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Abstract

We consider a situation where the distribution of a random variable is being estimated
by the empirical distribution of noisy measurements of the random variable. This is
common practice in many settings, including the evaluation of teacher value-added
and the assessment of firm efficiency through stochastic-frontier models. We use an
asymptotic embedding where the noise shrinks with the sample size to calculate the
leading bias in the empirical distribution arising from the presence of noise. Analytical
and jackknife corrections for the empirical distribution are derived that recenter the
limit distribution and yield confidence intervals with correct coverage in large samples.
A similar adjustment is also presented for the quantile function. These corrections are
non-parametric and easy to implement. Our approach can be connected to corrections
for selection bias and shrinkage estimation and is to be contrasted with deconvolution.
Simulation results confirm the much improved sampling behavior of the corrected
estimators. An empirical illustration on the estimation of a stochastic-frontier model
is also provided.
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1 Introduction

Let θ1, . . . , θn be a random sample from a distribution F that is of interest. Suppose that

we only observe noisy measurements of these variables, say ϑ1, . . . , ϑn. A popular approach

is to do inference on F and its functionals using the empirical distribution of ϑ1, . . . , ϑn. In

Rockoff (2004), for example, θi is a teacher effect, ϑi is an estimator of it obtained from data

on student test scores, and we care about the distribution of teacher value-added (see, e.g.,

Jackson, Rockoff and Staiger 2014). Schmidt and Sickles (1984) recover estimates of firm

inefficiency from fitting productions functions with fixed effects to panel data. Although

the plug-in approach is popular, using ϑ1, . . . , ϑn rather than θ1, . . . , θn introduces bias that

is almost entirely ignored in practice.

In this paper we analyze the properties of the plug-in estimator of F in an asymptotic

embedding where the noise in ϑ1, . . . , ϑn shrinks with the sample size (n). If we write the

variances of ϑ1, . . . , ϑn as σ2
1/m, . . . , σ

2
n/m for some real number m, we consider double

asymptotics where n,m → ∞ jointly. This embedding is intuitive in settings where ϑi is

an estimator of θi obtained from a sample of size m, as it is in the examples mentioned

above. It is related to, yet different from, small measurement-error approximations as in,

e.g., Chesher (1991), and has been used in the analysis of panel data models with fixed

effects (see, e.g., Alvarez and Arellano 2003; Hahn and Kuersteiner 2002), although for

different purposes.

We will focus on the case where

ϑi|(θi, σ2
i ) ∼ N(θi, σ

2
i /m),

although our results hold more generally in situations where the

εi :=
ϑi − θi
σi/
√
m

are random draws from some well-behaved (but unknown) distribution. While for the most

part we will work under the assumption that the σ2
i are known our results carry over to

the case where only a consistent estimator is available. Formally dealing with this would,

however, require additional technical conditions that, we feel, would cloud the exposition.
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The focus on the normal case helps to connect with the literature on shrinkage and selection

bias as recently dealt with by Efron (2011) and to contrast our approach with one based

on deconvolution.

Efron (2011) essentially entertains the homoskedastic setting where

ϑi| θi ∼ N(θi, σ
2/m).

and defines selection bias as the tendency of the ϑi’s associated with the (in magnitude)

largest θi’s to be larger than their corresponding θi. He proposes to deal with selection bias

by using the well-known Empirical Bayes estimator of Robbins (1956), which here would

be

ϑi +
σ2

m
∇1 log p(ϑi),

where p is the marginal density of the ϑi and ∇1 denotes the first-derivative operator. For

example, when θi ∼ N(0, ψ2) this expression then yields the (infeasible) shrinkage estimator(
1− σ2/m

σ2/m+ ψ2

)
ϑi,

a parametric plug-in estimator of which would be the James and Stein (1961) estimator.

More generally, non-parametric implementation would require estimation of p and its first

derivative. Shrinkage to the overall mean (in this case zero) is intuitive, as selection bias

essentially manifests itself through the tails of the empirical distribution of the ϑi being too

thick. The same shrinkage factor is applied to each ϑi, a consequence of the noise being

homoskedastic. How to deal with heteroskedastic noise in an Empirical Bayes framework

is not obvious; see, e.g., Xie, Kou and Brown (2012) and Weinstein, Ma, Brown and Zhang

(2018) for discussion and recent contributions. Shrinkage is achieved by introducing a bias

of order m−1 in the individual estimators. In general, this bias order is passed-through

to plug-in estimators of the distribution and its functionals. Thus, while it improves on

ϑ1, . . . , ϑn in terms of estimation risk, shrinkage does not lead to preferable estimators of

the distribution F or its moments.

The approach taken here is different from Efron (2011). Without making parametric
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assumptions on F , we calculate the bias of the naive plug-in estimator of the distribution,

F̂ (θ) := n−1
n∑
i=1

1{ϑi ≤ θ},

and correct for it directly. In the James-Stein problem, where θi ∼ N(η, ψ2), for example,

the bias under homoskedastic noise turns out to equal

−(θ − η)
σ2/ψ2

m
φ

(
θ − η
ψ

)
+O(m−2).

