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Abstract 

In this forthcoming working paper we consider nonparametric estimation of density and 
conditional expectation functions for dyadic random variables, i.e., random variables defined for 
all pairs of individuals/nodes in a network of size N. These random variables are assumed to 
satisfy a “local dependence” property, specifically, that any random variables in the network that 
share one or two indices may be dependent (though random variables which do not have an 
index in common are assumed to be independent). Estimation of density functions for 
continuously-distributed random variables or regression functions for continuously-distributed 
regressors are proposed using straightforward application of the kernel estimation methods 
proposed by Rosenblatt and Parzen (for densities) or by Nadaraya and Watson (for regression 
functions). Estimation of their asymptotic variances is also straightforward using existing 
proposals for dyadic data. More unusual are the rates of convergence and asymptotic (normal) 
distributions for the estimators, which are shown to converge at the same rate as the 
(unconditional) sample mean, i.e., the square root of the number N of nodes, under standard 
assumptions on the kernel method. This differs from the results for nonparametric estimation of 
densities and regression functions for monadic data, which generally have a slower rate of 
convergence than the sample mean. 


