What Do Consumers Consider Before They Choose?

Abi Adams Oxford, IFS, CEP Jason Abaluck Yale, NBER

October 2019

Introduction

- When estimating consumer demand models we usually assume that consumers consider all the alternatives that we as the researcher see
- Lots of evidence that the assumption of full consideration is violated in reality for many applications of interest
- We should care about this for a number of reasons, e.g:
 - Cannot predict the impact/evaluate the benefits of making consumers aware of a wider set of alternatives
 - Biased estimates of preference parameters with implications for welfare analysis

Introduction

- An exception: the literature on "consideration sets" consumers might only consider an (unobserved) subset of alternatives
- Popular in marketing and a growing applied literature for providing a "simple" way to introduce unobserved choice sets
 - ► (Behavioural) decision theory provides a rich set of models: see, e.g. Masatlioglu et al (2012) and Cattaneo et al (2018)
 - ▶ Default specific: Ho, Hogan & Scott-Morton (2016); Heiss, McFadden, Winter, Wuppermann & Zhou (2016); Moshkin & Shachar (2002)
 - ► Alternative specific: Goeree (2008); Manzini and Mariotti (2012); Conlin and Mortimer (2013); Honka et al (2015); Gaynor, Propper & Seiler (2016)

Challenge

- Wider application of these models has been held back by the difficulty of separately identifying "utility" and "consideration probability" parameters from observational data
- Two main strategies pursued to date:
 - Auxiliary data: can we collect additional data on what options consumers considered?
 - 2. Exclusion restrictions: are there exogenous variables excluded from utility and from process generating consideration?

This Paper

- In this paper we show that the restrictions from economic theory are sufficient for identification in many applied settings of interest
- Our approach relies on exploiting asymmetries in the "Slutsky" matrix
 - Changes in the characteristics of products impact the probability that you consider a good and not just utility
 - ► There is a particular pattern of cross-price asymmetries and violations of nominal illusion that are characteristic of a lack of consideration
 - Inspired by the theoretical work of Gabaix (2014) on inattention to characteristics although our focus is on inattention to goods

This Paper

- ▶ Different strategy to that pursued in other current working papers on identification of consideration set models:
 - Crawford, Griffith & laria: results specific to Logit errors and rely on some assumptions about stability of choice sets over time
 - Dardanoni, Manzini, Mariotti & Tyson: limited allowance for preference heterogeneity
 - Cattaneo, Ma, Masatlioglu & Suleymanov: deterministic preferences but weaker assumptions on consideration
 - Barseghyan, Coughlin, Molinari & Teitelbaum: weaker assumptions on preference heterogeneity and consideration leading to set identification results

This Paper

- Bring a parametric version of our framework to data to show that the variation at heart of our identification result is important for driving empirical results
 - Indirect inference estimator in which auxiliary model allows for cross derivative asymmetries
 - Structural parameters chosen to match the reduced form asymmetries
- ▶ Lab validation: can we recover the process generating consideration sets from choice data?
- Medicare Part D: to what extent is inertia driven by switching costs or lack of consideration?
 - Used to evaluate a proposed 'active default' policy

Outline

- I General Set-Up
- II Asymmetry-Based Identification
- **III** Estimation
- IV Experimental Validation
- V Field Application

Basic Set-Up: Preferences

- Imagine that we are in a full-information environment
- ► Consumer *i* selects the good 0, ..., *J* that gives her the highest utility
- ▶ Utility is a function of a good's characteristics, $\mathbf{x} \in \mathbb{R}^K$, plus a random error

$$u_{ij} = v_j(\mathbf{x}_j) + \epsilon_{ij}$$

= $\beta p_j + w_j(\mathbf{z}_j) + \epsilon_{ij}$

- Here assume quasi-linearity but show can be (partially) relaxed within main paper
- Proof extends naturally to allow for individual heterogeneity through a random coefficient

$$u_{ij} = \beta_i p_j + w_j(\mathbf{z}_j) + \epsilon_{ij}$$

Basic Set-Up: Preferences

- Imagine that we are in a full-information environment
- ► Consumer *i* selects the good 0, ..., *J* that gives her the highest utility
- ▶ Utility is a function of a good's characteristics, $\mathbf{x} \in \mathbb{R}^K$, plus a random error

