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1 Introduction

The classic model of dealer markets (Glosten and Milgrom, 1985) assumes that traders have

superior information.1 Yet empirical evidence shows that market makers (MMs) can be better

informed than traders.2 What does the structure of dealer markets imply about when we

should expect to see one situation or the other?

A dealer market is a two-sided financial market, with MMs supplying liquidity on one side

of the market by quoting bid and ask prices, and traders demanding liquidity by submitting

market orders on the other side, as illustrated below in Figure 1.3 The MMs buy low, and

sell high, adjusting their bid-ask spreads (henceforth spreads) in accordance with the adverse

selection faced. Traders, on the other hand, benefit from MMs competing to offer the best

quotes. A common assumption is that the set of traders comprises speculators and liquidity

traders: the former trade for profits, and the latter due to liquidity shocks unrelated to the

asset value. MMs thus make positive expected profit against liquidity traders but lose money

on average against speculators.

Market Makers Traders

{
Liquidity traders

Speculators

Quote Bid and Ask Prices Submit Market Orders

Trading

Figure 1: Dealer Markets

Suppose now that the cost of acquiring information about an asset’s value is the same for

all market participants, that is, for traders and MMs: who then becomes informed? To address

this question, the present paper analyses a simple two-stage game: information acquisition

takes place in the first period, and trade in the second.

1Glosten and Milgrom (1985) were primarily interested in understanding the workings of dealer markets in
the presence of insider trading.

2The empirical literature is discussed in Section 7.
3The bid price (respectively ask price) is the price at which MMs buy (resp. sell) and traders sell (resp.

buy) the asset. The bid-ask spread refers to the difference between the two.
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Figure 2: Who Acquires Information

We first identify a one-sided strategic complementarity in information acquisition. MMs’

gain from becoming informed is increasing in the probability that traders are informed. The

logic is simple. The more informed traders are, the worse the adverse selection facing un-

informed MMs, who respond by increasing their spreads. This, in turn, softens price com-

petition for informed MMs, who can now increase their own spreads. So MMs’ incremental

profit from being informed increases with the probability that traders are informed. By con-

trast, as traders make less profits from trading with informed MMs than with uninformed

MMs, traders’ gain from becoming informed is always decreasing in the probability that MMs

are informed. The result of these observations is a one-sided strategic complementarity in

information acquisition.

We then address the question of who acquires information, and show that the microstruc-

ture of dealer markets pins down the pattern of information acquisition, as illustrated in Figure

2. If the cost of information and the share of speculators comprising the market are small then

MMs acquire information whereas speculators choose to remain uninformed; if they are large

the situation is reversed: speculators acquire information but MMs remain uninformed.4 In

between, MMs and speculators all become informed with positive probability.

The logic behind who acquires information is as follows. Consider first the effect of infor-

mation cost. Due to the positive fraction of liquidity traders, a MM’s gain from becoming

4The latter conditions therefore microfound Glosten-Milgrom types of markets.
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informed remains bounded away from zero as long as not all his competitors acquire infor-

mation with probability one. As a result, MMs’ information acquisition probability is pushed

towards one as the information cost tends to zero. Uninformed MMs then face severe adverse

selection from informed MMs, which leads them to increase their spreads. This, in turn,

implies that the probability that an informed trader finds a profitable trade and the profit

that can be made on this trade both go to zero as the cost tends to zero. Traders’ gain from

acquiring information is therefore second order in the cost of information. In consequence, at

small information costs, traders best respond by remaining uninformed.

Consider next larger information costs; to illustrate the main mechanism in this case,

suppose that none of the market participants acquire information. As MMs then face no

adverse selection, the spreads equal zero. The price at which MMs buy the asset thus equals

the price at which traders buy the asset. Similarly, the price at which MMs sell the asset equals

the price at which traders sell the asset. So conditional on execution, an informed trader makes

the same profit as an informed MM. However, MMs face execution risk, which traders do not.5

So traders’ expected profit when informed is larger than MMs’. We show this way that a cost

range exists in which MMs are uninformed and speculators acquire information.

The effect of market composition on information acquisition is explained as follows. A

speculator abstains from trading when she is uninformed, so MMs only recoup the cost of

information from executing the orders of liquidity traders. MMs therefore stop acquiring

information when the fraction of speculators in the market becomes sufficiently large. The

information acquired by MMs in turn determines speculators’ incentives to become informed:

speculators remain uninformed when the fraction of liquidity traders is large (in which case

most MMs are informed), whereas speculators acquire information when liquidity traders are

rare (in which case most MMs are uninformed).

A number of interesting observations regarding “market liquidity” (the average bid-ask

spread) and “price discovery” (how well prices reflect asset values) follow from our analysis:

(a) Market liquidity is non-monotonic in the cost of information. At small costs, competition

from informed MMs to offer the best quotes implies that a decrease in the cost of

information improves liquidity. At higher costs, MMs are uninformed, and reducing

the cost of information increases information acquisition from the speculator, which

5A market order is executed with probability 1 at the quoted price. By contrast, a quote may not be
executed. A quote in our setting corresponds to a limit order, and execution risk plays a key role in limit
order markets, where it is a key determinant of a trader’s choice between market and limit orders (see, e.g.
Kaniel and Liu (2006)).
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increases adverse selection and reduces liquidity.

(b) An increase in the share of speculators in the market can improve liquidity: the greater

the fraction of speculators comprising the market, the less information acquisition on the

part of MMs, which reduces adverse selection for uninformed MMs and in turn improves

market liquidity.

(c) Price discovery may increase with the cost of information. In an intermediate cost

range, raising the cost of information pushes MMs to acquire less information but in-

duces speculators to acquire more information. The strategic complementarity in in-

formation acquisition previously highlighted, in turn, implies that the positive effect on

price discovery resulting from speculators’ increased information acquisition dominates

the negative effect resulting from MMs’ reduced information acquisition.

(d) Price discovery can increase with the fraction of liquidity traders in the market. This

finding is a consequence of the market collapse resulting from excessively scarce liquidity

trading: a fraction of speculators close to one induces very large spreads which, in turn,

dissuades speculators from acquiring information (and, therefore, trading). Increasing

the fraction of liquidity traders can increase speculators’ market participation and via

this channel improve price discovery.

We divide for expository purposes the analysis in two parts. We first study a model in which

traders submit market orders without having observed MMs’ quotes.6 This assumption enables

us to illustrate the underlying economic principles at work in the simplest possible setting. We

then make quotes observable, and show that all the main results continue to hold. Yet making

the quotes observable also yields novel insights. For instance, a strategic complementarity in

information acquisition amongst MMs then arises, since information acquired by one MM

then leaks through to the traders through the quotes of that MM.

The related literature is discussed in the next paragraphs. Section 2 presents the baseline

model, which we analyze in Sections 3 to 5. Section 3 takes the probabilities with which

different market participants acquire information as given, and examines the resulting trading

game. Section 4 endogenizes information acquisition. Section 5 investigates market liquidity

and price discovery. Section 6 extends the baseline model by allowing traders to observe MMs’

quotes before market orders are submitted. Section 7 discusses the model and results, and

6One interpretation is that quotes are hidden limit orders, as in e.g. Boulatov and George (2013).
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relates our findings to the empirical literature, as well as to recent developments in financial

markets.

Related literature. The literature on information acquisition in financial markets stretches

back at least to Grossman and Stiglitz (1980) and Verrecchia (1982). Glosten and Milgrom

(1985) introduced the model of dealer markets on which we build. Endogenizing traders’ infor-

mation acquisition is relatively straightforward in this model, if one maintains the assumption

that MMs are uninformed (see, e.g., Foucault, Pagano and Röell (2013)). By contrast, the

problem of information acquisition by MMs is non-trivial. If one fixes traders’ information,

the problem is formally equivalent to the information acquisition problem in a standard (first-

price sealed-bid common-value) auction setting, analyzed in e.g. Milgrom (1981), Lee (1984),

Persico (2000), or Atakan and Ekmekci (2019). The present paper is the first to analyze

information acquisition simultaneously occurring on both sides of a dealer market, and to

investigate how information acquired by one side of the market affects incentives to acquire

information on the other.

Within the literature on dealer markets, Chamley (2007) allows traders to acquire costly

information; Leach and Madhavan (1993), Bloomfield and O’Hara (2000), and de Frutos and

Manzano (2005) take on the other hand traders’ information as given, and explore MMs’

incentives to manipulate prices in order to learn from the order flow. Our paper is also

connected to a broader literature on two-sided information acquisition. Dang (2008) analyzes

a bargaining game in which the buyer can acquire information before offering a price; the

seller observes the offer and can acquire information before deciding whether or not to sell.

Unlike our setting, the price-setter is monopolistic and information may be acquired after

the price is observed. Tirole (2009, 2015) and Bolton and Faure-Grimaud (2010) examine

contracting environments in which both parties can acquire information. However, the setting

they explore is quite different from ours and offers the players a great deal of commitment

power, which is typically lacking in asset markets. Finally, we discuss in Section 7 how our

paper relates to the literature on limit-order markets, in which market participants choose

between demanding and supplying liquidity.

2 Baseline Model

We consider the market for a risky asset with random value V where P(V = 1) = P(V = 0) =
1
2
. The realization of V is denoted v. There are two market makers (MMs, he), indexed by
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Liquidity shock with
probability 1 − π

Covert information
acquisition by MMs

and speculator

MMs set prices and
trader submits market
order simultaneously

Figure 3: Timing

n = 1, 2, and one trader (she). We denote market maker n by MMn. At t = 1, all market

participants privately decide whether to observe v for a cost c > 0. Trade takes place at

t = 2: the trader decides whether to submit a market order for one unit of the asset, and

MMs simultaneously choose bid and ask prices. In the baseline model, the trader does not

observe the prices before placing her market order; we relax this assumption in Section 6.

There is price priority on the market, meaning that market orders are executed at the best

possible price. The tie-breaking rule is specified as part of the equilibrium. The ask (resp.

bid) price of MMn is denoted an (resp. bn). Hence, the trader’s profit from a buy order (resp.

sell order) is v − â (resp. b̂− v), where â := minn an and b̂ := maxn bn; the profit of the MM

executing the order is the opposite. For expository simplicity, we assume that MMs choose

ask and bid prices in [0, 1].

We say that the trader is a speculator if her objective is to maximize her expected profit.

The trader is a speculator with probability π, whereas with probability 1 − π the trader is

privately hit by a liquidity shock before her decision in period t = 1: she then buys and sells

the asset with equal probability independently of all other random variables of the model. In

this case we say that the trader is a liquidity trader. To make the analysis interesting we

assume π ∈ (0, 1). Figure 3 summarizes the timing of the model.

Equilibrium. Let MMnU refer to MMn when he has not acquired information, and MMnH

(respectively MMnL) refer to MMn when he has acquired information and observed v = 1

(resp. v = 0). A strategy of MMn comprises a probability pn of acquiring information at t = 1,

and cumulative distribution functions σn, σn and σn specifying respectively the distribution

of the bid price bn of MMnU, MMnL and MMnH. As the bid and ask sides of the market

are symmetric we assume, without loss of generality, that, conditional on MMnU, 1 − an is

distributed like bn. Similarly, we assume that 1 − an conditional on MMnL (resp. MMnH)

is distributed like bn conditional on MMnH (resp. MMnL). We will often use the index m in
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conjunction with n, such that n and m represent the two MMs. A strategy of the speculator

comprises a probability q of acquiring information at t = 1, as well as a market order as a

function of her information at t = 2. The equilibrium concept is perfect Bayesian equilibrium,

with the addition that a tie-breaking rule is specified as part of an equilibrium.7

The next definition will prove useful in the following sections. Roughly, a Wilson-Engelbrecht-

Milgrom-Weber-Lee (henceforth WELM) equilibrium is an equilibrium in which both MMs

play the same strategy, and MMnL bids below MMnU who himself bids below MMnH.8

Definition 1. An equilibrium is a WELM equilibrium if it satisfies the following conditions:

(i) both MMs acquire information with probability p;

(ii) MMs’ strategies are identical: σ1 = σ2 = σ, σ1 = σ2 = σ and σ1 = σ2 = σ;

(iii) MMnL bids zero with probability 1: σ(0) = 1;

(iv) either p ∈ {0, 1} or σ and σ are atomless, with supp (σ) = [0, l] and supp (σ) = [l, u].

We show below in Theorem 2 that any equilibrium of the baseline model is a WELM equilib-

rium. In Section 6 we discuss how WELM selects equilibria when quotes are observable.

3 A One-Sided Strategic Complementarity

In this section we fix the probabilities p1, p2 and q with which MM1, MM2 and the speculator

are informed and study the trading game that results. An equilibrium of this game will

be referred to as a trading equilibrium. The trading game is formally equivalent in the

case q = 0 to a first-price sealed-bid common-value auction with (possibly) asymmetrically

informed bidders.9 In contrast to that literature however, our objective is to study and

compare profits on the two sides of a dealer market, and to analyze the effect of information

acquired by one side of the market on incentives to acquire information on the other side. All

proofs of this section are in Appendix A.

7A tie-breaking rule specifies the probabilities, in case of ties, with which market orders are executed by
MM1, as a function of the MMs’ quotes.

8After Wilson (1967), Engelbrecht-Wiggans, Milgrom and Weber (1983), and Lee (1984).
9Such auctions have been analyzed, as already mentioned, by Wilson (1967), Engelbrecht-Wiggans et al.

(1983), and Lee (1984). See also Hausch and Li (1993); Calcagno and Lovo (2006); Syrgkanis, Kempe and
Tardos (2013).
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As the analysis and equilibrium structure of the trading game closely resemble those found

in the aforementioned literature, the formal definitions and detailed analysis are relegated to

Online Appendix C. We briefly summarize below the main ideas and results. In the trading

game, the MMs and the trader simultaneously post, respectively, quotes and market orders.

Except in knife-edge cases, in any trading equilibrium the speculator sells (respectively buys)

with probability 1 when she is informed and observed v = 0 (resp. v = 1), and abstains when

she is uninformed. For the informed speculator the intuition is straightforward, since both

bid and ask prices are in the unit interval. Since quotes are such that MMs on average do

not lose money, the uninformed speculator cannot make positive expected profit from trading,

and optimally abstains. The support of the equilibrium bid distributions of different types

of a given MM never strictly overlap: MMnL bids below MMnU, who himself bids below

MMnH. In particular, MMnL bids zero with probability 1, whereas MMnU and MMnH use

mixed bidding strategies whenever at least one pn is interior. Moreover, due to adverse

selection, MMnU bids strictly below 1
2
. To gain intuition for why the different types bid in

non-overlapping intervals, fix the bid of MMnL at zero and focus on MMnU and MMnH.

Suppose for the sake of argument that the support of their bid distributions overlapped, and

pick b′ and b′′ with b′′ > b′ > 0 in this overlapping interval. Since b′ and b′′ are both in the

support of MMnH’s strategy, he must be indifferent between the two. Thus, conditional on

V = 1, MMnU is also indifferent between b′ and b′′. However, conditional on V = 0, MMnU

strictly prefers b′ to b′′, since bidding b′ gives a smaller winning probability, and a smaller

loss in case of winning. Hence, MMnU strictly prefers b′ over b′′. But this is a contradiction,

since both are supposed to be in the support of MMnU’s bid distribution. Thus, the MM’s

conditional bid distributions do not overlap.

We define an informed player’s expected trading profit as this player’s expected profit in

the trading game when he/she is informed, and similarly for an uninformed player.10 Trading

profits are gross profits, that is, profits obtained before subtracting the cost of information.

We show the following result.

Lemma 1. For all p1, p2 and q, a trading equilibrium exists. Any given player’s expected

trading profit when informed is independent of the trading equilibrium considered. Similarly,

any given player’s expected trading profit when uninformed is independent of the trading equi-

librium considered.

10For definiteness, in the case of an informed player the expectation is calculated before observing v. Of
course, in equilibrium, the symmetry of the bid and ask sides of the market makes this distinction irrelevant:
expected profits before and after observing v are then the same thing.
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We now let Πn (respectively Πn) denote the equilibrium expected trading profit of MMn

when uninformed (resp. informed), and ΠS (respectively ΠS) denote the equilibrium expected

trading profit of the speculator when uninformed (resp. informed).

Lemma 2. Suppose pn > pm. Then Πm = Πn > Πn > Πm = 0.

