
Market Counterfactuals and the Specification of
Multi-Product Demand: A Nonparametric Approach∗

Giovanni Compiani †

October 1, 2019

Abstract

Demand estimates are essential for addressing a wide range of positive and nor-
mative questions in economics that are known to depend on the shape—and notably
the curvature—of the true demand functions. The existing frontier approaches, while
allowing flexible substitution patterns, typically require the researcher to commit to a
parametric specification. An open question is whether these a priori restrictions are
likely to significantly affect the results. To address this, I develop a nonparametric
approach to estimation of demand for differentiated products, which I then apply to
California supermarket data. While the approach subsumes workhorse models such
as mixed logit, it allows consumer behaviors and preferences beyond standard discrete
choice, including continuous choices, complementarities across goods, and consumer
inattention. When considering a tax on one good, the nonparametric approach pre-
dicts a much lower pass-through than a standard mixed logit model. However, when
assessing the market power of a multi-product firm relative to that of a single-product
firm, the models give similar results. I also illustrate how the nonparametric approach
may be used to guide the choice among parametric specifications.
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1 Introduction

Many areas of economics study questions that hinge on the shape of the demand functions

for given products. Examples include investigating the sources of market power, evaluating

the effect of a tax or subsidy, merger simulation, assessing the impact of a new product

being introduced into the market, understanding the drivers of the well-documented incom-

plete pass-through of cost and exchange-rate shocks to downstream prices, and determining

whether firms play a game with strategic complements or substitutes.1 Given a model of

supply, the answers to these questions crucially depend on the level, the slope, and often

the curvature of the demand functions. Therefore, if the chosen demand model is not flex-

ible enough, the results could turn out to be driven by the convenient, but often arbitrary,

restrictions embedded in the model, rather than by the true underlying economic forces.

Addressing this concern requires an approach that relaxes the parametric assumptions, thus

providing results that may be used as a benchmark.

To this end, I propose the first nonparametric approach to estimate demand in differen-

tiated products markets based on aggregate data.2 Specifically, I focus on markets in which

consumers face a range of options that are differentiated in ways that are both observed and

unobserved to the researcher. Importantly, the presence of unobserved heterogeneity at the

product or market level implies that all the variables that are chosen by firms after observing

consumer preferences—e.g. prices in many models—are econometrically endogenous. A vast

literature in industrial organization and other fields has focused on the empirical analysis of

this type of markets. The current frontier approach is to posit a random coefficients discrete

choice logit model3 and estimate it using the methodology developed by Berry et al. (1995)

1References include Berry et al. (1995) and Nevo (2001) for the study of market power, Bulow and
Pfleiderer (1983) and Weyl and Fabinger (2013) for the effect of taxes and subsidies, Nevo (2000a) and
Capps et al. (2003) for merger simulation, Petrin (2002) for the analysis of new products, Nakamura and
Zerom (2010) and Goldberg and Hellerstein (2013) for incomplete pass-through, and Bulow et al. (1985) for
strategic complementarity and substitution.

2Souza-Rodrigues (2014) proposes a nonparametric estimation approach for a class of models that includes
binary demand. However, extension to the case with multiple inside goods does not appear to be trivial.

3Throughout the paper, I use the terms “random coefficients logit model” and “mixed logit model”
interchangeably.
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(henceforth BLP).4 While the methodology in BLP accomplishes the crucial goals of generat-

ing reasonable substitution patterns and allowing for price endogeneity, it relies on a number

of parametric assumptions which may affect the results of counterfactual exercises. For ex-

ample, while it is well known that the pass-through of a tax depends on the curvature—i.e.

the second derivatives—of the demand functions, it is not a priori clear whether BLP is

flexible enough to capture these features of the true demand system. In contrast, the ap-

proach proposed in this paper does not rely on any distributional assumptions and imposes

only limited functional form restrictions. For instance, one does not need to assume that

the idiosyncratic taste shocks or the random coefficients on product characteristics in the

utility function belong to a parametric family of distributions. Instead, I leverage a range

of constraints—such as monotonicity of demand in certain variables and properties of the

derivatives of demand—that are grounded in consumer theory.

In addition, by directly targeting the demand functions as opposed to the utility param-

eters, my approach relaxes several assumptions on consumer behavior and preferences that

are embedded in BLP-type models. The latter models assume that each consumer picks the

product yielding the highest (indirect) utility among all the available options. This implies,

among other things, that the goods are substitutes to each other,5 that consumers are aware

4Another influential approach to demand estimation is the Almost Ideal Demand System (AIDS) pio-
neered by Deaton and Muellbauer (1980). I choose to compare my approach to BLP-type models and not
AIDS-type models, because the latter restrict the role of the unobserved heterogeneity in a way that is at
odds with the differentiated products markets literature from the last twenty years. Specifically, Deaton
and Muellbauer (1980) use their model of consumer behavior to obtain a demand equation only involving
observables and add a separable error term to carry out estimation (equation (15) in their paper). This im-
plies that the unobservables do not have an immediate “structural” interpretation (such as product quality
not captured by the data). One consequence is that the standard arguments used to motivate the issue of
(price) endogeneity, as well as justify the instrumental variables solution to it, do not typically apply in the
AIDS framework.

5Gentzkow (2007) develops a parametric demand model that allows for complementarities across goods
and applies it to the market for news. Given the relatively small number of options available to consumers,
pursuing a nonparametric approach seems feasible in this industry and I view this as a promising avenue for
future research.
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of all products and their characteristics,6,7 and that each consumer buys at most one unit of

a single product.8 In contrast to this, my approach allows for a broader range of consumer

behaviors and preferences, including complementarities across goods, consumer inattention,

and multiple discrete or continuous choices.

In practice, I propose approximating the (inverse of the) demand system using Bernstein

polynomials, which make it easy to enforce a number of economic constraints in the esti-

mation routine. Computationally, the objective function to be minimized is convex in the

parameters; thus, if the constraints are also convex, standard algorithms are guaranteed to

converge to the global optimum. In order to show validity of the standard errors, I adapt

proofs from recent work in econometrics on nonparametric instrumental variables regres-

sion and I provide primitive conditions for the case where the objects of interest are price

elasticities and (counterfactual) equilibrium prices.

As with many nonparametric estimators, one limitation of my approach is that the num-

ber of parameters tends to increase quickly with the number of goods and/or covariates.

However, I show that one can partially mitigate this curse of dimensionality by imposing

restrictions on the demand functions while preserving most of the flexibility of the non-

parametric approach. Specifically, I consider (i) an exchangeability restriction; and (ii)

constraints on the way covariates and prices enter the demand system. Both (i) and (ii)

substantially reduce the number of parameters relative to the most general model. In partic-

ular, (ii) highlights that there is a trade-off between functional form restrictions and severity

of the curse of dimensionality. In practice, this means that a researcher can—to a certain

extent—tailor the model to the specifics of her setting by choosing how many assumptions

to impose. For example, if the sample size is moderate, a researcher might choose to assume

more in terms of functional form to contain the number of parameters, while still avoiding

6Goeree (2008) uses a combination of market-level and micro data to estimate a BLP-type model where
consumers are allowed to ignore some of the available products. The model specifies the inattention probabil-
ity as a parametric function of advertising and other variables. Relative to Goeree (2008), this paper allows
for more general forms on inattention. Specifically, any model that satisfies the assumptions in Section 2
is permitted. Section 4.2 presents simulation results from one such model. A recent paper by Abaluck and
Adams (2017) obtains identification of both utility and consideration probabilities in a class of models with
inattentive consumers facing exogenous prices.

7One could conceivably use a BLP-type model to estimate consumer preferences on data generated by
inattentive consumers. Whether the BLP functional form is flexible enough in such contexts is an open
question that depends on the object of interest. The simulation evidence presented in this paper suggests
that a BLP-type model tends to under-estimate own-price elasticities and over-estimate cross-price elasticities
for one pattern of inattention.

8A few studies, including Hendel (1999) and Dubé (2004), estimate models of “multiple discreteness,”
where agents buy multiple units of multiple products. However, these papers typically rely on individual-
level data rather than aggregate data. The same applies to papers that model discrete/continuous choices,
such as Dubin and McFadden (1984).
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several assumptions on the distribution of the unobservables and consumer behavior relative

to a standard discrete choice model. On the other hand, with larger samples, the researcher

might be able to relax some of these functional form restrictions.

Besides requiring a nonparametric approach, the assessment of how counterfactual out-

comes are affected by parametric restrictions necessitates an amount of data sufficient to

obtain informative results in the more flexible model. To this end, I leverage a large sam-

ple of store/week-level quantities and prices from Nielsen. Specifically, I focus on strawberry

sales in California, which allows me to keep the number of goods low and thus avoid the curse

of dimensionality. In addition, given the perishability of the product, I am able to reason-

ably abstract from dynamic considerations and perform a clean comparison between static

demand models. Of course, this is a small product category, but the increasing availability

of large data sets suggests that it might be possible to apply nonparametric approaches such

as that proposed here to a much broader class of settings.

I consider two counterfactual exercises. The first is to quantify the pass-through of a

tax into retail prices. Comparing the results to those given by a standard mixed logit

model, I find that the nonparametrically estimated tax pass-through is significantly lower

than that delivered by mixed logit for organic strawberries. I relate this to the fact that the

nonparametric own-price elasticity for that good increases in absolute value much faster with

own-price, which provides an incentive for the retailer to contain the price increase after the

tax, all else equal. The second counterfactual concerns the role played by the multi-product

nature of retailers in driving up markups (the “portfolio effect” in the terminology of, e.g.,

Nevo (2001)). In this case, a mixed logit model with product-specific fixed effects matches

the nonparametric results very closely. This is not the case for mixed logit models with fewer

fixed effects, suggesting that the proposed approach may be used to guide the choice among

competing parametric specifications.

Related literature. This paper contributes to the vast literature on models of demand

in differentiated products markets pioneered by BLP. In particular, a recent paper by Berry

and Haile (2014) (henceforth BH) shows that most of the parametric assumptions imposed

by BLP are not needed for identification of the demand functions, i.e. that these restrictions

are not necessary to uniquely pin down the demand functions in the hypothetical scenario in

which the researcher has access to data on the entire relevant population. While I build on

the identification result in BH, I focus on a distinct set of issues pertaining nonparametric

estimation. Other papers developing flexible estimation approaches to demand estimation

include Bajari et al. (2007), Fox et al. (2011), Fox et al. (2012), Fox et al. (2016) and Fox and

Gandhi (2016). The goal in these papers is to recover the distribution of random coefficients

in discrete choice settings, whereas I directly target the structural demand function. On the
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one hand, this allows for a broader range of consumer behaviors; on the other, as discussed

above, it faces a curse of dimensionality. A recent paper by Tebaldi et al. (2019) proposes a

method to obtain nonparametric bounds on demand counterfactuals, but does not develop

inference procedures.

It should be emphasized that the present paper focuses on the case where the researcher

has access to market-level data, typically in the form of shares or quantities, prices, product

characteristics and other market-level covariates. This is in contrast to studies that are

based on consumer-level data, such as Goldberg (1995) and Berry et al. (2004),9 and, for

more recent nonparametric approaches, Hausman and Newey (2016), Blundell et al. (2017)

and Chen and Christensen (2018).

Second, the paper is related to the large literature on incomplete pass-through10 and, par-

ticularly, the papers that adopt a structural approach to decompose the different sources of

incompleteness. For instance, Goldberg and Hellerstein (2008), Nakamura and Zerom (2010)

and Goldberg and Hellerstein (2013) estimate BLP-type models to assess how much of the

incomplete pass-through is explained by sellers adjusting their markups.11 The present pa-

per contributes to this literature by providing a method to evaluate markups that relaxes a

number of restrictions on consumer behavior and preferences. In my empirical setting, I esti-

mate a significantly larger reduction in markups after the tax—and thus a more incomplete

pass-through—for the organic product relative to what is predicted by a more restrictive

parametric model.12

Third, the paper relates to the literature investigating the sources of market power based

on demand estimates, notably Nevo (2001).13 Once again, I offer a more flexible method to

disentangle and quantify the different components of market power. In my empirical setting,

9Of course, any method based on market-level data may be immediately applied to consumer-level data
by simply aggregating the latter at the market level. However, recent work by Berry and Haile (2010)
shows that within-market variation makes it possible to identify demand under weaker conditions relative
to the case where only market-level data is available. This opens an interesting avenue for future research
on nonparametric estimation of demand based on individual-level data.

10The literature on estimating pass-through is large and I do not attempt to provide an exhaustive list
of references. Here, I mention an interesting recent paper by Atkin and Donaldson (2015) which estimates
the pass-through of wholesale prices into retail prices, and uses this to quantify how the gains from falling
international trade barriers vary geographically within developing countries.

11Specifically, Goldberg and Hellerstein (2008) and Goldberg and Hellerstein (2013) focus on exchange
rate pass-through, while Nakamura and Zerom (2010) consider cost pass-through. Competing explanations
for incomplete pass-through considered in these papers are nominal rigidities and the presence of costs not
affected by the shocks.

12For non-organic strawberries, I find that mixed logit over-estimates markup adjustment—and thus under-
estimates pass-through—relative to the nonparametric approach, but the two confidence intervals overlap.

13Another approach to studying market power is based on estimates of the firm production function
(de Loecker (2011), de Loecker and Warzynski (2012)).

6



I find that a mixed logit model with product fixed effects matches the nonparametric results

very closely, suggesting that standard parametric models might be sufficient to address this

type of questions.

Overview. The rest of the paper is organized as follows. Section 2 presents the general

model and summarizes the nonparametric identification results from BH. Section 3 discusses

the proposed nonparametric estimation approach. Section 4 presents the results of several

Monte Carlo simulations. Section 5 contains the empirical application. Section 6 concludes.

All proofs, additional simulations, and more details on the empirical application are presented

in the appendices.

2 Model and Identification

The general model I consider is the same as that in BH. In this section, I summarize the

main features of the model. In a given market t, there is a continuum of consumers choosing

from the set J ≡ {1, ..., J}. Each market t is defined by the choice set J and by a collection

of characteristics χt specific to the market and/or products. The set χt is partitioned as

follows:

χt ≡ (xt, pt, ξt) ,

where xt is a vector of exogenous observable characteristics (e.g. exogenous product charac-

teristics or market-level income), pt ≡ (p1t, ..., pJt) are observable endogenous characteristics

(typically, market prices) and ξt ≡ (ξ1t, ..., ξJt) represent unobservables potentially correlated

with pt (e.g. unobserved product quality).

Next, I define the structural demand system

σ : X → ∆J ,

where X denotes the support of χt and ∆J is the unit J−simplex. The function σ gives, for

every market t, the vector st of shares for the J goods. I emphasize that this formulation

of the model is general enough to allow for different interpretations of shares. The vector

st could simply be the vector of choice probabilities (market shares) for the inside goods

in a standard discrete choice model. However, st could also represent a vector of “artificial

shares,” e.g. a transformation of the vector of quantities sold in the market to the unit

simplex. For example, this case arises when the goods are complements to each other and

the interpretation of market shares as fraction of consumers preferring one good over all
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others does not apply.14 I also define

σ0 (χt) ≡ 1−
J∑
j=1

σj (χt) ,

for every market t, where σj (χt) is the j−th element of σ (χt). In a standard discrete choice

setting, σ0 corresponds to the share of the outside option, but again this interpretation is

not required.

Next, following BH, I restrict the way in which some of the variables in X enter demand.

Specifically, I partition xt as
(
x

(1)
t , x

(2)
t

)
, where x

(1)
t ≡

(
x

(1)
1t , ..., x

(1)
Jt

)
, x

(1)
jt ∈ R for j ∈ J ,

and define the linear indices

δjt = x
(1)
jt βj + ξjt, j = 1, ..., J

Then, for every market t, I assume that

σ (χt) = σ
(
δt, pt, x

(2)
t

)
(1)

where δt ≡ (δ1t, ..., δJt).
15 Equation (1) requires that, for j = 1, ..., J , x

(1)
jt and ξjt affect

consumer choice only through the linear index δjt. In other words, x
(1)
jt and ξjt are assumed

to be perfect substitutes. In a standard BLP-type discrete choice setting, a simple sufficient

condition is that x
(1)
j enters good j’s indirect utility with a non-random coefficient. On the

other hand, x
(2)
t is allowed to enter the share function in an unrestricted fashion.16 Two

remarks about the restriction in (1) are in order. First, while (1) requires that the dimension

of x(1) be equal to J , one could include more than one covariate in each linear index. In

fact, this is one of the strategies for dimension reduction suggested in Section 3.2. Second,

x
(1)
j could be a characteristic of good j, but it need not be. The model allows for the case

where x(1) includes market-level demand shifters that are not necessarily product-specific, as

long as the dimension of x(1) is at least J . This is illustrated in the application of Section 5,

14See Example 1 in Berry et al. (2013) and the simulation in Section 4.3.

15As shown in Appendix B of BH, what is critical for identification is the strict monotonicity of δjt in

ξjt. Both its linearity in x
(1)
jt and its separability in ξjt can be relaxed. However, the assumption in (1)

simplifies the estimation procedure in that it leads to an additively separable nonparametric regression
model. Given that this is the first attempt at estimating demand nonparametrically for this class of models,
maintaining (1) appears to be a reasonable compromise. In the absence of separability of δjt in ξjt, one could
think of applying existing estimation approaches for nonseparable regression models with endogeneity (e.g.
Chernozhukov and Hansen (2006), Chen and Pouzo (2009), Chen and Pouzo (2012) and Chen and Pouzo
(2015)).

16Indeed, the case where x
(2)
t does not enter the model at all is allowed.
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where x(1) consists of variables that shift consumer preferences for strawberries but do not

represent product characteristics.

Throughout the paper, I assume that the structural demand system σ is point-identified,

which I record in the next assumption.

Assumption 1. The structural demand system σ is point-identified.

BH provide sufficient conditions for Assumption 1.17 As one would expect, these condi-

tions include the existence of instruments Z = (Z1, ..., ZJ) that shift prices but do not enter

demand. In addition, Z, along with X, is assumed to be exogenous, i.e. E (ξj|X,Z) = 0

a.s.-(X,Z) for j ∈ J . I refer the reader to BH for a more detailed discussion of identifica-

tion.

3 Nonparametric Estimation

3.1 Setup and asymptotic results

Under the sufficient conditions for identification, BH show that one can invert the demand

system in (1) as follows:

δjt = σ−1
j

(
st, pt, x

(2)
t

)
, j = 1, ..., J. (2)

This inverted system is the starting point of my estimation strategy. Specifically, I rewrite

(2) as

x
(1)
jt = σ−1

j

(
st, pt, x

(2)
t

)
− ξjt j = 1, ..., J, (3)

where I use the normalization βj = 1.18 Equation (3), coupled with the IV exogeneity restric-

tion, E (ξj|X,Z) = 0, suggests estimating σ−1
j using nonparametric instrumental variables

(NPIV) methods.19 In particular, I approximate the functions σ−1
j via the method of sieves,

i.e. using a sequence of models whose dimension grows with the sample size. For instance,

in the case of polynomial approximations, the degree of the polynomials increases with the

sample size. Therefore, the approach does not require one to assume any functional form

17BH show identification under two alternative approaches. The first is based on a completeness condition,
while the second does not rely on this type of assumption and instead leverages joint restrictions from both
the demand and the supply side.

18As noted in BH, we are free to normalize βj to 1 since the unobservables ξjt have no natural scale.

19The literature on NPIV methods is vast and I refer the reader to recent surveys, such as Horowitz (2011)
and Chen and Qiu (2016).
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asymptotically, which guards against misspecification bias. Implementing the procedure is

straightforward in that, in practice, it amounts to estimating a (large) parametric model.

On the other hand, proving theoretical properties of the estimator—e.g. establishing the

validity of the standard errors for price elasticities—is more complicated due to the fact

that the unknown parameter is an entire function as opposed to a finite-dimensional object.

Specifically, I cannot rely on standard results from parametric models and I need to adapt

recent results from the econometrics literature on NPIV.

