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The concept of Rademacher complexity for independent sequences of random variables is
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(of a class of functions) follows from renewal theory and allows to control the expected values of
suprema (over the class of functions) of empirical processes based on Harris Markov chains as well
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MSC 2010 subject classifications: Primary 62M05; secondary 62G07, 60J22.
Keywords: Markov chains, Concentration inequalities, Rademacher complexity, Kernel smooth-
ing, Metropolis Hasting.

1. Introduction

Let (Ω,F ,P) be a probability space and suppose that X = (Xi)i∈N is a sequence of
random variables on (Ω,F ,P) valued in (E, E). Let F denote a countable class of real-
valued measurable functions defined on E. Let n ≥ 1, define

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ .
The random variable Z plays a crucial role in machine learning and statistics: it can be
used to bound the risk of an algorithm [63, 14] as well as to study M and Z estimators [60];
it serves to describe the (uniform) accuracy of function estimates such as the cumulative
distribution function, the quantile function or the cumulative hazard functions [56] or
kernel smoothing estimates of the probability density function [21, 24]. Depending on
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the class F many different bounds are known when X is formed by independent and
identically distributed (i.i.d.) random variables.. Reference textbooks include [61, 17, 14,
13, 26].

When X is a Markov chain, many approaches have already been investigated. For a
single function f , exponential-type bounds on the excess probability of Z, i.e., P(Z > t),
are obtained in [10] based on the regenerative approach; in [31] using a curvature as-
sumption; in [48] using spectral methods. For general classes F , the concentration of
Z around its expected value, i.e., bounding P(|Z − EZ| > t), is studied in [1] where a
Berstein-type bound is established; and in [18] and [48] where the technique of bounded
differences [38] is employed to derive Hoeffding-type inequalities (see also [66] which ex-
tends [18] to the case of unbounded chains). For instance, the inequalities of [48] hold
under uniform ergodicity conditions but are explicit in term or the mixing time of the
chain, making them operational in many applications. Similarly, the exponential bounds
obtained in [43], based on chaining arguments, also hold under uniformly ergodic con-
ditions. Since aperiodic Harris recurrent chains are β-mixing processes (see for instance
[15] and the references therein), the McDiarmid types of inequalities obtained by [42]
and the notion of Rademacher complexity introduced and studied in [41] can be applied
when X is Markovian. Notice however that their bounds are not exactly of exponential
type because they are affected by the rate of convergence of the β-mixing coefficients
(see Remark 3 for more details).

The overall goal of the paper is to establish new bounds on the expected value of Z
as well as on the excess probability of Z when X is a Markov chain and the class F has
a complexity of Vapnik-Chervonenkis (VC) type. In contrast with previous works, we
study directly the tail of Z and our bounds involve the variance of the class F and do
not require uniform geometric ergodicity.

The approach taken in this paper is based on renewal theory and is known as the
regenerative method, see [57, 45, 3]. Indeed it is well known that sample paths of a Harris
chain may be divided into i.i.d. regeneration blocks. These blocks are defined as data
cycles between random times called regeneration times at which the chain forgets its
past. Hence, most of the results established in the i.i.d. setup may be extended to the
Markovian framework by applying the latter to (functionals of) the regeneration blocks.
Refer to [40] for the strong law of large numbers and the central limit theorem, to [35]
for functional CLT, as well as [12, 36, 37, 9, 7, 19] for refinements of the central limit
theorem.

Following the seminal approach by Vapnik and Cèrvonenkis [64], we introduce a new
notion of complexity that we call the regenerative block Rademacher complexity which
extends the classical Rademacher complexity for independent sequences of random vari-
ables to Markov chains. Refer to the books [33, 13, 26] for nice accounts and applications
of Rademacher complexity in the i.i.d cases. As in the independent case, the regener-
ative block Rademacher complexity is useful to bound the expected values of empirical
processes (over some classes of functions) and intervenes as well to control the excess
probability. Depending on the probability tails of the regeneration times, which are con-
sidered to be either exponential or polynomial, we derive bounds on the regenerative
block Rademacher complexity of classes of VC type. Interestingly, the obtained bounds
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bears resemblance to the ones provided in [21, 24] (for independent X) as they depend on
the variance of the underlying class of functions F allowing to take advantage of classes
F having small fluctuations.

Kernel density estimator. Kernel density estimators, as well as their variations,
Nadaraya-Watson, nearest neighbors or delta-sequences estimators [65], are local aver-
aging techniques forming the basis of nonparametric estimation. They are at the core of
many semi-parametric statistical procedures [2, 50] in which controlling Z-type quantities
permits to take advantage of the tightness of the empirical process [62]. The asymptotic
properties of kernel density estimators, based on independent and identically distributed
data, are well understood since the seventies-eighties [58]. However finite sample proper-
ties were only studied more recently [21, 24]. The function class of interest (taking the
role of F) in this problem is given by

Kn = {x 7→ K((x− y)/hn) : y ∈ Rd},

where K : Rd → R is called the kernel and (hn)n∈N is a positive sequence converging to
0 called the bandwidth. Based on the property that Kn is included on some VC class
[44], some master results have been obtained by [21, 22, 23, 24] who proved some con-
centration inequalities, based on the seminal work of [59], allowing to establish precisely
the rate of uniform convergence of kernel density estimators. Kernel density estimates
are particular because the variance of each element in Kn goes to 0 as n → ∞. This
needs to be considered to derive accurate bounds, e.g., the one presented in [24]. The
proposed approach takes care of this phenomenon as, under reasonable conditions, our
bound for Markov chains scales at the same rate as the ones obtained in the independent
case. Note that our results extend the ones given in [4] where under similar assumptions
the consistency is established.

The study of kernel estimators for dependent data has only recently received special
attention in the statistical literature. To the best of our knowledge, uniform results are
limited to the alpha and beta mixing cases when dependency occurs [49, 28] by using
coupling techniques.

Metropolis-Hasting algorithm. Metropolis-Hasting (MH) algorithm is one of the
state of the art method in computational statistics and is frequently used to compute
Bayesian estimators [53]. Theoretical results for MH are often deduced from the analysis
of geometrically ergodic Markov chains as presented for instance in [39, 54, 30, 55, 20].
Whereas many results on the asymptotic behavior of MH are known, e.g. central limit
theorem or convergence in total variation, only few non-asymptotic results are available
for such Markov chains; see for instance [34] where the estimation error is controlled via
a Rosenthal-type inequality. We consider the popular random walk MH, which is at the
heart of the adaptive MH version introduced in [27]. Building upon the pioneer works
[54, 30] where the geometric ergodicity is established for the random walk MH, we show
that whenever the class F is VC, the expected value of supf∈F |

∑n
i=1(f(Xi)−

∫
fdπ)| is

bounded by D
√
n(1 ∨ log(log(n))), where π stands for the stationary measure and D > 0
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depends notably on the distribution of the regeneration times. By further applying this to
the quantile function, we obtain a concentration inequality for Bayesian credible intervals.

