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Abstract

We develop a tool akin to the revelation principle for mechanism design
with limited commitment. We identify a canonical class of mechanisms rich
enough to replicate the payoffs of any equilibrium in a mechanism-selection
game between an uninformed designer and a privately informed agent. A
cornerstone of our methodology is the idea that a mechanism should encode
not only the rules that determine the allocation, but also the information
the designer obtains from the interaction with the agent. Therefore, how
much the designer learns, which is the key tension in design with limited
commitment, becomes an explicit part of the design. We show how this
insight can be used to transform the designer’s problem into a constrained
optimization one: To the usual truthtelling and participation constraints,

one must add the designer’s sequential rationality constraint.
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1 INTRODUCTION

The standard assumption in dynamic mechanism design is that the designer can
commit to long-term contracts. This assumption is useful: It allows us to charac-
terize the best possible payoff for the designer in the presence of adverse selection
and/or moral hazard, and it is applicable in many settings. Often, however, this
assumption is done for technical convenience. Indeed, when the designer can com-
mit to long-term contracts, the mechanism-selection problem can be reduced to
a constrained optimization problem thanks to the revelation principle.! However,
as the literature starting with Laffont and Tirole (1987, 1988) shows, when the
designer can only commit to short-term contracts, the tractability afforded by the
revelation principle is lost. Indeed, mechanism design problems with limited com-
mitment are difficult to analyze without imposing auxiliary assumptions either
on the class of contracts the designer can choose from, as in Gerardi and Maestri
(2018) and Strulovici (2017), or on the length of the horizon, as in Skreta (2006,
2015).

This paper provides a “revelation principle” for dynamic mechanism-selection
games in which the designer can only commit to short-term contracts. We study
a game between an uninformed designer and an informed agent with persistent
private information. Although the designer can commit within each period to the
terms of the interaction-the current mechanism-he cannot commit to the terms the
agent faces later on, namely, the mechanisms that are chosen in the continuation
game. First, we show there is a class of mechanisms that is sufficient to replicate
all equilibrium payoffs of the mechanism-selection game. Second, we show how
this insight can be used to transform the designer’s problem into a constrained
optimization one: To the usual truthtelling and participation constraints, one

must add the designer’s sequential rationality constraint.

The starting point of our analysis is the class of mechanisms we allow the de-
signer to select from. Following Myerson (1982) and Bester and Strausz (2007),

we consider mechanisms defined by a communication device and an allocation rule

!The “revelation principle” denotes a class of results in mechanism design; see Gibbard
(1973), Myerson (1979), and Dasgupta et al. (1979).



as illustrated in Figure 1:
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Figure 1: Mechanisms: communication device, (M, 3, 5), and allocation rule, «

Having observed her private information (her type, v € V), the agent privately
reports an input message, m € M, into the mechanism; this then determines the
distribution, B(-|m), from which an output message, s € S, is drawn. In turn,
the output message determines the distribution, «(+|s), from which the allocation
is drawn. The output message and the allocation are publicly observable: They

constitute the contractible parts of the mechanism.

When the designer has commitment power, the revelation principle implies that,
without loss of generality, we can restrict attention to mechanisms satisfying the
following three properties: (i) M =V, (ii)) M = S, and (iii) § is “invertible.” By
£ being “invertible,” we mean the designer learns the input message by observing
the output message; in this case, the designer learns the agent’s type report upon
observing the output message. Moreover, the revelation principle implies we can
restrict attention to equilibria in which the agent reports her type truthfully, which
means the designer not only learns the agent’s type report upon observing the

output message, but also he learns the agent’s true type.

It is then clear why restricting attention to mechanisms that satisfy properties
(i)-(iii) and truthtelling equilibria is with loss of generality under limited commit-

ment: Upon observing the output message, the designer learns the agent’s type

ZMyerson (1982) allows the designer to choose, as a function of the input message m, any
joint distribution over S x A. It is a consequence of Theorem 3.1 that the mechanisms in Figure 1
are without loss of generality; see Appendix II for a proof. Since the formulation of a mechanism
in Figure 1 allows us to highlight the role of the communication device separately from that of
the allocation, we opt for this formulation for pedagogical purposes.



report and hence her type. Then the agent may have an incentive to misreport if
the designer cannot commit not to react to this information. This is precisely the
intuition behind the main result in Bester and Strausz (2001), which is the first
paper to provide a general analysis of optimal mechanism design with limited com-
mitment. The authors restrict attention to mechanisms in which the cardinality of
the set of input and output messages is the same and [ is “invertible.” They show
that to sustain payoffs in the Pareto frontier, mechanisms in which input messages
are type reports are without loss of generality. However, focusing on truthtelling
equilibria is with loss of generality. In a follow-up paper, Bester and Strausz (2007)
lift the restriction on the class of mechanisms (i.e., (ii) and (iii) above) and show
in a one-period model that focusing on mechanisms in which input messages are
type reports and truthtelling equilibria is without loss of generality. The authors,
however, do not characterize the output messages. It is also not clear whether
taking input messages to be type reports is without loss when the designer and

the agent interact repeatedly (see the discussion after Theorem 3.1).