Thus, the empirical distribution is indeed upward biased in the left tail and downward

biased in the right tail. A bias order of m−1 implies incorrect coverage of confidence

intervals unless n/m2 → 0. We present non-parametric plug-in and jackknife estimators

of the leading bias and show that the bias-corrected estimators are asymptotically normal

with zero mean and variance F (θ) (1 − F (θ)) as long as n/m4 → 0. So, bias correction

is preferable to the naive plug-in approach for typical data sets encountered in practice,

where m tends to be quite small relative to n. We also provide corresponding bias-corrected

estimators of the quantile function of F .

Given a known distribution for the (potentially heteroskedastic) noise, recovering F

from noisy data is a (generalized) deconvolution problem (as in Wang, Fan and Wang 2010)

and can be solved for fixed m. However, it is well documented that deconvolution-based

estimators have a slow rate of convergence and can behave quite poorly in small samples.

In response to this Efron (2016) has recently argued for a return to a more parametric

approach. Our estimation approach delivers an intuitive and fully non-parametric estimator

that enjoys the usual parametric convergence rate and is numerically well behaved. Our

bias formulae (and subsequent bias correction) also do not require the noise distribution

to be known. Bias correction further ensures that size-correct inference can be performed,

provided that n/m4 is small. It is not clear how to conduct inference based on deconvolution

estimators.

While our estimators are straightforward to apply it should be noted that working out

the leading bias of F̂ (and of its quantile function) is mathematically challenging because

F̂ is a non-smooth function of ϑ1, . . . , ϑn. As such, the approach taken here is different
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from, and complementary to, recent work on estimating average marginal effects in panel

data models with heterogenous coefficients, which has focused exclusively on inference on

smooth functionals (Fernández-Val and Lee 2013; Dhaene and Jochmans 2015; Okui and

Yanagi 2017). The impact of noise on smooth transformations of the ϑi can be handled

using conventional methods based on Taylor-series expansions. In work contemporaneous

to our own, Okui and Yanagi (2018) derive the bias of a kernel-smoothed estimator of

F and its derivative. Such smoothing greatly facilitates the calculation of the bias, thus

allowing for weaker assumptions on the noise distribution, but it also introduces additional

bias terms that require further restrictions on the relative growth rates of n, m, and the

bandwidth that governs the smoothing.

Simulation evidence on the improvement of our approach over the plug-in estimator

(and Empirical Bayes) is presented. We present results for both normal and non-normal

noise distributions and focus on samples where m is much smaller than n, as is typically the

case in practice. In such settings the bias in the plug-in estimator dominates its sampling

error and test procedures over-reject under the null. The deviation from the nominal size

of the test is substansive and makes the naive estimator unsuitable as a tool for inference.

Adjusting for noise through our procedures makes the bias small relative to the standard

error. It yields confidence interval with broadly correct coverage and, at the same time

leads to a reduction in mean squared error.

As an empirical illustration we fit a stochastic-frontier model (Aigner, Lovell and

Schmidt, 1977) to a short panel on Spanish dairy farms. The object of interest in such

an analysis is the distribution of firm inefficiencies. A parametric approach would specify

this distribution, typically as half-normal (Pitt and Lee, 1981), and maximize the resulting

integrated likelihood. A non-parametric approach is to estimate a firm’s inefficiency by its

fixed effect in a standard panel data regression (Schmidt and Sickles, 1984). This strategy

is common practice but is subject to the bias issues tackled here. Consequently, we apply

our corrections to non-parametrically estimate the distribution of firm inefficiencies in these

data.
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2 Estimation and inference

Let F be a univariate distribution on the real line. Here, we are interested in estimation

of and inference on F and its its quantile function q(τ) := infθ{θ : F (θ) ≥ τ}. If a random

sample θ1, . . . , θn from F would be available this would be a standard problem. We instead

consider the situation where θ1, . . . , θn themselves are unobserved and we observe noisy

measurements ϑ1, . . . , ϑn, with variances σ2
1/m, . . . , σ

2
n/m for a positive real number m

which, in our asymptotic analysis below, will be required to grow with n. Moreover, we

assume the following.

Assumption 1. The variables (θi, σ
2
i , ϑi) are i.i.d. across i,

ϑi| (θi, σ2
i ) ∼ N(θi, σ

2
i /m),

and σ2
i ∈ [σ2, σ2] ⊂ (0,∞) for all i.

Our setup reflects a situation where the noisy measurements ϑ1, . . . , ϑn converge in squared

mean to θ1, . . . , θn at the rate m−1. A leading case is the situation where ϑi is an estimator

of θi obtained from a sample of size m that converges at the parametric rate.1 We allow θi

and σ2
i to be correlated, implying that the noise ϑi−θi is not independent of θi. Recovering

the distribution of θi from a sample of (ϑi, σ
2
i ) is, therefore, not a standard deconvolution

problem.