Outline. The paper is organized as follows. In section 2, the notations and main as-
sumptions are first set out. Conceptual background related to the renewal properties of
Harris chains and the regenerative method are also briefly exposed. In section 3, the
notion of block Rademacher complexity for Markov chains is introduced and some basic
results on block VC classes are presented. Section 4 provides the main result of the paper:
a bound on the Rademacher complexity. Our methodology is illustrated in section 5 on
kernel density estimation and MH.

2. Regenerative Markov chains

2.1. Basic definitions

In this section, for seek of completeness we recall the following important basic definitions
and properties of regenerative Markov chains. An interested reader may look into [46] or
[40] for detailed survey of regeneration theory.

Consider an homogeneous Markov chain X = (Xn)n∈N defined on (Ω,F ,Pν) valued
in a countably generated state space (E, E) with transition probability P (., .), and initial
probability ν. The assumption that E is countably generated allows to avoid measurability
problems. For any x ∈ E and any probability measure µ, the notation Px (resp. Pµ) stands
for the probability measure such that X0 = x (resp. X0 ∼ µ), and Ex (·) (resp. Eµ (·))
stands for the associated expectation. For any n ≥ 1, let Pn denote the n-th iterate
of the transition probability P . Given a set B ∈ E, define τB as the first time the chain
enters B.

Definition 1 (irreducibility). The chain is ψ-irreducible if there exists a σ-finite mea-
sure ψ such that, for all set B ∈ E satisfying ψ(B) > 0, for any x ∈ E there exists n ≥ 1
such that Pn(x,B) > 0. With words, regardless of the starting point, the chain visits B
with strictly positive probability.

Definition 2 (aperiodicity). Assuming ψ-irreducibility, there exists d′ ∈ N∗ disjoint
sets D1, ...., Dd′ (set Dd′+1 = D1) positively weighted by ψ such that ψ(E\∪16i6d′Di) = 0
and ∀x ∈ Di, P (x,Di+1) = 1. The period of the chain is the g.c.d. d of such integers, it
is said to be aperiodic if d = 1.

Definition 3 (Harris recurrence). A ψ-irreducible Markov chain is said to be positive
Harris recurrent if for all B ∈ E with ψ(B) > 0, we have ExτB <∞ for all x ∈ B.

Recall that a chain is positive Harris recurrent and aperiodic if and only if it is ergodic
[46, Proposition 6.3], i.e., there exists a probability measure π, called the stationary
distribution, such that limn→+∞ ‖Pn(x, ·)−π‖tv = 0. The Nummelin splitting technique
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(presented in the forthcoming section) depends heavily on the notion of small set. Such
sets exist for positive Harris recurrent chain [29].

Definition 4 (small sets). A set S ∈ E is said to be Ψ-small if there exists δ > 0,
a positive probability measure Ψ supported by S and an integer m ∈ N∗ such that

∀x ∈ S, B ∈ E Pm(x,B) ≥ δ Ψ(B). (2.1)

In the whole paper, we work under the following generic hypothesis in which the chain
is supposed to be Harris recurrent.

(H) The chain (Xn)n∈N is a positive Harris recurrent aperiodic Markov chain defined on
(Ω,F ,Pν) valued in a countably generated state space (E, E) with transition kernel
P (x, dy) and initial measure ν. Let S be Ψ-small with m = 1 and suppose that the
hitting time τS satisfies

sup
x∈S

Ex[τS ] <∞, and Eν [τS ] <∞.

This is only for clarity reasons that we assume that m = 1. As explained in Remark
9 below, the study of sums over general Harris chain, i.e., when m ≥ 1, can easily be
derived from the case m = 1.

2.2. The Nummelin splitting technique

The Nummelin splitting technique [45, 3] allows to retrieve all regeneration properties
for general Harris Markov chains. It consists in extending the probabilistic structure of
the chain in order to construct an artificial atom [47]. Start by recalling the definition of
regenerative chains.

Definition 5 (regenerative chain). We say that a ψ-irreducible, aperiodic chain is re-
generative or atomic if there exists a measurable set A called an atom, such that ψ(A) > 0
and for all (x, y) ∈ A2 we have P (x, ·) = P (y, ·). Roughly speaking, an atom is a set on
which the transition probabilities are the same.

Assume that the chain X satisfies the generic hypothesis (H). Then the sample space
is expanded in order to define a sequence (Yn)n∈N of independent Bernoulli random vari-
ables with parameter δ. The construction relies on the mixture representation of P on
S, namely P (x,A) = δΨ(A) + (1 − δ)(P (x,A)− δΨ(A))/(1− δ), with two components,
one of which not depending on the starting point (implying regeneration when this com-
ponent is picked up in the mixture). The regeneration structure can be retrieved by the
following randomization of the transition probability P each time the chain X visits the
set S:

• If Xn ∈ S and Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is
distributed according to the probability measure Ψ,
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• If Xn ∈ S and Yn = 0 (that happens with probability 1 − δ), then Xn+1 is dis-
tributed according to the probability measure (1− δ)−1(P (Xn, ·)− δΨ(·)).

The bivariate Markov chain Z = (Xn, Yn)n∈N is called the split chain. It takes its
values in E × {0, 1} and is atomic with atom given by A = S × {1}. Define the sequence
of regeneration times (τA(j))j≥1, i.e.

τA = τA(1) = inf{n ≥ 1 : Zn ∈ A}

and, for j ≥ 2,
τA(j) = inf{n > τA(j − 1) : Zn ∈ A}.

It is well known that the bivariate chain Z inherits all the stability and communication
properties of the chain X, as aperiodicity and ψ-irreducibility. For instance, the regen-
eration time has a finite expectation (by recurrence property). More precisely, it holds
that [4, Lemma ∗A1]

sup
x∈A

Ex[τA] <∞ and Eν [τA] <∞.

It is known from regeneration theory [40] that given the sequence (τA(j))j≥1, we can
divide the chain into block segments or cycles defined by

Bj = (X1+τA(j), · · · , XτA(j+1)), j ≥ 1

according to the consecutive visits of the chain to the regeneration set A. The strong
Markov property implies that (τA(j))j≥1 and (Bj)j≥1 are i.i.d. [7, Lemma 3.1]. Denote
by PA the probability measure such that Z0 ∈ A. The stationary distribution is given by
the Pitman’s occupation measure:

π(B) =
1

EA(τA)
EA

(
τA∑
i=1

IB(Xi)

)
, ∀B ∈ E ,

where IB is the indicator function of the event B.

Remark 1 (small set or atom). The Nummelin splitting technique is useless in the case
of countable state space chains for which any state is an atom. For sake of generality, we
choose to focus on the general framework of Harris chains.

3. Regenerative Block Rademacher complexity

3.1. The independent case

Let ξ = (ξi)i∈N be an i.i.d. sequence of random variables defined on (Ω,F ,P) valued in
(E, E) with common distribution P on (E, E). Let F be a countable class of real-valued
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measurable functions defined on E. The Rademacher complexity associated to F is given
by

Rn,ξ(F) = E sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(ξi)

∣∣∣∣∣ ,
where the (εi)i∈N are i.i.d. Rademacher random variables, i.e., taking values +1 and −1,
with probability 1/2, independent from ξ.