$$u_{ij} = v_j(\mathbf{x}_j) + \epsilon_{ij}$$

= $\beta p_j + w_j(\mathbf{z}_j) + \epsilon_{ij}$

- Here assume quasi-linearity but show can be (partially) relaxed within main paper
- Proof extends naturally to allow for individual heterogeneity through a random coefficient

$$u_{ij} = \beta_i p_j + w_j(\mathbf{z}_j) + \epsilon_{ij}$$

Basic Set-Up: Preferences

► The probability that a consumer chooses some good *j* is then:

$$\begin{array}{lcl} \textit{Pr}(\textit{i} \; \textit{chooses} \; \textit{j}) & = & \textit{Pr} \; \big(\textit{u}_{\textit{ij}} > \textit{u}_{\textit{ij'}} \quad \forall \textit{j'} \neq \textit{j} \big) \\ s^{\star}_{\textit{j}} & = & \textit{Pr} \; \big(\epsilon_{\textit{ij'}} < \textit{v}_{\textit{j}} + \epsilon_{\textit{ij}} - \textit{v}_{\textit{j'}} \quad \forall \textit{j'} \neq \textit{j} \big) \end{array}$$

Example: when ϵ_{ij} is distributed Type 1 Extreme Value, we get the popular logit model

$$s_{j}^{\star} = \frac{exp(v_{j})}{\sum_{j'=1}^{J} exp(v_{j'})}$$

NB We allow for correlated unobservables in utility!

Basic Set-Up: Consideration

- ► A consumer may not consider all goods in her choice set
- ► Good-0 represents an "inside" or "outside" default
- ▶ Let P(J) represent the power set of all goods, with any given element indexed by C
- ▶ Set of consideration sets containing good *j* is given as:

$$\mathbb{P}(j) = \{ C : C \in \mathcal{P}(J) \quad \& \quad j \in C \quad 0 \in C \}$$

Basic Set-Up: Consideration

- Need some restrictions on consideration probabilities to achieve identification
- ► Two main classes of consideration set model found in the applied literature:
 - ▶ **Default specific**: with some probability $\mu(\mathbf{x}_0)$ you consider the full choice set, otherwise you only consider a (known) default option
 - ► Alternative specific: you consider good j with probability $\phi_j(\mathbf{x}_j)$
- We consider a general framework that subsumes both of these classes of model
- NB throughout this presentation will be assuming independence of unobservables driving utility and consideration

► In our model, observed choice probabilities take the form:

$$s_0 = (1 - \mu) +$$

► In our model, observed choice probabilities take the form:

$$s_0 = (1 - \mu) + \mu$$

▶ In our model, observed choice probabilities take the form:

$$s_0 = (1 - \mu) + \mu \sum_{C \in \mathbb{P}(0)} \prod_{l \in C} \phi_l \prod_{l' \notin C} (1 - \phi_{l'}) s_0^{\star}(C)$$

▶ In our model, observed choice probabilities take the form:

$$\mathbf{s}_0 = (1 - \mu) + \mu \sum_{\mathbf{C} \in \mathbb{P}(0)} \prod_{l \in \mathbf{C}} \phi_l \prod_{l' \notin \mathbf{C}} (1 - \phi_{l'}) \, \mathbf{s}_0^{\star}(\mathbf{C})$$

▶ In our model, observed choice probabilities take the form:

$$s_0 = (1 - \mu) + \mu \sum_{C \in \mathbb{P}(0)} \prod_{l \in C} \phi_l \prod_{l' \notin C} (1 - \phi_{l'}) s_0^*(C)$$

$$s_j = \mu \sum_{C \in \mathbb{P}(j)} \prod_{l \in C} \phi_l \prod_{l' \notin C} (1 - \phi_{l'}) s_j^*(C)$$

for j > 0

Extensions

- Dependence of ϕ_j on the characteristics of the default product
- Independence of unobservables influencing utility and attention implicit in the background
 - Consider case of finite set of "types"
 - Require exclusion restrictions for identification but fewer than if ignored results in this paper
- Asymmetries and nominal illusion results that we will now develop imply imperfect consideration in wider class of models