The main contribution of this paper is to show that, under limited commitment,
taking the set of output messages to be the set of posterior beliefs of the designer
about the agent’s type, that is, S = A(V), is without loss of generality. Theorem
3.1 shows that in a general mechanism-selection game between an uninformed
designer and an informed agent introduced in Section 2, any equilibrium payoff
can be replicated by an equilibrium in which (a) the designer uses mechanisms in
which input messages are type reports and output messages are beliefs, (b) the
agent always participates in the mechanism, and (c) input and output messages
have a literal meaning: The agent reports her type truthfully, and if the mechanism
outputs a given posterior, this posterior coincides with the belief the designer holds
about the agent’s type given the agent’s strategy and the mechanism. Given that
any equilibrium payoff can be replicated by mechanisms in which input messages
are type reports and output messages are beliefs about the agent’s type, we call

this class of mechanisms canonical.

Theorem 3.1 implies that when the designer is subject to sequential rationality
constraints, the mechanism serves a dual role within a period. On the one hand, it

determines the allocation for that period. On the other hand, it determines the in-



formation about the agent that is carried forward in the interaction. An advantage
of the language of posterior beliefs is that it avoids potential infinite-regress prob-
lems. Indeed, in a finite horizon problem, an alternative set of output messages
could be a recommendation for an allocation today and a sequence of allocations
from tomorrow on.? In the final period, the revelation principle in Myerson (1982)
pins down the implementable allocations. Therefore, the recommended allocations
can be determined via backward induction. This idea cannot be carried to an in-
finite horizon setting: These sets of output messages would necessarily have to
make reference to the continuation mechanisms, which are themselves defined by

a set of output messages.

Another contribution of our analysis is to show that to characterize equilibrium
payoffs of the game between the designer and the agent, it suffices to consider a
simpler game, denoted the canonical game. We record this result in Proposition
3.1. In the canonical game-studied in Section 3.2-the designer is restricted to offer
mechanisms in which input messages are type reports and output messages are be-
liefs over the agent’s type. Theorem 3.1 (trivially) implies an equilibrium outcome
of the canonical game can be achieved by strategy profiles in which the principal
employs mechanisms that induce the agent to truthfully report his type and to
always participate. However, the principal has fewer deviations in the canonical
game and an equilibrium strategy may not be an equilibrium if the principal can
deviate to any mechanism, as he can in the mechanism-selection game. One may
then wonder whether analyzing the canonical game gives, unintentionally, some

commitment power to the principal.

Proposition 3.1 shows this is not the case: Leveraging the construction used to
establish Theorem 3.1, we show that, without loss of generality, the best devia-
tion in the mechanism-selection game is equivalent to a deviation to a canonical
mechanism that induces the agent to report truthfully and to participate with
probability one. In a finite horizon setting, Proposition 3.1 justifies writing the
designer’s problem as a sequence of maximization problems over canonical mecha-
nisms subject to the agent’s participation and incentive compatibility constraints

and the designer’s sequential rationality constraints.

3See Section 5.1 for a formal discussion of the approach and its potential issues.



Section 4 illustrates the methodology for the case of transferable utility and
preferences that satisfy increasing differences in distributions. The resulting pro-
gram allows us to highlight the connection between our problem and the literature
on information design; after all, the designer can be thought of as a sender who
designs the information structure for a receiver, who happens to be his future
self. However, there are differences. In our setting, the first-period principal (the
sender in Kamenica and Gentzkow (2011)) also takes an action for each posterior
he induces. In addition, the first-period principal’s objective function depends on
the prior as well as the posterior, whereas in Kamenica and Gentzkow (2011), it
only depends on the posterior. Finally, the first-period principal cannot implement
any Bayes’ plausible distribution over posteriors, but only those that satisfy the

incentive compatibility and participation constraints of the agent.

An important difference between the mechanisms used by Hart and Tirole (1988),
Laffont and Tirole (1988), Freixas et al. (1985), and Bester and Strausz (2001)
and the ones considered here is that whereas in the former papers, the princi-
pal observes the agent’s choice out of a menu of contracts, here, the agent’s input
into the communication device is not observed. Under the assumptions of Section
4, Proposition 5.2 in Section 5.2 characterizes the mechanisms (i.e., the communi-
cation device and allocation pairs) that can be implemented with the agent making
a choice out of a menu. The result is useful for the following reasons. First, by
checking whether the solution to the program studied in Section 4 satisfies the
conditions in Proposition 5.2, we can understand whether the modeling of a mech-
anism as a menu of contracts in the aforementioned works is without loss. Second,
when the solution to the program does satisfy the conditions, it allows the analyst

to propose a “simple” implementation of the optimum.

