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Abstract

This paper develops an approach to detect identification failures in a large

class of moment condition models. This is achieved by introducing a quasi-

Jacobian matrix which is asymptotically singular under higher-order local identi-

fication as well as weak/set identification; in these settings, standard asymptotics

are not valid. Under (semi)-strong identification, where standard asymptotics are

valid, this matrix is asymptotically equivalent to the usual Jacobian matrix. After

re-scaling, it is thus asymptotically non-singular. Together, these results imply

that the eigenvalues of the quasi-Jacobian can detect potential local and global

identification failures. Furthermore, the quasi-Jacobian is informative about the

span of the identification failure. This information permits two-step identifica-

tion robust subvector inference without any a priori knowledge of the underlying

identification structure. Monte-Carlo simulations and empirical applications il-

lustrate the results.
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1 Introduction

The Generalized Method of Moments (GMM) of Hansen & Singleton (1982) is a powerful

estimation framework which does not require the model to be fully specified parametrically.

Under regularity conditions, the estimates are consistent and asymptotically gaussian. In

particular, the moment conditions should uniquely identify the finite dimensional parameters.

This is very difficult to verify in practice and, as noted in Newey & McFadden (1994), is

often assumed. Yet, when identification fails or nearly fails, the Central Limit Theorem

provides a poor finite sample approximation for the distribution of the estimates. This

has motivated a vast amount of research on tests which are robust to identification failure.

As discussed in the literature review, much of this work has focused on tests for the full

parameter vector. Potentially conservative confidence intervals for scalar parameters can

then be built by projecting confidence sets for the full parameter vector (Dufour & Taamouti,

2005) or using a Bonferroni approach (McCloskey, 2017).

The contribution of this paper is two-fold: First, it introduces a quasi-Jacobian matrix

which is singular under both local (first-order) and global identification failure and is infor-

mative about the coefficients involved in the failure. This is the main contribution of the

paper as it provides an approach similar to Cragg & Donald (1993) and Stock & Yogo (2005)

but in a non-linear setting. Second, the information from the first step allows for two-step

identification robust subvector inference, akin to type I inference in Andrews & Cheng (2012)

but without a priori knowledge of the identification structure.

To detect identification failures, this paper constructs a quasi-Jacobian matrix which

corresponds to the best linear approximation of the sample moments function over a region

of the parameters where these moments are close to zero. To find the best linear approxima-

tion, two loss functions are considered: the supremum norm measures the largest difference

between the moments and its approximation while the least-squares criterion focuses on the

average difference. The sup-norm approximation provides strong and intuitive results while

least-squares can be easily computed by OLS using the moments as a dependent variable.

Its lower computational burden and very simple implementation make the least-squares ap-

proximation the preferred approach for empirical settings.

The asymptotic behaviour of the quasi-Jacobian matrix, computed under these two loss

functions, is studied under four identification regimes: strong, semi-strong,1 higher-order

local and weak (or set) identification. The GMM estimator is consistent and asymptotically

1Semi-strong identification is also known as nearly-weak identification (Antoine & Renault, 2009).
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normal in the first two regimes, consistent but not asymptotically normal in the third and

is inconsistent in the fourth. Hence, the last two regimes correspond to settings where the

finite sample distribution of the estimator is poorly approximated by standard asymptotics.

Under (semi)-strong identification,2 the quasi-Jacobian is asymptotically equivalent to the

usual Jacobian. After re-scaling, it is asymptotically non-singular. Under higher-order and

weak/set set identification the quasi-Jacobian is asymptotically singular with eigenvalues

vanishing on the span of the identification failure, i.e. directions in which identification fails.

Building on these results, this paper constructs a two-step procedure for testing linear

hypotheses on the parameter θ ∈ Rdθ of the form:

H0 : Rθ = c vs. H1 : Rθ 6= c, (1)

for some restriction matrix R ∈ Rm×dθ , 1 ≤ m ≤ dθ, c ∈ Rm. Assuming there is evidence

of identification failure, i.e. a small eigenvalue in the quasi-Jacobian, the two steps can be

summarized as:3

i. Split the parameter vector θ into two sets of parameters: one which needs to be fixed

given evidence of weak, set or higher-order identification. Rθ is also fixed to match

the null (1). Another, for which there is no evidence of identification failure, will be

treated as (semi)-strongly identified.

ii. Construct a confidence set by projection inference for Rθ and the parameters fixed in

i.; concentrate out the remaining parameters. The test statistic needs to be robust

to identification failure. One can use the S, K or CQLR statistic of Stock & Wright

(2000), Kleibergen (2005) and Andrews & Mikusheva (2016b), for instance.

Step 2 has previously been discussed in the literature.4 The main challenge to implementing

this step in practice has been in determining which nuisance parameters are (semi)-strongly

identified when the others are fixed. When such decomposition is known ex-ante, Andrews &

Cheng (2012) show how to conduct uniformly valid inference. In this paper, this knowledge

is not required since the quasi-Jacobian is vanishing on the span of the identification failure.

In practice, a cutoff is required to distinguish between matrices that are vanishing from those

that are not. A rule-of-thumb, similar to Stock & Yogo (2005), is provided to construct this

2The term (semi)-strong will refer to cases where identification can be either strong or semi-strong.
3Under strong and semi-strong identification, standard inference using the Wald, QLR or LM test will be

valid. Lack of evidence for weak and higher-order identification would indicate that these tests can be used.
4See e.g. Kleibergen (2005); Andrews & Mikusheva (2016b), among others.
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cutoff when detecting weak/set as well as higher-order identification. It relies on a Nagar

approximation of the size distortion under semi-strong asymptotics.

To determine which coefficients to fix, a search procedure considers a pre-determined

increasing set of restrictions. The search stops once a criteria based on the quasi-Jacobian

(and residual curvature for higher-order identification) indicates that the span of the iden-

tification failure is fixed. The search procedure is shown to restore point identification with

probability going to 1. As a result, the two-step approach is shown to yield tests that are

asymptotically valid, although not uniformly.

Finally, the quasi-Jacobian can be used to compute standard errors in the sandwich

formula when sample moments are non-smooth. This may be of practical interest.

Monte-Carlo simulations illustrate the finite sample behaviour of the quasi-Jacobian and

the two-step inference procedure. The approach is then applied to two empirical settings.

The first revisits the US Euler equation: the quasi-Jacobian is flat in at least one direction

confirming weakly/set identification. The root of the issue is that moments are redundant,

reducing to a single moment condition. Singulary and identification robust inference is

required (Andrews & Guggenberger, 2019). The second application, provided in the Sup-

plement, confirms weak identification in quantile IV estimation of the demand for fish of

Chernozhukov et al. (2007).

Structure of the Paper

After a review of the literature and an overview of the notation used in the paper, Section

2 introduces the setting, the linear approximations, precise definitions of the identifica-

tion regimes considered and the main assumptions used in the paper. Section 3 derives

the asymptotic behaviour of the quasi-Jacobian matrix. Section 4 describes the two-step

inference procedures in more details including: the Algorithms used to determine which pa-

rameters to fix, the rules-of-thumb for choosing the cutoffs and the asymptotic results for

the inference procedures. Section 5 provides a Monte-Carlo example to illustrate some of the

results from the previous sections. An empirical example is provided in Section 6. Section

7 concludes. Appendices A and B provide the proofs for the main results of Sections 3 and

4 respectively. The Supplement consists of Appendices C, D, E, F, G and H which provide

additional and preliminary results for the main text and their proofs as well as additional

Monte-Carlo and Empirical results.
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Related Literature

The literature on the identification of economic models is quite vast. An extensive review

is given in Lewbel (2018). Within this literature, this paper mainly relates to three topics:

local and global identification of finite dimensional parameters in the population, detecting

identification failure in finite samples and identification robust inference.

Koopmans & Reiersol (1950) provide one of the earliest general formulations of the iden-

tification problem at the population level. To paraphrase the authors, the main problem is to

determine whether the distribution of the data, assumed to be generated from a given class

of models, is consistent with a unique set of structural parameters. In the likelihood setting,

Fisher (1967); Rothenberg (1971) introduced sufficient conditions for local and global iden-

tification. For GMM, Komunjer (2012) introduced weaker global identification conditions.

In linear models, global identification amounts to a rank condition on the slope of the

moments. This insight was used in pre-testing linear IV models for identification failure

(Cragg & Donald, 1993; Stock & Yogo, 2005). Pre-tests based on the null of strong identi-

fication appear in Hahn & Hausman (2002) for linear IV and Inoue & Rossi (2011); Bravo

et al. (2012) for non-linear models. Pre-testing for strong identification can be problematic

for size control when the pre-test’s power is low. For non-linear models, Wright (2003) uses

a rank test and Antoine & Renault (2017) a distorted J-statistic to detect local identification

failure. Arellano et al. (2012) develop a test for underidentification of a single coefficient.

Given the impact of (near) identification failure on standard inferences, a large body

of literature has developed identification robust tests. Most consider inference for the full

parameter vector.5 Few consider the topological features of the identified set, with the

notable exception of Andrews & Mikusheva (2016a). For subvector inferences, a common

approach is to construct a confidence set for the full vector and project it on the dimension

of interest (Dufour & Taamouti, 2005, 2007) or to use a Bonferroni correction (McCloskey,

2017). These methods might be conservative.6 A series of papers starting with Andrews

& Cheng (2012), considers uniformly valid subvector inferences in a class of model where

the identification structure is known and identification strength is driven by some (semi)-

strongly identified coefficients. Under higher-order identification, estimates are consistent

but the delta-method is not valid; the limiting distribution is non-standard (Rotnitzky et al.,

2000; Dovonon & Hall, 2018). This issue is known but much less studied than weak and set

5See e.g. Anderson & Rubin (1949); Stock & Wright (2000); Kleibergen (2005); Andrews & Mikusheva

(2016b); Chen et al. (2018).
6However, as discussed in Section 4, Remark 2, when the nuisance parameters are completely unidentified

projection inference may actually have exact asymptotic coverage.
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identifications. Dovonon et al. (2019) study identification robust tests under second-order

identification and Lee & Liao (2018) show how to conduct standard inference with known

second-order identification structure.

Notation

For any matrix (or vector) A, ‖A‖ =
√∑

i,j A
2
i,j =

√
trace(AA′) is the Frobenius (Euclidian)

norm of A. For any rectangular matrix A, the singular value |λj(A)| refers to the j − th

eigenvalue of (A′A)1/2. λmax(A), λmin(A) refer to the largest and smallest value of |λj(A)|,
respectively. With some abuse of notation, these singular values will be referred to as eigen-

values. For a weighting matrix Wn(θ), the norm ‖ḡn(θ)‖2
Wn

is computed as ḡn(θ)′Wn(θ)ḡn(θ).

For any two positive sequences an, bn, an � bn ⇔ ∃C,C > 0, Can ≤ bn ≤ Can,∀n ≥ 1;

an = o(bn) ⇔ ∀ε > 0,∃N > 0,∀n ≥ n, an ≤ εbn; an = O(bn) ⇔ ∃M > 0,∃N >

0,∀n ≥ n, an ≤ Mbn. For Xn a sequence of random variables and an positive sequence,

Xn = op(an) ⇔ ∀ε > 0,P(‖Xn‖ ≥ anε) = o(1); Xn = Op(an) ⇔ ∀ε > 0,∃M > 0,∃N >

0,∀n ≥ N,P(‖Xn‖ > anM) ≤ ε.

2 Setting and Assumptions

Following Hansen & Singleton (1982), the econometrician wants to estimate the solution

vector θ0 to the system of unconditional moment equations:

gn(θ0)
def
= E(ḡn(θ0)) = 0, (2)

where θ0 ∈ Θ, a compact subset of Rdθ , dim(gn) = p ≥ dθ. ḡn(θ) = 1/n
∑n

i=1 g(zi, θ),

(zi)i=1,...,n is a sample of iid or stationary random variables. Throughout, it is assumed that

at least one such θ0 exists.7 gn is assumed to be continuously differentiable on Θ. Given the

sample moments ḡn and a sequence of positive definite weighting matrices Wn(θ), the GMM

estimator θ̂n solves the minimization problem:

θ̂n = argminθ∈Θ‖ḡn(θ)‖2
Wn
, where ‖ḡn(θ)‖2

Wn
= ḡn(θ)′Wn(θ)ḡn(θ).

2.1 Linear Approximations and the quasi-Jacobian Matrix

The quasi-Jacobian matrix Bn,LS/∞ is defined below as the slope of a local linear approxi-

mation ḡn under a given loss.

7This can be achieved in general by re-centering: gn(θ)− gn(θ0) where θ0 = argminθ∈Θ‖gn(θ)‖W .
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Definition 1. (Sup-Norm and Least-Squares Approximations) Let K be a kernel function

and κn a bandwidth. The sup-norm approximation (An,∞, Bn,∞) solves:

(An,∞, Bn,∞) = argminA,B sup
θ∈Θ
‖A+Bθ − ḡn(θ)‖ × K̂n(θ), (3)

where K̂n(θ) = K (‖ḡn(θ)‖Wn/κn). The least-squares approximation (An,LS, Bn,LS) solves:

(An,LS, Bn,LS) = argminA,B

∫
Θ

‖A+Bθ − ḡn(θ)‖2 × K̂n(θ)dθ, (4)

where K̂n(θ) = K(‖ḡn(θ)‖Wn/κn−‖ḡn(θ̂n)‖Wn/κn). The quasi-Jacobian refers to the Bn,LS/∞

computed using either the least-squares (LS) or sup-norm (∞) approximation.

The sup-norm approximation solves a non-smooth optimization problem and is thus more

computationally demanding. However, the theory for Bn,∞ is very intuitive and it will be

quite useful to understand the relation between the quasi-Jacobian and identification failure.

The least-squares approximation involves further topological arguments and requirements

but is much more convenient to compute in practice:(
An,LS, Bn,LS

)′
=

(∫
Θ

X(θ)X(θ)′K̂n(θ)dθ

)−1 ∫
Θ

X(θ)ḡn(θ)′K̂n(θ)dθ,X(θ) = (1, θ′)′.

The two integrals can be approximated using (quasi)-Monte-Carlo (qMC) methods (Robert &

Casella, 2004; Lemieux, 2009). In this paper, the Sobol sequence was used. Implementation

is straightforward: qMC provides a grid for θ over which ḡn and Wn are evaluated. The

evaluated moments are then regressed on (1, θ) using weighted least-squares with K̂n as

weights. The quasi-Jacobian Bn,LS then consists of the slope coefficients.

For OLS and IV, the approximation is exact and yields Bn,LS = X ′X/n and Z ′X/n. The

quasi-Jacobian is close to singular where the regressors are nearly multicollinear in OLS or

when the instruments are not sufficiently relevant in IV. The rank of Bn,LS is thus informative

about the identification failure in these models. This extends to non-linear models.

2.2 Identification Regimes

The following describes the identification regimes considered in this paper. Their implications

for the GMM estimator θ̂n are summarized in Table 1. Examples 1, 2 illustrate the definitions.

Example 1 (Non-Linear Least-Squares). Consider the non-linear regression model:

yt = θ1x1,t + θ1θ2x2,t + et

6



Table 1: Identification Regimes and Asymptotic Properties of θ̂n

Identification Regime θ̂n consistent? Rate of convergence Limiting distribution

Strong Yes
√
n Gaussian

Semi-Strong Yes slower than
√
n Gaussian

Higher-Order Yes n1/4 or slower non-Gaussian

Weak or Set No - non-Gaussian

with x1,t, x2,t, et iid with mean 0 and variance 1 such that V(x1,t, x2,t, et) = I3 and θ =

(θ1, θ2) ∈ [0, 1]2. The estimating moments gn are:

gn(θ) =

 E(ytx1,t)− θ1

E(ytx2,t)− θ1θ2

 =

 1 0

θ2 θ1,0

 θ1 − θ1,0

θ2 − θ2,0

 .

Example 2 (Possibly Noninvertible MA(1) Model). Consider the model:

yt = σ[et − ϑet−1]

where et is iid with mean 0, variance 1 and skewness τ known. The moments E(y2
t ) and

E(ytyt−1) only determine θ ∈ {(ϑ0, σ
2
0), (1/ϑ0, σ

2
0ϑ

2
0)} when ϑ0 ∈ R/{−1, 0, 1}. Assuming

invertibility (|ϑ0| ≤ 1) restores point identification. Gospodinov & Ng (2015) show that when

τ 6= 0, the additional moment E(y2
t yt−1) restores point identification without invertibility.

Definition 2. (Point Identification) The model is point identified if ∃θ0 ∈ int(Θ) such that

∀ε > 0, ∃η(ε) > 0:

inf
‖θ−θ0‖≥ε

‖gn(θ)‖W ≥ η(ε), ∀n ≥ 1. (5)

Definition 3. (Strong Identification) The model is strongly identified if it is point identified

and ∃ε > 0 and C > 0 such that ‖θ − θ0‖ ≤ ε implies:

‖gn(θ)‖W ≥ C‖θ − θ0‖, ∀n ≥ 1. (6)

Definition 3 is satisfied when the Jacobian ∂θgn(θ0) has full rank, its smallest eigenvalue

is bounded below and, gn(θ) = ∂θgn(θ0)(θ − θ0) + o(‖θ − θ0‖) around θ0.
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Example 1 (Continued). Computing the Jacobian of the moments at θ = θ0 implies:

∂θgn(θ0,n) =

 1 0

0 θ1,0

⇒
 1 0

−θ2 1

 gn(θ) = ∂θgn(θ0,n)(θ − θ0).

Note that 1 is the only eigenvalue of the matrix on the left-hand side of gn(θ) which implies

that ‖gn(θ)‖ ≥ ‖∂θgn(θ0)(θ−θ0)‖. |θ1,0| bounded away from zero implies that the eigenvalues

of ∂θgn(θ0) are bounded away from zero as well.

Example 2 (Continued). The estimating moments are given by:

gn(θ) =


E(y2

t ) − σ2(1 + ϑ2)

E(ytyt−1) + σ2ϑ

E(y2
t yt−1) + τσ3ϑ

 =


σ2

0(1 + ϑ2
0) − σ2(1 + ϑ2)

−σ2
0ϑ0 + σ2ϑ

−τσ3
0ϑ0 + τσ3ϑ

 .

If τ 6= 0 is bounded away from 0 and σ 6= 0 fixed, ϑ 6∈ {−1, 0, 1}. Point identification holds

since: τσ3
0ϑ0 6= sign(ϑ0)τσ3

0ϑ
2
0 unless σ = 0, τ = 0 or ϑ ∈ {−1, 0, 1}. The eigenvalues of the

Jacobian are bounded below when |τ | is bounded away from zero.

Definition 4. (Semi-Strong Identification) The model is semi-strongly identified if it is point

identified and

i. ∃ε > 0, C,C > 0 such that ‖θ − θ0‖ ≤ ε implies:

C‖∂θgn(θ0)(θ − θ0)‖ ≥ ‖gn(θ)‖W ≥ C‖∂θgn(θ0)(θ − θ0)‖, ∀n ≥ 1 (7)

ii. limn→∞ n× λmin (∂θgn(θ0)′∂θgn(θ0)) = +∞,

iii. ‖gn(θ1)− gn(θ2)− ∂θgn(θ2)(θ1 − θ2)‖ = O(‖∂θgn(θ2)(θ1 − θ2)‖2),

if ‖θ1 − θ0‖+ ‖θ2 − θ0‖ = o(1),

iv. [∂θgn(θ1)− ∂θgn(θ0)] [∂θgn(θ0)′∂θgn(θ0)]−1 [∂θgn(θ1)− ∂θgn(θ0)]′ = o(1), if θ1−θ0 = o(1)

Definition 4 ii. implies that the Jacobian can be vanishing in one or several directions

- but not too fast. When λmin (∂θgn(θ0)′∂θgn(θ0)) ≤ O(n−1/4), conditions iii.-iv. also imply

that the second-order term is vanishing. As a result, the moments remain approximately

linear around θ0, as in Definition 3. After re-scaling, (θ̂n − θ0) is asymptotically Gaussian;

convergence is slower than the usual
√
n-rate (Antoine & Renault, 2009).
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Example 1 (Continued). Consider the drifting sequence θ1,0,n = c× n−a with a ∈ [0, 1/2)

and c 6= 0: n× λmin(∂θgn(θ0)′∂θgn(θ0)) = c2n1−2a → +∞ if c 6= 0 and 0 ≤ a < 1/2.

Definition 5. (Higher-Order Local Identification) The model is locally identified at a higher

order r ≥ 2 if it is point identified and ∃ε > 0, Cj > 0, Cj > 0 for j = 1, . . . , r and projection

matrices P1, . . . , Pr satisfying Pr 6= 0, PjPj′ = 0 when j 6= j′ such that ‖θ− θ0‖ ≤ ε implies:

r∑
j=1

Cj‖Pj(θ − θ0)‖j ≥ ‖gn(θ)‖W ≥
r∑
j=1

Cj‖Pj(θ − θ0)‖j, ∀n ≥ 1. (8)

Definition 5 implies the moments are not approximately linear around θ0. As a result, the

higher-order terms affect the limiting distribution of the estimator and (θ̂n − θ0) converges

at a n1/2r-rate to a non-Gaussian limiting distribution (Dovonon & Hall, 2018).

Example 2 (Continued). Suppose that κ = 0 and ϑ0 = 1. Condition iii.a. holds since

there is a unique solution and the moments are continuous. Omitting the third moment:

∂θgn(θ0) =

 −2σ2
0 −2

σ2
0 1

 , ∂2
θ,ϑgn(θ0) =

 −2σ2
0 0

1 0

 , ∂2
θ,σ2gn(θ0) =

 −2 0

1 0

 .