Outline

- I General Set-Up
- **II Asymmetry-Based Identification**
- III Estimation
- IV Experimental Validation
- V Field Application

Symmetry

 With full consideration, choice probabilities will satisfy a symmetry restriction

$$\frac{\partial s_j^{\star}}{\partial p_k} = \frac{\partial s_k^{\star}}{\partial p_j}$$

They will also satisfy absence of nominal illusion

$$s_i^{\star}(\mathbf{p}) = s_i^{\star}(\mathbf{p} + \delta)$$

 Given our assumptions on preferences, this result holds with correlation in unobserved tastes across products and in the mixed logit model More

Symmetry

 With consideration sets, symmetry is violated and we suffer from nominal illusion

$$\frac{\partial s_j}{\partial p_k} \neq \frac{\partial s_k}{\partial p_j}
s_j^*(\mathbf{p}) \neq s_j^*(\mathbf{p} + \delta)$$

- Changes in characteristics do not just impact utility, but also the probability of paying attention to particular subsets of goods
- We can use these asymmetries to identify attention probabilities, $\mu(p_0)$ and $\phi_j(p_j)$

Proof: Special Case

- For purposes of this presentation, will walk through the proof of a special case of our more general framework
- ▶ Default specific model: $\phi_j = 1$ for all j
- Choice probabilities take the form

$$s_0 = (1 - \mu) + \mu s_0^*$$

$$s_j = \mu s_j^*$$

where $s_{i}^{\star} \equiv s_{i}^{\star} (\mathbf{p} | \{0,...,J\}).$

Changes in the characteristics of the default have two impacts on non-default goods:

$$\frac{\partial \mathbf{s}_j}{\partial \mathbf{p}_0} = \mu \frac{\partial \mathbf{s}_j^*}{\partial \mathbf{p}_0}$$

Changes in the characteristics of the default have two impacts on non-default goods:

$$\frac{\partial s_j}{\partial p_0} = \mu \frac{\partial s_j^*}{\partial p_0} + s_j^* \frac{\partial \mu}{\partial p_0}$$

$$\frac{\partial s_{j}}{\partial p_{0}} - \frac{\partial s_{0}}{\partial p_{j}} = s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} + \mu \left(\frac{\partial s_{j}^{*}}{\partial p_{0}} - \frac{\partial s_{0}^{*}}{\partial p_{j}} \right)$$

$$= s_{j}^{*} \frac{\partial \mu}{\partial p_{0}}$$

$$= s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} \frac{\mu}{\mu}$$

$$= \frac{s_{j}^{*}}{\mu} \frac{\partial \log(\mu)}{\partial p_{0}}$$

$$= s_{j} \frac{\partial \log(\mu)}{\partial p_{0}}$$

$$\frac{\partial s_{j}}{\partial p_{0}} - \frac{\partial s_{0}}{\partial p_{j}} = s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} + \mu \left(\frac{\partial s_{j}^{*}}{\partial p_{0}} - \frac{\partial s_{0}^{*}}{\partial p_{j}} \right) \\
= s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} \\
= s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} \frac{\mu}{\mu} \\
= \frac{s_{j}^{*}}{\mu} \frac{\partial \log(\mu)}{\partial p_{0}} \\
= s_{j} \frac{\partial \log(\mu)}{\partial p_{0}}$$

$$\frac{\partial s_{j}}{\partial p_{0}} - \frac{\partial s_{0}}{\partial p_{j}} = s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} + \mu \left(\frac{\partial s_{j}^{*}}{\partial p_{0}} - \frac{\partial s_{0}^{*}}{\partial p_{j}} \right) \\
= s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} \\
= s_{j}^{*} \frac{\partial \mu}{\partial p_{0}} \frac{\mu}{\mu} \\
= \frac{s_{j}^{*}}{\mu} \frac{\partial \log(\mu)}{\partial p_{0}} \\
= s_{j} \frac{\partial \log(\mu)}{\partial p_{0}}$$