In equilibrium, both MMs earn the same (expected) profit when informed. Intuitively,

if MMnH were to make more profit than MMmH, then MMmH could increase his profit by

bidding just above MMnH’s highest bid price. Next, if pn > pm then MMnU makes greater

profit than MMmU. The logic is straightforward: informed MMs pick a disproportionate

share of profitable market orders; since MMn is more often informed than MMm, MMmU

then faces more adverse selection than MMnU. Intuitively, an uninformed MM extracts rent

from a competitor’s belief that he is informed with high probability. For our purpose the main

implication is the following: pn > pm implies Πn−Πn < Πm−Πm, that is, MMm’s incremental

profit from being informed is greater than that of MMn. Consequently, any equilibrium of the

baseline model must be such that p1 = p2 (in fact, any equilibrium of the baseline model is a

WELM equilibrium; see Theorem 2). We therefore focus in the rest of the section on profiles

of information acquisition satisfying p1 = p2, and let p denote the common probability with

which MMs are informed. The next theorem is the central result of this section.

Theorem 1. There is a one-sided strategic complementarity in information acquisition.

1. The more information acquired by any market participant the smaller the speculator’s

gain from acquiring information: ΠS − ΠS is decreasing in p and q.

2. By contrast, information acquired by the speculator enhances MMs’ gain from acquiring

information: Πn − Πn is decreasing in p but increasing in q.

The logic behind the effects of p and q on the speculator’s gain from being informed is as

follows. The speculator’s only chance of making a profit is against uninformed MMs. Raising

p therefore reduces the speculator’s chances of finding a profitable trade.11 Higher q, on the

other hand, generates greater adverse selection for uninformed MMs, which in turn induces

wider spreads. Increasing q thus reduces the profit made by the speculator on each profitable

trade.

11Moreover, raising p increases adverse selection for uninformed MMs which, in turn, induces the latter to
set wider bid-ask spreads, further reducing the informed speculator’s expected trading profit.
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The effect of p on MMs’ gain from information is straightforward, as higher p means greater

competition for profitable market orders. The effect of q on MMs’ gain from information is

more interesting. Increasing q enhances the adverse selection problem faced by all uninformed

MMs, which induces them to set wider spreads. This, in turn, softens price competition for

informed MMs, who now increase their own spreads. MMs’ incremental profit from being

informed therefore increases with q.

4 Information Acquisition

In this section we analyze equilibrium information acquisition in the baseline model. We

show that the pattern of information acquisition is uniquely determined as a function of

information cost and market composition. In particular, at small information costs MMs

acquire information whereas the speculator chooses to remain uninformed. The situation is

reversed at larger costs. The next theorem is this section’s central result. All proofs of this

section are in Appendix A.

Theorem 2. There exists an equilibrium. Moreover, any equilibrium is a WELM equilib-

rium. The information acquisition probabilities, p and q, are independent of the equilibrium

considered; p is non-increasing in c and tends to 1 as c tends to 0. For c > 1/2, neither the

speculator nor the MMs acquire information, and there exist 0 < c < c < 1
2

such that:

• if c ∈ (0, c) then MMs acquire information with positive probability but the speculator

remains uninformed;

• if c ∈ (c, c) then the MMs and the speculator all acquire information with positive prob-

ability;

• if c ∈ (c, 1
2
) then the speculator acquires information with positive probability but MMs

remain uninformed.

In view of Theorem 2, the standard assumptions about informational asymmetries in

financial markets whereby informed speculators and liquidity traders trade with uninformed

MMs are warranted for a range of high information costs (c ∈ (c, 1
2
)). Yet, strikingly, at lower

costs (c ∈ (0, c)) the market consists only of liquidity traders, informed MMs and uninformed

MMs. The equilibrium pattern of information acquisition is illustrated in Figure 4, panel A,
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Figure 4: Equilibrium Information Acquisition

for π = 3
10

.12 The information acquisition probabilities are on the vertical axis; the information

cost is on the horizontal axis. The solid curve shows the equilibrium p, and the dashed curve

the equilibrium q. We also indicate the cutoff c > 0 below which the speculator is uninformed,

and the cutoff c < 1
2

above which MMs are uninformed.

The uniqueness of p and q as well the non-increasingness of p as a function of c all fol-

low from Theorem 1. We summarize in the next paragraphs the logic behind who acquires

information. Notice that in a WELM equilibrium uninformed market participants make zero

profits, Πn = ΠS = 0, so gains from being informed equal profits when informed.

At small information costs, MMs acquire information. As uninformed MMs never set

bid prices above 1
2

nor set ask prices below 1
2
, MMn’s gain from being informed in the trading

game is at least as large as (1−p)(1−π)
4

: there is probability (1 − p) that MMm is uninformed,

in which case the informed type of MMn ensures profit 1
2

whenever the trader is a liquidity

trader who either sells when V = 1 or buys when V = 0, which occurs with probability 1−π
2

.

Thus, in equilibrium, (1−p)(1−π)
4

≤ c, and p tends to 1 as c tends to 0.13 This shows that, at

small information costs, MMs acquire information.

12The code used for calculating the equilibrium and simulating the prices in the following figures is available
on the authors’ websites.

13If (1−p)(1−π)
4 > c then a MM’s gain from acquiring information is larger than the cost of information,

implying p = 1. But this is a contradiction, since c > 0.
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At small information costs, MMs crowd out the speculator. By symmetry of the bid

and ask sides of the market, the speculator’s gain from being informed in the trading game

may be written as

ΠS − ΠS = (1− p2)E[ b̂ |V = 0, either 1 or 2 MMs are uninformed]. (1)

The factor 1 − p2 represents the speculator’s chances of making a positive profit, which will

only occur if at least one MM is uninformed. The second term is the expectation of the best

bid price, conditional on V = 0 and at least one MM being uninformed. We established earlier

that (1−p)(1−π)
4

≤ c, thus,

1− p2 ≤ 4c(1 + p)

1− π
≤ 8c

1− π
. (2)

Consider now the expectation of the best bid price appearing on the right-hand side of (1).

As p tends to 1, an uninformed MM is almost exclusively left with unprofitable market orders

(when p is close to 1 an uninformed MM expects profitable market orders to be picked off by

his competitor). Since p tends to 1 when c tends to 0, an uninformed MM’s bid-ask spread

therefore tends to 1 as c tends to 0, giving14

lim
c→0

E[ b̂ |V = 0, either 1 or 2 MMs are uninformed] = 0. (3)

Lastly, combining (1), (2) and (3) gives ΠS − ΠS < c for all c sufficiently small. This implies

that the speculator chooses to remain uninformed at small information costs.

At high information costs, the speculator acquires information whereas MMs

remain uninformed. Fix p = 0 and q = 1, and consider the resulting trading game. With

both MMs uninformed, Bertrand competition yields b̂ = E[V |sell] = 1−π
2

= 1 − â.15 The

informed speculator sells when V = 0 and buys when V = 1. Hence,

ΠS − ΠS =
1

2
b̂+

1

2
(1− â) =

1− π
2

. (4)

Now, if a MM were informed he would pick all profitable market orders, that is, all sell orders

of the liquidity trader when V = 1 and all buy orders of the liquidity trader when V = 0. We

14A formal proof of (3) is provided in Appendix A.
15As q = 1, the speculator sells when V = 0 and buys when V = 1: E[V |sell] =

1
2 .

1−π
2

1
2 .

1−π
2 + 1

2 (
1−π
2 +π)

= 1−π
2 .
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therefore obtain

Πn − Πn = (1− π)

(
1

4
(1− b̂) +

1

4
â

)
=

1− π2

4
. (5)

Combining (4) and (5) yields Πn − Πn < ΠS − ΠS. The latter inequality establishes that,

for c ∈ [1−π
2

4
, 1−π

2
], the unique equilibrium information acquisition probabilities are q = 1 and

p = 0: the speculator acquires information whereas MMs remain uninformed. Intuitively,

MMs face execution risk, which the speculator does not. Hence if spreads are not too wide,

such that MMs and speculator face not too dissimilar prices, then the speculator’s gain from

becoming informed is larger than the corresponding gain of MMs.

We end this section by investigating the effect of the composition of the market (in terms

of speculation versus liquidity trading) on information acquisition.

Proposition 1. Assume c < 1
2
. There exist 0 ≤ π ≤ π < 1 such that, in any equilibrium:

• if π ∈ (0, π) then MMs acquire information with positive probability but the speculator

remains uninformed;

• if π ∈ (π, π) then the MMs and the speculator all acquire information with positive

probability;

• if π ∈ (π, 1) then the speculator acquires information with positive probability but MMs

remain uninformed.

Moreover, there exists c∗ > 0 such that π > 0 if and only if c < c∗. Lastly, the equilibrium

probability p with which a MM acquires information is non-increasing in π, and the equilibrium

probability q with which the speculator acquires information tends to 0 as π tends to 1.

The proposition is illustrated in Figure 4, panel B, for c = 0.15. The vertical axis shows

information acquisition, with π on the horizontal axis. The MMs exclusively recoup c by

executing market orders from the liquidity trader. So MMs acquire information when liquidity

trades are frequent and remain uninformed when liquidity trades are rare. The speculator,

on the other hand, exclusively recoups c by trading with uninformed MMs. Therefore, the

speculator remains uninformed when liquidity trades are frequent, in which case most MMs

are informed, and acquires information when liquidity trades are rare, in which case most

MMs are uninformed. The speculator’s information acquisition probability tends to 0 as π

tends to 1. If this were not the case then, conditional on V = 0, b̂ would have to converge to
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Figure 5: Market Liquidity

0 (in probability) since the probability of a market order coming from the speculator would

tend to 1 as π tends to 1. Similarly, conditional on V = 1, â would have to converge to 1.

However, in that case, the speculator would have no incentive at all to pay for information.

5 Market Liquidity and Price Discovery

In this section we examine the implications of the model for market liquidity and price dis-

covery. As is usual in the literature, we measure market liquidity using the expected bid-ask

spread s := E[â− b̂].16 Price discovery (or inverse price discovery) is defined as the expected

squared price error, d := E[(r − V )2], with r denoting the realized price, i.e. r = â in case of

a buy order, r = b̂ in case of a sell order, and r = â+b̂
2

if the trader abstains.

Market Liquidity. The implications of the model regarding market liquidity are straight-

forward. For c > 1
2
, the MMs and the speculator all remain uninformed. Each MM, being

uninformed and facing no adverse selection, sets an = bn = 1
2
. Thus, s = 0 for c > 1

2
. On

the other hand each MM acquires information with probability converging to 1 as c tends to

0 (Theorem 2). If V = 1, informed MMs competing to offer the best bid price then ensure

that b̂ converges to 1 (in probability) as c tends to 0. Since V = 1 implies â = 1 whenever

16The bid-ask spread measures how much liquidity traders pay on average to trade.
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both MMs are informed, we conclude that s tends to 0 as c tends to 0 (the logic is the same

if we condition on V = 0). At c = c however, the speculator acquires information with

probability 1 but MMs choose to remain uninformed. This yields b̂ = 1−π
2

= 1 − â, and so

s = 2â− 1 = π. The resulting non-monotonicity of the expected bid-ask spread as a function

of the information cost is illustrated in Figure 5, panel A, for π = 3
10

.17

The effect of market composition on the expected bid-ask spread is more subtle. Figure

5, panel B, shows s as a function of π for c = 0.15. On the one hand increasing π reduces

the probability that a market order originates from the liquidity trader; this worsens, ceteris

paribus, the adverse selection problem of an uninformed MM. However, immediately below π =

π, the probability q with which the speculator acquires information is constant at 1, whereas

p decreases with π; this reduces, ceteris paribus, the uninformed MMs’ adverse selection

problem. Immediately below π = π the latter effect dominates: increasing π indirectly benefits

an uninformed MM who therefore sets a smaller spread. In Figure 5, panel B, s increases at

first, but then dips around π = π, before increasing again at larger values of π.

Price Discovery. Panel A of Figure 6 illustrates the expected squared price error, d, with

c on the horizontal axis, and market composition π = 7
10

. The point c̃ marks the lowest

17This non-monotonicity holds irrespective of π, since we showed that s = π at c = c. Notice too that,
moving from right to left, s goes on rising passed c = c. While the speculator continues to acquire information
with probability 1 immediately below c = c, now MMs acquire information with some probability as well. The
adverse selection problem of an uninformed MM is therefore more severe for c just below c than at c = c.
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information cost at which in equilibrium q = 1. First, notice that the arguments of the

previous paragraph immediately establish that d = 1
4

for c > 1
2
, whereas d tends to 0 as c

tends to 0. The expected squared price error at first increases with c. Yet, d dips inside the

interval [c, c̃], before increasing again at larger values of the cost. The reason is as follows.

Between c and c̃, the probability q that the speculator acquires information goes from 0 all the

way to 1. The probability p with which a MM acquires information simultaneously decreases

in that interval. However, since MMs’ gain from information increases with q (Theorem 1),

the rate at which p falls in c drops within the cost interval [c, c̃]. Consequently, in that cost

interval, and for π sufficiently large, the positive effect from q dominates the negative effect

from p.18 Price discovery thus momentarily improves as c increases (that is, d falls).

Panel B of Figure 6 shows the expected squared price error on the vertical axis, with π

on the horizontal axis, and c = 3
10

. Price discovery is non-monotonic in π for all c ∈ (1
4
, 1
2
).

The reason is as follows. First, notice that, for all c ∈ (1
4
, 1
2
), the condition c ∈ (c, 1

2
) holds

irrespective of π. So in equilibrium the speculator is the only market participant acquiring

information (Theorem 2) at any values of π.19 Now, in the limit as π tends to 0 almost all

market orders originate from the liquidity trader. Each MM, being uninformed and facing

(almost) no adverse selection, sets an and bn close to 1
2
. Thus d = E[(r − V )2] approaches 1

4
.

However, as π tends to 1 the probability that the speculator acquires information tends to 0

(Proposition 1). This, in turn, implies that r tends to 1
2

(in probability) as π tends to 1, since

the probability that the trader abstains tends to 1 as π tends to 1.20 Thus d = E[(r − V )2]

approaches 1
4

as π tends to 1. For all c ∈ (1
4
, 1
2
), the expected squared price error thus attains

its upper bound in the limits as π tends to 0 and as π tends to 1. Price discovery is therefore

non-monotonic in π for all c ∈ (1
4
, 1
2
). Intuitively, an increase of liquidity trading can improve

price discovery due to the “market collapse” that occurs when liquidity trading is scarce.

6 Observable Quotes

In this section we extend the baseline model of Section 2 by letting the MMs’ quotes be

observable with probability z before the trader’s decision in period t = 2; the baseline model

corresponds to z = 0.21 The timing of the observable quotes model is illustrated in Figure

18For π small, the positive effect from q is too weak. Price discovery is then non-decreasing in c.
19In other words, π = π = 0.
20Recall, the speculator abstains when she is uninformed.
21The cases z = 0 and z = 1 are arguably the cases with the most applied interest; for completeness and in

order to derive further comparative statics, we allow however z to take any value in [0, 1].
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7. The trader is privately hit by the liquidity shock with probability 1 − π, after which all

market participants privately decide whether to observe v, for a cost c > 0. The MMs then

simultaneously choose bid and ask prices.22 The trader observes the quotes with probability

z; she then either abstains or places a market order for one unit of the asset. All proofs of

this section are in Appendix B.

Liquidity shock with
probability 1 − π

Covert information
acquisition by MMs

and speculator

MMs simultaneously
set prices

Trader observes prices
with probability z
and submits order

Figure 7: Timing – Observable Quotes

Relative to the baseline model, making the quotes observable adds multiple layers of com-

plexity:

• Each MM’s decision to acquire information now induces additional externalities on the

other MM: information which the speculator learns through the prices of one MM may

be used to make profit against the other MM. Two interesting consequences of this

feature are that:

(i) MM’s gain from acquiring information is increasing in quote observability, z;

(ii) MM’s gain from acquiring information can increase with MMs’ information, p.

• As the speculator can now learn about v without acquiring information herself, observ-

able quotes reduce the speculator’s gain from acquiring information.

• Observable quotes allow MMs to manipulate demand through prices. For instance,

MMnU could masquerade as MMnH and reduce adverse selection by “jamming” the

signal of MMmL.