Some additional notation is needed to formalize the approach. I denote by T the sample

size, i.e. the number of markets in the data. While T grows to infinity asymptotically, the

number of goods J is fixed. Let Σ be the space of functions to which σ−1 belongs20 and

let ψ
(j)
Mj

(·) ≡
(
ψ

(j)
1,Mj

(·) , ..., ψ(j)
Mj ,Mj

(·)
)′

be the basis functions used to approximate σ−1
j for

j ∈ J .21 Note that, although I suppress it in the notation, Mj grows with T for all j. Let

ΣT be the resulting sieve space for Σ. Next, I denote by a
(j)
Kj

(·) ≡
(
a

(j)
1,Kj

(·) , ..., a(j)
Kj ,Kj

(·)
)′

the basis functions used to approximate the instrument space for good j’s equation, and

I let A(j) =
(
a

(j)
Kj

(x1, z1) , ..., a
(j)
Kj

(xT , zT )
)′

for j ∈ J . Again, I suppress the dependence

of {Kj}j∈J on the sample size. I require that Kj ≥ Mj for all j, which corresponds

to the usual requirement in parametric instrumental variable models that the number of

instruments be at least as large as the number of endogenous variables. Finally, I let

rjt
(
st, pt, xt, zt; σ̃

−1
j

)
≡
(
x

(1)
jt − σ̃−1

j

(
st, pt, x

(2)
t

))
× a

(j)
Kj

(xt, zt). Then, the estimator solves

the following GMM program22

min
σ̃−1∈ΣT

J∑
j=1

[
T∑
t=1

rjt
(
st, pt, xt, zt; σ̃

−1
j

)]′ (
A′(j)A(j)

)− [ T∑
t=1

rjt
(
st, pt, xt, zt; σ̃

−1
j

)]
(4)

The solution σ̂−1 to (4) minimizes a quadratic form in the terms {rjt (·) , j ∈ J , t = 1, ..., T},
i.e. the implied regression residuals interacted with the instruments. When ΣT is chosen to

be a linear sieve (e.g. polynomials, splines, wavelets), the approximation to σ−1
j will be of the

form σ̃−1
j = θ′jψ

(j)
Mj

(·) for j ∈ J . This, in turn, implies that (4) will be a convex program in the

coefficients θ, for which readily available algorithms are guaranteed to converge to the global

minimizer. In contrast, BLP-type models typically require minimizing non-convex functions

and thus may run into numerical challenges (Knittel and Metaxoglou (2014)). One caveat

to the above is that, if one wants to impose non-convex constraints on θ, the optimization

20This class of functions will be formally defined in Appendix B.

21In the simulations of Section 4, as well as in the application of Section 5, I use Bernstein polynomials
to approximate each of the unknown functions. However, the inference result in Theorem 1 below does not
depend on this choice, hence the general notation used in the first part of this section.

22In equation (4), Ã− denotes the Moore-Penrose inverse of a matrix Ã.
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problem will become harder. One such constraint is the symmetry of the Jacobian of demand

with respect to prices (see Appendix D.1). On the other hand, several other constraints,

including monotonicity and the exchangeability constraint considered in Section 3.2, are

linear and thus can be handled with off-the-shelf convex optimization methods. For the

case with linear constraints, I recommend using the Matlab package CVX,23 whereas in

the presence of nonlinear (and possibly nonconvex) constraints I found Knitro to perform

well.24

I now state a result that yields asymptotically valid standard errors for functionals of

the demand system. In turn, this may be used to obtain confidence intervals for quantities

of interest (e.g. price elasticities) and test hypotheses on consumer behavior. The result

adapts Theorem D.1 in Chen and Christensen (2017) (henceforth, CC).25 Note that CC

consider a model with only one equation and one unknown function, whereas the setting

here involves J equations, each with a distinct unknown function and error term ξj. This

requires imposing additional (mild) restrictions on the covariance matrix of the errors and

modifying the proof accordingly. For conciseness, the formal assumptions needed for the

result and the definition of the estimator for the variance of the functional are postponed

to Appendix B. In words, the assumptions restrict: (i) the distribution of the error terms

by way of standard bounded moment conditions; (ii) the rate at which the dimension of

the approximation to the unknown functions grows with the sample size; (iii) the rate of

convergence of the nonparametric estimator for the demand functions and their derivatives.

The restriction in (iii), which is formalized in Assumption 7 in Appendix B, is high-level and

I provide more primitive sufficient conditions for two special cases of interest in Theorems 2

and 3 below.

Theorem 1. Let f be a scalar functional of the demand system and v̂T (f) be the estimator of

the standard deviation of f (σ̂−1) defined in (13) in Appendix B. In addition, let Assumptions

1, 2, 3, 4, 5, 6 and 7 in Appendix B hold. Then,

√
T

(f (σ̂−1)− f (σ−1))

v̂T (f)

d−→ N (0, 1) .

23See Grant and Boyd (2008),Grant and Boyd (2014).

24See R. H. Byrd and Waltz (2006).

25Note that CC consider inference on functionals of an unconstrained sieve estimator of the unknown
function, whereas our model features a range of equality and inequality constraints. However, under the
assumption that the true demand functions satisfy the inequality constraints strictly, the constrained and
unconstrained estimators will coincide asymptotically and thus the unconstrained standard errors will be
valid in large samples. Recent papers by Chernozhukov et al. (2015) and Freyberger and Reeves (2018)
develop inference procedures for constrained estimators that could be applied to our model. I leave comparing
different nonparametric methods for future research.
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Proof. See online Appendix C.

Importantly, the variance term v̂T (f) in the statement of the theorem is allowed to grow

to infinity with the sample size, implying that the result covers the scenario in which the

functional f is estimable at a rate slower than the parametric rate
√
T . This will typically

be the case when, as in the empirical analysis of Section 5, the functionals of interest are

defined for a fixed market, as opposed to being averages across markets.

I now specialize Theorem 1 to two functionals: price elasticities and equilibrium prices.

These quantities are key inputs in addressing many (counterfactual) questions in industrial

organization. Consistent with the empirical application of Section 5, I also assume that

J = 2 and that the unknown functions are approximated via Bernstein polynomials. I state

the results here and again postpone the full presentation of the assumptions, as well as the

proofs, to Appendix B. In words, Theorems 2 and 3 replace the high-level Assumption 7

in Theorem 1 with sufficient conditions on the smoothness of the unknown functions, the

support of the endogenous variables, and the growth rate of the sieve approximation. These

are standard assumptions in the NPIV literature. Lemmas 3 and 4 in Appendix B provide

even more concrete restrictions for the “mildly ill-posed case,” i.e. the scenario where a

measure of the degree of endogeneity in the nonparametric problem grows polynomially

with the dimension of the sieve space.26

Theorem 2. Let fε be the own-price elasticity functional defined in (14) in Appendix B,

let v̂T (fε) denote the estimator of the standard deviation of fε (σ̂−1) based on (13), and let

Assumptions 1, 2, 3, 4(iii), 5, 6 and 8 from Appendix B hold. Then,

√
T

(fε (σ̂−1)− fε (σ−1))

v̂T (fε)

d−→ N (0, 1) .

Proof. See Appendix B.

Next, I state a result establishing the asymptotic distribution of equilibrium prices.

Theorem 3. Let fp1 be the equilibrium price functional defined in (18) in Appendix B, let

v̂T (fp1) denote the estimator of the standard deviation of fp1 (σ̂−1) based on (13), and let

Assumptions 1, 2, 3, 4(iii), 5, 6 and 9 from Appendix B hold. Then,

√
T

(fp1 (σ̂−1)− fp1 (σ−1))

v̂T (fp1)

d−→ N (0, 1) .

26See Blundell et al. (2007) for a formal definition of the measure of ill-posedness and CC for a discussion
of its estimation.
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Proof. See Appendix B.

In the empirical application of Section 5, I apply Theorem 2 to obtain confidence inter-

vals for own-and cross-price elasticities, and Theorem 3 to obtain confidence intervals for

equilibrium prices under two counterfactual scenarios.

3.2 Constraints

I conclude this section with a discussion of the curse of dimensionality that is inherent in

nonparametric estimation, as well as of ways to partially mitigate the issue. Note that each

of the unknown functions σ−1
j has 2J + nx(2) arguments, where nx(2) denotes the number of

variables included in x(2). Therefore, the number of parameters to estimate grows quickly

with the number of goods and/or the number of characteristics included in x(2), and it will

typically be much larger than in conventional parametric models.

One way to mitigate this problem is to impose constraints on the estimated demand

functions. I consider a number of restrictions, including exchangeability of the demand func-

tions,27 monotonicity and lack of income effects. Some constraints—such as exchangeability—

directly reduce the number of parameters to be estimated. This simplification is often dra-

matic, especially as the number of goods increases. Other restrictions—e.g. monotonicity—

do not affect the number of parameters, but play an important role in disciplining the

estimation routine and obtaining reasonable estimates (e.g. negative own-price elasticities

across all markets).28 I emphasize that this is not an exhaustive list, and one may wish to

impose additional constraints in a given application. Conversely, not all constraints discussed

in this paper need to be enforced simultaneously in order to make the approach feasible. For

example, in the empirical application in Section 5, I do not assume lack of income effects

nor exchangeability.

Imposing constraints in model (3) is complicated by the fact that economic theory gives

us restrictions on the demand system σ, but what is targeted by the estimation routine is

σ−1. Therefore, one contribution of the paper is to translate constraints on the demand

system σ into constraints on its inverse σ−1, and show that the latter can be enforced in a

computationally feasible way.

Specifically, I propose to estimate the functions σ−1
j in (3) using Bernstein polynomi-

als, which are convenient for imposing economic restrictions due to their approximation

27Similar exchangeability restrictions are discussed in Pakes (1994), Berry et al. (1995) and Gandhi and
Houde (2017) in relation to optimal instruments.

28Blundell et al. (2017) make a similar point regarding Slutsky negative semidefiniteness constraints in a
model with one good plus a numeraire.
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properties. Here I provide an informal discussion to convey the main insight and postpone a

more formal presentation to Appendix A. Consider the problem of approximating a bounded

function g (t1, t2), where (t1, t2) ∈ [0, 1] × [0, 1], using the tensor product of the univariate

Bernstein basis of degree 2 in each of the arguments t1, t2. Since there are three terms for

each argument, the approximation is a linear combination of nine terms in total. Let θ be

the vector of coefficients on these nine terms. By the properties of Bernstein polynomials,

it is possible to choose the coefficients θ such that they are close to the true value of g at a

grid of points over the [0, 1]× [0, 1] square. This means that one may arrange the coefficients

in a matrix such that the following holds29

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

 ≈
g(0, 0) g(0, 0.5) g(0, 1)

g(0.5, 0) g(0.5, 0.5) g(0.5, 1)

g(1, 0) g(1, 0.5) g(1, 1)

 (5)

where the ≈ sign indicates that each element on the left matrix will be close to the cor-

responding element of the right matrix. As the degree of the polynomial grows, the ap-

proximation becomes arbitrarily good. This is helpful because it allows us to immediately

translate restrictions on g into restrictions on θ. For instance, the constraint that g be weakly

increasing in its first argument implies the simple inequalities θ1i ≤ θ2i ≤ θ3i for i = 1, 2, 3.

Appendix D discusses monotonicity and other restrictions that economic theory places on

the functions σ−1
j and shows how to enforce them using the approximation properties of

Bernstein polynomials.

The remainder of this section focuses on two types of constraints that are especially helpful

in alleviating the curse of dimensionality: exchangeability and index restrictions In order to

define exchangeability, let π : {1, ..., J} 7→ {1, ..., J} be a permutation with inverse π−1 and,

for simplicity, let x(2) =
(
x

(2)
1 , ..., x

(2)
J

)
, i.e. I assume that x(2) is a vector of product-specific

characteristics.30 Also, let ñx(2) be the dimension of each x
(2)
j , so that nx(2) = Jñx(2) . Then,

the structural demand system σ is exchangeable if

σj
(
δ, p, x(2)

)
= σπ(j)

(
δπ−1(1), ..., δπ−1(J), pπ−1(1), ..., pπ−1(J), x

(2)

π−1(1), ..., x
(2)

π−1(J)

)
, (6)

for j = 1, ..., J . In words, this means that the demand functions do not depend on the

29Lemma 2 in Appendix A clarifies which coefficient belongs to each element of the matrix.

30 This need not be the case in the general model from Section 2. For instance, x(2) could be a vector
of market-level variables. In such settings, I say the demand system is exchangeable if σj

(
δ, p, x(2)

)
=

σπ(j)

(
δπ−1(1), ..., δπ−1(J), pπ−1(1), ..., pπ−1(J), x

(2)
)
, which requires x(2) to affect the demand of each good in

the same way. Of course, the case where x(2) includes both market-level and product-specific variables can
be handled similarly at the cost of additional notation.
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identity of the products, but only on their attributes
(
δ, p, x(2)

)
.31 For instance, for J = 3,

exchangeability implies that

σ1

(
δ1, δ, δ, p1, p, p, x

(2)
1 , x(2), x(2)

)
= σ1

(
δ1, δ, δ, p1, p, p, x

(2)
1 , x(2), x(2)

)
for all

(
δ1, δ, δ, p1, p, p, x

(2)
1 , x(2), x(2)

)
, i.e. the demand for good 1 is the same if we switch

the labels for goods 2 and 3. One may be willing to impose exchangeability when it seems

reasonable to rule out systematic discrepancies between the demands for different products.

This assumption is often implicitly made in discrete choice models. For example, in a

standard random coefficient logit model without brand fixed-effects, if the distribution of

the random coefficients is the same across goods, then exchangeability is satisfied.32

Moreover, one may allow for additional flexibility by letting the intercepts of the δ indices

vary across goods. This preserves the advantages of exchangeability in terms of dimension

reduction, which I discuss below, while simultaneously allowing each unobservable to have

a different mean. Relative to existing methods, this is no more restrictive than standard

mixed logit models with brand fixed-effects and the same distribution of random coefficients

across goods.

Imposing exchangeability on the demand system σ is facilitated by the following result.

Lemma 1. If σ is exchangeable, then σ−1 is also exchangeable.

Proof. See Appendix D.3.

Lemma 1 implies that one can directly impose exchangeability on the target functions σ−1.

This can be achieved by simply using the same set of Bernstein coefficients to approximate

all demand functions and imposing that the value of each function be invariant to certain

permutations of its arguments. By the approximation properties of Bernstein polynomials,

these restrictions can be conveniently enforced through linear constraints on the Bernstein

coefficients. To see this, note that this invariance property amounts to setting appropriately

chosen pairs of coefficients equal to each other. For instance, in the simple illustration

in (5), the restriction that g be invariant to permutations of its two arguments translates

(asymptotically) into the constraints θ21 = θ12, θ31 = θ13 and θ32 = θ23. One can impose

31For simplicity, here I consider the extreme case of exchangeability across all goods 1, ..., J . However,
one could also think of imposing exchangeability only within a subset of the goods, e.g. the set of goods
produced by one firm. The arguments in this section would then apply to the subset of products on which
the restriction is imposed.

32This also uses the fact that the idiosyncratic taste shocks are typically assumed to be iid—and thus
exchangeable—across goods.
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these as equality restrictions or directly embed them in the estimation routine by minimizing

the criterion function over the lower-dimensional space of free parameters (there are six free

parameters out of nine in the example in (5)). The latter may be preferable when the number

of parameters is large and memory or speed considerations take center stage in computation.

A more formal discussion of how to impose exchangeability is provided in Appendix A.

Second, I consider index restrictions. Specifically, suppose we are willing to assume that

x(2) enters the demand functions through the indices δ. Then, each demand function goes

from having 2J+nx(2) to 2J arguments, which reduces the number of parameters.33 Similarly,

if we are willing to assume that prices enter the demand functions through the indices δ,

each demand function goes from having 2J +nx(2) to J +nx(2) arguments. Thus, to a certain

extent, it is possible to tailor the approach based on the setting and sample size at hand

by choosing how much to assume in terms of functional form. Further, note that, while the

index restriction does have bite, including variables in the linear index does not mean that

they are restricted to enter the demand functions linearly. As discussed in Section 2, the

content of this assumption is that the variables in the index and the unobservables ξ must

be perfect substitutes in the “production” of utility. For instance, in a discrete choice model,

a sufficient condition is that the variables have nonrandom coefficients, but they are allowed

to enter the demand functions in highly nonlinear ways. Further, index restrictions do not

impose any constraints on the distribution of the unobservables and are thus consistent

with the goal of relaxing the arbitrary distributional assumptions often made in estimating

demand parametrically.

To illustrate the role played these constraints in alleviating the curse of dimensionality,

I show in Table 1 how the number of parameters for each demand function grows with

J depending on whether I do or do not impose exchangeability and the index restriction

on p. While the dimension of the model grows large with J in both cases, the curse of

dimensionality is much more severe when exchangeability or the index restriction are not

imposed—indeed to the point where estimation becomes computationally intractable. Thus,

such restrictions might constitute an appealing compromise in settings where the number

of characteristics and/or goods is relatively high and dimension reduction becomes a neces-

sity.

33In particular, the number of Bernstein coefficients for each demand function goes from (m+ 1)
2J+n

x(2)

to (m+ 1)
2J

, where for simplicity I assume the degree m of the polynomials is the same for all arguments.
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Table 1: Number of parameters with and without exchangeability and index restriction on
price

p in Index p not in Index
J Exchangeability No Exchangeability Exchangeability No Exchangeability

3 10 27 405 729
5 45 243 4,455 59,049
7 84 2,187 27,027 4.78×106

10 165 59,049 218,790 3.49×109

Note: Tensor product of univariate Bernstein polynomials of degree 2. nx(2) is assumed to be
zero.

4 Monte Carlo Simulations

This section presents the results of Monte Carlo simulations. There are three goals. First, I

illustrate that the estimation procedure works well with moderate sample sizes—indeed much

smaller than the sample size used in the empirical application and other readily available

supermarket scanner datasets. Second, I show how the general model from Section 2 may

be applied to a variety of settings which include—but are not limited to—standard discrete

choice. Finally, I investigate the performance of the estimator as the number of goods

increases.

I compare the performance of the nonparametric demand approach (NPD for short) to

that of standard methods. Specifically, I take as a benchmark a random coefficient logit

model with normal random coefficients. I refer to this model as BLP. In order to summarize

the results, I plot the own- and cross-price elasticities as a function of the own price, since

these functions are key inputs to many counterfactuals of interest. For instance, the shape

of the own-price elasticity function will turn out to play an important role in determining

the pass-through rate of a tax in the application of Section 5. In each plot, all market-

level variables different from the own-price are fixed at their median values. All simulations

are for the case with J = 2 number of goods (except for Section 4.4), T = 3, 000 number

of markets, and 200 Monte Carlo repetitions. Appendix E presents additional simulation

designs in which the sample size is lower (T = 500), the number of goods is larger than two,

and the index restriction is violated.

4.1 Correctly specified BLP model

First, I generate data from a mixed logit model with normal random coefficients. This

means that the BLP procedure is correctly specified and therefore performs well. On the

other hand, one would expect the nonparametric approach to yield larger standard errors,
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due to the fact that it does not rely on any parametric assumptions. Thus, comparing the

relative performance of the two sheds some light on how large a cost one has to pay for not

committing to a parametric structure when that happens to be correct.

In the simulation, the utility that consumer i derives from good j takes the form

uij = αipj + βxj + ξj + εij

where εij is independently and identically distributed (iid) extreme value across goods and

consumers, αi is distributed N (−1, 0.152) iid across consumers, and I set β = 1. The

exogenous shifters xj are drawn from a uniform [0, 2] distribution,34 whereas the unobserved

quality indices ξj are distributed N (1, 0.152). Excluded instruments zj are drawn from a

uniform [0,1] distribution and I generate prices according to pj = 2 (zj + ηj) + ξj, where ηj

is uniform [0,0.1].35

When estimating demand nonparametrically, I impose the following constraints from

Section 3 and Appendix D: exchangeability, diagonal dominance of the Jacobian of σ, Jδσ,

and monotonicity of σ. Figure 1 shows the own- and cross-price elasticity functions for good

1, respectively. Both the NPD and the BLP confidence bands contain the true elasticity

functions. As expected, the NPD confidence band is larger than the BLP one for the cross-

price elasticity; however, they are still informative. On the other hand, the NPD and the

BLP confidence bands for the own-price elasticity appear to be comparable. Overall, I take

this as suggestive that the penalty one pays when ignoring correct parametric assumptions

in finite samples may not be substantial.