It is common to estimate F (θ) by

F̂ (θ) := n−1
n∑
i=1

1{ϑi ≤ θ},

the empirical distribution of the ϑi at θ. As we will show below, under suitable regularity

conditions, such plug-in estimators are consistent and asymptotically normal as n → ∞
1Everything to follow can be readily modified to different convergence rates as well as to the case where

var(ϑi| θi, σ2
i ) = σ2

i /mi,

with mi := pim for a random variable pi ∈ (0, 1]. It suffices to redefine σ2
i as σ2

i /pi. When the ϑi represent

estimators this device allows for the sample size to vary with i. For example, in a panel data setting, it

would cover unbalanced panels under a missing-at-random assumption.
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provided that m grows with n so that n/m2 converges to a finite constant. The use of

ϑ1, . . . , ϑn rather than θ1, . . . , θn introduces bias of the order m−1, in general. This bias

implies that test statistics are size distorted and the coverage of confidence sets is incorrect

unless n/m2 converges to zero.

The bias problem is easy to see (and fix) when interest lies in smooth functionals of F ,

µ := E(ϕ(θi)),

for a (multiple-times) differentiable function ϕ. An (infeasible) plug-in estimator based on

θ1, . . . , θn would be

µ̃ := n−1
n∑
i=1

ϕ(θi).

Clearly, this estimator is unbiased and satisfies µ̃
a∼ N(µ, σ2

µ/n) as soon as σ2
µ := var(ϕ(θi))

exists. For the feasible plug-in estimator of µ,

µ̂ := n−1
n∑
i=1

ϕ(ϑi),

under regularity conditions provided in the Appendix, by a Taylor-series expansion we have

E(µ̂− µ) =
bµ
m

+O(m−2), bµ :=
E(∇2ϕ(θi)σ

2
i )

2
,

and

var(µ̂) =
σ2
µ

n
+O

(
n−1m−1

)
.

Hence, letting z ∼ N(0, 1), we have

µ̂− µ
σµ/
√
n

a∼ z +

√
n

m2

bµ
σµ
∼ N(c bµ/σµ, σ

2
µ),

as n/m2 → c2 < ∞ when n,m → ∞. The noise in ϑ1, . . . , ϑn introduces bias unless ϕ is

linear. It can be corrected for by subtracting a plug-in estimator of bµ/m from µ̂. Doing

so, again under regularity conditions given in the Appendix, delivers and estimator that is

asymptotically unbiased as long as n/m4 → 0.
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2.1 Estimation of the distribution function

Now consider estimation of the distribution function F using the plug-in estimator F̂ .

Again, the use of noisy measurements introduces bias. The machinery from above cannot

be applied to deduce the bias of F̂ , however, as it is a step function and, hence, is non-

differentiable.

To derive the bias we impose the following conditions.

Assumption 2. The density function f is three times differentiable with uniformly bounded

derivatives and one of the following two sets of conditions hold.

A. (i) The function E(σp+1
i |θi = θ) is p-times differentiable for p = 1, 2, 3; (ii) the joint

density of (θi, σi) exists, and the conditional density function of θi given σi is three times

differentiable with respect to θi and the third derivative is bounded in absolute value by a

function e(σi) such that E(e(σi)) <∞.

B. (i) There exists a deterministic function σ so that σi = σ(θi) for all i; and (ii) σ is four

times differentiable and has uniformly-bounded derivatives.

Assumption 2 distinguishes between the cases where the relation between θi and σ2
i is

stochastic (Assumption 2.A) and deterministic (Assumption 2.B). It requires smoothess of

certain densities and conditional expectations.

Define the function

β(θ) :=
E(σ2

i |θi = θ) f(θ)

2
,

which is well-behaved under Assumption 2, and let

bF (θ) := β′(θ)

be its derivative. We also introduce the covariance function

σF (θ, θ′) := F (θ ∧ θ′)− F (θ)F (θ′),

where we use θ ∧ θ′ to denote min{θ, θ′}. Our first theorem gives the leading bias and

variance of F̂ . All proofs are collected in the supplementary appendix.
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Theorem 1. Let Assumptions 1 and 2 hold. Then, as n,m→∞,

E(F̂ (θ))− F (θ) =
bF (θ)

m
+O(m−2), cov

(
F̂ (θ), F̂ (θ′)

)
=
σF (θ, θ′)

n
+O(n−1m−1),

where the order of the remainder terms is uniform in θ.

To illustrate the result suppose that σ2
i is independent of θi and that θi has density function

f(θ) =
1

ψ
φ

(
θ − η
ψ

)
,

as in the James and Stein (1961) problem. Letting σ2 denote the mean of the σ2
i an

application of Theorem 1 yields

bF (θ) = −(θ − η)
σ2

ψ2
φ

(
θ − η
ψ

)
.