To make progress and keep the analysis tractable we restrict attention throughout this

22We assume for tractability that the MMs set prices simultaneously, but note that in many modern markets
MMs would also be able to observe each others’ quotes.
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section to WELM equilibria.23 While multiple WELM equilibria exist, we show in Online

Appendix D that all WELM equilibria share important common properties. First, as in a

WELM equilibrium informed MMs reveal their information, the speculator who does not

acquire information learns v with probability z[1− (1− p)2
]
, that is, as long as the speculator

gets to observe the quotes and at least one MM is informed. The speculator trades if she

acquires information, or if she learns v through a MM’s quotes; she abstains otherwise. Second,

given p and q a market participant’s expected trading profit when he/she acquires information

is the same in all WELM trading equilibria.24 Similarly, his/her expected trading profit when

he/she does not acquire information is the same in all WELM trading equilibria. We thus

extend previous notation and let Πn (respectively Πn) denote MMn’s equilibrium expected

trading profit when he does not acquire information (resp. when he does acquire information),

and ΠS (respectively ΠS) denote the speculator’s equilibrium expected trading profit when

she does not acquire information (resp. when she does acquire information).

We explore first the effect of the observability of the quotes on market participants’ gains

from acquiring information.

Proposition 2. The greater the observability of the quotes the smaller the speculator’s gain

from acquiring information: if p > 0 and q < 1 then ΠS −ΠS is decreasing in z. By contrast,

the observability of the quotes enhances MMs’ gain from acquiring information: if p > 0 and

q < 1 then Πn − Πn is increasing in z.

The first part of the proposition is straightforward. As long as (i) the speculator does

not acquire information with probability 1 and (ii) MMs acquire information with positive

probability then, increasing z: (a) increases the amount of information which the speculator

can retrieve from the quotes, (b) induces MMs to set wider spreads, by exposing uninformed

MMs to greater adverse selection. Both effects in turn decrease the speculator’s incentive to

pay for information. The second part of the proposition is more interesting. As noted above,

increasing z exposes uninformed MMs to greater adverse selection, inducing them to set wider

spreads. The larger spreads of the uninformed MMs enable in turn informed MMs to turn a

23Theorem 2 ruled out non-WELM equilibria in the case z = 0. In WELM equilibria different MM types
bid in non-overlapping intervals; so when quotes are observable, an informed MM (optimally) reveals his
information to the trader. Whether non-WELM equilibria exist for z > 0 remains an open question, which we
were unable to answer.

24We use the terminology WELM trading equilibrium for a perfect Bayesian equilibrium of the trading game
induced by the observable quotes model that satisfies: (i) σ1 = σ2 = σ, σ1 = σ2 = σ and σ1 = σ2 = σ; (ii)
σ(0) = 1; (iii) either p ∈ {0, 1} or σ and σ are atomless, with supp (σ) = [0, l] and supp (σ) = [l, u]. See
Online Appendix D.
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greater profit from trading with the liquidity trader. The latter mechanism is naturally akin

to the mechanism in Theorem 1 that induced MMs’ gain from information to increase with q:

increasing z indirectly increases information available to the speculator.

Our next result extends Theorem 1.

Theorem 3. There is a one-sided strategic complementarity in information acquisition.25

1. The more information acquired by any market participant the smaller the speculator’s

gain from acquiring information: ΠS − ΠS is decreasing in p and q.

2. By contrast, information acquired by the speculator enhances MMs’ gain from acquiring

information: Πn−Πn is increasing in q and, for π and z sufficiently large, can be either

increasing or decreasing in p.

The logic underlying the one-side strategic complementarity in information acquisition is as

in the baseline model.26 Observable quotes do however have novel implications regarding the

impact of p on MMs’ gain from acquiring information. On one hand, increasing p enhances

competition among MMs for profitable market orders; this effect reduces MMs’ gain from

acquiring information, and led Πn−Πn to be decreasing in p at z = 0. On the other hand, with

observable quotes, increasing p channels additional information to the speculator, exposing

uninformed MMs to greater adverse selection. The larger spreads of the uninformed MMs

enable in turn informed MMs to make greater profits from trading with the liquidity trader.

This feedback effect implies that, if π and z are sufficiently large, MMs’ gain from acquiring

information can be locally increasing in their own information acquisition probability, p.

The feedback effect highlighted above opens the door to the existence of multiple WELM

equilibria. However, the model’s main prediction continues to hold. Who acquires information

crucially depends on the cost of information: when this cost is small, MMs acquire information

and crowd out the speculator; by contrast, when this cost is large, the speculator acquires

information and MMs remain uninformed.

Theorem 4. For any z, there exist 0 < c < c < 1
2

such that, for c ∈ (0, c) ∪ (c, 1
2
), a WELM

equilibrium exists and in any WELM equilibrium:

• if c ∈ (0, c) then MMs acquire information with positive probability but the speculator

remains uninformed;

25The results hold for all π and z, except where explicitly stated.
26Note however that with z > 0, the adverse effect of p on the speculator’s incentive to acquire information

is even larger than before since now increasing p channels information concerning v to the speculator.
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Figure 8: Equilibrium Information Acquisition:
Baseline vs. Observable Quotes

• if c ∈ (c, 1
2
) then the speculator acquires information with positive probability but MMs

remain uninformed.

Figure 8 illustrates Theorem 4, for π = 3
10

. The dashed (respectively dotted) curve cor-

responds to equilibrium p (resp. q) values in the baseline model, that is, z = 0; the solid

(respectively dash-dotted) curve corresponds to equilibrium p (resp. q) values in the model

with perfectly observable quotes, that is, z = 1. First, notice that q is weakly lower for z = 1

than for z = 0, capturing the fact that observable quotes reduce the speculator’s incentive

to pay for information (Proposition 2). By contrast the cutoff c above which MMs are unin-

formed does not depend on z. To see this, note that if p = 0 is an equilibrium outcome for

z = 0 then p = 0 is also an equilibrium outcome for z = 1: intuitively, if MMs are uninformed

then quote observability has no effect on any of the market participants’ profits. Next, going

from left to right in the figure, observe that whereas MMs initially acquire more information

with observable quotes than without, things eventually reverse within the cost interval where

q is greater for z = 0 than for z = 1. The logic is the following. We saw in Proposition

2 that, fixing p and q, MMs’ gain from acquiring information increases with z. Yet we also
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established (Theorem 3) that MMs’ gain from acquiring information increases with q. In the

cost interval where increasing z reduces q, the reduction in q is eventually sufficiently large

that increasing z reduces p. Finally, notice that when q = 1 MMs’ information acquisition

is the same in the baseline and observable quotes models since, being already informed, the

speculator then learns nothing from the quotes.

7 Concluding Remarks

This paper analyzes information acquisition in dealer markets. We identify a one-sided strate-

gic complementarity in information acquisition: the more informed traders are, the larger

MMs’ gain from becoming informed. Moreover, when the cost of information is the same for

all market participants, the microstructure of dealer markets uniquely pins down information

acquisition. The pattern often assumed in the literature wherein traders are superiorly in-

formed relative to MMs arises at high costs. But other patterns arise at different costs. In

particular, at small costs, information acquisition is reversed. In that case, MMs are informed,

but traders are not. Furthermore, when most traders are speculators, the speculators choose

to acquire information whereas MMs remain uninformed; by contrast, when most traders are

liquidity traders, MMs acquire information and traders remain uninformed. The model has

striking implications for market liquidity and price discovery: decreasing the cost of informa-

tion and increasing the share of speculators can improve liquidity; increasing both the cost of

information and the fraction of liquidity traders can improve price discovery.

Discussion of assumptions. The model we propose is stylized, yet rich enough to deliver

various seemingly robust insights concerning the implications of the microstructure of dealer

markets on incentives to invest in information. The baseline model (Section 2) illustrates

these insights in the simplest possible way. The observable quotes model (Section 6) opens

a new information flow from MMs to traders, since traders benefit from MMs’ information

acquisition via more informative quotes. The fundamental mechanisms, however, are the

same in the two models. Loosely speaking, increasing p in the observable quotes model is like

increasing p and q in the baseline model.

Some of our modelling assumptions are relatively easily relaxed, including the number of

MMs, the probability that V = 1, or even the binary nature of the asset value, V . On the

other hand, two (standard) assumptions are essential for the model’s tractability:
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(i) There is a single trading round. Introducing multiple trading rounds would imply that

private information leaks to the market through previous quotes and trades, and that

the same information can be used in several trading rounds. In this case, on the one

hand MMs and traders have an incentive to act strategically and hide their private

information so as to use it several times by setting less aggressive quotes or trading less

aggressively, but on the other hand, they also have an incentive to act quickly before the

information of other market participants is disseminated to the market. The reaction to

these incentives will in turn determine how ‘many times’ information can be used, and

how profitable it will be, thus modifying the incentives to acquire information.

(ii) The market participants acquire perfect information concerning V . Of course, in practice

traders and MMs can incur varying costs in order to acquire more or less accurate

information about the assets they trade. One could as a first step improve the realism

of the baseline model (i.e., with unobservable quotes) by supposing that, instead of

observing the realization of V , market participants can, for a cost c > 0, observe the

realization of a binary signal correlated with V . Notice that noisy signals of V implies

that informed MMs also learn from the order flow.

Relation to empirics. Our findings shed light on several well-documented empirical regu-

larities. First, both traders and MMs may have proprietary information. Manaster and Mann

(1996), for instance, provide evidence in connection with the market for commodity futures,

Li and Heidle (2004) for stockmarkets, and Covrig and Melvin (2002) and Sapp (2002) for the

foreign exchange market. Therefore, traders cannot be viewed purely as uninformed liquidity

traders, and MMs cannot be viewed as only learning from their private knowledge of the order

flow.27

Second, dealer-driven price discovery can be more important than trader-driven price dis-

covery. For stock markets, Anand and Subrahmanyam (2008) find that “intermediaries appear

to be more informed than all other institutions and individuals combined”. Valseth (2013)

explores government bond markets and compares the informational content of the interdealer

and customer order flows: the interdealer order flow explains almost a quarter of daily yield

variation, whereas the customer order flow has little explanatory power.

27MMs acquiring information through this channel have been considered in, for instance, Leach and Mad-
havan (1993), Bloomfield and O’Hara (2000) and de Frutos and Manzano (2005). In this literature, the focus
is on MMs’ incentives to experiment with prices in order to learn new information.
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Third, MMs are often asymmetrically informed. The finding is widely documented (Al-

banesi and Rindi, 2000; Huang, 2002; Massa and Simonov, 2003). In our setting, ex ante

identical MMs play mixed information acquisition strategies in equilibrium, and may there-

fore be ex-post asymmetrically informed.

Fourth, more volatile assets exhibit larger spreads. Stoll (1978) was first to provide evidence

in the case of stocks, while Chen, Lesmond and Wei (2007) find that spreads are higher for

corporate bonds with lower rating or higher maturity, which are both associated with higher

price volatility.28 We establish that the bid-ask spread is largest when there is both informed

market making and informed trading. Consequently, in our setting, spreads are maximized

when prices are volatile.29

Electronic limit order markets and high-frequency trading. Following Glosten and

Milgrom (1985), our model is that of a classical dealer market, with MMs supplying liquidity

on one side of the market and traders consuming liquidity on the other. As our MMs set

competitive quotes they can be interpreted as designated market makers (DMMs), who have

a formal obligation to maintain market quality. While DMMs were for a long time the primary

providers of liquidity in stock markets, the advent of electronic exchanges has facilitated a rise

in the number of independent firms and investors supplying liquidity by posting limit orders.

Such firms are often referred to as voluntary MMs, since they have no formal obligation to

maintain market quality. These developments naturally blur the distinction between traders

and MMs as it exists in our model. Indeed, a central feature of the rapidly growing literature

on limit order markets is the choice between liquidity provision and liquidity consumption

(e.g. Foucault (1999)). We discuss below the scope of our model in this regard.

First, the role of DMMs varies substantially across exchanges. DMMs at the New York

Stock Exchange (NYSE), for instance, face relatively mild obligations, that contrast sharply

with those of DMMs at the major European exchanges, who are required to keep the spread

within contractually prescribed limits that many times bind.30 Yet Clark-Joseph et al. (2017)

find evidence that even NYSE’s designated market makers affect liquidity more than their

voluntary counterparts. DMMs therefore still appear to matter, even when they have relatively

mild obligations that make them closer to voluntary MMs.

28Edwards, Harris and Piwowar (2007) and Bao, Pan and Wang (2011) find similar evidence, but their
measure of market liquidity is different.

29When MMs randomize between acquiring information and not, each MM is uncertain about the informa-
tion of her competitors. The trading equilibrium thus involves mixing on the part of all MMs.

30See, for example, Menkveld and Wang (2013) and Clark-Joseph, Ye and Zi (2017).
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Second, even though electronic limit order markets allow traders to choose between de-

manding and supplying liquidity, high-frequency traders (HFTs) have a natural advantage in

liquidity supply. Limit orders run the risk of being adversely picked off if the security’s value

moves past the limit price and the limit order is hit before it can be cancelled. HFTs are

therefore less exposed to adverse selection than ordinary traders, who are, in effect, driven out

of market-making activities. Quoting Menkveld (2016), “A formal definition does not exist

but most associate HFT with extremely fast computers running algorithms coded by traders

who trade for their own account. These traders typically do not work at the deep-pocket sell-

side banks, but at privately held firms. They therefore need to keep their positions small and

short-lived to keep the capital tied up in margin accounts in check. They trade a lot intradaily

and avoid carrying a position overnight. These characterizations suggest that HFTs are best

thought of as a new type of intermediary. Menkveld (2013), for instance, studies a large HFT

and finds that 4 out of 5 positions are passive. Moreover, the HFT makes money on the

spread, but loses money on its positions. These observations, combined with the large fixed

costs associated with high-frequency trading, suggest that – as a first approximation – our

model and analysis may shed some light on electronic limit order markets in which HFTs

effectively act as MMs. A proper investigation of information acquisition in such markets is

however beyond the scope of our paper. The work of Budish, Cramton and Shim (2015), for

example, constitutes a first step in that direction.
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Appendix A: Proofs of Sections 3 and 4

We first introduce some notation. We sometimes write Πn(p, q), Πn(p, q), ΠS(p, q) and ΠS(p, q)

to make explicit that Πn, Πn, ΠS and ΠS are functions of the (fixed) information acquisition

probabilities of the trading game. Furthermore, we let Πn(b|sell) denote MMnH’s equilibrium

expected profit in the trading game from bidding b conditional on a sell order,31 and similarly

define Πn(b|sell) for MMnU. Finally, let γ := P(V = 0|sell).

Proof of Lemma 1: Follows from Proposition C1, in Online Appendix C. �

Proof of Lemma 2: This is part 6 of Lemma C1, in Online Appendix C. �

Proof of Theorem 1: Consider p, q ∈ (0, 1) (the other cases are similar). The arguments

in the proof of Proposition C1 establish that a trading equilibrium exists, is unique up to the

tie-breaking rule, and satisfies: (i) σ1 = σ2 = σ, σ1 = σ2 = σ and σ1 = σ2 = σ; (ii) σ(0) = 1;

(iii) σ and σ are atomless, with supp (σ) = [0, l] and supp (σ) = [l, u]; (iv) the speculator sells

(resp. buys) with probability 1 when she is informed and V = 0 (resp. V = 1) and abstains

when she is uninformed; (v) MMnU’s equiprofit condition is

−γ
[
p+ (1− p)σ(b)

]
b+ (1− γ)(1− p)σ(b)(1− b) = 0, ∀b ∈ [0, l], (A1)

and MMnU’s equilibrium expected profit from bidding l conditional on a sell order is

Πn(l|sell) = −γ(p+ (1− p)σ(l))l + (1− γ)Πn(l|sell). (A2)

The remarks above imply

γ =
πq
2

+ 1−π
4

πq
2

+ 1−π
2

, (A3)

l =
(1− γ)(1− p)

γ + (1− γ)(1− p)
, (A4)

31Notice that by the symmetry of the equilibrium, MMnH’s equilibrium expected trading profit equals
MMnL’s equilibrium expected trading profit, and both equal Πn.
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and

Πn(l|sell) =
γl

1− γ
. (A5)

Combining (A4), (A5) and the symmetry between the bid and ask sides of the market then

yields32

Πn =

(
1− π

2

)(
γ(1− p)

γ + (1− γ)(1− p)

)
. (A6)

By (A3), γ increases with q. So, by (A6), Πn is increasing in q and decreasing in p. Since

Πn = 0, these observations establish part 2 of the theorem.