The notion of VC class is powerful because it covers many interesting classes of func-
tions and ensures suitable properties on the Rademacher complexity. The function F is
an envelope for the class F if |f(x)| ≤ F (x) for all x ∈ E and all f ∈ F . For a metric
space (F , d), the covering number N (ε,F , d) is the minimal number of balls of size ε
needed to cover F . The metric of interest is the L2(Q)-norm denoted by ‖.‖L2(Q) and

given by ‖f‖L2(Q) = {
∫
f2dQ}1/2.

Definition 6 (VC class). A class F of measurable functions E → R is said to be of
VC-type (or Vapnik-Chervonenkis type) for an envelope F and admissible characteristic
(C, v) (positive constants such that C ≥ (3

√
e)v and v ≥ 1), if for all probability measure

Q on (E, E) with 0 < ‖F‖L2(Q) <∞ and every 0 < ε < 1,

N
(
ε‖F‖L2(Q), F , ‖.‖L2(Q)

)
≤ Cε−v.

We also assume that the class is countable to avoid measurability issues (but the non-
countable case may be handled similarly by using outer probability and additional mea-
surability assumptions, see [62]).

The next theorem is taken from [23], Proposition 2.1, and has been successfully applied
to kernel density estimators in [24]. A similar approach is provided in [22], Proposition
1.

Theorem 1 ([23], Proposition 2.1). Let F be a measurable uniformly bounded VC class
of functions defined on E with envelop F and characteristic (C, v). Let U > 0 such that
|f(x)| ≤ U for all x ∈ E and f ∈ F . Let σ2 be such that E[f(ξ)2] ≤ σ2 for all f ∈ F .
Then, whenever 0 < σ ≤ U , it holds

Rn,ξ(F) ≤M

[
vU log

CU

σ
+

√
vnσ2 log

CU

σ

]
,

where M is a universal constant.

3.2. The Harris case

To extend the previous approach to any Harris chain X, we decompose the chain X
according to the independent blocks (Bj)j≥1 introduced in section 2.2. Let n ≥ 1 and
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define

ln =

n∑
i=1

IA(Xi),

the total number of renewals before n. Assuming that ln > 1, we thus observe ln − 1
(complete) i.i.d. blocks, namely B1, . . . , Bln−1

. The first block B0 = (X1, . . . , XτA(1))
and the last block Bln = (XτA(ln), . . . , Xn), often called incomplete blocks, are not part
of the i.i.d. sequence simply because they have a different distribution than B1. Those
incomplete blocks will be treated separately. We have∣∣∣∣∣

n∑
i=1

(f(Xi)− Eπ[f ])

∣∣∣∣∣ ≤
∣∣∣∣∣∣

τA(ln)∑
i=τA(1)+1

(f(Xi)− Eπ[f ])

∣∣∣∣∣∣+

∣∣∣∣∣
τA∑
i=1

(f(Xi)− Eπ[f ])

∣∣∣∣∣
+

∣∣∣∣∣∣
n∑

i=τA(ln)+1

(f(Xi)− Eπ[f ])

∣∣∣∣∣∣ , (3.1)

with the convention that empty sums are 0. Because τA(ln) − τA(1) =
∑ln−1
k=1 `(Bk),

where `(Bk) denote the size of block k, it holds that∣∣∣∣∣∣
τA(ln)∑

i=τA(1)+1

(f(Xi)− Eπ[f ])

∣∣∣∣∣∣ =

∣∣∣∣∣
ln−1∑
k=1

(f ′(Bk)− `(Bk)Eπ[f ])

∣∣∣∣∣ ,
f ′(Bk) =

τA(k+1)∑
i=τA(k)+1

f(Xi).

Hence this term is a (random) summation over complete blocks. Recall that, under (H),
ln/n→ 1/EAτA, Pν-almost surely. Thus, aiming to reproduce the Rademacher approach
in the i.i.d. setting, we introduce the following block Rademacher complexity of the class
F .

Definition 7 (regenerative block Rademacher complexity). The regenerative block Rademacher
complexity of a class F associated to a Harris chain X with atom A is given by

Rn,B(F) = EA sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf
′(Bk)

∣∣∣∣∣ ,
where (εk)k∈N are Rademacher random variables independent from the blocks (Bk)k∈N.

Remark 2 (random number of blocks). The number of blocks ln − 1 is random and
correlated to the blocks itself. This causes a major difficulty when deriving second order
asymptotic results as well as non-asymptotic results for regenerative Markov chains. In
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the subsequent development, Lemma 1.2.6 in [17] (see also Theorem 3.1.21 in [26] for
a refinement) plays a major role as it will relate the expected behavior of the empirical
sums over ln − 1 blocks to simple Rademacher sums over n blocks, i.e., Rn,B(F) (see
Theorem 5 for more details).

Remark 3 (comparison to other Rademacher complexities). In [41] the authors con-
sider the notion of Rademacher for β-mixing stationary processes. To control this Radema-
-cher complexity, the authors make use of Berbee’s coupling techniques [8] which consist
in replacing fixed length dependent blocks by independent ones up to an error depending
on the mixing coefficient β(.). If we denote by bn the block length, then we pay the price of
dependence by an additional term of order nβ(bn)/bn which deteriorates the convergence
rate. In our case, because the regenerative blocking techniques is based on small blocks (of
random length) with average size EAτA, their is no loss in term of rate of convergence.
For sake of completeness, we also mention that [52] introduced a notion of sequential
Rademacher complexity adapted to special martingale structures on trees. However, they
cannot be used in our framework.

Remark 4. The notion of Rademacher complexity is at the heart of many generalisa-
tion bounds in machine learning [5] and in model selection [32]. We refer to the books
[33, 26] for a nice account of this field. In the i.i.d case, this quantity may itself be
estimated by the empirical Rademacher complexity and controlled by some exponential
inequality (using for instance McDiarmid inequality), even for very large classes of func-
tions with infinite Vapnik dimension [6, 5]. However extending such results in the Marko-
vian case are far from begin direct at least for two reasons: first, the functionals on blocks
are not bounded, second, the blocks themselves in the general Harris recurrent case may be
unknown (depending on the true transition kernel of the chain) and should be estimated
as done in [11] with pseudo-regeneration techniques. This will be the subject of future
researches.

3.3. Block VC classes

Even if the blocks (Bk)k≥1 form an independent sequence, we cannot apply directly con-
centration results for empirical processes over bounded classes, e.g., Theorem 1, simply
because the class of functions formed by the f ′ is not bounded. To solve this problem
we will show that it is possible by an adequate probability transformation to bound the
covering number of the f ′ functions by the one of the original class F . In particular, we
show that the class formed by the f ′ functions has a similar size, in terms of covering
number, as the class F . This in turn will help to extend existing concentration inequal-
ities on F for i.i.d. sequences to concentration inequalities on F ′ for i.i.d. sequence of
blocks.