34Note that I drop the superscript on xj , since in the simulations there is only one scalar exogenous shifter
for each good, i.e. there is no x(2). This applies to all the simulations in this section.

35Note that, while I do not specify a supply model, the definition of prices above is such that they are
positively correlated with both the excluded instruments (consistent with their interpretation as cost shifters)
and the unobserved quality (consistent with what would typically happen in equilibrium).
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Figure 1: BLP model: Own-price (left) and cross-price (right) elasticity functions
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One may wonder how robust the nonparametric estimates in Figure 1 are to the choice

of the tuning parameter, i.e. the polynomial degree for the Bernstein approximation. Table

2 shows how the estimator for the median own- and cross-price elasticities performs as the

tuning parameter changes. While, as expected, the bias tends to decrease and the standard

deviation to increase with the polynomial degree, the own- and cross-price elasticities are

pinned down reasonably well for a range of tuning parameters. Appendix E.4 provides more

results suggesting that this does not just hold for the median levels, but also for the entire

elasticity functions.

Table 2: Performance of nonparametric estimator for median own- and cross-price elasticities
as the polynomial degree varies

True Degree Bias S.E. MSE

Own -1.339

6 0.079 0.024 0.007

8 0.035 0.023 0.002

12 0.003 0.028 0.001

Cross 0.569

6 -0.055 0.009 0.003

8 -0.059 0.011 0.004

12 -0.038 0.014 0.002
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4.2 Inattention

Next, I consider a discrete choice setting with inattention. In any given market, I assume

a fraction of consumers ignore good 1 and therefore maximize their utility over good 2 and

the outside option only. The remaining consumers consider all goods. I take the fraction of

inattentive consumers to be 1−Φ (3− p1), where Φ is the standard normal cdf. This implies

that, as the price of good 1 increases, more consumers will ignore good 1, which is consistent

with the idea that consumers might pay more attention to cheaper products (e.g. items

that are on sale might have a special display in supermarkets or options might be filtered

from cheapest to most expensive on a e-commerce platform). Except for the presence of

inattentive consumers, the simulation design is the same as in Section 4.1. In nonparametric

estimation, I impose the following constraints: diagonal dominance of Jδσ and monotonicity

of σ.36 Note that I do not impose exchangeability, since the demand function for good 1 is

now different from that of good 2 due to the presence of inattentive consumers. Accordingly,

in the BLP procedure, I allow different constants for the two goods.

Figure 2 shows the results for good 1. The nonparametric method captures the shape of

both the own- and the cross-price elasticity functions, whereas BLP tends to underestimate

the own-price elasticity and overestimate the cross-price elasticity. Intuitively, BLP does not

capture the fact that, as the price of good 1 increases, more and more consumers ignore good

1. This results in a BLP own-price elasticity that is too low in absolute value. Similarly,

the BLP model does not capture the fact that, as the price of good 2 increases, a fraction of

customers will not switch to good 1 because they ignore it. This leads to a BLP cross-price

elasticity that is too high.

36See Appendix D for a discussion of these constraints.
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Figure 2: Inattention: Own-price (left) and cross-price (right) elasticity functions
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4.3 Complementary goods

I now consider a setting where good 1 and 2 are not substitutes, but complements. I generate

the exogenous covariates and prices as in the previous two simulations,37 but I now let market

quantities be as follows

qj (δ, p) ≡ 10
δj
p2
jpk

j = 1, 2; k 6= j.

Note that qj decreases with pk and thus the two goods are complements. Now define the

function σj as

σj (δ, p) =
qj (δ, p)

1 + q1 (δ, p) + q2 (δ, p)

Unlike in standard discrete choice settings, here σj does not correspond to the market share

function of good j. Instead, it is simply a transformation of the quantities yielding a de-

mand system that satisfies the connected substitutes assumption.38 In the NPD estimation,

I impose the following constraints: monotonicity of σ, diagonal dominance of Jδσ and ex-

changeability.39

Figure 3 shows the results for good 1. Again, NPD captures the shape of the elasticity

functions well. Specifically, note that the cross-price elasticity is slightly negative given

that good 1 and good 2 are complements. On the other hand, the BLP confidence bands

37One difference is that I now take the mean of ξ1 and ξ2 to be 2 instead of 1 in order to obtain shares
that are not too close to zero.

38See also Example 1 in Berry et al. (2013).

39See Section 3.2 and Appendix D for a discussion of these constraints.
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are mostly off target, consistent with the fact that a discrete choice model is not well-

suited to estimate demand for (divisible) complements. In particular, the discrete choice

framework implies that the goods are substitutes and thus forces the cross-price elasticity to

be positive.

Figure 3: Complements: Own-price (left) and cross-price (right) elasticity functions
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4.4 J > 2 Goods

The simulation designs considered so far featured J = 2 goods, which corresponds to the

setting of the empirical application. However, researchers are often interested in modeling

demand for a larger number of goods. To this end, I now investigate the performance of

the estimator as the number of products increases. To tackle the curse of dimensionality

that arises as J grows, I both impose exchangeability and restrict prices (as well as the

x attributes) to enter the indices δ in estimation. As discussed in Section 3.2, both these

constraints substantially reduce the number of parameters to estimate.

The data is generated from the discrete choice dgp from Section 4.1 with one difference:

the coefficients (α, β) on the product attributes (pj, xj) are now drawn from a discrete dis-

tribution and are correlated.40 Because the product attributes have random coefficients, the

index restriction is not satisfied (ξj does not enter the demand functions in the same way

as xj or pj) and thus the nonparametric model I estimate is misspecified. In addition, the

40Specifically, I draw α from the distribution that places equal probabilities on the values −3 and -0.5 and
set β = −α, so that there are two types of consumers, one that places low weights and one that places high
weights on the observable product attributes.
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Table 3: Performance of estimators for median own- and cross-price elasticities as J varies

NPD BLP
J True Bias S.E. MSE Bias S.E. MSE

Own
3 -1.322 -0.017 0.049 0.003 -0.980 0.052 0.963
5 -1.458 -0.065 0.078 0.010 -1.479 0.089 2.195
10 -1.559 0.429 0.088 0.191 -0.857 0.137 0.752

Cross
3 0.277 -0.088 0.022 0.008 0.247 0.217 0.108
5 0.173 -0.015 0.019 0.001 0.050 0.035 0.004
10 0.091 -0.048 0.012 0.003 0.017 0.050 0.003

Note: Mixed logit dgp with correlated discrete random coefficients. Both the NPD and the
BLP model are misspecified.

BLP model I estimate is also misspecified in that it incorrectly assumes that the random

coefficients are normally distributed and independent of each other. Comparing the perfor-

mance of the two estimators then illustrates the relative impact of two different types of

misspecification: (i) that arising from incorrect distributional assumptions in a parametric

model, and (ii) that stemming from incorrectly imposing the index restriction in the pro-

posed nonparametric approach. Table 3 shows that, as the number of goods ranges from 3

to 10, the nonparametric approach consistently outperforms the parametric one in pinning

down the cross-price and especially the own-price elasticities. This suggests that even the

more restrictive version of the nonparametric estimator that imposes both exchangeability

and the index restriction in all the product attributes might be preferable to a parametric

model that makes incorrect distributional assumptions on the unobservables. Appendix E.3

further explores the robustness of the nonparametric approach to increasing violations of

the index restriction, while Appendix E.5 contains estimates for the entire own- and -cross

elasticity functions for the J > 2 case.

5 Application to Tax Pass-Through and Multi-Product

Firm Pricing

In this section, I use the proposed nonparametric procedure to investigate the robustness

of two counterfactual exercises to the parametric specification of demand. First, I quantify

the pass-through of a tax into retail prices. It is well-known that the extent to which a tax

is passed through to consumers hinges on the curvature of demand.41 Therefore, flexibly

capturing the shape of the demand function is crucial to obtaining accurate results.

The second counterfactual concerns the role played by the multi-product nature of retailers

41See, e.g., Weyl and Fabinger (2013).
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in driving up markups. Specifically, a firm simultaneously pricing multiple (substitute) goods

is able to internalize the competition that would occur if those goods were sold by different

firms, thus pushing prices upwards.42 Quantifying the magnitude of this effect is ultimately

an empirical question which again depends on the shape of the demand functions.

5.1 Data

I use data on sales of fresh fruit at stores in California. Specifically, I focus on strawberries,

and look at how consumers choose between organic strawberries, non-organic strawberries

and other fresh fruit, which I pool together as the outside option. While this is a small

product category, it has a few features that make it especially suitable for a clean comparison

between different static demand estimation methods. First, given the high perishability of

fresh fruit, one may reasonably abstract from dynamic considerations on both the demand

and the supply side. Strawberries, in particular, belong to the category of non-climacteric

fruits,43 which means that they cannot be artificially ripened using ethylene.44 This limits

the ability of retailers as well as consumers to stockpile and further motivates ignoring

dynamic considerations in the model. Second, while strawberries are harvested in California

essentially year-round, other fruits—e.g. peaches—are not, which provides some arguably

exogenous supply-side variation in the richness of the outside option relative to the inside

goods. Finally, the large number of store/week observations combined with the limited

number of goods provide an ideal setting for the first application of a nonparametric—and

thus data-intensive—estimation approach.

I instrument for prices using Hausman-type IVs.45 In addition, for the inside goods, I

also use shipping-point spot prices, as a proxy for the wholesale prices faced by retailers.

Besides prices, I include the following shifters in the demand functions: (i) a proxy for the

availability of non-strawberry fruits in any given week; (ii) a measure of consumer tastes for

organic produce in any given store; and (iii) income.

Appendix G provides further details on the construction of the dataset, as well as some

summary statistics and results for the first-stage regressions.

42This is one of the determinants of markups considered by Nevo (2001) in his analysis of the ready-to-eat
cereal industry.

43See, e.g., Knee (2002).

44Unlike climacteric fruits, such as bananas.

45See Hausman (1996).
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5.2 Model

Let 0,1 and 2 denote non-strawberry fresh fruit, non-organic strawberries and organic straw-

berries, respectively. I take the following model to the data

s1 = σ1

(
δstr, δorg, p0, p1, p2, x

(2)
)

s2 = σ2

(
δstr, δorg, p0, p1, p2, x

(2)
)

δstr = β0,str − β1,strx
(1)
str + ξstr

δorg = β0,org + β1,orgx
(1)
org + ξorg

(7)

In the display above, si denotes the share of product i, defined as the quantity of i divided

by the total quantity across the three products, x
(1)
org denotes a measure of taste for organic

products,46 x
(1)
str denotes the availability of other fruit, x(2) denotes income, and (ξstr, ξorg)

denote unobserved store/week level shocks for strawberries and organic produce, respectively.

These unobservables could include, among other things, shocks to the quality of produce at

the store/week level, variation in advertising and/or display across stores and time, and

taste shocks idiosyncratic to a given store’s customer base (possibly varying over time). To

the extent that these factors are taken into account by the store when pricing produce, the

prices (p0, p1, p2) will be econometrically endogenous. In contrast, I assume that the demand

shifters
(
x

(1)
str, x

(1)
org

)
are mean independent of (ξstr, ξorg). Regarding x

(1)
str, this is a proxy for

the total supply of non-strawberry fruits in California in a given week. As such, I view this as

a purely supply-side variable that shifts demand for strawberries inwards by increasing the

richness of the outside option,47 but is independent of store-level shocks.48 As for x
(1)
org, this

is meant to approximate the taste for organic products of a given store’s customer base. One

plausible violation of exogeneity for this variable would arise if consumers with a stronger

preference for organic products (e.g. wealthy consumers) tended to go to stores that sell

better-quality organic produce (e.g. Whole Foods). This could induce positive correlation

between x
(1)
org and ξorg. However, Appendix F shows that many objects of interest, including

the counterfactuals in Section 5.4, are robust to certain forms of endogeneity arising through

this channel. Note that in model (7), the exogenous shifters x
(1)
str and x

(1)
org are not product-

46Specifically, I take the percentage of organic sales over total yearly sales in the lettuce category at the
store.

47For example, in the summer many fresh fruits (e.g, Georgia peaches) are in season, which tends to
increase the appeal of the outside option relative to strawberries.

48The variable x
(1)
str would be endogenous if the quality of strawberries sold in California supermarkets

systematically varied with the harvesting patterns of other fresh fruits. This does not seem to be a first-
order concern given that (i) strawberries are harvested in California essentially year-round; and (ii) more
than 90% of all strawberries produced in the US are grown in California (United States Department of
Agriculture (2017)).
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specific characteristics, but rather market-level variables. As highlighted in Section 2, the

framework of the paper accommodates this.

I compare the nonparametric approach to a standard parametric model of demand. Specif-

ically, I consider the following mixed logit model:

ui,1 = β1 +
(
βp,i + βx(2)x

(2)
)
p1 + βp,0p0 + βparstr x

(1)
str + ξ1 + εi,1

ui,2 = β2 +
(
βp,i + βx(2)x

(2)
)
p2 + βp,0p0 + βparstr x

(1)
str + βparorgx

(2)
org + ξ2 + εi,2

(8)

where (εi,norg, εi,org) are iid extreme value shocks, (ξ1, ξ2) represent unobserved quality of

non-organic and organic strawberries, respectively, and the price coefficient βp,i can take one

of two values across consumers.49

Comparing model (7) to model (8) illustrates the flexibility of the approach proposed in

this paper. The latter model specifies the indirect utility from each good and thus imposes

the implicit (and unrealistic) assumption that each consumer makes a discrete choice between

one unit of non-organic strawberries, one unit of organic strawberries, and one unit of other

fruits. On the other hand, model (7) allows for a broader range of consumer behaviors,

including continuous choice, as I show in Appendix H.2. This is one of the advantages

of targeting the structural demand function directly as opposed to the underlying utility

parameters.

In order to perform the counterfactual exercises in Section 5.4, I need to take a stand on

the supply side. Following the retail literature, I make the assumption that each store acts as

a monopolist when choosing strawberry prices. This model of supply is justified if consumers

do not compare prices across stores when making their strawberry purchase decisions, which

seems to be a reasonable assumption.

5.3 Estimation Results

First, I present the results from the mixed logit model in Table 4.50 All coefficients have the

expected signs and are significantly different from zero (except for the coefficient on taste

for organic products, which is not significant).

49Following the original BLP paper, I also estimated a mixed logit model with a normal random coefficient.
The coefficients—and more importantly—the counterfactuals in Section 5.4 are very similar across the two
specifications. In the paper, I present the two-point distribution because it is slightly more flexible than the
one with normal coefficients. Specifically, the former has three parameters for the distribution of the random
coefficient (the two values plus the probability of, say, the first value), while the latter has two parameters
(the mean and the variance of the normal distribution).

50Estimation of the mixed logit model follows the recommendations in Nevo (2000b) and Dubé et al.
(2012).
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Table 4: Mixed logit estimation results

Variable Type I Type II
Price −7.58

(0.07)
−89.85

(6.53)

Price×Income 0.89
(0.06)

Price other fruit 8.70
(0.23)

Other fruit −0.37
(0.01)

Taste for organic 0.08
(0.06)

Fraction of consumers 0.82
(0.00)

0.18
(0.00)

Note: Model includes product dummies. Asymptotically valid standard errors in parentheses.

Turning to nonparametric estimation, I impose the constraints on the Jacobian of demand

discussed in Section D.2, but do not impose exchangeability. Thus, I allow the organic

and non-organic category to have different demand functions. Further, I choose the degree

of the polynomials for the Bernstein approximation based on a two-fold cross-validation

procedure.51 To summarize the nonparametric estimation results, I show in Table 5 the

median estimated own- and cross-price elasticities for the two inside goods.

Table 5: Nonparametric estimation results

Non-organic Organic
Own-price elasticity −1.402

(0.032)
−5.503

(0.672)

Cross-price elasticity 0.699
(0.044)

1.097
(0.177)

Note: Median values. Asymptotically valid standard errors in parentheses.

In order to compare the fit of the nonparametric model relative to the mixed logit model, I

follow the same two-fold cross-validation approach used to choose the degree for the Bernstein

polynomial approximation. As shown in Table 6, the greater flexibility of the NPD model

translates into a lower average MSE.

51See, e.g., Chetverikov and Wilhelm (2017). Specifically, I partition the sample into two subsamples
of equal size. Then, I estimate the model using the first subsample and compute the mean squared error
(MSE) for the second subsample. I repeat this procedure inverting the role of the two subsamples and use
the average of the two MSEs as the criterion for choosing the polynomial degree. I let the polynomial degree
vary in the set {6, 8, 10, 12, 14} an find that a polynomial of degree 10 delivers the lowest average MSE.
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Table 6: Two-Fold Cross-Validation Results

NPD Mixed Logit
MSE 0.93 2.38

5.4 Counterfactuals

I use the estimates to address two counterfactual questions. First, I consider the effects of

a per-unit tax on prices.52 In each market, I compute the equilibrium prices when a tax is

levied on each of the inside goods individually. I set the tax equal to 25% of the price for

the product in that market. As shown in Table 7, the nonparametric approach delivers a

higher median tax pass-through in the case of non-organic strawberries relative to the mixed

logit model. However, the two confidence intervals overlap. On the contrary, in the case

of organic strawberries, the nonparametric model yields a much lower median pass-through

(33% of the tax) relative to mixed logit (91%) with no overlap in the confidence intervals.

To shed some light on the drivers of this pattern, in Figure 4 I plot uniform confidence

bands for the own-price elasticity of the organic product as a function of its price.53,54 The

own-price elasticity estimated nonparametrically is much steeper than the parametric one.

This is consistent with the pass-through results. All else equal, a retailer facing a steeper

elasticity function has a stronger incentive to contain the price increase in response to the

tax relative to a retailer facing a flatter elasticity function.

Table 7: Effect of a specific tax

NPD Mixed Logit
Non-organic 0.84

(0.17)
0.53

(5·10−3)

Organic 0.33
(0.23)

0.91
(5·10−4)

Note: Median changes in prices as a percentage of the tax. 95% confidence intervals in parentheses.

52As argued in Weyl and Fabinger (2013), the equilibrium outcomes are not affected by whether the tax is
nominally levied on the consumers or on the retailer. This is true for a variety of models of supply, including
monopoly. Therefore, without loss of generality, one may assume the tax is nominally levied on consumers
in the form of a sales tax.

53Own-price on the horizontal axis varies within its interquartile range. I set all other variables at their
median levels, except for δ2 which I set at its 75% percentile. Setting it at its median delivers a similar shape
for the elasticity function, but noisier estimates due to the fact that s2—which shows up in the denominator
of the elasticity—approaches zero as p2 increases.

54The uniform confidence bands are obtained by applying the score bootstrap procedure described in CC.

28



Figure 4: Organic strawberries: Own-price elasticity function
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As a second counterfactual experiment, I quantify the “portfolio effect.” Specifically, I

ask what prices would be charged if, in each market, there were two competing retailers,

one selling organic strawberries and the other selling non-organic strawberries, instead of a

two-product monopolist. I assume the two retailers compete on prices, compute the resulting

equilibrium and compare it to the observed (monopoly) prices.55 This type of exercise is

instrumental to assessing the impact of large retailers on consumer prices. Specifically, it

provides a measure of the upwards pressure on prices given by the fact that a retailer selling

multiple products is able to partially internalize price competition. On the other hand,

large retailers might tend to charge lower prices due to, among other things, economies of

scale or loss-leader behavior (see , e.g., Lal and Matutes (1994), Lal and Villas-Boas (1998)

and Chevalier et al. (2003)). Quantifying these different effects on prices is ultimately an

empirical question that requires reliable estimates of demand.

Table 8 reports the difference between the observed prices and the prices that would

arise in the counterfactual world with two single-product retailers. The parametric model

in (8)—labeled Mixed Logit (I)—and the nonparametric approach yield very similar results.