(1,−1) is the eigenvector which spans the null space of the Jacobian, and both second-

order derivatives are non-singular on the span of (1,−1) which implies second-order identi-

fication (Dovonon & Hall, 2018).

Definition 6. (Weak and Set Identification) The model is said to be weakly or set identified

if there exists at least two θ0 6= θ1 in the weakly identified set:

Θ0 = {θ ∈ Θ, lim
n→∞

√
n‖gn(θ)‖W < +∞}. (9)

Definition 6 occurs when global identification fails or nearly fails. Under strong, semi-

strong and higher-order identification, a robust and conservative confidence set would con-

centrate around a single point θ0. Definition 6 collects all models where this does not occur.

θ̂n is not consistent (Stock & Wright, 2000) and has non-standard limiting distribution.

Example 1 (Continued). Consider the sequence θ1,0,n = c × n−1/2. Take θ = (θ1,0,n, θ2),

θ2 ∈ [0, 1], then
√
n‖gn(θ)‖ → |c|×|θ2−θ0| < +∞. As a result Θ0 ⊇ {θ = (0, θ2), θ2 ∈ [0, 1]}.

Example 2 (Continued). Consider the sequence τn = c/
√
n, then: gn(1/ϑ0, σ

2
0ϑ

2
0) =(

0, 0, cσ3
0/
√
n[sign(ϑ0)ϑ2

0 − ϑ0]

)′
. This implies

√
n‖gn(1/ϑ0, σ

2
0ϑ

2
0)‖ → |cσ3

0[sign(ϑ0)ϑ2
0−

ϑ0]| < +∞. As a result, Θ0 is not a singleton when ϑ0 6∈ {−1, 0, 1} and τn = O(n−1/2).
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2.3 Main Assumptions

The following provides the main assumptions on the moments ḡn, weighting matrix Wn,

kernel K and bandwidth κn to derive the results in Section 3 for Bn,LS/∞.

Assumption 1. (Bandwidth, Kernel)

i. (Bandwidth) κn > 0,∀n ≥ 1. κn → 0,
√
nκn → +∞ and

√
nκ2

n → 0 as n→∞,

ii. (Compact Kernel) K is Lipschitz-continuous on R with K(x) = 0 for x ∈ (−∞,−1] ∩
[1,+∞), K(x) > 0 for x ∈ (−1, 1),

iii. (Exponential Kernel) K is exponential in x, i.e. ∃a ≥ 1, C1 > 0, C2 > 0 such that

K(x) = C1 exp(−C2|x|a), ∀x ∈ R. Define κ̃n = κn log(n)1/a and assume κ̃n → 0,
√
nκ̃2

n → 0 as n→∞.

Condition i. ensures that the bandwidth converge to 0 at a slower than
√
n-rate, but faster

than a n1/4-rate. When κn ≤ O(n1/4), Bn,LS/∞ would capture second-order non-linearities

under (semi)-strong identification. When Wn = V̂ −1
n , a Law of the Iterated Logarithm

can be invoked to set κn =
√

2 log(log[n])/n.8 Two types of kernels K are considered.

Compact kernels (condition i.), are used in both sup-norm and least-squares approximations.

The Lipschitz-continuity condition simplifies the proofs, but there was almost no numerical

difference with the uniform kernel K(x) = 1x∈(−1,1). Exponential kernels, e.g. K(x) = φ(x)

the Gaussian density, are considered only for Bn,LS.

Assumption 2. (Sample Moments, Weighting Matrix)

i. (Uniform CLT, Tightness) the empirical process Gn(θ)
def
=
√
n (ḡn(θ)− gn(θ)) con-

verges weakly to G(·) a Gaussian process, as n→∞; supθ∈Θ ‖Gn(θ)‖ = Op(1),

ii. (Discoverability of Θ0) the weakly identified set Θ0 = {θ ∈ Θ, limn→∞
√
n‖ḡn(θ)‖W <

+∞} satisfies: supn≥1 supθ∈Θ0

√
n‖gn(θ)‖W < +∞,

iii. (Stochastic Equicontinuity)
√
n [ḡn(θ1)− ḡn(θ2)− (gn(θ1)− gn(θ2))] = op(1), uniformly

in ‖θ1 − θ2‖ = o(1),

iv. (Smoothness) gn is continuously differentiable on Θ; uniformly in ‖θ1 − θ2‖ = o(1),

‖gn(θ1)− gn(θ2)− ∂θgn(θ2)(θ1 − θ2)‖ = O(‖θ1 − θ2‖2),

8See Andrews & Cheng (2012) for choices of such sequences. In finite samples, one may prefer κn =

max(q1−ε,
√

2 log(log[n])/n) where q1−ε is a 1− ε (e.g. 0.99) quantile of a χ2
dim(gn) distribution.
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v. (Weighting Matrix) supθ∈Θ ‖Wn(θ) − W (θ)‖ = op(1), W is Lipschitz continuous in

θ ∈ Θ, ∃λ, λ, 0 < λ ≤ λmin(Wn(θ)) ≤ λmax(Wn(θ)) ≤ λ < +∞,∀n ≥ 1, θ ∈ Θ.

The high-level conditions in Assumption 2 are quite common in GMM estimation. Con-

dition i. allows for non-smooth or discontinuous sample moments. Conditions i. and

ii. ensure that the weakly identified set Θ0 can be conservatively estimated using Θ̂n =

{θ, ‖ḡn(θ)‖Wn − infθ∈Θ ‖ḡn(θ)‖Wn ≤ κn} so that all directions of the identification failure can

be detected.9 Conditions iii. is the usual stochastic equicontinuity condition. Condition

iv. is only required under strong identification. Condition v. is automatically satisfied for

Wn = Ip, the identity matrix. For the optimal weighting matrix Wn = V̂ −1
n , it requires

uniform consistency of V̂n and additional conditions on the eigenvalues. Given the general-

ity of the high-level assumptions, the results accommodate models where a (semi)-strongly

identified nuisance parameter η is concentrated out: θ̂n = argminθ∈Θ‖ḡn(θ, η̂(θ))‖Wn .

3 Asymptotic Behaviour of the Linear Approximations

This section derives the asymptotic behaviour of (An,LS/∞, Bn,LS/∞) under (semi)-strong

identification and Bn,LS/∞ under higher-order and weak/set identification. Table 2 summa-

rizes the results. At the population level, the results imply (by taking ḡn = gn and κn ↘ 0)

that the quasi-Jacobian is the usual Jacobian for first-order globally identified models and

is singular under either local or global identification failure. This provides a simple charac-

terization of first-order and global identification failure for GMM in the population.

The relevant metric for the sup-norm approximation is the Euclidian distance ‖θ0 − θ1‖
whereas the least-squares approximation relies on a quadratic loss. This implies another

metric which relies on the measure defined below.

Definition 7. (Quasi-Posterior π̂n) For any θ ∈ Θ, the quasi-posterior π̂n associated with

the sample moments ḡn and the kernel K is:

π̂n(θ) =
K(‖ḡn(θ)/κn‖Wn − ‖ḡn(θ̂n)/κn‖Wn)∫

Θ
K(‖ḡn(θ̃)/κn‖Wn − ‖ḡn(θ̂n)/κn‖Wn)dθ̃

.

The associated posterior mean θ̄n and variance Σn are:

θ̄n =

∫
θπ̂n(θ)dθ, Σn =

∫
(θ − θ̄n)(θ − θ̄n)′π̂n(θ)dθ.

9For the exponential kernel, Θ̂n = {θ, ‖ḡn(θ)‖Wn
≤ κn} can be used instead: K(‖ḡn(θ̂n)‖Wn

) is a

multiplicative constant in the numerator and denominator of the OLS solution of Bn,LS and cancels out.
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Table 2: Summary of the Results in Section 3

Identification Regime Asymptotics for θ̂n Asymptotics for Bn,LS/∞

(Semi)-Strong Gaussian Bn,LS/∞ ' Jacobian

Higher-Order Non-Gaussian Bn,LS/∞vj � bandwidth1−1/j

Weak or Set Non-Gaussian Bn,LS/∞v � bandwidth

Note: The results in the two bottom rows hold over all directions v = θ0 − θ1 in which the model is weakly

identified, i.e. θ0, θ1 ∈ Θ0 in Definition 6; and all directions vj in which the moments are locally polynomial

of order j ≥ 2 in Definition 5.

When K = φ, the Gaussian density, π̂n corresponds to the quasi-posterior of Cher-

nozhukov & Hong (2003), up to a prior π, for Wn = V̂ −1
n the optimal weights, and κn = n−1/2.

It is also relates to the ABC estimator when ḡn are simulated moments (Marin et al., 2012).

Σn behaves like a sufficient statistic for identification failure under the least-squares loss.

If the model is set identified, one would expect Σn to be non-zero in some direction; under

(semi)-strong identification, a Bernstein-von Mises type result implies Σn = op(1).

Lemma 1. (Relationship between Bn,LS and Σn)

Suppose Assumptions 1 and 2 hold. For the exponential kernel, assume that the moments

satisfy a Hölder-type condition around Θ0: ∃ε > 0, C > 0 and ς ∈ (0, 1] such that ‖gn(θ)‖W ≤
Cd(θ,Θ0)ς , ∀n ≥ 1, ∀θ ∈ Θ such that d(θ,Θ0) ≤ ε. Given these assumptions, the least-

squares approximation, and the quasi-posterior variance satisfy:

0 ≤ trace
(
Bn,LSΣnB

′
n,LS

)
≤ Op(κ̃

2
n), (10)

where κ̃n = κn for the compact kernel and κ̃n = κn log(n)1/a for the exponential kernel. This

implies the following inequalities:

i. ∀j ∈ {1, . . . , dθ}, 0 ≤ λj
(
B′n,LSBn,LS

)
× λdθ+1−j (Σn) ≤ Op(κ̃

2
n) where the eigenvalues

λj are in increasing order. In particular: 0 ≤ λmin

(
B′n,LSBn,LS

)
×λmax (Σn) ≤ Op(κ̃

2
n),

ii. let (vj,n)j=1,...,dθ be the eigenvectors of Σn, suppose that for each j there exists (rj,n)n≥1

such that v′j,nΣnvj,n = Op(r
2
j,n), then for each j ∈ {1, . . . , dθ}: Bn,LSvj,n = Op (κ̃n/rj,n) ,

iii. assuming the rj,n, j = 1, . . . , dθ are in increasing order then, without loss of generality:

|λmin(Bn,LS)| = Op(κ̃n/rdθ,n).
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Lemma 1 is pivotal in deriving the results for higher-order and weak/set identifica-

tion. Equation (10) implies that the behaviour of Bn,LS is determined by the behaviour

of Σn. This implies a similar relation for their eigenvalues. In turn, determining the rate

for λmin(Bn,LS) is equivalent to solving for λmax(Σn). Under the sup-norm, the diameter of

the set {θ, ‖ḡn(θ)‖Wn − infθ ‖ḡn(θ)‖Wn ≤ κn} determines the behaviour of λmin(Bn,∞). Here,

λmax(Σn) acts as the quasi-posterior measure of the diameter of this set.

For the exponential kernel, an additional condition is required where the moments must

not grow too fast when θ is away from Θ0. The posterior may not concentrate only on Θ0 if

this assumption does not hold giving non-negligible weight to other regions of Θ.

3.1 (Semi)-Strong Identification

Theorem 1. (Approximations under (Semi)-Strong Identification) Suppose that the model

is (semi)-strongly identified, Assumptions 1 and 2 hold, that the bandwidth κn and moments

gn are such that κ̃2
n = o (λmin (∂θgn(θ0)′∂θgn(θ0))) , where κ̃n = κn for the compact kernel

and κ̃n = κn log(n)1/a otherwise, then for Hn = [∂θgn(θ0)′∂θgn(θ0)]−1/2, the sup-norm and

least-squares approximations satisfy:

An,LS/∞ = ḡn(θ̂n)−Bn,LS/∞θ̂n + op(n
−1/2), Bn,LS/∞Hn = ∂θgn(θ̂n)Hn + op(n

−1/2κ̃−1
n ),

where θ̂n = argminθ∈Θ‖ḡn(θ)‖Wn. Let θ̂n,LS/∞ = −
(
B′n,LS/∞ŴnBn,LS/∞

)−1

B′n,LS/∞ŴnAn,LS/∞

be the estimator associated with the least-squares approximation and Ŵn = Wn(θ̂n), then

H−1
n (θ̂n,LS/∞ − θ̂n) = op(n

−1/2). Also, H−1
n ΣnH

−1
n = Op(κ̃

2
n).

Under semi-strong identification,
√
nH−1

n (θ̂n − θ0) is asymptotically Gaussian. The rate

of convergence of each coefficient depends on the eigenvalues of H−1
n and its eigenvectors.10

In practice, the standard errors adjust for the rate of convergence automatically, so that

standard Wald inferences are valid. The scaled convergence of Bn,LS/∞ in Theorem 1 implies

convergence of the spectral decomposition. Let vj,n be the jth right singular vector of

∂θgn(θ0)11 with singular value λj,n, then Bn,∞vj,n = λj,n×
[
I + op(n

−1/2κ−1
n )
]
vj,n. This implies

that vj,n is approximately a right singular vector for Bn,LS/∞ with singular value λj,n.

As a result, the quasi-Jacobian matrix Bn,LS/∞ can be used in the sandwich formula

to compute standard errors. Also, the estimate θ̂n,LS/∞ is asymptotically equivalent to θ̂n.

These two results could be of practical interest.

10Consider the singular value decomposition ∂θgn(θ0) = UnDnV
′
n where Dn is the diagonal matrix of

singular values. Then ∂θgn(θ0)Hn = UnIdθV
′
n; this implies that 1 is an singular value with multiplicity dθ.

11vj,n is also an orthogonal eigenvector of Hn and H−1
n by construction.
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3.2 Higher-Order Identification

Theorem 2. (Approximations under Higher-Order Local Identification)

Suppose that the model is higher-order identified at an order r ≥ 2 and that Assumptions 1

and 2 hold. For the least-squares approximation, suppose that the assumptions of Lemma 1

hold, then the sup-norm and least-squares approximations satisfy:∣∣λmin(Bn,LS/∞)
∣∣ = Op(κ̃

1−1/r
n ),

where κ̃n = κn for the compact kernel, κ̃n = κn log(n)1/a otherwise. Also, ∀vj ∈ Span(Pj),

j ∈ {1, . . . , r}: Bn,LS/∞vj = Op(κ̃
1−1/j
n ), Pj are the projection matrices in Definition 5.

Theorem 2 shows that Bn,LS/∞ becomes singular under first-order identification failure.

The rate at which the eigenvalues decay depends on both the order r ≥ 2 and the bandwidth

κn. When moments are increasingly flat around θ0, i.e. r is larger, then this rate becomes

slower and closer to Op(κn) which corresponds to the rate under weak or set identification.

Also, Bn,∞ vanishes in the directions of the first-order identification failure: Span(P2, . . . , Pr).

Note that if the Jacobian is non-zero but the second-order term is non-negligible then rank

tests on the Jacobian would have low power. Yet, standard inferences could suffer important

size distortions. This is illustrated in the Monte-Carlo simulations of Appendix G.3.

3.3 Weak or Set Identification

3.3.1 Sup-Norm Approximation

Theorem 3. (Sup-Norm Approximation under Weak/Set Identification)

Suppose that Assumptions 1 i., ii. and 2 hold and that there exists at least two θ0 6= θ1 in

the weakly identified set Θ0, then the sup-norm approximation satisfies:

|λmin (Bn,∞)| = Op(κn),

where λmin (Bn,∞) is the smallest eigenvalue of Bn,∞. Furthermore, Bn,∞ is vanishing on

the span of the identification failure:

Bn,∞v = Op(κn), ∀v ∈ V = Span
({
θ0 − θ1, θ0, θ1 ∈ Θ0

})
.

Remark 1. (The Span of the Identification Failure) Note that the span of the identification

failure V can be larger than what needs to be fixed to restore point identification. For instance,

the set Θ0 = {θ = (α, β), α = β3} implies V = R2 even though β is uniquely determined
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when α is fixed. One could fix α, compute the quasi-Jacobian with the constraint and find

that identification is restored for β. The span V is not always too large: for the weakly

identified set Θ0 = {θ = (α, β), α2 + β2 = 1} both α and β need to be fixed.

3.3.2 Least-Squares Approximation

Proposition 1. (Least-Squares Approximation under Weak Identification)

Suppose that there exists two θ0 6= θ1 ∈ Θ0 such that for some 0 < ε < ‖θ0 − θ1‖, ∃η > 0:

lim
n→∞

min

(∫
‖θ−θ0‖2≤ε/3

π̂n(θ)dθ,

∫
‖θ−θ1‖2≤ε/3

π̂n(θ)dθ

)
≥ η > 0,

then the quasi-posterior variance satisfies λmax(Σn) ≥ ηε2/[36dθ] + op(1) and, under the

conditions of Lemma 1 |λmin (Bn,LS)| = Op(κ̃n).

Proposition 1 simply states that when there are two different θ0, θ1 to which the quasi-

posterior gives weight asymptotically, then Σn is bounded below in some direction. By

Lemma 1 this implies that Bn,LS becomes singular as in Theorem 3. The following theorem

provides primitive conditions to ensure that Proposition 1 holds.

Theorem 4. (Topology of the Weakly Identified Set Θ0 and quasi-Posterior Concentration)

Suppose that the conditions in Lemma 1 hold and that one of the following is satisfied:

i. Θ0 has non-empty interior,

ii. Θ0 is finite, i.e. Θ0 = ∪kj=0{θj} for some finite k ≥ 2 and

a. ∃ε > 0 and η(ε) > 0 such that infθ∈Θ,d(θ,Θ0)≥ε ‖gn(θ)‖W ≥ η(ε), ∀n ≥ 1,

b. ∃C > 0, C > 0 and some finite r ≥ 1 such that for ε defined in ii.a. above

Cd(θ,Θ0)r ≤ ‖gn(θ)‖W ≤ Cd(θ,Θ0)r, ∀n ≥ 1,∀θ ∈ Θ, d(θ,Θ0) ≤ ε,

iii. Θ0 is a finite union of lower-dimensional manifolds, Θ0 = ∪kj=0Sj for some finite k ≥ 1,

where Sj are bounded sets with d(Sj,Sj′) > 0, j 6= j′ such that:

a. for each j ∈ {0, . . . , k}, ∃kj ∈ {1, . . . , dθ}, ∃Uj ⊂ Rdθ−kj a connected and bounded

subset of Rdθ−kj with non-empty interior and, ∃ϕj, an invertible, continuously

differentiable mapping from the open neighbourhood N (Uj)×N ({0}) ⊆ Rdθ to the

open neighbourhood N (Sj) such that ϑ ∈ Uj ×{0} ⇔ ϕj(ϑ) ∈ Sj and ∃λj, λj such

that ∀ϑ ∈ ϕ−1
j (N (Sj)): 0 < λj ≤ |λmin(∂ϑϕj(ϑ))| ≤ |λmax(∂ϑϕj(ϑ))| ≤ λj < +∞,
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b. ∃η > 0 such that infθ 6∈∪kj=0N (Sj) ‖gn(θ)‖W ≥ η, ∀n ≥ 1,

c. ∃C,C > 0 such that: Cd(θ,Θ0) ≤ ‖gn(θ)‖W ≤ Cd(θ,Θ0), ∀n ≥ 1,∀θ ∈ ∪kj=0N (Sj),

then the assumptions and the results of Proposition 1 hold.

Case i. is immediate. Case ii. requires that gn behaves similarly around each point in Θ0.

This could be weakened to require only two points to have r-th order polynomial behaviour.

These two points with the largest polynomial order would dominate the posterior mass.

In Case iii., Θ0 is a union of lower-dimensional manifolds with non-empty interior in

a lower-dimension space. Within each Sj there are two disjoint open sets with non-zero

Lebesgue measure in Rdθ−kj . Some primitives for condition iii. a. include the constant

rank theorem and the partition of unity, which ensures there exists finitely many local re-

parameterizations to create a global re-parameterization ϕj (see e.g. Lee, 2012). The eigen-

value condition on ϕj ensures that a change of variable argument can be used to construct

explicit bounds on the integrals in Proposition 1. Conditions iii. b. and c. ensure that Θ0

separates well from the rest of the parameter space.

When the manifolds have different dimensions, the proof of Theorem 4 implies that for

any N (Sj),N (Sj′) which do not overlap with other manifolds:

∫
N (Sj′ )

π̂n(θ)dθ∫
N (Sj)

π̂n(θ)dθ

p→ 0, if kj > kj′ .

The posterior mass is dominated by the manifold(s) with k? = maxj kj, i.e. the highest

degree of identification failure. Lower dimensional manifolds, with kj < k?, have posterior

measure zero in the limit. A practical implication when using MCMC to estimate Θ0 is that

the Markov-Chain might get stuck on the larger dimensional manifold(s). Appendix C.3

illustrates the three cases and provides an example where Proposition 1 does not hold.

Corollary 1 below, re-states Theorem 4 iii. in the more familiar settings where θ can be

globally and smoothly mapped into a point identified and a weakly identified coefficient.