We next prove part 1 of the theorem. Since the speculator abstains when she is uninformed,

ΠS = 0. So our goal is to show that ΠS is decreasing in p and q. Observe that, by symmetry

of the bid and ask sides of the market,

ΠS =

∫
b dF (b), (A7)

where F (b) := P(b̂ ≤ b|V = 0). As σ(0) = 1, we can write

F (b) = (1− p)2σ2(b) + 2p(1− p)σ(b) + p2. (A8)

We proceed to show that an increase in either p or q induces an inverse first-order stochastic

dominance shift of F . Pick an arbitrary b ∈ (0, l). First, rearranging (A1) yields

σ(b) =
γpb

(1− p)[(1− γ)(1− b)− γb]
. (A9)

So σ(b) is increasing in p. Moreover, as σ(b) is increasing in γ which itself is increasing in q,

we conclude that σ(b) is increasing in q as well as in p. Now, differentiating (A8) with respect

to p and then with respect to q gives

dF (b)

dp
= 2(1− p)2σ(b)

dσ(b)

dp
+ 2p(1− p)dσ(b)

dp
+ 2[(1− σ(b))p+ (1− p)(σ(b)− σ(b)2)],

dF (b)

dq
= 2(1− p)2σ(b)

dσ(b)

dq
+ 2p(1− p)dσ(b)

dq
.

32MMnH makes expected profit given by (A5) whenever the trader is hit by a liquidity shock and sells the
asset. By symmetry, MMnL makes expected profit given by (A5) whenever the trader is hit by a liquidity
shock and buys the asset.
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So dσ(b)
dp

> 0 implies dF (b)
dp

> 0, while dσ(b)
dq

> 0 implies dF (b)
dq

> 0. An increase in either p

or q therefore induces an inverse first-order stochastic dominance shift of F . Equation (A7)

finishes to show that ΠS is decreasing in p and q.

�

Proof of Theorem 2:

Step 1: the equilibrium expected profit functions of the trading game (that is, Πn, ΠS, Πn, ΠS)

are all continuous in p and q.

We have Πn = ΠS = 0, Πn given by (A6), and ΠS given by (A7), with (A8) giving F and

(A9) giving σ. Step 1 ensues.

Step 2: there exists an equilibrium.

Define for i = n, S the set-valued functions

ψi(p, q) :=


{0} if Πi(p, q)− c < Πi(p, q);

[0, 1] if Πi(p, q)− c = Πi(p, q);

{1} if Πi(p, q)− c > Πi(p, q).

For all (p, q) ∈ [0, 1] × [0, 1], ψi(p, q) is convex valued. Next, consider sequences {pk}k∈N and

{qk}k∈N converging, respectively, to p† and q†. Suppose the sequence {uk}k∈N converges to u

and satisfies uk ∈ ψi(pk, qk) for all k ∈ N. If ψi(p
†, q†) = [0, 1] then u ∈ ψi(p†, q†) is immediate.

By Step 1, Πi and Πi are both continuous in p and q. Therefore ψi(p
†, q†) = {0} implies

ψi(pk, qk) = {0} for all sufficiently large k, and ψi(p
†, q†) = {1} implies ψi(pk, qk) = {1}

for all sufficiently large k. This shows that ψi has closed graph. We may therefore apply

Kakutani’s fixed point theorem to the correspondence ψn × ψS. By construction, if (p, q) ∈(
ψn(p, q), ψS(p, q)

)
, an equilibrium exists in which MMs acquire information with probability

p while the speculator acquires information with probability q.

Step 3: any equilibrium is a WELM equilibrium.

It follows from Lemma 2 and the remarks in the main text after the lemma that any

equilibrium has to be such that both MMs acquire information with the same probability.

The other properties are immediate from the arguments in the proof of Proposition C1, in

Online Appendix C.
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Step 4: the equilibrium information acquisition probabilities p and q are uniquely determined.

Assume that an equilibrium exists in which MMs acquire information with probability p ∈
(0, 1) while the speculator acquires information with probability q ∈ (0, 1) (the other cases

are similar). In the rest of the paragraph, we make repeated use of Theorem 1. Suppose by

way of contradiction that an equilibrium exists with information acquisition probabilities p′

and q′, where either p′ 6= p or q′ 6= q. We proceed by cases.

Case 1: p′ = p. If p′ = p then either q′ > q or q′ < q. If q′ > q then ΠS(p′, q′)−ΠS(p′, q′) <

ΠS(p, q)−ΠS(p, q) = c, contradicting q′ > 0. If q′ < q, then ΠS(p′, q′)−ΠS(p′, q′) > ΠS(p, q)−
ΠS(p, q) = c, contradicting q′ < 1. This rules out p′ = p.

Case 2: p′ > p. Then, Πn(p′, q) − Πn(p′, q) < Πn(p, q) − Πn(p, q) ≤ c. As p′ > 0, we

also have Πn(p′, q′) − Πn(p′, q′) ≥ c. Therefore, q′ > q, which again implies q < 1. But then,

ΠS(p′, q′)− ΠS(p′, q′) < ΠS(p, q)− ΠS(p, q) ≤ c, contradicting q′ > 0. This rules out p′ > p.

Case 3: p′ < p. Then, Πn(p′, q) − Πn(p′, q) > Πn(p, q) − Πn(p, q) ≥ c. As p′ < 1, we

also have Πn(p′, q′) − Πn(p′, q′) ≤ c. Therefore, q′ < q, which again implies q > 0. But then,

ΠS(p′, q′)− ΠS(p′, q′) > ΠS(p, q)− ΠS(p, q) ≥ c, contradicting q′ < 1. This rules out p′ < p.

The cases above rule out the existence of an equilibrium with information acquisition

probabilities p′ and q′ different from p and q.

Step 5: in equilibrium, p is non-increasing in c.

Consider ca < cb. Let pa and qa (resp. pb and qb) denote the equilibrium information

acquisition probabilities given c = ca (resp. c = cb). Suppose by way of contradiction that

pb > pa. Then

Πn(pa, qa)− Πn(pa, qa) ≤ ca < cb ≤ Πn(pb, qb)− Πn(pb, qb).

Using Theorem 1, this in turn implies qb > qa. But then,

ΠS(pa, qa)− ΠS(pa, qa) ≥ ΠS(pb, qb)− πS(pb, qb) ≥ cb > ca,

contradicting qa < 1.

Step 6: in equilibrium, p→ 1 as c→ 0.

This step is immediate from the arguments given in the text below the statement of

Theorem 2.
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Step 7: in equilibrium, q = 0 for all sufficiently small c.

Notice first that p = 1 implies Πn = 0. Hence, in equilibrium, p < 1. This remark

combined with Step 6 combined implies that, in equilibrium, Πn − Πn = c for all sufficiently

small c and, as Πn = 0, Πn(p, q) = c, with Πn(p, q) given by (A6). Now, by part 2 of Theorem

1, Πn(p, q) is decreasing in p but increasing in q. So, for all sufficiently small c, in equilibrium:

p ≥ p∗(c), where p∗(c) is defined implicitly by Πn(p∗(c), 0) = c. Using (A6) yields

p∗(c) =
1− π − 4c

1− π − 2c
. (A10)

Next, the remark that p ≥ p∗(c) at sufficiently small c combined with part 1 of Theorem 1

shows that, in equilibrium, for all sufficiently small c:

ΠS(p, q)− ΠS(p, q) ≤ ΠS(p∗(c), 0)− ΠS(p∗(c), 0) = ΠS(p∗(c), 0).

Let l(p, q) be given by (A4) and (A3). The informed speculator who observed v = 0 will find

an uninformed MM to sell the asset to with probability 2p(1− p) + (1− p)2 and will at most

obtain the price l(p, q). Since p ≥ p∗(c) and given that l(p, q) is decreasing in p and q, we can

place an upper bound on the speculator’s gain from being informed:

ΠS(p, q)− ΠS(p, q) ≤ [2p∗(c)(1− p∗(c)) + (1− p∗(c))2]l(p∗(c), 0)

= (1− p∗(c))(p∗(c) + 1)l(p∗(c), 0)

≤ 2(1− p∗(c))l(p∗(c), 0). (A11)

Substituting (A10) into (A4) yields

l(p∗(c), 0) =
2c

1− π
. (A12)

Combining (A10), (A11) and (A12) shows that for all sufficiently small c, in equilibrium:

ΠS(p, q)− ΠS(p, q) ≤ 8c2

(1− π)(1− π − 2c)
.

Hence, in equilibrium, ΠS(p, q)−ΠS(p, q) < c for all c sufficiently small, concluding the proof

of Step 7.
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Step 8: there exist 0 < c < c < 1
2

such that, in equilibrium, q = 0 if and only if c ≤ c and

p = 0 if and only if c ≥ c.

Follows from Lemmata A1 and A2 below.

�

Lemma A1. Let c ∈ (0, 1
2
). Then, in equilibrium, the following are equivalent:

(i) p = 0;

(ii) p = 0 < q;

(iii) c ≥ c(π) = 1−π2

4
.

Proof: Fix p = 0 and q = 1, and consider the resulting trading game. With both MMs

uninformed, Bertrand competition yields b̂ = E[V |sell] = 1−π
2

= 1− â. Hence,

ΠS(0, 1)− ΠS(0, 1) =
1

2
b̂+

1

2
(1− â) =

1− π
2

.

On the other hand,

Πn(0, 1)− Πn(0, 1) = (1− π)

(
1

4
(1− b̂) +

1

4
â

)
=

1− π2

4
.

Therefore, for c ∈ [1−π
2

4
, 1−π

2
], the equilibrium information acquisition probabilities are p = 0

and q = 1. A similar argument establishes that for c ∈ (1−π
2
, 1
2
) the equilibrium information

acquisition probabilities are p = 0 and q ∈ (0, 1).

We next show that in equilibrium p > 0 for all c < 1−π2

4
. Suppose c < 1−π2

4
. First, notice

that part 1 of Theorem 1 combined with the derivation of the previous paragraph yields

ΠS(0, q) − ΠS(0, q) ≥ 1−π
2

for all q ∈ [0, 1]. So if in equilibrium p = 0 then q = 1. Yet we

saw above that Πn(0, 1)−Πn(0, 1) = 1−π2

4
. The latter observation rules out the possibility of

p = 0 in equilibrium.

�

Lemma A2. Let c ∈ (0, 1
2
). Then there exists a monotone decreasing function π(·) such that

in equilibrium q = 0 if and only if π ≤ π(c).

Proof: Throughout the proof we restrict attention to c < 1
2
.
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Step 1: if in equilibrium q = 0 for a given value of π then in equilibrium q = 0 as well for all

smaller values of π.

Consider πb < πa. Let pa and qa (resp. pb and qb) denote the equilibrium information

acquisition probabilities given π = πa (resp. π = πb). Suppose that qa = 0. We will show that

qb = 0 as well. First, (A6) yields

Πn(p, 0;π)− Πn(p, 0;π) =

(
1− π

2

)(
1− p
2− p

)
. (A13)

By Lemma A1, pa > 0. Since in equilibrium MMs always acquire information with probability

less than 1, pa ∈ (0, 1). Therefore, using Πn(pa, 0; πa) − Πn(pa, 0;πa) = c and solving for pa

gives

pa =
1− πa − 4c

1− πa − 2c
.

Now define

p′b :=
1− πb − 4c

1− πb − 2c
.

Note that p′b > pa, since πb < πa. Moreover,(
1− πb

2

)(
1− p′b
2− p′b

)
= c.

Thus, by (A13),

Πn(p′b, 0;πb)− Πn(p′b, 0;πb) = c. (A14)

On the other hand, observe that fixing q = 0, the speculator’s expected profit functions ΠS

and ΠS in the trading game are independent of π, since for q = 0 none of the price distributions

depend on π. This remark, combined with part 1 of Theorem 1, yields

ΠS(p′b, 0;πb)− ΠS(p′b, 0;πb) < ΠS(pa, 0;πa)− ΠS(pa, 0;πa) ≤ c. (A15)

It now follows from (A14) and (A15) that p′b and 0 are the equilibrium information acquisition

probabilities given π = πb. This concludes the proof of Step 1.

In what follows, let

p∗(c, π) :=
1− π − 4c

1− π − 2c
. (A16)
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We also define

π(c) := max
{

0, sup{π : q = 0 in equilibrium}
}
.

Step 2: Πn(p∗(c, π), 0) = c.

Immediate from (A6).

Step 3: π(c) > 0 implies ΠS

(
p∗(c, π(c)), 0

)
= c.

Suppose π(c) > 0. Then we can find a sequence {πk}k∈N, with limit π(c), such that in

equilibrium: π = πk implies q = qk = 0. Hence, by Lemma A1, for all k sufficiently large, in

equilibrium: π = πk implies p = pk > 0. Therefore, Πn(pk, 0) = Πn(pk, 0) − Πn(pk, 0) = c for

all k sufficiently large. We conclude, using Step 2 and the monotonicity of Πn with respect

to p, that pk = p∗(c, πk) for all k sufficiently large. As ΠS(pk, 0) ≤ c irrespective of k, we

find that ΠS(p∗(c, πk), 0) ≤ c for all k sufficiently large. Now, we saw in Step 1 of the proof

of Theorem 2 that ΠS is continuous in p. Moreover, (A16) shows that p∗ is continuous in π.

Hence, ΠS

(
p∗(c, π(c)), 0

)
≤ c. A similar argument rules out ΠS

(
p∗(c, π(c)), 0

)
< c.

Step 4: π(c) > 0 implies π(c) < 1− 4c.

Suppose π(c) > 0. Reasoning as in Step 3 establishes that p∗(c, π(c)) ≥ 0. Hence, by

(A16), π(c) ≤ 1 − 4c. Next, suppose by way of contradiction that π(c) = 1 − 4c. Then,

p∗(c, π(c)) = 0. Hence, by Step 3: ΠS(0, 0) = c. But that is impossible, since ΠS(0, 0) = 1
2

whereas c < 1
2
.

Step 5: π(.) is continuous.

Step 5 follows from Step 3 and the remarks that ΠS is continuous in p while p∗ is continuous

in both of its arguments.

Step 6: π(ca) > 0 implies π(cb) < π(ca) for all cb ∈ (ca,
1
2
).

Suppose by way of contradiction that there exist 0 < ca < cb <
1
2

with 0 < π(ca) ≤ π(cb).

Then, combining Steps 4 and 5 implies the existence of 0 < ca < c′b <
1
2

with 0 < π(ca) = π(c′b).

By Steps 4 and 5, the function

H(c) := ΠS

(
p∗(c, π(ca)), 0

)
− c
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thus crosses the horizontal axis at least twice within the open interval
(

0, 1−π(ca)
4

)
, once at

c = ca and once at c = c′b, contradicting Lemma C2 in Online Appendix C.

�

Proof of Proposition 1: Combining Lemmata A1 and A2 establishes the main part of the

proposition. We prove the remaining parts below.

Claim: the equilibrium q tends to 0 as π tends to 1.

Suppose by way of contradiction that the equilibrium probability q with which the spec-

ulator acquires information does not tend to 0 as π tends to 1. Then we can find ε > 0

and a sequence {πk}k∈N with limit 1 such that each element in the equilibrium sequence qk is

greater than ε. Therefore, by (A3), γk converges to 1 and, by (A4), lk converges to 0. Yet, by

symmetry of the bid and ask sides of the market:

ΠS(pk, qk)− ΠS(pk, qk) = ΠS(pk, qk) ≤ lk.

Therefore, ΠS(pk, qk)− ΠS(pk, qk) < c for all sufficiently large k, contradicting qk > ε.

Claim: the equilibrium probability p with which a MM acquires information is

non-increasing in π.

First, using (A6) gives us

∂2Πn(p, q)

∂π2
= − 4(1− p)2q2

[(2− p)(1− π) + 2πq]3
≤ 0.

On the other hand,

∂Πn(p, q)

∂π

∣∣∣∣
π=0

= −(1− p)[2− 2q + p(2q − 1)]

2(2− p)2
≤ 0.

