise σ2

ε , and bias and
variance terms which are both reducible. Standard econometric techniques such
as OLS aim at minimizing the bias while allowing for high variance. While these
methods are thus capable of representing very well the sample data, they are prone
to over-fitting and they yield prediction outcomes that are highly dependent on
the observed sample.

ML methods, in contrast, solve a bias-variance trade-off in order to find the
best prediction model. They address this trade-off by introducing hyper- or tun-
ing parameters in the estimation function. These parameters control for model
complexity by decreasing the variance at the cost of a higher bias. The selection
of hyper-parameters α is achieved through a process called cross-validation (CV),
which makes optimal use of the available data. The CV process starts by splitting
the observed sample into several subsets. One of the subsets, called the training
set, is then used to estimate the predictor for a given set of hyper-parameters, f̂ αi ,
by minimizing the expected in-sample MSE:

f̂ αi := arg min
fi ∈F

∑
t

[(
yit − f̂ αi (xit, zt )

)]2
(6)

where F denotes the set of all possible functions fi. The out-of-sample MSE is
then computed on the remaining data—called the test or hold-out set—which
has not been used for the estimation. Repeating this procedure for all subsets and
averaging over all out-of-sample MSE yields an estimate of the expected prediction
error for a given set of hyper-parameters α.

The optimal set of hyper-parameters α∗ is the one that minimizes the expected
prediction error which is obtained from using a grid search over different candidate
sets. Given α∗, the final predictor f̂ α∗i is obtained by solving the problem in
equation (6) on the full sample of data. Finally, the true value of outcome in
equation (1) can be written as the the sum of the predicted value and the prediction
error ξ (xit, hit, zt ):

yit = f̂ α∗i (xit, zt ) + fi (xit, hit, zt ) − f̂ α∗i (xit, zt )︸                              ︷︷                              ︸
=:ξ(xit,hit,zt )

+εit .(7)
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D. Estimation of Treatment Effects through Counterfactual Simulation

In the last step, we use f̂ α∗i to predict the missing outcome under a counter-
factual level of the treatment. A simple estimator of the treatment effect would
then compare observed outcomes under treatment with predicted outcomes without
treatment as suggested by equation (4). Doing so would, however, result in biased
estimates due to the prediction error shown in equation (7).5 To estimate the
treatment effect, we therefore need to eliminate the prediction error. This requires
a further assumption:

ASSUMPTION 3: The prediction error ξ (xit, hit, zt ) is independent of the treat-
ment:

ξ
(
xit, hit, z0

t

)
= ξ

(
xit, hit, z1

t

)
= ξ (xit, hit ) ∀ z0

t , z
1
t .

Assumption 3 implies that the prediction error only depends on observed and
unobserved variables, but does not change between the prediction of observed and
counterfactual outcomes. Consequently, it allows to estimate the treatment effect
δ̂zit as the difference between the predicted values of observed outcomes and the
predicted values of counterfactual outcomes:

δ̂zit = f̂ α∗i (xit, zt )︸        ︷︷        ︸
Prediction based on
observed treatment

− f̂ α∗i (xit, do (zt = zt ))︸                     ︷︷                     ︸
Prediction based on

counterfactual treatment

(8)

= yit − ξ (xit, hit ) − εit −
[
yzit − ξ (xit, hit ) − ε

z
it

]
= yit − yzit + φit ,

where φit := εzit − εit is random noise with mean zero. As we only change the
treatment variable and as observed and unobserved variables are independent of
the treatment (Assumptions 1 and 2), Assumption 3 allows us to eliminate the
prediction bias and the impact of unobserved variables in the estimation, and
hence the identification of the treatment effect. Assumption 3 is analogous to the
parallel trend assumption in a DiD setting.6

A potential concern for Assumption 3 and therefore the estimation of δ̂zit is the
quality of predictions based on unobserved counterfactual values. To ensure a valid
prediction, two additional assumptions regarding the data need to be satisfied.

5Using the definition of the treatment effect (3) and equation (7), an estimator comparing the ob-
served values yit with a predicted counterfactual value yield: δ̂zit = yit − f̂ α∗i (xit, zt = zt ) = yit − yzit +
ξ (xit, hit, zt = zt ) + εit . This estimator would thus be biased by the prediction error.

6Assumption 3 is one of the main differences in comparison with the approach used by Burlig et al.
(2017) and Cicala (2017). They assume that ”...treated and untreated schools [are trending] similar on
prediction errors...” (Burlig et al., 2017, pp. 18) or, likewise, ”Parallel trends in unobservables...” (Cicala,
2017, Assumption 2. p. 23) in the sense that the ”contemporaneous error”, i.e. the prediction error, is
behaving similar across regions. Given these assumptions, they are able to differentiate out the prediction
error and impact of unobservables by using control groups in a DiD setting. In contrast, and as we do not
observe a control group, we need to assume that the prediction error is independent of the treatment to
differentiate out the impact of unobservables and systematic prediction errors.
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First, although ML algorithms are designed to produce reliable out-of-sample
predictions, they only locally approximate the true model in the range of observed
treatments and covariates. It is thus unclear how the estimated functions behave
for covariate and treatment combinations which lie outside of the range of observed
combinations. To rule these cases out, we need the positivity or covariate overlap
assumption (Samii, Paler and Daly, 2016):

ASSUMPTION 4: Each combination of the counterfactual treatment z and co-
variate level X has been observed (i.e., Pr[z |X] > 0).

While it is highly unlikely that all combinations of z and X have been observed, As-
sumption 4 requires that these combinations should lie within the range of observed
data.

The last assumption concerns the variation in the level of treatment and controls
which is needed to estimate a valid predictor of the underlying structural process:

ASSUMPTION 5: The variation in the level of treatment and controls over time
is sufficiently large.

Assumption 5 implies that the impact of a change in the treatment on the out-
come can be predicted. For many policy interventions, however, treatments are
discrete and do only change infrequently. A possible remedy is to find a control
variable which affects outcome through the same causal mechanism as the treat-
ment variable. In fact, changing such a control variable implies the same change in
outcome as a change in the the treatment variable itself. For example, an archetyp-
ical problem in economics is to estimate the impact of imposing an input tax (e. g.,
a carbon tax). Here, the tax change may be a one-time event or it may comprise
only a few discrete tax changes. The impact of the tax on input costs follows,
however, the same mechanism as a change in input prices. It is thus possible to
use the variation in input prices to identify the causal mechanism of the input tax.

II. Applying the Framework to Evaluate Climate Policy: The Case of the
UK Carbon Tax

We apply the proposed framework to assess the market impacts of a carbon tax
policy using the case of the UK carbon tax. In Sections II.A and II.B we provide
information about the policy background and draw on economic theory to derive
the causal model (Step 1) Section II.C presents the data sources and construction.
Section II.D describes our empirical framework to estimate the treatment effect
(Steps 2 and 3). Section III scrutinizes the validity of our identifying assumptions
within the context of our empirical application.

A. The Policy Intervention and Confounding Factors

The main policy instrument of the UK government to decarbonize the heavily
fossil-based UK electricity sector is the Carbon Price Support (CPS), an annual
constant tax on fossil fuel use in the wholesale electricity market (Department of
Energy & Climate Change, 2016). The CPS intends to close the gap between an
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Table 1. Descriptive statistics of UK electricity market: carbon prices, generation and import capacity,
fuel prices, output, and demand.

Year
2009 2010 2011 2012 2013 2014 2015 2016

Carbon prices [e per ton of CO2]a
EUA 13.23 14.36 13.02 7.37 4.76 6.22 7.34 5.26
CPS (eper ton) – – – – 5.85 12.17 24.70 21.60
Total carbon price 13.23 14.36 13.02 7.37 10.61 18.39 32.04 26.86
(=EUA+CPS)

Capacities [GW]
Coal 25.3 25.3 25.3 24.5 19.9 18.8 19 13.8
Gas 27.3 29.5 30.2 30.3 29.3 27.4 26.6 26.1
Import 2.5 2.5 3.5 3.6 4.0 4.0 4.0 4.0

Fuel prices [e per MWh thermal energy]
Coal 7.60 10.46 13.20 10.90 9.28 8.55 7.70 8.12

(0.74) (1.55) (0.45) (0.68) (0.54) (0.35) (0.56) (2.27)
Gas 11.82 16.84 22.17 25.07 27.34 21.16 20.03 14.38

(4.47) (3.53) (1.31) (2.01) (2.79) (3.29) (2.19) (2.53)
Ratiob 0.89 0.79 0.71 0.51 0.43 0.59 0.69 0.88

(0.19) (0.07) (0.05) (0.06) (0.04) (0.09) (0.08) (0.08)

Hourly demand and generation [GWh]
Demand 27.10 28.33 25.81 24.99 23.77 22.16 20.01 19.54

(6.51) (6.58) (6.63) (6.77) (6.93) (6.23) (6.36) (6.43)
Gas generation 17.14 18.29 14.56 9.50 9.17 9.81 9.47 14.23

(3.01) (3.07) (3.79) (4.16) (5.12) (4.87) (4.43) (4.75)
Coal generation 9.81 9.97 10.70 14.35 13.11 10.13 8.17 3.27

(5.80) (5.29) (5.14) (4.04) (3.18) (4.10) (3.45) (2.88)

Notes: Standard deviations in parentheses. CPS taken from Hirst (2017) and HM Revenue & Customs
(2014) converted with exchange rate data from ECB (2017). Daily European Emission Allowances (EUA)
spot prices taken from EEX (2017). Further detail about data sources and calculations is provided in
Section II.D. aAs the CPS is adjusted in April of every year, the annual EUA and CPS carbon prices
for the years 2013-2016 are calculated based on the period from April to March of the subsequent year.
bCoal-to-gas fuel price ratio, inclusive of EUA and CPS carbon prices, calculated according to equation
(15).

envisaged minimum carbon price, the so-called Carbon Price Floor (CPF) and
the price of European Emission Allowances (EUA) traded under the European
Emissions Trading System (ETS).7 Table 1 shows the evolution of the EUA, CPS,
and the total carbon price over time. Since the introduction of the CPS in 2013,
the CPF always exceeded the EUA price, thus resulting in a positive CPS. In
2013, the modest level of the CPS led to a more than two-fold increase of the total
carbon price for the UK electricity industry. In 2016, the CPS was set at the level
of e 21.60, six times higher than the annual EUA price in this year.