In the median market, both models attribute around 10% and just above 40% of markups

55Since this counterfactual exercise amounts to splitting a monopoly into a duopoly, it is related to the
literature on merger analysis. See, e.g., Nevo (2000a) and Jaffe and Weyl (2013) and references therein.
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Table 8: Effect of multi-product pricing

NPD Mixed Logit (I) Mixed Logit (II) Mixed Logit (III)
Non-organic 0.10

(3·10−3)
0.08

(1·10−3)
0.20

(8·10−4)
0.21

(2·10−3)

Organic 0.43
(6·10−3)

0.42
(2·10−3)

0.54
(9·10−4)

0.55
(1·10−3)

Note: Median difference between the observed prices and the optimal prices chosen by two competing
retailers as a percentage of markups. 95% confidence intervals in parentheses. Mixed Logit (I) refers to
the model in (8). Mixed Logit (II) refers to the model in (8) with β1 = β2; Mixed Logit (III) refers to
the model in (8) with β1 = β2 = 0.

to the portfolio effect for non-organic and organic strawberries, respectively. In other words,

markups would be 10% to 40% lower in the scenario with two competing single-product

retailers. One may wonder how robust this result is to modifications of the parametric

specification. To this end, I estimate two additional models—labeled Mixed Logit (II) and

(III)—that restrict the constants in model (8) to be the same and to be zero, respectively.

Thus, while Mixed Logit (I) allows for product-specific dummies, Mixed Logit (II) only

allows for a dummy for the inside goods jointly, and Mixed Logit (III) does not allow for any

unobserved systematic differences between the inside goods or between the inside and the

outside goods. The two restricted models tend to attribute a larger share of markups to the

portfolio effect relative to the more flexible parametric specification or the nonparametric

approach. This suggests that allowing for product specific dummies is important in this

context and points to a wider use of the approach developed in this paper as a tool for

selecting among different possible (parametric) models.

6 Conclusion

In this paper, I develop and apply a nonparametric approach to estimate demand in differen-

tiated products markets. The methodology relaxes several arguably arbitrary restrictions on

consumer behavior and preferences that are embedded in standard discrete choice models. I

achieve this by estimating the demand functions nonparametrically and leveraging a number

of constraints from consumer theory. Further, I provide primitive conditions sufficient to

obtain valid standard errors for quantities of interest.

I then use the approach as a benchmark to test the robustness of counterfactual outcomes

given by standard parametric methods. While I find that a standard model yields a higher tax

pass-through for one product relative to the nonparametric approach, an exercise designed to

quantify the upward pressure on prices given by the multi-product nature of sellers suggests

that a flexible enough parametric model captures the patterns in the data well.

This paper opens several avenues for future research. First, it would be interesting to ex-
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plore additional ways to tackle the curse of dimensionality and thus enhance the applicability

of the approach. For example, in markets with dozens of goods the current methodology

would typically be unfeasible. However, if good j is effectively only competing with a handful

of other products, then the remaining products’ prices and characteristics do not enter good

j’s demand function, which would substantially reduce the dimensionality of the model.

Therefore, developing a data-driven way of selecting the relevant set of competitors for a

given product appears to be a promising line of research. Second, while the counterfactual

analysis in this paper suggest that the nonparametric approach may be used to guide the

choice among parametric specifications, additional work is required to make this argument

formal. In this respect, the statistics literature on focused model selection might provide

valuable insights. Finally, it would be interesting to apply the methodology proposed here

to a broader range of empirical settings. For instance, a recent paper by Adao et al. (2017)

shows that many questions of interest in international trade may be addressed by considering

an economy where countries directly exchange factors of production instead of goods. While

their identification argument is nonparametric, they estimate a parametric model in practice.

Given that production factors are low dimensional, pursuing a more flexible approach seems

feasible in their setting. One could then assess how robust the results are to the maintained

parametric assumptions.
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Appendix A provides some details on Bernstein polynomials. Appendix B presents the assumptions for

Theorems 1, 2, 3, and the proofs for Theorems 2 and 3. Online Appendix C contains the proof for Theorem

1 and supplementary results for inference. Online Appendix D discusses additional economic constraints and

shows how to enforce them in estimation. Online Appendix E presents the results of additional Monte Carlo

simulations. Online Appendix F discusses violations of the exogeneity restriction maintained throughout

the paper. Online Appendix G discusses the construction of the data and contains descriptive statistics.

Finally, Online Appendix H provides two possible micro-foundations for the demand model estimated in the

empirical application.

Appendix A: Bernstein Polynomials

A.1 Approximation Result

For a positive integer m, the Bernstein basis functions are defined as

bv,m (u) =

(
m

v

)
uv (1− u)

m−v
,

where v = 0, 1, ...,m and u ∈ [0, 1]. The integer m is called the degree of the Bernstein basis. In order to

approximate a univariate function on the unit interval, one may take a linear combination of the Bernstein

basis functions
m∑
v=0

θv,mbv,m (u) ,

for some coefficients (θv,m)
m
v=0. Similarly, for a function of N variables living in the [0, 1]

N
hyper-cube, one

may use a tensor-product polynomial of the form

m∑
v1=0

· · ·
m∑

vN=0

θv1,··· ,vN ,mbv1,m (u1) · · · bvN ,m (uN )

Note that here I assume that the degree m is the same for each dimension n = 1, ..., N . This is not needed,

but I only discuss this case for notational convenience.

Historically, Bernstein polynomials were introduced to approximate an arbitrary function g by a sequence

of smooth functions. This is motivated by the following result.56

Lemma 2. Let g be a bounded real-valued function on [0, 1]
N

and define

Bm [g] =

m∑
v1=0

· · ·
m∑

vN=0

g
(v1

m
, · · · , vN

m

)
bv1,m (u1) · · · bvN ,m (uN )

Then,

sup
u∈[0,1]N

|Bm [g] (u)− g (u) | → 0

as m→∞.

56See, e.g., Chapter 2 of Gal (2008).
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This means that, for an appropriate choice of the coefficients, the sequence of Bernstein polynomials

provide a uniformly good approximation to any bounded function on the unit hyper-cube as the degree m in-

creases. Specifically, the approximation in Lemma 2 is such that the coefficient on the bv1,m (u1) · · · bvN ,m (uN )

term corresponds to the target function evaluated at
[
v1
m , · · · ,

vN
m

]
, for vi = 0, ...,m and i = 1, ..., N .

One important implication of this result is that, for large m, any property satisfied by the target function

g at the grid points
{{

v1
m , · · · ,

vN
m

}m
vi=0

}N
i=1

should be inherited by the corresponding Bernstein coefficients

in order for the resulting approximation to be uniformly good. This gives us necessary conditions on the

Bernstein coefficients for large m.

A.2 Imposing Exchangeability

I now provide more details on how to impose the exchangeability restriction discussed in Section 3.2 (see

equation (6)). As in the previous section, for simplicity I consider an approximation via the tensor-product

of univariate Bernstein polynomials all of the same degree m. The case with tensor-product of univari-

ate polynomials of differing degrees makes the notation heavier, but is handled in the same way. First,

as in the main text, I consider the case where x(2) is a vector of product-specific characteristics each

with dimension ñx(2) . With J goods, the overall degree of the approximation is then (2J + ñx(2))m.

Let vs ≡ (vs1, · · · , vsJ) be a J−vector of integers between 0 and m, and define vp ≡ (vp1 , · · · , v
p
J), and

vx ≡ (vx1 , · · · , vxJ) similarly. Next, let θj (vs1, · · · , vsJ , v
p
1 , · · · , v

p
J , v

x
1 , · · · , vxJ ;m) denote the coefficient on the

term ΠJ
k=1bvsk,m (sk) bvpk,m (pk) bvxk ,m

(
x

(2)
k

)
in the Bernstein approximation for σ−1

j . Note that, if the inverse

demand system σ−1 is exchangeable, Lemma 2 implies that the Bernstein coefficients should satisfy an anal-

ogous property. To define this precisely, let π : {1, ..., J} 7→ {1, ..., J} be any permutation, π−1 be its inverse,

and π̃ denote the function that, for any J-vector y, returns the reshuffled version of y obtained by permuting

its subscripts according to π, i.e.

π̃ (y1, ..., yJ) =
[
yπ(1), ..., yπ(J)

]
π̃−1 is defined similarly for π−1. Then, the following property holds for large m

θj (vs, vp, vx;m) = θπ(j)

(
π̃−1 (vs) , π̃−1 (vp) , π̃−1 (vx) ;m

)
(9)

for all vsk, v
p
k, v

x
k ∈ {0, 1, · · · ,m}. This is a set of linear constraints on the Bernstein coefficients that can be

easily be enforced. In fact, one could embed the constraint into the very definition of the vector of Bernstein

coefficient, which would effectively reduce the dimension of the program to be solved in estimation (equation

(4)).

Without exchangeability, the number of coefficients to estimate for each demand function is equal to

(m+ 1)
J(2+ñ

x(2)). In contrast, when exchangeability is imposed, that number is
[

(m+J−1)!
(J−1)!(m)! (m+ 1)

]2+ñ
x(2)

.

To see this, note that θj in (9) has J
(
2 + ñx((2))

)
arguments, of which 2 + ñx(2) are “own” argument (i.e.

j′s share, price and x(2) attributes) and (J − 1) (2 + ñx(2)) are other goods’ arguments. Exchangeability of

σ−1
j means that the function is invariant to rearranging the rival goods’s arguments, for any given value of

the own arguments. Now, the number of ways (J − 1) numbers can be drawn with replacement from a set

of size m+ 1 is (m+J−1)!
(J−1)!(m)! .

57 Repeating this for m+ 1 possible values of each own argument and for 2 + ñx(2)

arguments per good (share, price and x(2) attributes), one obtains the total number of coefficients under

57This is sometimes called a multicombination.
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exchangeability.

Finally, I consider the case where x(2) is a vector of market-level variables that are not product-specific

(e.g. income). The corresponding definition of exchangeability was given in footnote 30. In this case, the

analog of equation (9) is

θj (vs, vp, vx;m) = θπ(j)

(
π̃−1 (vs) , π̃−1 (vp) , vx;m

)
(10)

for all vsk, v
p
k, v

x
k ∈ {0, 1, · · · ,m}. Again, this is a set of linear constraints on the Bernstein coefficients that

can be easily be enforced.

Appendix B: Inference

This appendix contains all the notation and assumptions for the inference results in Section 3 of the paper,

as well as the proofs for Theorem 2 and 3.

B.1 Setup and Notation

For simplicity, we focus on the case where there are no additional exogenous covariates x(2) in the demand

system. Accordingly, we drop x(2) and use x to denote what was denoted by x(1) in the main text. As

pointed out by CC (Section 3.3), allowing for x(2) is straightforward and does not change anything in the

implementation of the estimator.

We first introduce some notation that is used throughout this appendix. We denote by S,P,Z,Ξ the

support of S, P, Z, ξ, respectively. Also, we let W ≡ (X,Z) denote the exogenous variables and W denote

its support. Similarly, we let Y ≡ (S, P ) denote the arguments of the unknown functions and Y denote its

support. For every y ∈ Y, let h0 (y) ≡ [h0,1 (y) , ..., h0,J (y)]
′ ≡

[
σ−1

1 (y) , ...σ−1
J (y)

]′
, so that the estimating

equations become

xj = h0,j (y) + ξj , j ∈ J . (11)

We assume that, for j ∈ J , h0,j ∈ H, where H is the Hölder ball of smoothness r, and we endow it with

the norm || · ||∞ defined by ||h||∞ ≡ maxj∈J ||hj ||1,∞ for a function h = [h1, ..., hJ ], where ||hj ||1,∞ denotes

the sup-norm for a scalar-valued function hj . We also let ||v|| denote the Euclidean norm of a vector v,

||M|| denote the norm of an m1−by−m2 matrix M defined as ||M|| ≡ sup {||Mv|| : v ∈ Rm2 , ||v|| = 1}, and

(M)
−
l ≡ (M′M)

−1
M′ be the left-inverse of a matrix M.

Further, we let
{
ψ

(i)
1,Mi

, ..., ψ
(i)
Mi,Mi

}
be the collection of basis functions used to approximate h0,i for i ∈ J , and

let M =
∑J
j=1Mj be the dimension of the overall sieve space for h. Similarly, we let

{
a

(i)
1,Ki

, ..., a
(i)
Ki,Ki

}
be

the collection of basis functions used to approximate the instrument space for h0,i, and let and K =
∑J
j=1Kj .

Next, letting diag (mat1, ...,matJ) ≡


mat1 0d1,r×d2,c · · · 0d1,r×dJ,c

0d2,r×d1,c mat2 · · · 0d2,r×dJ,c
...

...
. . .

...

0dJ,r×d1,c 0dJ,r×d2,c · · · matJ

 for matrices matj ∈ Rdj,r×dj,c
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with j ∈ J , we define, for i ∈ J

ψ
(i)
Mi

(y) =
(
ψ

(i)
1,Mi

(y) , ..., ψ
(i)
Mi,Mi

(y)
)′

Mi − by− 1

ψM (y) = diag
(
ψ

(1)
M1

(y) , ..., ψ
(J)
MJ

(y)
)

M − by− J

Ψ(i) =
(
ψ

(i)
Mi

(y1) , ..., ψ
(i)
Mi

(yT )
)′

T − by−Mi

a
(i)
Ki

(w) =
(
a

(i)
1,Ki

(w) , ..., a
(i)
Ki,Ki

(w)
)′

Ki − by− 1

aK (w) = diag
(
a

(1)
K1

(w) , ..., a
(J)
KJ

(w)
)

K − by− J

A(i) =
(
a

(i)
Ki

(w1) , ..., a
(i)
Ki

(wT )
)′

T − by−Ki

A = diag
(
A(1), ..., A(J)

)
JT − by−K

Li = E
(
a

(i)
Ki

(Wt)ψ
(i)
Mi

(Yt)
′
)

Ki − by−Mi

L = diag (L1, ..., LJ) K − by−M

L̂i =
A′(i)Ψ(i)

T
Ki − by−Mi

L̂ = diag
(
L̂1, ..., L̂J

)
K − by−M

GA,i = E
(
a

(i)
Ki

(Wt) a
(i)
Ki

(Wt)
′
)

Ki − by−Ki

GA = diag (GA,1, ..., GA,J) K − by−K

ĜA,i =
A′(i)A(i)

T
Ki − by−Ki

ĜA = diag
(
ĜA,1, ..., ĜA,J

)
K − by−K

Gψ,i = E
(
ψ

(i)
Mi

(Yt)ψ
(i)
Mi

(Yt)
′
)

Mi − by−Mi

Gψ = diag (Gψ,1, ..., Gψ,J) M − by−M

X(i) = (xi1, ..., xiT )
′

T − by− 1

X =
(
X ′(1), ..., X

′
(J)

)′
JT − by− 1

Also, we let, for j, k ∈ J ,

Ωjk = Ω′kj = E
(
ξjtξkta

(j)
Kj

(Wt) a
(k)
Kk

(Wt)
′
)

Kj − by−Kk

Ω =


Ω11 Ω12 · · · Ω1J

Ω21 Ω22 · · · Ω2J

...
...

. . . · · ·
ΩJ1 ΩJ2 · · · ΩJJ

 K − by−K
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and, similarly,

Ω̂jk = Ω̂′kj =
1

T

T∑
t=1

ξ̂jtξ̂kta
(j)
Kj

(wt) a
(k)
Kk

(wt)
′

Kj − by−Kk

Ω̂ =


Ω̂11 Ω̂12 · · · Ω̂1J

Ω̂21 Ω̂22 · · · Ω̂2J

...
...

. . . · · ·
Ω̂J1 Ω̂J2 · · · Ω̂JJ

 K − by−K

where ξ̂jt = xjt − ĥj (yt).

For i ∈ J , we define

ζA,i ≡ sup
w∈W

∣∣∣∣∣∣G−1/2
A,i a

(i)
Ki

(w)
∣∣∣∣∣∣ ζψ,i ≡ sup

y∈Y

∣∣∣∣∣∣G−1/2
ψ,i ψ

(i)
Mi

(y)
∣∣∣∣∣∣ ζi ≡ ζA,i ∨ ζψ,i

and let ζ ≡ maxj∈J ζj . The rate at which ζ diverges to infinity with the sample size will play a role in the

proofs. When splines (including Bernstein polynomials) are used for aK and ψM , we have ζ = O(
√
M) (see,

e.g., Newey (1997).)

As in CC, we use the following sieve measure of ill-posedness, for i ∈ J ,

τ
(i)
Mi
≡ sup
hi∈Ψ̃Mi :hi 6=0

 E
[
(hi (Y ))

2
]

E
[
(E [hi (Y ) |W ])

2
]


1/2

where Ψ̃Mi is the closed linear span of
{
ψ

(i)
Mi

}
and we let τM ≡ maxj∈J τ

(j)
Mj

. The rate at which τM diverges

to infinity may be viewed as a measure of how difficult the estimation problem is. In order to formalize

this, we will need appropriate notation. Specifically, letting aT and bT be sequences of positive numbers, the

notation aT . bT means lim supT→∞ aT/bT <∞, and the notation aT � bT means aT . bT and bT . aT .

Next, for every 2J−vector of integers α̃ and function g : Y 7→ R, we let |α̃| ≡
∑2J
j=1 α̃j and ∂α̃g ≡

∂|α̃|g

∂α̃1s1···∂α̃J sJ∂α̃J+1p1···∂α̃2J pJ
. Similarly, for h = [h1, ..., hJ ] : Y 7→ RJ , we let ∂α̃h ≡

[
∂α̃h1, · · · , ∂α̃hJ

]
.

The (unconstrained) sieve NPIV estimator ĥi has the following closed form

ĥi (y) = ψ
(i)
Mi

(y)
′
θ̂i

for

θ̂i =

[
Ψ′(i)A(i)

(
A′(i)A(i)

)−
A′(i)Ψ(i)

]−
Ψ′(i)A(i)

(
A′(i)A(i)

)−
A′(i)X(i)

We write this in a more compact form as

θ̂i =
1

T

[
L̂′iĜ

−
A,iL̂i

]−
L̂′iĜ

−
A,iA

′
(i)X(i)

Stacking the J estimators, we write

θ̂ =
(
θ̂′1, · · · , θ̂′J

)′
=

1

T

[
L̂′Ĝ−AL̂

]−
L̂′Ĝ−AA

′X
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and

ĥ (y) = ψM (y)
′
θ̂

Next, letting H0,j ≡ (h0,j (y1) , ..., h0,j (yT ))
′

and H0 ≡
(
H ′0,1, · · · , H ′0,J

)′
, we define

θ̃ =
1

T

[
L̂′Ĝ−AL̂

]−
L̂′Ĝ−AA

′H0 (12)

and let

h̃ (y) = ψM (y)
′
θ̃

For any functional f : H 7→ R and any (h, v) ∈ H×H, we let Df (h) [v] ≡ ∂f(h+τv)
∂τ

∣∣∣∣∣
τ=0

denote the pathwise

derivative of f at h in the direction v (if it exists). Next, letting vecg,J,j be the column J−vector valued

function that returns all zeros except for the j−th element, where it returns the function g, we define

Df (h)
[
ψ

(j)
Mj

]
≡
(
Df (h)

[
vec

ψ
(j)
1,Mj

,J,j

]
, ..., Df (h)

[
vec

ψ
(j)
Mj,Mj

,J,j

])′
Mj − by− 1

Df (h) [ψM ] ≡
(
Df (h)

[
ψ

(1)
M1

]′
, ...Df (h)

[
ψ

(J)
MJ

]′)′
M − by− 1

Finally, we let

v2
T (f) = Df (h0) [ψM ]′

(
L′G−1

A L
)−1

L′G−1
A ΩG−1

A L
(
L′G−1

A L
)−1

Df (h0) [ψM ]

denote the sieve variance for the estimator f
(
ĥ
)

of the functional f , and let the sieve variance estimator

be

v̂2
T (f) = Df

(
ĥ
)

[ψM ]′
(
L̂′Ĝ−1

A L̂
)−1

L̂′Ĝ−1
A Ω̂Ĝ−1

A L̂
(
L̂′Ĝ−1

A L̂
)−1

Df
(
ĥ
)

[ψM ] (13)

Because the functionals of interest are defined for fixed (s, p), they will typically be slower than
√
T−estimable

(or “irregular”), i.e. v2
T (f)↗∞ as T →∞. Therefore, we tailor the proofs to this case.