Recall that E denotes for the state space of X. Define E′ = ∪∞k=1E
k and let the
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occupation measure M be given by

M(B, dy) =
∑
x∈B

δx(y), for every B ∈ E′.

The function that gives the size of the blocks ` is ` : E′ → N∗, defined by,

`(B) =

∫
M(B, dy), for every B ∈ E′.

Let E ′ denote the smallest σ-algebra formed by the elements of the σ-algebras Ek, k ≥ 1,
where Ek stands for the classical product σ-algebra. Let Q′ denote a probability measure
on (E′, E ′). If B(ω) is a random variable with distribution Q′, then M(B(ω),dy) is a
random measure, i.e., M(B(ω),dy) is a (counting) measure on (E, E), almost surely, and
for every A ∈ E , M(B(ω), A) =

∫
A
M(B(ω),dy) is a measurable random variable (valued

in N). Henceforth `(B(ω))×
∫
f(y)M(B(ω),dy) is a random variable and, provided that

Q′(`2) <∞, the map Q, defined by

Q(A) = EQ′

(
`(B)×

∫
A

M(B, dy)

)
/EQ′(`

2), for every A ∈ E , (3.2)

is a probability measure on (E, E). The notation EQ stands for the expectation with
respect to the underlying measure Q. Introduce the following notations: for any function
f : E → R, let f ′ : E′ → R be given by

f ′(B) =

∫
f(y)M(B, dy) =

∑
x∈B

f(x),

and for any class F of real-valued functions defined on E, denote by F ′ = {f ′ : f ∈ F}.

Lemma 2. Let Q′ be a probability measure on (E′, E ′) such that 0 < ‖`‖L2(Q′) < ∞
and F be a class of measurable real-valued functions defined on (E, E). Then we have,
for every 0 < ε <∞,

N (ε‖`‖L2(Q′), F
′, L2(Q′)) ≤ N (ε, F , L2(Q)),

where Q is given in (3.2). Moreover if F is VC with constant envelope U and character-
istic (C, v), then F ′ is VC with envelope U` and characteristic (C, v).

Proof. The proof is inspired from the proof of Lemma 4.2 presented in [35]. Let f ′ ∈
F ′, i.e., there exists f ∈ F such that f ′(B) =

∫
f(y)M(B, dy). Then, using Jensen’s

inequality,

EQ′(f
′2) = EQ′

((∫
f(y)M(B, dy)

)2
)

≤ EQ′
(
`(B)

(∫
f(y)2M(B, dy)

))
= EQ(f2)EQ′(`

2).
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Applying this to the function

f ′(B)− f ′k(B) =

∫
(f(y)− fk(y))M(B, dy),

when each fk is the center of an ε-cover of the space F and ‖f − fk‖L2(Q) ≤ ε gives the
first assertion of the lemma. To obtain the second assertion, note that F ′ = U` is an
envelope for F ′. In addition, we have that

‖F ′‖L2(Q′) = U‖`‖L2(Q′).

From this we derive that, for every 0 < ε < 1,

N (ε‖F ′‖L2(Q′), F
′, L2(Q′)) = N (εU‖`‖L2(Q′), F

′, L2(Q′)).

Then using the first assertion of the lemma, we obtain for every 0 < ε < 1,

N (ε‖F ′‖L2(Q′), F
′, L2(Q′)) ≤ N (εU, F , L2(Q)),

which implies the second assertion whenever the class F is VC for the envelope F .

Now that we know that any bounded VC class F can be extended to a VC class F ′
unbounded defined over the blocks, we consider the bounded case F ′1{`≤L} = {f ′1{`≤L} :
f ∈ F} which, unsurprisingly, is shown to remain VC.

Lemma 3. Let Q′ be a probability measure on (E′, E ′) and F be a class of measurable
real-valued functions defined on (E, E). Then we have, for every 0 < ε <∞,

N (εL, F ′1{`≤L}, L2(Q′)) ≤ N (ε, F , L2(Q̃)),

where Q̃ = EQ′
(
`(B)1{`(B)≤L} ×

∫
A
M(B, dy)

)
/EQ′(`(B)21{`(B)≤L}). Moreover if F is

VC with constant envelope U and characteristic (C, v), then F ′1{`≤L} is VC with envelope
LU and characteristic (C, v).

Proof. The proof follows the same lines as the proof of Lemma 2, replacing ` by `1{`≤L}.

4. Main results

The main results of the paper are now stated. They extend concentration inequalities for
empirical processes over independent random variables [22, 23, 24], e.g., Theorem 1, to
Markov chains. We shall distinguish between two assumptions on the regeneration time
τA. We say that τA has polynomial moments, whenever

(PM) there exists p > 1 such that EA[τpA] <∞,
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and that τA has some exponential moments, as soon as

(EM) there exists λ > 0 such that EA[exp(τAλ)] <∞.

Theorem 4 (regenerative block Rademacher complexity). Assume that the chain X
satisfies the generic hypothesis (H). Let F be VC with constant envelope U and charac-
teristic (C, v). Let σ′2 be such that

EA

( τA∑
i=1

f(Xi)

)2
 ≤ σ′2, for all f ∈ F .

For some universal constant M > 0, and any L such that 0 < σ′ ≤ LU ,

(i) if (PM) holds, then

Rn,B(F) ≤M

[
vLU log

CLU

σ′
+

√
vnσ′2 log

CLU

σ′

]
+
nUEA[τpA]

Lp−1
,

(ii) if (EM) holds, then

Rn,B(F) ≤M

[
vLU log

CLU

σ′
+

√
vnσ′2 log

CLU

σ′

]
+ nU exp(−Lλ/2)Cλ,

where Cλ = 2EA[exp(τAλ)]/λ.

Proof. First we show that, regardless of (i) and (ii),

Rn,B(F) ≤M

[
vLU log

CLU

σ′
+

√
vnσ′2 log

CLU

σ′

]
+ nUEA[τA1{τA>L}], (4.1)

for some universal constant M > 0. Then we consider the two cases (i) and (ii) to bound
EA[τA1{τA>L}] accordingly.
Use the decomposition

n∑
k=1

εkf
′(Bk) =

n∑
k=1

εkf
′
L

(Bk) +

n∑
k=1

εkf
′
L(Bk), (4.2)

where, for any B ∈ E′,

f ′
L

(B) = f ′(B)1{`(B)≤L} and f
′
L(B) = f ′(B)1{`(B)>L}.

The first term in (4.2) represents a classical Rademacher complexity over a bounded
class: F ′1{`(B)≤L}. It follows from Lemma 3 that the product class F ′1{`(B)≤L} is VC
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with constant envelop LU . As by assumption, 0 < σ′ ≤ LU , we deduce from applying
Theorem 1 (with LU in place of U), that

EA sup
f∈F

∣∣∣∣∣
n∑
k=1

εk f
′
L

(Bk)

∣∣∣∣∣ ≤M
[
vLU log

CLU

σ′
+

√
vnσ′2 log

CLU

σ′

]
.