$$\frac{\partial s_{j}}{\partial \rho_{0}} - \frac{\partial s_{0}}{\partial \rho_{j}} = s_{j}^{\star} \frac{\partial \mu}{\partial \rho_{0}} + \mu \left(\frac{\partial s_{j}^{\star}}{\partial \rho_{0}} - \frac{\partial s_{0}^{\star}}{\partial \rho_{j}} \right) \\
= s_{j}^{\star} \frac{\partial \mu}{\partial \rho_{0}} \\
= s_{j}^{\star} \frac{\partial \mu}{\partial \rho_{0}} \frac{\mu}{\mu} \\
= \frac{s_{j}^{\star}}{\mu} \frac{\partial \log(\mu)}{\partial \rho_{0}} \\
= s_{j} \frac{\partial \log(\mu)}{\partial \rho_{0}}$$

$$\frac{\partial s_{j}}{\partial \rho_{0}} - \frac{\partial s_{0}}{\partial \rho_{j}} = s_{j}^{*} \frac{\partial \mu}{\partial \rho_{0}} + \mu \left(\frac{\partial s_{j}^{*}}{\partial \rho_{0}} - \frac{\partial s_{0}^{*}}{\partial \rho_{j}} \right) \\
= s_{j}^{*} \frac{\partial \mu}{\partial \rho_{0}} \\
= s_{j}^{*} \frac{\partial \mu}{\partial \rho_{0}} \frac{\mu}{\mu} \\
= \frac{s_{j}^{*}}{\mu} \frac{\partial \log(\mu)}{\partial \rho_{0}} \\
= s_{j} \frac{\partial \log(\mu)}{\partial \rho_{0}}$$

Changes in consideration probabilities constructively identified by cross-derivative differences:

$$\frac{\partial \log(\mu)}{\partial p_0} = \frac{1}{s_j} \left[\frac{\partial s_j}{\partial p_0} - \frac{\partial s_0}{\partial p_j} \right]$$

 Get the level of attention by integrating over the support of characteristics and pinning down the constant at point of symmetry

$$\mu = \exp\left(-\int \frac{1}{s_j} \left[\frac{\partial s_j}{\partial p_0} - \frac{\partial s_0}{\partial p_j}\right] dp_0\right)$$

Choice probabilities take the form

$$\begin{aligned} s_0 &= (1 - \mu) + \mu \sum_{C \in \mathbb{P}(0)} \prod_{l \in C} \phi_l \prod_{l' \notin C} (1 - \phi_{l'}) \, s_0^*(C) \\ s_j &= \mu \sum_{C \in \mathbb{P}(j)} \prod_{l \in C} \phi_l \prod_{l' \notin C} (1 - \phi_{l'}) \, s_j^*(C) \end{aligned}$$

for
$$j > 0$$

- Need further source of variation in this model, with slight abuse of notation:
 - ▶ $s_j(\mathcal{J}/j')$: market share of j when j' not available
 - NB Similar to Kawaguchi et al (MS, 2016) but without additional exclusion restriction
 - Can also express in terms of a full support assumption required for nonparametric identification of RUM

Choice probabilities take the form

$$s_0 = (1 - \mu) + \mu \sum_{C \in \mathbb{P}(0)} \prod_{l \in C} \phi_l \prod_{l' \notin C} (1 - \phi_{l'}) s_0^*(C)$$

$$s_j = \mu \sum_{C \in \mathbb{P}(j)} \prod_{l \in C} \phi_l \prod_{l' \notin C} (1 - \phi_{l'}) s_j^*(C)$$

for j > 0

- Need further source of variation in this model, with slight abuse of notation:
 - ▶ $s_j(\mathcal{J}/j')$: market share of j when j' not available
 - NB Similar to Kawaguchi et al (MS, 2016) but without additional exclusion restriction
 - Can also express in terms of a full support assumption required for nonparametric identification of RUM

Changes in consideration probabilities are the unique solution to a system of linear equations:

$$\frac{\partial s_j}{\partial \rho_0} - \frac{\partial s_0}{\partial \rho_j} = \frac{\partial \log(\mu)}{\partial \rho_j} s_j + \frac{\partial \log(\phi_j)}{\partial \rho_j} (s_0(\mathcal{J}/j) - s_0)$$
 where $s_i = s_j(\mathbf{x}|\mathcal{J})$.