To develop some first intuition for the impacts of the CPS on electricity supply
and emissions, Figure 1 plots the short-run supply curve (i.e., ordering marginal

7Prior to the introduction of the CPS, the CPS level was conceptualized to be determined two years in
advance as the difference between the EUA future price and the CPF. In 2013, the CPF was announced
to increase up to 34.5 (69) e/tCO2 in 2020 (2030). At the end of 2015, however, the UK government fixed
the CPS rate to 21.6 e/tCO2 until 2021 (Hirst, 2017). In the 2017 budget, the UK government expressed
its confidence that “the Total Carbon Price, currently created by the combination of the EU Emission
Trading System and the Carbon Price Support, is set at the right level [. . . ]” (HM Treasury, 2017, Article
3.46), thus indicating that the CPS is likely to stay at its current level in future years.
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(a) Based on hypothetical situation without CPS (b) Based on observational data with CPS

Figure 1. Illustrative impact of the UK carbon tax on the short-run market supply curve for electricity

Notes: The graph shows the merit order curve of fossil-based power plants on December 19, 2016, at 5:00
p.m. based on the data described in Section II.C. Hydro, nuclear, and renewable power plants are omitted
and their total generation is subtracted from demand as they are always dispatched first given that their
marginal cost are smaller than those of fossil-based plants. Marginal costs are calculated according to
equation (21).

cost of fossil-based power plants from low to high) for two situations:8 a hypothet-
ical situation without the CPS where marginal emissions are only priced at the
costs of an EUA (Panel a) and the observed situation with the CPS (Panel b). We
observe two main changes. First, the supply curve shifts upward—indicating the
increase in the marginal cost of all fossil plants. Second, as natural gas-fired power
plants are less carbon-intensive, they are less affected by the carbon price increase
and, therefore, become relatively cheaper. Gas plants are thus dispatched into the
market and replace emissions-intensive coal-fired plants, in turn reducing emissions.
Consistent with this basic mechanism, Panel (a) in Figure 2 shows that starting
with the introduction of the CPS in 2013 the annual market share of coal-fired
generation sharply decreased while the share of gas-fired plants increased; over the
same period, UK’s electricity-sector emissions sharply declined.

While Figures 1 and 2 provide some first evidence that the CPS may have led
to a reduction in electricity-sector CO2 emissions, there is arguably a host of other
factors which are likely to have affected the observed market outcomes. First,
the fraction of electricity demand to be covered with domestic fossil-based gener-
ation from coal and natural gas has declined between 2013-2016. This is due to,
at least, three factors: (i) negative macro-economic shocks and energy efficiency
improvements; (ii) targeted support policies have likely pushed in zero (or low)
marginal-cost generation from renewable energy whenever the underlying natu-
ral resource (wind or solar) was available; and (iii) UK’s electricity imports have
slightly increased likely due to both an expansion of newly built inter-connector
lines (see Table 1) and the fact that the CPS has increased the domestic cost of
generation relative to import prices.

Second, the switch from coal to natural gas was likely also triggered by substan-
tial changes in relative fuel price. Between 2013-2016, natural gas prices declined

8The illustrative calculation shown in the figure is based on one particular hour and assuming average
heat efficiencies for plants; it ignores the fact that heat efficiencies, and hence the impact of CPS on
individual plants, varies over time depending on temperature and other factors.
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(a) Annual electricity generation by technology and CO2 emissions over time
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(b) Monthly coal and gas prices with and without CPS

Figure 2. Generation, emissions and fuel prices

Notes: Own calculations. Electricity generation by fuel is based on ELEXON (2016). “Base” comprises
electricity generated from hydro and nuclear power plants. “Renewables” comprises wind, solar, and other
(mainly biomass) generation where generation from wind and solar is corrected for generation embedded
in final demand (Nationalgrid, 2016). “Emissions” refer to reported values from the EU Transaction Log
(European Commission, 2016). Fuel prices for coal and natural gas are taken from EIKON (2007). CPS
rates are reported by Hirst (2017) and HM Revenue & Customs (2014), and the EUA price by EEX (2017).
Carbon price inclusive fuel prices refer to MWh of thermal energy.
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by nearly 50 percent while coal prices remained largely constant (see Figure 2
Panel (b) and Table 1). This suggests that even without the introduction of the
CPS there may have been a marked shift towards gas-fired generation in the UK
electricity market.

Third, the decisions to shut down coal-fired plants, reflected in the available pro-
duction capacity for coal (see Table 1), are likely influenced by factors which are
unrelated to the CPS. A main reason for these closures is the European “Large
Combustion Plant Directive” (LCPD), which sets specific limits on local pollutant
emissions for power plants constructed after the year 1987. The LCPD left elec-
tricity firms essentially the choice to either comply with the emissions limits or to
“opt out” in which case a maximum operation time of 20’000 hours was granted
until the end of 2015 when eventually the plant had to be shut down (European
Commission, 2001).

In summary, there is ample evidence that the decline in coal generation and CO2
emissions in the UK power sector which has occurred since the introduction of the
CPS in 2013 has likely been the result of a multitude of factors comprising market
developments (international fuel prices and electricity demand) and a variety of
different policy measures (renewable energy support policies, transmission infras-
tructure measures, and the CPS). We next present our empirical framework we use
to disentangle the market impacts brought about by the carbon tax policy alone.

B. Determinants of Wholesale Electricity Market Activity

We apply microeconomic theory based on a dispatch and peak-load pricing model
of the wholesale electricity market (Boiteux, 1960) to pre-select the potentially
relevant variables determining wholesale market impacts in response to a carbon
tax. The pre-selected variables subsequently enter the ML algorithm to estimate
the empirical prediction model which is used to estimate the treatment effect of
the UK CPS.

COMPETITION IN UK’S WHOLESALE ELECTRICITY MARKET.—–The UK wholesale elec-
tricity market is a liberalized market based on exchange and over-the-counter
trades. In power exchanges, market participants can trade forward and real-time
contracts.9 In the day-ahead market, market participants trade electricity for each
hour of the next day. Given the new information in the market, these trades can
be revised using the intra-day market which closes one hour before delivery time.
In 2014 the UK regulator asked for an investigation of anti-competitive behavior
in the UK energy market. In its final report, the “Competition and Markets Au-
thority” (CMA, 2016) did not find evidence for anti-competitive behavior in the
wholesale electricity market.

A SHORT-RUN EQUILIBRIUM MODEL OF WHOLESALE MARKET ACTIVITY.—–We concep-
tualize the UK wholesale electricity market as being composed of firms which are
assumed to operate under perfect competition maximizing profits using production
quantities as the decision variable. Generation units of a firm are represented at

9Real-time trading of UK electricity mainly takes place in the EPEX-Spot and Nordpool power ex-
changes. Forward contracts are traded via the InterContinental Exchange (ICE) and NASDAQ.
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the plant level where total production of plant i ∈ I in hour t ∈ T is denoted by Xit .
The set I comprises thermal carbon-based generation plants (i.e., hard coal, lignite
coal, natural gas) and other conventional plants (i.e., nuclear, hydro, pump storage,
biomass). Generation from wind and solar is modeled exogenously. Production at
any point in time cannot exceed the given effective production capacity Kit :

(9) Kit ≥ Xit ⊥ µit ≥ 0 ∀ i, t

where the time-dependency of capacity mainly reflects maintenance and unsched-
uled plant outages. µit is the shadow price of capacity for technology i at time t.
The value of capacity in a given hour is zero (µit = 0) if production is below the
capacity limit; it is positive (µit > 0) if the capacity constraint is binding.10

Marginal cost cit (ϑit ) of a generation unit at time t depend on exogenous factors

ϑit = {p
f
t, θ

f , ηit, pEUA
t , pCPS

t }

comprising the time-dependent price of the fuel f used for electricity generation
(pf

t), the carbon content (θ f ), the time-varying EUA and CPS prices on CO2
emissions (pEUA

t and pCPS
t ), and time-specific heat efficiency (ηit) reflecting ambient

temperature (tempt) and potential efficiency losses due to part-load operation.
In equilibrium, the following zero-profit condition, relating unit costs (comprising

marginal costs and the opportunity costs for capacity) to unit revenues determines
the output of generation unit i, yit :

(10) cit (ϑit ) + µit ≥ Pt ⊥ yit ≥ 0 ∀ i, t

where Pt measures unit profits or the wholesale electricity price at time t.11 If unit
cost exceed unit profit, positive generation would lead to losses and thus yit = 0.
Given perfect competition and no barriers for market entry or exit, zero profits
in equilibrium (i.e., unit cost equal to unit profit) determine a positive level of
electricity supply yit > 0.

The market for electricity in a given hour balances if total supply is equal to
hourly demand Dt which, given our short-run analysis, we assume to be given and
price-inelastic:

(11)
∑
i

yit = Dt ⊥ Pt “free” ∀ t .

Equations (9)–(11) imply that given demand the equilibrium allocation of hourly
electricity supplies is determined by the available capacity and the marginal cost
ordering of technologies. The equilibrium outcome of each plant i, y∗it , thus depends

10We use the “⊥” operator to indicate complementarity between equilibrium conditions and variables.
A characteristic of economic equilibrium models is that they can be cast as a complementarity problem,
i.e. given a function F: Rn −→ Rn , find z ∈ Rn such that F(z) ≥ 0, z ≥ 0, and zT F(z) = 0, or, in short-hand
notation, F(z) ≥ 0 ⊥ z ≥ 0 (Mathiesen, 1985; Rutherford, 1995).

11Equation (10) determines the price as the marginal cost of the marginal generator, i.e. the generation
that earns zero capacity rent in the given hour (µit = 0).
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on demand, and its own as well as the marginal cost and available capacities of all
other plants (indicated by −i):

y∗it = Fit
(
Dt, cit (ϑit ),Kit, c(−i)t

(
ϑ(−i)t

)
,K(−i)t

)
.(12)

Equation (12) identifies the major determinants of the power plants’ outputs,
including the responses to a carbon tax policy, by modelling wholesale market ac-
tivity based on first principles of producer behavior and equilibrium-based market
interactions.

GRAPHICAL REPRESENTATION OF THE STRUCTURAL MARKET MODEL.—–We make use
of directed acyclic graphs (DAGs) to graphically illustrate the causal relationships
between variables of the structural electricity market model summarized in equa-
tion (12) and to briefly describe how one can obtain treatment effects.

In a DAG, model variables are represented by nodes. If an arrow runs from
node A to node B, A is called a parent of B. A graph is called acyclic, if there
is no series of arrows which starts and ends in the same variable. A causal DAG
associates “parent” with “direct cause”, with an arrow indicating the directed
causal relation between two variables. The important insight from Pearl (2009) is
that in the absence of any indirect paths, one can use the do-operator to perform a
hypothetical intervention on the treatment variable while holding all other controls
constant. This implies that it is possible to use the structural model to obtain
the unobserved counterfactual outcome of “no policy” by setting the treatment
variable to zero. The treatment effect can then be derived as the difference between
outcomes with and without policy intervention.