For the second term in (4.2), we find

EA sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf
′
n(Bk)

∣∣∣∣∣ ≤ nUEA[`(B1)1{`(B1)>L}] = nUEA[τA1{τA>L}]

Hence (4.1) is established. To obtain point (i), simply use Markov’s inequality. To obtain
point (ii), note that

EA[τA1{τA>L}] ≤ exp(−Lλ/2)EA[τA exp(τAλ/2)] ≤ 2

λ
exp(−Lλ/2)EA[exp(τAλ)],

where the last inequality follows from t ≤ exp(t) with t = τAλ/2.

Remark 5 (geometric ergodicity and (EM)). Condition (EM) is equivalent to each of
the following assertions: (i) the geometric ergodicity of the chain X, (ii) the (uniform)
Doeblin condition, (iii) the Foster-Lyapunov drift condition (see Theorem 16.0.2 in [40]
for the details). Under this assumption, most classical convergence results (for instance,
the law of the iterated logarithm or the central limit theorem) are valid [40, Chapter 17].

Remark 6 (mixing and (PM)). We point out that the relationship between (PM) and
the rate of decay of mixing coefficients has been investigated in Bolthausen (1982): (PM)
is typically fulfilled as soon as the strong mixing coefficients sequence decreases as an
arithmetic rate n−s, for some s > p− 1.

The two following results show that the regenerative block Rademacher complexity,
previously introduced, is useful to control the expected values as well as the excess
probability of suprema over classes of functions.

Theorem 5 (expectation bound). Assume that the chain X satisfies the generic hy-
pothesis (H). Let F be a countable class of measurable functions bounded by U . It holds
that

Eν

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Xi)− Eπ[f ])

∣∣∣∣∣
]
≤ 4Rn,B(Fc) + 2U(Eν [τA] + EA[τA])

≤ 16Rn,B(F) + 2U(Eν [τA] + EA[τA]),

where Fc denote the class formed by {f − Eπ[f ], f ∈ F} and ν stands for the initial
measure.
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Proof. Start by establishing the first inequality. We rely on the block decomposition
given in (3.1). First, we apply Lemma 1.2.6 in [17] (or Theorem 3.1.21 in [26]) to treat
the term formed by complete blocks. We obtain

Eν

sup
f∈F

∣∣∣∣∣∣
τA(ln)∑

i=τA(1)+1

(f(Xi)− Eπ[f ])

∣∣∣∣∣∣
 ≤ EA

[
max
1≤l≤n

sup
f∈F

∣∣∣∣∣
ln−1∑
k=1

{f ′(Bk)− `(Bk)Eπ[f ]}

∣∣∣∣∣
]

≤ 4EA

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εk{f ′(Bk)− `(Bk)Eπ[f ]}

∣∣∣∣∣
]

= 4Rn,B(Fc).

The terms corresponding to incomplete blocks are treated as follows. We have

Eν sup
f∈F

∣∣∣∣∣∣
τA(1)∑
i=1

(f(Xi)− Eπ[f ])

∣∣∣∣∣∣ ≤ 2UEν [τA],

Eν sup
f∈F

∣∣∣∣∣∣
n∑

i=τA(ln)

(f(Xi)− Eπ[f ])

∣∣∣∣∣∣ ≤ 2UEA[τA].

To obtain the second inequality, apply Theorem 3.1.21 in [26].

Using Theorem 5, we now apply [1, Theorem 7] to obtain a concentration bound for the
empirical process involving the Rademacher complexity Rn,B(F) and a variance term.

Theorem 6 (concentration bound, [1]). Assume that the chain X satisfies the generic
hypothesis (H), (EM) and there exists λ > 0 such that Eν [exp(λτA)] < ∞. Let F be a
countable class of measurable functions bounded by U . Let

Rn ≥ 16Rn,B(F) + 2U(Eν [τA] + EA[τA]),

σ′2 ≥ sup
f∈F

EA

( τA∑
i=1

f(Xi)

)2
 .

Then, for some universal constant K > 0, and for τ > 0 depending on the tails of the
regeneration time, we have, for all t ≥ 1,

Pν

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Xi)− Eπ(f))

∣∣∣∣∣ ≥ t+KRn

)
≤ K exp

[
−EA[τA]

K
min

(
t2

nσ′2
,

t

τ3Ulog n

)]
,

yielding alternatively, that for any n/ log(n) ≥ τ3U/σ′2 with probability 1− δ we have,

sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Xi)− Eπ(f))

∣∣∣∣∣ ≤ KRn + max

(
√
nσ′

√
K log

(
K

δ

)
, log

(
K

δ

)
τ3U log(n)

EA[τA]

)
.



Rademacher complexity for Markov chains 15

Remark 7 (on Theorem 6). An explicit value for the constant K is difficult to ob-
tain from the results of [1] but would be of great interest in practical applications. No-
tice that for n large the second member of the inequality reduces to the bound KRn +√
nσ′
√
K log(K/δ), which is similar to the rate in the i.i.d. case.

Remark 8. Paulin has obtained in [48] powerful concentration inequalities for uni-
formly ergodic Markov chains using Marton coupling techniques. An interesting feature
of these inequalities is that the constants can be made explicit as a function of the mixing
time (see his definition 1.3). His main result is a McDiarmid type inequality (theorem
2.1 and corollary 2.10) which may be applied to empirical processes. It is easy to see how
to combine our results with [48] to get bounds on empirical processes depending on the
mixing time. In this paper we are rather interested in exponential control depending on
a variance term (which may be small) as in our application to kernel density estimation
below. Moreover, notice that the results in [1] (which also make use of regeneration tech-
niques) holds for more general chain, that may not be uniformly geometrically ergodic.

Remark 9 (m different from 1). We have reduced our analysis to the case m = 1,
however it is very easy to see now how the case m > 1 can be handled up to a modified
constant in the bound. Recall that when m > 1 then the blocks (Bk)k≥1 are 1-dependent
(see for instance [16] Corollary 2.3). We can split the sum as follows

ln−1∑
k=1

f(Bk) =

ln−1∑
k=1, k even

f(Bk) +

ln−1∑
k=1, k odd

f(Bk).

Then notice that, because of the 1-dependence property, in each sums the blocks are inde-
pendent and we now have two sums of at most n/2 independent blocks that can be treated
separately based on the presented results.

5. Applications

In this section, we consider two applications of our results. The first one is dealing
with a particular class of kernel functions (useful in nonparametric estimation) and the
second one is focusing on some Markov chains called Metropolis-Hasting chains (useful
in simulation methods). All the proofs of the section are postponed to the Appendix.

5.1. Kernel density estimator

Given n ≥ 1 observations of a Markov chain X ⊂ Rd satisfying the generic assumption
(H), the kernel density estimator of the stationary measure π is given by

π̂n(x) = (nhdn)−1
n∑
i=1

K((x−Xi)/hn),
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where K : Rd → R, called kernel, is such that
∫
K(x)dx = 1 and (hn)n≥1 is a positive

sequence of bandwidths.
The analysis of the asymptotic behaviour of π̂n−π is traditionally executed by studying

two terms: the bias term, Eν π̂n − π, which can be handled using functional analysis [25,
section 4.1.1] and the variance term, π̂n − Eν π̂n, which follows from empirical process
theory (for independent random variables). In the next, we provide some results on the
asymptotic behaviour of the variance term.