The paper contributes to the literature on mechanism design with limited com-
mitment, referenced throughout the introduction.* A large literature studies the
effect of limited commitment within a specific class of “mechanisms”: The papers
in the durable-good monopolist literature (Bulow (1982); Gul et al. (1986); Stokey

4A designer’s lack of commitment can take various forms, not considered in this paper,
but that have been studied in other papers. See, for instance, McAdams and Schwarz (2007),
Vartiainen (2013), and Akbarpour and Li (2018), in which the designer cannot commit even to
the obey the rules of the current mechanism.



(1981)) study price dynamics and establish (under some conditions) Coase’s con-
jecture whereby a monopolist essentially loses all profits if he lacks commitment.
In an analogous vein, Burguet and Sakovics (1996), McAfee and Vincent (1997),
Caillaud and Mezzetti (2004), and Liu et al. (2018) study equilibrium reserve-price
dynamics without commitment in different setups. The common thread is, again,

that the seller’s inability to commit reduces monopoly profits.

Mechanism-selection in a dynamic environment with limited commitment is con-
sidered in Deb and Said (2015). The authors study a model of sequential screen-
ing, in which new buyers arrive over time. Like in Skreta (2006) and Skreta
(2015), Deb and Said (2015) consider general mechanisms but a finitely long in-
teraction. Infinitely long contract-selection games are studied in Strulovici (2017)
and Gerardi and Maestri (2018). The former studies renegotiation and finds that
equilibrium allocations become efficient as the parties become arbitrarily patient.
In Gerardi and Maestri (2018), however, the limit allocation is inefficient when-
ever firing the agent—what the authors refer to “firing allocation”— is not a solution

when there is commitment.

By highlighting the role that the designer’s beliefs about the agent play in mecha-
nism design with limited commitment, our paper also relates to Lipnowski and Ravid
(2017) and Best and Quigley (2017), who study models of direct communication

® Lipnowski and Ravid

between an informed sender and an uninformed receiver.
(2017) show how the posterior approach of Kamenica and Gentzkow (2011) can
be used to characterize equilibrium outcomes, and study their properties in the
cheap talk model of Crawford and Sobel (1982) (the leading model of commu-
nication without commitment), when the sender’s preferences do not depend on
the state of the world.® Finally, given that the search for the best equilibrium
often reduces to solving a constrained information design problem we relate to,
among others, Le Treust and Tomala (2017), Georgiadis and Szentes (2018), and

Boleslavsky and Kim (2018).

®Salamanca (2016) studies mediated communication in Kamenica and Gentzkow (2011).

6Golosov and Iovino (2016) study a social insurance model with a continuum of agents, where
private information is not persistent across stages. They leverage the resulting repeated-game
structure to solve for the best equilibrium.



The rest of the paper is organized as follows. Section 2 describes the model and
notation. Section 2.1 analyzes a simple version of the model in Skreta (2006); it
allows us to introduce the main ideas of the paper in a simple and well-known
setting. Section 2.2 discusses the modeling assumptions. Section 3 introduces the
main theorem and provides a sketch of the proof. Section 4 specializes the results
to the two-period model of Bester and Strausz (2007) with transferable utility
and single-crossing preferences. We compare the solution of the ‘relaxed’” problem
to the information design model of Kamenica and Gentzkow (2011). Section 5.1
discusses using recommendations as output messages. Section 5.2 studies imple-
mentation when the principal observes the agent’s choice. Section 5.3 discusses
an example with multiple agents. All proofs are relegated to the Appendix. The
supplementary material (Sections I-IV) contains omitted proofs and extensions

discussed throughout the main text.
2 MODEL

Primitives There are two players: a principal (he) and an agent (she). They
interact over T' < oo periods. Before the game starts, the agent observes her type,
ve V. V is any finite set; however, the main insights extend to the case in which
V' is a Polish space (see Appendix IV). Each period, as a result of the interaction
between the principal and the agent, an allocation a € A is determined. Assume

A is a compact (possibly finite) space.

Given a sequence of allocations a' = (ag, ay, ..., a;), the principal can only choose
asy1 € A(a'). That is, there is a correspondence A : ULO A™ — A such that for
teN,a' € A, A(a') describes the set of allocations the principal can offer given
the allocations he has offered in the past. Assume A is compact-valued and there

exists an allocation a* € A such that a* is always available.”

Payoffs are defined as follows. For the principal, assume there exists a function,

"We later use allocation a* to model the agent’s participation decision within each period:
If the agent prefers not to participate, allocation a* is implemented automatically. For instance,
in a trade model such as the one in Section 2.1, a* corresponds to no trade and no transfers.
The constraint correspondence A also allows us to capture that the agent can walk away from
the mechanism as in Gerardi and Maestri (2018): We could specify that the first time a* is
implemented, then this allocation is the only one available thereafter.