Figure 3 uses two DAGs to depict the structural electricity market model in (12).
The left-hand DAG shows treatment (pCPS) and control variables determining the
marginal cost of plant i (ci). Consistent with equation (10), the plant-specific
heat efficiency together with fuel prices, carbon prices, and the fuel-specific carbon
intensity determine ci. The right-hand DAG then shows how marginal cost and
capacities of all plants determine aggregate supply S and, together with demand
D, the equilibrium market output y∗i of power plant i. This representation implies
that the central model (12) should not be viewed as portraying the output decision
of a single plant; the dependence of the equilibrium quantities on own and other
generators’ marginal cost and demand can also be understood in terms of bid
functions on the market level. Under perfect competition each generator bids
the whole capacity at marginal cost into the market, leading to the supply curve
S. The market operator then chooses the cheapest bids until demand is fulfilled.
Consequently, the acceptance of a bid depends on the ordering of marginal cost in
the entire market as well as available capacities and demand.

Figure 3 also visualizes Assumptions 1 and 2: the only path from the treatment
variable pCPS to outcome y∗i is through marginal cost and supply. In particular, the
observed controls (i.e., white nodes) are independent of the changes in the treat-
ment variable; and unobserved controls are conditionally independent to changes
in the treatment variable given the observed controls (i.e., there are no effects of
the treatment variable on unobserved variables after controlling for the observed
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Figure 3. Hypothesized directed causal relations in the structural model of the electricity market

Notes: The treatment variable (the UK carbon tax, pCPS) and outcome variable (power plant output, y∗i )
are shaded in dark grey. White-shaded variables represent exogenous controls. Light grey-shaded variables
denote derived variables. An arrow represents a direct cause. The left graph shows how treatment and
control variables affect the marginal cost of a generator. The right graph shows how marginal cost and
available capacity of all generators as well as aggregate market demand determine the output of a generator
in a given hour. Time subscript t is dropped for the ease of notation.

variables).
To summarize, up to this point we have simply used economic theory to derive

a structural model for equilibrium outputs of power plants. In order to perform
counterfactual analysis and identify the causal impact of the UK carbon tax, we
need to ensure that the relationships which are asserted in Figure 3 are valid.
Before turning to this issue in Section III, we next present our data and empirical
framework.

C. Data Sources and Construction

To obtain measurements for the empirical counterparts of all RHS variables in
(12), we combine data from different (and publicly available) sources. We use
panel data of hourly generation for each UK fossil-fuel power plant covering the
2009-2016 period. In addition, we use data on available hourly capacity, technical
characteristics of each plant, non-fossil generation, demand, daily fuel and carbon
prices, and weather data.

HOURLY OUTPUT BY PLANT (yit ).—–We use “final physical notification” (FPN) data
provided by the operator of the UK electricity balancing system (ELEXON, 2016)
as the hourly generation of each fossil power plant unit for the whole sample period.
FPN reports the final, five minutes before delivery time generation announcement
of power plant owners to the grid operator. Although the grid operator might
adjust this announcement due to the need for balancing power or re-dispatching
measures, these data can be viewed as a reasonable measures for generation (which
is not directly observable for UK power plants). As the data on carbon emissions
are only available at a plant level, we aggregate power plant units to power plants
for our analysis.
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Table 2. Power plant characteristics.

Plant Installed Average heat Emissions rate ei Opening/
capacity [MW] efficiency ηi [–] [ton of CO2/MWh] closing datea

Natural gas plants
Pembroke 2269 0.60 0.34 end 2012/–
Peterhead 2134 0.55 0.36 –/March 2014
Staythorpe 1792 0.58 0.34 2010/–
Didcot CCGT 1404 0.55 0.36 –/–
Connahs Quay 1380 0.48 0.42 –/–
West Burton CCGT 1332 0.51 0.40 –/–
Grain CHP 1305 0.56 0.36 –/–
South Humber 1239 0.50 0.40 –/–
Seabank 1169 0.55 0.36 –/–
Saltend South 1164 0.52 0.38 –/–
Teesside 1155 0.45 0.44 –/Feb. 2013
Immingham CHP 1123 0.44 0.46 –/–
Barking 945 0.46 0.44 –/Dec. 2012
Langage 905 0.55 0.37 –/–
Marchwood 898 0.58 0.34 –/–
Killingholme 854 0.48 0.42 –/March 2015
Severn 850 0.54 0.37 –/–
Spalding 830 0.54 0.37 –/–
Rocksavage 800 0.53 0.38 –/–
Sutton Bridge 796 0.52 0.39 –/–
Damhead Creek 783 0.53 0.38 –/–
Coryton 770 0.52 0.38 –/–
Little Barford 740 0.54 0.37 –/–
Rye House 715 0.43 0.46 –/–
Keadby 700 0.47 0.42 –/Feb. 2013
Medway 680 0.53 0.38 –/–
Baglan Bay 520 0.57 0.35 –/–
Deeside 498 0.47 0.42 Dec. 2011/–
Great Yarmouth 420 0.56 0.35 –/–
Shoreham 420 0.54 0.37 –/–
Enfield Energy 408 0.53 0.38 –/–
Corby 401 0.39 0.51 –/Oct. 2015
Cottam CCGT 395 0.55 0.36 -/-
Kings Lynn 325 0.52 0.39 -/March 2012
Peterborough 316 0.37 0.54 -/Dec. 2011
Average natural gas plantb 0.51 0.40

Coal plants
Longannet 2304 0.42 0.81 –/March 2016
Didcot COAL 2108 0.39 0.88 -/March 2013
Cottam 2000 0.39 0.86 –/–
Ratcliffe 2000 0.38 0.89 –/–
West Burton COAL 1972 0.38 0.90 –/–
Fiddlers Ferry 1961 0.37 0.92 –/March 2016
Ferrybridge 1960 0.38 0.89 –/March 2016
Drax COAL 1947 0.38 0.90 –/–
Kingsnorth 1940 0.36 0.94 –/Dec. 2012
Eggborough 1932 0.37 0.92 –/–
Aberthaw 1641 0.41 0.82 –/–
Cockenzie 1200 0.38 0.91 –/March 2013
Rugeley 996 0.39 0.88 –/June 2016
Ironbridge 964 0.35 0.98 –/March 2012
Uskmouth 363 0.33 1.04 –/–
Average coal plantb 0.38 0.89

Notes: Installed capacities, fuel type, and plant opening and closure dates are provided by Variable Pitch
(2016) and Nationalgrid (2011). For data sources and calculations of heat efficiencies and emission rates see
text. a“–” indicates that the plants’ opening or closure date lies outside of the sample period 2009–2016.
bCalculated using installed capacities as weights.
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Figure 4. Carbon-price inclusive (rt ) and exclusive (r t ) ratio of coal to natural gas fuel prices over the
sample period 2009–2016

Notes: Monthly average values based on daily fuel prices for coal and natural gas taken from on EIKON
(2007). For coal, we use the “ICE CIF ARA Near Month Future”. Natural gas prices are “NBP Hub 1st
Day Futures”. All prices are converted to Euro values using daily exchange rates provided by the ECB
(2017).

FUEL PRICES (pfuel
t ).—–Data on daily fuel prices for coal and natural gas are taken

from EIKON (2007). For coal, we use the “ICE CIF ARA Near Month Future”.
Natural gas prices are “NBP Hub 1st Day Futures”. All prices are converted to
Euro values using daily exchange rates provided by the ECB (2017). Figure 4
plots the time series of monthly-averaged daily fuel price ratio with and without
the CPS showing a substantial variation—ranging approximately between 0.4 and
1—over the sample period.

CARBON PRICES (pCPS
t and pEUA

t ).—–CPS rates are reported by Hirst (2017) and
HM Revenue & Customs (2014) and the EUA price by EEX (2017). Note that the
CPS rate is an annually constant tax in British Pound but reflects exchange rate
variations due to conversion to Euro values ECB (2017).

EMISSIONS FACTORS AND PLANT-SPECIFIC HEAT EFFICIENCIES (θ f and ηi).—–We take
fuel-specific emissions factors from IPCC (2006): 0.34 and 0.20 tons of CO2 per
MWh of thermal energy for coal and natural gas, respectively. CO2 emissions
for each plant i and year y (Eiy) are taken from the official registry of the EUTL
(European Commission, 2016). Dividing total emissions by total generation per
plant, we obtain plant-specific average emission rates: ei =

∑
y Eiy/(

∑
t yit ). We

then calculate average heat efficiencies for each plant as:

ηi = θ
f /ei .(13)

Table 2 shows these technical characteristics for each plant in the sample. The
average heat efficiency is around 51 percent for natural gas and 38 percent for coal
plants. The emission rates, on the other hand, are significantly higher for coal
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(0.89 tCO2/MWh) than for gas (0.40 tCO2/MWh). As we only observe emissions
on an annual level, we can only calculate average heat efficiencies. Therefore,
hourly changes in heat efficiencies due to, e. g., start-up or ramping constraints,
are not considered in our calculations of the emissions impact of the CPS.

AVAILABLE CAPACITY BY PLANT BY HOUR (Kit ).—–Installed capacities (shown in
Table 2) are provided by Variable Pitch (2016) and Nationalgrid (2011). If observed
generation exceeds installed capacity beyond the 95th percentile, we set the value
of installed capacity equal to the 95th percentile of generation.

In addition, data on the maximal output that a plant can provide in a given
hour—accounting for permanent and temporary outages due to maintenance or
other reasons—the so-called “maximum export limits” (MEL), are provided by
ELEXON (2016). Using hourly MEL, we construct a measure of available genera-
tion units for each plant: We set the availability of a unit to zero if MEL is zero,
and to one otherwise. Summing over all units of a power plant, we obtain a count
variable indicating the number of units available per plant, which we use as a proxy
for hourly available capacity.

Not all plants in our data run over the entire sample period from 2009–2016 (see
Table 2). For years in our sample period during which a plant has been shut down
or not yet opened, we set the capacity to zero. In line with this, we also do not
predict its counterfactual generation different from zero for these periods, i.e. the
impact of the CPS will be zero by assumption.

DEMAND (Dt ).—–We measure Dt as residual demand, defined as the total output
generated by all coal- and natural gas-fired plants using data from ELEXON (2016)
on hourly generation aggregated by fuel type.

TEMPERATURE.—–We use data on daily temperature provided by ECA&D (2016)
to account for time-specific effects on plant-level heat efficiency.

Finally, Table A1 is the Appendix provides descriptive statistics of demand, gen-
eration by technology, and imports on an hourly level.

D. The Empirical Framework.

We now turn to the implementation of our conceptual framework established
in Section I within the context of the UK CPS. First, we use the information
about electricity markets to derive a model of observed outcomes (i.e., generation
of each plant), which is invariant to the policy intervention (i.e., the CPS). Second,
we use available data and ML algorithms to estimate a predictor of outcomes
(i.e., predicted generation). Third, we use the prediction model to estimate the
treatment effect as the difference between predicted generation with treatment (i.e.
observed CPS) and the unobserved counterfactual (i.e., generation without CPS).
Fourth, we present our ex-post calculations to get from the impact on generation
to the impact on emissions and abatement cost. Finally, in the subsequent section,
we discuss the validity of our approach addressing our four main assumptions.