B.2 Assumptions for Theorem 1

This section collects the assumptions for Theorem 1. The proof can be found in online Appendix C.

Assumption 2. The variables (Xt, Zt, Pt, ξt) are independent and identically distributed across markets.

Assumption 3. For all j, k ∈ J , j 6= k:

(i) supw∈W E
(
ξ2
j |w
)
≤ σ2 <∞;

(ii) infw∈W E
(
ξ2
j |w
)
≥ σ2 > 0;

(iii) supw∈W E (|ξjξk||w) ≤ σcov <∞ ;

(iv) supw∈W E
[
ξ2
j I
{∑J

i=1 |ξi| > ` (T )
}
|w
]

= o (1) for any positive sequence ` (T )↗∞;

(v) E
(
|ξj |2+γ(1)

)
<∞ for some γ(1) > 0;

(vi) E
(
|ξjξk|1+γ(2)

)
<∞ for some γ(2) > 0.
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Assumption 4. (i) τMζ
√
M(logM)/T = o (1);

(ii) ζ(2+γ(1))/γ(1)√(logK)/T = o (1) and ζ(1+γ(2))/γ(2)√(logK)/T = o (1), where γ(1), γ(2) > 0 are defined in

Assumption 3(v)-3(vi);

(iii) T ≥ K ≥M , K �M , and ζ = O
(√

M
)

.

Assumption 5. The basis used for the instrument space is the same across all goods, i.e. Kj = Kk and

a
(j)
Kj

(·) = a
(k)
Kk

(·) for all j, k ∈ J .

Assumption 6. ||ĥ− h0||∞ = op (1).

Assumption 7. Let HT ⊂ H be a sequence of neighborhoods of h0 with ĥ, h̃ ∈ HT wpa1 and assume that

the sieve variance vT (f) for the functional f is strictly positive for every T . Further, assume that:

(i) v 7→ Df (h0) [v] is a linear functional and there exists α with |α| ≥ 0 s.t. |Df (h0) [h − h0]| .
||∂αh− ∂αh0||∞ for all h ∈ HT ;

There are α1, α2 with |α1|, |α2| ≥ 0 s.t.

(ii)

∣∣∣∣∣f (ĥ)− f (h0)−Df (h0) [ĥ− h0]

∣∣∣∣∣ . ||∂α1 ĥ− ∂α1h0||∞||∂α2 ĥ− ∂α2h0||∞;

(iii)
√
T

vT (f)

(
||∂α1 ĥ− ∂α1h0||∞||∂α2 ĥ− ∂α2h0||∞ + ||∂αh̃− ∂αh0||∞

)
= Op (ηT ) for a nonnegative se-

quence ηT such that ηT = o (1);

(iv) 1
vT (f)

∣∣∣∣∣∣ (Df (ĥ) [ψM ]
′ −Df (h0) [ψM ]

′
)(

G
−1/2
A L

)−
l

∣∣∣∣∣∣ = op (1).

Discussion of assumptions. Assumption 3 corresponds to Assumption 2 in CC, modified to account

for the fact that my model has J equations and J error terms. Assumption 4(i) corresponds to the con-

dition imposed by CC in Theorem D.1, whereas 4(ii) is similar to Assumption 3(iii) in CC. Assumption

4(iii) restricts the growth rates of the sieve spaces for the endogenous variables and the instruments. The

requirement that T ≥ K ≥M simply says that one needs more instruments than endogenous variables and

that both should be smaller than the sample size, analogously to parametric models. On the other hand, the

requirement that ζ = O
(√

M
)

has more bite. It holds, for instance, when splines are used to approximate

the unknown functions (see, e.g., Newey (1997)). I impose it since in practice I advocate using Bernstein

polynomials, which are a special case of splines. Assumption 5 is not necessary but I impose it for simplicity.

Assumption 6 requires ĥ to be a consistent estimator. CC provide sufficient conditions for it and characterize

the rate of convergence. Assumption 7 corresponds to the sufficient conditions in Remark 4.1 of CC.

B.3 Theorem 2: Price elasticity functionals

We now focus on the case where the functional f is the own-price price elasticity of good 1 at a fixed (s, p) ≡
(s1, s2, p1, p2) and Bernstein polynomials are used for both the endogenous variables and the instruments.

The goal is to provide sufficient, lower-level conditions for Theorem 1. Analogous arguments hold for the

own-price elasticity of good 2 and for the cross-price elasticities.

The functional of interest takes the form

fε (h0) = −p1

s1

∂h0,2(s,p)
∂s2

∂h0,1(s,p)
∂p1

− ∂h0,1(s,p)
∂s2

∂h0,2(s,p)
∂p1

∂h0,1(s,p)
∂s1

∂h0,2(s,p)
∂s2

− ∂h0,1(s,p)
∂s2

∂h0,2(s,p)
∂s1

≡ −p1

s1

N1 −N2

D1 −D2
(14)

Theorem 2 maintains the following assumption.
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Assumption 8. (i) P has bounded support and (P, S) have densities bounded away from 0 and ∞;

(ii) The basis used for both the endogenous variables and the instruments is tensor-product Bernstein polyno-

mials. Further, the univariate Bernstein polynomials for the endogenous variables all have the same degree

M 1/4;

(iii) The unknown functions h0 = [h0,1, h0,2]
′

belong to the Hölder ball of smoothness r ≥ 8 and finite radius;

(iv) M
2+γ(1)

2γ(1)

√
log T
T = o (1) and M

1+γ(2)

2γ(2)

√
log T
T = o (1), where γ(1), γ(2) > 0 are defined in Assumption

3(v)-3(vi);

(v)
√
T

vT (fε)
×
(
M

3−r
4 + τMM

9−r
4√

T
+ τ2

MM
3 logM

T

)
= o (1).

Discussion of Assumption 8. Assumptions 8(i), 8(iii) and 8(iv) are regularity conditions needed

to apply the sup-norm rate results in CC.58 8(ii) is assumed for simplicity but it is not necessary. 8(v)

corresponds to the second part of Assumption CS(v) in CC and is used to verify Assumption 7. More

concrete sufficient conditions for Assumptions 8(iv) and 8(v) may be provided in specific settings. For

example, Lemma 3 below gives sufficient conditions for the mildly ill-posed case.59

We now provide a proof of Theorem 2.

Proof of Theorem 2. We prove the statement by showing that the assumptions of Theorem 1 hold.

Assumptions 2, 3, 4(iii), 5 and 6 are maintained. Assumption 4(i) is implied by Assumptions 4(iii) and

8(v), and Lemma 8. Similarly, Assumption 4(ii) is implied by Assumptions 4(iii) and 8(iv).

We now verify Assumption 7. In what follows, unless otherwise specified, it is assumed that the arguments

of all functions are (s, p) and the dependence is suppressed for notational convenience.

7(i) The pathwise derivative of fε in the direction v ≡ (v1, v2)
′ ∈ H is

Dfε (h0) [v] ≡ ∂fε (h0 + τv)

∂τ

∣∣∣∣∣
τ=0

=
p1

s1

(
C1
∂v2

∂s2
+ C2

∂v1

∂s2
+ C3

∂v1

∂p1
+ C4

∂v2

∂p1
+ C5

∂v2

∂s1
+ C6

∂v1

∂s1

)
(15)

where

C1 = −
(D1 −D2)

∂h0,1

∂p1
− (N1 −N2)

∂h0,1

∂s1

(D1 −D2)
2 C2 =−

− (D1 −D2)
∂h0,2

∂p1
+ (N1 −N2)

∂h0,2

∂s1

(D1 −D2)
2

C3 = −
∂h0,2

∂s2

(D1 −D2)
C4 =

∂h0,1

∂s2

(D1 −D2)

C5 = −
(N1 −N2)

∂h0,1

∂s2

(D1 −D2)
2 C6 =

(N1 −N2)
∂h0,2

∂s2

(D1 −D2)
2

Therefore, Dfε (h0) : H 7→ R is a linear functional.

58CC establish sup-norm rate results for the case where the unknown function is approximated using B-
splines, among others. Since Bernstein polynomials are a special case of splines (see, e.g., Schumaker (2007)),
their results apply to the setting considered here.

59See CC (p.15) for a formal definition of mild and severe ill-posedness.
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Next, note that, for any h = [h1, h2] ∈ HT ,∣∣∣∣∣∂h1

∂s1
− ∂h0,1

∂s1

∣∣∣∣∣ ≤
∫ s2

−∞

∫ p1

−∞

∣∣∣∣∣ ∂3h1

∂s1∂s2∂p1

(
s1, s2, p1

, p2

)
− ∂3h0,1

∂s1∂s2∂p1

(
s1, s2, p1

, p2

) ∣∣∣∣∣ds2dp1

≤ constant

∣∣∣∣∣
∣∣∣∣∣ ∂3h1

∂s1∂s2∂p1
− ∂3h0,1

∂s1∂s2∂p1

∣∣∣∣∣
∣∣∣∣∣
1,∞

where the first inequality follows from the triangle inequality and the fundamental theorem of calculus, and

the second inequality follows from assumption 8(i) and the fact that the support of (S1, S2) is the unit

simplex and thus trivially bounded. By a similar argument, we can bound all the other derivatives in (15)

and write

Dfε (h0) [h− h0] ≤ constant×max


∣∣∣∣∣
∣∣∣∣∣ ∂3h1

∂s1∂s2∂p1
− ∂3h0,1

∂s1∂s2∂p1

∣∣∣∣∣
∣∣∣∣∣
1,∞

,

∣∣∣∣∣
∣∣∣∣∣ ∂3h2

∂s1∂s2∂p1
− ∂3h0,2

∂s1∂s2∂p1

∣∣∣∣∣
∣∣∣∣∣
1,∞


≡ constant

∣∣∣∣∣
∣∣∣∣∣ ∂3h

∂s1∂s2∂p1
− ∂3h0

∂s1∂s2∂p1

∣∣∣∣∣
∣∣∣∣∣
∞

which shows that Assumption 7(i) holds with α = [1, 1, 1, 0].

7(ii) By the mean value theorem,

fε

(
ĥ
)
− fε (h0) =

p1

s1

[
C̃1

(
∂ĥ2

∂s2
− ∂h0,2

∂s2

)
+ C̃2

(
∂ĥ1

∂s2
− ∂h0,1

∂s2

)
+ C̃3

(
∂ĥ1

∂p1
− ∂h0,1

∂p1

)
+ C̃4

(
∂ĥ2

∂p1
− ∂h0,2

∂p1

)

+ C̃5

(
∂ĥ2

∂s1
− ∂h0,2

∂s1

)
+ C̃6

(
∂ĥ1

∂s1
− ∂h0,1

∂s1

)]

C̃1 = −

(
D̃1 − D̃2

)
∂h̃1

∂p1
−
(
Ñ1 − Ñ2

)
∂h̃1

∂s1(
D̃1 − D̃2

)2 C̃2 =−
−
(
D̃1 − D̃2

)
∂h̃2

∂p1
+
(
Ñ1 − Ñ2

)
∂h̃2

∂s1(
D̃1 − D̃2

)2

C̃3 = −
∂h̃2

∂s2(
D̃1 − D̃2

) C̃4 =
∂h̃1

∂s2(
D̃1 − D̃2

)
C̃5 = −

(
Ñ1 − Ñ2

)
∂h̃1

∂s2(
D̃1 − D̃2

)2 C̃6 =

(
Ñ1 − Ñ2

)
∂h̃2

∂s2(
D̃1 − D̃2

)2

where
[
∂h̃1

∂p1
, ∂h̃1

∂s1
, ∂h̃1

∂s2
, ∂h̃2

∂p1
, ∂h̃2

∂s1
, ∂h̃2

∂s2

]
lies on the line segment between

[
∂h0,1

∂p1
,
∂h0,1

∂s1
,
∂h0,1

∂s2
,
∂h0,2

∂p1
,
∂h0,2

∂s1
,
∂h0,2

∂s2

]
and[
∂ĥ1

∂p1
, ∂ĥ1

∂s1
, ∂ĥ1

∂s2
, ∂ĥ2

∂p1
, ∂ĥ2

∂s1
, ∂ĥ2

∂s2

]
and Ñ1, Ñ2, D̃1, D̃2 are defined accordingly. Therefore, after some algebra , we

obtain∣∣∣fε (ĥ)− fε (h0)−Dfε (h0)
[
ĥ− h0

] ∣∣∣ ≤ F1

∣∣∣∂ĥ2

∂s2
− ∂h0,2

∂s2

∣∣∣+ F2

∣∣∣∂ĥ1

∂s2
− ∂h0,1

∂s2

∣∣∣+ F3

∣∣∣∂ĥ1

∂p1
− ∂h0,1

∂p1

∣∣∣
+ F4

∣∣∣∂ĥ2

∂p1
− ∂h0,2

∂p1

∣∣∣+ F5

∣∣∣∂ĥ2

∂s1
− ∂h0,2

∂s1

∣∣∣+ F6

∣∣∣∂ĥ1

∂s1
− ∂h0,1

∂s1

∣∣∣
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where (Fi)
6
i=1 are linear combinations of ||∂α̃ĥ− ∂α̃h0||∞ for vectors α̃ with |α̃| = 1. Thus,∣∣∣fε (ĥ)− fε (h0)−Dfε (h0)

[
ĥ− h0

] ∣∣∣ ≤ constant||∂α1 ĥ− ∂α1h0||∞||∂α2 ĥ− ∂α2h0||∞

for some α1, α2 with |α1| = |α2| = 1.

7(iii) Given the choice of α, α1, α2 above and by Corollary 3.1 in CC, we have∣∣∣∣∣∣∂α1 ĥ− ∂α1h0

∣∣∣∣∣∣
∞

∣∣∣∣∣∣∂α2 ĥ− ∂α2h0

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∂αh̃− ∂αh0

∣∣∣∣∣∣
∞

= Op

([
M

1−r
4 + τMM

3/4
√

logM/T
]2)

+ Op

(
M

3−r
4

)
Thus, Assumption 7(iii) is implied by Assumption 8(v).

7(iv) By Remark 4.1 in CC, a sufficient condition for Assumption 7(iv) is

Tiv,ε ≡
τM

√∑M
m=1

(
Dfε

(
ĥ
) [(

G
−1/2
ψ ψM

)
m

]
−Dfε (h0)

[(
G
−1/2
ψ ψM

)
m

])2

vT (fε)
= op (1) (16)

where
(
G
−1/2
ψ ψM

)
m

denotes the m−th row of the matrix G
−1/2
ψ ψM . Note that, after some algebra, we can

write Dfε

(
ĥ
) [(

G
−1/2
ψ ψM

)
m

]
− Dfε (h0)

[(
G
−1/2
ψ ψM

)
m

]
for every m as the linear combination of terms,

where each term is the difference between a first-order partial derivative of ĥi and the same derivative of

h0,i for some i ∈ {1, 2}, and each coefficient is a first-order partial derivative of an element of
(
G
−1/2
ψ ψM

)
m

.

Therefore, using Corollary 3.1 in CC and the well-known rate results for splines and their derivatives in, e.g.,

Newey (1997),

Tiv,ε = Op

( √
T

vT (fε)
×
[
τMM

(9−r)/4

√
T

+
τ2
MM

11/4
√

logM

T

])
(17)

The conclusion in (16) then follows from Assumption 8(v).

The next lemma provides more primitive sufficient conditions for Assumptions 8(iv) and 8(v).

Lemma 3. Let Assumptions 8(i) and 8(iii) hold. Further, let (vT (fε))
2 � Ma+ς+1 and τM � M ς/2 for

a ≤ 0, ς ≥ 0, a+ ς + 1 > 0, r+ 2a− 4 > 0.60 Then, Assumptions 8(iv) and 8(v) are satisfied if M � T ρ with

ρ ∈
(

2

r − 3 + 2 (a+ ς + 1)
,min

{
1

ς − a+ 5
,

γ(1)

2 + γ(1)
,

γ(2)

1 + γ(2)

})
Further, M may be chosen to satisfy the latter condition if r+ 4a− 11 > 0 and γ(i) (r + 2a+ 2ς − 3)− 4 > 0

for i ∈ {1, 2}.

Proof. The result follows by inspection.

60This corresponds to the “mildly ill-posed” case discussed by CC in Corollary 5.1. CC also provide
sufficient conditions for the maintained assumption on the rate of divergence of vT (f).
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B.4 Theorem 3: Equilibrium price functionals

We now specialize Theorem 1 to the case where the functional f is the equilibrium price of good 1 in a

market with two goods characterized by marginal costs mc ≡ (mc1,mc2) and indices δ ≡
(
δ1, δ2

)
. I let

fp ≡ [fp1 , fp2 ] : H 7→ R2 denote the functional that returns the equilibrium prices, so that the goal is to

obtain the asymptotic distribution of the sieve estimator fp1

(
ĥ
)

. An analogous argument holds for the

price of good 2. Again, I let h0 = [h0,1, h0,2] denote the inverse of the demand system σ0. Further, I use

h−1
0 =

[
h−1

0,1, h
−1
0,2

]
= [σ0,1, σ0,2] to denote the demand system itself. The equilibrium prices p ≡ (p1, p2) ≡

[fp1 (h0) , fp2 (h0)] solve the firm’s first-order conditions[
g1

(
δ, p,mc, h0

)
g2

(
δ, p,mc, h0

)] ≡ − [(Jsh0

)−1 Jph0

]′ [p1 −mc1
p2 −mc2

]
+

[
h−1

0,1

(
δ, p
)

h−1
0,2

(
δ, p
)] =

[
0

0

]
(18)

where

Jsh0
≡

∂h0,1(h−1
0 (δ,p),p)
∂s1

∂h0,1(h−1
0 (δ,p),p)
∂s2

∂h0,2(h−1
0 (δ,p),p)
∂s1

∂h0,2(h−1
0 (δ,p),p)
∂s2

 Jph0
≡

∂h0,1(h−1
0 (δ,p),p)
∂p1

∂h0,1(h−1
0 (δ,p),p)
∂p2

∂h0,2(h−1
0 (δ,p),p)
∂p1

∂h0,2(h−1
0 (δ,p),p)
∂p2


We make the following assumptions.

Assumption 9. (i) P has bounded support and (P, S) have densities bounded away from 0 and ∞;

(ii) The basis used for both the endogenous variables and the instruments is tensor-product Bernstein poly-

nomials. Further, for the sieve space, the univariate Bernstein polynomials all have the same degree M 1/4;

(iii) h0 = [h0,1, h0,2] where h0,1 and h0,2 belong to the Hölder ball of smoothness r ≥ 9 and finite radius;

(iv) M
2+γ(1)

2γ(1)

√
log T
T = o (1) and M

1+γ(2)

2γ(2)

√
log T
T = o (1), where γ(1), γ(2) > 0 are defined in Assumption

3(v)-3(vi);

(v)
√
T

vT (fp1)
×
(
M

4−r
4 + τMM

10−r
4√

T
+ τ2

MM
3 logM

T

)
= o (1).

Discussion of Assumptions. Assumptions 9(i), 9(iii) and 9(iv) are regularity conditions needed to

apply the sup-norm rate results in CC. 9(ii) is made for simplicity but it is not necessary. 9(v) corresponds

to the second part of Assumption CS(v) in CC and is used to verify Assumption 7. More concrete sufficient

conditions for Assumptions 9(iv) and 9(v) may be provided in specific settings. For example, Lemma 4

below gives sufficient conditions for the mildly ill-posed case.

We now provide a proof of Theorem 3.

Proof of Theorem 3. We prove the statement by showing that the assumptions of Theorem 1 hold.

Assumptions 2, 3, 4(iii), 5 and 6 are maintained. Assumption 4(i) is implied by Assumptions 4(iii) and

9(v), and Lemma 8. Similarly, Assumption 4(ii) is implied by Assumptions 4(iii) and 9(iv).