Corollary 1. (Weak Identification, Global Re-Parametrizations and Posterior Concentra-

tion) Suppose that there exists a global re-parametrization θ = ϕ(β, γ) where (β, γ) ∈ B×Γ ⊆
Rdβ × Rdγ such that:

i. ϕ : (B×Γ)→ Θ is continuously differentiable and invertible on Θ and ∃λ, λ such that

∀β, γ: 0 < λ ≤ |λmin(∂β,γϕ(β, γ))| ≤ |λmax(∂β,γϕ(β, γ))| ≤ λ < +∞,

ii. γ is point identified, i.e. Θ0 = ϕ(B0 × {γ0}), B0 is bounded with non-empty interior

and, ∃ε > 0, η > 0 such that: infd(β,B0)+‖γ−γ0‖≥ε ‖gn ◦ ϕ(β, γ)‖ ≥ η, ∀n ≥ 1, and,

∃C > 0, C such that ∀(β, γ) with (d(β,B0) + ‖γ− γ0‖) ≤ ε: C
[
d(β,B0) + ‖γ− γ0‖

]
≤

‖gn ◦ ϕ(β, γ)‖ ≤ C
[
d(β,B0) + ‖γ − γ0‖

]
, ∀n ≥ 1,
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then the assumptions of Theorem 4 are satisfied and λmin(Bn,LS) = Op(κ̃n) where κ̃n = κn

for the compact kernel and κ̃n = κn log(n)1/a for the exponential kernel.

4 Two-Step Subvector Inference

Given the asymptotic properties of the quasi-Jacobian, this section develops two-step infer-

ence procedures. As discussed in the introduction, the first step amounts to determining

which parameters need to be fixed and the second performs robust inference given this in-

formation. The procedure is concerned with hypotheses of the form:

H0 : Rθ = c vs. H1 : Rθ 6= c, (1)

for a given restriction matrix R ∈ Rm×dθ with 1 ≤ m ≤ dθ and c ∈ Rm.

Weak/set and higher-order identification are detected with different criteria; the two are

considered in separate subsections. If both weak/set and higher-order identification are a

concern, one could pre-test for weak identification, determine which coefficients need to be

fixed and then check for higher-order identification issues on the remaining parameters.

Definition 8. (Nested Sequence of Restrictions) Let R1 = R be the restriction matrix used

to test the null hypothesis (1). The pre-determined set of restriction matrices (R`)1≤`≤L, is

given by R` =
(
R′`−1, R̃

′
`

)′
, 2 ≤ ` ≤ L, where R̃` is a sequence of L− 1 matrices such that

1 ≤ m = rank(R1) < rank(R2) < · · · < rank(RL) = dθ.

To determine which coefficients need to be fixed, the algorithms consider an increasing

sequence of restrictions R`, as in Definition 8. For a given R`, a criteria determines, with

probability going to 1, whether the unrestricted ”free” parameters lie in the span of the

identification failure. At each step, the search continues so long as ”free” parameters lie

in this span. By construction, RL fixes all coefficients, hence there exists `? such that for

` ≥ `?, all ”free” parameters lie outside this span. By a family-wise error rate argument, with

probability going to 1, the search ends at ˆ̀
n ≥ `? thereby fixing the span of the identification

failure. Once the algorithm stops, confidence sets for Rθ are constructed by projection

inference. First, compute a confidence set for Rˆ̀
n
θ:

CS1−α = {c ∈ Rrank(Rˆ̀n
), Rˆ̀

n
θ = c and Sn(θ̂n,c) ≤ c1−α}, θ̂n,c = argminRˆ̀n

θ=c‖ḡn(θ)‖Wn .

Then, the first m-rows of the elements in CS1−α yield the projected confidence set for Rθ.

Progress towards uniform inference would require explicit bounds on the family-wise error
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rate of selecting ˆ̀
n < `? which depends on the diameter of the weakly identified set and the

tail probability of the empirical process. A rigorous investigation is left to future research.

The appeal of this approach is that Bn,LS/∞ is only computed once. This is important

when ḡn is costly to evaluate. Remark 1 suggests this might be conservative, however.

4.1 Weak or set identification

The first set of results deal with weakly and set identified models. A general Algorithm

is introduced and its asymptotic properties are given. Subsection 4.1.2 provides a simple

rule-of-thumb for choosing the cutoff for the eigenvalues of Bn,LS/∞.

4.1.1 Algorithm and two-step inference

Algorithm 1 combines two pieces of information: the number of eigenvalues below the thresh-

old for the full matrix Bn,LS/∞ and the span of the ”free” parameters P⊥R` . The first quantity

conservatively estimates the rank of the span of the identification failure V . Fixing fewer

coefficients may not suffice to resolve the identification problem. The second quantity checks

if the restriction R` helps with the identification problem. While the criteria suggests too

few coefficients have been fixed, the algorithm continues adding restrictions.

Algorithm 1 Fixing the Span of the Identification Failure

compute Bn,LS/∞ and λmin(Bn,LS/∞)

if λmin(Bn,LS/∞) > λn then

treat all dθ parameters as point identified

else

set ` = 1

compute d̂V = #
{
j ∈ {1, . . . , dθ}, λj(Bn,LS/∞ ≤ λn)

}
while

(
rank(R`) < d̂V

)
or
(
λrank(P⊥

R′
`
)(Bn,LS/∞P

⊥
R′`

) ≤ λn

)
do

` = `+ 1

end while

set ˆ̀
n = `

treat Rˆ̀
n
θ as weakly identified, the remaining parameters as point identified

end if

Theorem 5. (Two-Step Weak Identification Robust Subvector Inference) For each ` =

1, . . . ,L, suppose that c`,0 is such that there exists θ0,c with E(ḡn(θ0,c)) = 0, R`θ0,` = c`,0

for all ` ∈ {1, . . . ,L}. Let θ̂n,`,c = argminR`θ=c`,0‖ḡn(θ)‖Wn , be the constrained estimator of
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θ0,c with R` as in Definition 8. Let Sn,` be a test statistic for H0 : R`θ0,c− c`,0 = 0 computed

at θ̂n,`,c and c1−α,` the corresponding critical value. Suppose the assumptions for Lemma D4

hold as well as one of the following:

1. (semi-strong identification) the model satisfies the assumptions of Theorem 1 and

P(Sn,1 ≤ c1−α,1) = 1− α + o(1),

2. (weak identification) the model satisfies the assumptions of Lemma D6. Let `? be the

smallest ` ∈ {1, . . . ,L} such that rank(PR′
`?
PV ) = rank(PV ), where V is the span of

the identification failure, suppose that: inf`∈{`?,...,L} P(Sn,` ≤ c1−α,`) = 1− α + o(1).

Let ˆ̀
n be the ` ∈ {1, . . . ,L} selected by Algorithm 1, then:

1. (semi-strong identification) with probability going to 1, ˆ̀
n = 1 so that Rˆ̀

n
= R1 and:

P(Sn,ˆ̀n ≤ c1−α,ˆ̀n) = P(Sn,1 ≤ c1−α,1) = 1− α + o(1).

2. (weak identification) with probability going to 1, ˆ̀
n ≥ `? and:

P(Sn,ˆ̀n ≤ c1−α,ˆ̀n) ≥ inf
`=`?,...,L

P(Sn,` ≤ c1−α,`) = 1− α + o(1).

Theorem 5 allows for a large class of identification-robust test statistics in the second

step. The sole requirement is that the statistics yield valid inferences for the full vector R`θ

for each ` ≥ `?. Projection inference is then used to construct the confidence set for Rθ.

Proposition C2 in Appendix C.2.2 shows that the requirement for Theorem 5 will hold when

using the S-statistic and the (semi)-strongly identified parameters are estimated.

Remark 2. (Complete Identification Failure of the Nuisance Parameters) Let θ = (α, β),

suppose that ḡn(α, β) and V̂n(α, β) do not depend on β when α = α0 and E(ḡn(α0, β)) = 0

for all β. If the model is just-identified dim(g) = dα + dβ and infα,β ‖ḡn(α, β)‖V̂ −1
n

= 0 and

Assumption 2 holds, then the projected S statistic of Stock & Wright (2000) satisfies:

Sn(α0) = inf
β
n‖ḡn(α0, β)‖2

V̂ −1
n

= n‖ḡn(α0, β0)‖2
V̂ −1
n

d→ χ2
dim(g). (11)

This implies that projection inference has exact asymptotic coverage:

lim
n→∞

P(Sn(α0) ≤ qχ2
dim(g)

(1− α)) = 1− α, (12)

whereas the test is asymptotically conservative when β is strongly identified:

lim
n→∞

P(Sn(α0) ≤ qχ2
dim(g)

(1− α)) = P(χ2
dim(g)−dβ ≤ qχ2

dim(g)
(1− α)) > 1− α. (13)

Remark 2 does not appear to have been discussed in the literature although it may be

already known. A simple proof is given in the Appendix.
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4.1.2 A data-driven rule-of-thumb

The following provides a data-driven approach to find a cutoff λn for Algorithm 1. The main

idea is to consider (semi)-strongly identified models and local asymptotics where the Jacobian

is increasingly flat. Higher-order Nagar expansions allow to approximate the resulting size-

distortion and to find a cutoff on the signal to noise ratio where size distortion is greater

than some pre-determined threshold (Stock & Yogo, 2005). This approach is convenient but

not uniform, although one would expect it to perform reasonably well in settings where these

local asymptotics approximate the identification failure well enough. A non-local approach

is also considered in Appendix C.1.2.

The following relates the eigenvalues of Bn,LS/∞ with the size distortion of a test on scalar

hypotheses of the form H0 : vθ = c, for some v ∈ Rdθ/{0} and c ∈ R, in the just-identified

case.12 Consider the asymptotic experiment:

ḡn(θ) = An,LS +Bn,LSθ,

where An,LS + Bn,LSθ0 = Z1, Bn,LS − B̄n,LS = Z2, (Z ′1, vec(Z2)′)′ is Gaussian and B̄n,LS is

non-stochastic and invertible. E(Z1Z
′
1) = V1/n, E(Z1Z2) = V12/n. Furthermore, assume

that n × λmin(B̄′n,LSB̄n,LS) → +∞, so that the model is linear and semi-strongly identified.

Using the Woodbury identity, it can be shown that: θ̂n,LS − θ0 = −B̄−1
n,LSZ1 + B̄−2

n,LSZ2Z1 −
B̄−3
n,LS

(
I + Z2B̄

−1
n,LS

)−1
Z2

2Z1. As a result, the following expansions hold for vj,n ∈ Cdθ the

complex eigenvector of B̄n,LS associated the complex eigenvalue λj,n ∈ C:

E(v′j,n[θ̂n,LS − θ0]) = v′j,nB̄
−2
n,LSV21/n+O

(
1

n2 × |λj,n|2

)
E(|v′j,n[θ̂n,LS − θ0]|2) = v′j,nB̄

−1
n,LSV1B̄

−1 ′
n,LS v̄j,n/n+O

(
1

n2 × |λj,n|2

)
,

where v̄j,n is the complex conjugate of vj,n. The first term approximates the higher-order bias

and the second the asymptotic variance. The squared bias to variance ratio of v′j,n(θ̂n,LS−θ0)

can be approximated by:

|bias|2

|variance|
=

1

n× |λj,n|2
v′j,nV21V12v̄j,n

v′j,nV1v̄j,n
+ o

(
1

n× |λj,n|2

)
.

Using Nagar semi-strong asymptotics, as in Stock & Yogo (2005),13 the size distortion γ for

a Wald test on H0 : vj,n(θ − θ0) = 0 at the 1 − α confidence level can be approximated by

12The over-identified case is discussed in the Appendix.
13Note that under weak identification the remainder may not be negligible.
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γ ' 1−α−P (w?n ≤ c1−α) , (Rothenberg, 1984) where w?n follows a non-central χ2
1 distribution

with non-centrality parameter 1√
n×|λj,n|

√
v′j,nV21V12v̄j,n√
v′j,nV1v̄j,n

and c1−α is the 1−α quantile of a central

χ2
1 distribution. Note that γ is increasing in the non-centrality parameter. Hence, imposing

a maximum level of size distortion γ ≤ γ̄n can be achieved with the restriction:

|λmin(B̄n,LS)|2 ≥ 1

n× c(γ̄n)2
max
‖v‖=1

v′V21V12v

v′V1v
,

where c(γ̄n) solves the equation γ̄n = 1 − α − P (w̄?n ≤ c1−α), w̄?n follows a non-central χ2
1

distribution with non-centrality parameter c(γ̄n). A closed-form, potentially conservative

but user-friendly, upper-bound for the maximum on the non-centrality parameter can be

derived from a ratio of the largest eigenvalue of V21V12 to the smallest eigenvalue of V1. A

data-driven cutoff for λmin(Bn,LS/∞) is then given by:

λ2
n =

1

n× c(γ̄n)2

λmax(V21V12)

λmin(V1)
. (14)

In practice, the quantities V1 and V21 need to be approximated to make the rule-of thumb

(14) feasible. Lemma C2 suggests an approach to approximate these quantities: for now,

suppose θ0 is known, then V1 and V21 can be approximated with the variance of

1

n

n∑
i=1

vec

([∫
X(θ)X(θ)′π̂n(θ)dθ

]−1 ∫
X(θ)gi(θ)

′π̂n(θ)dθ

)
, X(θ) = (1, θ′)′,

while assuming Σn, θ̄n and π̂n are fixed. Since Z1, Z2 are linear transformations of this sample

mean the V̂1 and V̂21 can be derived from the sample variance-covariance matrix for iid or

the HAC estimator for time-series data. Since θ0 is unknown in practice, one can take the

least-favorable θ with ‖ḡn(θ)‖Wn ≤ κn. Under (semi)-strong asymptotics θ̄n is a consistent

estimator of θ0 so that substituting θ0 for θ̄n is also possible.

4.2 Higher-order identification

The following deals with higher-order identified models. It is assumed throughout that weak

and set identifications are not a concern here. The rule-of-thumb, in Subsection 4.2.2, is

more involved than the one for weak identification because it involves the residual curvature

of the moments. The results rely on projection inference as for weak/set identification.

4.2.1 Algorithm and two-step inference

The main intuition for this section is that the remainder in the first-order expansion is

non-negligible under higher-order identification and has the same order of magnitude as the
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variance. This implies that
√
n × ‖Rn(θ)‖ � (

√
n × κn) for some of the θ ∈ Θ such that

‖gn(θ)‖W ≤ κn, which diverges to +∞ in the directions of the first-order identification failure

if
√
nκn → +∞ , where Rn(θ) = gn(θ−gn(θ0)−∂θgn(θ0)(θ−θ0) is the remainder in the first-

order Taylor expansion. Whereas when the model is first-order identified:
√
n× ‖Rn(θ)‖ �

(
√
n×κ2

n) for all θ ∈ Θ such that ‖gn(θ)‖W ≤ κn, the remainder in the first-order expansion

is negligible if
√
nκ2

n → 0. This difference between the two regimes suggests that
√
nRn(·)

is informative about local identification failure.

Algorithm 2 Fixing the Span of the Higher-Order Identification Failure

compute Bn and R̂n(·); approximate V1 the asymptotic variance of
√
n× ḡn(θ0); set ` = 0

if Bn is singular then

set h̄ = +∞
else

compute h̄2 = maxv∈Rdθ ,‖v‖=1

(
maxθ∈Θ,‖ḡn(θ)‖2Wn≤κ

2
n
n× R̂n(θ)′B′W vv′BW R̂n(θ)

v′BWV1B′W v

)
where BW = −

[
B′nWn(θ̄n)Bn

]−1
B′nWn(θ̄n)

compute γ0 = |1− α− P(w?n ≤ c1−α)|; w?n follows a non-central χ2
1 distribution with

non-centrality parameter h̄; c1−α is the 1− α quantile of a central χ2
1 distribution

end if

while γ` > γ̄n and ` < L do

set ` = `+ 1

if Bn,` = (B′n, R
′
`)
′ is singular then

set h̄ = +∞
else

compute h̄2 = maxv∈Rdθ ,‖v‖=1

(
maxθ∈Θ,‖ḡn(θ)‖2Wn+‖R`θ−c`‖2≤κ2n n×

R̂n(θ)′B′W,`vv
′BW,`R̂n(θ)

v′BW,`V1B
′
W,`v

)
where BW,` = −

[
B′n,`Wn(θ̄n)Bn,`

]−1
B′n,`Wn(θ̄n)

compute γ` = |1− α− P(w?n ≤ c1−α)|
end if

end while

set ˆ̀
n = `

if ˆ̀
n ≥ 1 then

treat Rˆ̀
n
θ as higher-order identified, the remaining parameters as first-order identified

else

treat the full vector θ as first-order identified

end if

Algorithm 2 combines this idea with a rule-of-thumb 4.2.2 based on Nagar asymptotics.

It separates (semi)-strongly from higher-order identified models under mild conditions as
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shown in Appendix D.2. A level of tolerance for size distortion γ̄n is required. The user

can choose either γ̄n ↘ 0 or γ̄n = γ > 0 small but fixed. In the Monte-Carlo simulations,

the rule-of-thumb was computed for W = identity matrix and performed well. Also, the

criterion h̄2 in Algorithm 2 can be quickly bounded above by a more user-friendly quantity

given at the end of subsection 4.2.2.

Theorem 6. (Two-Step Higher-Order Identification Robust Subvector Inference) For each

` = 1, . . . ,L, suppose that c`,0 is such that R`θ0 = c` with E(ḡn(θ0)) = 0, for all ` ∈
{1, . . . ,L}. Let θ̂n,`,c = argminR`θ=c`,0‖ḡn(θ)‖Wn , be the constrained estimator of θ0 with R`

as in Definition 8. Let Sn,` be a test statistic for H0 : R`θ0 − c`,0 = 0 computed at θ̂n,`,c and

c1−α,` the corresponding critical value. Suppose one of the following holds:

1. (semi-strong identification) the model satisfies the assumptions of Lemma D8,
√
nκ2

n/λmin(∂θgn(θ0)′∂θgn(θ0)) = o(γ̄n), and P(Sn,1 ≤ c1−α,1) = 1− α + o(1),

2. (higher-order identification) the model satisfies the assumptions of Lemma D7. Let

`? be the smallest ` ∈ {1, . . . ,L} such that rank(PR′
`?
PVr) = rank(PVr), where Vr =

Span(P2, . . . , Pr) is the span of the first-order identification failure, suppose that

inf`∈{`?,...,L} P(Sn,` ≤ c1−α,`) = 1− α + o(1).

Let ˆ̀
n be the ` ∈ {1, . . . ,L} selected by Algorithm 2, then:

1. (semi-strong identification) with probability going to 1, ˆ̀
n = 1 so that Rˆ̀

n
= R1 and:

P(Sn,ˆ̀n ≤ c1−α,ˆ̀n) = P(Sn,1 ≤ c1−α,1) = 1− α + o(1).

2. (higher-order identification) with probability going to 1, ˆ̀
n ≥ `? and:

P(Sn,ˆ̀n ≤ c1−α,ˆ̀n) ≥ inf
`=`?,...,L

P(Sn,` ≤ c1−α,`) = 1− α + o(1).

4.2.2 A data-driven rule-of-thumb

The following provides a simple approach to approximate the size distortion due to the non-

linearity in the objective function for tests on scalar hypotheses of the form H0 : vθ0 = c,

for some v ∈ Rdθ/{0} and c ∈ R in both just and over-identified models using semi-strong

Nagar asymptotics. Consider the following asymptotic experiment:

ḡn(θ) = An +Bn(θ − θ0) +Rn(θ − θ0)
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where
√
nAn = Z1 ∼ N (0, V1), Bn andRn are non-stochastic. Assume that n×λmin(B′nBn)→

+∞ and for any v ∈ Rdθ/{0}, vRn(θ−θ0) = o(‖vBn(θ−θ0)‖), ‖vRn(θ−θ0)‖ ≤ O(‖θ−θ0‖2).

For a weighting matrix W > 0, the minimizer θ̂n of ‖ḡn‖W solves:

θ̂n − θ0 = − [B′nWBn]
−1
B′nW [An +Rn(θ̂n − θ0)] = BWAn +BWRn(BWAn) + op(rn)

whereBW = − [B′WB]−1B′W and rn satisfiesBWRn(BWAn) = Op(rn). Let R̄n = E[Rn(BWAn)].

For v ∈ Rdθ/{0}, the Wald statistic wn for testing v′θ0 − c = 0 is

wn = n×
(
v′[θ̂n − θ0]

)′
(BWV1B

′
W )
−1
(
v′[θ̂n − θ0]

)
.

Using Nagar asymptotics for wn (Rothenberg, 1984), P(wn ≤ c1−α) = P(w?n ≤ c1−α) +

o(rn) where w?n follows a non-central χ2
1 distribution with non-centrality parameter: [n ×

R̄′nB
′
Wv (v′BWV1B

′
Wv)−1 v′BW R̄n]1/2. A feasible upper-bound for the non-centrality param-

eter can be computed as:

sup
‖v‖=1, θ∈Θ, ‖ḡn(θ)‖Wn≤κn

[
n× R̂n(θ)′B′Wv (v′BWV1B

′
Wv)

−1
v′BW R̂n(θ)

]1/2

where R̂n approximates the remainder term Rn. Plug-in estimates include R̂n(θ) = ḡn(θ)−
An,LS/∞ − Bn,LS/∞θ and R̂n(θ) = ḡn(θ) − ḡn(θ̄n) − ∂ḡn(θ̄n)θ. Since θ̄n is consistent under

(semi)-strong and higher-order identification, V1 can be consistently estimated using the

sample variance-covariance matrix of ḡn evaluated at θ̄n. For time-series data, a HAC es-

timator should be used. In Algorithm 2, BW,` is used instead of BW when constraints are

enforced to ensure that the non-centrality parameter does not involve a singular matrix in

the denominator. This allows to remove BW,` from the optimization and directly compute:

sup
θ∈Θ,‖ḡn(θ)‖Wn+‖R`θ−c`‖2≤κ2n

‖R̂n(θ)‖2
∞

λmin(V1)
. (15)

This is a more user-friendly (although potentially more conservative) upper bound for the

non-centrality parameter. This quantity was used in the Monte-Carlo simulations in Ap-

pendix G.3. The other quantity used in the simulations relies on ‖BW R̂n(θ)‖2
∞ and λmin(BWV1B

′
W ).