ESTIMATION EQUATION (STEP 1).—–Based on the electricity market model in Sec-
tion II.B, we know that the equilibrium outcome of each plant i depends on demand
Dt , and its own as well as the marginal cost and available capacities Kit of all other
plants. As we do not directly observe plants’ (or generators’) marginal costs and
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heat efficiencies (ηit), we exploit the fact that they depend on ambient tempera-
ture and thus additionally include daily mean temperature (tempt). The empirical
analogue of (12) then becomes:

yit = fi
[
rt

(
pcoal
t , pgas

t , θf, pEUA
t , pCPS

t

)
, tempt,Dt,Kit,K(−i)t,Φt

]
+ εit ,(14)

where we include time fixed effects for each hour of the day and each month of
the year (Φt) to account for possible unobserved factors which may impact plant
output; and the carbon price inclusive ratio of relative fuel prices:

rt :=
pcoal
t + θcoal (pEUA

t + pCPS
t

)
pgas
t + θgas (

pEUA
t + pCPS

t

) .(15)

While we are interested in the impact of the CPS on plants’ output decisions,
there is not sufficient variation in the treatment variable (pCPS

t ) as the CPS changes
only in annual steps. As the CPS directly impacts the fuel costs for coal and
natural gas, we can, however, exploit the variation in carbon-inclusive fuel prices—
instead of including fuel prices (pcoal

t and pgas
t ) and carbon prices (pCPS

t and pEUA
t )

separately. The implicit assumption here is that a change in fuel prices has the
same impact on plants’ marginal cost and, hence, output as a change in the carbon
price (taking into account the emissions factor of the respective fuel θfuel. Moreover,
using rt in equation (14) nicely concords with the view that it is not the absolute
but the relative fuel prices determining which plants exit or stay in the market.

MACHINE LEARNING ALGORITHM (STEP 2).—–While we know from the theoretical
electricity model in (12) and its empirical counterpart in (14) which variables affect
plants’ output decisions, we do not know the functional form of fi. To obtain an
estimator f̂i of the function fi, we therefore apply ML algorithms, which allow
for flexibel functional forms, to produce reliable out-of-sample predictions of each
plants’ output, yit .

We employ the LASSO12 algorithm (Tibshirani, 1996)—a penalized linear regres-
sion model—and use k-fold cross-validation dividing the sample into eight groups
(often called folds) to train a prediction model f̂ α

∗

i for each plant individually.13

Each prediction model consists of the set of coefficients β̂α∗ and the optimal regu-
larization parameter α∗, which lead to the best possible out-of-sample prediction.14

ESTIMATING THE IMPACT OF THE CPS.—–To simulate plants’ outputs that would
have occurred in the absence of the UK carbon tax, we set the CPS treatment

12We also used other algorithms such as random forest. However, the LASSO, an algorithm which is
linear in coefficients, lead to the most convincing simulation of the electricity market as a whole: While
other algorithms failed at implicitly fulfilling the market clearing condition (see equation (11)), the LASSO
algorithm was able to meet this condition—although it was not explicitly modelled (see also III).

13The LASSO algorithm requires a pre-defined set of input features. In addition to the variables which
appear on the RHS of (14), we include (i) interaction terms of all these variables with electricity demand,
the coal-to-gas price ratio, and temperature, and (ii) second order polynomials of these three variables.

14Appendix B assesses the out-of-sample prediction performance of the ML algorithm as compared to
standard regression analysis (OLS) for our data set. We find that the LASSO algorithm outperforms
OLS, supporting the broader insight that ML techniques can be beneficially employed to use prediction
to construct an unobserved counterfactual.
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variable to zero while leaving all other data unchanged. The counterfactual “no-
policy” level of the fuel price ratio is given by:

r t :=
pcoal
t + θcoalpEUA

t

pgas
t + θgaspEUA

t

.(16)

Based on the estimator in equation (8) detailed in Section I, the impact of the
CPS on the output decision of each plant i in each hour t can then be calculated
as:

(17) δ̂CPS
it = ŷwith CPS

it − ŷwithout CPS
it ,

where

ŷwith CPS
it = f̂ α∗i

(
rt, tempt,Dt,Kit,K(−i)t,Φit

)
(18)

ŷwithout CPS
it = f̂ α∗i

(
do (zt = zt ) , tempt,Dt,Kit,K(−i)t,Φit

)
.(19)

As a closed-form solution of standard errors of the prediction is not available for
the LASSO regression (see, for example, Tibshirani, 1996), we use bootstrapping
(with sample size N=1000) to estimate the standard errors of δ̂CPS

it (Venables and
Ripley, 2002). We generate a bootstrap sample with the same length as the original
data by using random drawings with replacement. We individually bootstrap by
year to get the same amount of values from each year, thus ensuring that all years
are equally represented in each sample so as to not violate Assumption 4.

MEASURING CO2 EMISSIONS AND ABATEMENT COST.—–To calculate electricity-sector
emissions (from combustion of coal and natural gas in electricity generation) at
time t, we aggregate CO2 emissions from all plants operating in the market:

E t :=
∑
i

ei ŷwithout CPS
it︸            ︷︷            ︸
Plant-level
emissions

where the emissions of plant i are obtained by multiplying output by the plant-
specific emissions rate ei (see Table 2). Given the estimator for the CPS impact
on plant-level output (δ̂CPS

it ), we can calculate the change in electricity-sector emis-
sions impact due to the CPS as follows:

∆Et :=
∑
i

ei δ̂CPS
it .︸   ︷︷   ︸

Policy-induced change in
emissions of plant i (=: ∆Eit )

(20)

Next to its impact on generation and consequently emissions, the CPS also leads
to a change in aggregate production costs. For our ex-post calculations, we assume
marginal cost to be linear in fuel and carbon prices. Specifically, based on average
heat efficiencies (given by equation (13) and shown in Table 2) marginal cost are
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calculated as

cit (ϑit ) =
1
ηit

(
pf
t + θ

f (pEUA
t + pCPS

t )

)
.(21)

Aggregate production costs are obtained by summing over marginal generation
costs of all plants in the market at time t:

Ψt =
∑
i

ŷwith CPS
it cit (ϑit ) − ŷwithout CPS

it cit (ϑit )

���
pCPS
t =0

.

Using the definition of the treatment effect from equation (17) and plant-specific
heat efficiency from equation (13), this can be rewritten as follows:

Ψt =
∑
i

δ̂CPS
it

1
ηit

(
pf
t + θ

f pEUA
t

)
︸                              ︷︷                              ︸

=:Tt
Technical abatement

cost

+
∑
i

pCPS
t ei ŷwith CPS

it︸                     ︷︷                     ︸
=:Rt

Tax payments
due to CPS

.(22)

Ψt can thus be decomposed into two parts. T reflects the technical abatement costs
for the supply side of the market as the CPS affects plant output by re-ordering
the supply or merit order curve. In other words, the CPS leads to an increase in
(expensive) natural gas, and a decrease in (cheap) coal generation. This results in
higher total production cost for the same amount of electricity generation.

R takes into account the costs incurred due to the CPS tax paid on each unit
of generated emissions. While Ψ reflects the costs borne by the supply side of the
electricity market, this decomposition is useful as the tax payments by electricity
firms are typically recycled in a way which does not destroy the value of R. If, for
example, the tax revenues from the CPS are fully rebated to electricity consumers,
the costs of the CPS aggregated over both sides of the markets amount to T only.

III. Evaluating the Underlying Assumptions

As established in Section I.B, the validity of our approach to estimate the treat-
ment effect of the policy intervention as the simple difference between predicted
outcomes with and without the policy intervention relies on the existence of a
causal model, fi, and a set of assumptions. A general caveat applies here: given
observational data, it is impossible to fully verify the validity and completeness of
a causal model. There are, however, certain aspects and assumptions of the model
which can be examined given the specific empirical context of the application.

EXISTENCE OF fi .—– We assume that the function fi (see equation 1) did not
change over time and is independent of the treatment, i.e. the level of the carbon
price. This assumption is supported by the fact that during our sample period
there were no major institutional changes concerning the market operation of the
UK power market.
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STABLE UNIT VALUE TREATMENT.—–By modeling the output of one plant as a
function of the characteristics of all other plants in the market, we do not model the
output decision of single plant but rather the decision of the market maker which
plants to use. As a result, the output function is independent of the output function
of the other plants, implying that the stable unit value treatment assumption is
fulfilled.15

INDEPENDENCE OF CONTROL VARIABLES FROM TREATMENT (ASSUMPTION 1).—–We
argue that it is safe to assume that control variables are independent from the level
of the CPS based on the following six observations. First, the CPS level is deter-
mined exogenously at a fixed rate two years in advance. Second, the EUA carbon
price is determined by the EU ETS market of which the UK electricity sector only
covers a negligibly small part. Third, the market share of UK’s electricity firms
on international fuel markets is not large enough to affect fuel prices. Fourth, the
short-run nature of our analysis means that electricity demand does not react to
hourly wholesale electricity prices which may be impacted by a carbon tax. Fifth,
likewise installed capacities cannot be adjusted in the short run and are thus not
impacted by a carbon price. Sixth, temperature—which we use as a proxy for
unobserved time-dependent heat efficiencies—is determined by exogenous weather
conditions which are entirely independent of carbon tax policy.

CONDITIONAL INDEPENDENCE OF UNOBSERVED CONTROLS FROM TREATMENT (AS-
SUMPTION 2).—–Assumption 2 cannot be tested directly because one does not know
which unobserved variables may influence plants’ output decisions and whether or
not they are affected by the level of the CPS. One (imperfect) remedy is to test for
the robustness of our model using a variety of different fixed-effects specifications.

Table 3 reports the impact of the CPS on coal and gas power plant generation
from four different model specifications. M1 includes monthly and hourly fixed
effects while M2-M4 exclude either monthly or hourly dummies or both.16 Our
finding that the results are robust across model specifications M1-M4 suggests
that there do not seem to be significant unobserved variables, with systematic
variation at the monthly and/or hourly level, that impact plants’ output decisions.
We interpret this as evidence that Assumption 2 is plausibly satisfied in the context
of our application.

Table 3 also bears out another important insight: in all specifications the total
net impact of the CPS on generation, i.e. the sum of the impacts on coal and natural
gas, does not statistically differ from zero (at a 5 % significance level). This also
holds true on a monthly basis (see Figure 5). A priori, this result is not to be
expected as we (1) separately estimate each plant’s output decision and (2) do not
impose an explicit market clearing constraint in our empirical model—unlike the
theoretical model which hypothesizes that demand always equals supply according
to equation (11). We interpret the statistical rejection of a violation of implicit

15In contrast, if we modeled plant output solely depending on own marginal cost, i.e. by a power plant’s
bid function, output of a given plant would depend on the treatment applied to other plants as it changes
marginal cost and hence the ordering of the plants in the supply function.