We therefore obtain
∂Πn(p, q)

∂π
≤ 0. (A17)

Next, by (A9), ∂σ(b)
∂γ
≥ 0. As ∂γ

∂π
≥ 0, we obtain ∂σ(b)

∂π
≥ 0. This implies, by (A7) and (A8),

that
∂ΠS(p, q)

∂π
≤ 0. (A18)
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Now consider πb > πa. Let pa and qa (resp. pb and qb) denote the equilibrium information

acquisition probabilities given π = πa (resp. π = πb). Suppose by way of contradiction that

pb > pa. Then

Πn(pb, qb; πb) ≥ c ≥ Πn(pa, qa; πa).

As πb > πa and pb > pa, we conclude by (A17) and part 2 of Theorem 1 that qb > qa. But

then (A18) and part 1 of Theorem 1 give

ΠS(pb, qb; πb) < ΠS(pa, qa; πa),

contradicting qb > qa.

�
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Appendix B: Proofs of Section 6

We first introduce some notation. We sometimes write Πn(p, q; z), Πn(p, q; z), ΠS(p, q; z) and

ΠS(p, q; z) to make explicit that Πn, Πn, ΠS and ΠS are functions of the (fixed) informa-

tion acquisition probabilities of the trading game, and of the probability that the quotes are

observed.

Proof of Proposition 2: By Proposition D1, in any WELM trading equilibrium:

Πn(p, q; z) =

(
(1− π)(1− p)

2

)
1− π(1− 2q) + 2πp(1− q)z

2− p− 2π(1− q) + πp(1 + 2(1− q)z)
, (B1)

and

σ(b) =
(1 + π(2z − 1) + 2πq(1− z))pb

(1− p)(1− π − 2b(1− π(1− q)))
, ∀b ∈ [0, l]. (B2)

Differentiating (B1) with respect to z gives

∂Πn(p, q; z)

∂z
=

(1− p)2p(1− π)2π(1− q)
(2− p− 2π(1− q) + πp(1 + 2(1− q)z))2

> 0.

As Πn(p, q; z) = 0 in a WELM trading equilibrium (see Online Appendix D), MMn’s gain

from becoming informed therefore increases in z.

Next, in any WELM trading equilibrium:

ΠS(p, q; z) = 2p(1− p)
∫ l

0

b dσ(b) + (1− p)2
∫ l

0

b dσ2(b).

If both MMs are informed then the informed speculator makes zero profit. With probability

2(1− p)p one MM is informed and the other is uninformed. In this case, by symmetry of the

bid and ask sides of the market, the informed speculator’s expected profit equals the expected

bid of the uninformed MM. With probability (1−p)2 both MMs are uninformed. In this case,

by symmetry of the bid and ask sides of the market, the informed speculator’s expected profit

equals the expected maximum bid of the uninformed MMs. On the other hand,

ΠS(p, q; z) = 2p(1− p)z
∫ l

0

b dσ(b).

If the speculator does not acquire information, MMn is informed, quotes are observable and
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MMm is uninformed then the speculator learns v from MMn’s quotes and makes profit from

trading with MMm. Thus, the speculator’s gain from acquiring information is

ΠS(p, q; z)− ΠS(p, q; z) = 2(1− z)p(1− p)
∫ l

0

b dσ(b) + (1− p)2
∫ l

0

b dσ2(b). (B3)

Now, by (B2), σ(b) is increasing in z. So the right-hand side of (B3) decreases in z. �

Proposition B1. Let z = 1. There exists p̂ < 1, independent of q, such that, for all p > p̂,

Πn −Πn is decreasing in p. There exists q̂ < 1 such that, for all q > q̂, Πn −Πn is decreasing

in p. If π > 1
3

then, for p and q sufficiently small, Πn − Πn is increasing in p.

Proof: Taking z = 1 and differentiating (B1) with respect to p gives

∂Πn(p, q; 1)

∂p
=

(1− π)A(p, q)

2(2π(p− 1)q − 3πp+ p+ 2π − 2)2
,

where A(p, q) is a continuous function of p and q that takes the values A(0, 0) = (1− π)(3π−
1), and A(1, q) = A(p, 1) = −(1 + π)2. Continuity of the partial derivative together with

Πn(p, q; z) = 0 then yields the desired result.

�

Proof of Theorem 3: In any WELM trading equilibrium, Πn is given by (B1). Taking the

derivative with respect to q:

∂Πn(p, q; z)

∂q
=

(1− p)2(1− π)2π(1− zp)
(2(1− π(1− q)) + 2πpz(1− q)− p(1− π))2

> 0.

As Πn(p, q; z) = 0, MMn’s gain from becoming informed therefore increases in q. The compar-

ative statics result relative to p for MMn follows from Proposition B1. For the comparative

statics results pertaining to the speculator, notice that by (B2), σ(b) is increasing in p and q.

So the right-hand side of (B3) decreases in p and q. �

Proof of Theorem 4: Suppose z = 1 (the proof for the case z ∈ (0, 1) is almost identical). In

the rest of the proof, let p0 (resp. q0) denote MMs’ (resp. the speculator’s) unique equilibrium

information acquisition probability in any equilibrium with z = 0. Let c and c denote the

cutoffs from Theorem 2.

Step 1: there exists c† such that, for all c < c†, a WELM equilibrium exists and satisfies p ≥ p0
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and q = 0.

Recall: (a) p0 tends to 1 as c tends to 0, and (b) by Proposition D3, a WELM trading

equilibrium exists for all p ≥
√
2π√

2π+
√
1−π . Pick c̃ > 0 such that p0 >

√
2π√

2π+
√
1−π for all c < c̃.

Consider c < min{c̃, c}. Then, using Proposition 2,

Πn(p0, 0; 1)− Πn(p0, 0; 1) > Πn(p0, 0; 0)− Πn(p0, 0; 0) ≥ c.

Next, as Πn(1, 0; 1)− Πn(1, 0; 1) = 0, the intermediate value theorem gives p∗ > p0 solving

Πn(p∗, 0; 1)− Πn(p∗, 0; 1) = c.

As p∗ > p0, Proposition 2 and Theorem 3 give

ΠS(p∗, 0; 1)− ΠS(p∗, 0; 1) < ΠS(p0, 0; 0)− ΠS(p0, 0; 0) ≤ c.

A WELM equilibrium therefore exists, with p = p∗ and q = 0.

Step 2: for all p̂ < 1, there exists ĉ > 0 such that, in any equilibrium, p > p̂ whenever c < ĉ.

As uninformed MMs never set bid prices above 1
2

nor set ask prices below 1
2
, MMn’s gain

from being informed in the trading game is at least as large as (1−p)(1−π)
4

. Thus, in equilibrium,
(1−p)(1−π)

4
≤ c.

Step 3: there exists ĉ > 0 such that, in any WELM equilibrium, p ≥ p0 for all c < ĉ.

Choose p̂ < 1 such that Πn − Πn is decreasing in p for all p > p̂ (such a p̂ exists, by

Proposition B1). Now pick ĉ such that, for all c < ĉ: (a) q0 = 0 and (b) p > p̂ in any

WELM equilibrium (such a ĉ exists, by virtue of Theorem 2 combined with Step 2 of the

proof). Let c < ĉ and suppose by way of contradiction that a WELM equilibrium exists

satisfying p̂ < p < p0. Then Πn(p, q; 1) − Πn(p, q; 1) = c. We have on the other hand,

Πn(p0, 0; 0)−Πn(p0, 0; 0) ≥ c. Yet, our choice of p̂ combined with Proposition 2 and Theorem

3 implies

Πn(p, q; 1)− Πn(p, q; 1) > Πn(p0, 0; 0)− Πn(p0, 0; 0),

which clearly cannot be.

Step 4: in any WELM equilibrium, q = 0 for all c < ĉ.
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Recall, we chose ĉ such that q0 = 0 for all c < ĉ. So Step 4 is immediate from Step 3

combined with the fact that, by Proposition 2 and Theorem 3, ΠS − ΠS is decreasing in p, q

and z.

Step 5: for c ∈
(

(1−π)(1+π)
4

, 1
2

)
, a WELM equilibrium exists and satisfies p = 0 < q.

Theorem 2 and the observation made in the text that c = (1−π)(1+π)
4

give p0 = 0 <

q0 for all c ∈
(

(1−π)(1+π)
4

, 1
2

)
. Proposition D3 assures the existence of a WELM trading

equilibrium whenever p = 0. The existence of a WELM equilibrium satisfying p = p0, q = q0,

Πn(p0, q0; 1) = Πn(p0, q0; 0), ΠS(p0, q0; 1) = ΠS(p0, q0; 0), Πn(p0, q0; 1) = Πn(p0, q0; 0), and

ΠS(p0, q0; 1) = ΠS(p0, q0; 0) is now straightforward to verify.

Step 6: for c ∈ (1−π
2
, 1
2
), p = 0 < q in any WELM equilibrium.

Recall, c > c = (1−π)(1+π)
4

implies p0 = 0 < q0. Let c ∈ (1−π
2
, 1
2
). In any WELM equilibrium,

MMs’ gain from acquiring information is bounded above by 1−π
2

. So p = 0 in any WELM

equilibrium. Moreover, combining Theorems 2 and 3 implies that, for all q < q0:

ΠS(0, q; 1)− ΠS(0, q; 1) > ΠS(0, q0; 1)− ΠS(0, q0; 1) = ΠS(0, q0; 0)− ΠS(0, q0; 0) = c.

We conclude that q ≥ q0 in any WELM equilibrium.

�
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Appendix C: Trading Game of Baseline Model (for online

publication)

In this appendix we analyze the trading game induced by the baseline model. Specifically,

throughout this appendix p1, p2 and q play the role of parameters: MMn is informed with

probability pn, and the speculator is informed with probability q. A strategy of MMn com-

prises cumulative distribution functions σn, σn and σn specifying respectively the distribution

of the bid price bn of MMnU, MMnL and MMnH. We assume in line with the baseline model

that, conditional on MMnU, 1 − an is distributed like bn. Similarly, we assume that the law

of 1 − an conditional on MMnL (resp. MMnH) is the same as the law of bn conditional on

MMnH (resp. MMnL). A strategy of the speculator specifies her market order as a function

of the information she possesses at that point.

The following notation will be used throughout:

• Πn(b|sell) (respectively Πn(b|sell) and Πn(b|sell)) for MMnU’s (resp. MMnH’s and

MMnL’s) expected trading profit conditional on a sell order, given bn = b;

• σn(b) := P(bn ≤ b| MMnU), σn(b) := P(bn ≤ b| MMnH) and σn(b) := P(bn ≤ b| MMnL);

• Σn := supp (σn) and Σn := supp (σn) ;

• An (respectively An) for the set of atoms in MMnU’s (resp. MMnH’s) strategy;

• ln := sup Σn;

• γ := P(V = 0|sell).

Lemma C1. If p1 = p2 = 1 then any trading equilibrium has a1 = a2 = b1 = b2 = V .

If p1 = p2 = 0 then a1 = a2 = 1−π(1−2q)
2−2π(1−q) and b1 = b2 = 1−π

2−2π(1−q) . Otherwise, any trading

equilibrium satisfies the following properties:

1. σ1(0) = σ2(0) = 1;

2. Σ1 ∪ Σ1 = Σ2 ∪ Σ2 = [0, u], where u ∈ (0, 1);

3. A1 ∪ A1 ∪ A2 ∪ A2 ⊆ {0};

4. if pm ∈ (0, 1) then Σm ∩ Σm = {lm} and lm < u, with lm > 0 if and only if pn < 1;
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5. if 1 > pn ≥ pm > 0 then E[V |sell] > lm ≥ ln > 0, with lm > ln if pn > pm;

6. if pn > pm then 0 = Πm < Πn < Πn = Πm.

Proof: The cases p1 = p2 = 1 and p1 = p2 = 0 are trivial. We prove below that, in any trading

equilibrium, properties 1-6 hold in the case min{p1, p2} ∈ (0, 1), that is, when both market

MMs acquire information with positive probability but neither of them becomes informed

with probability 1; the proof for the case pm = 0 < pn is similar.

Step 1: σ1(0) = σ2(0) = 1. Suppose by way of contradiction that σ1(0) < 1. Then we can

find b′ > 0 with b′ ∈ arg maxb Π1(b|sell) and P(b1 ≥ b′| MM1L) > 0. The previous remarks

imply P(b1 = b′ wins|V = 0) = 0, for otherwise Π1(b
′|V = 0) = −P(b1 = b′ wins|V = 0)b′ <

0 = Π1(0|V = 0). Next, P(b1 = b′ wins|V = 0) = 0 implies the existence of b′′ ≥ b′ with

b′′ ∈ arg maxb Π2(b|sell) and P(b2 = b′′ wins|V = 0) > 0. We therefore obtain Π2(b
′′|sell) <

0 = Π2(0|sell), which cannot be.

Step 2: pn ∈ (0, 1)⇒ ln ≤ inf Σn. Suppose by way of contradiction that ln > inf Σn. Then

we can find b′′ > b′ with b′′ ∈ arg maxb Πn(b|sell) and b′ ∈ arg maxb Πn(b|sell). Next,

Πn(b′′|sell) = −γP(bn = b′′ wins|V = 0)b′′ + (1− γ)P(bn = b′′ wins|V = 1)(1− b′′)

= −γP(bn = b′′ wins|V = 0)b′′ + (1− γ)Πn(b′′|sell)

< −γP(bn = b′′ wins|V = 0)b′ + (1− γ)Πn(b′′|sell)

≤ −γP(bn = b′ wins|V = 0)b′ + (1− γ)Πn(b′|sell)

= Πn(b′|sell).

The last inequality holds since b′ < b′′ and P(bn wins|V = 0) is non-decreasing in bn. Thus

Πn(b′|sell) > Πn(b′′|sell) = maxb Πn(b|sell), which cannot be.

Step 3: 0 < sup Σ1 = sup Σ2 < 1. We start by showing that sup Σ1 = sup Σ2. Suppose by way

of contradiction that this is not the case, say un > um, where un = sup Σn and um = sup Σm.

Then, since increasing the bid beyond um + ε does not increase the winning probability for n,

∃ ε > 0 such that

Πn(um + ε|sell) > Πn(un − x|sell), ∀x ∈ [0, ε],

contradicting un ∈ Σn. Hence, un = um. Next, let u denote the common supremum; we claim
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that u ∈ (0, 1). Suppose by way of contradiction that u = 0. One of the two MMs does

not win with probability 1 conditional on a tie at 0, say P(bn = 0 wins|bn = bm = 0) < 1.

Then bidding slightly above zero yields MMnH strictly larger expected profit than bn = 0,

Πn(ε|sell) > Πn(0|sell), contradicting u = 0. Next, suppose by way of contradiction that

u = 1. Then maxb Πn(b|sell) = 0, for n = 1, 2. However, min{p1, p2} ∈ (0, 1). Say pm < 1;

then lm ≤ E[V ] = 1
2
. Therefore, Πn(3

4
|sell) = 1

4
(1−pm) > 0, contradicting maxb Πn(b|sell) = 0.

Step 4: pn = 1⇒ lm = 0; max{p1, p2} < 1⇒ max{l1, l2} < E[V |sell]. The first part is trivial;

we prove the second part. By Step 1, for both MMs and given any bid b, the probability of

winning a sell order is maximized under V = 0. Hence, for all b,

E[V |sell, bn = b wins] ≤ E[V |sell].

This implies, in turn, ln ≤ E[V |sell], otherwise MMnU could profitably deviate to bn = 0.

Now suppose max{p1, p2} < 1 and, by way of contradiction, that lm = E[V |sell]. We consider

two cases, u = E[V |sell] (Case 1) and u > E[V |sell] (Case 2). In Case 1, Step 2 gives

u = E[V |sell] ∈ Am. But then bidding slightly above u yields MMnH strictly larger expected

profit than bn = u: ∃ ε > 0 such that

Πn(u+ ε|sell) > Πn(u− x|sell), ∀x ∈ [0, ε],

contradicting u = sup Σn. Consider next Case 2. Note that in this case, by virtue of Steps 1

and 2, there exists δ > 0 with

P(bm = b wins|V = 1) < P(bm = b wins|V = 0)− δ, ∀b ≤ E[V |sell].

Thus, ∃ δ′ > 0 such that

E[V |sell, bm = b wins] < E[V |sell]− δ′, ∀b ≤ E[V |sell].