► Final piece of puzzle: use nominal illusion to identify latent market shares

Changes in consideration probabilities are the unique solution to a system of linear equations:

$$\frac{\partial s_j}{\partial p_0} - \frac{\partial s_0}{\partial p_j} = \frac{\partial \log(\mu)}{\partial p_j} s_j + \frac{\partial \log(\phi_j)}{\partial p_j} (s_0(\mathcal{J}/j) - s_0)$$
 where $s_i = s_j(\mathbf{x}|\mathcal{J})$.

► Final piece of puzzle: use nominal illusion to identify latent market shares

Outline

- I Basic Set-Up
- II Asymmetry-Based Identification
- **III Estimation**
- IV Experimental Validation
- V Field Application

Estimation

- Identification results constructive and so, in theory, consistent nonparametric estimators could be based on them
- However, in practice, nonparametric estimation is infeasible given the dimensionality problems
- Place a set of functional form assumptions on utility and the process driving consideration that are consistent with our framework
- We estimate special cases of our general framework in two scenarios, showing that asymmetries important for driving the ultimate results

Estimation: Application Assumptions

Functional form assumptions a simple version of those followed in marketing literature and Goeree (2008):

$$s_{j}^{\star}(C) = \frac{exp(\alpha_{j} + x_{j}\beta)}{\sum_{j' \in C} exp(\alpha_{j'} + x_{j'}\beta)}$$
$$\phi_{j} = \frac{exp(\delta_{j} + x_{j}\gamma)}{1 + exp(\delta_{j} + x_{j}\gamma)}$$
$$\mu = \frac{exp(\delta_{0} + x_{0}\omega)}{1 + exp(\delta_{0} + x_{0}\omega)}$$

 Typical to estimate the parameters of the parametric model by maximum (simulated) likelihood (e.g. Goeree 2008)

Indirect Inference

- We instead pursue an estimation strategy that is grounded in the identifying variation at the heart of our identification proof
- Estimate the model by indirect inference
 - Match the parameters of a flexible auxiliary model that is able to capture cross-derivative asymmetries in the data
 - Intuitively, if estimate the auxiliary model on data simulated from the 'true' DGP, should get the same parameters as when estimating the auxiliary model on simulated data

Applications

1. Lab: Choice Experiment

- Alternative to a simulation exercise: we know that the model is misspecified
- We set the process generating which subset of 10 goods a respondent considers in a choice experiment
- Can we recover the parameters of this process without using information on what options a respondent considered?

2. Field: Medicare Part D Choice

- Recent set of papers looking to disentangle switching costs and inattention in insurance choices
- Are the exclusion restrictions employed valid?
- Evaluation on an "active default" policy

Applications

1. Lab: Choice Experiment

- Alternative to a simulation exercise: we know that the model is misspecified
- We set the process generating which subset of 10 goods a respondent considers in a choice experiment
- Can we recover the parameters of this process without using information on what options a respondent considered?

2. Field: Medicare Part D Choice

- Recent set of papers looking to disentangle switching costs and inattention in insurance choices
- Are the exclusion restrictions employed valid?
- Evaluation on an "active default" policy

Choice Experiment

- Endowed respondents with \$25 and asked them to select their most preferred option from a set of goods that appeared on their screen
- 10 goods in full choice set chosen from Yale Bookstore with the price randomly drawn
- We set the probability that a particular good showed up on a respondent i's screen in round r as:

$$\phi_{j}(\rho_{ijr}) = \frac{exp\left(\delta_{j} + \gamma \rho_{ijr}\right)}{1 + exp\left(\delta_{j} + \gamma \rho_{ijr}\right)}$$

▶ Can we recover the (known) δ_i and γ ?