We now verify Assumption 7.

7(i) Applying the implicit function theorem to (18),

Dfp (h) [v] = −

∂g1(δ,p,mc,h+τv)
∂p1

∂g1(δ,p,mc,h+τv)
∂p2

∂g2(δ,p,mc,h+τv)
∂p1

∂g2(δ,p,mc,h+τv)
∂p2

−1 ∂g1(δ,p,mc,h+τv)
∂τ

∂g2(δ,p,mc,h+τv)
∂τ


∣∣∣∣∣∣∣
τ=0

≡ −
(
Jpg
)−1 Jτg

∣∣∣
τ=0

(19)

for all h, v ∈ H. Now, note that Jpg
∣∣
τ=0

does not depend on v, and that Jτg
∣∣
τ=0

is a linear function of

v
(
h−1

(
δ, p
)
, p
)

and its first derivatives, with coefficients that depend on derivatives of h of order 2 or lower,
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i.e. we can write

Dfp1 (h) [v] =
∑

α̃:|α̃|≤1

2∑
j=1

Cα̃,j
(
δ,mc,

{
∂βh : |β| ≤ 2

})
× ∂α̃vj

(
h−1

(
δ, p
)
, p
)

(20)

for real-valued functionals Cα̃,j . This shows that Dfp (h0) [v] is linear. Further, by the fundamental theorem

of calculus, following an argument analogous to that in the proof of Theorem 2, we obtain

|Dfp1 (h0) [h− h0]| ≤ constant

∣∣∣∣∣
∣∣∣∣∣ ∂4h

∂s1∂s2∂p1∂p2
− ∂4h0

∂s1∂s2∂p1∂p2

∣∣∣∣∣
∣∣∣∣∣
∞

for all h ∈ H. Therefore, Assumption 7(i) holds with α = [1, 1, 1, 1].

7(ii) As in the proof of Theorem 2, by the mean value theorem, we obtain∣∣∣fp1 (ĥ)− fp1 (h0)−Dfp1 (h0) [ĥ− h0]
∣∣∣ ≤∑

α̃:|α̃|≤1

2∑
j=1

[
Cα̃,j

(
δ,mc,

{
∂βĥ : |β| ≤ 2

})
− Cα̃,j

(
δ,mc,

{
∂βh0 : |β| ≤ 2

})]
×
∣∣∣∣∣∣∂α̃ĥj − ∂α̃h0,j

∣∣∣∣∣∣
1,∞

Since, each of the Cα̃,j

(
δ,mc,

{
∂βĥ : |β| ≤ 2

})
− Cα̃,j

(
δ,mc,

{
∂βh0 : |β| ≤ 2

})
terms may be bounded,

after some algebra, by a linear combination of
{
||∂βĥ− ∂βh0||∞ : |β| ≤ 2

}
, Assumption 7(ii) holds with

|α1| = 1, |α2| = 2.

7(iii) Given the choice of α, α1, α2 above and by Corollary 3.1 in CC, we have

∣∣∣∣∣∣∂α1 ĥ− ∂α1h0

∣∣∣∣∣∣
∞

∣∣∣∣∣∣∂α2 ĥ− ∂α2h0

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∂αh̃− ∂αh0

∣∣∣∣∣∣
∞

= Op

(
M

3−2r
4 + τMM

5−r
4

√
logM

T
+ τ2

MM
7
4

logM

T

)
+ Op

(
M

4−r
4

)
Thus, Assumption 7(iii) is implied by Assumption 9(v).

7(iv) By Remark 4.1 in CC, a sufficient condition for Assumption 7(iv) is

Tiv,p ≡
τM

√∑M
m=1

(
Dfp1

(
ĥ
) [(

G
−1/2
ψ ψM

)
m

]
−Dfp1 (h0)

[(
G
−1/2
ψ ψM

)
m

])2

vT (fp1)
= op (1) (21)

where
(
G
−1/2
ψ ψM

)
m

denotes the m−th row of the matrix G
−1/2
ψ ψM . Note that, after some algebra, we can

write Dfp1

(
ĥ
) [(

G
−1/2
ψ ψM

)
m

]
−Dfp1 (h0)

[(
G
−1/2
ψ ψM

)
m

]
for every m as the linear combination of terms,

where each term is the difference between a partial derivative of ĥi of order at most 2 and the same derivative

of h0,i for some i ∈ {1, 2}, and each coefficient is a partial derivative of an element of
(
G
−1/2
ψ ψM

)
m

of order at

most 1. Therefore, using Corollary 3.1 in CC and the well-known rate results for splines and their derivatives

in, e.g., Newey (1997), we can write

Tiv,p = Op

( √
T

vT (fp1)
×
[
τMM

(10−r)/4

√
T

+
τ2
MM

3
√

logM

T

])
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The conclusion in (21) then follows from Assumption 9(v).

Finally, the following lemma provides more primitive sufficient conditions for Assumptions 9(iv) and

9(v).

Lemma 4. Let Assumptions 9(i) and 9(iii) hold. Further, let (vT (fε))
2 � Ma+ς+1 and τM � M ς/2 for

a ≤ 0, ς ≥ 0, a+ ς + 1 > 0, r+ 2a− 5 > 0.61 Then, Assumptions 9(iv) and 9(v) are satisfied if M � T ρ with

ρ ∈
(

2

r − 4 + 2 (a+ ς + 1)
,min

{
1

ς − a+ 5
,

γ(1)

2 + γ(1)
,

γ(2)

1 + γ(2)

})
Further, M may be chosen to satisfy the latter condition if r+ 4a− 12 > 0 and γ(i) (r + 2a+ 2ς − 4)− 4 > 0

for i ∈ {1, 2}.

Proof. The result follows by inspection.

61Again, this corresponds to the “mildly ill-posed” case discussed by CC in Corollary 5.1.
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Appendices for Online Publication

Appendix C: Supplementary Results for Inference

Proof of Theorem 1.

We prove that

√
T

(
f
(
ĥ
)
− f (h0)

)
vT (f)

d−→ N (0, 1) (22)

The result then follows from Lemma 5 below. By Assumption 7(ii),

√
T

(
f
(
ĥ
)
− f (h0)

)
vT (f)

=
√
T
Df (h0) [ĥ− h0]

vT (f)
+ op


√
T

vT (f)
||∂α1 ĥ− ∂α1h0||∞||∂α2 ĥ− ∂α2h0||∞︸ ︷︷ ︸

cT


By Assumption 7(iii), cT = op (1) and therefore,

√
T

(
f
(
ĥ
)
− f (h0)

)
vT (f)

=
√
T
Df (h0) [ĥ− h0]

vT (f)
+ op (1) (23)

Further, by Assumption 7(i)

Df (h0) [ĥ− h0] = Df (h0) [ĥ− h̃] +Df (h0) [h̃− h0] (24)

and

Df (h0) [h̃− h0] . ||∂αh̃− ∂αh0||∞ (25)

By (25) and Assumption 7(iii),

√
T
Df (h0) [h̃− h0]

vT (f)
= op (1) (26)

Combining (23), (24) and (26), we obtain

√
T

(
f
(
ĥ
)
− f (h0)

)
vT (f)

=
√
T
Df (h0) [ĥ− h̃]

vT (f)
+ op (1) (27)

We define

RT (w) =
Df (h0) [ψM ]′

(
L′G−1

A L
)−1

L′G−1
A aK (w)

vT (f)
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and note that E
[(
RT (W ) · [ξ1, · · · , ξJ ]

′)2]
= 1. Then,

√
T
Df (h0) [ĥ− h̃]

vT (f)
=

1√
T

T∑
t=1

RT (wt) · [ξ1t, · · · , ξJt]′

+

Df (h0) [ψM ]′
((

L̂′Ĝ−AL̂
)−

L̂′Ĝ−A −
(
L′G−1

A L
)−1

L′G−1
A

)(
A′ξ/
√
T

)
vT (f)

≡ T1 + T2

where ξ ≡ [ξ11, · · · , ξ1T , ξ21, · · · , ξ2T , · · · , ξJ1, · · · , ξJT ]
′
.

First, we show that T1
d−→ N (0, 1) by the Lindeberg-Feller theorem. The Lindeberg condition requires that,

for every ε > 0,

C0,T ≡ E

(RT (W ) · [ξ1, · · · , ξJ ]
′)2 I{∣∣∣RT (W ) · [ξ1 · · · ξJ ]

′
∣∣∣ > ε

√
T
}

︸ ︷︷ ︸
QT (W,ξ)

 = o (1) (28)

To show that this condition holds, note that

RT (wt) · [ξ1t · · · ξJt]′ =

J∑
i=1

Df (h0)
[
ψ

(i)
Mi

]′ (
L′iG

−1
A,iLi

)−1

L′iG
−1
A,ia

(i)
Ki

(wt)

vT (f)
ξit

≡
J∑
i=1

R
(i)
T (wt) ξit

Now, for i ∈ J ,

∣∣∣R(i)
T (wt)

∣∣∣ ≤
∣∣∣∣∣∣Df (h0)

[
ψ

(i)
Mi

]′ (
L′iG

−1
A,iLi

)−1

L′iG
−1/2
A,i

∣∣∣∣∣∣
vT (f)

× sup
w∈W

∣∣∣∣∣∣G−1/2
A,i a

(i)
Ki

(w)
∣∣∣∣∣∣

≡ λi (T )× ζA,i (29)

by the Cauchy-Schwarz inequality and thus∣∣∣∣∣
J∑
j=1

R
(j)
T (wt) ξjt

∣∣∣∣∣ ≤
J∑
j=1

|ξjt| ×max
i

[λi (T )× ζA,i] (30)

Equation (30) implies that, for all w ∈ W and all ξ ∈ Ξ,

QT (w, ξ) ≤ I


J∑
j=1

|ξj | >
ε
√
T

maxi [λi (T )× ζA,i]

 ≡ QT (ξ)

where QT (w, ξ) was defined in (28). Therefore, using Cauchy-Schwarz and the law of iterated expecta-
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tions,

C0,T ≤ E

 J∑
j=1

(
R

(j)
T (W )

)2

×
J∑
j=1

ξ2
j ×QT (ξ)


≤

J∑
j=1

E
[(
R

(j)
T (W )

)2
] J∑
j=1

sup
w∈W

E
[
ξ2
j ×QT (ξ) |w

]
Now, note that, for i ∈ J ,

lim sup
T→∞

E
[(
R

(i)
T (W )

)2
]

= lim sup
T→∞

(λi (T ))
2
<∞

where the inequality follows from Lemma 6 below. Further, supw∈W E
[
ξ2
iQT (ξ) |w

]
= o (1) by Assumption

3(iv) and the fact that, by Assumption 4(i) and Lemma 6,
√
T

maxi[λi(T )ζA,i]
↗∞. Therefore, C0,T = o (1), the

Lindeberg condition is verified, and T1
d−→ N (0, 1).

Next, for T2, we have

|T2| ≤ vT (f)
−1
∣∣∣∣∣∣Df (h0) [ψM ]

′
(
G
−1/2
A L

)−
l

∣∣∣∣∣∣ ∣∣∣∣∣∣G−1/2
A L

{(
Ĝ
−1/2
A L̂

)−
l
Ĝ
−1/2
A G

1/2
A −

(
G
−1/2
A L

)−
l

} ∣∣∣∣∣∣ ∣∣∣∣∣∣G−1/2
A A′ξ/

√
T

∣∣∣∣∣∣
=

 J∑
j=1

λj (T )
2

1/2 ∣∣∣∣∣∣G−1/2
A L

{(
Ĝ
−1/2
A L̂

)−
l
Ĝ
−1/2
A G

1/2
A −

(
G
−1/2
A L

)−
l

} ∣∣∣∣∣∣ ∣∣∣∣∣∣G−1/2
A A′ξ/

√
T

∣∣∣∣∣∣
≤

 J∑
j=1

λj (T )
2

1/2

max
i∈J

∣∣∣∣∣∣G−1/2
A,i Li

{(
Ĝ
−1/2
A,i L̂i

)−
l
Ĝ
−1/2
A,i G

1/2
A,i −

(
G
−1/2
A,i Li

)−
l

} ∣∣∣∣∣∣ ∣∣∣∣∣∣G−1/2
A A′ξ/

√
T

∣∣∣∣∣∣
= Op

(
max
i∈J

[
τ

(i)
Mi
ζi
√
Mi logMi/T

])
The first inequality follows from some algebra and the Cauchy-Schwarz inequality, the first equality is by the

definition in (29), the second inequality holds by the definition of matrix norm, and the second equality is

by Lemmas A.1, F.8 and F.10(c) in CC, Lemma 6 below and Assumption 4(iii). Therefore, by Assumption

4(i), we obtain |T2| = op (1). This completes the proof of (22).

Remark 1. Note that I do not impose Assumption 4(i) in CC. This is because the assumption is automat-

ically satisfied if the basis functions used for the endogenous variables and those used for the instruments

form a Riesz basis for the conditional expectation operator. I follow CC in assuming that this is the case.

Lemma 5. Let ||ĥ−h0||∞ = op (1) and let Assumptions 3(i), 3(ii), 3(iii), 3(v), 3(vi), 4, 5, 7(iv) hold. Then∣∣∣∣∣ v̂T (f)

vT (f)
− 1

∣∣∣∣∣ = op (1) . (31)
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Proof. Following the proof of Lemma G.2 in CC, we write

v̂2
T (f)

v2
T (f)

− 1 =
(γ̂T − γT )

′
Ωo (γ̂T + γT )

v2
T (f)

+
γ̂′T

(
Ω̂o − Ωo

)
γ̂T

v2
T (f)

≡ T1 + T2 (32)

where

Ω̂o = G
−1/2
A Ω̂G

−1/2
A γ̂T = G

1/2
A Ĝ−1

A L̂
(
L̂′Ĝ−1

A L̂
)−1

Df
(
ĥ
)

[ψM ]

Ωo = G
−1/2
A ΩG

−1/2
A γT = G

−1/2
A L

(
L′G−1

A L
)−1

Df (h0) [ψM ]

and note that ||γT ||
2

v2T (f)
=
∑J
j=1 λj (T )

2
by the definition in (29).

We consider T1 and T2 in equation (32) in turn. Note that

||γ̂T − γT ||
vT (f)

=
1

vT (f)

∣∣∣∣∣∣Df (ĥ) [ψM ]
′
(
Ĝ
−1/2
A L̂

)−
l
Ĝ
−1/2
A G

1/2
A −Df (h0) [ψM ]

′
(
G
−1/2
A L

)−
l

∣∣∣∣∣∣
≤ 1

vT (f)

∣∣∣∣∣∣Df (ĥ) [ψM ]
′
(
G
−1/2
A L

)−
l

∣∣∣∣∣∣× ∣∣∣∣∣
∣∣∣∣∣G−1/2

A L

{(
Ĝ
−1/2
A L̂

)−
l
Ĝ
−1/2
A G

1/2
A −

(
G
−1/2
A L

)−
l

} ∣∣∣∣∣
∣∣∣∣∣

+
1

vT (f)

∣∣∣∣∣∣ (Df (ĥ) [ψM ]
′ −Df (h0) [ψM ]

′
)(

G
−1/2
A L

)−
l

∣∣∣∣∣∣ ≡ T (1)
1 × T (2)

1 + T
(3)
1

Now,

T
(1)
1 ≤ 1

vT (f)

∣∣∣∣∣∣ (Df (ĥ) [ψM ]
′ −Df (h0) [ψM ]

′
)(

G
−1/2
A L

)−
l

∣∣∣∣∣∣+
J

vT (f)
max
i∈J

∣∣∣∣∣∣Df (h0)
[
ψ

(i)
Mi

]′ (
G
−1/2
A,i Li

)−
l

∣∣∣∣∣∣
= Op (1)

where the last step follows from Assumption 7(iv) and Lemma 6. Further, T
(2)
1 = op (1) by Lemmas F.10(c)

and A.1 in CC and Assumption 4(i),and T
(3)
1 = op (1) by Assumption 7(iv). This implies that

||γ̂T − γT ||
vT (f)

= op (1) . (33)

Therefore, by Cauchy-Schwarz,

|T1| ≤
||γ̂T − γT ||
vT (f)

× ||Ωo|| × ||γ̂T + γT ||
vT (f)

≤ ||γ̂T − γT ||
vT (f)

× ||Ωo|| ×
(
||γ̂T − γT ||+ 2||γT ||

vT (f)

)
= op (1)

where in the last step we also use Lemma 6 and the fact that ||Ωo|| <∞ by Assumptions 3(i), 3(ii), 3(iii).

Turning to |T2|, note that

|T2| ≤
||γ̂T ||
vT (f)

× ||Ω̂o − Ωo|| × ||γ̂T ||
vT (f)

≤ ||γ̂T − γT ||+ ||γT ||
vT (f)

× ||Ω̂o − Ωo|| × ||γ̂T − γT ||+ ||γT ||
vT (f)

= Op (1)× ||Ω̂o − Ωo|| ×Op (1)

where the last step follows again from Lemma 6 and (33). We complete the proof by showing that ||Ω̂o−Ωo|| =
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op (1). Note that

Ωo =


Ωo11 Ωo12 · · · Ωo1J
Ωo21 Ωo22 · · · Ωo2J

...
...

. . . · · ·
ΩoJ1 ΩoJ2 · · · ΩoJJ

 Ω̂o =


Ω̂o11 Ω̂o12 · · · Ω̂o1J
Ω̂o21 Ω̂o22 · · · Ω̂o2J

...
...

. . . · · ·
Ω̂oJ1 Ω̂oJ2 · · · Ω̂oJJ


where, for j, k ∈ J ,

Ωojk = G
−1/2
A,j ΩjkG

−1/2
A,k Ω̂ojk = G

−1/2
A,j Ω̂jkG

−1/2
A,k

Using this notation, we have that, for any v = [v′1 · · · v′J ]
′
, with vj ∈ RKj , j ∈ J , and ||v|| = 1,

∣∣∣∣∣∣ (Ω̂o − Ωo
)
v
∣∣∣∣∣∣ =

J∑
j=1

v′j

(
Ω̂ojj − Ωojj

)
vj + 2

J∑
j=1

j−1∑
k=1

v′j

(
Ω̂ojk − Ωojk

)
vk

and thus, by definition of matrix norm and Cauchy-Schwarz,

||Ω̂o − Ωo|| ≤ J max
j∈J
||Ω̂ojj − Ωojj ||+ 2J2 max

j,k∈J ,j 6=k
||Ω̂ojk − Ωojk|| ≡ T̃1 + T̃2

Now, T̃1 = op (1) by Lemma G.3 in CC.For T̃2, note that, by the triangle inequality, for all j, k ∈ J , j 6= k,

||Ω̂ojk − Ωojk|| ≤

∣∣∣∣∣
∣∣∣∣∣G−1/2

A,j

[
1

T

T∑
t=1

ξjtξkta
(j)
Kj

(wt) a
(j)
Kj

(wt)
′ − E

(
ξjξka

(j)
Kj

(W ) a
(j)
Kj

(W )
′
)]

G
−1/2
A,j

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣G−1/2

A,j

1

T

T∑
t=1

[(
ξ̂jt − ξjt

)
ξkta

(j)
Kj

(wt) a
(j)
Kj

(wt)
′
]
G
−1/2
A,j

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣G−1/2

A,j

1

T

T∑
t=1

[(
ξ̂jt − ξjt

)(
ξ̂kt − ξkt

)
a

(j)
Kj

(wt) a
(j)
Kj

(wt)
′
]
G
−1/2
A,j

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣G−1/2

A,j

1

T

T∑
t=1

[
ξj,t

(
ξ̂k,t − ξk,t

)
a

(j)
Kj

(wt) a
(j)
Kj

(wt)
′
]
G
−1/2
A,j

∣∣∣∣∣
∣∣∣∣∣

≡ ||TΩ,1||+ ||TΩ,2||+ ||TΩ,3||+ ||TΩ,4||

where we use the fact that GA,j = GA,k and a
(j)
Kj

= a
(k)
Kk

for all j, k ∈ J by Assumption 5. Using Lemma 7

below, we obtain ||TΩ,1|| = op (1). Further, ||TΩ,2|| = op (1) by
(
ξ̂jt − ξjt

)
ξkt ≤ ||ĥj −h0,j ||1,∞

(
1 + ξ2

kt

)
and

Lemma F.7 in CC. Similarly, ||TΩ,4|| = op (1). Finally, ||TΩ,3|| = op (1) by
(
ξ̂jt − ξjt

)(
ξ̂kt − ξkt

)
≤ ||ĥ−h0||2∞

and Lemma F.7 in CC.