16Note that estimating a predictor for power generation at the plant level does not allow the inclusion
of plant-specific dummies.
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Table 3. Assessing unobserved heterogeneity: impact of the UK carbon tax (CPS) on aggregated power
plant output by technology category for different model specifications.

Model specification

M1 M2 M3 M4

Monthly fixed effects yes no yes no
Hourly fixed effects yes no no yes

Coal
TWh -46.29 -42.78 -43.17 -42.72

(1.69) (1.01) (1.71) (1.20)
% of total generationa 14.7 13.6 13.7 13.6

Natural gas
TWh 45.55 45.00 46.01 45.23

(1.06) (0.92) (1.07) (0.75)
% of total generationa 15.0 14.9 15.2 14.9

Total (TWh) -0.75 2.23 2.84 2.51
(2.00) (1.37) (2.02) (1.42)

Notes: Plant-level impacts δ̂CPS
it based on equation (17). aRefers to situation without the CPS. Boot-

strapped standard errors are shown in parentheses.
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Figure 5. Monthly average impacts of the UK carbon tax (CPS) on electricity output by technology

Notes: Shaded areas represent 95 % confidence intervals (based on bootstrapped standard errors). Values
shown refer to estimated plant-level impacts δ̂CPS

it , based on model specification M1 and equation (17),
aggregated by technology category and month.

market clearing as additional evidence that our model is correctly specified. In
particular, it suggests that we are not missing any unobserved variables that affect
power plant performance and depend on treatment. For the subsequent analysis
in this paper, we take M1 as our preferred model specification.

POSITIVITY OR CO-VARIATE OVERLAP (ASSUMPTION 4).—–To ensure a high prediction
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(a) Observed rt over full sample (b) Counterfactual r t over CPS period

Figure 6. Joint distribution of electricity demand and the observed (rt ) and counterfactual (r t ) coal-to-gas
fuel price ratio

quality of the counterfactual simulation, the positivity assumption requires that the
counterfactual fuel price ratio r it lies within the range of observed fuel price ratios
rt conditional on observed control variables. Apart from marginal cost, which are
expressed through the fuel price ratio, residual demand is the main control variable
determining which plant enters the market.

Figure 6 shows the joint distribution of the observed fuel price ratio and residual
demand over the full sample period 2009–2016 (Panel (a)) and the joint distribution
of the counterfactual fuel price ratio and residual demand for the period after the
CPS became effective, i.e. from April 2013 until the end of 2016 (Panel (b)). A
comparison of Panel (a) and (b) shows that the imposed counterfactual fuel price
ratios are well covered by the observed distribution (only a small fraction of values
with rt > 2.5 fall outside the observed sample distribution).

VARIATION IN TREATMENT VARIABLE (ASSUMPTION 5).—– To train the model and
estimate a valid predictor, sufficient variation in treatment and control variables
is necessary. While the CPS only varies on an annual level, the distribution of
the carbon price-inclusive fuel price ratio depicted in Figure 6 shows that there is
substantial variation in our modified treatment variable over the sample period.

PREDICTION ERROR IS INDEPENDENT OF TREATMENT (ASSUMPTION 3).—–Since the
“no-policy” counterfactual cannot be observed, one cannot assess the prediction
error of the machine-learned “no-policy” counterfactual during the treatment pe-
riod. We believe, however, that the following three arguments provide support for
the conclusion that Assumption 3 holds. First, we can evaluate to what extent
the observed prediction error depends on the level of treatment. We compute the
correlation between r and the observed prediction error for each plant and find
that the mean correlation coefficient (over all plants) is fairly low 0.01 (with a
standard deviation of 0.07). Second, we observe that our counterfactual levels of
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r lie within the range of the observed levels (see validity of Assumption 4). Given
the low correlation between the observed prediction error and r, it seems plausibly
to assume that prediction error is also independent from the treatment for coun-
terfactual levels of r. Third, related to the discussion of Assumption 2, we argued
that it seems plausible to assume that we do not miss important unobserved vari-
ables which could affect the errors differently for the observed and counterfactual
predictions in the treatment period. Overall, we are thus confident that the errors
of the observed and the “no-policy” counterfactual predictions can be assumed to
be independent of the CPS level.

IV. Causal Impacts of the UK Carbon Tax

This section presents our treatment effect estimates of the UK CPS between 2013-
2016 using the preferred model specification M1 (see Table 3). Our outcome of
interest is the change in plant-level electricity output across different time periods
based on which we can calculate tax-induced impacts in terms of aggregate market
output by technology, CO2 emissions, abatement costs, and tax revenues collected.

A. Plant-level and Aggregate Electricity Output

POWER PLANT IMPACTS.—–Figure 7 plots monthly electricity output between 2012-
2016 for the largest coal and gas-fired power plants in our sample for observational
data as well as model-predicted values with the CPS and under the unobserved
counterfactual without a CPS.

First, it provides a visualization of the main idea of our approach summarized
by the model in (17) to estimate plant-level treatment effects over time: given the
ML-trained causal model of plant-specific electricity output, we obtain the causal
impact of the carbon tax policy by taking the vertical distance between model-
predicted outcomes with the CPS (ŷwith CPS

it , filled blue dots) and without the
CPS (ŷwithout CPS

it , red dots).17 To the extent that Assumptions 1–5 can be taken
as plausibly satisfied (see Section III), δ̂CPS

it = ŷwith CPS
it − ŷwithout CPS

it identifies
plant-level treatment effects.

Second, it becomes evident that the introduction of the UK CPS led to a decrease
in coal- and an increase in gas-fired electricity generation. We observe the same
pattern of output changes for the other power plants (see Table A3 in the Appendix
A).

AGGREGATE IMPACTS.—–Table 4 shows the aggregate generation impacts of the
CPS on coal and gas power plants for each year and the cumulative impact since its
introduction in April 2013 until the end of 2016. We find that, in aggregate over all
fossil-based power plants and until the end of 2016, the CPS caused a reduction in
the output from coal-fired plants of 46.3 TWh and an increase from gas-fired plants
of 45.6 TWh; relative to a situation without the CPS, these changes correspond to
a fuel switch from coal to natural gas of around 15 percent.

17Comparing model-predicted values with a CPS policy (filled blue dots) to observational data (hollow
blue dots), Figure 7 also shows that the model accurately predicts the observational data.
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Figure 7. Electricity output (monthly averages, 2012-2017) for the largest coal plant (Cottam, upper row)
and largest gas plant (Pembroke, lower row): observations versus model-predicted with CPS (ŷwith CPS

it )
and without CPS (ŷwithout CPS

it ).

The impact of the CPS on generation varies substantially over time. The fuel
switch was initially low at an absolute level of around 4 TWh in the 2013 period
and then increased over the years with the highest value of around 22 TWh in 2015.
The absolute impacts for both natural gas and coal are much larger in the 2015
than in the 2016 period. In relative terms, coal experienced the largest decrease in
the 2016 period. Adding to the heterogeneity in the annually aggregated impacts
by CPS period, Figure 5 shows that there is also considerable variation over time
in the CPS-induced impacts on monthly output of coal- and gas-fired power plants.

B. CO2 Emissions and Abatement Cost

Table 5 summarizes the total and yearly impacts of the CPS on electricity-sector
CO2 emissions and abatement cost. Using equation (20), we estimate that over
the period 2013–2016, the CPS has reduced cumulative emissions by 26.1 million
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Table 4. Impacts of the UK carbon tax (CPS) on aggregated power plant output by fuel type.

Period Total impact

2013 2014 2015 2016 2013-2016

CPS [e per ton of CO2] 5.85 12.17 24.70 21.60 –

Change in output from coal plants
TWh -4.17 -9.26 -21.92 -10.94 -46.29

(0.27) (0.57) (0.86) (0.21) (1.69)
% of total generation -3.7 -9.8 -27.0 -43.6 -14.7

Change in output from natural gas plants
TWh 4.27 9.37 21.19 10.72 45.55

(0.10) (0.23) (0.57) (0.40) (1.06)
% of total generation 6.1 12.1 29.7 12.8 15.0

Total [TWh] 0.10 0.11 -0.73 -0.22 -0.75
(0.29) (0.62) (1.03) (0.45) (2.00)

Notes: As the CPS is adjusted in April of every year, all reported variables refer to the period from April
to March of the subsequent year. As data is available until December 2016, the 2016 period comprises
only nine months. Values shown refer to estimated plant-level impacts δ̂CPS

it , based on model specification
M1 and equation (17), aggregated by technology category. Bootstrapped standard errors are shown in
parentheses.

Table 5. Impacts of the UK carbon tax (CPS) on aggregate emissions and abatement costs

Period Total impact

2013 2014 2015 2016 2013-2016

CPS [e/t] 5.85 12.17 24.70 21.60 –

Emissions without CPS (E) [Mt] 125.8 112.0 98.0 71.3 407.1

CO2 abatement
∆Et [Mt] 2.1 4.7 11.6 7.6 26.1

(0.25) (0.53) (0.81) (0.24) (1.60)
% of total emissions 1.7 4.2 11.9 10.7 6.4

Abatement cost Ψt = Tt + Rt

Technical cost Tt [mio. e] 101.1 129.1 195.1 20.5 445.0
(9.2) (18.4) (29.1) (16.6) (58.7)

Avg. tech. cost Tt /∆Et [e/t] 47.5 27.2 16.8 2.7 18.2
(12.5) (8.7) (4.0) (2.3) (4.0)

Tax payments Rt [mio. e] 725.7 1309.6 2129.4 1372.8 5194.3

Notes: Values shown refer to estimated plant-level impacts δ̂CPS
it , based on model specification M1 and

equation (17), aggregated by period. As the CPS is adjusted in April of every year, all reported variables
refer to the period from April to March of the subsequent year. As data is available until December 2016,
we can only estimate the impacts of the CPS for a nine month period. To ensure comparability with
previous years, we scale model values for 2016 to a 12-month basis. Bootstrapped standard errors are
shown in parentheses.

tons—corresponding to a 6.4 percent reduction of total emissions as compared to
a situation without a CPS. Applying our measure of technical abatement costs T
from equation (22), the CPS has reduced one ton of CO2 emissions at an average
cost of e 18.2 over this period.18

18Although not the focus of the paper, Table 5 also reports on the tax revenues collected with the
CPS instrument. Since its introduction and until the end of 2016, the British government received around
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Figure 8. Empirical relationship between average abatement costs and the quantity of CO2 emissions
abated for different periods (i.e., levels) of the UK carbon tax (CPS)

Notes: Average abatement costs shown refer to daily averages of hourly average abatement costs (HAC),
where for a given hour HAC are calculated as Tt /∆Et using estimated treatment effects in equations (20)
and (22).