Choice Experiment

Collegiate Pacific Banner ("Yale University Lux et Veritas") \$8.00

Embroidered Towel From Team Golf \$20.00

Mug w/ Thumb Piece \$11.00

LXG Power Bank \$12.00

Moleskin Large Notebook with Debossed Wordmark, Unruled \$23.00

(You must wait 10 seconds before clicking next to make sure you consider all options)

Next

Choice Experiment

Auxiliary model specified as a flexible logit with good specific parameters:

$$\begin{aligned} v_{ijr} &= \omega_j + \theta_p p_{ijr} + \sum_{j'=0}^J \theta_{jj'} p_{ijr} p_{ij'r} \\ \widetilde{s}_{ijr} &= \frac{\exp\left(v_{ijr}\right)}{\sum_{j'} \exp\left(v_{ij'r}\right)} \end{aligned}$$

• Estimator of structural utility and consideration parameters, $\psi = [\delta, \gamma, \alpha, \beta]$, defined as:

$$\widehat{\psi} = \arg\min_{\psi} \left(\widehat{\theta^t} - \widehat{\theta^s}(\psi) \right)' W \left(\widehat{\theta^t} - \widehat{\theta^s}(\psi) \right)$$

Results: Attention Fixed Effects

Results: Price Coefficients

Table: Price Coefficients

	Conditional Logit	ALogit MLE	ALogit II	'Truth'
Utility	-0.054***	-0.1644***	-0.1284**	-0.173***
	(0.003)	(0.037)	(0.048)	(0.004)
Attention		0.137***	0.141***	0.15
		(0.017)	(0.025)	

Asymmetries

Field Application: Health Insurance

- Apply the Default Specific Model to Medicare Part D data on:
 - 20% sample of Part D beneficiaries from 2008-2009
 - Low Income Subsidy (LIS) beneficiaries "with stakes"
- DSC model applied by Heiss et al (2017) and Ho, Hogan & Scott-Morton although both rely on additional exclusion restrictions for identification
- Key question: how to explain inertia in choices over time?
- Often get implausibly large estimates of switching costs (> \$1,000)

Health Insurance

- Important for welfare evaluation of a smart default policy
 - Low switching because of high inattention?
 - Low switching because of utility relevant switching costs?
- Two sources of switching costs:
 - Paperwork costs, ρ: hassle and time to enrol in new scheme
 - Acclimation costs, α: cost of rescheduling deliveries and switching to new drugs
- Identification strategy:
 - Asymmetries: disentangle inattention from switching costs
 - \blacktriangleright Random reassignment of LIS beneficiaries: separately identify ρ and α

Utility

Choice probabilities in the DSC model given by:

$$m{s}_{\textit{ijt}} \equiv m{s}_{\textit{jt}}(m{x}_{\textit{it}}) = (\mathbf{1} - \mu_t(m{x}_{\textit{idt}})) \, \textit{Default}_{\textit{ijt}} + \mu_t(m{x}_{\textit{idt}}) m{s}_{\textit{it}}^\star(m{x}_{\textit{it}})$$

► Conditional on being awake, the utility of individual *i* from choosing plan *j* at time *t* is given by:

$$u_{ijt} = \mathbf{x}_{ijt}\beta + (\alpha + \rho)Default_{ijt} + \epsilon_{ijt}$$

When LIS beneficiaries no longer qualify for full premium subsidies, utility is given by:

$$u_{ijt} = x_{ijt}\beta + (\alpha + \rho)Default_{ijt} + \alpha \left(Default_{ij,t-1} \times Reassigned_{ijt}\right) + \epsilon_{ijt}$$

Utility

Choice probabilities in the DSC model given by:

$$s_{ijt} \equiv s_{jt}(\mathbf{x}_{it}) = (1 - \mu_t(\mathbf{x}_{idt})) Default_{ijt} + \mu_t(\mathbf{x}_{idt}) s_{it}^{\star}(\mathbf{x}_{it})$$

► Conditional on being awake, the utility of individual *i* from choosing plan *j* at time *t* is given by:

$$u_{ijt} = \mathbf{x}_{ijt}\beta + (\alpha + \rho)Default_{ijt} + \epsilon_{ijt}$$