Both performed well in the simulations for the example considered.

5 Monte-Carlo Simulations

This section illustrates some of the results using Example 1. Appendices G.2 and G.3 provide

additional examples. Simulations were conducted in R and C++ through Rcpp. Recall the

non-linear model from Example 1: yi = θ1,nxi,1 + θ1,nθ2xi,2 + ei, (xi,1, xi,2, ei)
iid∼ N (0, I).
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Figure 1: Distribution of λmin(Bn,LS) and sample size n

Note: yi = θ1,nxi,1 + θ1,nθ2xi,2 + ei, θ1,n = 2× n−1/2, 100 ≤ n ≤ 5, 000, B = 500 Monte-Carlo replications

and κn =
√

2 log(log[n])n−1/2. Legend: Black lines - boxplot λmin(Bn,LS) for each n; Blue crosses - fitted

rate from regressing λmin(Bn,LS) draws on κn with OLS without an intercept.

Figure 2: Coverage of the 95% Confidence Intervals

Note: yi = θ1,nxi,1 + θ1,nθ2xi,2 + ei, θ1,n = c × n−1/2, n = 1, 000, B = 5, 000 replications, κn =√
2 log(log[n])n−1/2. Legend: Anderson-Rubin (solid/dot) - projected CI; Standard (dashed/cross) - QLR

(top panel) and Wald (bottom panel) CIs; Rule-of-thumb (dotted/triangle) - two-step procedure with λn =

data-driven rule-of-thumb;
√

log(n) (dashed/square) - two-step procedure with λn =
√

log(n).

When θ1,n = 0, θ2 is not identified; θ1,n � n−1/2 implies weak identification. The estimat-

ing moments are ḡn(θ) = 1
n

∑n
i=1(yi − θ1xi,1 − θ1θ2xi,2)(xi,1, xi,2)′. Bn,LS was computed with

25



a grid of 10, 000 Sobol points. Figure 1 plots the distribution of λmin(Bn,LS) against the pre-

dicted rate from Theorem 1. The top panel in Figure 2 shows the coverage for standard QLR

and robust inferences under weak identification. Remark 2 holds for c = 0 and projection

inference has exact coverage. The bottom panel shows Wald inferences which display greater

size distortion than QLR inferences. The two-step procedures rely on the rule-of-thumb and

a pre-determined sequence. Both perform well using the QLR and the Wald statistic. Power

curves are reported in Appendix G.1 to illustrate improvements over projection inference.

6 Empirical Application: US Euler Equation

The main application considers the US Euler equation:

ḡn(θ) =
1

n

n∑
t=1

([
δ

(
Ct
Ct−1

)−γ
Rt − 1

]
Zt

)
,

where Ct is US consumption, Rt the risk-free rate and Zt = (1, Ct−1/Ct−2, Rt−1). δ corre-

sponds to time-preference and γ relative risk-aversion. The data is from Stock & Wright

(2000). After taking lags, we have n = 103. Wn(θ) = (V̂n(θ) + 10−4 · I)−1 is computed

using vcovHAC in the R sandwich package; the regularization ensures invertibility holds.

The bounds are (δ, γ) ∈ [0.7, 1.2]× [0, 20] to match earlier replications. The grid uses 20,000

Sobol points; the results are similar with 2,000 points. Figure 3 shows the region selected

by the compact kernel. The estimated Bn,LS and its eigenvalues are:

B′n,LS =

 0.669 0.685 0.682

−0.001 −0.001 0.000

 ,
√
n× λ(Bn,LS) = (11.929, 0.006).

Figure 3: US Euler Equation - Θ̂n = {θ ∈ Θ, ‖ḡn(θ)‖Wn − infθ∈Θ ‖ḡn(θ)‖Wn ≤ κn}

Note: κn = max(
√
q0.99(χ2

3),
√

2 log(log[n])n−1/2); q0.99 is the 99% quantile of a χ2
3 distribution.
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The first row in the matrix above are the coefficients for δ and the second are for γ. The

eigenstructure indicates that the largest eigenvalue projects on δ and the smallest on γ. The

rule-of-thumb suggests a cutoff greater than 200 because of issues with V̂n discussed below.

This confirms previous concerns about weak identification.

As discussed in other replications, inferences are very sensitive to tuning parameters in

the HAC estimator V̂n which is actually ill-conditioned because the moments are redundant

(see Figure H12 in Appendix H.1). This near-singularity of the variance-covariance matrix

implies that a singularity and identification robust test should be implemented (Andrews

& Guggenberger, 2019). Since V̂n is near rank one over most of Θ̂n, singularity robust

inference amounts to dropping two instruments and using the remaining one for inference.

The intercept, Zt = 1, is kept and an Anderson-Rubin statistic is inverted with χ2
1 critical

values which yields: CI95%(δ) = [0.98, 1.2]; CI95%(γ) = [0, 20]. Recall that the rule-of-

thumb involves V̂n, an ill-conditioned matrix, in the denominator. This leads to a very large

cutoff when using all three moments. With a single moment condition, the cutoff is smaller,
√
nλn = 1.6 < 11.9 =

√
nλmax(Bn,LS), and suggests δ is (semi)-stongly identified for γ fixed.

7 Conclusion

This paper proposes an approach to detect potential identification failure and conduct two-

step robust subvector inference. It generalizes the first stage F-statistic and rank tests in

linear IV to non-linear GMM. The computation is massively parallel. The recommended

procedure is similar to type I inferences in Andrews & Cheng (2012), without knowing the

identification structure. An important direction for future research is to extend the results

to uniform type II inferences and other M-estimators.
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Appendix A Proofs for the Results of Section 3

The proofs are given separately for the sup-norm and least-squares approximations.

A.1 Proofs for the sup-norm approximation

Proof of Theorem 1. By compactness of the kernel K: supθ∈Θ,‖θ−θ0‖≥εK(‖ḡn(θ)‖Wn) = 0,

with probability going to 1. This allows us to focus on θ such that ‖θ − θ0‖ ≤ ε. Let

Hn = (∂θgn(θ0)′∂θgn(θ0))−1/2; using the re-parameterization θ = θ0 +Hnhκn for h ∈ Rdθ and

Definition 4 i.:

C‖∂θgn(θ0)Hnh‖ ≥ ‖gn(θ)‖W/κn ≥ C‖∂θgn(θ0)Hnh‖.

By definition of the Frobenius norm and Hn, we have:

trace (∂θgn(θ0)Hnhh
′Hn∂θgn(θ0)′)

1/2
= trace(hh′)1/2 = ‖h‖.

Uniformly in h such that ‖Hnhκn‖ ≤ ε, we have:

‖ḡn(θ)‖W/κn ≥ C‖h‖ − λ× supθ∈Θ ‖Gn(θ)‖√
nκn

= C‖h‖ − op(1).

This implies that for ‖h‖ ≥ 3/C, we have: ‖ḡn(θ)‖Wn/κn ≥ ‖ḡn(θ)‖W/κn + op(1) ≥ 3 −

op(1) ≥ 2, with probability going to 1. Hence, sup‖h‖≥3/C K

(∥∥∥ḡn (θ0 +Hnhκn)
∥∥∥
Wn

/κn

)
=
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0, also with probability going to 1. Similarly, for ‖h‖ ≤ 1/[2C], we have:∥∥∥ḡn (θ0 +Hnhκn)
∥∥∥
Wn

/κn ≤
(∥∥∥gn (θ0 +Hnhκn)

∥∥∥
W
× [1 + op(1))] + λ× supθ∈Θ ‖Gn(θ)‖√

n

)
/κn

≤ C × ‖h‖ × [1 + op(1))] + op(1) ≤ 1/2 + op(1) ≤ 3/4,

with probability going to 1. This implies that: inf‖h‖≤1/[2C] K

(∥∥∥ḡn (θ0 +Hnhκn)
∥∥∥
Wn

/κn

)
≥

infx∈[0,3/4]K(x), which is strictly positive by assumption. For any pair (A,B) we can write,

with probability going to 1:

sup
θ∈Θ
‖ḡn(θ)− A−Bθ‖ × K̂n(θ) = sup

‖h‖≤3/[C]

‖ḡn(θ)− A−Bθ0 −BHnhκn‖ × K̂n(θ)

≥ sup
‖h‖≤1/[2C]

‖ḡn(θ)− A−Bθ0 −BHnhκn‖ × inf
x∈(0,3/4)

K(x)

Note that for ‖h‖ bounded, we have θ − θ0 = o(1)14 and:

ḡn(θ)− ḡn(θ0)− ∂θgn(θ0)Hnhκn = op(n
−1/2) +Op

(
‖∂θgn(θ0)Hnhκn‖2

)
.

By construction, we also have: Op (‖∂θgn(θ0)Hnhκn‖2) = Op(κ
2
n) = op(n

−1/2). Altogether, if

A,B are different from:

An,∞ = ḡn(θ0)−Bn,∞θ0 + op(n
−1/2), Bn,∞Hn = ∂θḡn(θ0)Hn + op

(
n−1/2κ−1

n

)
by more than a op(n

−1/2) and a op(n
−1/2κ−1

n ) term respectively, the sup over θ ∈ Θ is greater

than a op(n
−1/2) which is suboptimal compared to An,∞, Bn,∞. To get the result in terms of

θ̂n instead of θ0, note that:

An,∞ = ḡn(θ0)−Bn,∞θ0 + op(n
−1/2)

= ḡn(θ̂n)−Bn,∞θ̂n + [∂θgn(θ0)−Bn,∞]HnH
−1
n [θ̂n − θ0] + op(n

−1/2)

= ḡn(θ̂n)−Bn,∞θ̂n + op(n
−1/2).

The result for Bn,∞ follows from Definition 4 iv. and the rate of convergence of θ̂n. The

asymptotic equivalence between θ̂n and θ̂n,∞ can be shown the same way as in the least-

squares proof. This concludes the proof.

Proof of Theorem 2. Pick vj ∈ Span(Pj) with ‖vj‖ = 1. Consider h ∈ R and θj,n = θ0 +

(κ
1/j
n h)vj. Using Definition 5, we have: ‖gn(θj,n)/κn‖W ≥ Cj|h|. This implies that for |h| ≤
14This is because κ2

n goes to zero faster than λmin (∂θgn(θ0)′∂θgn(θ0)).
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1/[2 maxj Cj], we have for 0 < ε < ‖K‖∞: P (K(‖ḡn(θj,n)/κn‖Wn) ≥ ε)→ 1, as n→∞. As

before, this statement holds uniformly over θj,n = θ0 + (κ
1/j
n h)vj with |h| ≤ 1/[2 maxj Cj].

We also have: ‖An,∞ + Bn,∞θ0‖ = Op(κn) and ‖An,∞ + Bn,∞θj,n‖ = Op(κn). Noting that

‖θj,n − θ0‖ = |h|κ−1/j
n , these equalities yield for 0 < |h| ≤ 1/[2 maxj Cj]:

‖Bn,∞(θj,n − θ0)‖ = Op(κn)⇒ ‖Bn,∞vj‖ = Op(κn)× κ−1/j
n |h|.

This implies ‖Bn,∞vj‖ = Op(κ
1−1/j
n ) and |λmin(Bn,∞)| = Op(κ

1−1/r
n ), concluding the proof.

Proof of Theorem 3. First note that for any θ ∈ Θ, the conditions on the weight matrix W

in Definition 1 and the compactness of the kernel K:

‖ḡn(θ)‖ × K̂n(θ) = ‖ḡn(θ)‖ ×K(‖ḡn(θ)‖Wn/κn) ≤ ‖ḡn(θ)‖Wn ×K(‖ḡn(θ)‖Wn/κn)/λ

≤ κn‖K‖∞/λ = O(κn).

By minimization of the sup-norm criterion:

sup
θ∈Θ

(
‖An,∞ +Bn,∞θ − ḡn(θ)‖ × K̂n(θ)

)
≤ sup

θ∈Θ

(
‖ḡn(θ)‖ × K̂n(θ)

)
≤ O(κn).

Pick any two θ0, θ1 ∈ Θ0. We have, by definition of Θ0 and Assumption 2 for j ∈ {0, 1}:

K(‖ḡn(θj)‖Wn/κn) = K(‖gn(θj)/κn + Gn(θj)n
−1/2/κn‖Wn) = K(op(1)) = K(0) + op(1).

The last equality follows from the Lipschitz-continuity ofK. This implies thatK(‖ḡn(θ0)‖Wn/κn)

is strictly positive with probability going to 1. Note that Assumption 2 implies that this

result is uniform in θ ∈ Θ0. Since K > 0 and continuous on (−1, 1), there exists K > 0 and

ε > 0 such that |x| ≤ ε⇒ K(x) ≥ K so that:

P( inf
θ∈Θ0

K(‖ḡn(θ)‖Wn/κn) ≥ K) ≥ P( sup
θ∈Θ0

‖ḡn(θ)‖Wn/κn ≤ ε)

≥ P
(

sup
θ∈Θ0

√
n‖gn(θ)‖+ sup

θ∈Θ
‖Gn(θ)‖ ≤

√
nκnε/λ

)
→ 1,

as n→∞ because supθ∈Θ0

√
n‖gn(θ0)‖W is finite and supθ∈Θ ‖Gn(θ)‖ = Op(1) while

√
nκn →

+∞ by assumption and 0 < λ ≤ λmin(Wn) ≤ λmax(Wn) ≤ λ < +∞. Now, by the reverse

triangular inequality, we have:

sup
θ∈Θ
‖An,∞ +Bn,∞θ − ḡn(θ)‖K(‖ḡn(θ)‖Wn/κn) ≥ (‖An,∞ +Bn,∞θ0‖ − ‖ḡn(θ0)‖) [K(0) + op(1)].
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Since the term on the left-hand side is a O(κn) and ‖ḡn(θ0)‖ ≥ ‖ḡn(θ0)‖Wn/λ = Op(κn):

0 ≤ ‖An,∞ +Bn,∞θ0‖ ≤
Op(κn)

K(0) + op(1)
= Op(κn).

This implies that An,∞ = −Bn,∞θ0 up to a Op(κn) term. Evaluating the expression at θ = θ1:

‖An,∞ +Bn,∞θ1‖ = ‖Op(κn) +Bn,∞(θ1 − θ0)‖ ≥ ‖Bn,∞(θ1 − θ0)‖ −Op(κn).

Together with the inequalities above, this implies:

0 ≤ ‖Bn,∞(θ1 − θ0)‖ ≤ Op(κn) +
Op(κn)

K(0) + op(1)
= Op(κn).

By definition of λmin(Bn,∞), we have:

0 ≤ |λmin(Bn,∞)|2 ‖θ1 − θ0‖2 ≤ ‖(θ1 − θ0)′B′n,∞Bn,∞(θ1 − θ0)‖ ≤ Op(κ
2
n).

This concludes the first part of the proof. Let V = Span ({θ0 − θ1, θ0, θ1 ∈ Θ0}). Take

(θ1,j − θ0,j)j=1,...,r, a basis of this span with (θ1,j, θ0,j) ∈ Θ2
0 for all j, then for any v ∈ V

there exists (a1, . . . , ar) such that v =
∑r

j=1 aj(θ1,j − θ0,j). Since the derivations above were

uniform in (θ0, θ1) ∈ Θ2
0, we have: 0 ≤ ‖Bn,∞v‖ ≤

∑r
j=1 |aj| × ‖Bn,∞(θ1,j − θ0,j)‖ = Op(κn),

which concludes the proof.

A.2 Proofs for the least-squares approximation

Proof of Theorem 1. The proof is divided into several steps.

Step 1. Proof of the results concerning An,LS:

The least-squares formula provides a closed-form for the intercept: An,LS =
∫
ḡn(θ)π̂n(θ)dθ−

Bn,LS

∫
θπ̂n(θ)dθ. Substituting into the least-squares objective, this means that the first part

of the proof amounts to showing that:∫
[ḡn(θ)− ḡn(θ0)]π̂n(θ)dθ = op(n

−1/2), H−1
n

∫
[θ − θ̂n]π̂n(θ)dθ = op(n

−1/2)

for both the compact and the exponential kernels.

Step 1.a. Compact Kernel K:

For ‖θ− θ0‖ ≥ ε > 0, as in the proof under the sup-norm, we have: π̂n(θ) ≤ Op(n
−d) for any

d ≥ 1. Then for ‖θ− θ0‖ ≤ ε, as in the proof with the sup-norm, we have after the following

re-parametrization θ = θ̂n +Hnhκn, with Hn = (∂θgn(θ0)′∂θgn(θ0))−1/2:

sup
h∈Rdθ ,‖h‖≥4/C

K
(
‖ḡn(θ)‖Wn − ‖ḡn(θ̂n)‖Ŵn

)
= 0, with probability going to 1.
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θ − θ̂n = Hnhκn = op(1) implies that, with probability going to 1:∫
Θ

[ḡn(θ)− ḡn(θ̂n)]π̂n(θ)dθ =

∫
θ,‖h‖≤4/C

[ḡn(θ)− ḡn(θ̂n)]π̂n(θ)dθ

=

∫
θ,‖h‖≤4/C

∂θgn(θ0)[θ − θ0]π̂n(θ)dθ + op(n
−1/2) +Op(κ

2
n)

where the expansion of ḡn(θ) is derived using the stochastic equicontinuity and smoothness

assumptions. To show that θ̄n − θ̂n = op(n
−1/2), expand the terms inside the kernel:

ḡn(θ) = ḡn(θ̂n) + ∂θgn(θ̂n)Hnhκn + op(n
−1/2) +Op

(
κ2
n

)
= ḡn(θ̂n) + ∂θgn(θ0)Hnhκn + op(n

−1/2) +Op

(
κ2
n

)
where the last equality is due to Definition 4 iv. Since the kernel K is Lipschitz-continuous:∣∣∣K (‖∂θgn(θ̂n)Hnh‖Ŵn

)
−K

(
‖ḡn(θ)‖Wn/κn − ‖ḡn(θ̂n)‖Ŵn

/κn

) ∣∣∣ = op(n
−1/2κ−1

n ) +Op(κn).

This implies that:

H−1
n [θ̄n − θ̂n] =

∫
‖h‖≤4/C

hκn[K
(
‖∂θgn(θ̂n)Hnh‖Ŵn

)
+ op(n

−1/2κ−1
n +Op(κn))]∫

‖h‖≤4/C
[K
(
‖∂θgn(θ̂n)Hnh‖Ŵn

)
+ op(n−1/2κ−1

n +Op(κn))]

= 0 + op(n
−1/2) +Op(κ

2
n) = op(n

−1/2),

becauseK
(
‖∂θgn(θ̂n)Hnh‖Ŵn

)
is symmetric in h. Now,

∫
[ḡn(θ)−ḡn(θ0)]π̂n(θ)dθ = op(n

−1/2) =

∂θgn(θ0)[θ̄n − θ̂n] + op(n
−1/2) which implies the other result.

Step 1.b. Exponential Kernel K:

Using θ = θ̂n+Hnhκn, Hn = (∂θgn(θ0)′∂θgn(θ0))−1/2, we have for ‖h‖ ≥ [dθ log(n)/C2]1/a/C:

K̂n(θ) ≤ C1 exp (−dθ log(n) + op(1)) = Op(n
−dθ) = op(n

−1/2), since dθ ≥ 1. Assumption 1

also implies that κ̃n = κn log(n)1/a = o(1) so that the stochastic equicontinuity result applies

in balls centered around θ̂n with radius proportional to κ̃n:

ḡn(θ) = ḡn(θ̂n) + ∂θgn(θ̂n)Hnhκn + op(n
−1/2) +Op(‖∂θgn(θ0)Hnhκn‖2).

Since, up to a fixed constant, we have ‖h‖ ≤ log(n)1/a, the last term is a Op(κ̃
2
n) = op(n

−1/2).

As for the compact kernel: K
(
‖ḡn(θ)‖Wn/κn − ‖ḡn(θ̂n)‖Ŵn

/κn

)
= K

(
‖∂θgn(θ̂n)Hnh‖Ŵn

) [
1+

op(n
−1/2κ−1

n ) + Op(κn‖h‖2)
]
. Note that ∂θgn(θ̂n)Hn = ∂θgn(θ0)Hn + op(1); since the first dθ

eigenvalues of ∂θgn(θ0)Hn are bounded below by construction (this is the role of Hn), with
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probability going to 1, ∂θgn(θ̂n)Hn is also non-singular. This implies that:

H−1
n [θ̄n − θ̂n]

= κn

∫
‖h‖≤CK log(n)1/a

hK(‖∂θgn(θ̂n)Hnh‖Ŵn
)
[
1 + op(n

−1/2κ−1
n ) +Op(κn‖h‖2)

]
dh∫

‖h‖≤CK log(n)1/a
K(‖∂θgn(θ̂n)Hnh‖Ŵn

)
[
1 + op(n−1/2κ−1

n ) +Op(κn‖h‖2)
]
dh

+ op(n
−1/2)

=
op(n

−1/2) +Op(κ
2
n)∫

‖h‖≤CK log(n)1/a
K(‖∂θgn(θ̂n)Hnh‖Ŵn

)dh+ op(1)
+ op(n

−1/2) = op(n
−1/2).