We therefore obtain

Πm(b|sell) = P(bm = b wins)
(
E[V |sell, bm = b wins]− b

)
< 0, ∀b ∈

[
E[V |sell]− δ′,E[V |sell]

]
,

giving lm ≤ E[V |sell]− δ′.
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Step 5:
(
A1 ∪ A1

)
∩
(
A2 ∪ A2

)
= ∅. That An ∩

(
Am ∪ Am

)
= ∅ is trivial. Next, suppose by

way of contradiction that we can find b ∈
(
A1 ∩ A2

)
\
(
A1 ∪ A2

)
. Then b < E[V |sell], by

virtue of Step 4. Let ∆ = E[V |sell]− b, and consider n such that P(MMn wins|tie at b) < 1.

Notice that Πn(b + ε∆|sell, bm = b) = E[V |sell] − b − ε∆ as (i) given bm = b, bn = b + ε∆

always wins, and (ii) conditional on bm = b, MMm is uninformed with probability 1, from

which E[V |sell, bm = b] = E[V |sell]. Then,

Πn(b+ ε∆|sell)− Πn(b|sell)

= P(bm = b)
(

Πn(b+ ε∆|sell, bm = b)− Πn(b|sell, bm = b)
)

+ (1− P(bm = b))
(

Πn(b+ ε∆|sell, bm 6= b)− Πn(b|sell, bm 6= b)
)

= P(bm = b)
(
E[V |sell]− b− ε∆− P(MMn wins|tie at b)∆

)
+ (1− P(bm = b))

(
Πn(b+ ε∆|sell, bm 6= b)− Πn(b|sell, bm 6= b)

)
= P(bm = b)

(
(1− ε)∆− P(MMn wins|tie at b)∆

)
+ (1− P(bm = b))

(
Πn(b+ ε∆|sell, bm 6= b)− Πn(b|sell, bm 6= b)

)
.

As limε→0

(
Πn(b+ ε∆|sell, bm 6= b)− Πn(b|sell, bm 6= b)

)
= 0, we obtain

lim
ε→0

(
Πn(b+ ε∆|sell)− Πn(b|sell)

)
=
(

1− P(MMn wins|tie at b)
)

∆ > 0,

contradicting b ∈ An.

Step 6: inf
{

Σ1 ∪ Σ1

}
= inf

{
Σ2 ∪ Σ2

}
. Assume max{p1, p2} < 1 (other cases are similar),

so that, by Step 2, inf
{

Σ1 ∪ Σ1

}
= inf Σ1 and inf

{
Σ2 ∪ Σ2

}
= inf Σ2. Suppose by way of

contradiction that b = inf Σn > inf Σm = b′. Then b ∈
(
Am ∪ Am

)
, otherwise we could find

ε > 0 such that

Πn(b− ε|sell) > Πn(b+ x|sell), ∀x ∈ [0, ε],

contradicting b = inf Σn, as then MMn could benefit from bidding below b. Applying Step

5 thus yields b /∈
(
An ∪ An

)
. Next, b = inf Σn together with b /∈ An implies σn(b) = 0.

Therefore, using Steps 1 and 2, b ∈ Am would imply Πm(b|sell) = −γpnb < 0, which cannot
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be. Similarly, b ∈ Am would imply Πm(b|sell) = 0, which cannot be since, by virtue of Steps

2 and 3, maxb Πm(b|sell) > 0.

Step 7: 0 ∈
(

Σ1 ∪ Σ1

)
∩
(

Σ2 ∪ Σ2

)
. Assume max{p1, p2} < 1 (other cases are similar). By

Step 2, inf
{

Σ1∪Σ1

}
= inf Σ1 and inf

{
Σ2∪Σ2

}
= inf Σ2. Let b denote the common infinimum

uncovered in Step 6, and suppose for a contradiction that b > 0. By Step 5, one of the MMs

does not have an atom at b. Consider n such that b /∈
(
An ∪ An

)
. Then, by Step 1,

lim
ε→0

Πm(b+ ε|sell) = −γpnb < 0,

contradicting b ∈ Σm.

Step 8: Σ1 ∪ Σ1 = Σ2 ∪ Σ2. Suppose by way of contradiction that there exists b′ ∈
(

Σn∪Σn

)
\(

Σm∪Σm

)
, say b′ ∈ Σn\

(
Σm∪Σm

)
(the other case is similar). Then b′ ∈ arg maxb Πn(b|sell).

Moreover, by Step 7, b′ > 0, and we can find δ > 0 such that [b′ − δ, b′ + δ] ∩
(

Σm ∪ Σm

)
=

∅. Hence MMn can lower his bid at b′ without decreasing his winning probability, giving

Πn(b′ − δ|sell) > Πn(b′|sell) = maxb Πn(b|sell), which cannot be.

Step 9: Σ1 ∪ Σ1 = Σ2 ∪ Σ2 = [0, u]. By Steps 2, 3, 7 and 8 all that remains to be shown is that

the common support is an interval. Suppose by way of contradiction that this is not the case.

Then we can find b′′ > b′, both in the common support, and such that (b′, b′′)∩
(
Σ1∪Σ1

)
= ∅.

By Step 5, there exists n such that b′′ /∈
(
An ∪ An

)
. Hence, ∃ ε > 0 such that, ∀x ∈ [0, ε],

Πm(b′′ − ε|sell) > Πm(b′′ + x|sell) and Πm(b′′ − ε|sell) > Πm(b′′ + x|sell), contradicting b′′ ∈(
Σm ∪ Σm

)
.

Step 10: pn ∈ (0, 1)⇒ ln < u. Suppose by way of contradiction that pn ∈ (0, 1) and ln = u.

Then, by Step 2, u ∈ An. Assume P(MMm wins|tie at u) < 1 (the other case is similar).

Then there exists ε > 0 such that

Πm(u+ ε|sell) > Πm(u− x|sell), ∀x ∈ [0, ε],

contradicting u ∈ Σm.
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Step 11: A1 ∪ A1 ∪ A2 ∪ A2 ⊆ {0}. Suppose by way of contradiction that there exists b ∈(
Am ∪ Am

)
, with b > 0. Then, by virtue of Step 4, ∃ ε > 0 such that, ∀x ∈ (0, ε), Πn(b +

x|sell) > Πn(b− x|sell) and Πn(b+ x|sell) > Πn(b− x|sell). Thus (b− ε, b) ∩
(

Σn ∪ Σn

)
= ∅,

contradicting Step 9.

Step 12: maxb Π1(b|sell) = maxb Π2(b|sell). The combination of Steps 2, 3 and 11 shows that

maxb Π1(b|sell) = Π1(u|sell) = (1− u) = Π2(u|sell) = maxb Π2(b|sell).

Step 13: 0 < pm < pn < 1⇒ 0 < ln < lm. Let 0 < pm < pn < 1 and suppose by way of con-

tradiction that ln ≥ lm. Note first that ln > 0, for otherwise {0} ∈ An ∩ Am, which Step

5 ruled out. Hence, by Step 11, neither MM has an atom at ln. Steps 2 and 9 therefore

yield maxb Πn(b|sell) = Πn(ln|sell) and maxb Πm(b|sell) = Πm(ln|sell). On the other hand,

Πn(ln|sell) ≥ (1− pm)(1− ln) and Πm(ln|sell) = (1− pn)(1− ln). As pn > pm, combining the

previous remarks yields

max
b

Πn(b|sell) > max
b

Πm(b|sell),

contradicting Step 12. Therefore, ln < lm. We next show that ln > 0. Suppose by way of

contradiction that ln = 0. Then 0 ∈ An, and, applying Step 5, 0 /∈ Am. We therefore obtain

Πn(0|sell) = max
b

Πn(b|sell) = 0 < max
b

Πm(b|sell). (C1)

Yet, as lm > 0, Steps 9, 11 and 12 give

Πn(lm|sell) = −γlm + (1− γ)Πn(lm|sell)

= −γlm + (1− γ)Πm(lm|sell)

= Πm(lm|sell),

contradicting (C1).

Step 14: pn > pm ⇒ 0 = Πm < Πn < Πn = Πm. Assume 0 < pm < pn < 1 (other cases are

similar). By Step 12, Πn = Πm. Moreover, Steps 1,2, 9, 11 and 13 give

Πn(ln|sell) = −γ
(
pm + (1− pm)σm(ln)

)
ln + (1− γ)Πn(ln|sell) < Πn(ln|sell).

Hence Πn < Πn (by symmetry of the bid and ask sides of the market). We next show that
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Πn > Πm. Reasoning like we did above, and using Step 12 together with ln < lm,

Πn(ln|sell) = −γ
(
pm + (1− pm)σm(ln)

)
ln + (1− γ)Πn(ln|sell)

> −γlm + (1− γ)Πn(ln|sell)

= −γlm + (1− γ)Πm(lm|sell)

= Πm(lm|sell).

Hence, Πn > Πm. Lastly, we show that Πm = 0. Suppose by way of contradiction that

Πm > 0. Then Steps 2 and 7 imply 0 ∈ An. It ensues, using Step 5, that 0 /∈
(
Am ∪ Am

)
. We

thus obtain Πn = 0 < Πm, contradicting Πn > Πm.

�

Proposition C1. For all p1, p2 and q, a trading equilibrium exists. Moreover, except for

p1 = p2 = q = 0 and p1 = p2 = 1, any two trading equilibria induce the same strategies and

differ at most by the tie-breaking rules they induce.33 For all p1, p2 and q, Πn, Πn, ΠS and

ΠS are independent of the trading equilibrium considered.

Proof: The cases p1 = p2 = 0 and p1 = p2 = 1 are trivial. We prove below the existence of

a trading equilibrium and the uniqueness of the strategies for 0 < pm ≤ pn < 1 and q > 0

(other cases are similar).

We start by showing that in any trading equilibrium the speculator sells (resp. buys)

with probability 1 when she is informed and V = 0 (resp. V = 1), and abstains when she is

uninformed. First note that, by Lemma C1, b̂ < 1 with probability 1. So selling the asset is

a strictly dominated strategy of the informed speculator when V = 1. Similarly, buying the

asset is a strictly dominated strategy of the informed speculator when V = 0. Next, Suppose

by way of contradiction that the speculator abstains with positive probability when she is

informed and V = 0 (the other case is similar, by symmetry). Then P(b̂ = 0|V = 0) = 1,

otherwise the speculator would have a profitable deviation. But then σ1(0) = σ2(0) = 1,

contradicting Step 5 in the proof of Lemma C1. We conclude that the speculator sells (resp.

buys) with probability 1 when she is informed and V = 0 (resp. V = 1). We now prove

that the speculator abstains when she is uninformed. Applying Lemma C1 gives u < 1 and

max{l1, l2} < E[V |sell]. As we showed above that the speculator buys (resp. sells) with

probability 1 when she is informed and V = 1 (resp. V = 0), we obtain E[V |sell] < 1
2
. The

33If p1 = p2 = q = 0 then the uninformed speculator is indifferent between trading and abstaining. If
p1 = p2 = 1 then any type of the speculator is indifferent between trading and abstaining.
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uninformed speculator’s expected profit from selling the asset is therefore bounded above by

P(sell order executed by an uninformed MM)

(
max{l1, l2} −

1

2

)
+ P(sell order executed by an informed MM)(u− 1) < 0.

By symmetry, the uninformed speculator’s expected profit from buying the asset is negative

as well.

We next derive equilibrium strategies of the MMs. Since we saw above that in any trading

equilibrium the speculator trades if and only if she is informed, we obtain γ = P(V = 0|sell) =

(πq
2

+ 1−π
4

)/(πq
2

+ 1−π
2

) in any trading equilibrium. Now, by virtue of Lemma C1, if the pricing

strategies σm, σn, σm, σn, σm and σn are in equilibrium then σm(0) = σn(0) = 1 and there

exist 0 < ln ≤ lm < u < 1 such that:

[
(1− pm) + pmσm(x)

]
(1− x) = 1− u, ∀x ∈ [lm, u]; (C2)

[
(1− pn) + pnσn(x)

]
(1− x) = 1− u, ∀x ∈ [lm, u]; (C3)

σm(lm) = 0; (C4)

−γlm + (1− γ)(1− u) = 0; (C5)

−γx+ (1− γ)
[
(1− pn) + pnσn(x)

]
(1− x) = 0, ∀x ∈ [ln, lm]; (C6)

(1− pm)σm(x)(1− x) = 1− u, ∀x ∈ [ln, lm]; (C7)

σn(ln) = 0; (C8)

−γ
[
pm + (1− pm)σm(x)

]
x+ (1− γ)(1− pm)σm(x)(1− x)

= −γ
[
pm + (1− pm)σm(ln)

]
ln + (1− γ)(1− pm)σm(ln)(1− ln), ∀x ∈ [0, ln]; (C9)

−γ
[
pn + (1− pn)σn(x)

]
x+ (1− γ)(1− pn)σn(x)(1− x) = 0, ∀x ∈ [0, ln]. (C10)

Equations (C2) and (C3) are the equiprofit conditions of, respectively, MMnH and MMmH in

the bid range [lm, u]; (C4) is obtained by definition of lm; equation (C5) captures Πm(lm|sell) =

0; equations (C6) and (C7) are the equiprofit conditions of, respectively, MMmU and MMnH

in the bid range [ln, lm]; (C8) is obtained by definition of ln; lastly, equations (C9) and (C10)

are the equiprofit conditions of, respectively, MMnU and MMmU in the bid range [0, ln]. That
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the system of equations (C2)-(C10) uniquely determines pricing strategies σm, σn, σm and σn

is straightforward to check.34

By construction the strategies above are in equilibrium if no MM can profitably bid outside

the support of their respective strategies. Observe to begin with that no MM can profitably

bid outside [0, u]. So we only need to check the remaining cases. To see that MMmU has no

profitable deviation to b ∈ (lm, u] note that

Πm(b|sell) = −γb+ (1− γ)
[
(1− pn) + pnσn(b)

]
(1− b), ∀b ∈ [lm, u].

Hence, by (C3),

Πm(b|sell) = −γb+ (1− γ)(1− u), ∀b ∈ [lm, u].

The last highlighted equation gives Πm(b|sell) < Πm(lm|sell), for all b ∈ (lm, u]. Similarly, to

see that MMmH has no profitable deviation to b ∈ [ln, lm) note that, by (C6),

Πm(b|sell) =
[
(1− pn) + pnσn(b)

]
(1− b) =

γb

1− γ
, ∀b ∈ [ln, lm].

Hence Πm(b|sell) < Πm(lm|sell) for all b ∈ [ln, lm). MMmH has no profitable deviation to

b ∈ [0, ln] either, since, by (C10),

Πm(b|sell) = (1− pn)σn(b)(1− b) =
γ
[
pn + (1− pn)σn(b)

]
b

1− γ
, ∀b ∈ [0, ln]. (C11)

Therefore, Πm(b|sell) ≤ Πm(ln|sell) for all b ∈ [0, ln], which, combined with the previous

remark, gives Πm(b|sell) < Πm(lm|sell) for all b ∈ [0, ln]. This finishes to show that neither

MMmU nor MMmH can profitably bid outside the support of their respective strategies.

Similar arguments establish that neither MMnU nor MMnH can profitably bid outside the

support of their respective strategies.

Lastly, Step 5 in the proof of Lemma C1 shows that for a tie to occur with positive

probability requires both MMs to be informed, and either V = 0 and a sell order or V = 1

and a buy order. So MMs’ profits are zero conditional on a tie, irrespective of the tie-breaking

rule. It follows that uniqueness of the strategies implies uniqueness of Πn, Πn, ΠS and ΠS.

34Combining (C2) and (C4) pins down lm in terms of u; (C5) then gives u and, therefore, lm as well.
Applying (C2) and (C3) now gives σm and σn over the interval [lm, u]. Next, Combining (C6) and (C8) pins
down ln, while (C6) and (C7) then give σn and σm over the interval [ln, lm]. Finally (C9) and (C10) give σm
and σn over the interval [ln, lm].
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�

The following technical lemma is used in the proof of Theorem 2.

Lemma C2. Let p∗(c, π) be given by (A16) and

H(c; π) := ΠS

(
p∗(c, π), 0

)
− c.

Then H(c; π) = 0 has exactly one solution in the interval c ∈
(
0, 1−π

4

)
.

Proof: Consider any equilibrium of the trading game with q = 0 and a given, arbitrary, p.