When LIS beneficiaries no longer qualify for full premium subsidies, utility is given by:

$$u_{ijt} = x_{ijt}\beta + (\alpha + \rho)Default_{ijt} + \alpha \left(Default_{ij,t-1} \times Reassigned_{ijt}\right) + \epsilon_{ijt}$$

Welfare

- Smart Default Policy: individuals are reassigned to an alternative plan and given the option of immediately switching back if they desire without enrolling in the new plan for a year.
- Assume that normative utility depends only on total cost and other observable factors
- Change in welfare associated with the policy can be expressed as:

$$\triangle W_i = W_i^1 - W_i^0$$

$$= \rho \left(s_{id}^1 - s_{io}^0 \right) + \alpha \triangle s_{io} + \sum_i \triangle s_{ij} v_{ij}$$
 (5.1)

Preference Parameters: Medicare Part D

	Condition	al Logit	DSC N	Model
Utility:				
Annual Premium (hundreds)	-0.505***	(0.005)	-1.034***	(0.010)
Annual Out of Pocket Costs (hundreds)	-0.214***	(0.007)	-0.297***	(0.012)
Variance of Costs (millions)	2.246***	(0.089)	2.579***	(0.165)
Deductible (hundreds)	-0.516***	(0.009)	-0.724***	(0.013)
Donut Hole Coverage	0.691***	(0.027)	0.335***	(0.051)
Average Consumer Cost Sharing %	-1.181***	0.107	-4.128***	0.163
# of Top 100 Drugs in Formulary	0.038***	(0.004)	0.172***	(0.006)
Normalized Quality Rating	0.438***	(0.010)	0.515***	(0.015)
Original Plan	0.988***	(0.238)	1.314***	(0.257)
Assigned Plan	6.428***	(0.012)	4.240***	(0.078)
Acclimation Costs	\$196		\$127	
Paperwork Costs Attention Probability	\$1078		\$283 19.7%	

Attention Parameters: Medicare Part D

	Conditional Logit		DSC Model	
Attention:				
Annual Premium (hundreds)	-	-	0.062***	(0.014)
Annual Out of Pocket Costs (hundreds)	-	-	0.030*	(0.012)
Variance of Costs (millions)	-	-	-0.627***	(0.159)
Deductible (hundreds)	-	-	0.069***	(0.020)
Donut Hole Coverage	-	-	-0.761***	(0.052)
Average Consumer Cost Sharing %	-	-	-1.447***	(0.219)
# of Top 100 Drugs in Formulary	-	-	-0.002	(0.010)
Normalized Quality Rating	-	-	-0.511***	(0.019)

Acclimation Costs	\$196	\$127	
Paperwork Costs	\$1078	\$283	
Attention Probability		19.7%	

Welfare Simulations: Smart Default Policy 1

	Attention Cost				
	\$0	\$50	\$100	\$200	\$300
Conditional Logit Parameters	\$31	\$31	\$31	\$31	\$31
DSC Parameters	\$177	\$177	\$177	\$177	\$177
Direct Effect on Attention Probability 25% 50% 75% 100%					

Welfare Simulations: Smart Default Policy 1

	Attention Cost				
	\$0	\$50	\$100	\$200	\$300
Conditional Logit Parameters	\$31	\$31	\$31	\$31	\$31
DSC Parameters	\$177	\$177	\$177	\$177	\$177
Direct Effect on Attention Probability 25% 50% 75% 100%	\$172 \$144 \$112 \$77	\$170 \$129 \$85 \$37	\$168 \$115 \$58 -\$2	\$164 \$86 \$4 -\$81	\$160 \$57 -\$50 -\$161

Welfare Simulations: Smart Default Policy 2

	Attention Cost				
	\$0	\$50	\$100	\$200	\$300
DSC Parameters	\$222	\$222	\$222	\$222	\$222
Direct Effect on Attention Probability					
25%	\$215	\$213	\$210	\$204	\$199
50%	\$184	\$168	\$153	\$122	\$91
75%	\$150	\$122	\$95	\$39	-\$17
100%	\$114	\$74	\$35	-\$45	-\$124