W : AT x V — R such that his payoff from allocation a € AT when the agent’s
type is v is given by W (a,v). Similarly for the agent, when her type is v, her

payoff from allocation a € AT is given by U(a,v).

Mechanisms: In each period, the principal offers the agent a mechanism, M, =
(MM pMe M) o Mes which consists of a communication device, (MM, gMe GMe),

and an allocation rule, o™, where

M MM A*(S)
oM SM s AF(A),

and where A*(C') denotes the set of distributions on C' with finite support. We
endow the principal with a collection (M;,S;);ez of input and output message
sets in which each M; is finite, |V| < |M;|, and A(M;) < S;.®8 Moreover, we
assume (V,A(V)) is an element in that collection. Denote by M the set of all
mechanisms with message sets (M;, S;)icz. A mechanism is canonical if (V, A(V))
are its sets of input and output messages. Let M denote the set of canonical

mechanisms and let MY denote an element in that set.

Three remarks are in order. First, the restriction that M; has at least as many
messages as types is without loss of generality. The principal can always replicate
a mechanism with a smaller set of input messages by using a larger set of input
messages.” Second, we restrict the principal to design ™t and o™t to be dis-
tributions with finite support, thus allowing us to focus on the novel conceptual
features of the environment, as opposed to dealing with measure-theoretic com-
plications. To replicate any equilibrium of the game when the principal selects
distributions with finite support using canonical mechanisms, we find the princi-
pal only needs to use distributions with finite support. This last observation, of

course, would not be true if the set of types were not finite.!%,'! Finally, we re-

8Technically, we only need that S; contains an image of A(M;).

9To see this, suppose the principal would rather use a mechanism, M}, with a message
space M M} with cardinality strictly less than |V|. Then he can choose a mechanism M; with
MMt =V choose 8 to coincide with BMIt on the first |MM/t| messages, and have BM coincide
with M (-|m/}) for all remaining messages.

10 Appendix IV extends our result to the case in which V is a compact and metrizable space.

1'We conjecture, however, that the restriction to distributions with finite support is without



strict the principal to choose input and output messages within the set (M;, S;) ez
This allows us to have a well-defined set of deviations for the principal, avoiding
set-theoretic issues related to self-referential sets. The analysis that follows shows

that the choice of the collection plays no further role in the analysis.
Timing: In each period ¢,

- The principal and the agent observe a draw from a correlating device w ~

U0, 1].
- The principal offers the agent a mechanism M.

- The agent observes the mechanism and decides whether to participate (p =
1) or not (p = 0). If she does not participate, a* is implemented and the

game proceeds to t + 1.
- If she participates, she privately submits a report m e M™:¢,

s € SMt is drawn according to M¢(-|m), which is publicly observed.

a € Ais drawn according to a™¢(-|s), which is publicly observed.

This defines an extensive form game, which we dub the mechanism-selection game.
If, instead, the principal can only choose mechanisms in M%, we denote it as the

canonical game.

Public histories in this game are!?

t
h’ = (WO, M07p07 S0, Qgy - - -, We—1, Mtfluptflu St—1,At—1, wt>7

where p, € {0,1} denotes the agent’s participation with the restriction that p, =
0= s, =, a, = a*. Public histories capture what the principal knows through
period t. Let H' denote the set of all period ¢ public histories. A strategy for the
principal is then given by T'; : H' — A(M).

loss of generality when the set of types is finite.

12The restriction that the support of fM¢(:|m) is finite for m € MM¢ together with the
finiteness of M™¢, imply that there are output messages s € SM* that can never arise. Thus, we
can remove from the tree all the histories that are consistent with mechanism M; being offered
and s € SMt such that Y, /v, BMt(s|m) = 0, without affecting the equilibrium set. However,
for tractability, we do not make this distinction in our notation.

10



A history for the agent consists of the public history of the game together with
the agent’s inputs into the mechanism (henceforth, the agent history) and her

private information. Formally, an agent history is an element
¢
hA = (w07 M07 Mo, Po, S0, A, - - -, Wt—1, Mt—hpt—la mg—1, St—1, at—1, wt)'

Given a public history hf, let HY(h') denote the set of agent histories consistent
with h'. The agent also knows her type, and hence a history through period ¢ is
an element of {v} x HY when her type is v. The agent’s participation strategy is
7, : Hy x M; — [0,1]. Conditional on participating in the mechanism M, her
reporting strategy is a distribution r,(h%, My, 1) € A(MMt) for each of her types

v and each h'y € HY.

A belief for the principal at the beginning of time ¢, history Af, is a distribution
wu(ht)y e A(Vx HY (b)), where HY(h') is the set of agent histories that are consistent
with the public history hA?, which is observed by the principal. The principal is thus
uncertain both about the agent’s payoff-relevant type, v, and her payoff-irrelevant
type, h'y.