Define β := E[bn|MMn is uninformed] and β̂ := E[bn|both MMs uninformed, bn ≥ bm]. By

symmetry of the bid and ask sides of the market, we can write

ΠS(p, 0) = 2p(1− p)β + (1− p)2β̂ (C12)

and

Πn(p, 0) =

(
1− π

2

)[
1

2

(
p(0− β) + (1− p)1

2
(0− β̂)

)
+

1

2
(1− p)1

2
(1− β̂)

]
.

Rearranging the last highlighted equation gives

Πn(p, 0) =
1

4
(1− p)− 1

2

[
pβ + (1− p)β̂

]
=

1

4
(1− p)− 1

2

ΠS(p, 0)

1− p
+

1

2
pβ.

Hence, as Πn(p, 0) = 0,

ΠS(p, 0) =
1

2
(1− p)2 + p(1− p)β. (C13)

Next, using (A9) gives

β =

∫
bσ′(b)db =

p
(

1
1−2b + ln(1

2
− b)

)
4(1− p)

. (C14)

Finally, combining (A16), (C13) and (C14) yields, for all c ∈
(
0, 1−π

4

)
,

H(c; π) =
1

(1− π − 2c)2

[
(1− π − 4c)2

4
ln

(
1− 4c

1− π

)
+ c(1− π − 2c)(2c+ π)

]
.

Let G(c; π) denote the expression inside the square bracket. One verifies that:
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(i) G(0;π) = 0;

(ii) G(c; π)→ (1−π)2(1+π)
16

as c→ 1−π
4

;

(iii) G′(0;π) < 0 < G′′(0;π);

(iv) G′′′(c; π) < 0 for all c ∈
(
0, 1−π

4

)
.

Therefore, G(c; π) = 0 has exactly one solution in the interval c ∈
(
0, 1−π

4

)
.35 �

35On the interval (0, 1−π4 ), the function G is first convex, then concave. The function starts below the
horizontal axis, and ends above it. Suppose it crossed the horizontal axis twice. Then at the second crossing,
the function has to be decreasing and concave. But this contradicts G ending above the horizontal axis.
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Appendix D: Trading Game with Observable Quotes (for

online publication)

In this appendix we analyze the trading game induced by the observable quotes model, with

z > 0 denoting the probability with which the speculator gets to observe the quotes before

placing her market order. Specifically, throughout this appendix p and q play the role of

parameters: each MM acquires information with probability p, while the speculator acquires

information with probability q. A strategy of MMn comprises cumulative distribution func-

tions σn, σn and σn specifying respectively the distribution of the bid price bn of MMnU,

MMnL and MMnH. As the bid and ask sides of the market are symmetric we assume as usual

that, conditional on MMnU, 1 − an is distributed like bn. Similarly, we assume that the law

of 1 − an conditional on MMnL (resp. MMnH) is the same as the law of bn conditional on

MMnH (resp. MMnL). A strategy of the speculator specifies her market order as a function

of the information she possesses at that point. A WELM trading equilibrium is a perfect

Bayesian equilibrium such that

(i) σ1 = σ2 = σ, σ1 = σ2 = σ and σ1 = σ2 = σ;

(ii) σ(0) = 1;

(iii) either p ∈ {0, 1} or σ and σ are atomless, with supp (σ) = [0, l] and supp (σ) = [l, u].

We focus throughout this appendix on p ∈ (0, 1) and q < 1. The case p = 0 is almost identical.

If q = 1, the observability of the quotes is inconsequential. The case p = 1 is straightforward:

both MMs set prices equal to the realized asset value. Lastly, to shorten the exposition, we

introduce the indicator variables IS, In and Z respectively equal to 1 if and only if (a) the

speculator acquires information, (b) MMn acquires information, (c) quotes are observable.

Proposition D1. Assume p ∈ (0, 1) and q < 1. In any WELM trading equilibrium:

Πn(p, q) =

(
(1− π)(1− p)

2

)
1− π(1− 2q) + 2πp(1− q)z

2− p− 2π(1− q) + πp(1 + 2(1− q)z)
; (D1)

σ(b) =
(1 + π(2z − 1) + 2πq(1− z))pb

(1− p)(1− π − 2b(1− π(1− q)))
, ∀b ∈ [0, l]; (D2)

σ(b) =
2Πn(p, q)− (1− p)(1− π)(1− b)

(1− b)(1− π)p
, ∀b ∈ [l, u]; (D3)
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l =
(1− π)(1− p)

2− p− 2π(1− q) + πp(1 + 2(1− q)z)
; (D4)

u =
1− π − 2Πn(p, q)

1− π
. (D5)

In particular, Πn(p, q), l and u given by, respectively, (D1), (D4) and (D5) satisfy Πn(p, q) > 0

and 0 < l < u < 1.

Proof: We start with a few preliminary remarks. Observe that WELM equilibria are separat-

ing equilibria. Hence, in any WELM equilibrium, IS ∨
(

(I1∨ I2)∧Z
)

= 1 implies that, on the

equilibrium path, the speculator learns the realization of V . In this case, by sequential ratio-

nality, the speculator buys if V = 1 and sells if V = 0.36 On the equilibrium path sell orders are

thus more likely conditional on V = 0 than they are conditional on V = 1, implying l < 1
2
.37

Hence, on the equilibrium path, the speculator abstains whenever IS ∨
(

(I1 ∨ I2) ∧ Z
)

= 0.38

Next, by definition of a WELM trading equilibrium, MMnU’s expected profit on the bid

side of the market has to be zero (the same being true of course on the ask side of the market).39

As MMnU randomizes over [0, l], we obtain

−1

2

[
π
(

(1− p)qσ(b) + p(z + (1− z)q)
)

+

(
1− π

2

)(
p+ (1− p)σ(b)

)]
b

+
1

2

(
1− π

2

)
(1− p)σ(b)(1− b) = 0, ∀b ∈ [0, l].

(D6)

The first term in equation (D6) can be decomposed as follows. With probability 1
2

the asset

value is V = 0, in which case a winning bid b induces a loss equal to b. With probability π the

trader is a speculator. By the remarks made earlier in this proof the speculator sells if and

only if one of the following 3 cases occurs: (i) Im = 0 and IS = 1, (ii) Im = 1 and Z = 1, (iii)

Im = 1, Z = 0 and IS = 1. In case (i) MMnU has the winning bid with probability σ(b); in

cases (ii) and (iii) MMnU has the winning bid with probability 1. With probability 1−π
2

the

36We suppose here, without loss of generality, that the speculators always trades when she is indifferent
between trading and abstaining.

37MMnU is subject to greater adverse selection than in the baseline case. As l < 1
2 in the baseline model,

l < 1
2 with observable quotes as well.

38Observe that on the equilibrium path, if IS = I1 = I2 = 0 and Z = 1 then the speculator’s expected
profit from trading the asset (either buying or selling) is at most l − 1

2 < 0. If instead IS = Z = 0 then
her expected profit from trading the asset is bounded above by P(trade with an uninformed MM|IS ∨ Z =
0)(l − 1

2 ) + P(trade with an informed MM|IS ∨ Z = 0)(u− 1) < 0.
39This must be since MMnU is indifferent between bids on the interval [0, l], and the expected profit of

bn = 0 is zero due to the remark that, in any WELM trading equilibrium, P(bn = 0 wins|V = 1) = 0.
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trader is hit by the liquidity shock and sells the asset: either Im = 1, in which case MMnU

has the winning bid with probability 1, or Im = 0, in which case MMnU has the winning

bid with probability σ(b). The second term in equation (D6) is decomposed as follows. With

probability 1
2

the asset value is V = 1, in which case a winning bid b induces a gain equal to

1− b. The probability of a sell order is the probability of a liquidity trader selling the asset,

that is, 1−π
2

. Either Im = 1, in which case MMnU has the losing bid, or Im = 0, in which case

MMnU has the winning bid with probability σ(b).

As MMnH randomizes over [l, u] we obtain in a similar way(
1− π

2

)
[pσ(b) + (1− p)] (1− b) =

(
1− π

2

)
(1− p)(1− l), ∀b ∈ [l, u]. (D7)

We can now conclude the proof of the proposition. Rearranging (D6) yields (D2), from

which solving σ(l) = 1 gives us (D4). Substituting (D4) into the right-hand side of (D7) and

using the symmetry of the problem to write the resulting expression as Πn(p, q) gives us (D1).

Rearranging the terms in (D7) then yields (D3), from which solving σ(u) = 1 yields (D5). To

see that l > 0, substitute b = l into (D6). Substituting b = u into (D7) and using the fact

that l < 1
2

yields u < 1 and Πn(p, q) > 0.

�

Lemma D1. Assume p ∈ (0, 1) and q < 1. Let σ(·), σ(·), l and u be defined by (D2), (D3),

(D4) and (D5), respectively. Then

arg max
b∈[0,1]

(
1− π

2

)[
pσ(b) + (1− p)σ(b)

]
(1− b) = [l, u], (D8)

and

arg max
b∈[0,1]

−1

2

[
π
(

(1− p)qσ(b) + p(z + (1− z)q)
)

+

(
1− π

2

)(
p+ (1− p)σ(b)

)]
b

+
1

2

(
1− π

2

)[
pσ(b) + (1− p)σ(b)

]
(1− b) = [0, l]. (D9)

The maximum values of (D8) and (D9) are Πn(p, q), given by (D1), and 0, respectively.

Proof: By virtue of (D7),(
1− π

2

)[
pσ(b) + (1− p)σ(b)

]
(1− b) =

(
1− π

2

)
(1− u), ∀b ∈ [l, u]. (D10)
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As σ(u) = σ(u) = 1, notice that the left-hand side of (D10) is strictly decreasing in b for

b ≥ u. Next, rewriting (D6) as

−1

2

[
π
(

(1− p)qσ(b) + p(z + (1− z)q)
)

+

(
1− π

2

)(
p+ (1− p)σ(b)

)]
b

+
1

2

(
1− π

2

)[
pσ(b) + (1− p)σ(b)

]
(1− b) = 0, ∀b ∈ [0, l],

gives(
1− π

2

)[
pσ(b)+(1−p)σ(b)

]
(1−b) =

[
π
(

(1−p)qσ(b)+p(z+(1−z)q)
)

+
1− π

2

(
p+(1−p)σ(b)

)]
b,

for all b ∈ [0, l]. The right-hand side of the last highlighted equation is strictly increasing in b.

So combining the previous steps yields (D8). Finally, (D8) and the observation that the first

term in the maximand of (D9) is a strictly decreasing function of b together yield (D9).

�

Proposition D2. Assume p ∈ (0, 1) and q < 1. Let σ(·), σ(·), l and u be defined by (D2),

(D3), (D4) and (D5), respectively. Define

h(b) :=
(1− u− b)(1− π)− 2bπq

2bπ(1− q)zp
, (D11)

and suppose that

1− σ(b) ≥ h(b), ∀b ∈ [l, u]. (C)

Then a WELM trading equilibrium exists.

Proof: The following notation will be used throughout the proof. Let the cdfs σ and σ be

defined by (D2) and (D3), respectively. Define also the cdf σ such that σ(0) = 1. Let Γ denote

the set of bid-ask price pairs (bn, an) consistent with the strategies σ, σ, and σ, that is,

Γ =
(
{0} × [1− u, 1− l]

)
∪
(

[0, l]× [1− l, 1]
)
∪
(

[l, u]× {1}
)
.

Similarly, let Γ+ denote the set of tuples (b1, a1, b2, a2) consistent with the strategies σ, σ, and
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σ, that is,

Γ+ =
{

(b1, a1, b2, a2) : (b1, a1) ∈ Γ, (b2, a2) ∈ Γ,

(bn, an) ∈ [l, u]× {1} ⇒ (bm, am) /∈ {0} × [1− u, 1− l],

(bn, an) ∈ {0} × [1− u, 1− l]⇒ (bm, am) /∈ [l, u]× {1}
}
.

Let β : Γ+ →
{

0, 1
2
, 1
}

represent the mapping from consistent tuples (b1, a1, b2, a2) to posterior

beliefs that V = 1, computed through Bayes’ rule. Let µn denote the speculator’s belief that

V = 1 based only on the quotes of MMn, with µn = ∅ in case (bn, an) /∈ Γ.40 Let µ denote the

speculator’s belief that V = 1 at the time she chooses her market order.

Assume the condition (C) holds with equality (the other case is similar). We aim to show

that the following strategies, beliefs and tie-breaking rule comprise a trading equilibrium:

(I) σ1 = σ2 = σ;

(II) σ1 = σ2 = σ;

(III) σ1 = σ2 = σ;

(IV) if IS = 1 then µ = v;

(V) if IS ∨ Z = 0 then µ = 1
2
;

(VI) if IS = 0 and Z = 1 then:

µ =



β(b1, a1, b2, a2) if (b1, a1, b2, a2) ∈ Γ+;

I{1−am>bn} if µn = 1 and µm = 0;

µm if µm ∈ {0, 1} and µn = ∅;
an + bn

2
if µm =

1

2
, µn = ∅, and bn < an;

1 if µm =
1

2
, an ≤ bn, and an 6= â;

0 if µm =
1

2
, an ≤ bn, an = â but bn 6= b̂;

an + bn
2

if µm =
1

2
, an ≤ bn, an = â and bn = b̂.

(D12a)

(D12b)

(D12c)

(D12d)

(D12e)

(D12f)

(D12g)

40We use the terminology “speculator’s belief that V = 1” for the probability which the speculator attaches
to the event V = 1.
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(VII) ties are broken uniformly at random, except if µm = 1
2
, an ≤ bn, an = â and bn = b̂, in

which case any tie is broken in favor of MMn;

(VIII) the speculator’s market order satisfies sequential rationality with the additional require-

ment that if IS = 0, Z = 1, µm = 1
2
, an ≤ bn, an = â and bn = b̂ (in which case, by

(D12g), µ = an+bn
2

) then the speculator buys with probability 1
2

and sells with probability
1
2
.

The proposed equilibrium has the following features. If the speculator is informed, her

beliefs concerning V are determined by the realized value v, that is, even if the quotes suggest

otherwise (see (IV)). If the speculator is uninformed and quotes are unobservable then µ is

equal to the prior belief that V = 1, that is, µ = 1
2

(see (V)). The case in which the speculator

does not acquire information but gets to observe the quotes is subdivided into 7 cases. If the

quotes are consistent with the proposed equilibrium strategies, then µ is derived using Bayes’

rule (see (D12a)). If MMn’s quotes signals V = 1 while MMm’s quotes signals V = 0, that

is, (bn, an) ∈ [l, u] × {1} and (bm, am) ∈ {0} × [1 − u, 1 − l], then µ = 1 if 1 − am > bn and

µ = 0 otherwise (see (D12b)). If MMn’s quotes are inconsistent with the proposed equilibrium

strategies but MMm’s quotes signal that MMm is informed then the speculator ignores MMn

and bases her beliefs exclusively on the quotes of MMm (see (D12c)). The case in which

MMn’s quotes are inconsistent with the proposed equilibrium strategies and MMm’s quotes

signal that MMm is uninformed are further subdivided into 4 cases. If MMn’s quotes satisfy

bn < an then µ = an+bn
2

(see (D12d)), in which case sequential rationality precludes trading

between the speculator and MMn. If an ≤ bn and MMn does not offer the best ask price

then µ = 1, (see (D12e)), in which case sequential rationality precludes trading between the

speculator and MMn.41 If an ≤ bn, MMn offers the best ask price but not the best bid price

then µ = 0, (see (D12f)), in which case sequential rationality precludes trading between the

speculator and MMn. Lastly, if an ≤ bn and MMn offers the best bid and ask prices then

µ = an+bn
2

(see (D12g)), in which case the tie-breaking rule ensures that, conditional on placing

a market order, the speculator trades with MMn (see (VII)).

Note that the proposed equilibrium satisfies the requirements of a WELM equilibrium;

thus, repeating arguments used to prove Proposition D1, on the equilibrium path, the specu-

41Observe that an 6= â implies â < 1. So, for µ = 1, the speculator’s expected profit from buying the asset
is strictly positive. On the other hand, the speculator’s expected profit from selling is at most 0. Sequential
rationality therefore requires the speculator to buy.
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lator learns the realization of V if IS ∨
(

(I1 ∨ I2) ∧ Z
)

= 1. Moreover, since l < 1
2
, sequential

rationality requires the speculator to abstain if IS ∨
(

(I1 ∨ I2) ∧ Z
)

= 0.42 It ensues that, on

the equilibrium path, MMnU’s expected profit on the bid side of the market can be written

as the left-hand side of (D6). Similarly, on the equilibrium path, MMnH’s expected profit

on the bid side of the market can be written as the left-hand side of (D7). These remarks,

Lemma D1 and the symmetry of the bid and ask sides of the market together establish that,

on the equilibrium path: MMnU’s expected profit is equal to 0, while MMnH’s expected profit

equals Πn(p, q) given by (D1). We establish in the rest of the proof that neither MMnU nor

MMnH have a profitable deviation (which, by symmetry, implies that MMnL does not have

a profitable deviation either).