Lemma 6. For i ∈ J , let λi (T ) ≡

∣∣∣∣∣∣Df(h0)
[
ψ

(i)
Mi

]′
(L′iG

−1
A,iLi)

−1
L′iG

−1/2
A,i

∣∣∣∣∣∣
vT (f) and let Assumption 3(ii) hold. Then,

lim supT→∞ λi (T ) <∞.
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Proof. Note that

v2
T (f) =

J∑
i=1

Df (h0) [ψ
(i)
Mi

]′
(
Li
′G−1

A,iLi

)−1

Li
′G−1

A,iΩiiG
−1
A,iLi

(
Li
′G−1

A,iLi

)−1

Df (h0) [ψ
(i)
Mi

]

+ 2

J∑
j=1

j−1∑
k=1

Df (h0) [ψ
(j)
Mj

]′
(
Lj
′G−1

A,jLj

)−1

Lj
′G−1

A,jΩjkG
−1
A,kLk

(
Lk
′G−1

A,kLk

)−1

Df (h0) [ψ
(k)
Mk

]

≡
J∑
i=1

σ2
T,i + 2

J∑
j=1

j−1∑
k=1

σT,j,k

Further, by Assumption 3(ii)∣∣∣∣∣∣Df (h0)
[
ψ

(i)
Mi

]′ (
L′iG

−1
A,iLi

)−1

L′iG
−1/2
A,i

∣∣∣∣∣∣2 ≤ σ−2σ2
T,i

for i ∈ J . Therefore, we can write

[λi (T )]
2 ≤

σ−2σ2
T,i∑J

i=1 σ
2
T,i + 2

∑J
j=1

∑j−1
k=1 σT,j,k

Since we focus on the case in which the functional f is slower than
√
T−estimable, the denominator in the

display above goes to infinity. Since the numerator is at most of the same order as the denominator, the

result follows.

Lemma 7. Let Assumptions 3(iii), 3(vi), 4(ii) and 5 hold. Then ||TΩ,1|| = Op (1), where TΩ,1 is defined in

the proof of Lemma 5.

Proof. The proof adapts that of Lemma 3.1 in Chen and Christensen (2015). Let CT � ζ(1+γ(2))/γ(2) be a

sequence of positive numbers with γ(2) defined in Assumption 3(vi), and let

T
(1)
Ω,1 ≡

1

T

T∑
t=1

(Ξ1,t − E [Ξ1,t]) T
(2)
Ω,1 ≡

1

T

T∑
t=1

(Ξ2,t − E [Ξ2,t])

where

Ξ1,t ≡ ξjtξktG−
1/2

A,j a
(j)
Kj

(wt) a
(j)
Kj

(wt)
′
G
−1/2
A,j I

{
||ξjtξktG−

1/2
A,j a

(j)
Kj

(wt) a
(j)
Kj

(wt)
′
G
−1/2
A,j || ≤ C2

T

}
Ξ2,t ≡ ξjtξktG−

1/2
A,j a

(j)
Kj

(wt) a
(j)
Kj

(wt)
′
G
−1/2
A,j I

{
||ξjtξktG−

1/2
A,j a

(j)
Kj

(wt) a
(j)
Kj

(wt)
′
G
−1/2
A,j || > C2

T

}
Note that TΩ,1 = T

(1)
Ω,1 +T

(2)
Ω,1, so that ||T (1)

Ω,1|| = op (1) and ||T (2)
Ω,1|| = op (1) imply the statement of the lemma.

By definition, ||Ξ1,t|| ≤ C2
T and thus, by the triangle inequality and Jensen’s inequality (|| · || is convex), we
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have ||Ξ1,t − E (Ξ1,t) || ≤ 2C2
T . Further, dropping the t subscripts,

E [Ξ1 − E (Ξ1)]
2 ≤

E
[
ξ2
j ξ

2
k||G

−1/2
A,j a

(j)
Kj

(W ) ||2G−1/2
A,j a

(j)
Kj

(W ) a
(j)
Kj

(W )
′
G
−1/2
A,j I

{
||ξjξkG−

1/2
A,j a

(j)
Kj

(W ) a
(j)
Kj

(W )
′
G
−1/2
A,j || ≤ C

2
T

}]
≤

C2
TE
[
|ξjξk|G−

1/2
A,j a

(j)
Kj

(W ) a
(j)
Kj

(W )
′
G
−1/2
A,j I

{
||ξjξkG−

1/2
A,j a

(j)
Kj

(W ) a
(j)
Kj

(W )
′
G
−1/2
A,j || ≤ C

2
T

}]
≤

C2
TE
[
E (|ξjξk||W )G

−1/2
A,j a

(j)
Kj

(W ) a
(j)
Kj

(W )
′
G
−1/2
A,j

]
.

C2
TE
[
G
−1/2
A,j a

(j)
Kj

(W ) a
(j)
Kj

(W )
′
G
−1/2
A,j

]
= C2

T IKj

where the inequalities are in the sense of positive semi-definite matrices. Then, Corollary 4.1 in Chen

and Christensen (2015) yields ||T (1)
Ω,1|| = Op

(
CT
√

(logK)/T
)

and thus ||T (1)
Ω,1|| = op (1) by Assumption 4(ii).

Turning to ||T (2)
Ω,1||, since ||Ξ2,t|| ≤ ζ2|ξjtξkt|I

{
|ξjtξkt| ≥ C2

T/ζ2
}

, by the triangle inequality and Jensen’s

inequality (|| · || is convex), we have

E
[
||T (2)

Ω,1||
]
≤ 2ζ2E

[
|ξjξk|I

{
|ξjξk| ≥ C2

T/ζ2
}]
≤ 2ζ2(1+γ(2))

C2γ(2)

T

E
[
|ξjξk|1+γ(2)

I
{
|ξjξk| ≥ C2

T/ζ2
}]

= o (1)

where the last step follows from Assumption 3(vi), the fact that C
2
T/ζ2 � ζ2/γ(2) →∞ and that ζ

(1+γ(2))
/Cγ

(2)

T �
1. Thus, ||T (2)

Ω,1|| = op (1) by Markov’s inequality.

Lemma 8. Let Assumptions 3 and 8(i)-8(iii) hold. Then, for f ∈ {fε, fp1},

[vT (f)]
2 . τ2

MM
4

Proof. We prove this for f = fε. The proof for f = fp1 is identical. As shown in CC,62 the maintained

assumptions imply

[vT (fε)]
2 � τ2

M

M∑
m=1

(
Dfε (h0)

[(
G
−1/2
ψ ψM

)
m

])2

(34)

where
(
G
−1/2
ψ ψM

)
m

denotes the m−th row of the M−by−2−valued function G
−1/2
ψ ψM . Next,

∣∣∣Dfε (h0)
[(
G
−1/2
ψ ψM

)
m

] ∣∣∣ . max
α̃:|α̃|=1

||∂α̃
(
G
−1/2
ψ ψM

)
m
||∞ �M

3/2

where the first step follows from (15) and the second step follows from well-known properties of splines (see,

e.g., Newey (1997)). Combining this and (34) completes the proof.

Appendix D: Additional Constraints

In this appendix, I consider several constraints that one might be willing to impose besides those discussed in

Section 3.2, and I show how to enforce them in estimation in a computationally tractable way. Because these

62See pp.22-23. See also Chen and Pouzo (2015).
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constraints are defined conditional on any given value of x(2), I drop this for notational convenience.

D.1 Symmetry of the Jacobians

Let Jpσ (δ, p) denote the Jacobian matrix of σ with respect to p:

Jpσ (δ, p) =


∂
∂p1

σ1 (δ, p) · · · ∂
∂pJ

σ1 (δ, p)
...

. . .
...

∂
∂p1

σJ (δ, p) · · · ∂
∂pJ

σJ (δ, p)


This matrix is the Jacobian of the Marshallian demand system. Under the assumption that there are no

income effects, it coincides with the Jacobian of the Hicksian demand by Slutsky equation and therefore it

must be symmetric.

Similarly, let Jδσ (δ, p) denote the Jacobian matrix of σ with respect to δ:

Jδσ (δ, p) =


∂
∂δ1

σ1 (δ, p) · · · ∂
∂δJ

σ1 (δ, p)
...

. . .
...

∂
∂δ1

σJ (δ, p) · · · ∂
∂δJ

σJ (δ, p)


In a discrete choice model where δj is interpreted as a quality index for good j, if one assumes that, for all

j, δj enters the utility of good j linearly (and does not enter the utility of the other goods), then Jδσ (δ, p)

must be symmetric.

Conveniently, symmetry of Jδσ (δ, p) implies linear constraints on the Bernstein coefficients. To see this,

note that by the implicit function theorem, for every (δ, p) and for s = σ (δ, p),

Jsσ−1 (s, p) =
[
Jδσ (δ, p)

]−1
(35)

Because the inverse of a symmetric matrix is symmetric, symmetry of Jδσ (δ, p) implies symmetry of Jsσ−1 (s, p).

This, in turn, imposes linear constraints on the Bernstein coefficients as the degree of the approximation

goes to infinity.63

On the other hand, it appears that symmetry of Jpσ requires nonlinear, nonconvex constraints. This is

because, by the implicit function theorem, for every (δ, p) and for s = σ (δ, p),

Jpσ (δ, p) = − [Jsσ−1 (s, p)]
−1 Jpσ−1 (s, p) (36)

which shows that Jpσ is a nonlinear function of the derivatives of σ−1 and therefore of the Bernstein coefficients.

In the implementation, it might be convenient to rewrite (36) as

Jsσ−1 (s, p) Jpσ (δ, p) = −Jpσ−1 (s, p)

Expressing Jsσ−1 and Jpσ−1 as linear combinations of the Bernstein polynomials and introducing extra param-

63More precisely, by the approximation result discussed in Appendix A, the difference between two (ap-
propriately chosen) Bernstein coefficients approximates the change in the function σ−1

j given by a change
in sk over a grid of equidistant points. Therefore, in the limit, equality of derivatives may be expressed as
equality of differences between Bernstein coefficients.
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eters (call them γ) for the entries of Jpσ, one then obtains a set of constraints that are linear in the Bernstein

coefficients, given γ, and linear in γ, given the Bernstein coefficients.64

D.2 Additional Properties of the Jacobian of Demand

The matrix Jδσ (δ, p) has a number of additional features that one might want to impose in estimation. First,

one of the sufficient conditions for identification in BH is a substitutability condition (their Assumption 2)

that requires the off-diagonal elements of Jδσ (δ, p) to be non-positive. Further, it follows from Remark 2 of

Berry et al. (2013) that the diagonal elements must be positive.65

Moreover, Jδσ (δ, p) belongs to the class of M-matrices, which are the object of a vast literature in linear

algebra.66 One of the most common definitions of this class is as follows.

Definition 1. A square real matrix A is called an M-matrix if (i) it is of the form A = αI − P , where all

entries of P are non-negative; (ii) A is nonsingular and A−1 is entry-wise non-negative.

I now formalize the aforementioned result, which is a corollary of Theorem 2 in Berry et al. (2013).

Lemma 9. Let Assumption 2 in BH hold. Then Jδσ (δ, p) is an M-matrix for all (δ, p).

Proof. See Section D.3.

The linear algebra literature provides several properties of M-matrices. However, it is not a priori clear

how to impose these properties in estimation, since I estimate σ−1 rather than σ itself. The Jacobian of the

function to estimate is

Jsσ−1 (s, p) =


∂
∂s1

σ−1
1 (s, p) · · · ∂

∂sJ
σ−1

1 (s, p)
...

. . .
...

∂
∂s1

σ−1
J (s, p) · · · ∂

∂sJ
σ−1
J (s, p)


Recall that, by the implicit function theorem, we have that, for every (δ, p) and for s = σ (δ, p),

Jsσ−1 (s, p) =
[
Jδσ (δ, p)

]−1

Therefore, Jsσ−1 (s, p) is the inverse of an M-matrix or, in the jargon used in the linear algebra literature, an

inverse M-matrix. Fortunately, inverse M-matrices have also been widely studied.67 Thus, we may borrow

results from that literature to impose necessary conditions on the Bernstein coefficients for σ−1.

First, it follows from part (ii) of Definition 1 that Jsσ−1 (s, p) must have non-negative elements for all

(s, p). This means that, for every j, σ−1
j must be increasing in sk for all k. As discussed in Appendix A,

monotonicity is very easy to impose in estimation, given that it reduces to a collection of linear inequalities

on the Bernstein coefficients.

64This is helpful especially when it comes to writing the analytic gradient of the constraints to input in
the optimization problem.

65This is simply the requirement that the structural demand of product j increase in the index δj . While
it is a very reasonable condition, it is not needed for identification, but rather it follows from the sufficient
conditions given in Section 2.

66See, e.g., Plemmons (1977).

67See, e.g., Johnson and Smith (2011).
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Second, under the substitutability condition required for identification in BH, Jδσ satisfies a property

called column diagonal dominance. The economic content of this property is that the (positive) effect of δj

on the share of good j is larger than the combined (negative) effect of δj on the shares of all other goods, in

absolute value. A few definitions are necessary to formalize this.

Definition 2. An m−by−m matrix A = (aij) is (weakly) diagonally dominant of its rows if

|aii| ≥
∑
j 6=i

|aij |,

for i = 1, ...,m.

Definition 3. An m−by−m matrix A = (aij) is (weakly) diagonally dominant of its row entries if

|aii| ≥ |aij |,

for i = 1, ...,m and j 6= i.

Column diagonal dominance and column entry diagonal dominance are defined analogously. By Theorem

3.2 of McDonald et al. (1995), if an M-matrix A is weakly diagonally dominant matrix of its columns, then

(A)
−1

is weakly diagonally dominant of its row entries. This immediately implies the following result.

Lemma 10. Fix (δ, p) and let s = σ (δ, p). If Jδσ is diagonally dominant of its columns, then ∂
∂sj

σ−1
j (s, p) ≥

∂
∂sk

σ−1
j (s, p) for all j and all k 6= j.

Lemma 10 translates the assumption that Jδσ is diagonally dominant of its columns into linear inequalities

involving the derivatives of σ−1. Therefore it follows from the same argument used for symmetry that

diagonal dominance may be imposed through linear constraints on the Bernstein coefficients.

D.3 Proofs for Results on Constraints

Proof of Lemma 1. Let π : {1, ..., J} → {1, ..., J} be any permutation with inverse π−1. Further, let π̃

denote the function that, for any J-vector y, returns the reshuffled version of y obtained by permuting its

subscripts according to π, i.e.

π̃ (y1, ..., yJ) =
[
yπ(1), ..., yπ(J)

]
and define π̃−1 similarly for π−1. Then, we can rewrite the definition of exchangeability for a generic

J−valued function g (y1, y2, y3) of 3J arguments as

π̃−1 (g (y1, y2, y3)) = g
(
π̃−1 (y1) , π̃−1 (y2) , π̃−1 (y3)

)
.

Now take any
(
δ, p, x(2)

)
and let s = σ

(
δ, p, x(2)

)
. We can invert the demand system to obtain

δ = σ−1
(
s, p, x(2)

)
(37)

By exchangeability of σ,

π̃−1 (s) = σ
(
π̃−1 (δ) , π̃−1 (p) , π̃−1

(
x(2)

))
Inverting this demand system, we obtain

π̃−1 (δ) = σ−1
(
π̃−1 (s) , π̃−1 (p) , π̃−1

(
x(2)

))
(38)
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Combining (37) and (38),

π̃−1
(
σ−1

(
s, p, x(2)

))
= σ−1

(
π̃−1 (s) , π̃−1 (p) , π̃−1

(
x(2)

))
which shows that σ−1 is exchangeable.

Proof of Lemma 9. Under the maintained assumptions, Theorem 2 in Berry et al. (2013) implies

that Jδσ (δ, p) is a P-matrix for every (δ, p), i.e. a square matrix such that all of its principal minors are

strictly positive. Next, by the weak substitutability, Jδσ (δ, p) is also a Z-matrix, i.e. a matrix with non-

positive off-diagonal entries. Finally, since a Z-matrix which is also a P-matrix is an M-matrix,68 the result

follows.

Appendix E: Additional Monte Carlo Simulations

E.1 Reference prices

Another type of behavior allowed by the NPD model is one where consumers like (dislike) a product more

if its price is lower (higher) than its competitor’s, all else equal. The idea is that consumers might enjoy

the feeling of getting a bargain and, conversely, might be turned off if they perceive a good is over-priced. I

formalize this by letting the utility for good j be a function not only of the price of j but also a (decreasing)

function of the difference between the price of j and that of its competitor. I set the coefficient on the price

difference to -0.15; the simulation design is otherwise the same as that in Section 4.1. As in the previous

simulations, I compare the performance of the nonparametric approach with that of a mixed logit model. In

this case, the latter is misspecified in that it only allows p1, but not p1 − p2 to enter the utility of good 1,

and similarly for good 2. In the nonparametric estimation, I impose the following constraints: monotonicity

of σ−1, diagonal dominance of Jδσ and exchangeability.69

Figure 5 shows the own- and cross-price elasticity functions, respectively. While the nonparametric

approach is on target, BLP tends to underestimate the magnitude of both due to the fact that it does not

capture the reference pricing patterns in the data.

68See, e.g., result 8.148 in Seber (2007).

69See Section 3.2 and Appendix D for a discussion of these constraints.
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Figure 5: Reference Prices: Own-price (left) and cross-price (right) elasticity functions
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E.2 Smaller Sample Size

The simulations in Section 4 were based on sample sizes equal to 3,000. I now investigate how well the NPD

estimator performs in a smaller sample size. Specifically, I focus on the complements example from Section

4.3 and repeat the simulation now using a sample of 500 observations.

Figure 6: Complements, T = 500: Own-price (left) and cross-price (right) elasticity functions

2 2.5 3 3.5 4

Price

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

O
w

n
 E

la
s
ti
c
it
y

True
BLP 95% CI
NPD 95% CI

2 2.5 3 3.5 4

Price

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
ro

s
s
 E

la
s
ti
c
it
y

True
BLP 95% CI
NPD 95% CI

62



E.3 Violation of the Index Restriction

The NPD estimator is based on the index restriction embedded in Equation (1). Here, I explore how robust

the estimator is to violations of this assumption. Specifically, I generate the data from the mixed logit dgp

as in Section 4.1, except that I let the coefficient on the covariate x be random and distributed N (1, σviol).

Because the coefficient on the unobservable ξ is not random, this induces a violation of the index restriction

which becomes more severe as σviol increases. Figures 7 to 9 show that, except for the own-price elasticity

function at large values of own-price, the NPD estimator is quite robust to violations of the index assumption

for this dgp. These results complement those on the median elasticities (Table 3 in the main text) by showing

robustness of the entire own- and cross-elasticity functions.