Thus, F̂ (θ) is upward biased when θ < η and is downward biased when θ > η. This finding

is a manifestation of the phenomenon of regression to the mean (or selection bias, or the

winner’s curse; see Efron 2011). It implies that the empirical distribution tends to be too

disperse, and gives an alternative explanation of why the James and Stein (1961) estimator

shrinks toward the overall mean η.

A bias-corrected estimator based on Theorem 1 is

F̌ (θ) := F̂ (θ)− b̂F (θ)

m
, b̂F (θ) := −

(nh2)−1
∑n

i=1 σ
2
i κ
′ (ϑi−θ

h

)
2

,

where κ′ is the derivative of kernel function κ and h is a non-negative bandwidth parameter.

Thus, we estimate the bias using standard kernel methods. For simplicity, we will use a

Gaussian kernel throughout, so κ′(η) := −η φ(η).

We establish the asymptotic behavior of F̌ under the following regularity conditions.

Assumption 3. (i) The conditional density of θi given σi is five times differentiable with

respect to θi and the derivatives are bounded in absolute value by a function e(σi) such

that E(e(σi)) < ∞. (ii) supθ|bF (θ)| = O(1). There exists an integer ω > 2, and real

numbers κ > 1 + (1 − ω−1)−1 and η > 0 so that (iii) supθ(1 + |θ|κ) f(θ) = O(1); and (iv)

supθ(1 + |θ|1+η) |∇1bF (θ)| = O(1).
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Parts (i) and (ii) of Assumption 3 are simple smoothness and boundedness requirements.

Parts (iii) and (iv) are tail conditions on the marginal density of the θi and on the bias

function bF (θ).

We have the following result.

Proposition 1. Let Assumptions 1, 2, and 3 hold and let ε := (3 − ω−1)ω−1 > 0. If

h = O(m−1/2), h−1 = O(m2/3−4/9 ε), and h−1 = O(n), as n → ∞ and m → ∞ with

n/m4 → 0, then
√
n(F̌ (θ)− F (θ)) GF (θ)

as a stochastic process indexed by θ, where GF (θ) is a mean zero Gaussian process with

covariance function σF (θ1, θ2).

The implications of Proposition 1 are qualitatively similar to those for smooth functionals

discussed above. Indeed, for any fixed θ, it implies that

F̌ (θ)
a∼ N(F (θ), F (θ)(1− F (θ))/n)

as n → ∞ and m → ∞ with n/m4 → 0. Thus, the leading bias is removed from F̂

without incurring any cost in terms of (asymptotic) precision. Given the correction term,

the sample variance of

1{ϑi ≤ θ}+
1

2

1

mh2
σ2
i κ
′
(
ϑi − θ
h

)
is a more natural basis for inference in small samples than is that of 1{ϑi ≤ θ}.

A data-driven way of choosing h is by cross validation. A plug-in estimator of the

integrated squared error
∫ +∞
−∞ (F̌ (θ)−F (θ))2 dθ (up to multiplicative and additive constants)

is

v(h) :=
n∑
i=1

n∑
j=1

σ2
i σ

2
j

h2
φ′(ϑi, ϑj;h) +

n∑
i=1

∑
j 6=i

σ2
i

h

(
mφ′

(
ϑi − ϑj
h

)
− nm

n− 1
φ

(
ϑi − ϑj
h

))
,

where we use the shorthand

φ′(ϑi, ϑj;h) :=
1

4

1√
2h
φ

(
ϑi − ϑj√

2h

)(
1

2
− (ϑi + ϑj)

2

4h2
+
ϑiϑj
h2

)
.
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See the Appendix for details. The cross-validated bandwidth then is ȟ := arg minh v(h) on

the interval (0,+∞).

Theorem 1 equally validates a traditional jackknife approach to bias correction as in

Hahn and Newey (2004) and Dhaene and Jochmans (2015). Such an approach exploits

the fact that the bias of F̂ is proportional to m−1 and is based on re-estimating θ1, . . . , θn

from subsamples. This would require access to the data from which the ϑi were calculated.

On the other hand, an interesting feature of such an estimator is that it does not require

knowledge of (or estimation of) the σ2
i to be implementable. A somewhat different jackknife

procedure can be constructed from the observation that, if ϑ1, . . . , ϑn would have variance

λ2σ2
1, . . . , λ

2σ2
n, then the bias in F̂ would equally be multiplied by λ2. This is apparent

from the definition of β and suggests the jackknife estimator

Ḟ (θ) := F̂ (θ)− ḃF (θ)

m
=

1 + λ2

λ2
F̂ (θ)− 1

λ2
F̂λ(θ),

where

ḃF (θ) := m
F̂λ(θ)− F̂ (θ)

λ2
, F̂λ(θ) := n−1

n∑
i=1

Φ

(
1

λ

θ − ϑi
σi/
√
m

)
.