We shall consider kernel functions K : Rd → R taking one of the two following forms,

(i) K(x) = K(0)(|x|), or (ii) K(x) =

d∏
k=1

K(0)(xk), (5.1)

where K(0) is a bounded function of bounded variation with support [−1, 1]. Note that
more general (but less simple) conditions on K [24, Assumption (K1)] could have been
used in place of (5.1). From [44], the class of functions

K = {y 7→ K((x− y)/h) : h > 0, x ∈ Rd} is a uniformly bounded VC class.

Theorem 7. Assume that the chain X ⊂ Rd satisfies the generic hypothesis (H) ,the
stationary density π is supposed to be bounded, the kernel K is given by (5.1) and K(x) ≤
U , for all x ∈ Rd. Suppose that hn → 0 and there exists β > 0 such that hn ≥ n−β.

(i) If (PM) holds for p > 2 and 0 < β(p/(p− 1)) < 1/d, we have

Eν
[

sup
x∈Rd

|π̂n(x)− Eπ[π̂n(x)]|
]

= O

(√
log (n)

nh
dp/(p−1)
n

)
.

(ii) If (EM) holds and 0 < β < 1/d, we have

Eν
[

sup
x∈Rd

|π̂n(x)− Eπ[π̂n(x)]|
]

= O

(√
log(n)2

nhdn

)
.

Comparing the rate given in Theorem 7 with the usual rate
√

log(n)/(nhdn) corre-
sponding to the independent case [21, 24], we see that the rate obtained for the Markovian
setting is slightly poorer. Even when the regeneration time has exponential moments, a
loss of a factor log(n)1/2 is observed with respect to the independent case. This loss is
due to the variance term that scales differently due to the block size. To fill this gap, we
provide in the following theorem an additional assumption on the chain X that ensures
the same rate as in the independent case.

Theorem 8. Assume that the chain X ⊂ Rd satisfies the generic hypothesis (H) and
(EM), the stationary density π is supposed to be bounded, the kernel K is given by (5.1)
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and K(x) ≤ U , for all x ∈ Rd. Suppose that hn → 0 and that nhdn/| log(hn)| → +∞, if
there exist p > 2 and C > 0 such that for all x ∈ E, π(x)Ex[τpA] ≤ C, then we have

Eν
[

sup
x∈Rd

|π̂n(x)− Eπ[π̂n(x)]|
]

= O

(√
| log(hn)|
nhdn

)
.

Remark 10 (on the bandwidth). In the independent case, given x ∈ R, the variance of
π̂n(x) is ensured to vanish whenever nhdn → +∞, and asking for nhdn/| log(hn)| → +∞
is a slight additional requirement to guarantee the convergence to hold uniformly over R.
In Theorem 8, the assumptions on the bandwidth are the same as in the independent case
whereas in Theorem 7, the fact that hn ≥ n−β is slightly stronger.

Remark 11 (on the additional assumption on X). The additional assumption, namely,
for all x ∈ E, π(x)Ex[τpA] ≤ C, can be understood as a tail condition. In fact when
x 7→ π(x)Ex[τpA] is continuous, this condition reduces to lim‖x‖→∞ π(x)Ex[τpA] exists. In
other words, the return time when departing from x should not increase faster than the
decrease of π(x) when x→∞.

5.2. Metropolis-Hasting algorithm

Bayesian estimation requires to compute moments of the so called posterior distribution
whose probability density function π is given by

π(θ) =
L(θ)∫
L(θ)dθ

θ ∈ Rd,

where L is a positive function which stands for the likelihood of the observed data. The
(unknown) quantities of interest writes as

∫
gdπ, for some given measurable functions

g : Rd → R. A particular feature in this framework is that the integral at the denominator
of π is unknown and difficult to compute making impossible to generate observations
directly from π. Markov chains Monte Carlo (MCMC) methods aim to produce samples
X1, . . . , Xn in Rd that are approximately distributed according to π. Then

∫
gdπ is

classically approximated by the empirical average over the chain :

n−1
n∑
i=1

g(Xi).

For inference, Bayesian credible intervals are usually computed using the quantiles the
coordinate chains (see below). We refer to [53] for a complete description of MCMC
methods. In what follows, we focus on the special MCMC method called Metropolis-
Hasting (MH). Aim is to derive new concentration inequalities for suprema of

∑n
i=1 g(Xi)

over g in some VC classes, and to apply these results to measure the accuracy of Bayesian
credible intervals.
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Let us introduce the MH algorithm with target density π : Rd → R≥0 and pro-
posal Q(x, dy) = q(x, y)dy, where q is a positive function defined on Rd × Rd satisfying∫
q(x, y)dy = 1. Define for any (x, y) ∈ Rd × Rd,

ρ(x, y) =

{
min

(
1, π(y)q(y,x)π(x)q(x,y)

)
if π(x)q(x, y) > 0,

1 if π(x)q(x, y) = 0.

The MH chain starts at X0 ∼ ν and moves from Xn to Xn+1 according to the following
rule:

(i) Generate

Y ∼ Q(Xn, dy) and W ∼ B(ρ(Xn, Y )).

(ii) Set

Xn+1 =

{
Y if W = 1,
Xn if W = 0.

In the particular case that q(x, y) = q0(x − y), the previous algorithm is refereed to as
the random walk MH.

The asymptotic behavior of the random walk MH chain has been studied in [54, 30]
where central limit theorems are established based on the geometric ergodicity of the
chain. From Remark 5, the results in [54, 30] imply that (EM) is satisfied. This allows
to apply Theorem 4 almost directly for the random walk MH. For the sake of complete-
ness, we provide the following alternative development, in which we verify (EM) via the
(uniform) Doeblin condition. Contrasting with [54, 30], we focus on π with bounded
support.

Denote by B(x, ε) (resp. B(ε)) the open ball with centre x (resp. 0) and radius ε with
respect to the Euclidean norm ‖ · ‖. We consider the following ball condition on the
proposal q0 associated to the random walk MH.

(BC) Let π be a bounded probability density supported by E ⊂ Rd, a bounded and
convex set with non-empty interior. Suppose that there exists b > 0 and ε > 0 such
that ∀x ∈ Rd × Rd, q0(x) ≥ b1B(ε)(x).

Proposition 9. Under (BC), the random walk MH chain satisfies (H) and (EM).

Based on Proposition 9, we are in position to apply point (ii) of Proposition 4 to the
random walk MH.