Our focus is on studying the equilibria of the mechanism-selection and canonical
games. By equilibrium, we mean Perfect Bayesian equilibrium (henceforth, PBE),
defined as follows:

Definition 2.1. A Perfect Bayesian Equilibrium is a tuple (I'*, (7¥, r¥),ev, u*)
such that for each h' the following hold:

1. Given pf(h'), TF(h') is sequentially rational given (7, 7%),ev,

2. Given T'*(RhY), wk(hYy,-),r*(hY,-, 1) are sequentially rational for all A% €
Hy (h'),
3. w*(h') is derived via Bayes’ rule whenever possible.
Implicit in the definition of PBE is the assumption that the principal does not
update his beliefs about the agent following a deviation by the principal. That is,

we assume beliefs are pre-consistent (see Hendon et al. (1996)).

Remark 2.1. [Belief updating depends only on the realized output message| Fix

11



a history h'. Given ue A(V x HY(h')) and a mechanism MMt Bayesian updating
depends on the agent’s strategy and the communication device, but not on the
allocation rule. To see this, suppose the agent participates with positive probability
in the mechanism, the output message is s € SMt and allocation a is observed;
then the principal’s belief about the agent being at history (v, hYy, My, 1,s,a) is
given by

(B, By)my (1, M) 3 7o (Bla, M, 1) (m) B (s[m) o™ (als)
Z@,/ﬂ M('{}v hfél)ﬂ-; (hféh Mt) aneMMt Tg(hih Mt> 1)(771)51\/& (S|m)aMt (a’|3)

and all the terms concerning a™*(als) drop out.

2.1 Ezxample: two-period sale of a durable good.

To fix ideas, consider the following example. The principal is a seller who owns
one unit of a durable good and assigns value 0 to it. The agent is a buyer whose
valuation for the good is her private information. The buyer’s valuation can take
two values, v € {vy, vy}, where vy — v, > 0. The seller’s belief that v = vy is ;.
An allocation is a pair (¢,t) € {0,1} x R, where ¢ indicates whether a sale occurs
(¢ = 1) or not (¢ = 0), and ¢ is a transfer from the buyer to the seller. Utilities
are quasilinear so that the buyer’s utility is u(q,t;v) = vg — t and the seller’s is

w(q, t;v) = t. Both players share a common discount factor § € (0,1).
The timing is as follows: in each period ¢ € {1, 2}
- The seller chooses a mechanism.
- The buyer observes the mechanism and decides whether to participate.

— If she does not participate, the good is not sold and no payments are

made; if £ = 1, we move to period 2.
— If she participates, the mechanism determines the allocation.
- If the good is not sold and ¢ = 1, move on to t = 2.

Because the horizon is finite, we can solve the game by backward induction.

Then let t = 2 and denote by us the seller’s posterior belief that v = vy. Int = 2,

12



the seller has full commitment and the solution is routine. The seller posts a price
equal to vy, when ps < vr/vg = T, a price equal to vy when puy > i, and at py = T,
then the seller is indifferent between the two prices. Thus, the seller’s revenue as

a function of uy is given by

Ro(j12) = { v, ifpe<n _ { povpr + (1 — po)op(p) if po <

. . b
povy otherwise LoV otherwise

where 0, (19) = v, — (u2/(1 — p2))(vy — vr) and the equality follows from noting
that when the price is vy, the seller leaves rents vy — vy, with probability ps to the

high type.

We now turn to period 1. Recall that ;1; denotes the probability that the buyer’s
valuation is vy. Consistent with the mechanism-selection game introduced in
Section 2, we allow the seller to offer the buyer a mechanism that consists of a
communication device (M, 81,S1) and an allocation rule a: Sy — A({0, 1} x R).
The assumption of quasilinearity implies that, without loss of generality, the seller

does not randomize on the transfers, so that a;(q,t|s1) = q(s1) x 1[t = t(s1)].

Theorem 3.1 shows that, without loss of generality, input messages are type
reports, M; = V| and output messages are the seller’s beliefs about the buyer’s
valuation, S; = A(V). We now provide intuition for this in the context of the

example.

1. To see that M; = V', note that 5, together with the agent’s reporting strategy

induces another distribution on Sy,

Z B1(s1]m)ry,(my) = B*(s1]v).

m1EM1

If the seller offers {(V, $*,S1), 1)) to the buyer, then the buyer tells the
truth (see also Bester and Strausz (2007)).