Note that Ḟ can be computed without re-estimating θ1, . . . , θn. Such an approach bears

similarities to the jackknife estimator of a density function introduced in Schucany and

Sommers (1977). The reason this estimator is bias-reducing is as follows. By Assumption

1 and iterated expectations,

E(F̂ (θ)) = E

(
Φ

(
θ − θi
σi/
√
m

))
= F (θ) +

bF (θ)

m
+O(m−2).

Further, by a standard convolution argument,

E(F̂λ(θ)) = E

(
Φ

(
1√

1 + λ2
θ − θi
σi/
√
m

))
= F (θ) + (1 + λ2)

bF (θ)

m
+O(m−2).

Thus, our ḃF (θ) is a sample version of bF (θ). Like in Schucany and Sommers (1977),

the approach exploits variation in a bandwidth parameter. However, while they address

smoothing bias in non-parametric density estimation (in a similar way as would the use

of a higher-order kernel), our estimator attacks bias introduced through estimation noise.
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Note, finally, that the sample variance of

1{ϑi ≤ θ} − 1

λ2

(
Φ

(
1

λ

θ − ϑi
σi/
√
m

)
− 1{ϑi ≤ θ}

)
can be used for inference in stead of that of only 1{ϑi ≤ θ} although, again, both will be

valid asymptotically.

2.2 Estimation of the quantile function

The bias in F̂ translates to bias in estimators of the quantile function. A natural estimator

for τth-quantile q(τ) is given by q̂(τ) := F̂←(τ̂), where we use F̂← to denote the left-inverse

of F̂ . Moreover,

q̂(τ) = F̂←(τ̂) = ϑ(dτne),

that is, the ϑ(dτne)th order statistic of our sample, where dae delivers the smallest integer

at least as large as a.

The quantile estimator is an approximate solution to the empirical moment condition

F̂ (q)−τ = 0 (with respect to q); it is an approximate root only because F̂ is a step function.

From Theorem 1 we know that

E(F̂ (q(τ)))− τ =
bF (q(τ))

m
+O(m−2),

uniformly in τ , so the moment condition that defines the estimator q̂(τ) is biased. Letting

bq(τ) := −bF (q(τ))

f(q(τ))
, σ2

q (τ) :=
τ(1− τ)

f(q(τ))2
,

we obtain the following asymptotic bias result.

Corollary 1. Let the Assumptions 1 and 2 hold. For τ ∈ (0, 1), assume that f > 0 in a

neighborhood of q(τ). Then,

√
n

(
q̂(τ)− q(τ)− bq(τ)

m

)
d→ N(0, σ2

q (τ)),

as n,m→∞ with n/m2 → c ∈ [0,+∞).
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As an example, when θi ∼ N(η, ψ2), independent of σ2
i , we have

bq(τ) =
σ2/ψ2

2
(q(τ)− η),

which, in line with our discussion on regression to the mean above, is positive for all

quantiles below the median and negative for all quantiles above the median. The median

itself is, in this particular case, estimated without plug-in bias of order m−1. (It will,

of course, still be subject to the usual n−1 bias arising from the nonlinear nature of the

moment condition.)

Corollary 1 readily suggests a bias-corrected estimator of the form

q̂(τ)− b̂q(τ)

m
, b̂q(τ) := − b̂F (q̂(τ))

f̂(q̂(τ))
,

using obvious notation. While (under suitable regularity conditions) such an estimator

successfully reduces bias it has the unattractive property that it requires a non-parametric

estimator of the density f , which further shows up in the denominator. An alternative

estimator that avoids this issue is

q̌(τ) := F̂←(τ̂ ∗), τ̂ ∗ := τ +
b̂F (q̂(τ))

m
.

The justification for this estimator comes from the fact that E(F̂ (q(τ))) − τ ∗ = O(m−2),

where τ ∗ = τ + bF (q(τ))/m, and its interpretation is intuitive. Given the noise in the ϑi

relative to the θi, the empirical distribution of the former is too heavy-tailed relative to

the latter, and so q̂(τ) estimates a quantile that is too extreme, on average. Changing the

quantile of interest from τ to τ ∗ adjusts the naive estimator and corrects for regression to

the mean.

Proposition 2. Let the assumptions stated in Proposition 1 hold. For τ ∈ (0, 1), assume

that f > 0 in a neighborhood of q(τ). Then,

√
n (q̌(τ)− q(τ))

d→ N(0, σ2
q (τ)),

as n,m→∞ with n/m4 → 0.
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The corrected estimator has the same asymptotic variance as the uncorrected estimator.

It is well-known that plug-in estimators of σ2
q can perform quite poorly in small samples

(Maritz and Jarrett 1978). Typically, researchers rely on the bootstap, and we suggest

doing so here. Moreover, draw (many) random samples of size n from the original sample

ϑ1, . . . , ϑn and re-estimate q(τ) by the bias-corrected estimator for each such sample. Then

construct confidence intervals for q(τ) using the percentiles of the empirical distribution of

these estimates. Note that this bootstrap procedure does not involve re-estimation of the

individual θi.