Proposition 10. Let G be a countable VC class of measurable functions on S bounded
by U with characteristics (C, v). Under (BC), for all n ≥ 1, it holds that

Eν

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

(g(Xi)− π(g))

∣∣∣∣∣
]
≤ D

√
n(1 ∨ log(log(n))),
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where D depends only on (v, C, U) and on the tails of the regeneration time. Moreover,
for any n/ log(n) ≥ τ3/(UEA[τ2A]), we have with probability 1− δ,

sup
g∈G

∣∣∣∣∣
n∑
i=1

(g(Xi)− π(g))

∣∣∣∣∣ ≤
KD

√
n(1 ∨ log(log(n))) + max

(√
nU2EA[τ2A]K log

(
K

δ

)
, log

(
K

δ

)
τ3U log(n)

EA[τA]

)
,

where K > 0 is a universal constant.

Let k ∈ {1, . . . , d} and denote by X
(k)
i the k-th coordinate of Xi. Define the associated

empirical cumulative distribution function for any t ∈ R,

Π̂k(t) = n−1
n∑
i=1

1(−∞,t](X
(k)
i ).

and the quantile function, for any u ∈ (0, 1),

Q̂k(u) = inf{x ∈ R : Π̂k(x) ≥ u}.

As a corollary of the previous result, we obtain an upper bound for the estimation error of
Bayesian credible intervals defined as [Q̂k(u), Q̂k(1 − u)], for k = 1, . . . , d. The targeted
interval is [Qk(u), Qk(1 − u)], where Qk is the true quantile function of the posterior
marginal distribution Πk whose associated density is denoted by πk.

Proposition 11. Under (BC), for all 0 < γ < 1/4 and k ∈ {1, . . . , p},

sup
u∈[γ,1−γ]

∣∣∣Q̂k(u)−Qk(u)
∣∣∣ = OPν

(√
log log n

n

)
.

Remark 12. In contrast with the study of kernel density estimator given in section 5.1,
the approach taken in this section cannot take advantage of classes with small variance
(e.g., going to 0 with n). In particular, in Theorem 10, the variance over the class G has
been crudely bounded by UEA[τ2A]. This is in line with the functions of interest, 1(−∞,t],
in Proposition 11. The stationary variance is given by Π(t)(1−Π(t)) whose maximum is
1/4.

Appendix A Proofs of the results of section 5.1

A.1 Proof of Proposition 7

In virtue of Theorem 5, it suffices to provide for both cases a sufficiently tight bound on
Rn,B(Kn) with Kn = {y 7→ K((x− y)/hn) : x ∈ Rd}, which in virtue of [44] is included
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in K a VC class of functions. First we consider (i). By Jensen inequality we have(
1

`(B1)

∑
Xi∈B1

K((x−Xi)/hn)

)2

≤ 1

`(B1)

∑
Xi∈B1

K((x−Xi)/hn)2

and for any L̃, it holds that

σ′2 = EA

( ∑
Xi∈B1

K((x−Xi)/hn)

)2


≤ EA

[
`(B1)

∑
Xi∈B1

K((x−Xi)/hn)2

]
≤ L̃EA[`(B1)]Eπ

[
K((x−X)/hn)2

]
+ U2EA

[
`(B1)21{`(B1)>L̃}

]
.

Use Markov inequality and the expression of Pitman’s occupation measure to get

σ′2 ≤ L̃EA[τA]hdn‖π‖∞vK +
U2EA [τpA]

L̃p−2
,

where vK =
∫
K(u)2du and ‖π‖∞ = supx∈Rd |π(x)|. Equilibrating between the first

and second term gives L̃ = h
−d/(p−1)
n , which implies that σ′2 ≤ A1h

r
n, A1 > 0, r =

d(p− 2)/(p− 1). Applying Theorem 4, we get

Rn,B(Kn)

≤ A2

L log(CLUA1h
−r
n )

nhdn
+

√
hrn log(CLUA1h

−r
n )

nh2dn
+

1

Lp−1hdn

 ,

= A2

(
L log(CLUA1h

−r
n )

nhdn
+

√
log(CLUA1h

−r
n )

nh
dp/(p−1)
n

+
1

Lp−1hdn

)
,

with A2 > 0. Choose L by (almost) equilibrating the first and last term of the preceding
decomposition

Ln =

(
n

log(αn)

)1/p

,

with αn = n1/ph−rn . Take n large enough to get that

Rn,B(Kn) ≤ A2

√
log(CUA1αn/(logαn)1/p)

nh
dp/(p−1)
n

+ 2A2

(
log(αn)

nh
dp/(p−1)
n

)(p−1)/p

= (1 + o(1))

√
log(αn)

nh
dp/(p−1)
n

,
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where the last equality is because p > 2. Because αn is smaller than some power of n
and using Theorem 5 leads to the result.

In the second case, namely (ii), a similar bound is valid for σ′2, we have

σ′2 ≤ L̃EA[τA]hdn‖π‖∞vK + U2EA
[
τ2A exp(λτA/2)

]
exp(−λL̃/2)

≤ L̃EA[τA]hdn‖π‖∞vK + 8

(
U

λ

)2

EA [exp(τAλ)] exp(−λL̃/2),

where for the second inequality, we use that t2 ≤ 2 exp(t) with t = λτA/2. Taking
L̃ = 2 log(h−dn )/λ gives σ′2 ≤ A3h

d
n log(h−dn ), A3 > 0. Then using (ii) in Theorem 4, we

find, for n large enough,

Rn,B(Kn) ≤ A2×L log(CLUA−13 h−dn / log(h−dn ))

nhdn
+

√
log(h−dn ) log(CLUA−13 h−dn / log(h−dn ))

nhdn
+

exp(−Lλ/2)

hdn

 .

Choosing Ln = 2 log(n)/λ, noticing that the term in the middle is the leading term and
applying Theorem 5, we obtain the stated result.

A.2 Proof of Proposition 8

The main step is to show that there exists c > 0 such that

EA

( τA∑
i=1

K((x−Xi)/hn)

)2
 ≤ chdn, for all x ∈ E, (A.1)

then the conclusion will follow straightforwardly. The fact that (A.1) holds true follows
from Lemma ∗A.3 in the supplementary file of [4], which gives that, for any measurable
function f ,

EA

( τA∑
i=1

f(Xi)

)2
 ≤ A4(π(f2) + Eπ[f(X0)2τpA]),

with A4 > 0. Whenever f(X) = K((x −X)/hn), we get that π(f2) ≤ vK‖π‖∞hdn, and
defining g(x) = π(x)Ex[τpA] we get

Eπ[f(X0)2τpA] =

∫
K((x− y)/hn)g(y)dy ≤ CvKhdn.

Hence we have obtained (A.1). It follows from Theorem 4 that

Rn,B(Kn) ≤ A2

L log(CLUc−1h−dn )

nhdn
+

√
log(CLUc−1h−dn )

nhdn
+

exp(−Lλ/2)

hdn

 . (A.2)

Setting Ln = 2 log(n)/λ we obtain the desired result by applying Theorem 5.
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Appendix B Proofs of the results of section 5.2

B.1 Proof of Proposition 9

The proof follows from the following Lemma in which some conditions are given to ensure
the uniform Doeblin condition.