The other result can be proved the same way as for the compact kernel.

Step 2. Proof of the results concerning Bn,LS:

The least-squares formula implies that:

Bn,LS =

(∫
[θ − θ̄n][θ − θ̄n]′π̂n(θ)dθ

)−1 ∫
[θ − θ̄n][ḡn(θ)−

∫
ḡn(θ̃)π̂n(θ̃)dθ̃]′π̂n(θ)dθ.

Using the change of variable: θ = θ̂n +Hnhκn, the first term can be re-written as:∫
[θ − θ̄n][θ − θ̄n]′π̂n(θ)dθ =

∫
‖h‖≤4/C

[κ2
nHnhh

′Hn + op(κnn
−1/2)]κdθn π̂n(θ̂n +Hnκnh)dh.

Note that O(n1/2) ≥ Hn ≥ Op(1) so that the op(κnn
−1/2) term is negligible compared to

κ2
nHnhh

′Hn. The second term can be expanded as:∫
[θ − θ̄n][ḡn(θ)−

∫
ḡn(θ̃)π̂n(θ̃)dθ̃]′π̂n(θ)dθ

=

∫
‖h‖≤4/C

(
[κ2
nHnhh

′H ′n∂θgn(θ̂n)′] + [Hnop(κnn
−1/2)]

)
κdθn π̂n(θ̂n +Hnκnh)dh

Together these imply that HnB
′
n,LS = Hn∂θgn(θ̂n)′ + op(n

−1/2κ−1
n ).

Final Step, showing that:
√
nH

−1/2
n

(
θ̂n − θn,LS

)
= op(1):

Since θ̂n is consistent, the re-parameterization θn = θ0 +Hnhn
−1/2 implies:

n×‖ḡn(θn)‖2
Wn

= (Gn(θ0) + ∂θgn(θ0)Hnh+ op(1))′ [Ŵn+op(1)] (Gn(θ0) + ∂θgn(θ0)Hnh+ op(1)) .

The Argmax Theorem (van der Vaart & Wellner, 1996) implies that the minimizer is ĥn =(
Hn∂θgn(θ0)′Ŵn∂θgn(θ0)Hn

)−1

Hn∂θgn(θ0)′Ŵn [Gn(θ0) + op(1)] . Since θ̂n = θ0 +Hnĥnn
−1/2:

√
nH−1

n (θ̂n − θ0) =
(
Hn∂θgn(θ0)′Ŵn∂θgn(θ0)Hn

)−1

Hn∂θgn(θ0)′ŴnGn(θ0) + op(1).
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The estimator θ̂n,LS can be written as:

θ̂n,LS = θ̂n −
(
B′n,LSŴnBn,LS

)−1

B′n,LSŴn[ḡn(θ̂n) + op(n
−1/2)]

which implies that the difference with θ̂n can be written as:

√
nH−1

n (θ̂n − θ̂n,LS)

=
√
nH−1

n

(
B′n,LSŴnBn,LS

)−1

B′n,LSŴn[ḡn(θ̂n) + op(n
−1/2)]

=
√
n
(
Hn∂θgn(θ0)′Ŵn∂θgn(θ0)Hn

)−1

Hn∂θgn(θ0)′Ŵn[ḡn(θ̂n) + op(n
−1/2)](1 + op(1)).

ḡn(θ̂n) can be expanded into:(
I − ∂θgn(θ0)Hn

(
Hn∂θgn(θ0)′Ŵn∂θgn(θ0)Hn

)−1

Hn∂θgn(θ0)′Ŵn + op(1)

)
ḡn(θ0) + op(n

−1/2).

The term before ḡn(θ0) is a projection matrix orthogonal to Hn∂θgn(θ0)′Ŵn, hence

Hn∂θgn(θ0)′Ŵnḡn(θ̂n) = op(n
−1/2)⇒

√
nH−1

n (θ̂n − θ̂n,LS) = op(1) which concludes the proof.

Proof of Lemma 1. From the least-squares formula, we have An,LS =
∫
ḡn(θ)π̂n(θ)dθ −

Bn,LS θ̄n. Substituting into the least-squares objective implies that Bn,LS minimizes:∫ ∥∥∥Bn,LS(θ − θ̄n)−
[
ḡn(θ)−

∫
ḡn(θ̃)π̂n(θ̃)dθ̃

] ∥∥∥2

π̂n(θ)dθ.

The proof proceed in 3 steps:

1. Proving that
∫
‖ḡn(θ)‖2π̂n(θ)dθ ≤ Op(κ̃

2
n) for the compact and the exponential kernels.

2. Proving that
∫ ∥∥∥Bn,LS(θ − θ̄n)

∥∥∥2

π̂n(θ)dθ ≤ Op(κ̃
2
n).

3. Deducing the results from steps 1 and 2.

Step 1. Proving that
∫
‖ḡn(θ)‖2π̂n(θ)dθ‖ ≤ Op(κ̃

2
n):

Step 1.a. Compact Kernel K:

For the compact kernel, as in the sup-norm proof: ‖ḡn(θ̃)‖2π̂n(θ̃) ≤ O(κ2
n)π̂n(θ̃).

Step 1.b. Exponential Kernel K:

For the exponential kernel, pick d ≥ 1 and consider a θ such that ‖ḡn(θ)‖Wn ≥ κ̃n× [d/C2]1/a:

K̂n(θ) ≤ C1 exp (−d[κ̃n/κn]a) = C1 exp (−d log(n)) = C1n
−d,
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this implies for these values of θ that ‖ḡn(θ)‖2×K̂n(θ) ≤ λ×
[
supθ∈Θ ‖gn(θ)‖W +Op(n

−1/2)
]2×

C1n
−d = Op(n

−d). Now pick any θ0 ∈ Θ0, the Hölder-type condition implies that for any θ

such that ‖θ− θ0‖ ≤ κ
1/ς
n , we have ‖gn(θ)‖W ≤ Cκn, which implies for the sample moments:

‖ḡn(θ)‖Wn ≤ Cκn + Op(n
−1/2) ≤ (1 + C)κn, with probability going to 1. This implies that

K̂n(θ) ≥ C1 exp
(
− C2[1 + C]a

)
with probability going to 1, and:

∫
‖θ−θ0‖≤κ1/ςn

K̂n(θ)dθ ≥ κdθ/ςn

πdθ/2

Γ(dθ/2 + 1)
C1 exp

(
−C2[1 + C]a

)
.

Together with the first bound, this implies that:∫
θ,‖ḡn(θ)‖Wn≥κ̃n×[dC2]1/a

π̂n(θ)dθ ≤ κdθ/ςn n−d
πdθ/2

Γ(dθ/2 + 1)
exp

(
−C2[1 + C]a

)
.

For d large enough, κ
dθ/ς
n n−d ≤ Op(κ̃

2
n). Putting everything together, we get:∫

θ∈Θ

‖ḡn(θ)‖2π̂n(θ)dθ ≤ λ−2

∫
θ∈Θ

‖ḡn(θ)‖2
Wn
π̂n(θ)dθ

= λ−2
[ ∫

θ,‖ḡn(θ)‖Wn≤κ̃n[d/C2]1/a
‖ḡn(θ)‖2

Wn
π̂n(θ)dθ +

∫
θ,‖ḡn(θ)‖Wn>κ̃n[d/C2]1/a

‖ḡn(θ)‖2
Wn
π̂n(θ)dθ

]
≤ λ−2

[
κ̃2
n[d/C2]2/a +Op(κ̃

2
n)
]

= Op(κ̃
2
n).

Step 2. Proving that
∫ ∥∥∥Bn,LS(θ − θ̄n)

∥∥∥2

π̂n(θ)dθ ≤ Op(κ̃
2
n):

From step 1., we have:∫ ∥∥∥ḡn(θ)−
∫
ḡn(θ̃)π̂n(θ̃)dθ̃

∥∥∥2

π̂n(θ)dθ ≤ 4

∫ ∥∥∥ḡn(θ)
∥∥∥2

π̂n(θ)dθ ≤ Op(κ̃
2
n).

Since Bn,LS minimizes the least-squares criterion:∫ ∥∥∥Bn,LS(θ − θ̄n)−
[
ḡn(θ)−

∫
ḡn(θ̃)π̂n(θ̃)dθ̃

] ∥∥∥2

π̂n(θ)dθ

≤
∫ ∥∥∥ḡn(θ)−

∫
ḡn(θ̃)π̂n(θ̃)dθ̃

∥∥∥2

π̂n(θ)dθ ≤ Op(κ̃
2
n).

By the reverse triangle inequality:∫ ∥∥∥Bn,LS(θ − θ̄n)
∥∥∥2

π̂n(θ)dθ ≤
∫ ∥∥∥Bn,LS(θ − θ̄n)−

[
ḡn(θ)−

∫
ḡn(θ̃)π̂n(θ̃)dθ̃

] ∥∥∥2

π̂n(θ)dθ

+

∫ ∥∥∥ḡn(θ)−
∫
ḡn(θ̃)π̂n(θ̃)dθ̃

∥∥∥2

π̂n(θ)dθ ≤ Op(κ̃
2
n)
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Step 3. Deducing the results of Lemma 1:

By definition of the Frobenius norm:
∫

trace
(
Bn,LS(θ − θ̄n)(θ − θ̄n)′B′n,LS

)
π̂n(θ)dθ =

∫
‖Bn,LS(θ−

θ̄n)‖2π̂n(θ)dθ ≤ Op(κ̃
2
n). By linearity of the trace and integral operators:

trace
(
Bn,LSΣnB

′
n,LS

)
= trace

(
Bn,LS

[∫
(θ − θ̄n)(θ − θ̄n)′π̂n(θ)dθ

]
B′n,LS

)
≤ Op(κ̃

2
n).

In turn, this implies that trace
(
B′n,LSBn,LSΣn

)
≤ Op(κ̃

2
n). Since Σn and B′n,LSBn,LS are

Hermitian (self-adjoint), Problem III.6.14, in Bhatia (1997)15 implies that:

0 ≤ λj(B
′
n,LSBn,LS)λdθ+1−j(Σn) ≤ trace

(
B′n,LSBn,LSΣn

)
= Op(κ̃

2
n)

which, in turn, implies the desired results.

Let vj,n be an eigenvector of Σn, then Σ
1/2
n vj,n =

√
λj,nvj,n. Furthermore, ‖Bn,LSΣ

1/2
n ‖ =

Op(κ̃n). Together these imply 0 ≤
√
λj,n‖Bn,LSvj,n‖ = ‖Bn,LSΣ

1/2
n ‖ = Op (κ̃n) . Since√

λj,n = Op(rj,n) this implies the final result and concludes the proof.

Proof of Theorem 2. Using Lemma 1, the proofs amounts to showing that Σn satisfies PjΣnP
′
j =

Op(κ̃
2/j
n ) for each j = 1, . . . , r. Before we proceed, note that:

Σn =

∫
Θ

(θ − θ̄n)(θ − θ̄n)′π̂n(θ)dθ = (θ̄n − θ̂n)(θ̄n − θ̂n)′ +

∫
Θ

(θ − θ̂n)(θ − θ̂n)′π̂n(θ)dθ.

We need to show that Pj(θ̄n − θ̂n) = Op(κ̃
1/j
n ) and the posterior concentrates around θ̂n at a

κ̃
1/j
n rate in each direction Pj. This is shown separately for compact and exponential kernels.

We also need to derive the rate for θ̂n − θ0. θ̂n is consistent by Theorem 2.1 in Newey &

McFadden (1994). Re-write θ = θ0 +
∑r

j=1 n
−1/[2j]Pjh, h ∈ Rdθ ; using supθ∈Θ ‖Gn(θ)‖W =

Op(1):
[∑r

j=1Cj‖Pjh‖j +Op(1)
]2

/[1+op(1)] ≥ n×‖ḡn(θ0+
∑r

j=1 n
−1/2jPjh)‖2

Wn
≥ 0. which

implies that the minimizer ĥn of ‖ḡn(θ0+
∑r

j=1 n
−1/2jPjh)‖2

Wn
is a Op(1). This in turn implies

that Pj(θ̂n − θ0) = Op(n
− 1

2j ) for each j ∈ {1, . . . , r}.
Step 1.a. Results for the Compact Kernel K:

15The result invoked from Bhatia (1997) is a consequence of Lidskii’s theorems and states that if A,B are

Hermitian then 〈λ↓(A), λ↑(B)〉 ≤ trace (AB) where λ↓, λ↑ are the eigenvalues in decreasing and increasing

order, respectively. Furthermore, if the matrices are positive semi-definite, then the eigenvalues of each

matrix are positive so that the result implies 0 ≤ λj(A)λdB+1−j(B) ≤ trace(AB).

38



Using the same approach as above, we can re-write θ = θ̂n+
∑r

j=1 κ
1/j
n Pjh with h ∈ Rdθ and:

‖ḡn(θ)/κn‖Wn ≥

[
r∑
j=1

Cj‖Pj(θ̂n − θ0)κ−1/j
n + Pjh‖j −Op(n

−1/2κ−1
n )

]
/[1 + op(1)]

=

[
r∑
j=1

Cj‖Op(|n−1/2κ−1
n |1/j) + Pjh‖j −Op(n

−1/2κ−1
n )

]
/[1 + op(1)]

=
r∑
j=1

Cj‖Pjh‖j − op(1) ≥ 2,

with probability going to 1 when
∑r

j=1 ‖Pjh‖j ≥ 2/C, C = minj=1,...,r Cj > 0.16 Then we

have, with probability going to 1: suph,∑r
j=1 ‖Pjh‖j≥2/C K̂n(θ̂n +

∑r
j=1 κ

1/j
n Pjh) = 0. This, in

turn implies that, with probability going to 1:

θ̄n =

∫
Θ

θπ̂n(θ)dθ = θ̂n +
r∑
j=1

κ1/j
n Pj

(∫
h,
∑r
j=1 ‖Pjh‖j≤2/C

hπ̂n(θ̂n +
r∑
j=1

κ1/j
n Pjh)dh

)
.

Since the integral is taken over a bounded set, we have:

‖
∫
h,
∑r
j=1 ‖Pjh‖j≤2/C

hπ̂n(θ̂n +
r∑
j=1

κ1/j
n Pjh)dh‖ ≤ sup

h,
∑r
j=1 ‖Pjh‖j≤2/C

‖h‖ < +∞.

This implies that, with probability going to 1: Pj(θ̄n − θ̂n) = κ
1/j
n Op(1). Since θ̄n − θ̂n =∑r

j=1 Pj(θ̄n−θ̂n), we have (θ̄n−θ̂n)(θ̄n−θ̂n)′ =
∑r

j=1 κ
2/j
n PjOp(1)P ′j . Pre and post-multiplying

this equation by Pj implies: Pj(θ̄n − θ̂n)(θ̄n − θ̂n)′P ′j = κ
2/j
n Op(1). With probability going to

1, we also have:∫
Θ

(θ − θ̂n)(θ − θ̂n)′π̂n(θ)dθ =
r∑
j=1

κ2/j
n Pj

(∫
h,
∑r
j=1 ‖Pjh‖j≤2/C

hh′π̂n(θ̂n +
r∑
j=1

κ1/j
n Pjh)dh

)
P ′j

and, using the same argument as above:

‖
∫
h,
∑r
j=1 ‖Pjh‖j≤2/C

hh′π̂n(θ̂n +
r∑
j=1

κ1/j
n Pjh)dh‖ ≤ sup

h,
∑r
j=1 ‖Pjh‖j≤2/C

‖hh′‖ < +∞.

This implies that with probability going to 1, we have:
∫

Θ
(θ − θ̂n)(θ − θ̂n)′π̂n(θ)dθ =∑r

j=1 κ
2/j
n PjOp(1)P ′j . Putting everything together, we have Σn =

∑r
j=1 κ

2/j
n PjOp(1)P ′j so

that for any vj ∈ Span(Pj), vjΣnv
′
j = Op(κ

2/j
n ) which by Lemma 1 implies |λmin(Bn,LS)| =

16If the minimum is zero, one can take the minimum over the non-zero elements instead.

39



Op(κ
1−1/r
n ) and Bn,LSvj = Op(κ

1−1/j
n ) for any vj ∈ Span(Pj).

Step 1.b. Results for the Exponential Kernel K:

For the exponential kernel, consider the re-parametrization θ = θ̂n +
∑r

j=1 κ̃
1/j
n Pjh. This

implies that, uniformly in h:

‖ḡn(θ̂n +
r∑
j=1

κ̃1/j
n Pjh)/κn‖Wn ≥

[
r∑
j=1

Cj‖Pjh‖j log(n)1/a − op(1)

]
/[1 + op(1))].

Using the monotonicity of the exponential kernel, this implies:

K̂n(θ̂n +
r∑
j=1

κ̃1/j
n Pjh) ≤ C1 exp

(
−C2

[
[
r∑
j=1

Cj‖Pjh‖j]a log(n)− op(1)

])
= Op(n

−4)

uniformly in h such that [
∑r

j=1Cj‖Pjh‖j]a ≥ 4/C2. Using the same approach as for the

compact kernel, we have:

θ̄n = θ̂n +
r∑
j=1

κ̃1/j
n Pj

[∫
h,[

∑r
j=1 Cj‖Pjh‖j ]a≥4/(C2)

hπ̂n(θ̂n +
r∑
j=1

κ̃1/j
n Pjh)dh

]
+Op(n

−4).

Since n−4 = o(κn) = o(κ̃n), this implies that Pj(θ̄n − θ̂n) = Op(κ̃
1/j
n ). Similarly:

∫
Θ

(θ −
θ̂n)(θ − θ̂n)′π̂n(θ)dθ =

∑r
j=1 κ

2/j
n PjOp(1)P ′j +Op(n

−4). Putting everything together, we have

Σn =
∑r

j=1 κ̃
2/j
n PjOp(1)P ′j so that for any v ∈ Span(Pr), vΣnv

′ = Op(κ̃
2/r
n ) which by Lemma

1 implies |λmin(Bn,LS)| = Op(κ̃
1−1/r
n ) and Bn,LSvj = Op(κ̃

1−1/j
n ) for any vj ∈ Span(Pj). This

concludes the proof.

Proof of Proposition 1. Let Π̂n be the probability function associated with π̂n

Π̂n

(
‖θ − θ̄n‖ > ε/6

)
≥ min

(∫
‖θ−θ0‖2≤ε/3

π̂n(θ)dθ,

∫
‖θ−θ1‖2≤ε/3

π̂n(θ)dθ

)
≥ η + op(1)

since θ̄n has always a distance of at least ε/6 from either one of these two ε/3 balls. By

Chebyshev’s inequality: Π̂n

(
‖θ − θ̄n‖ > ε/6

)
= Π̂n

(
‖θ − θ̄n‖2 > ε2/36

)
≤ 36

ε2
× trace(Σn).

Hence: ηε2

36
+ op(1) ≤ trace(Σn) ≤ dθλmax(Σn). Since ηε2/[36dθ] + op(1) > 0 with probability

going to 1, by Lemma 1: λmin(B′n,LSBn,LS) = Op(κ̃
2
n), which concludes the proof.

Proof of Theorem 4. Each case described in the Theorem will be treated separately.

Case i. Θ0 has non-empty interior:

By assumption, there exists ε > 0 and θ0 ∈ Θ0 such that B5ε/3(θ0) ⊆ Θ0. In this open ball

B5ε/3(θ0), we can find two θ1, θ2 such that ‖θ1 − θ2‖ = ε and Bε/3(θ1) ⊆ Θ0, Bε/3(θ2) ⊆ Θ0.
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Then, by definition of the weakly identified set and Assumptions 2, 1: supθ∈Bε/3(θ1) ‖ḡn(θ)‖W/κn =

op(1). Since both the compact and exponential kernels are continuous: supθ∈Bε/3(θ1) K̂n(θ) =

supθ∈Bε/3(θ1) K(‖ḡn(θ)‖Wn/κn − ‖ḡn(θ̂n)‖Ŵn
/κn) = K(Op(n

−1/2κ−1
n )) = K(0) + op(1). Note

that K(0) > 0 by assumption. Now the integral of interest can be bounded using:

vol(Bε/3(θ1))K(0) + op(1)

vol(Θ)‖K‖∞
≤

∫
θ∈Bε/3(θ1)

K̂n(θ)dθ∫
θ∈Θ

K̂n(θ)dθ
=

∫
θ∈Bε/3(θ1)

π̂n(θ)dθ

≤

∫
θ∈Bε/3(θ1)

K̂n(θ)dθ∫
θ∈Bε/3(θ1)

K̂n(θ)dθ +
∫
θ∈Bε/3(θ2)

K̂n(θ)dθ
=

1

2
+ op(1)

where vol(Bε/3(θ1)) =
∫
Bε/3(θ1)

dθ. Proposition 1 is satisfied for ε and η =
vol(Bε/3(θ1))K(0)

vol(Θ)‖K‖∞ > 0.

Case ii. Θ0 finite:

Pick ε = minθ1,θ2∈Θ0,θ1 6=θ2 ‖θ1 − θ2‖. Uniformly in θ 6∈ ∪kj=0Bε/3(θj):

‖ḡn(θ)‖Wn ≥
[
η(ε/3)− supθ∈Θ ‖Gn(θ)‖

λ
√
n

]
/[1 + op(1))] = η(ε/3)−Op(n

−1/2).