2. To see why S can be taken to be A(V'), note that upon the realization of s,

two things happen. First, the allocation «(s;) is determined. Second, if the

13



allocation is no trade, s; is used to update the principal’s beliefs as follows:

p2(v = vgrlsi) (Z pa (v 51|U)> = 1 (ver)B* (s1lvm),
veV

where we have already used that M; = V and the buyer reports truthfully.
Given the belief induced by s;, we know what happens in period 2; there is
no use for s; beyond that. Thus, we can take S; = A(V'). Thus, we write
B(u2|v), q(pe), t(pe) instead of B(s1|v), q(s1),t(s1) thereafter.

With these observations, we can describe the seller’s optimal mechanism in period

1 via the following program:

Ry (i) = max (Z 11 () B(pzv) > [t(p2) + (1 = q(p2))0 Ra(pr2)]

) 7t
ﬁ a % veV

subject to for all v € {vy,vy}:

D1 Blualv)(vgp) — tpz) + 6(1 = ) )up(p2,v)) = 0 (PC,)
p2eA(V)

D1 (Blualv) = Blualv)) (va(pz) — tpa) + 6(1 = qp2))us(p2; v)) = 0 (IC, )

p2eA(V)

(Z p1(v) B(p2|v) > = pun(vm) B(p2lvir) (BC,).
veV

That is, the seller chooses f3,¢q,t to maximize his profit subject to the agent’s
participation and incentive compatibility constraint and a Bayesian consistency
constraint. The latter says that when the mechanism outputs s, then us is the
belief that obtains via Bayesian updating. The buyer’s participation and incentive
compatibility constraints take into account her continuation values, denoted by

up(z,v): For low values of pio, the high type is served at a low price in period 2.1

BImplicit in the buyer’s participation constraint is that, if she does not participate in ¢t = 1,
the seller has belief puo > 77 and then sets a price of vy in ¢t = 2. Thus, both types of the agent
earn a payoff of 0 in case they do not participate in ¢ = 1. Given Theorem 3.1, this is without loss
of optimality. Indeed, Theorem 3.1 shows that it is without loss of generality to have the agent
participate with probability 1. Hence, not participating of the mechanism becomes an off-path
event and beliefs are not pinned down by Bayes’ rule in this case.

14



As usual, we can show that PC,, and IC,, ,, bind, and these two constraints
imply the others. Therefore, we can use them to replace the transfers in the seller’s

objective to obtain

Ry(pn) = max D1 7(p2) lalpe) (v + (1= pa)br(pa)) + 6(1 — q(p2)) Ra(piz; )]
T oreA(V)
(1)

s.t. Z T(p2)pi2 = i1,
n2€A(V)

where 7(p2) = > o 1 (v)B(p2|v) is the probability that s is the induced posterior

and

O(povn + (1 — p2)or(m)) if po < 2)

OR : =
Q(MQ ,ul) { 5[LQUH if Mo > ﬂ

is an adjusted version of the seller’s period 2 revenue. We now explain equations
(1) and (2) in detail. Equation (1) shows that the seller’s period 1 problem can be
solved by finding (i) a trade probability for each posterior and (ii) a distribution
over posteriors that averages out to the prior. Given a posterior ps, the trade
probability, ¢(us), is chosen to maximize a version of the virtual surplus, familiar
from mechanism design with commitment. To see this, note that in equation (1),
the probability of each type is evaluated using the posterior us, but the virtual
value for the low type is computed using the prior p;. This reflects that the seller
in period 1 assigns probability u; to v = vy, and py is the rate at which he pays
rents to the high type. Similarly, 0 Ro(p2; pt1) adjusts the revenues in period 2 by
the rents the period 1 seller must leave to the buyer: In effect, should the period
1 seller induce ps < i, the buyer obtains a rent of d(vy — vy), which the seller in

period 1 has to take into account.

Note that equation (2) does not specify what the seller’s payoff is when p, =
7i. This, in fact, depends on the prior pu;: When us = 71, the period 2 seller
is indifferent between prices vy and v;. The period 1 seller, however, is not

indifferent; this fact is illustrated in Figures 2 and 3 below:
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If the seller’s prior is such that he would sell to the low valuation buyer today
(11 < 1), then he would rather have the period 2 seller also serve the low valuation
type when indifferent in period 2, as illustrated in Figure 2. However, if the period
1 seller would prefer to exclude the high valuation buyer when her valuation is
low, then he would prefer the low valuation buyer to be excluded in period 2 as

well when o = 71, as illustrated in Figure 3.