Proposition 12. Let P be a transition kernel. Let Φ be a positive measure on (Rd,B(Rd)).
Suppose that E = supp(Φ) is bounded and convex with non-empty interior. Suppose that
there exists ε > 0 such that ∀x ∈ E, P (x, dy) ≥ 1B(x,ε)(y)Φ(dy). Then there exists C > 0
and n ≥ 1 such that for any x ∈ E and any measurable set A ⊂ E,

Pn(x,A) ≥ CΦ(A). (B.1)

Proof. We decompose the proof according to 4 steps.
First step: Let 0 < γ ≤ η. There exists c > 0 such that for any (x, y) ∈ E × E, it holds
that ∫

1B(x,η)(x1)1B(x1,γ)(y) Φ(dx1) ≥ c1B(x,η+γ/4)(y). (B.2)

To obtain the previous statement, we can restrict our attention to the case when y ∈
B(x, η+γ/4). Else the inequality is trivial. Note that there exists a point m lying strictly
in the line segment between x and y such that

B(m, γ/4) ⊂ {B(x, η) ∩B(y, γ)}.

By convexity of E, m ∈ E × E. Hence∫
1B(x,η)(x1)1B(y,γ)(x1)Φ(dx1) ≥ Φ{B(m, γ/4)} ≥ inf

m∈E
Φ{B(m, γ/4)}.

But he function m 7→ Φ(B(m, γ/4)∩E) is continuous on E and positive for each m ∈ E,
by definition of the support and the fact that m is an interior point of E by convexity.
Second step: We iterate (B.2) to obtain the following statement. For any n ≥ 1, there
exists Cn > 0 such that for any (x, y) ∈ E, it holds that∫

. . .

∫
1B(x,ε)(x1)1B(x1,ε)(x2) . . . 1B(xn−1,ε)(xn)1B(xn,ε)(y) Φ(dx1) . . .Φ(dxn)

≥ Cn1B(x,ε(1+n/4))(y).

Third step: Take n such that ε(1 + n/4) > sup(x,y)∈E ‖x − y‖. Then for any x ∈ E
and y ∈ E, y ∈ B(x, ε(1 + n/4)). It follows that there exists Cn > 0 such that for all
(x, y) ∈ E,∫

. . .

∫
1B(x,ε)(x1)1B(x1,ε)(x2) . . . 1B(xn−1,ε)(xn)1B(xn,ε)(y) Φ(dx1) . . .Φ(dxn) ≥ Cn.
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Fourth step: Using the last step and the assumption on P , it holds that for any x ∈ E
and any measurable set A ⊂ E,

Pn(x,A)

≥
∫

1B(x,ε)(x1) . . . 1B(xn−1,ε)(xn)1B(xn,ε)(y)1{y∈A} Φ(dx1) . . .Φ(dxn)Φ(dy)

≥ CnΦ(A).

Now we can conclude the proof of Proposition 9. Because ρ(x, y) ≥ π(y)/‖π‖∞, the
Markov kernel P of the MH chain verifies, for any x ∈ E,

P (x, dy) ≥ ρ(x, y)Q(x, dy) ≥ ‖π‖−1∞ 1B(x,ε)(y)π(y)dy. (B.3)

Applying Proposition 12 with Φ(dy) = ‖π‖−1∞ π(y)dy, we deduce that whenever π(A) > 0,
there exists n ≥ 1 such that Pn(x,A) > 0. This is π-irreducibly. Let z ∈ E. From (B.3),
whenever x ∈ B(z, ε/2) and A ∈ B(Rd),

P (x,A) ≥ ‖π‖−1∞ π(A ∩B(z, ε/2)).

This means that any ball with positive radius is π|B(z,ε/2)-small with m = 1. From [54,
proof of Theorem 2.2], this implies the aperiodicity of the chain. Applying Proposition
12 again with Φ(dy) = ‖π‖−1∞ π(y)dy, we obtain (B.1) which implies (EM) in virtue of
Theorem 16.0.2 in [40]. More precisely, in their Theorem 16.0.2, (B.1) implies point (iv)
which is equivalent to point (vii). That is, we have shown that whenever ψ(B) > 0, there
is λB > 0 such that supx∈E Ex[exp(λBτB)] < ∞. This is stronger than positive Harris
recurrence. Finally, the latter is true with B equal to the atom A (of the extended chain).
This means that the moment conditions in (EM) are satisfied.

B.2 Proof of Proposition 10

Set σ′2 = U2EA[τ2A] and apply Theorem 4 to get that

Rn,B(F) ≤M

[
vLU log

CL

EA[τ2A]1/2
+

√
vnU2EA[τ2A] log

CL

EA[τ2A]1/2

]
+nU exp(−Lλ/2)Cλ.

Take L = 2 log(n)/λ to obtain

Rn,B(F) ≤M
[
2 log(n)vU log(A log(n))/λ+

√
vnU2EA[τ2A] log(A log(n))

]
+ UCλ

with A = 2C/(λEA[τ2A]1/2). We obtain the first stated result by straightforward manip-
ulations. The second result is a direct consequence of Theorem 6.
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B.3 Proof of Proposition 11

Let k ∈ {1, . . . , d} and 0 < γ < 1/4. Let bγ,k = infu∈[γ,1−γ] πk(Qk(u)) which by assump-
tion is positive. We will need the following classical lemma describing the behavior of the
quantile function based on the associated cumulative distribution function.

Lemma 13. Let γ < 1/4. Suppose that F and G are cumulative distribution functions
such that G has a density g verifying bγ = infu∈[γ,1−γ] g(G−(u)) > 0. If supt∈R |F (t) −
G(t)| ≤ γ, then supu∈[2γ,1−2γ] |F−(u)−G−(u)| ≤ b−1γ supt∈R |F (t)−G(t)|.

Proof. From the mean-value theorem we have that for any (u, v) ∈ [γ, 1− γ]2,

|G−(u)−G−(v)| ≤ b−1γ |u− v|. (B.4)

Recalling the classical result; see e.g., [51, Lemma 12]; that whenever F and G are two
cumulative distribution functions and ε = supt∈R |F (t)−G(t)|, then for any u ∈ [ε, 1− ε],

|F−(u)−G−(u)| ≤ sup
|δ|≤ε
|G−(u+ δ)−G−(u)|.

Because ε ≤ γ, it holds that γ ≤ u+ δ ≤ 1− γ whenever 2γ ≤ u ≤ 1− 2γ. Using (B.4),
we get that, for any u ∈ [2γ, 1− 2γ],

|F−(u)−G−(u)| ≤ b−1γ ε.

Lemma 13 is applied with F = Π̂k, G = Πk and the bound on supt∈R |Π̂k(t)− Πk(t)|
is obtained (with high probability) from Proposition 10. In virtue of Example 2.5.4 in
[61], we have that

N (ε, {1(−∞,t] : t ∈ R}, ‖ · ‖L2(Q)) ≤ 2ε−2,

which allows us to apply Proposition 10 with U = 1, C = v = 2. The second bound in
Proposition 10 implies that supt∈R |Π̂k(t)−Πk(t)| ≤ γ holds with probability going to 1
when n→∞. Hence with probability going to 1, the stated bound holds true.
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