An important empirical finding is that there is considerable temporal heterogene-
ity in the abatement quantity and cost impacts of the UK carbon tax—both across
and within CPS periods. First, aggregate CO2 emissions reductions vary between
1.7 and 11.9 percent relative to a situation without a CPS and average technical
abatement cost amount to e 2.7 in 2016 to e 47.5 in 2013 per ton abated CO2
(see Table 5). Second, within period impacts are heterogeneous, i.e. abatement
quantity and costs largely vary for a given level of the carbon tax (see Figure 8).
Thus, the CPS level cannot solely explain the observed variation in the impacts of
the carbon tax.

These empirical findings bear out two important results—which run counter to
the common intuition about the economic impacts of carbon taxes:

RESULT 1: A higher carbon tax does not necessarily lead to a larger reduction
in CO2 emissions.

RESULT 2: A higher carbon tax does not necessarily imply greater average abate-
ment costs.

e 5.2 billion in tax revenue from the CPS policy. There is temporal heterogeneity in the magnitude of tax
revenues collected: the highest tax revenues (around e 2 billion) accrued in 2015 when both, emissions
and the CPS level, were high; already in the subsequent period, the CPS tax revenue dropped significantly
due to the fact that the CO2 emissions remaining in the market were considerably lower.
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The upshot of these results is that the empirical relationships between the tax
level, abatement quantity, and abatement costs are highly non-linear. This raises
the fundamental question for the design of an effective price-based climate policy:
what drives the environmental effectiveness and abatement costs of a carbon tax?
We next turn to an investigation of this question.

V. What Determined the Environmental Effectiveness and Costs of the UK
Carbon Tax?

This section uses simulations with the ML-trained model to investigate what
drives heterogeneity in the abatement quantity and costs induced by the carbon
tax, shedding light on their ambiguous empirical relationships summarized in Re-
sults 1 and 2. We also examine the extent to which the insights gained from our
empirical model are compatible with first principles of microeconomic theory for
cost-optimizing firm behavior in electricity markets.

A. A Simple Model of Carbon Abatement

Basic microeconomic theory suggests that cost-optimizing firms choose the level
of abatement which equalizes marginal abatement costs (MAC) and marginal abate-
ment benefits (MAB). MAB reflect the avoided tax payments per unit of emissions,
i.e. the level of the carbon tax (pCPS). If the change in the tax level does not ex-
plain the heterogeneity in the tax-induced impacts (see Section IV.B), drivers for
the different abatement impacts of the carbon tax must be related to changes in
the MAC.

Consider a simple model of carbon abatement where a representative electricity
firm seeks to minimize its carbon tax-induced impact on production costs (we drop
the time index for simplification):

min
a≥0

Ψ = T (a; r)︸  ︷︷  ︸
Technical

abatement cost

+
(
E − a

)
pCPS︸           ︷︷           ︸

Tax payments
due to CPS (=R)

s.t. a ≤ Γ(r)︸︷︷︸
Maximum

abatement potential

(µ) .

The total impact on production costs Ψ = T + R—in line with equation (22)—is
given by the sum of technical abatement costs T (a; r), which are a function of
chosen abatement a and a given carbon tax-exclusive fuel-price ratio r, and tax
payments on unabated emissions R = (E − a)pCPS, where E denotes “no-policy”
emissions in the absence of a carbon tax.

The constraint simply expresses the fact that given a certain portfolio of fossil-
based power plants in the market, there exists a maximum potential or capacity
of abatement Γ(r) that is attainable. The maximum potential depends on r as
the relative fuel prices of coal and natural gas affect the technology mix of gas-
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vs. coal-fired power plants. For example, if the price of coal increases relative to
the gas price the abatement potential decreases as natural gas generation starts
to replace coal even in the absence of a carbon tax. µ ≥ 0 denotes the multiplier
associated with the abatement potential constraint.

Deriving the Karush-Kuhn-Tucker (KKT) conditions for the optimal choice of
abatement a yields:19

(23) ∂T (a; r)/∂a︸         ︷︷         ︸
Marginal technical abatement

costs (MTAC)

+ µ︸︷︷︸
Marginal rent on

abatement potential︸                                                      ︷︷                                                      ︸
Marginal abatement costs (MAC)

≥ pCPS︸︷︷︸
Marginal benefits of
abatement (MAB)

⊥ a ≥ 0 .

The MAC hence comprise two components: the marginal technical abatement
costs (MTAC) and the marginal rent on the abatement potential (µ). The MTAC
component reflects the fuel costs incurred to lower emissions by reducing electric-
ity output from coal-fired while increasing output from gas-fired power plants. For
given fuel costs r, MTAC are typically referred to as the engineering-based esti-
mate of marginal abatement costs. µ represents the shadow price on the maximum
capacity or the potential for abatement. It measures how strongly the abatement
constraint binds at the optimal solution. If the maximum abatement potential con-
straint is not binding, µ is zero and MAC are given by the MTAC only. Conversely,
if only a limited abatement potential remains (e.g., because most of the coal power
plants have already been driven out of the market), µ is large and the MAC exceed
the MTAC.

The KKT conditions in (23) allow us to derive several hypotheses about what
drives the MAC and how this impacts the environmental effectiveness and costs of
a carbon tax.

CONJECTURE 1: For a given fuel price ratio r, marginal abatement cost weakly
increase with abatement (∂MAC/∂a = ∂2T (a; r)/∂a2 + ∂µ/∂a ≥ 0).

Conjecture 1 describes the behavior of MAC regarding abatement. It simply
states that MAC increase in abatement for a given fuel price ratio. MAC are
composed of two terms, MTAC and the shadow price of abatement potential, both
increasing in abatement. The next two conjectures hypothesize that these two
components defining total MAC in (23) depend on the level of the fuel price ratio
r:

CONJECTURE 2: The marginal technical abatement cost weakly decreases in the
relative price of coal to natural gas (∂2T (a; r) /∂a∂r ≤ 0).

19Here, the “⊥” operator expresses complementarity between the difference of MAC and MAB, on the
one hand, and optimal abatement a, on the other hand. It is short-hand notation for writing the KKT
conditions: ∂T/∂a + µ ≥ pCPS, a ≥ 0, (∂T/∂a + µ − pCPS)a = 0. For example, in the absence of a carbon
tax (i.e., pCPS = 0), the KKT conditions imply that in the optimum a = 0; a positive amount of abatement
requires that MAC=MAB in the optimum.
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CONJECTURE 3: The maximum abatement potential weakly decreases in the
relative price of coal to natural gas (∂Γ(r)/∂r ≤ 0), implying that the marginal rent
on the abatement potential weakly increases in r (∂µ/∂r ≥ 0).

Conjecture 2 simply expresses the idea that fuel-switching between coal and
natural gas becomes cheaper with an increasing fuel price ratio. This is directly
implied by the definition of technical abatement cost as the cost of switching from
coal to gas: if the fuel price of coal is already relatively high compared to the fuel
price of natural gas (high r), a given abatement level can be achieved at smaller
MTAC.

Conjecture 3 can be understood as follows. As r increases, the cost of gas-fired
power plants relative to coal plants decrease, driving some coal plants out of the
market even without a carbon tax. To the extent that fewer coal plants are available
for fuel-switching in response to a carbon tax, the maximum abatement potential
declines with r. If the abatement potential constraint is binding, a smaller Γ due
to an increased r implies that the shadow price on abatement capacity µ, which
positively contributes to MAC, must be higher.

Assuming that Conjectures 2 and 3 hold, an important insight is that a change
in the fuel price ratio has an ambiguous effect on the MAC. On the one hand,
MTAC are decreasing in r. On the other hand, µ is increasing in r.

What do the conjectures imply about the drivers of environmental effectiveness
and costs of a carbon tax? According to Conjecture 1, abatement increases with
an increasing carbon tax and cost increase for a given fuel price ratio. For a given
carbon tax the effect of an increase in the fuel price ratio r on abatement is ambigu-
ous. If MAC decrease the effect of decreasing MTAC outweighs the increase in the
shadow price of abatement potential µ. Consequently, environmental effectiveness
increases with increasing r. The impact on total abatement cost, however, is am-
biguous as abatement increases but MAC decrease. In constrast, if MAC increase,
the increase in µ exceeds the effect of decreasing MTAC. Consequently, the envi-
ronmental effectiveness is decreasing as µ only becomes positive if the abatement
potential is fully used and as the potential is decreasing in r. Total abatement cost
then also decrease, due to a decrease in MTAC and abatement.

Conjectures 1–3 provide a theory-founded explanation for the empirically ob-
served non-linear relationships between the carbon tax level, abatement quantity,
and costs which were summarized in Result 1 and Result 2. We next perform
simulations with our ML-trained model to investigate to what extent Conjectures
1–3 hold up in an empirical context. This enables us to empirically analyze the
determinants of the environmental effectiveness and costs of the UK carbon tax
with a handshake on microeconomic theory.

B. Empirical Marginal Abatement Costs

COMPUTATIONAL DERIVATIONS.—–To obtain empirical counterparts of the MAC
(LHS of (23)), we perform simulations with the ML-trained model deriving abate-
ment quantities for different levels of the carbon tax (increasing the CPS level in
increments of 1 from 0-50 e/tCO2). To analyze the dependence of MAC on the
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Figure 9. Empirical MAC curves for different carbon tax-exclusive fuel price ratios r t

fuel price ratio, we derive MAC curves for three different ranges for r representing
“Low” (r < 0.55), “Intermediate” (0.55 ≤ r ≤ 0.88), and “High” (r > 0.88) values.

The choice of cutoff points for r t is motivated by the following considerations.
The “Low” value corresponds to the carbon tax-exclusive fuel price ratio for which
the most efficient gas plant (Pembroke plant) substitutes for the most inefficient
coal plant (Uskmouth plant)—given the observed, plant-specific heat efficiencies in
Table 2. The lower end of “Intermediate” range thus contains values of r t for which
gas-fired plants begin to move, in the absence of a carbon tax, to the left of the
merit order dispatch curve. The “High” value corresponds to the fuel price ratio
for which the least efficient gas plant (Rye House plant) breaks even, in terms of
fuel costs, with the least efficient coal plant (Uskmouth plant).

MAIN RESULTS.—–Figure 9 shows the empirical MAC curves for the different ranges
of r t . Several insights emerge. First, for a given level of the fuel price ratio, the em-
pirical MAC curve is monotonically increasing in abatement—which is consistent
with expectations from economic theory that ∂MAC/∂a > 0 and therefore Conjec-
ture 1. We also find that empirical MAC curves are convex (i.e. ∂2MAC/∂a2 > 0).

Second, we find a non-monotonous impact of the fuel price ratio on MAC: moving
from “Low” to “Intermediate”values of r t slightly decreases MAC, while for “High”
values of r t the MAC increase substantially again. This non-monotonicity is due
to the opposing effects of the different MAC components in (23) with respect to a
change in r hypothesized in Conjectures 2 and 3. As r increases, MTAC decrease
as as it becomes cheaper to substitute coal by gas-fired plants. At the same time,
however, as gas plants become more favorable, coal plants are driven out of the
market, in turn lowering the remaining abatement potential which escalates MAC
by increasing the shadow costs of available abatement capacity µ.