The view of correcting the moment condition that defines q̂(τ) also suggests the jackknife

estimator

q̇(τ) :=
1 + λ2

λ2
q̂(τ)− 1

λ2
q̂λ(τ),

where q̂λ(τ) := minq{q : F̂λ(q) ≥ τ}, again for some chosen λ. The intuition behind this

jackknife correction follows from the discussion on the bias-reducing nature of Ḟ and the

definition of q̂.

3 Numerical illustrations

3.1 Simulated data

To support our theory we provide simulation results for a James and Stein (1961) problem

where θi ∼ N(0, ψ2) and we have access to an n×m panel on independent realizations of

the random variable

xit| θi ∼ N(θi, σ
2).

This setup is a simple random-coefficient model. It is similar to the classic many normal

means problem of Neyman and Scott (1948). While their focus was on consistent estimation

of the within-group variance, σ2, for fixed m, our focus is on between-group characteristics

and the distribution of the θi as a whole. We estimate θi by the fixed-effect estimator, i.e.,

ϑi = m−1
m∑
t=1

xit.
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The sampling variance of ϑi|θi is σ2/m. Rather than assuming this variance to be known

we implement our procedure using the estimator

s2i := (m− 1)−1
m∑
t=1

(xit − ϑi)2.

We do not make use of the fact that the ϑi are homoskedastic in estimating the noise or in

constructing the bias correction. To iterate, our procedure is non-parametric and does not

require knowledge of the noise distribution for implementation.

A deconvolution argument implies that

ϑi ∼ N(0, ψ2 + σ2/m).

Thus, indeed, the empirical distribution of the fixed-effect estimator is too fat-tailed and.

In particular, the sample variance of ϑ1, . . . , ϑn,

ψ̂2 :=
1

n− 1

n∑
i=1

(ϑi − ϑ)2, ϑ := n−1
n∑
i=1

ϑi,

is a biased estimator of ψ2. To illustrate how this invalidates inference in typically-sized

data sets we simulated data for ψ2 = 1 (so F is standard normal) and σ2 = 5. The panel

dimensions (n,m) reported on are (50, 3), (100, 4), and (200, 5). Table 1 shows the bias and

standard deviation of ψ̂2 as well as the empirical rejection frequency of the usual two-sided

t-test for the null that ψ = 1. The nominal size is set to 5%. In practice, however, the test

rejects in virtually each of the 10, 000 replications. The table provides the same summary

statistics for the bias-corrected estimator

ψ̌2 :=
1

n− 1

n∑
i=1

(
(ϑi − ϑ)2 − s2i

m

)
.

The adjustment reduces the estimator’s bias relative to its standard error and brings down

the empirical rejection frequencies to just over their nominal value for the sample sizes

considered.

A popular approach in empirical work to deal with noise in ϑ1, . . . , ϑn is shrinkage

estimation (see, e.g., Chetty, Friedman and Rockoff 2014). This procedure is not designed
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Table 1: Variance estimation under normal noise

bias std se/std size (5%)

n m ψ̂2 ψ̌2 ψ̂2 ψ̌2 ψ̂2 ψ̌2 ψ̂2 ψ̌2

50 3 1.616 -0.054 0.525 0.577 0.964 0.971 0.973 0.082

100 4 1.224 -0.028 0.321 0.337 0.966 0.969 0.997 0.073

200 5 0.989 -0.010 0.199 0.205 0.985 0.985 1.000 0.062

to improve estimation and inference of F or its moments, however. In the current setting,

the (infeasible, parametric) shrinkage estimator is simply(
1− σ2/m

σ2/m+ ψ2

)
ϑi.

Its exact sampling variance is(
ψ2

σ2/m+ ψ2

)
ψ2 = ψ2 − σ2/ψ2

m
+ o(m−1).

It follows that the sample variance of the shrunken ϑ1, . . . , ϑn has a bias that is of the

same order as that in the sample variance of ϑ1, . . . , ϑn. Interestingly, note that, here, this

estimator overcorrects for the presence of noise, and so will be underestimating the true

variance, ψ2, on average.

The left plots in Figure 1 provide simulation results for the distribution function F for

the same Monte Carlo designs. The upper-, middle-, and lower plots are for the sample

size (50, 3), (100, 4), (200, 5), respectively. Each plot contains the true curve F (black;

solid) together with (the average over the Monte Carlo replications of) the naive plug-in

estimator (red; dashed), the empirical distribution of the Empirical-Bayes point estimates

(purple; dashed-dotted), and the analytically bias-corrected estimator (blue; solid). 95%

confidence bands are placed around the latter estimator. The bandwidth in the correction

term in F̌ was chosen via the cross-validation procedure discussed above. Empirical Bayes

was implemented non-parametrically (and correctly assuming homoskedasticity) based on

the formula stated in the introduction using a kernel estimator and the optimal bandwidth

that assumes knowledge of the normality of the target distribution. Simulations results
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for a jackknife correction yielded very similar corrections and are omitted here for brevity

(results for the jackknife can be found in previous versions of this paper).