Step 1: there exists no profitable deviation of MMnU to (an, bn) /∈ Γ, with bn < an.

Suppose MMnU deviates to (ãn, b̃n) /∈ Γ, with b̃n < ãn. Observe first that in this case,

applying (IV), (V), (D12c) and (D12d), the speculator trades with MMnU if and only if

IS ∨ (Im ∧ Z) = 1 (notice that if IS = Im = 0 while Z = 1 then (D12d) yields bn < µ < an).

So the “demand” facing MMnU is the same as it is on the equilibrium path. In consequence,

MMnU’s expected profit on the bid side of the market can be written like the maximand of

(D9), with b = b̃n. Yet, by virtue of Lemma D1, the maximand of (D9) is maximized when

MMnU sticks to the proposed equilibrium strategy. The symmetry between the bid and ask

sides of the market finishes to establish that (ãn, b̃n) is not a profitable deviation of MMnU.

42See the third footnote in the proof of Proposition D1.
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Step 2: there exists no profitable deviation of MMnU to (an, bn) /∈ Γ, with an ≤ bn.

Suppose MMnU deviates to (ãn, b̃n) /∈ Γ, with ãn ≤ b̃n. Now in this case, applying (IV),

(V), (D12c), (D12e), (D12f), (D12g), (VII) and (VIII) the speculator trades with MMn if and

only if either (a) IS ∨ (Im ∧ Z) = 1 or (b) IS ∨ Im = 0, Z = 1, ãn = â and b̃n = b̂. Moreover,

in the latter event, (VIII) assures that the speculator buys with probability 1
2

and sells with

probability 1
2
. These remarks enable us to write the expected profit of MMnU as{
− 1

2

[
π
(

(1− p)qσ(b̃n) + p(z+(1− z)q)
)

+
1− π

2

(
p+ (1− p)σ(b̃n)

)]
b̃n

+
1

2

(
1− π

2

)
(1− p)σ(b̃n)(1− b̃n)

}

+

{
− 1

2

[
π
(

(1− p)qσ(1− ãn) + p(z+(1− z)q)
)

+
1− π

2

(
p+ (1− p)σ(1− ãn)

)]
(1− ãn)

+
1

2

(
1− π

2

)
(1− p)σ(1− ãn)ãn

}

+

{
π(1− q)(1− p)zσ(b̃n)σ(1− ãn)

[
1

2

(
− b̃n

2
+
ãn
2

)
+

1

2

(
1− b̃n

2
+
ãn − 1

2

)]}
,

where the first two curly brackets capture case (a) in the previous paragraph, and the last

curly bracket captures case (b). Now, using Lemma D1, the term inside the first curly bracket

is at most 0. By symmetry, the same remark applies to the second curly bracket. Finally, the

third curly bracket is equal to π(1− q)(1− p)zσ(b̃n)σ(1− ãn)
(
ãn−b̃n

2

)
, which, since ãn ≤ b̃n,

is at most 0. So (ãn, b̃n) is not a profitable deviation of MMnU.

Step 3: there exists no profitable deviation of MMnU to (an, bn) ∈ Γ.

Suppose MMnU deviates to (ãn, b̃n) ∈ Γ, say ãn = 1 and b̃n ∈ [l, u] (the other case is

analogous, by symmetry). Consider first the ask side of the market: either V = 1 or ãn 6= â

with probability 1. So the expected profit of MMnU on the ask side of the market is at most

0. Next, consider the bid side of the market. By virtue of (IV), (V), (D12a) and (D12b) the

speculator sells and trades with MMnU if and only if V = 0 and:

• either IS = 1;

• or Im ∧ Z = 1 and b̃n ≤ 1− am.

57

 Electronic copy available at: https://ssrn.com/abstract=2875763 



Thus MMnU’s expected profit on the bid side of the market may be written as

−1

2

[
π
(
q + (1− q)zpP(b̃n ≤ 1− am|MMmL)

)
+

1− π
2

]
b̃n

+
1

2

(
1− π

2

)
[(1− p) + pσ(b̃n)](1− b̃n).

Conditional on MMmL, 1− am is distributed according to the cdf σ. Hence, using condition

(C), P(b̃n ≤ 1 − am|MMmL) = 1 − σ(b̃n) ≥ h(b̃n). Substituting this inequality into the last

highlighted expression shows that MMnU’s expected profit on the bid side of the market is

bounded above by

−1

2

[
π
(
q + (1− q)zph(b̃n)

)
+

1− π
2

]
b̃n +

1

2

(
1− π

2

)
[(1− p) + pσ(b̃n)](1− b̃n). (D13)

By (D8), we can rewrite (D13) as

−1

2

[
π
(
q + (1− q)zph(b̃n)

)
+

1− π
2

]
b̃n +

(1− π)(1− u)

4
,

which, by definition of h(b̃n), is equal to 0. So (ãn, b̃n) is not a profitable deviation of MMnU.

Step 4: there exists no profitable deviation of MMnH to (an, bn) /∈ Γ, with bn < an.

Suppose MMnH deviates to (ãn, b̃n) /∈ Γ, with b̃n < ãn. Note to start with that MMnH’s

expected profit on the ask side of the market has to be non-positive. Consider next the bid

side of the market. Observe that by (IV), (V), (D12c) and (D12d), the speculator never sells

to MMnH. Hence, the “demand” facing MMnU is the same as it is on the equilibrium path.

In consequence, MMnH’s expected profit on the bid side of the market can be written like

the maximand of (D8), with b = b̃n. Yet, by virtue of Lemma D1, the maximand of (D8)

is maximized when MMnH sticks to the proposed equilibrium strategy. So (ãn, b̃n) is not a

profitable deviation of MMnH.

Step 5: there exists no profitable deviation of MMnH to (an, bn) /∈ Γ, with an ≤ bn.

Suppose MMnH deviates to (ãn, b̃n) /∈ Γ, with ãn ≤ b̃n. We start by showing that MMnH

cannot make positive expected profit against the speculator. First, by virtue of (IV) and

(D12c), if IS ∨ (Im ∧ Z) = 1 then the speculator never sells. Furthermore, it is impossible to

make profit against the speculator if she buys, since V = 1 and ãn ≤ 1. Hence, conditional on
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IS ∨ (Im ∧ Z) = 1, MMnH makes at most zero profit against the speculator. Next, by virtue

of (V), (D12e), (D12f) and (D12g), if IS ∨ Im = 0 then the only case in which MMnH trades

with the speculator is if Z = 1, ãn = â and b̃n = â. Furthermore, in that case, by (VIII) the

speculator buys and sells the asset with probabilities 1
2

each. Applying (VII), the expected

profit made by MMnH against the speculator is then

1

2
(1− b̃n) +

1

2
(ãn − 1) =

ãn − b̃n
2

.

Yet ãn ≤ b̃n. Thus MMnH makes at most zero expected profit against the speculator. The

expected profit of MMnH is then bounded above by the expected profit made against the

liquidity trader, which we can write as 1−π
2

[
pσ(b̃n) + (1 − p)σ(b̃n)

]
(1 − b̃n) + 1−π

2
P(ãn =

â)(ãn − 1). Since the second term is non-positive, the former expression is at most equal to
1−π
2

[
pσ(b̃n)+(1−p)σ(b̃n)

]
(1− b̃n), which by (D8) is at most equal to MMnH’s expected profit

in the proposed equilibrium. So (ãn, b̃n) is not a profitable deviation of MMnH.

Step 6: there exists no profitable deviation of MMnH to (an, bn) ∈ Γ.

There are two possible cases. MMnH could deviate to masquerade as MMnL or MMnH

could deviate to masquerade as MMnU. Suppose MMnH deviates to masquerade as MMnL.

Then bn = 0 < b̂ with probability 1. So the expected profit of MMnH on the bid side of

the market is 0. On the other hand, since V = 1, the profit of MMnH on the ask side of

the market is bounded above by 0. Since sticking to his proposed equilibrium strategy yields

MMnH an expected profit of Π(p, q) > 0, deviating to masquerade as MMnL is therefore not

a profitable deviation. Next, suppose MMnH deviates to masquerade as MMnU. Reasoning

as above, the expected profit of MMnH on the ask side of the market is bounded above by 0.

Consider now the bid side of the market, with bn = b̃n ∈ [0, l]. Since V = 1, we deduce from

(IV), (V) and (D12a) that the speculator never sells. MMnH’s expected profit on the bid side

of the market can thus be written as
(
1−π
2

) [
pσ(b̃n) + (1 − p)σ(b̃n)

]
(1 − b̃n), which, applying

Lemma D1, is bounded above by MMnH’s expected profit on the bid side of the market in

the proposed equilibrium. So deviating to masquerade as MMnU is not a profitable deviation

either.

�
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Lemma D2. Assume p ∈ (0, 1) and q < 1. Let Πn(p, q), l, u and h(·) be defined by (D1),

(D4), (D5), and (D11) respectively. Then:

(i) for all ε > 0, p > 1− 2ε
1−π implies Πn(p, q) < ε;

(ii) for all δ > 0, p > 1− δ implies l < δ and h(b) < 0 for all b ∈ [δ, u];

(iv) 1− u > 1−p
2

.

Proof: By Lemma D1,

Πn(p, q) =

(
1− π

2

)
(1− u) =

(
1− π

2

)
(1− p)(1− l).

Hence, 1− p < 2ε
1−π implies Πn(p, q) < ε, giving part (i) of the lemma. Part (iii) follows from

the remark that l < 1
2
.

We now show part (ii) of the lemma. The denominator on the right-hand side of (D4) is

minimized at q = 0 and z = 0, with minimum value (2− p)(1− π) > 1− π. Hence,

l ≤ (1− π)(1− p)
1− π

= 1− p.

Pick a δ > 0. Then, p > 1 − δ implies l < δ. We next show that choosing p > 1 − δ also

implies h(b) < 0 for all b ∈ [δ, u]. First, rearranging (D11) gives

−1

2

[
π
(
q + (1− q)zph(b)

)
+

1− π
2

]
b+

(1− π)(1− u)

4
= 0,

which, by Lemma D1, we can rewrite as[
π
(
q + (1− q)zph(b)

)
+

1− π
2

]
b = Πn(p, q).

Solving for h(b) gives

h(b) =
2Πn(p, q)− b(1− π)− 2bπq

2bpzπ(1− q)
.

In particular,

h(b) ≤ 1

2bpzπ(1− q)
[
2Πn(p, q)− b (1− π)

]
, ∀b ∈ [l, u]. (D14)
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Now let ε := δ(1−π)
2

. By part (i) of the lemma, p > 1− 2ε
1−π implies Πn(p, q) < ε, so, p > 1− δ

implies Πn(p, q) < ε. Finally, using (D14), p > 1− δ implies

h(b) <
1

2bpzπ(1− q)
[2ε− δ (1− π)] = 0, ∀b ∈ [δ, u].

�

Proposition D3. There exists a function z(.) > 0, independent of q, such that a WELM

trading equilibrium exists whenever z ≤ z(p). Moreover, z(p) = 1 for p = 0 and all p ≥
√
2π√

2π+
√
1−π . If q = 1, a WELM trading equilibrium exists for all values of p and z.

Proof: We remarked at the beginning of this appendix that if q = 1 or p = 1 (or both)

the existence of a WELM trading equilibrium then follows from the existence of a trading

equilibrium in the baseline model. That z(p) = 1 for p = 0 is easy to show. We assume in the

rest of the proof that p ∈ (0, 1) and q < 1.

Step 1: there exists z(p) > 0, independent of q, such that z ≤ z(p) implies that a WELM

trading equilibrium exists.

Define, for all b ∈ [l, u], D(b) := 1 − σ(b) − h(b), where σ(·), l, u and h(·) are defined

respectively by (D3), (D4), (D5) and (D11). Thus,

D(b) =
(1− π)(1− b)− 2Πn(p, q)

(1− π)(1− b)p
− 2Πn(p, q)− b(1− π)− 2bπq

2bpzπ(1− q)
, ∀b ∈ [l, u], (D15)

with Πn(p, q) given by (D1). By Proposition D2, it suffices for our purpose to show the

existence of z(p) > 0, independent of q, such that z ≤ z(p) implies D(b) ≥ 0 for all b ∈ [l, u].

First, straightforward algebra establishes that h(l) = 1 and σ(l) = 0. Hence,

D(l) = 0. (D16)

Next, differentiating (D15) gives

D′(b) =
Πn(p, q)

p

(
1

b2π(1− q)z
− 2

(1− b)2(1− π)

)
, ∀b ∈ [l, u]. (D17)

The bracketed expression on the right-hand side of (D17) is decreasing in b and increasing in
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q, so

D′(b) ≥ Πn(p, q)

p

[
1

u2πz
− 2

(1− u)2(1− π)

]
, ∀b ∈ [l, u].

We showed in Lemma D2 that 1− u > 1−p
2

, so the last inequality implies

D′(b) ≥ Πn(p, q)

p

[
1

πz
− 8

(1− p)2(1− π)

]
, ∀b ∈ [l, u]. (D18)

The expression inside the square bracket is independent of q, and tends to +∞ as z tends to

0. Hence, there exists z(p) > 0, independent of q, such that z ≤ z(p) implies D′(b) ≥ 0 for all

b ∈ [l, u]. Since D(l) = 0, we obtain D(b) ≥ 0 for all b ∈ [l, u] whenever z ≤ z(p).

Step 2: z(p) = 1 for all p ≥
√
2√

2+
√
1−π

By virtue of (D17),

D′(b) ≥ Πn(p, q)

p

[
1

b2π
− 2

(1− b)2(1− π)

]
, ∀b ∈ [l, u]. (D19)

Define

δ :=

√
1− π√

2π +
√

1− π
.

Thus,
1

δ2π
=

2

(1− δ)2(1− π)
,

and, using (D19), D′(b) ≥ 0 for all b ≤ δ. By Lemma D2, p > 1−δ implies l < δ. So p > 1−δ
implies D′(b) ≥ 0 for all b ∈ [l, δ]. By (D16), p > 1 − δ therefore implies D(b) ≥ 0 for all

b ∈ [l, δ]. Yet, by Lemma D2, p > 1 − δ also implies h(b) < 0 for all b ∈ [δ, u]. So p > 1 − δ
implies D(b) ≥ 0 for all b ∈ [l, u].

�

Proposition D4. A WELM trading equilibrium exists for all values of p and q if z ≤
(1−π)2

8π(
√
2π+
√
1−π)2 . In particular, for (1 − π)2 ≥ 8π

(√
2π +

√
1− π

)2
, a WELM trading equi-

librium exists for all values of p, q and z.

Proof: Recall: if q = 1 or p ∈ {0, 1} (or both) the existence of a WELM trading equilibrium

then follows from the existence of a trading equilibrium in the baseline model. We therefore
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assume in the rest of the proof that p ∈ (0, 1) and q < 1.

Next, assume z ≤ (1−π)2
8π(
√
2π+
√
1−π)2 . By Proposition D3, a WELM trading equilibrium exists

whenever p ≥ p̃ :=
√
2π√

2π+
√
1−π . Next, let, as in the proof of Proposition D3, D(b) := 1−σ(b)−

h(b). By (D18), p < p̃ implies

D′(b) ≥ Πn(p, q)

p

[
1

πz
− 8

(1− p̃)2(1− π)

]
, ∀b ∈ [l, u].

Yet,
1

πz
− 8

(1− p̃)2(1− π)
≥ 0⇐⇒ z ≤ (1− π)2

8π(
√

2π +
√

1− π)2
.

Thus, p < p̃ implies D′(b) ≥ 0 for all b ∈ [l, u]. Since D(l) = 0, we obtain D(b) ≥ 0 for all

b ∈ [l, u] whenever p < p̃. By Proposition D2, a WELM trading equilibrium therefore exists

for all p < p̃.

�
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