In what follows, we solve the seller’s problem for the case in which p; > m.'*
Because the seller can choose ¢(u2) for each ps, the best he can do is choose it to
pointwise maximize the objective function in equation (1), as illustrated in Figures
4 and 5 below:

14The case in which p; < 7 is immediate: The seller can achieve the commitment solution by
selling to both types of the buyer in period 1.
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Figure 4: Value of setting g(u2) = 0 Figure 5: Pointwise maximum of the
(black) and ¢(uz) =1 (blue) blue and black lines in Figure 4

This reduces the principal’s problem to that of finding a distribution over pos-
teriors to solve:

max Z 7(p2) max{povy + (1 — p2)0r(p1), 6 R(pia; pa)
H2eA(V)

subject to the constraint that the distribution must average to the prior. Under

some parameter values, the solution is as depicted in Figure 6 below:'®

15When T < 1, there are two possible solutions depending on the parameter values. When
w1 > T is high enough, we obtain the solution depicted in Figure 6 and described in the main
text. For lower values of 1 > 1z, we obtain the solution familiar to the literature on the ratchet
effect (see Hart and Tirole (1988)). In this case, the seller sets a price of vy, in period 2, and a

price of vy — 6Awv in period 1; the buyer buys in period 1 when v = vy and in period 2 when
v =vr.
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Figure 6: Optimal mechanism for period 1 seller: The black dashed line depicts the
concavification of the function in Figure 5

The seller sets a price of vy in periods 1 and 2. The buyer does not buy when her
value is low, whereas the buyer randomizes between buying today and tomorrow
when her value is high. The randomization is such that when the seller sees no

sale at the end of period 1, he attaches probability 1 to v = vg.

The example highlights both how the language of type reports and posterior
beliefs is enough to replicate what the principal can obtain from any other mech-
anism and also how useful this language is to solve mechanism design problems
with limited commitment. Indeed, it allows us to reduce the problem of finding
the best equilibrium for the principal to a constrained optimization problem. In
Section 4, we return to the setting of transferable utility and preferences that sat-
isfy increasing differences and show that the connection between our problem and

information design extends beyond the example.

However, the example does not allow us to highlight some features of the model,
which we discuss in the next section. The reader eager to see the results can skip
to Section 3; however, the discussion may be useful to follow the proof sketch of

the main theorem.
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2.2 Discussion: Randomized allocations and public correlating device

We now discuss two aspects of the model that do not seem to play a role in the
example, but are important in what follows: The principal is allowed to offer a
randomization over allocations, and the principal and the agent have access to a

public correlating device.

Randomized allocations There are two reasons for allowing the principal to
choose randomized allocations. First, randomized allocations are necessary for
the set of input messages to be the set of type reports; this is inherited from the
revelation principle with commitment (see Strausz (2003)). To see this, consider
the situation illustrated in Figure 7 below. The mechanism is simple: If the agent
reports m, then the output message is m and the allocation is a, whereas if she
reports m/, the output is m’ and the allocation is a’. Assume that when her type
is v, the agent sends m and m’ with probability p and 1 — p, respectively; thus,
she obtains a and ' with probability p and 1 — p, respectively.

m ——a a
P y
v Vo——>V
1—»p \— P
m'— a a

Figure 7: Agent of type v randomizes over m and m’ generating a randomized
allocation

If we restrict the principal to offer deterministic allocations, then he cannot repli-
cate the agent’s allocation just by asking for a truthful type report. However, if
we allow the principal to offer a mechanism such that when the input is v and
the output is v, the allocation is a randomization between a and a’, then he can

replicate the allocation type v obtains just by soliciting a type report.

Second, randomized allocations are necessary for the set of output messages to be
the set of distributions over the agent’s type. To see this, note that two different
output messages, s and s’, may be associated with two different allocations, a

and @', but with the same posterior belief, as illustrated in Figure 8 below:
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Figure 8: Two output messages, s and s’, induce same posterior but different
allocations

By allowing the principal to offer randomized allocations, we can collapse s and

s’ to one output message s” associated to one posterior, .

Public correlating device The correlating device is important for output mes-
sages to be the principal’s posterior beliefs about the agent’s type. Note that
two output messages, s and s’, may be associated with two different continuation
equilibria, even if they induce the same allocation and posterior beliefs, as in

Figure 9 below:

S—— 1, a, eqbml w1— eqbm 1
Y
" H,a
1—p ’ 1—p
§'— p, a, eqgbm?2 w2— eqbm 2

Figure 9: Two output messages, s and s’, induce same posterior and allocations, but
different continuation equilibria

The correlating device allows us to collapse s and s’ into one output message (and
hence, one posterior belief) and coordinate continuation play with the correlating
device, akin to what is done in repeated games. This feature arises, somewhat
trivially, in Section 2.1. In the example, for each posterior belief different from
I, there is a unique continuation equilibrium in period 2, and hence there is no
need to select amongst continuation equilibria. However, when o = 1z, there are
two continuation equilibria; when we allowed the first-period principal to select

between them, we implicitly made use of a (trivial) correlating device.
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3 REsuULTS

Section 3 presents the main results of the paper. Theorem 3.1 shows that any
equilibrium payoff of the mechanism-selection game can be replicated by an equi-
librium in which (a) the designer uses mechanisms in which input messages are
type reports and output messages are beliefs, (b) the agent always participates in
the mechanism, and (c) input and output messages have a literal meaning: The
agent reports her type truthfully, and if the mechanism outputs p € A(V) at the
end of period ¢, then p is indeed the belief the principal holds about the agent
at the end of that period. Motivated by Theorem 3.1, Section 3.2 studies the
PBE of the canonical game. It follows immediately from Theorem 3.1 that any
equilibrium payoff of the mechanism-selection game is also an equilibrium payoff
of the canonical game, after adapting the strategy profiles and systems of beliefs
to the canonical game. Because the canonical game has a smaller set of deviations
for the principal than the mechanism-selection game, one may conjecture that
there are dynamic mechanisms consistent with equilibrium in the canonical game,
which would not be consistent with equilibrium in the mechanism-selection game.