Overview of Additional Analysis

- Reduced form evidence of asymmetries: differential sensitivity of switching to changes in the characteristics of the default and rival plans
- Overidentification tests: test whether the exclusion restrictions used in the literature are valid

Conclusion

- ► Show identification of a class of consideration set models that are likely to be useful to applied researchers
- Exploit violations in symmetry of cross derivatives
- Assumptions already made by researchers in specifications with full-consideration typically sufficient for identification with limited consideration
- Demonstrate model utility/tractability through applications to choice in a variety of different settings including welfare evaluation of Smart Default Policy

Symmetry Proof: Example Nested Logit

► To see in a very simple case, consider the nested logit in which cross-price effects take the form:

$$\frac{\partial s_{jm}}{\partial p_{km}} = \begin{cases} \beta s_{km} \left(\frac{\sigma}{1-\sigma} s_{jm|g} + s_{jm} \right) & \text{if } j \text{ and } k \text{ in the same nest} \\ \beta s_{jm} s_{km} & \text{otherwise} \end{cases}$$

- $s_{jm|g}$: gives the within-nest market share of good j
- σ: how different substitution patterns are within and across nests.
- Clear that these are symmetric in products in different nests, but what about those in the same nest?

Symmetry Proof: Example Nested Logit

For products in the same nest we have:

$$\frac{\partial s_{jm}}{\partial p_{km}} - \frac{\partial s_{km}}{\partial p_{jm}} = \beta \frac{\sigma}{1 - \sigma} \left(s_{km} s_{jm|g} - s_{jm} s_{km|g} \right)$$

Given that

$$s_{jm}=s_{jm|g}g_m$$

where g_m is the probability of buying a good from nest g. We have:

$$\frac{\partial s_{jm}}{\partial p_{km}} - \frac{\partial s_{km}}{\partial p_{jm}} = \beta \frac{\sigma}{1 - \sigma} \left(s_{km|g} g_m s_{jm|g} - s_{jm|g} g_m s_{km|g} \right)$$
$$= 0$$

Symmetry Proof: General

▶ With [] denoting exclusion, the probability that option *j* is chosen under full consideration is given by:

$$\begin{split} s_{jm}^{\star} &= Pr\left(v_{jm} + \epsilon_{ijm} = \max_{j'} v_{j'm} + \epsilon_{ij'm}\right) \\ &= \int \int_{-\infty}^{v_{jm} + e - v_{0m}} ... \int_{-\infty}^{v_{jm} + e - v_{Jm}} f(z_0, ..., e, ..., z_J) dz_J ... [dz_j] ... dz_0 de \end{split}$$

This allows for an arbitrary correlation structure in the random utility errors.

Symmetry Proof: General

► Then:

$$\frac{\partial s_{jm}}{\partial p_{j'm}} = -\beta \int \int_{-\infty}^{v_{jm}+e-v_{0m}} ... \left[\int_{-\infty}^{v_{jm}+e-v_{jm}} \right] ... \left[\int_{-\infty}^{v_{jm}+e-v_{j'm}} \right] ... \int_{-\infty}^{v_{jm}+e-v_{Jm}} f(z_0, ..., e, ..., v_{jm} + e - v_{j'm}, ..., z_J) dz_J ... [dz'_j] ... [dz'_j] ... dz_0 de$$

Symmetry Proof: General

▶ Using the change of variables $t = v_{jm} + e - v_{j'm}$, one obtains:

$$\frac{\partial s_{jm}}{\partial p_{j'm}} = -\beta \int \int_{-\infty}^{v_{j'm}+t-v_{0m}} .. \left[\int_{-\infty}^{v_{j'm}+t-v_{j'm}} \right] .. \left[\int_{-\infty}^{v_{j'm}+t-v_{jm}} \right] .. \int_{-\infty}^{v_{j'm}+t-v_{jm}} f(z_0, ..., v_{j'm} + t - v_{jm}, ..., t, ..., z_J) dz_J ... [dz'_j] ... [dz_j] ... dz_0 dt$$

$$= \frac{\partial s_{j'm}}{\partial p_{jm}}$$

Back