Case ii.a. Compact Kernel:

Assumption 1 implies that for the compact kernel supθ 6∈∪kj=0Bε/3(θj)
K̂n(θ) = 0 with probability

going to 1 and for any j ∈ {0, . . . , k}, θ ∈ Bε/3(θj): C‖θ− θj‖r/κn− op(1) ≤ ‖ḡn(θ)‖W/κn ≤
C‖θ − θj‖r/κn + op(1). Using the re-parameterization θ = θj + hκ

1/r
n : C‖h‖r − op(1) ≤

‖ḡn(θ)‖Wn/κn ≤ C‖h‖r + op(1) so that K̂n(θ) = 0 with probability going to 1 uniformly in

‖h‖r ≥ 2/C and K̂n(θ) ≥ infx∈[0,3/4]K(x) + op(1) uniformly in ‖h‖r ≤ 1/[2C]. This implies,

with probability going to 1:

0 < κdθ/rn ( inf
x∈[0,3/4]

K(x) + op(1))

∫
‖h‖r≤1/[2C]

dh ≤
∫
Bε/3(θj)

K̂n(θ)dθ ≤ κdθ/rn ‖K‖∞
∫
‖h‖r≤2/C

dh,

which is finite. This implies, with probability going to 1, ∀j ∈ {0, . . . , k}, the desired result:∫
Bε/3(θj)

π̂n(θ)dθ ≥
infx∈[0,3/4]K(x)

‖K‖∞
×

vol(B1/[2C]1/r(0))

vol(B[2/C]1/r(0))
+ op(1) > 0

Case ii.b. Exponential Kernel:

For the exponential kernel, we have: supθ 6∈∪kj=0Bε/3(θj)
K̂n(θ) ≤ C1 exp [−C2[η(ε/3)]aκ−an + op(1)]

which is a op(κ
d
n) for any d ≥ 1.17 Using the re-parameterization θ = θj +hκ̃

−1/r
n , where κ̃n =

κn log(n)1/a is defined in Assumption 1, we have uniformly in h: C log(n)1/a‖h‖r − op(1) ≤
17This is because log(κn) = o(κ−an ) for any a > 0.
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‖ḡn(θ)‖W/κn ≤ C log(n)1/a‖h‖r + op(1). In turn, this implies that for ‖h‖ra > d/[C2C
a] > 0:

K̂n(θ) ≤ C1 exp [−C2C
a‖h‖ra log(n) + op(1)] = op(n

−d) for any d ≥ 1. The integral of inter-

est can now be bounded above and below for n ≥ 2:

κdθ/rn C1

∫
‖h‖ra≤dθ/r log(n)/[C2C

a]

exp
[
−C2C

a‖h‖ra + op(1)
]
dh+ op(n

−dθ/r) ≤
∫
Bε/3(θj)

K̂n(θ)dθ

≤ κdθ/rn C1

∫
‖h‖ra≤dθ/r log(n)/[C2C

a]

exp [−C2C
a‖h‖ra + op(1)] dh+ op(n

−dθ/r).

Now note that:∫
‖h‖ra≤dθ/r log(n)/[C2C

a]

exp
[
−C2C

a‖h‖ra + op(1)
]
dh

≥
∫
‖h‖ra≤dθ/r log(2)/[C2C

a]

exp
[
−C2C

a‖h‖ra + op(1)
]
dh > 0∫

‖h‖ra≤dθ/r log(n)/[C2C
a]

exp [−C2C
a‖h‖ra + op(1)] dh

≤
∫
Rdθ

exp [−C2C
a‖h‖ra + op(1)] dh < +∞.

This provides lower and upper bounds on the probability of the ε/3 ball around θj:∫
‖h‖ra≤dθ/r log(2)/[C2C

a]
exp

[
−C2C

a‖h‖ra + op(1)
]
dh∫

Rdθ exp [−C2C
a‖h‖ra + op(1)] dh

+ op(1) ≤
∫
Bε/3(θj)

π̂n(θ)dθ

≤
∫
Rdθ exp [−C2C

a‖h‖ra + op(1)] dh∫
‖h‖ra≤dθ/r log(2)/[C2C

a]
exp

[
−C2C

a‖h‖ra + op(1)
]
dh

+ op(1).

Since the first term is strictly positive with probability going to 1, this proves the result.

Case iii. Θ0 = ∪kj=1Sj:
Let θ /∈ ∪kj=1N (Sj), then condition iii.c. implies that ‖ḡn(θ)‖Wn/κn ≥ η/κn − op(1) → +∞
uniformly in θ. This implies that with probability going to 1: supθ/∈∪kj=1N (Sj) K

(
‖ḡn(θ)‖Wn/κn−

‖ḡn(θ̂n)‖Ŵn
/κn

)
= supθ/∈∪kj=1N (Sj) K

(
‖ḡn(θ)‖Wn/κn− op(1)

)
= 0 for the compact kernel. For

the exponential kernel, for any d ≥ 1: supθ/∈∪kj=1N (Sj) K(‖ḡn(θ)‖Wn/κn − ‖ḡn(θ̂n)‖Ŵn
/κn) ≤

C1 exp (−C2 [ηa/κan − op(1)]) ≤ op(n
−d). Then assumption iii.c. implies that for any θ such

that d(θ,Θ0) ≥ 2κn/C, we have: ‖ḡn(θ)‖Wn/κn ≥ 2 − op(1) which is greater than 3/2

with probability going to 1 so that for the compact kernel K̂n(θ) = 0 with probability go-

ing to 1 uniformly in θ with d(θ,Θ0) ≥ 2κn/C. Similarly, for any θ such that d(θ,Θ0) ≥
[d1/a2C−1C

−1/a
2 ]κn log(n)1/a, we have: K̂n(θ) ≤ C1 exp (−[d2a log(n)− op(1)]) ≤ op(n

−d), for

the exponential kernel. For both kernels, K̂n(θ) ≤ op(n
−dθ) , with probability going to 1,

uniformly in θ with d(θ,Θ0) ≥ CK κ̃n, CK corresponds to the bounds above for each kernel.
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Furthermore, for the compact kernel, d(θ,Θ0) ≤ κn/[2C] implies: ‖ḡn(θ)‖Wn/κn ≤ 1/2 +

op(1); so that, uniformly in θ with d(θ,Θ0) ≤ κn/[2C], we have with probability going to 1:

K̂n(θ) ≥ infx∈[0,2/3]K(x) > 0. Similarly, for d(θ,Θ0) ≤ κn log(n)1/a/[2C], for the exponential

kernel: K̂n(θ) ≥ C1 exp
(
−C2 log(n)

)
×[1+op(1)]. This implies the following two inequalities:∫

θ, d(θ,Sj)≤κ̃n/[2C]

K̂n(θ)dθ ≤
∫
N (Sj)

K̂n(θ)dθ ≤
∫
θ, d(θ,Sj)≤CK κ̃n

K̂n(θ)dθ + op(n
−dθ).

The next step is to find a bounds for the terms on the left and right-hand sides using the

change of variable ϕj. Before that, it is necessary to map κ̃n neighborhoods in the integrals

with neighborhoods in the space induced by the change of variable.

By condition iii.a. Uj has non-empty interior and is bounded so that there exists 0 <

ε1 ≤ ε2 < ∞ and νj ∈ Sj such that: Bε1(νj) ⊆ Uj ⊆ Bε2(νj) ⇒ Bε1(νj)× {0} ⊆ Uj × {0} =

ϕ−1
j (Sj) ⊆ Bε2(νj) × {0}. Note that for any ϑ1 ∈ N (Uj) × N ({0}) and ϑ2 ∈ Uj × {0}, the

mean-value theorem implies:

‖ϕj(ϑ1)− ϕj(ϑ2)‖ = ‖∂ϑϕj(ϑ̃)(ϑ1 − ϑ2)‖ ≤ |λmax(∂ϑϕj(ϑ̃))| × ‖ϑ1 − ϑ2‖ ≤ λj × ‖ϑ1 − ϑ2‖

This implies that BCkκ̃n(Sj) ⊆ ϕj

(
BCkκ̃n/λj(Uj)× BCkκ̃n/λj({0})

)
so that:∫

θ, d(θ,Sj)≤CK κ̃n
K̂n(θ)dθ ≤

∫
θ=ϕ−1

j (ϑ), d(ϑ,Uj×{0})≤CK/λj κ̃n
K̂n(θ)dθ

≤
∫
θ=ϕ−1

j (ϑ), ϑ∈B2ε2 (νj)×BCK/λjκ̃n

K̂n(θ)dθ.

The mean-value theorem can also be used to derive a lower bound:

‖ϕj(ϑ1)− ϕj(ϑ2)‖ = ‖∂ϑϕj(ϑ̃)(ϑ1 − ϑ2)‖ ≥ |λmin(∂ϑϕj(ϑ̃))| × ‖ϑ1 − ϑ2‖ ≥ λj × ‖ϑ1 − ϑ2‖

By definition of ε1, for n large enough ϕj(Bε1/2(νj)×BCkκ̃n/λj({0})) ⊂ ϕj(Bε1(θj)×BCkκ̃n/λj({0})) ⊆
BCkκ̃n(Sj). This results in another inequality:∫

θ=ϕ−1
j (ϑ),ϑ∈Bε1/2(νj)×Bκ̃n/[2Cλj ]

K̂n(θ)dθ ≤
∫
θ, d(θ,Sj)≤κ̃n/[2C]

K̂n(θ)dθ.

Now that the neighborhoods are defined, consider the change of variable: ϕj(ϑ) = θ, then

the integral becomes:
∫
ϑ∈Bε1/2×Bκ̃n/[2Cλj ]

|det (∂ϑϕj(ϑ))| K̂n ◦ ϕj(ϑ)dϑ.

Condition iii.a. implies that uniformly in ϑ ∈ ϕj(N (Sj)): 0 < λdθj ≤ |det (∂ϑϕj(ϑ))| ≤
λ
dθ
j < +∞. Combining this together with the bounds on K̂n implies the following lower
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bound; for the compact kernel, with probability going to 1:

λdθj ×
(

inf
x∈[0,2/3]

K(x)

)∫
Bε1/2×Bκ̃n/[2Cλj ]({0})

dϑ ≤
∫
ϑ∈Bε1/2×Bκ̃n/[2Cλj ]

|det (∂ϑϕj(ϑ))| K̂n◦ϕj(ϑ)dϑ.

The left-hand side involves the volume of a dθ-dimensional ball:∫
Bε1/2×Bκ̃n/[2Cλj ]({0})

dϑ =
πdθ/2

Γ(kj/2 + 1)Γ([dθ − kj]/2 + 1)
[ε1/2]dθ−kj [κ̃n/(2Cλj)]

kj

where Γ is Euler’s gamma function. Similarly, for the exponential kernel:

λdθj C1 exp (−C2 log(n)) [1 + op(1)]

∫
Bε1/2×Bκ̃n/[2Cλj ]({0})

dϑ

≤
∫
ϑ∈Bε1/2×Bκ̃n/[2Cλj ]

|det (∂ϑϕj(ϑ))| K̂n ◦ ϕj(ϑ)dϑ.

Similarly, a change of variable can be applied to the upper-bound:∫
θ=ϕj(ϑ), ϑ∈B2ε2 (νj)×BCK/λjκ̃n

K̂n(θ)dθ =

∫
ϑ∈B2ε2 (νj)×BCK/λjκ̃n

|det (∂ϑϕj(ϑ))| K̂n ◦ ϕj(ϑ)dϑ

≤ λ
dθ
j × ‖K‖∞ ×

∫
ϑ∈B2ε2 (νj)×BCK/λjκ̃n

dϑ.

The integral on the right-hand side can also be computed analytically:∫
ϑ∈B2ε2 (νj)×BCK/λjκ̃n

dϑ =
πdθ/2

Γ([dθ − kj]/2 + 1)Γ(kj/2 + 1)
[2ε2]dθ−kj [κ̃nCK/λj]

kj .

Putting everything together and given that n−dθ = o(κ̃
kj
n ), we have with probability going

to 1:
∫
N (Sj)

K̂n(θ)dθ � κ̃
kj
n , for each set Sj covering Θ0. This implies that:

∫
N (Sj)

π̂n(θ)dθ �
κ
kj−min` k`
n , which goes to 0 for all j with kj > k = min` k`. Asymptotically, the sets Sj with

the largest degree of identification failure kj will dominate the posterior distribution.

To get the desired result, pick j such that kj = k and the associated ε1 described above.

As before, for any 0 < ε < ε1/2 there exists a constant Cε > 0 such that for any ν ∈ Bε1(νj),
with probability going to 1:

Cεκ̃
kj
n + op(n

−d) ≤
∫
ϕj(Bε(ν)×Bε({0}))

K̂n(θ)dθ ≤
∫
N (Sj)

K̂n(θ)dθ,

where the last inequality holds for ε small enough so that Bε(ν)×Bε({0}) ⊆ N (Uj)×N ({0})
holds. Such ε > 0 exists by the definition of open sets. This implies that for any two ν1 6= ν2

in Bε1(νj), ∃ε > 0 small enough such that Proposition 1 holds, which concludes the proof.
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Appendix B Proofs for the Results of Section 4

B.1 Weak or Set Identification

Proof of Theorem 5. The proof will treat (semi)-strong and weak identification separately.

Case 1: (semi)-strong identification.

Given the assumptions, Lemma D4 holds and ˆ̀
n = 1 with probability going to 1. Theorem

1 also holds: θ̂n and θ̂n,LS/∞ are consistent and asymptotically normal. The second result is

then a consequence of condition 2.iii. in the Theorem.

Case 2: weak/set identification.

Under weak or set identification, Lemmas D4 and D6 imply that, with probability going to 1,
ˆ̀
n ≥ `?. The remaining assumptions imply that the second step, inference, is asymptotically

valid which concludes the proof.

Proof of Remark 2. Since neither ḡn(α0, ·) nor V̂n(α0, ·) depend on β, Sn(α0) does not depend

on β so that equation (11) holds. The consistency of V̂n and the central limit theorem for

ḡn imply that equation (12) holds. Under strong identification, Sn(α0) is a Likelihood-ratio

statistic so that equation (13) is a standard results, see e.g. Newey & McFadden (1994).

B.2 Higher-Order Identification

Proof of Theorem 6. The proof will treat (semi)-strong and weak identification separately.

Case 1: (semi)-strong identification.

By Lemma D8, with probability going to 1, h̄2
n ≤ C[

√
nκ2

n/λmin(∂θgn(θ0)′∂θgn(θ0))]2)
def
= ε2

n

for some C ≥ 0. The size distortion implied by a non-central χ2
1 distribution with non-

centrality parameter εn is given by:∫ √c1−α
−√c1−α

φ(x+ εn)dx− (1− α) =

∫ √c1−α
−√c1−α

[φ(x+ εn)− φ(x)]dx

= εn

∫ √c1−α
−√c1−α

φ′(x)dx+ o(εn) = 2εn[φ(
√
c1−α)− φ(0)] + o(εn).

This implies result a. if εn = o(γ̄n).

Case 2: weak/set identification.

First, by using similar arguments as in the proof of Lemma D6 it can be shown that Lemma

D7 implies that ˆ̀
n ≥ `? with probability going to 1. Given the remaining asusmptions, the

rest of the proof is identical to the proof of Theorem 5.
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Appendix C Additional Results

C.1 Additional Rules of Thumb for Section 4.1.2

C.1.1 Over-Identified Models

Consider the over-identified linear Gaussian experiment:

ḡn(θ) = An +Bnθ

where An−Bnθ0 = Z1, Bn = B̄n+Z2 and (Z ′1, vec(Z2)′)′ Gaussian, dθ ≤ dim(Z1). Let W be

a non-stochastic positive definite matrix which does not depend on θ. Let E(Z1Z
′
1) = V1/n

and E(Z ′2WZ1) = V21. Furthermore, assume that B̄n = n−δ × B with B full rank and

δ ∈ [0, 1/2). Under the stated assumptions:

θ̂n − θ0 = −
(
B̄′nWB̄n

)−1
B̄′nWZ1 −

(
B̄′nWB̄n

)−1
Z ′2WZ1 +Op(n

−3/2+3δ).

Take v′j,n to be a right eigenvector of W 1/2B̄n, associated with the eigenvalue λj,n then:

vj,n(θ̂n − θ0) = −λ−1
j,nW1/2Z1 − λ−2

j,nZ
′
2WZ1 +O(n−3/2+3δ).

As in the just-identified case:

|bias|2

|variance|
=

1

n|λj,n|2
v?j,nV21V12vj,n

v?j,nV1vj,n
+ o

(
1

n|λj,n|2

)
.

The rule-of-thumb then proceed the same way as in the just-identified case.

C.1.2 A non-local approach to the rule-of-thumb

When the model is set identified but the local identification condition holds, as in Examples

2, the rule-of-thumb above may not perform well because V12 will tend to be very small (Θ0

covers a wide range but ḡn is less than κn). A simple solution is to split Θ0 into clusters

within which the local rule-of-thumb can provide a better approximation. In practice, one

can apply the k-means algorithm1 to build clusters on {θ, ‖ḡn(θ)‖Wn − infθ ‖ḡn(θ)‖Wn ≤ κn}
and apply the rule of thumb within each cluster, Bn should be re-approximated within each

cluster. The largest cutoff across clusters becomes the global rule-of-thumb for Algorithm

1. This yields an approximation for size distortion within clusters.2 A concern may be that

1See e.g. Hastie et al. (2009), Chapter 14.3, for an overview of cluster analysis.
2This approach was applied in Appendix G.2 in Monte-Carlo simulations for Example 2.
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when these clusters are far from one another which leads to between-cluster size distortion.

A between-cluster rule-of-thumb will have to be computed. Suppose the k-means procedure

picked C ≥ 2 clusters. By construction, θ̂n belongs to one of these clusters. Denote this

cluster cln and take θcln , a solution to (2) within that cluster. For vj,n described above,

the t-statistic for testing v′j,n(θ − θcl) = 0, where θcl belongs to one of the several potential

clusters cl ∈ {1, . . . , C}, is:

tn =
√
n×

v′j,n(θ̂n − θcl)√
v′j,nBnVclnB

′
nv̄j,n

=
√
n× |λj,n|−1 ×

v′j,n(θ̂n − θcl)√
v′j,nVcln v̄j,n

=
√
n× |λj,n|−1 ×

v′j,n(θ̂n − θcln)√
v′j,nVcln v̄j,n︸ ︷︷ ︸

within cluster

+
√
n× |λj,n|−1 ×

v′j,n(θcln − θcl)√
v′j,nVcln v̄j,n︸ ︷︷ ︸

between clusters

.

The last equality suggests that the between-cluster size distortion is a function of the distance

between the clusters relative the sampling uncertainty. If the distance is small relative to

standard errors, then size distortion is minimal. This yields the between-cluster rule-of-

thumb:

λ2
n,between ≥

n× supcl,cl′ d(cl, cl′)

c(γ̄n)2 × infcl∈{1,...,C}
√
λmin(Vcl)

,

where d(cl, cl′) is the distance between the two clusters cl and cl′. If there is only one cluster,

this rule-of-thumb is not needed. The overall rule-of-thumb is simply the largest value of

the between and within rules-of-thumb computed above. In the Monte-Carlo simulations,

the following stopping rule was used to determine whether an additional cluster should be

added: if the distance between centroids, with the other clusters, was greater than 1% of

the diameters of the clusters then it would be added. This is a quick way to check if the two

cluster are close to one another or not. Other criteria could be considered in future research.

C.2 Additional Results for Section 4.1

C.2.1 A quasi-CLT for An,LS, Bn,LS

Lemma C2. (Addional Asymptotic Results for An,LS, Bn,LS under Strong and Semi-Strong

Identification) Suppose that the assumptions of Theorem 1 and the following hold:
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i. uniform Central Limit Theorem:

√
n

 ḡn(θ0)

vec[∂θḡn(θ0)]− vec[∂θgn(θ0)]

 d→ N (0, V ).

ii. stochastic equicontinuity condition, i.e. for all δn ↓ 0:

sup
‖θ1−θ2‖≤δn

‖
√
n ([∂θḡn(θ1)− ∂θḡn(θ2)]− [∂θgn(θ1)− ∂θgn(θ2)]) ‖ = op(1)

then An,LS = ḡn(θ0)−Bn,LSθ0 + op(n
−1/2) and Bn,LSHn = ∂θḡn(θ0)Hn + op(n

−1/2) so that

√
n

 An,LS +Bn,LSθ0

vec(Bn,LS − B̄n,LS)

 =
√
n

 ḡn(θ0)

vec[∂θḡn(θ0)− ∂θgn(θ0)]

+ op(1)
d→ N (0, V )

where B̄n,LS corresponds to Bn,LS computed using the random measure π̂n:

B̄′n,LS = Σ−1
n

∫
Θ

(θ − θ̄n)[

∫
Θ

{gn(θ)− gn(θ̃)}π̂n(θ̃)dθ̃]′π̂n(θ)dθ.

C.2.2 Primitive Conditions for Theorem 5

Lemma C3 (Asymptotic Distribution of the Profile S Statistic under (Semi)-Strong Iden-

tification). Suppose that θ = A(β′, γ′)′ where A is an invertible matrix and γ is (semi)-

strongly identified: the assumptions of Theorem 1 hold for γ holding β = β0 fixed. Let

V̂n
p→ limn→∞ n×var(ḡn(β0, γ0)) positive definite and γ̂n is computed using Wn = V −1

n , then:

n× ḡn
(
A(β′0, γ̂

′
n)′
)′
V̂ −1
n ḡn

(
A(β′0, γ̂

′
n)′
)

d→ χ2
dim(g)−dim(γ).