The simulations clearly show the substantial bias in the naive estimator. This bias

becomes more pronounced relative to its standard error as the sample size grows and,

indeed, F̂ starts falling outside of the confidence bands of F̌ in the middle and bottom plots.

The Empirical-Bayes estimator is less biased than F̂ . However, its bias is of the same order

and so, as the sample size grows it does not move toward F but, rather, towards F̂ .2 Only

F̌ is sufficiently bias-reducing. Indeed, its confidence band settles around F as the same

grows. We note that, while F̌ tends to be slightly more volatile than F̂ in small samples,

the bias-reduction outweighs this in terms of root mean squared error (RMSE). Indeed,

the RMSE of (F̂ , F̌ ) across the designs are (.0969, .0816), (.0756, .0578), and (.0620, .0424),

respectively.

The reduction in bias is again sufficient to bring empirical size of tests in line with their

nominal size. To see this Table 2 provides empirical rejection frequencies of two-sided tests

at the 5% level for F at each of its deciles using both F̂ and F̌ . The rejection frequencies

based on the naive estimator are much too high for all sample sizes and deciles and get

worse as the sample gets larger. Empirical size is much closer to nominal size after adjusting

for noise, and this is observed at all deciles.

The right plots in Figure 1 provide simulation results for estimators of the deciles of F .

The presentation is constructed around a QQ plot of the standard normal, pictured as the

black dashed-dotted line in each plot. Along the QQ plot the average (over the Monte Carlo

replications) of the naive estimator (red), Empirical Bayes (purple), and the (analytically)

bias-corrected quantiles (blue) are shown by ∗ symbols. Confidence intervals around the

latter (in blue,-o) are again equally provided. Like the naive estimator, the Empirical

Bayes estimators are the appropriate order statistics of ϑ1, . . . , ϑn, after shrinkage has been

2Recall that the Empirical-Bayes estimator is not designed for inference on F but, in stead, aims to

minimize risk in estimating θ1, . . . , θn. In terms of RMSE it dominates ϑ1, . . . , ϑn. For the three sample

sizes considered here, the RMSEs are 1.667, 1.246, and 1.000 for the plug-in estimators and 1.233, 1.018,

.874 for Empirical Bayes.
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Figure 1: Estimation of F and q under normal noise
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Table 2: Inference on F under normal noise: empirical size

τ .1 .2 .3 .4 .5 .6 .7 .8 .9

(n,m) = (50, 3)

F̂ 0.4814 0.5518 0.3695 0.1530 0.0681 0.1598 0.3801 0.5610 0.4828

F̌ 0.0600 0.0928 0.1039 0.0785 0.0563 0.0745 0.1029 0.0891 0.0628

(n,m) = (100, 4)

F̂ 0.6962 0.7304 0.5564 0.2280 0.0566 0.2312 0.5586 0.7352 0.7034

F̌ 0.0608 0.0848 0.0920 0.0664 0.0494 0.0734 0.0932 0.0782 0.0532

(n,m) = (200, 5)

F̂ 0.926 0.902 0.7634 0.3288 0.0576 0.3212 0.7646 0.903 0.9146

F̌ 0.0536 0.0828 0.0996 0.0770 0.0496 0.0792 0.0978 0.0780 0.0554

applied to each. Visual inspection reveals that the results are in line with those obtained

for the distribution function. As the sample size grows, only q̌ successfully adjust for bias

arising from estimation noise in ϑ1, . . . , ϑn. More detailed results on inference are available

in a previous version of this paper.

As said our approach does not hinge on the assumption of normal noise. To verify

this we re-did the simulation exercise with logistic noise. To make all result comparable

we rescale the logistic distribution so that its variance matches the one assumed prior in

the normal design. The rest of the setup is unaltered. Figure 2 contains the plots for the

estimators of the distribution and quantile function. Table 3 provides the empirical size

of hypothesis tests on F at the 5% nominal level. The layout of the figure and table fully

matches those for the normal design. A glance at the output allows to verify that our

corrections indeed are equally effective in this case.