Figure 7: Violation of Index Restriction, σviol = 0.10: Own-price (left) and cross-price (right)
elasticity functions
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Figure 8: Violation of Index Restriction, σviol = 0.50: Own-price (left) and cross-price (right)
elasticity functions
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Figure 9: Violation of Index Restriction, σviol = 1.50: Own-price (left) and cross-price (right)
elasticity functions
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E.4 Sensitivity to the Choice of Polynomial Degree

To complement the results in Table 2 in the main text, I consider how the entire own- and cross-elasticity

functions estimates vary as the degree for the polynomial approximation changes. I focus on the mixed logit

dgp from Section 4.1 and the complements dgp from Section 4.3.
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E.4.1 Mixed logit dgp

Figure 10: Mixed Logit Data, degree = 16: Own-price (left) and cross-price (right) elasticity
functions
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Figure 11: Mixed Logit Data, degree = 12: Own-price (left) and cross-price (right) elasticity
functions
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Figure 12: Mixed Logit Data, degree = 8: Own-price (left) and cross-price (right) elasticity
functions
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Figure 13: Mixed Logit Data, degree = 6: Own-price (left) and cross-price (right) elasticity
functions
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Figure 14: Mixed Logit Data, degree = 4: Own-price (left) and cross-price (right) elasticity
functions
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E.4.2 Complements dgp

Figure 15: Complements, degree = 16: Own-price (left) and cross-price (right) elasticity
functions
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Figure 16: Complements, degree = 12: Own-price (left) and cross-price (right) elasticity
functions
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Figure 17: Complements, degree = 8: Own-price (left) and cross-price (right) elasticity
functions
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Figure 18: Complements, degree = 6: Own-price (left) and cross-price (right) elasticity
functions
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Figure 19: Complements, degree = 4: Own-price (left) and cross-price (right) elasticity
functions
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E.5 J > 2 goods

To complement the results in Table 3 in the main text, here I report estimates for the entire own- and

cross-elasticity functions for the J > 2 goods case. I generate data from the logit model

uij = −pj + xj + ξj + εij
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I choose this simple model as it means that I can put pj into the linear index δj , which reduces the number

of parameters to estimate. I report the own-price elasticity of good 1 and the elasticity of good 1 wrt the

price of good 2 for J = 3, J = 5, and J = 7 below.70

Figure 20: Logit Data, J = 3: Own-price (left) and cross-price (right) elasticity functions
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Figure 21: Logit Data, J = 5: Own-price (left) and cross-price (right) elasticity functions
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70Since the dgp and the model are symmetric in the different goods, the remaining own- and cross-price
elasticities are the same as those reported here.
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Figure 22: Logit Data, J = 7: Own-price (left) and cross-price (right) elasticity functions
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Appendix F: Extension to Endogenous Demand Shifters

In this appendix, I consider violations of the exogeneity assumption that take the form E (ξj |x, z) = γjxj for

all j.71 By Equation (2), for all j,

xjt = E
[

1

βj + γj
σ−1
j

(
st, pt, x

(2)
t

) ∣∣∣x, z] ≡ E
[
µj

(
st, pt, x

(2)
t

) ∣∣∣x, z] (39)

where I let µ ≡ [µ1, ..., µJ ]
′ ≡ Mµσ

−1 and Mµ is the diagonal matrix with (j, j) entry 1
βj+γj

. Then, we can

identify µ under completeness conditions as in BH. Let Jsµ denote the Jacobian of µ wrt s, and similarly for

Jpµ, Jx(1)

µ , and Jx(2)

µ . Note that Jpσ = −
(
Jsµ
)−1 Jpµ, so that Jpσ is identified. An analogous argument applies to

Jx(2)

σ . On the other hand, since Jx(1)

σ =
(
Jsµ
)−1

M̃µ, where M̃µ is the diagonal matrix with (j, j) entry
βj

βj+γj
,

identifying µ is not sufficient to recover Jx(1)

σ . In other words, the marginal effects of p and x(2) are identified

in spite of the endogeneity of x(1), whereas—as one would expect—the marginal effects of x(1) are not. A

corollary of this is that counterfactuals that only depend on derivatives wrt prices—such as those considered

in Section 5.4—are robust to this type of endogeneity.

Appendix G: Data

I take a market to be a week/store combination.72 Data on prices and quantities come from the 2014 Nielsen

scanner data set For each market, the most granular unit of observation in the Nielsen data is a UPC (i.e.

a specific bar code). I aggregate UPCs according to whether they bear or do not bear the USDA Organic

71For simplicity, here I consider the case where x
(1)
j is scalar, since that corresponds to the empirical

settings in Section 5.

72I use the terms “store” and “retailer” interchangeably.
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Seal. When this information is missing, I assume the UPC is non-organic. The aggregate quantities are

obtained by simply summing the quantities for the individual UPCs, whereas for prices I take a weighted

average where the weights are determined by the yearly share of sales that a given UPC has in that store.

Similarly, I aggregate across UPCs for selected non-strawberry fruits.73 Specifically, I focus on the top

four non-strawberry fruits according to Produce for Better Health Foundation (2015) in terms of per capita

consumption nationwide, i.e. bananas, apples, other berries and oranges. For each of these fruits, I compute

a price index (across UPCs) following the same procedure I used for strawberries. These fruit-level price

indices are then aggregated even further into a single price index using weights that are proportional to the

per capita eatings of each fruit and are normalized to sum to one.

Regarding Hausman instruments, I take the mean price of strawberries and the mean price index for the

outside option, respectively, across the Californian supermarkets that are not in the same marketing area74

as a given store. Excluding supermarkets in the same marketing area is meant to alleviate the usual concerns

about Hausman instruments, i.e. that likely spatial correlation in the unobserved quality of the products

might induce a violation of the exogeneity assumption.

Spot prices for strawberries are obtained from the US Department of Agriculture website.75 The data

reports spot prices for the following shipping points: California, Texas, Florida, North Carolina, and Mexico.

In absence of information on where supermarkets source their strawberries from, I take a simple average of

the prices at the various shipping points in any given week.

I measure the availability of non-strawberry fresh fruit in any given week at the state level using the

total sales of non-strawberry fruits at all stores included in the Nielsen data set in that week. To proxy for

consumer tastes for organic produce at a given store, I compute the percentage of yearly organic lettuce sales

over total yearly lettuce sales at the store.

Finally, data on income at the zip-code level is downloaded from the Internal Revenue Service web-

site.76

The resulting data set has 38,800 markets. Table 9 reports descriptive statistics for each variable and

Figure 23 shows the price pattern for a typical store over time. Both the retail price and the spot price

exhibit strong seasonality. Moreover, the retail price sometimes displays a pattern in which it drops and

then jumps back up to the initial level. This is typical of supermarket prices given the prevalence of periodic

sales. However, in the case of strawberries, this pattern is much less marked than for other items, such as

packaged goods. Therefore, the model does not explicitly account for sales.77

73In this case, however, I do not distinguish between organic and non-organic fruits.

74Here I follow the Nielsen partition of the United States into Designated Marketing Areas.

75http://cat.marketnews.usda.gov/cat/index.html.

76https://www.irs.gov/uac/soi-tax-stats-individual-income-tax-statistics-zip-code-data-soi.

77Inventory is often invoked as a justification for sales in models of retail. However, because strawberries
are so perishable, it is unlikely that inventory plays a first-order role in driving the retailer’s pricing behavior.
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Table 9: Descriptive statistics

Mean Median Min Max

Quantity non-organic 735.33 581.00 6.00 5,729.00
Quantity organic 128.91 78.00 1.00 2,647.00
Price non-organic 2.97 2.89 0.93 4.99
Price organic 4.26 3.99 1.24 6.99
Price other fruit 3.95 3.80 1.30 13.88
Hausman non-organic 3.00 2.98 2.09 4.05
Hausman organic 4.28 4.07 2.95 5.50
Hausman other fruit 4.50 3.79 1.19 13.33
Spot non-organic 1.46 1.35 0.99 2.32
Spot organic 2.38 2.17 1.25 4.88
Quantity other fruit (per capita) 0.83 0.82 0.60 1.08
Share organic lettuce 0.08 0.06 0.00 0.41
Income 82.54 72.61 33.44 405.09

Note: Prices in dollars per pound. Quantities in pounds. Income in thousands of dollars per household.

Figure 23: Price patterns
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Note: Prices in dollars per pound for organic strawberries sold at a representative store.

Next, I present the results of the first-stage regressions in Table 10. As expected, the retail prices

significantly increase with the spot prices. Further, the share of organic strawberries increases with the taste

for organic products, while the opposite is true of the non-organic share. Finally, the shares of both inside

goods decrease with the availability of other fruit.
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Table 10: First-stage regressions

Non-organic Organic
Price Share Price Share

Spot price (own) 0.12∗∗ −0.68∗∗ 0.35∗∗ −0.26∗∗

Spot price (other) 0.04∗∗ 0.10∗∗ −0.21∗∗ 0.22∗∗

Hausman (own) 0.70∗∗ −1.30∗∗ 0.46∗∗ −0.19∗∗

Hausman (other) −0.01 0.25∗∗ 0.13∗∗ 0.22∗∗

Hausman (out) −0.01∗∗ 0.11∗∗ −0.10∗∗ 0.04∗∗

Availability other fruit −0.01∗∗ −0.07∗∗ −0.02∗∗ −0.01∗∗

Share organic lettuce 0.08∗∗ −0.20∗∗ −0.01∗∗ 0.10∗∗

Income −0.02∗∗ 0.00∗∗ 0.01∗∗ 0.04∗∗

R2 0.46 0.27 0.52 0.16

Note: ∗∗ denotes significance at the 95% level. All variables are normalized to belong to the [0, 1] interval.

Appendix H: Microfoundation of the Empirical Model

This appendix shows how to map the model estimated on the Nielsen data in Section 5 into the general

framework outlined in Section 2. Specifically, I outline two models of consumer behavior that yield the

demand system in equation (7) and prove that the system is indeed invertible. It should be emphasized that

these are only two out of many models that are compatible with (7) and invertibility, and that the estimation

procedure does not rely on any of the parametric restrictions embedded in either model.78

H.1 Model 1

I first consider a standard discrete choice model. While the model is clearly at odds with the fact that

consumers buying fresh fruit face an (at least partially) continuous choice, this serves as a building block for

the more realistic model discussed in Section H.2. Moreover, given the prevalence of discrete choice models in

the literature, it provides a connection between the demand system in (7) and a more familiar setup.

I assume that consumers face a discrete choice between one unit (say, one pound) of non-organic straw-

berries, one unit of organic strawberries and one unit of other fresh fruit. Consumer i’s indirect utilities for

each of these goods are, respectively

ui1 = θstrδ
∗
str + αip1 + εi1

ui2 = θstrδ
∗
str + θorgδ

∗
org + αip2 + εi2

ui0 = θ0,strx
(1)
str + θ0,orgδ

∗
org + αip0 + εi0

(40)

78For instance, while Model 1 below assumes that prices enter linearly in utilities, this restriction is not
needed for identification or estimation, given that I do not impose symmetry of the Jacobian of demand with
respect to price.
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where

δ∗str = ξstr

δ∗org = θ1,orgx
(1)
org + ξorg

and p1, p2, p0 denote the prices of non-organic strawberries, organic strawberries, and the price index for

other fresh fruit, respectively. I interpret δ∗str as the mean quality of all strawberries in the market and δ∗org
as the mean utility for organic products (including—but not limited to—organic strawberries). Because the

outside option of buying other fresh fruit includes organic produce (e.g. organic apples), I let δ∗org enter ui0.

In addition, ui0 also depends on the richness of the non-strawberry fruits offering, as captured by x
(1)
str. I use

(ξstr, ξorg) to denote the unobserved quality levels for strawberries and organic produce, respectively, and

(εi2, εi2) to denote taste shocks idiosyncratic to consumer i. Unlike BLP, I will not make any parametric

assumptions on (εi2, εi2), nor on the distribution of the price coefficient αi. In particular, note that the

correlation structure of the vector (εi2, εi2, αi) is unrestricted, which allows for patterns such as the fact that

wealthier consumers may have a stronger preference for organic produce. Further, the distribution of αi will

be allowed to depend on other covariates such as mean income x(2) in the market.

Now I show that the demand system generated by the model above is identified under the following

assumption (as well as the standard exogeneity and completeness assumptions discussed in Section 2).

Assumption 10. The coefficients θstr, θorg,θ0,str, θ0,org and θ1,org are non-zero.

Note that Assumption 10 is very mild. It is satisfied if (i) consumers care about the quality of strawberries

(θstr > 0) and organic produce (θorg, θ0,org > 0), as well as the availability of non-strawberry fruit θ0,str > 0,

when purchasing fresh fruit; and (ii) the variable x
(1)
org is indeed a proxy for taste for organic produce

(θ1,org > 0).

Lemma 11. Under Assumption 10, the demand functions σ1 and σ2 generated by the model in (40) are

point-identified under the same set of conditions used to obtain identification in BH.

Proof. Since utility is ordinal, I can subtract θ0,strx
(1)
str + θ0,orgδ

∗
org + αip0 from each equation in (40) and

write
ui1 = δ̃1 − θ0,strx

(1)
str + αi (p1 − p0) + εi1

ui2 = δ̃2 − θ0,strx
(1)
str + αi (p2 − p0) + εi2

ui0 = εi0,

(41)

where

δ̃1 ≡ θstrδ
∗
str − θ0,orgδ

∗
org

δ̃2 ≡ θstrδ
∗
str + (θorg − θ0,org) δ

∗
org

Using (41) and the fact that the distribution of αi is allowed to depend on x(2), we can write the demand

system as

s = σ̃
(
δ̃1 − θ0,strx

(1)
str, δ̃2 − θ0,strx

(1)
str, p, x

(2)
)
, (42)

where p ≡ (p0, p1, p2), s ≡ (s1, s2)
′

is the vector of market shares and σ̃ is a function from R2 × R4
+ to the

unit 2-simplex. Next, by Theorem 1 of Berry et al. (2013), we can invert the system in (42) for the mean
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utility levels as follows

δ̃1 = σ̃−1
1

(
s, p, x(2)

)
+ θ0,strx

(1)
str

δ̃2 = σ̃−1
2

(
s, p, x(2)

)
+ θ0,strx

(1)
str,

(43)

where σ̃−1
k denotes the k−th element of the inverse, σ̃−1, of σ̃. I now show that there is a one-to-one mapping

between
(
δ∗str, δ

∗
org

)
and

(
δ̃1, δ̃2

)
. Letting δ∗ ≡

(
δ∗str, δ

∗
org

)′
and δ̃ ≡

(
δ̃1, δ̃2

)′
, we have

δ̃ = Aδ∗,

where

A ≡

[
θstr −θ0,org

θstr θorg − θ0,org

]
Since det (A) = θstrθorg 6= 0 under Assumption 10, we can rewrite (43) as

δ∗ = A−1σ̃−1
(
s, p, x(2)

)
+A−1 · [1 1]

′ × θ0,strx
(1)
str (44)

or, equivalently,

δ∗str = σ−1
1

(
s, p, x(2)

)
+ θ1x

(1)
str

δ∗org = σ−1
2

(
s, p, x(2)

)
+ θ2x

(1)
str,

(45)

for functions σ−1
i : ∆2 × R4

+ → R2, i = 1, 2, where ∆2 denotes the unit 2-simplex. Now I derive expressions

for the coefficients θ1 and θ2 in terms of the model primitives. Note that

A−1 =
1

θorg

[
θorg−θ0,org

θstr

θ0,org
θstr

−1 1

]

and thus

A−1 · [1 1]
′

=

[
1

θstr
0

]′
,

i.e.

θ1 =
θ0,str

θstr
θ2 = 0

Plugging this into (45) and using the definitions of δ∗str and δ∗org, we obtain

ξstr = σ−1
1

(
s, p, x(2)

)
+
θ0,str

θstr
x

(1)
str

θ1,orgx
(1)
org + ξorg = σ−1

2

(
s, p, x(2)

) (46)

The final step is to show that we can identify the system in (46), given the instruments available. Because

we are free to normalize the scale of ξstr and ξorg in the display above, we can divide the first equation of
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(46) by
θ0,str
θstr

and the second equation by θ1,org without loss,79 and rearrange terms as follows

−x(1)
str = σ−1

1

(
s, p, x(2)

)
− ξstr (47)

x(1)
org = σ−1

2

(
s, p, x(2)

)
− ξorg, (48)

Equations (47) and (48) are in the same form as Equation (6) in BH and thus we can follow their argument

to show that σ1 and σ2 are identified. Further, note that inverting the system in (47) and (48) yields the

demand system in equation (7) that was estimated on the Nielsen data (after normalizations).

H.2 Model 2

I now turn to a model of continuous choice that is likely a closer approximation to the behavior of consumers

buying fresh fruit. Let consumer i face the following maximization problem

max
q0,q1,q2

Ui (q0, q1, q2)

s.t. p0q0 + p1q1 + p2q2 ≤ yinci

(49)

where yinci denotes the income consumer i allocates to fresh fruit, q0 is the quantity of non-strawberry

fresh fruit, q1 is the quantity of non-organic strawberries and q2 is the quantity of organic strawberries, and

similarly for prices p0, p1, p2. One could think of yinci as being the outcome of a higher-level optimization

problem in which the consumer chooses how to allocate total income across different product categories,

including fresh fruit. Assume Ui takes the Cobb-Douglas form

Ui (q0, q1, q2) = q
d0εi,0
0 q

d1εi,1
1 q

d2εi,2
2 ,

for positive d ≡ (d0, d1, d2) and εi ≡ (εi,0, εi,1, εi,2). Then, the optimal quantities chosen by the consumer

are

q∗j
(
d, p, yinci , εi

)
=
yinci

pj
· djεi,j∑2

k=0 dkεi,k
j = 0, 1, 2 (50)

where d ≡ (d0, d1, d2) and p ≡ (p0, p1, p2). Now assume that

d0 = γθ0,orgorg x̃
θ0,str
str

d1 = γθstrstr

d2 = γθstrstr γ
θorg
org

where

γstr ≡ exp {δ∗str}

γorg ≡ exp
{
δ∗org

}
x̃str ≡ exp

{
x

(1)
str

}
79These divisions are well-defined operations as

θ0,out
θstr

and θ1,org are nonzero by Assumption 10.
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and δ∗str, δ
∗
org are defined as in Section H.1. I can then re-write (50) as

q∗j

(
d̃, p, yinci , εi

)
=
yinci

pj
· d̃jεi,j∑2

k=0 d̃kεi,k
j = 0, 1, 2 (51)

where

d̃0 ≡ 1

d̃1 ≡ γθstrstr γ
−θ0,org
org x̃

−θ0,str
str

d̃2 ≡ γθstrstr γ
θorg−θ0,org
org x̃

−θ0,str
str

and d̃ ≡
(
d̃0, d̃1, d̃2

)
.

Next, let FY,ε denote the joint distribution of yinci and εi in the market, and define80

Q∗j

(
d̃, p, x(2)

)
=

∫
q∗j

(
d̃, p, y, ε

)
dFY,ε

(
y, ε;x(2)

)
j = 0, 1, 2

Q∗j

(
d̃, p, x(2)

)
is the model counterpart to the market-level quantity Qj observed in the data.

The last step is to show that there exists a mapping of quantities into market shares such that the resulting

demand system is invertible. For j = 0, 1, 2, define

˜̃σj

(
d̃, p, x(2)

)
=

Q∗j

(
d̃, p, x(2)

)
∑2
k=0Q

∗
k

(
d̃, p, x(2)

)
and

sj =
Qj∑2
k=0Qk

Then, equating observed shares to their model counterparts, we obtain the system

s = ˜̃σ
(
d̃, p, x(2)

)
(52)

where s ≡ (s0, s1, s2)
′

and ˜̃σ
(
d̃, p, x(2)

)
≡
(

˜̃σ0

(
d̃, p, x(2)

)
, ˜̃σ1

(
d̃, p, x(2)

)
, ˜̃σ2

(
d̃, p, x(2)

))′
.

Because ˜̃σj is strictly decreasing in d̃k for all j and all k > 0, k 6= j, by Theorem 1 in Berry et al. (2013), we

can invert (52) as follows

d̃ = ˜̃σ−1
(
s, p, x(2)

)
and, taking logs, we can write

θstrδ
∗
str − θ0,orgδ

∗
org = σ̃−1

1

(
s, p, x(2)

)
+ θ0,strx

(1)
str

θstrδ
∗
str + (θorg − θ0,org) δ

∗
org = σ̃−1

2

(
s, p, x(2)

)
+ θ0,strx

(1)
str

(53)

80Note that I let FY,ε be a function of mean income x(2), consistently with the information available in
the data.
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where σ̃−1
j

(
s, p, x(2)

)
≡ log

(
˜̃σ
−1

j

(
s, p, x(2)

))
for j = 1, 2.

Note that (53) has the exact same form as (43). Therefore, we can use the argument in Section H.1 to show

that the demand system is identified.
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