DISENTANGLING MTAC AND ABATEMENT POTENTIAL EFFECTS.—–Figure 10 provides
a more detailed analysis of the two MAC components by visualizing the change in
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Figure 10. Empirical relationships between hourly MTAC, hourly abatement potential, and the fuel price
ratio r t

Notes: Each dot corresponds to an hourly value which is computed based on plant-specific heat efficiencies
in Table 2 and fuel costs. Empirical MTAC [∂2T (a; r)/∂a∂r ] are measured by the minimum carbon price
necessary to induce a switch from coal to natural gas triggering a “small” amount of abatement. The
maximum abatement potential Γ(r t ) is measured as the quantity of CO2 emissions abated if all coal
plants were replaced by gas plants.

the empirically-measured counterparts of the MTAC and the abatement potential
as the fuel price ratio r t varies. We measure MTAC as the minimum carbon price
necessary to induce abatement, or equivalently, a switch from coal to natural gas
(where we use the data on heat efficiencies from Table 2 and hourly electricity
demand). The maximum abatement potential Γ(r t ) is calculated as the quantity of
CO2 emissions abated if all coal power plants were replaced by gas power plants.

Figure 10 provides empirical evidence in strong support of Conjectures 2 and
3. First, in the range of “Low” fuel price ratios, the MTAC rapidly diminish as
r t increases; the abatement potential, however, largely remains on a high level.
Second, at the lower bound of the “Intermediate” range (i.e., r t = 0.55), gas plants
begin replacing coal plants even in the absence of a carbon tax, implying that Γ
starts to decrease. For this range of fuel price ratios, the carbon tax-exclusive fuel
costs of gas plants are roughly equal to those of coal plants, implying that the
MTAC are close to zero, i.e. a very small carbon tax would be sufficient to create
a cost advantage for gas plants. Third, at the transition from “Intermediate” to
“High” values of r t , all gas plants are cheaper than the least efficient coal plant even
without a carbon tax. Thus, MTAC are very low but the abatement potential is
virtually exhausted.

The opposing effects of the constituent components of total MAC visualized in
Figure 10 explain the change in MAC curves as the fuel price ratio varies (compare
with Figure 9). MAC decrease when going from “Low” to “Intermediate” values
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of r t (i.e., green to red curve) due to the fact that MTAC fall while µ is small
as the abatement potential constraint is slack. Further increases in r t drive up
µ as the abatement potential diminishes, and in turn drive up total MAC even
though MTAC are close to zero (i.e., red to blue curve). Moreover, the increasing
shadow costs of abatement capacity imply that the degree of convexity of the MAC
curves—for the range of abatement quantities shown in Figure 10—increases with
r t . For “High” values of the fuel price ratio, MAC increase super-proportionally
with the abatement quantity. MAC curves for “Low” to “Intermediate” values of
r t , on the other side, are closer to linearity.

C. Does a High Carbon Tax Necessarily Lead to More CO2 Reductions and Higher
Costs?

Equipped with the theoretical and empirical insights on the counteracting effects
of the fuel price ratio on MAC, environmental effectiveness and abatement cost,
we now return to investigating Results 1 and 2. In particular, we examine the
non-linear relationships between the tax rate, abatement quantity, and average
abatement costs and ask whether or not a higher carbon tax necessarily leads to
more abatement and higher average costs.

ENVIRONMENTAL EFFECTIVENESS AND AVERAGE ABATEMENT COSTS.—–To assess how
abatement quantity and average cost impacts depend on the fuel price ratio, we
compare CO2 emissions reductions for different hypothetical levels of the carbon
tax while using observational variation in the data for r t .20 Figure 11 plots the
empirical relationships between the fuel price ratio r t and CO2 abatement (Panel
a), total abatement costs (Panel b), and the average technical abatement costs
(Panel c) for different levels of the carbon tax.

Panel (a) shows that the environmental effectiveness of a carbon tax largely
depends on the prevailing relative (carbon tax-exclusive) fuel prices of coal and
natural gas. This is consistent with the MTAC and abatement potential effects
analyzed in Sections V.A and V.B. It is straightforward to see that a higher carbon
tax does not necessarily imply a higher CO2 abatement. Graphically speaking,
there is a substantial overlap for the range of abatement induced by different levels
of tax rates. For example, the carbon tax rate increases and abatement decreases
from point A to point B to point C, i.e. a carbon tax rate of 20 e/ton CO2 induces
larger abatement than higher tax rates of 30 and 40 e/ton CO2, respectively.

For a given carbon tax rate, we observe a humped-shaped pattern between abate-
ment quantity and r t . A carbon tax is most effective at reducing CO2 emissions
for intermediate values of r t , i.e. when fuel costs of coal are neither “too” cheap
nor “too” costly relative to the fuel costs of natural gas. In our empirical example,
carbon abatement peaks at the point where the fuel costs of coal are about 60%
of those of natural gas. The explanation is that for these fuel price ratios, gas
plants are just as cheap as coal plants. MTAC are therefore near zero but the
abatement potential is still large. Thus, a given carbon tax is effective at inducing

20This is equivalent to using the ML-trained model to computationally evaluate the KKT conditions in
(23) to find cost-minimizing emissions abatement a for a given carbon tax rate pCPS.
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(a) CO2 abatement (∆Et )

(b) Total technical abatement costs (Tt )

(c) Average abatement costs (Tt /∆Et )

Figure 11. Empirical relationships between CO2 abatement, abatement costs, and the fuel price ratio r t
for different carbon tax rates pCPS



38

a fuel switch at modest cost (reflected by low MTAC) while it can tap into a large
abatement potential in the market (thus avoiding large shadow costs of abatement
capacity µ).

Panel (b) shows that total abatement costs monotonically fall in r t , and they
become zero once the abatement potential is exhausted (i.e. r t ≥ 0.7). Comparing
the different tax levels, the figure bears two main insights. First, a higher carbon
tax does not necessarily imply larger total abatement costs as they crucially depend
on the relative fuel price of coal to natural gas. For example, when r t is low, a
carbon tax of 30 e/ton CO2 (see point B’) implies much higher costs than what
is borne out by a carbon tax rate of 40 e/ton CO2 (see point C’) when r t is high.
Second, comparing abatement B and cost B’ with abatement A and cost A’ we
find that a lower abatement (B) can induce higher total abatement cost (B’) than
a higher abatement (A).

Panel (c) combines the quantity and total costs impacts from Panels (a) and (b).
Average abatement costs monotonically fall in r t . The important insight is that
while average abatement costs do not vary much in the level of the carbon tax rate,
they crucially depend on the coal-to-gas fuel price ratio.

D. Heterogeneous Impacts of the UK Carbon Tax

While Figure 11 used hypothetical variations in the carbon tax rate to illustrate
the relationships between policy stringency, abatement, and abatement costs, we
can finally analyze the heterogeneous quantity and cost impacts triggered by the
UK carbon tax. Figure 12 visualizes the effects of the UK carbon tax along the
four relevant dimensions in a single diagram: average abatement costs (vertical
axis), the coal-to-gas price ratio r t (horizontal axis), abatement quantity (color
code), and CPS periods, corresponding to different levels of carbon tax (marker
type).

Several important insights emerge. First, average abatement costs Tt/∆Et de-
crease as r t increases (similar to the pattern shown in Figure 11, Panel c): the
more expensive coal becomes relative to gas, the smaller are the MTAC associated
with a tax-induced fuel switch (Tt declines). Second, a larger fuel price ratio in-
creases the tax-induced quantity of CO2 emission reductions (∆Et increases), up to
the point where the abatement potential is exhausted. Taken together, it is evident
that the level of the CPS does not solely determine the environmental effectiveness
and abatement costs.

In the 2013 period, the UK CPS was low and it coincided with fuel market
conditions which implied a low fuel price ratio r t . Average abatement costs were
thus high (see stars in the range “Low r”). In the 2014 period, the CPS was higher
and the relative price of coal to gas increased as compared to 2013. Abatement
was thus higher and average abatement cost decreased (see circles in the regions
“Low r” and “Intermediate r”). In the 2014 and 2015 periods, the fuel price ratios
were closely around the values generating peak abatement with low MTAC and a
high abatement potential. While fuel price ratios were similar in 2014 and 2015, a
higher CPS tax rate in 2015 implied higher abatement as compared to 2014. In the
2016 period, the fuel price ratio was high implying that the abatement potential
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Figure 12. Relation between daily CO2 abatement, and daily average technical abatement cost, and daily
(average) fuel price ratio rt .

Notes: All values refer to daily averages of hourly values. Average abatement costs shown refer to daily
averages of hourly average abatement costs (HAC), where for a given hour HAC are calculated as Tt /∆Et

using estimated treatment effects in equations (20) and (22).

was nearly exhausted. This implied that despite a still high CPS level, abatement
in 2016 was lower relative to 2015 (see diamonds in the regions “Intermediate r”
and “High r”).

In summary, our results indicate that—while the UK carbon tax has been ef-
fective in reducing CO2 emissions in the targeted sector—there is considerable
temporal heterogeneity in abatement quantities and costs, resulting from the varia-
tion of the relative fuel prices for coal and natural gas. The important implication
for climate policy is that a higher carbon tax does not necessarily deliver high
emissions reductions. At the same time, a higher carbon tax need not necessarily
result in higher abatement costs.

VI. Conclusions

While economists see carbon pricing as arguably one of the main policy instru-
ments for mitigating climate change, surprisingly little is known about its perfor-
mance from an ex-post perspective. Causal inference of the impacts of a broad-
based carbon tax, i.e. one which affects almost all CO2-emitting units in a market,
is difficult as typically no control group or counterfactual situation exists.

Against this background, this paper has made two contributions. First, we
have developed and implemented a new approach which combines economic theory
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and machine learning (ML) techniques to establish causal inference of a policy
intervention in settings with high-frequency data when no control group exists.
Specifically, we exploit economic theory of electricity market dispatch and peak-
load pricing to select the variables of a causal model which is then trained using
ML to obtain an empirical model for out-of-sample prediction at the firm level. We
obtain the treatment effect of a carbon tax on generation for each power plant as
the difference between predicted outcomes with and without policy.

The developed framework is based on several conditions that have to hold—and
which we think are plausibly satisfied in the empirical context of the UK carbon tax
program evaluation. We deal with a situation in which the underlying structural
causal model is constant over time. This allows us to use the full sample to train a
predictor function ensuring a high prediction quality. Furthermore, the treatment
variable has to be variable enough to allow to identify its causal impact in the
predictor function. If treatment does not vary enough—as is the case for the CPS
level in our application—one needs to exploit the variation of a control variable
which exerts the same causal impact as the treatment variable. In our context of
evaluating a carbon tax policy, this is the relative fuel price of coal to natural gas.