Proposition C2 (Verifying Theorem 5’s Condition 2. for the S-statistic). Suppose the

assumptions for Lemmas D4 and D6 hold. Suppose there exists a re-parameterization with

an invertible matrix A and vectors γ`, ` = 1, . . . ,L such that:

θ = A(γ′1, . . . , γ
′
L)′, R`θ = c⇔ (γ′1, . . . , γ

′
`)
′ = c̃,

for c, c̃ ∈ Rrank(R`). Let `?, θ0,c and θ̂n,`,c be defined as in Theorem 5, suppose that for each

` ≥ `?:

n× λmin(I`A′∂θgn(θ0,c)
′∂θgn(θ0,c)AI`)→ +∞,
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as n→∞, where I` = blockdiag(0rank(R`), Idθ−rank(R`)). Then for each ` > `?, (γ′`, . . . , γ
′
L)′ is

semi-strongly identified. If furthermore, Wn(θ) = V̂n(θ)−1 is a uniformly consistent estimator

for n× var(ḡn(θ)), then for each ` ≥ `?:

Sn,` = inf
R`θ=c`

n× ‖ḡn(θ)‖2
V̂ −1
n

d→ χ2
dim(g)−[dθ−rank(R`)].

Let c1−α,` be the 1− α quantile of a χ2 distribution with dim(g)− [dθ − rank(R`)] degrees of

freedom, then the following holds:

inf
`=`?,...,L

P(Tn,` ≤ c1−α,`) = 1− α + o(1).

C.3 (Counter)-Examples for Proposition 1 and Theorem 4

C.3.1 Examples for Theorem 4

Figure C5 shows several examples for cases i-iii considered in Theorem 4. The first row

shows two sets with non-empty interior (shaded area) so that Θ0 has non-zero measure in

R2. In each set, it is possible to find two disjoint balls that has non-zero measure in R2 and

thus strictly positive posterior mass asymptotically.

The second row illustrates case ii. with finite collections of singletons arranged in various

patterns. The particular alignment of the points is not relevant for the result as much as the

local behaviour of the moments gn around these points.

The third row illustrates case iii. with a one dimensional manifold on the left-hand-side:

the circle can be represented as {(θ1, θ2) = (θ1,0, θ2,0) + R × (cos(ϑ), sin(ϑ)), ϑ ∈ [0, 2π]}
for some (θ1,0, θ2,0) ∈ R2, R > 0. There is thus a one-to-one mapping between the circle

and [0, 2π] which has non-empty interior in R. The example on the right-hand-side has

S1 = line and S2 = point (0-dimensional manifold). In that setting it can be shown that

π̂n(Bε(S2))
p→ 0 for ε > 0 small, fixed. The posterior is dominated by S1, i.e. the line. While

the posterior variance is bounded below (in probability) in the direction (1, 1), it converges

to 0 in the direction (1,−1) because S2 has measure 0 and does not impact the posterior

variance asymptotically as a result.
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Figure C4: Examples of Topologies for Θ0 in Theorem 4

C.3.2 Counter-Example: a moment function that does not satisfy the condi-

tions for Proposition 1

Consider the function: gn(θ) = θ6 sin(1/θ), θ ∈ [−1, 1]. This function is twice continuously

differentiable on [−1, 1] with bounded second derivative. It has infinitely many zeros in

[−1, 1] and such that:

#{θ ∈ [−ε, ε], gn(θ) = 0} = +∞, #{θ 6∈ [−ε, ε], gn(θ) = 0} < +∞,

for any ε > 0. This implies that:
∫

[−ε,ε] π̂n(θ)dθ
p→ 1, for any ε > 0. In turn, the posterior

variance can be bounded above by:

Σn ≤
∫

[−1,1]

θ2π̂n(θ)dθ =

∫
[−ε,ε]

θ2π̂n(θ)dθ +

∫
[−1,1]/[−ε,ε]

θ2π̂n(θ)dθ ≤ ε2 × [1 + op(1)] + op(1),

5



for any ε > 0. This implies that Σn
p→ 0 even thought the model is set identified. Note that

it is possible that Σn
p→ 0 at a rate slower than κ2

n so that λmin(Bn,LS)
p→ 0 but at a slower

than κn rate. Explicit rates are hard to compute analytically for this example.

Figure C5: Function gn for which the conditions for Proposition 1 are not met

Note: Left panel: gn plotted over [−1, 1], right panel gn plotted over [−0.01, 0.01].

Appendix D Preliminary Results for Section 4

D.1 Preliminary Results for Section 4.1

Lemma D4. (Detecting Weak/Set Identification Failures) Let λn = o(1) be a strictly positive

sequence. Let Bn,LS/∞ be either Bn,LS or Bn,∞.

a. (Weak/Set Identification) Suppose that the assumptions of Theorem 3 or Lemma 1 hold

so that Σn is a Op(κ̃
2
n) on the span V defined in Theorem 3 and κ̃n = o(λn), then

lim
n→∞

P(λmin(Bn,LS/∞) < λn) = 1,

b. (Semi-Strong and Strong Identification) Suppose that the assumptions of Theorem 1

hold and the Jacobian is such that λ2
n = o (λmin (∂θgn(θ0)∂θgn(θ0)′)), then

lim
n→∞

P(λmin(Bn,LS/∞) < λn) = 0.

Lemma D4 a. is a direct implication of the results in Section 3. Lemma D4 b. sug-

gests which sequences of (semi)-strongly identified models may lead to false positives when

detecting identification failure. To illustrate, take κn =
√

2 log(log[n])n−1/2 and λn =
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√
log(n)n−1/2. For these sequences, models with n−1/2 � λmin (∂θgn(θ0)) .

√
log(n)n−1/2

may be detected as weakly identified.3 In practice, this range seems to be fairly small.

Lemma D5. (Collapsing the Weakly Identified Set into a Singleton) Let V = Span({v =

θ1 − θ0, (θ1, θ0) ∈ Θ2
0}) where Θ0 is the weakly identified set defined in equation (9). Let PV

be orthogonal projection matrix onto V and P⊥V its orthogonal, if 1 ≤ rank(P⊥V ) < dθ then:

a. P⊥V Θ0 = {P⊥V θ0}, with θ0 ∈ Θ0

b. let (u?, v?) = (u?1, . . . , u
?
k, v

?
1, . . . , v

?
dθ−k) be an orthogonal basis of Rdθ such that rank(PV Pv?) =

rank(PV ) then for any c ∈ Rdθ−k

Θ0 ∩ {θ ∈ Θ, Pv?θ = c} = {θ0,c} or ∅.

Lemma D6. (Fixing the Span of Identification Failure) Suppose that the model is weakly

or set identified and satisfies the assumptions of Lemma D4. Let ˆ̀
n be the stopping value in

Algorithm 1, then, with probability going to 1

Θ0 ∩ {θ ∈ Θ, Rˆ̀
n
θ = cˆ̀

n
}

is either a singleton or the empty set.

D.2 Preliminary Results for Section 4.2

Lemma D7 (Behaviour of h̄2 under Higher-Order Identification). Suppose that the model

is higher-order identified and satisfies the assumptions of Theorem 2. Furthermore, assume

that ḡn is continuously differentiable around θ0. Let An = ḡn(θ̂n) − Bnθ̂n, Bn = ∂θḡn(θ̂n)

and R̂n(θ) = ḡn(θ) − An − Bnθ, where θ̂n is a GMM estimator of θ0 for some weighting

matrix Wn = W +Op(n
−1/2), W positive definite. Suppose that λV +Op(n

−1/2) ≤ λmin(V1) ≤
λmax(V1) ≤ λV +Op(n

−1/2) for some 0 < λV ≤ λV < +∞. Suppose that there exists C̃j ≥ 0,

j = 1, . . . , r, with strict inequality when Cj > 0 in Definition 5 such that for any θ1, θ2 with

‖gn(θj)‖W = O(κn), j ∈ {1, 2}:

‖ḡn(θ1)− ḡn(θ2)− ∂θḡn(θ2)(θ1 − θ2)‖ ≥
r∑
j=2

C̃j‖Pj(θ1 − θ2)‖j +Op(n
−1/2),

where the Pj are the same as in Definition 5, for each ` ∈ {1, . . . ,L}. Suppose that R`θ0 = c`

holds.
3The relation an . bn implies that an is bounded by bn modulo a constant: ∃C > 0, an ≤ Cbn for two

sequences (an)n≥1 and (bn)n≥1.
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Let Vr = Span(P2, . . . , Pr) be the span of the first-order identification failure. Let h̄2 be

computed using the procedure in Algorithm 2. If rank(PVrPR`) < rank(PVr) then h̄2 → +∞,

as n→∞, with probability going to 1.

Lemma D7 shows that the criterion in Algorithm 2 diverges under higher-order identifi-

cation. This implies that higher-order identification can be detected even when the sequence

of tolerance γ̄n is fixed, i.e. γ̄n = γ. The moments ḡn are assumed to be smooth to simplify

the Algorithm and the proofs. It is also assumed that the first-order identification failure

occurs at θ0 as well as in shrinking neighborhoods of θ0. This will allow to substitute the

residual curvature at the unknown θ0 with a plug-in estimate.

Lemma D8 (Behaviour of h̄2 under (Semi)-Strong Identification). Suppose that the model is

(semi)-strongly identified and satisfies the assumptions of Theorem 1. Furthermore, assume

that ḡn is continuously differentiable around θ0 and ∂θḡn(θ) is non-singular in a neighborhood

of θ0. Let An = ḡn(θ̂n)−Bnθ̂n, Bn = ∂θḡn(θ̂n) and R̂n(θ) = ḡn(θ)−An−Bnθ, where θ̂n is a

GMM estimator of θ0 for some weighting matrix Wn = W +Op(n
−1/2), W positive definite.

Suppose that R̂n(θ) ≤ C̄n‖θ− θ̂n‖2 in a neigborhood of θ0 for some C̄n = Op(1). Furthermore

suppose that κn is such that
√
nκ2

n = o (λmin(∂θgn(θ0)′∂θgn(θ0))), then:

h̄2
n ≤ Op([

√
nκ2

n/λmin(∂θgn(θ0)′∂θgn(θ0))]2) = op(1).

Lemma D8 shows which (semi)-strongly identified models can be detected as such with

high probability. Suppose γ̄n = γ fixed and κn =
√

2 log(log[n])n−1/2, then semi-strongly

identified models with λmin(∂θgn(θ0)′∂θgn(θ0)) .
√

2 log(log[n])n−1/2 may be subject to false

positives. To put this into perspective, when the second derivative is non-zero, the local

expansion is non-linear as soon as λmin(∂θgn(θ0)′∂θgn(θ0)) � n−1/2. This implies that the

range of rates between n−1/2 and
√

2 log(log[n])n−1/2 is subject to false positives. As in the

case of detecting weak identification, this is a fairly narrow range.4

Appendix E Proofs for the Results of Appendix C

E.1 A quasi-CLT for An,LS, Bn,LS

Proof of Lemma C2. First recall that Theorem 1 implies:

An,LS = ḡn(θ̂n)−Bn,LS θ̂n + op(n
−1/2), Bn,LSHn = ∂θgn(θ̂n)Hn + op(n

−1/2κ−1
n ).

4In terms of λmin(∂θgn(θ0)) it corresponds to the n−1/4 to [log(log[n])]1/4n−1/4 range.
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The proof is divided into two parts, the first provides results for An,LS and the second part

derives the result for Bn,LS.

Step 1. Re-expressing An,LS in terms of θ0:

First, An,LS can be expressed in terms of θ0 rather than θ̂n up to a op(n
−1/2) term:

An,LS = ḡn(θ̂n)−Bn,LS θ̂n + op(n
−1/2)

= ḡn(θ0)−Bn,LSθ0 + ḡn(θ̂n)− ḡn(θ0)−Bn,LS(θ̂n − θ0) + op(n
−1/2)

Note that [Bn,LS − ∂θgn(θ̂n)]HnH
−1
n (θ̂n − θ0) = op(n

−1/2κ−1
n )Op(n

−1/2) = op(n
−1/2) which

implies:

Bn,LS(θ̂n − θ0) = ∂θgn(θ̂n)(θ̂n − θ0) + op(n
−1/2).

Substituting this into An,LS together with condition iii. in Definition 4 yields:

An,LS = ḡn(θ0)−Bn,LSθ0 + [ḡn(θ̂n)− ḡn(θ0)− ∂θgn(θ̂n)(θ̂n − θ0)] + op(n
−1/2)

= ḡn(θ0)−Bn,LSθ0 +O(‖∂θgn(θ̂n)(θ̂n − θ0)‖2) + op(n
−1/2).

Using condition iv. in Definition 4, the last term can be re-written as:

∂θgn(θ̂n)(θ̂n − θ0) = ∂θgn(θ0)Hn︸ ︷︷ ︸
=O(1)

H−1
n (θ̂n − θ0)︸ ︷︷ ︸
=Op(n−1/2)

+ [∂θgn(θ̂n)− ∂θgn(θ0)]Hn︸ ︷︷ ︸
=op(1)

H−1
n (θ̂n − θ0)︸ ︷︷ ︸
=Op(n−1/2)

= Op(n
−1/2).

As a result, ‖∂θgn(θ̂n)(θ̂n − θ0)‖2 = op(n
−1/2), and An,LS = ḡn(θ0)−Bn,LSθ0 + op(n

−1/2).

Step 2. Expressing Bn,LS as a function of ∂θḡn:

Using the least-squares formula, Bn,LS can be expressed as:

B′n,LS = Σ−1
n

∫
Θ

(θ − θ̄n)[

∫
Θ

{gn(θ)− gn(θ̃)}π̂n(θ̃)dθ̃]′π̂n(θ)dθ

= Σ−1
n

∫
Θ

(θ − θ̄n)[

∫
Θ

{
{ḡn(θ)− ḡn(θ̃)} − {gn(θ)− gn(θ̃)}

}
π̂n(θ̃)dθ̃]′π̂n(θ)dθ

= Σ−1
n

∫
Θ

(θ − θ̄n)[

∫
Θ

{
∂θḡn(θ̌)− ∂θgn(θ̌)

}
{θ − θ̃}π̂n(θ̃)dθ̃]′π̂n(θ)dθ

for some intermediate values θ̌ such that ‖θ − θ̌‖ ≤ ‖θ − θ̃‖ for each pair θ, θ̃. Using the

arguments from the proofs of Theorem 1, for any d ≥ 1 there exists a CK > 0 such that,
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with probability going to 1:∫
Θ

(θ − θ̄n)[

∫
Θ

{
∂θḡn(θ̌)− ∂θgn(θ̌)

}
{θ − θ̃}π̂n(θ̃)dθ̃]′π̂n(θ)dθ + op(n

−d)

=

∫
‖H−1

n (θ−θ0)‖≤CK κ̃n
(θ − θ̄n)[

∫
‖H−1

n (θ−θ0)‖≤CK κ̃n

{
∂θḡn(θ̌)− ∂θgn(θ̌)

}
{θ − θ̃}π̂n(θ̃)dθ̃]′π̂n(θ)dθ

+ op(n
−d)

=

(∫
Θ

(θ − θ̄n)(θ − θ̄n)′π̂n(θ̃)dθ̃]′π̂n(θ)dθ

)(
∂θḡn(θ0)− ∂θgn(θ0) + op(n

−1/2)
)

+ op(n
−d)

= Σn

(
∂θḡn(θ0)− ∂θgn(θ0) + op(n

−1/2)
)

+ op(n
−d)

where the op(n
−1/2) term is due to the stochastic equicontinuity assumption for ∂θḡn(θ). Pick

d large enough such that we have Σ−1
n op(n

−d) = op(n
−1/2) and then:

Bn,LS − B̄n,LS = ∂θḡn(θ0)− ∂θgn(θ0) + op(n
−1/2).

This implies that An,LS and Bn,LS satisfy the following:

√
n

 An,LS +Bn,LSθ0

vec(Bn,LS − B̄n,LS)

 =
√
n

 ḡn(θ0)

vec
(
∂θḡn(θ0)− ∂θgn(θ0)

)
+ op(n

−1/2)
d→ N (0, V ),

which concludes the proof.

E.2 Primitive Conditions for Theorem 5

Proof of Lemma C3. To simplify notation, the proof will consider θ = (α, γ) and Hn will

be defined using derivatives of γ only in the below. By a re-parameterization, we have

γ̂n,GMM = γ0 +Hnĥn/
√
n yields via the Argmax Theorem (van der Vaart & Wellner, 1996):

ĥn = argminh

(
Gn(β0, γ0) + ∂γgn(β0, γ0)Hnh

)′
V̂ −1
n

(
Gn(β0, γ0) + ∂γgn(β0, γ0)Hnh

)
+ op(1)

= −
(
Hn∂γgn(β0, γ0)′V̂ −1

n Hn∂γgn(β0, γ0)
)−1

Hn∂γgn(β0, γ0)′V̂ −1
n Gn(β0, γ0) + op(1).

Consider an estimator γ̂n satisfying H−1
n (γ̂n − γ̂n,GMM) = op(n

−1/2), then:

ḡn(β0, γ̂n) = (I − Pn) ḡn(α0, γ0) + op(n
−1/2).

where Pn = ∂γgn(α0, γ0)Hn

(
Hn∂γgn(β0, γ0)′V̂ −1

n Hn∂γgn(β0, γ0)
)−1

Hn∂γgn(β0, γ0)′V̂ −1
n . Us-

ing usual arguments, Pn is a projection matrix and:

Sn(β0) = n× ḡn(β0, γ̂n)′V̂ −1
n ḡn(β0, γ̂n)

d→ χ2
dim(g)−dim(γ).

This concludes the proof.

10



Proof of Proposition C2. The first result is a consequence of Lemma C3. For the second

results, note that for each ` = `?, . . . ,L:∣∣∣P(Sn,` ≤ c1−α,`)− (1− α)
∣∣∣ = o(1).

Since this holds for finitely many `, this implies that:

sup
`=`?,...,L

∣∣∣P(Sn,` ≤ c1−α,`)− (1− α)
∣∣∣ = o(1).

Note that:∣∣∣∣ inf
`=`?,...,L

P(Sn,` ≤ c1−α,`)− (1− α)

∣∣∣∣ ≤ sup
`=j?,...,L

∣∣∣P(Sn,` ≤ c1−α,`)− (1− α)
∣∣∣ = o(1).

This concludes the proof.

Appendix F Proofs for the Results of Appendix D

F.1 Weak or Set Identification

Proof. Proof of Lemma D4

a. Weak/set identification:

Under the stated assumptions, either Theorem 3 or Lemma 1 hold. These results indicate

that λmin(Bn,LS/∞) = Op(κ̃n) = op(λn) which implies the result.

b. (Semi)-strong identification:

Under the stated assumptions, Bn,LS/∞ is such that:

[Bn,LS/∞ − ∂θgn(θ0)]Hn = op(n
−1/2κ̃−1

n )

Let ‖ · ‖? be the spectral norm, i.e. the absolute value of the largest eigenvalue, which is well

defined for real symmetric matrices. We have:

H−1
n [B′n,LS/∞Bn,LS/∞]−1H−1

n = H−1
n [∂θgn(θ0)′∂θgn(θ0)]−1H−1

n + op(n
−1/2κ̃−1

n ).

Note that by definition of Hn, we have λ(Hn∂θgn(θ0)′∂θgn(θ0)Hn) = (1, . . . , 1), i.e. all the

eigenvalues are equal to 1. Using Problem III.6.14 in Bhatia (1997), this implies:

λmin(H−2
n )× λmax([B′n,LS/∞Bn,LS/∞]−1) ≤ dθ + op(n

−1/2κ̃−1
n ).
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Given that λmax([B′n,LS/∞Bn,LS/∞]−1) = [λmin(B′n,LS/∞Bn,LS/∞)]−1 and λmin(H−2
n ) = λmax(H2

n) =

[λmin(∂θgn(θ0)′∂θgn(θ0))]−1, this implies:

λmin(∂θgn(θ0)′∂θgn(θ0))

dθ + op(n−1/2κ̃−1
n )

≤ λmin(B′n,LS/∞Bn,LS/∞).

Since by assumption λ2
n = o (λmin (∂θgn(θ0)∂θgn(θ0)′)), the above inequality implies that

λ2
n = op

(
λmin(B′n,LS/∞Bn,LS/∞)

)
,

which concludes the proof.

Proof of Lemma D5. The first result is an immediate implication of the definition of V as

the span of the identification failure, by definition it’s orthogonal span a linear subset where

the values of θ ∈ Θ0 are unique. For the second result, suppose that the intersection is

non-empty, pick θ ∈ Θ0 ∩ {θ ∈ Θ, Pv?θ = c}. The following holds: P⊥V

Pv?

 θ =

 P⊥V θ0

c

 .

The two terms on the right-hand side are unique since c is fixed and P⊥V Θ0 is a singleton.

By construction (P⊥V , PV ) is invertible, (P⊥V , Pv?) also has full rank since rank(PV Pv?) =

rank(PV ) i.e. Pv? preserves the span of PV . This concludes the proof.

Proof of Lemma D6. First, recall the definition of the identification failure: V = Span(θ0 −
θ1, θ0, θ1 ∈ Θ0), where Θ0 is the weakly identified set of Definition 6. By definition of V

and of projection matrices for any two θ0, θ1 ∈ Θ0: P⊥V θ0 = P⊥V θ1. This means that P⊥V θ0 is

unique in Θ0.