3.2 Empirical example

As an empirical illustration we estimate a fixed-effect version of a stochastic-frontier model,

as in Schmidt and Sickles (1984). We follow Belotti, Daidone, Ilardi and Atella (2013) and

estimate a translog production function for milk (in liters per year) from a panel data set
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Figure 2: Estimation of F and q under logistic noise

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

DISTRIBUTION FUNCTION

-1 -0.5 0 0.5 1

-2

-1

0

1

2

QUANTILE FUNCTION

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

20



Table 3: Inference on F under logistic noise: empirical size

τ .1 .2 .3 .4 .5 .6 .7 .8 .9

(n,m) = (50, 3)

F̂ 0.4572 0.5240 0.3474 0.1488 0.0680 0.1486 0.3460 0.5210 0.4620

F̌ 0.0694 0.1086 0.1106 0.0770 0.0582 0.0756 0.1050 0.1028 0.0692

(n,m) = (100, 4)

F̂ 0.6828 0.7223 0.5436 0.2292 0.0484 0.2268 0.5448 0.7324 0.6836

F̌ 0.0664 0.0982 0.1216 0.0796 0.0452 0.0772 0.1152 0.1041 0.0708

(n,m) = (200, 5)

F̂ 0.9176 0.8928 0.7444 0.3108 0.0564 0.3156 0.7520 0.8920 0.9124

F̌ 0.0544 0.0920 0.1124 0.0804 0.0480 0.0856 0.1292 0.0864 0.0512

of 247 Spanish dairy farms over the three-year period 1993-1995. The regressors are (the

natural logarithm of) the number of milking cows, the number of man-equivalent units,

the number of hectares devoted to pasture and crops, and the kilograms of feedstuffs fed

to the dairy cows, as well as the interactions between all these inputs. Year dummies are

also included to control for neutral technological change over the sampling period. Letting

yit denote log output and xit the vector of all regressors the fixed-effect version of the

stochastic-frontier model is

yit = α + x′itβ − θi + εit,

where εit is a zero-mean normal error and θi ≥ 0 represents technical inefficiency of firm i.

The distribution of this (in)efficiency measure is of interest. If we rewrite the above model

as

yit = x′itβ + αi + εi, αi := α− θi,

it takes the form of a standard panel data model with firm-specific effects. A common way

to proceed is by taking a random-effect approach, following early work by following Pitt and

Lee (1981). A default specification would assume αi to follow a half-normal distribution

and be independent of all the input factors in xit. We will report the integrated-likelihood

estimator for this specification below. We take a a semiparametric fixed-effect approach, as

originally proposed by Schmidt and Sickles (1984). Moreover, we treat the αi as parameters
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Figure 3: Estimates of firm-inefficiency distribution
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and estimate them by linear regression for each farm i. This gives the estimator α̂i, say.

We then construct the estimator

ϑi = max
i

(α̂i)− α̂i

for the (in)efficiency parameter θi. By doing so we are normalizing the most efficient firm in

the sample as being 100% efficient. The least-squares estimator does not hinge on a normal

specification for the regression errors and, for robustness, we use heteroskedasticity-robust

standard errors.

Standard statistical packages report (conventional plug-in) estimates of the mean and

standard deviation of the technical inefficiency measure obtained via the Schmidt and

Sickles (1984) procedure. In our data, mean efficiency, E(θi), is estimated to be .3490

(with a standard error of .0103) and the standard deviation of θi is estimated as .1611

(with a standard error of .0078), respectively. Correcting the estimator of the standard

deviation for the use of ϑi in stead of θi as discussed above (and allowing for cross-sectional

heteroskedasticity) gives an adjusted point estimate of .1361 (with a standard error of .0092,

which is slightly higher). This correction of 2.5 percentage points is subtantial relative to

the standard error.

Figure 3 contains the estimated distribution of firm inefficiency. It reports the plug-in

estimator (red; dashed) and its bias-adjusted version (blue; solid); the latter again comes
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with confidence intervals (blue; -*). As observed in the simulations, the bias-adjustment

takes the form of moving-away mass from the tails of the distribution. This displacement

is large relative to the estimated standard error. The figure also contains an estimate

of the inefficiency distribution based on a random-effect specification with a half-normal

distribution (a normal distribution folded upon itself, with its mean as turning point). The

standard error of this distribution is estimated as .2136. This is much larger than the

non-parametric estimates. The plot clearly shows that our non-parametric approach allows

rejection of the half-normal as an appropriate parametric specification for firm inefficiency

in these data.

4 Conclusions

In this paper we have considered inference on the distribution of latent variables from noisy

measurements. In an asymptotic embedding where the variance of the noise shrinks with

the sample size we have derived the leading bias in the empirical distribution function

of the noisy measurements and suggested both an analytical and a jackknife correction.

These estimators are straightforward to implement. Moreover, they provide a simple and

numerically stable (approximate) solution to a generalized deconvolution problem that, in

addition, yields valid inference procedures.

Empirical contexts where our procedures are of direct use are regression models with

fixed effects such as those in the teacher value-added literature and those used to infer

stochastic production frontiers, for example. Our approach also connects to hierarchical

models and, hence, can be of use in many other settings; an example is the recent literature

on meta-analysis of field experiments (Vivalt 2015; Meager 2018).

To illustrate the usefulness of our work we have presented simulation results that show

the vast improvement of our corrections over the commonly-used plug-in estimator and over

shrinkage, which has recently been pursued in empirical work. We have equally presented an

empirical application on the estimation of a stochastic frontier model for dairy farms, where

our non-parametric approach allows a clear rejection of standard parametric specifications.
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