Second, this paper has applied this new approach to evaluate the environmental
effectiveness and costs of the UK CPS—a carbon levy imposed on all fossil-based
power plants in the electricity market. To the best of our knowledge, this is the first
paper in economics to incorporate ML methods to conduct causal inference of car-
bon pricing. Our analysis provides empirical evidence in support of the view that
a carbon tax can be an effective regulatory instrument to reduce CO2 emissions:
the CPS induced a substitution away from “dirty” coal to cleaner natural gas-fired
power plants—replacing about 15 percent or 46 TWh of coal-based generation and
reducing electricity sector emissions by 6.2 percent between 2013 and 2016. Over
that period, we find that the abatement of one ton of CO2 incurred additional
total costs of e 18.2 for consumers and fossil-based electricity producers.

We find that there is substantial heterogeneity in the carbon tax-induced market
impacts over time, which are mainly driven by the level of the CPS and the ratio of
carbon tax-exclusive prices for coal and natural gas. Our analysis thus contributes
with an empirically-founded characterization of the conditions under which a tax-
based climate policy can be more or less effective. An important policy implication
emerging from our analysis is that, in the short run, a higher carbon tax does
not necessarily deliver higher emissions reductions; at the same time, however,
a higher carbon tax need not necessarily result in higher abatement costs. When
designing effective carbon tax regulation, policy makers should use as much market
information as possible about current and future relative fuel prices.

Some limitations of our analysis should be kept in mind. First, focus on analyz-
ing the short-run market impacts of the CPS. Thus, we abstract from potential
effects of the CPS on energy demand, installed fossil capacities, and investments
in low-carbon electricity production capacity. This implies that we also do not
take into account the possible impacts of the CPS on plant closure. Although we
assume plant closures to be driven by existing regulation unrelated to the CPS, i. e.
the European “Large Combustion Plant Directive” (LCPD), we cannot rule out
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that the shut-down decision for some plants may also have been influenced by the
announcement of the CPS as we observe that the introduction of the CPS in 2013
coincides with the closure of several coal power plants. Second, by increasing do-
mestic wholesale market prices relative to the costs of electricity imports, the CPS
may have stimulated electricity imports. To the extent that such effects reduce
(domestic) CO2 emissions for a given tax level, our analysis should best be viewed
as providing a lower-bound empirical estimate of the environmental effectiveness
of the UK carbon tax.
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Appendix A: Additional figures and tables

Table A1. Descriptive statistics: annual means and standard deviations of observed hourly electricity
demand, generation, and imports by technology category.

2009 2010 2011 2012 2013 2014 2015 2016

Residual demand 27.10 28.33 25.81 24.99 23.77 22.16 20.01 19.54
(6.51) (6.58) (6.63) (6.77) (6.93) (6.23) (6.36) (6.43)

Total demand 36.55 37.27 35.79 35.88 35.89 34.56 34.21 33.70
(7.76) (8.15) (7.68) (7.52) (7.74) (7.40) (7.47) (7.74)

Gas 17.14 18.29 14.56 9.50 9.17 9.81 9.47 14.23
(3.01) (3.07) (3.79) (4.16) (5.12) (4.87) (4.43) (4.75)

Coal 9.81 9.97 10.70 14.35 13.11 10.13 8.17 3.27
(5.80) (5.29) (5.14) (4.04) (3.18) (4.10) (3.45) (2.88)

Nuclear 7.41 6.67 7.39 7.51 7.53 6.82 7.50 7.60
(1.03) (1.12) (1.13) (0.83) (0.97) (1.04) (0.61) (0.66)

Hydro 0.41 0.24 0.42 0.37 0.33 0.45 0.47 0.38
(0.22) (0.17) (0.21) (0.22) (0.24) (0.27) (0.26) (0.26)

PSP -0.13 -0.11 -0.09 -0.11 -0.11 -0.11 -0.10 -0.12
(1.14) (1.01) (0.95) (0.96) (0.92) (0.93) (0.90) (0.96)

Other 0.00 0.00 0.00 0.24 0.44 0.85 1.29 1.62
(0.00) (0.00) (0.00) (0.25) (0.34) (0.26) (0.53) (0.46)

Wind 1.02 1.16 1.74 2.00 2.80 3.24 3.70 3.63
(0.66) (0.82) (1.15) (1.43) (1.79) (2.17) (2.26) (3.08)

Solar 0.00 0.00 0.02 0.14 0.35 0.57 0.96 1.11
(0.00) (0.00) (0.03) (0.21) (0.56) (0.85) (1.48) (1.64)

Imports 0.15 0.06 0.54 1.13 1.49 2.22 2.37 2.03
(1.28) (1.44) (1.17) (1.13) (0.86) (0.51) (0.65) (1.20)

Notes: Standard deviations in parentheses. Data for generation by fuel type is based on ELEXON (2016).
Nationalgrid (2016) provides data for final demand and embedded wind and solar generation.

Table A2. Descriptive statistics: installed annual generation capacities by technology category [GW].

2009 2010 2011 2012 2013 2014 2015 2016

Gas 20.9 23.0 23.4 25.0 24.2 24.1 23.7 23.6
Coal 25.3 25.3 25.3 24.5 19.9 19.1 19.1 15.3
Hydro 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Nuclear 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2
OCGT 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3
Oil 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
Other 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
PSP 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
Imports 2.5 2.5 3.5 3.6 4.0 4.0 4.0 4.0

Notes: Installed capacities are provided by Variable Pitch (2016) and Nationalgrid (2011). Plant char-
acteristics of individual coal and gas plants, i.e. heat efficiencies, emission rates, installed capacities as
opening and closure dates are shown in Table 2.
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Table A3. Impacts of UK carbon tax (CPS) on power plant output [TWh].

Period Total impact
2013 2014 2015 2016 2013-2016

Natural gas plants
Pembroke 0.38 0.84 2.01 0.70 3.94
Peterhead 0.00 0.00 0.00 0.00 0.00
Staythorpe 0.19 0.65 1.40 0.29 2.53
Didcot CCGT 0.52 0.85 2.26 1.05 4.68
Connahs Quay 0.28 0.58 1.04 0.68 2.58
West Burton CCGT 0.04 0.36 0.91 0.32 1.63
Grain CHP 0.21 0.66 1.39 0.37 2.63
South Humber 0.17 0.35 0.63 0.41 1.55
Seabank 0.36 0.76 1.36 0.88 3.36
Saltend South 0.07 0.17 0.67 0.49 1.41
Immingham CHP 0.18 0.37 0.66 0.43 1.64
Langage 0.23 0.29 1.00 0.83 2.35
Marchwood 0.04 0.08 0.14 0.09 0.35
Severn 0.12 0.25 0.44 0.28 1.09
Spalding 0.29 0.66 1.67 0.76 3.38
Rocksavage 0.05 0.11 0.46 0.29 0.92
Sutton Bridge 0.08 0.18 0.31 0.20 0.77
Damhead Creek 0.00 0.00 0.00 0.00 0.00
Coryton 0.11 0.24 0.43 0.28 1.07
Little Barford 0.00 0.00 0.00 0.00 0.00
Rye House 0.06 0.11 0.17 0.09 0.43
Medway 0.18 0.61 1.23 0.34 2.36
Baglan Bay 0.05 0.22 0.42 0.33 1.02
Deeside 0.07 0.15 0.26 0.17 0.65
Great Yarmouth 0.23 0.28 0.91 0.44 1.86
Shoreham 0.01 -0.05 0.17 0.12 0.25
Enfield Energy 0.10 0.21 0.37 0.26 0.94
Corby 0.08 0.14 0.13 0.00 0.35
Cottam CCGT 0.18 0.32 0.79 0.63 1.92
Fellside 0.00 0.00 0.00 0.00 0.00
Fawley Cogen 0.00 -0.01 -0.02 -0.01 -0.04
Grangemouth -0.01 -0.01 -0.02 -0.02 -0.06

Coal plants
Longannet 0.00 0.00 0.00 0.00 0.00
Cottam -0.88 -2.15 -6.95 -3.47 -13.46
Ratcliffe -0.39 -0.82 -1.46 -0.95 -3.61
West Burton COAL -1.10 -2.47 -5.98 -3.33 -12.89
Fiddlers Ferry 0.00 0.00 0.00 0.00 0.00
Ferrybridge 0.00 0.00 0.00 0.00 0.00
Drax COAL -0.69 -1.64 -3.71 -2.22 -8.25
Eggborough -0.83 -1.77 -2.74 -0.59 -5.93
Aberthaw 0.00 0.00 0.00 0.00 0.00
Rugeley -0.18 -0.40 -0.71 -0.14 -1.43
Uskmouth -0.09 -0.01 -0.36 -0.26 -0.72

Notes: Values shown refer to estimated plant-level impacts δ̂CPS
it , based on model specification M1 and

equation (17). As the CPS is adjusted in April of every year, all reported variables refer to the period
from April to March of the subsequent year. As data is available until December 2016, the 2016 period
comprises only nine months. The plants are ordered from high to low according to their installed capacity
(see Table 2).
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Appendix B: Machine Learning (LASSO) Algorithm versus OLS

This section compares the out-of-sample performance of the LASSO algorithm
versus a standard linear OLS regression model. The comparison of both models is
based on the same input variables (and data) as specified in equation (14).

To assess model performance, we proceed in three steps. First, we split out data
into eight different pairs of train- and hold-out samples, i.e. each time we use all
but one year to train the model and use the remaining year as a hold-out set.
Consequently, each of the years 2009 to 2016 is used once as a hold-out set while
the rest of the sample is used to train the model. Second, we use each train set
to build the models which predict hourly generation yit on a set of input features
xit and zt for each i ∈ I, separately. In this step, we perform cross-validation to
tune the regularization parameter α. The final step compares different types of
models with respect to their in-sample and out-of-sample performance. We can
assess for each plant the predictive performance by hold-out year and model type.
We use the coefficient of determination—defined as 1−∑

i(yi − ŷi)
2/(

∑
i(yi − yi)

2)—
as the score function to evaluate model performance. A test score of 1.0 indicates
that the model perfectly predicts the observed data. Note that, in contrast to the
commonly reported R2, the test score can be negative because the model can be
arbitrarily poor .

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
Test score

Coal

Gas

Linear Regression LASSO

Figure B1. Comparison of the distribution of plant-specific performance scores by fuel type for LASSO
vs. OLS models.

Figure B1 compares the test scores of the LASSO and OLS algorithms assessing
the prediction of the hold-out set. It is evident that the LASSO outperforms the
OLS model in terms of out-of-sample prediction: both average mean scores for
coal- and gas-fired plants are higher for LASSO and the respective inter-quartiles
ranges are significantly smaller under LASSO as compared to OLS. While from a
conceptual perspective the qualitative ranking of LASSO and OLS models in terms
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of out-of-sample performance are not surprising, Figure B1 makes the important
point that in the context of the suggested framework for policy evaluation (and
given the specific empirical context), the use of a ML method is advantageous.
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