Pick ` ∈ {1, . . . ,L}, rank(PV P
⊥
R`

) < rank(PV ) implies that there exists a pair θ0 6= θ1 in

Θ0 such that:  P⊥V

PR`

 (θ0 − θ1) = 0

since the matrix on the left-hand side does not have full rank. This implies that: Θ0 ∩
{θ, R`θ = R`θ0} is neither empty nor a singleton since it contains θ1 6= θ0 as well as θ0. By

Lemma D5, rank(PV P
⊥
R`

) = rank(PV ) implies that such sets are either empty or a singleton.

By definition of `?, this is the case for any ` ∈ {`?, . . . ,L}.
Lemma D6 can thus be re-stated as ˆ̀

n ≥ `? with probability going to 1. Take ` < `?,

there exists a basis v1, . . . , vrank(R`) such that P⊥R`vj = 0 for all j ∈ {1, . . . , rank(R`)}. This

12



implies that 0 is an eigenvalue of Bn,LS/∞P
⊥
R`

with multiplicity (at least) rank(R`). Now, we

only have to find one more eigenvalue which is less than λn with probability going to 1 to

show that ` 6= ˆ̀
n with probability going to 1.

Since rank(PV PR`) < rank(PV ), there exists v? 6= 0 such that v? ∈ V , P⊥V v
? = 0,

PR`v
? = 0 and P⊥R`v

? 6= 0. By construction, the family (v1, . . . , vrank(R`), v
?) has rank equal

to [rank(R`) + 1]. Also, v? is such that P⊥R`v
? = v? so that Bn,LS/∞v

? = Op(κn). This implies

that |λdθ−rank(R`)(Bn,LS/∞P
⊥
R`

)| = Op(κn) which is strictly less than λn with probability going

to 1. This implies that Bn,LS/∞P
⊥
R`

has, with probability going to 1, at least [rank(R`) + 1]

eigenvalues which are strictly less than λn so that the smallest [rank(R`) + 1] eigenvalues:

λdθ(Bn,LS/∞P
⊥
R`

), . . . , λdθ−rank(R`)(Bn,LS/∞P
⊥
R`

) are op(λn). This implies that ` 6= ˆ̀
n with

probability going to 1.

Now, to show that ˆ̀
n ≥ `? with probability going to 1, consider the family-wise probability

over ` ∈ {1, . . . , `? − 1} for the event {λdθ−rank(R`)(Bn,LS/∞P
⊥
R`

) < λn}:

P
(

ˆ̀
n < `?

)
= P

(
max

`=1,...,`?−1

[
λdθ−rank(R`)(Bn,LS/∞P

⊥
R`

)
]
> λn

)
≤

`?−1∑
`=1

P
(
λdθ−rank(R`)(Bn,LS/∞P

⊥
R`

) > λn
)
→ 0,

as n→∞ since the sum is finite and with element going to 0. This concludes the proof.

F.2 Higher-Order Identification

Proof of Lemma D7. If Bn,` = (B′n, R
′
`)
′ is singular then h̄2 = +∞. Suppose it is not singu-

lar, Definition 5 and the stated assumptions imply that:

‖R`(θ − θ0)‖+ λ−1
r∑
j=1

Cj‖Pj(θ − θ0)‖j +Op(n
−1/2) ≤ ‖R`(θ − θ0)‖+ ‖ḡn(θ)‖Wn

≤‖R`(θ − θ0)‖+ λ
r∑
j=1

Cj‖Pj(θ − θ0)‖j +Op(n
−1/2).

By assumption R`θ0 = c`. Given that rank(PVrPR`) < rank(PVr), there exists j` ≥ 2,

vj` ∈ Span(Pj`) non-zero with ‖vj`‖ = 1 such that PR`vj` = 0 and for h ∈ R not too large:

‖ḡn(θ0 + hκ1/j`
n vj`)‖Wn + ‖R`(θ0 + hκ1/j`

n vj`)− c`‖ ≤ λ× Cj` |h|j`κn +Op(n
−1/2) ≤ 3/4× κn

with probability going to 1 when |h| ≤ 1/[2Cjλ]1/j` . This implies that |h| = 1/[2Cjλ]1/j`

is in the maximization set of Algorithm 2 with probability going to 1. The following shows
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that the criterion will diverge for this choice of h. By definition of R̂n and the assumptions

on the behaviour of ḡn around θ0:

‖R̂n(θ0 + hκ1/j`
n vj`)‖ ≥ C̃j`

|h|j` × κn +Op(n
−1/2).

Now note that for any θ, we have:

sup
‖v‖=1

R̂n(θ)′B̃′W,`vv
′B̃W,`R̂n(θ)

v′B̃W,`V1B̃′W,`v
= sup
‖ṽ‖=1

R̂n(θ)′ṽṽ′R̂n(θ)

ṽ′V1ṽ
.

This holds because (B′n, R
′
`) is non-singular by assumption so that BW,` is also non-singular.

Given the bounds on the eigenvalues of V1, the following inequality holds:

R̂n(θ)′ṽṽ′R̂n(θ)

λV ṽ′ṽ
+Op(n

−1/2) ≤ R̂n(θ)′ṽṽ′R̂n(θ)

ṽ′V1ṽ
≤ R̂n(θ)′ṽṽ′R̂n(θ)

λV ṽ
′ṽ

+Op(n
−1/2).

Since ṽ covers the full unit circle, there exists a ṽ 6= 0 over the optimizing set such that

R̂n(θ)′ṽ′ṽR̂n(θ) = ‖R̂n(θ)‖2
∞ (the sup-norm). This, in turn, implies the following inequality:

‖R̂n(θ)‖2
∞/λV +Op(n

−1/2) ≤ sup
‖ṽ‖=1

R̂n(θ)′ṽṽ′R̂n(θ)

ṽ′V1ṽ
.

Also note that ‖R̂n(θ)‖2
∞ ≥ ‖R̂n(θ)‖2/dim(gn)2 by equivalence between norms. Combining

this with the previous result, we have with probability going to 1:

h̄2
n ≥ n×‖R̂n(θ0+hκ1/j`

n vj`))‖2
∞/λV×(1 + op(1))2 ≥

C̃j`
|h|j`

λV × dim(gn)2
×[
√
n×κn]2×(1 + op(1)) .

Assumption 1 implies that
√
n × κn → +∞ which implies that h̄2 → +∞ with probability

going to 1. This concludes the proof.

Proof of Lemma D8. From Definition 4 and Assumptions 1, 2, for ‖θ − θ0‖ ≤ ε:

‖ḡn(θ)‖Wn ≥ C‖∂θgn(θ0)(θ − θ0)‖ × (1 + op(1))−Op(n
−1/2)

≥ C
√
λmin(∂θgn(θ0)′∂θgn(θ0))× ‖θ − θ0‖ × (1 + op(1))−Op(n

−1/2).

Hence, with probability going to 1, ‖θ − θ0‖ ≥ 2κn/[C
√
λmin(∂θgn(θ0)′∂θgn(θ0))] implies

that ‖ḡn(θ)‖Wn ≥ 3/2κn > κn. Also, ‖θ − θ0‖ > ε implies ‖ḡn(θ)‖Wn ≥ 3/2κn by point

identification. Then, under the stated assumptions:

sup
θ,‖ḡn(θ)‖Wn≤κn

‖R̂n(θ)‖ ≤ sup
θ,‖ḡn(θ)‖Wn≤κn

C̄n‖θ − θ̂n‖2 ≤ 4× C̄n sup
θ,‖ḡn(θ)‖Wn≤κn

‖θ − θ0‖2

≤ 16× C̄n/C × κ2
n/λmin(∂θgn(θ0)′∂θgn(θ0)).

Since ∂θḡn(θ̂n) is non-singular, using a similar argument as in Lemma D7 implies: h̄2
n ≤

Op([
√
nκ2

n/λmin(∂θgn(θ0)′∂θgn(θ0))]2) = op(1), which concludes the proof.
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Appendix G Additional Monte-Carlo Simulations

G.1 Example 1. Non-Linear Least Squares

Figure G6 compares three power curves for testing the null hypothesis θ1 = [c+ δ]/
√
n. The

true value is θ1,0 = c/
√
n, δ is the Pittman drift coefficient. The tests considered are an

oracle t-statistic based on a simple re-parameterization (yi = θ1x1,i + θ̃2x2,i + ei), a projected

Anderson-Rubin confidence set and the two-step approach with the local rule-of-thumb. For

c = 0, the two-step approach is nearly identical to AR inferences; the oracle has higher

power. For c = 1, AR inferences have non-monotonic power and are more powerful around

δ + c = 0,5 the oracle has higher power elsewhere; the two-step approach is in-between the

two. For c = 3, the two-step approach nearly coincides with the maximum of the AR and

oracle’s power curves suggesting improvements over both the robust and the reduced-form

approach.

G.2 Example 2. Possibly Non-Invertible MA Model

The second example is the MA(1) model:

yt = σ[et − ϑet−1],

with et iid distributed from a Generalized Extreme Value distribution with mean 0, variance

1 and skewness τ . For τ = 0, (ϑ, σ) is not identified and weakly identified for τn � n−1/2.

The estimating moments for the parameters θ = (ϑ, σ, τ) are:

ḡn(θ) =
1

n

n∑
t=2

(
y2
t − [1 + ϑ2]σ2, ytyt−1 + ϑσ2, y3

t + [1− ϑ3]σ3τ, y2
t yt−1 + ϑσ3τ, yty

2
t−1 + θσ3τ

)′
.

5δ + c = 0⇒ θ̃2 = 0 under the null, the oracle is based on a reduced form specification and does not use

that information. Hence, it has lower power against this alternative.

15



Figure G6: Power Comparison: Oracle, Projection and Two-Step Inferences

Note: yi = θ1,nxi,1+θ1,nθ2xi,2+ei, θ1,n = c×n−1/2, for c ∈ {0, 1, 3} (top/middle/bottom panel), n = 1, 000,

B = 5, 000 Monte-Carlo replications and κn =
√

2 log(log[n])n−1/2. Legend: Oracle (solid) - OLS based

reduced-form inference, the reduced form model is yi = θ1,nxi,1 + θ̃2xi,2 + ei; Anderson-Rubin (dashed) -

projection CI; Rule-of-Thumb (dotted) - QLR based two-step CI with data-driven rule-of-thumb. y-axis:

rejection rate when testing θ1 = θ1,n + δ × n−1/2. x-axis: Pittman coefficient δ.
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Figure G7: Distribution of λmin(Bn,LS) and sample size n

Note: yt = σ[et − ϑet−1], et ∼ (0, 1),E(e3
t ) = 2 × n−1/2, (ϑ0, σ0) = (0.5, 1), 100 ≤ n ≤ 5, 000, B = 500

Monte-Carlo replications and κn = max(
√
q0.99(χ2

4),
√

2 log(log[n])n−1/2). Legend: Black lines - boxplot

of the distribution of λmin(Bn,LS) for each n; Blue crosses - fitted rate from regressing the Monte-Carlo

λmin(Bn,LS) draws on κn by OLS with no intercept.

Figure G7 plots the distribution of λmin(Bn,LS) against the predicted rate from Theorem 1.

There is a value of λmin(Bn,LS) which is much larger (' 0.5) than the rest of the distribution.

A closer investigation into this draw reveals that the set Θ̂n = {θ, ‖ḡn‖Wn − infθ∈Θ ‖ḡn‖Wn ≤
κn} (which is a conservative identification robust confidence set) is centered around a single

point. This implies that, for this occurrence robust and standard inferences would be similar.

The top panel of Figure G8 shows the coverage of the two-step, Anderson-Rubin and

QLR 95% confidence sets. The projection-based confidence sets are computed using: {ϑ, n×
infσ,τ ‖ḡn(ϑ, σ, τ)‖2

V̂ −1
n
≤ c1−α}. The projected Anderson-Rubin confidence set assumes that

the econometrician knows σ and τ are point identified when ϑ is fixed. The critical value is

the 95% quantile of a χ2
2 distribution.

The true value ϑ0 = 2 lies outside the unit circle. For this design, the unconstrained

estimator ϑ̂n is biased towards ϑ = 0.5, which is inside the unit circle. This leads to some

size distortion for QLR/Wald inferences. The two-step procedure with the non-local rule-of-

thumb is not too significantly size distorted.

The two-step approach uses the rule-of-thumb and λn =
√

log[n] as cutoffs. The sequen-

tial search fixes ϑ, as implied by H0, then σ and finally τ - with critical values corresponding

the 95% quantile of a χ2
2, χ2

3 and χ2
4 distribution respectively. When λmin(Bn,LS) > λn, the

tests switches to a QLR/Wald statistic with critical values corresponding the 95% quantile

of a χ2
1 distribution. The rule-of-thumb implemented here relies on the between and within

cluster rule-of-thumb described in Appendix C.1.2. First, the set Θ̂n = {θ, ‖ḡn(θ)‖Wn −
infθ∈Θ ‖ḡn‖Wn ≤ κn} is split into clusters using the k-means algorithm when the estimated
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clusters display enough separation.6 The results rely on Bn,LS computed on the whole pa-

rameter space. However, H0 fixes the cluster and using a Bn,LS computed under H0 could

lead to a less conservative decision rule and power improvements. This was not investigated

in the simulations.

Figure G8: Coverage of the 95% Confidence Intervals

Note: yt = σ[et − ϑet−1], et ∼ (0, 1),E(e3
t ) = τn = c× n−1/2, c ∈ [0, 24] , (ϑ0, σ0) = (2, 1), n = 1, 000, B =

2, 000 Monte-Carlo replications and κn = max(
√
q0.99(χ2

4),
√

2 log(log[n])n−1/2). Legend: Anderson-Rubin

(solid/dot) - projection CI; Standard (dashed/square) - QLR (top panel)/Wald (bottom panel) CI; Two-step

(dashed/cross) - two-step procedure with λn = data-driven rule-of-thumb;
√

log(n) (dotted/triangle) - two-

step procedure with λn =
√

log(n).

6For these simulations, the criterion to pick the number of clusters relied on a ratio of the distance between

the centroids of the clusters to the diameter of these clusters. Other approaches may be considered.
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Figure G9: Detection of Identification Failure and Size Distortion of the Wald test

Note: yt = σ[et − ϑet−1], et ∼ (0, 1),E(e3
t ) = τn = c× n−1/2, c ∈ [0, 24] , (ϑ0, σ0) = (2, 1), n = 1, 000, B =

5, 000 Monte-Carlo replications and κn = max(
√
q0.99(χ2

4),
√

2 log(log[n])n−1/2). Legend: Size distortion

(dotted/triangle) - size distortion of a 95% Wald confidence interval; Two-step (dashed/square) - detection

rate for identification failure using the rule-of-thumb.

G.3 Example 3. Second-Order Identified Non-Linear Least-Squares

The third example considers the simple non-linear least-squares model:

yi = θ1xi,1 + θ2,n(θ2,n − θ1)2xi,2 + ei, xi,1, xi,2 ∼ N (0, I2)

where θ2,n is bounded away from zero. This model can be estimated using the following

moment conditions:

gn(θ) = E (yi(xi,1, xi,2)′)−
(
θ1, θ2(θ2 − θ1)2

)′
.

This model is second-order identified. Consider the re-parameterization (ϑ1, ϑ2) = (θ1, θ2 −
θ1): gn(ϑ) = gn(ϑ0) − (ϑ1, [ϑ1 + ϑ2]ϑ2

2)′. For ϑ1 bounded away from zero and ϑ2,n = c ×
n−1/4 the second-order term is non-negligible in the Taylor expansion of gn around the true

(ϑ1, ϑ2,n). When c = 0, ∂θgn(θ0) is singular so that the higher-order identification failure

problem is summarized by the rank of the Jacobian. However, when c 6= 0 but small, the

Jacobian is non singular and the information from the eigenvalues may be misleading. Even

though the Jacobian has full rank, the moments are not approximately linear around θ0

which results in non-standard asymptotics.

This is illustrated in Figure G10 which plots the distribution of the λmin(Bn,LS), λmin(∂θgn(θ0))

and λmin(∂θgn(θ̂n)). The Figure shows a disconnect between the quasi-Jacobian and the Ja-

cobian matrices under higher-order identification.
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To further illustrate this disconnect, consider a sample simulated with n = 1, 000, c = 0.4.

The estimated quasi-Jacobian and Jacobians are:

Bn,LS =

 0.01 −1.00

0.02 0.01

 , ∂θḡn(θ̂n) =

 1.08 −1.15

−0.96 −0.04

 , ∂θḡn(θ0) =

 −0.46 −1.02

0.42 0.02

 .

In line with Theorem 2, the quasi-Jacobian is close to being singular while the Jacobians are

not. Now setting c = 2, which is closer to (semi)-strong identification yields:

Bn,LS =

 −2.33 2.14

−1.08 0.08

 , ∂θḡn(θ̂n) =

 −2.33 2.14

−1.08 0.08

 , ∂θḡn(θ0) =

 −2.15 1.99

−1.08 0.07

 .

This is in line with the predictions of Theorem 1. Finally, for c = 0, these matrices become:

Bn,LS =

 −0.15 −0.04

−1.00 −0.00

 , ∂θḡn(θ̂n) =

 0.98 −1.04

−0.96 −0.04

 , ∂θḡn(θ0) =

 −0.04 0.00

−1.00 0.00

 .

Figure G10: Distribution of λmin(Bn,LS), λmin(∂θḡn(θ̂n)), λmin(∂θḡn(θ0)) and sample size n

Note: yi = θ1xi,1 + θ2,n(θ2,n − θ1)2xi,2 + ei, ei, xi,1, xi,2 ∼ N (0, I3), (θ1, θ2,n) = (3, 3 + 0.4 × n−1/4),

100 ≤ n ≤ 5, 000. B = 500 Monte-Carlo replications and κn = max(
√
q0.99(χ2

2),
√

2 log(log[n])n−1/2).
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Figure G11: Coverage of the 95% Confidence Intervals

Note: yi = θ1xi,1 + θ2,n(θ2,n − θ1)2xi,2 + ei, ei, xi,1, xi,2 ∼ N (0, I3), (θ1, θ2,n) = (3, 3 + c × n−1/4), c ∈
[0, 3], n = 1, 000, B = 2, 000 Monte-Carlo replications and κn = max(

√
q0.99(χ2

2),
√

2 log(log[n])n−1/2).

Legend: Standard (solid/dot) - Wald-based confidence interval; Two-step - Rule 1 (dotted/triangle) - two-

step procedure rule-of-thumb described in Algorithm 2 without Bn in h̄2; Two-step - Rule 2 (dashed/square)

- two-step procedure rule-of-thumb described in Algorithm 2 with Bn = Bn,LS in h̄2.

The Jacobians are informative when local identification fails exactly (c = 0), but can be

misleading in intermediate cases where the first-order term is not singular yet higher-order

terms matter.

The top panel in Figure G11 illustrates projection and standard inferences as well as the

two-step procedure from Algorithm 2. The subvector hypothesis considered here is: H0 : θ2 =

θ2,n, with θ2,n = θ1+c×n−1/4 = 3+0.4×n−1/4. The criterion h̄2 in the algorithm is computed

in two ways, the first ignores the Bn in the formula (since B′nv
′ = u′ for some vector u when

Bn is non-singular) and the second uses the formula in the algorithm but with Bw = Bn,LS.

To simplify the Monte-Carlo exercise, the procedure switches between Anderson-Rubin based

full projection inference and a QLR/Wald test. Some power improvements could be made

by checking if θ1 is semi-strongly identified when θ2 is fixed as in the other examples.
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Appendix H Additional Empirical Results

H.1 US Euler Equation

Figure H12: US Euler Equation - Time-Series Plot of the Moments gt(δ, γ)

Note: annual series gt(δ, γ) = [δ( Ct
Ct−1

)−γRt − 1]Zj,t with Zj,t = 1, Ct−1/Ct−2, Rt−1 for j ∈ {1, 2, 3}
respectively and a fixed value of θ = (δ, γ).

H.2 Quantile IV

This additional empirical application deals with the quantile IV model of Chernozhukov &

Hansen (2005) using the Fish data of Chernozhukov et al. (2007). For a given quantile τ ,

the estimating moments for fish demand are:

ḡn(θ(τ), τ) =
1

n

n∑
i=1

1(log(qi)−[α(τ)+β(τ) log(pi)]≤−τ) × (1, z′i)
′,

where qi is the quantity of fish sold, pi is the endogenous price of fish and, zi is the vector

of exogenous instruments - an indicator for stormy weather and another for mixed weather

conditions. The following will focus on a specific quantile: τ = 0.85. Since the model

is non-smooth and non-linear it is not possible to check the relevance of the instrument
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using a first-stage F-statistic. The bounds used to compute the integral in Bn,LS are:7

θ(τ) = (α(τ), β(τ)) ∈ [6, 12]× [−15, 6]. The sample consists of n = 111 observations. Figure

Figure H13: Demand for Fish - Θ̂n = {θ ∈ Θ, ‖ḡn(θ)‖Wn − infθ∈Θ ‖ḡn(θ)‖Wn ≤ κn} for

τ = 0.85

Note: region Θ̂n computed for κn = max(
√
q0.99(χ2

3),
√

2 log(log[n])n−1/2) where q0.99 is the 99% quantile

of a χ2
3 distribution. Wn = V̂ −1

n . α(0.85) = intercept, β(0.85) = slope.

H13 shows the region Θ̂n selected by the compact kernel to compute the integrals. It suggests

either set or weak identification. The eigenvalues are (0.027, 0.005) which is quite small. The

cutoff λn = 0.15 is greater than both eigenvalues. The 95% level robust confidence set for

β(0.85) is [−14.81,−11.29] ∪ [−2.88, 0.03] ∪ [5.55, 5.83].

7The grid was constructed using 20, 000 points from the Sobol sequence.
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