Proposition 3.1 shows this conjecture is false.

3.1 Revelation Principle for Sequentially Optimal Mechanism Design

Theorem 3.1. Fix any PBE of the mechanism-selection game, (I'*, (7%, 7%) ,ev, ™).

Then there exists a payoff-equivalent PBE, (I, (7,7 )uev, i), such that

1. At all histories, the principal offers canonical mechanisms, that is, (VA")(VM; :
I'(h')(M;) > 0), M, € C.

2. At all histories where the principal assigns positive probability to the agent’s
type being v, the agent participates with probability 1 when her type is
v, that is, (Vv,VhY € HY)(VM, € supp I"(h')) = (hY,M;) = 1 whenever
() () > 0.

3. At all histories, the agent reports her type truthfully, that is, (Vv,Vh!, €
HY)(YM, € supp TV (A1), 7l (hy, My, 1) = 6.
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4. At all histories, recommended beliefs coincide with realized beliefs ¢ + 1:

OOl
ST @) ()~ MY

:u/(h’t7 Mt7 17 M)(’U) =

The proof is in Appendix B. In what follows, we provide a sketch of the main

steps in the proof.

The first main step shows that, without loss of generality, the agent’s participa-
tion and reporting strategy conditions only on her type v and the public history.
This step, which follows from Proposition A.1 in Appendix A, is key to showing
that the set of canonical input messages is the set of type reports. If the agent
conditioned her strategy on the payoff-irrelevant part of her private history, the
principal would need to elicit h’; together with v in order to replicate the agent’s

behavior in the mechanism.

We now qualify what we mean by without loss of generality: We show that
given a PBE in which the agent conditions her strategy on the payoff-irrelevant
part of her private history at some public history h?, there exists another payoff-
equivalent PBE in which she does not and in which the principal obtains the
same payoff after each continuation history consistent with A! and the equilibrium
strategy. The proof of this consists of two parts. First, we observe that because
the input messages are payoff irrelevant and unobserved by the principal, if the
agent chooses different strategies at (v,h!,) and (v, hY), with bl ht, € HY(hY),
then she is indifferent between these two strategies. However, the principal may
not be indifferent between these two strategies. The second part shows we can
build an alternative strategy that does not condition on h% beyond h' and gives

the principal the same continuation payoff.

This first step also gives us an important conceptual insight: The principal
cannot peak into his past correlating devices. To do so, he would like to ask the
agent to report to him what she did in the previous mechanisms. Proposition A.1

shows that this information cannot be elicited in any payoff-relevant way.

The second main step shows that, without loss of generality, there is a one-to-one

mapping between the output messages used at history hA* and the posterior beliefs
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of the principal in the PBE at history h' (see Proposition A.3 in Appendix A). This
step follows mainly from the observations we made in the discussion in Section 2.2.
The principal may have two other uses for the output messages. On the one hand,
because the allocation must be measurable with respect to the output messages,
he may use them to offer a richer set of alternatives. On the other hand, he may
use the output messages to coordinate continuation play. Proposition A.3 shows
that randomized allocations and the access to the public correlating device can

achieve these two goals, respectively.

These two steps deliver that, without loss of generality, input messages can be
taken to be type reports and output messages can be taken to be the designer’s
beliefs about the agent’s type. After all, knowing the agent’s type is all that is
needed to replicate her behavior within the mechanism, and hence the relevant

beliefs for the principal are about the agent’s payoff-relevant type.

Proposition A.2 in Appendix A shows that having the agent participate in the
mechanism is without loss of generality (we discuss at the end of the section why
Theorem 3.1 only requires this for types with positive probability.). The logic is
similar to the one in the case of commitment: Whatever the agent obtains when she
does not participate can be replicated by making her participate. However, there
is a caveat: When the agent does not participate, her outcome is an allocation for
today and a continuation mechanism for tomorrow. Therefore, we must guarantee
that, when the agent participates, the principal still offers the same continuation

as when she did not participate.

With these preliminary steps at hand, the proof of Theorem 3.1 in Appendix
B shows that any mechanism M, offered by the principal at history h' can be
replicated by a canonical mechanism ME = ((V, M A(V)), ™) as follows.
The second step implies that there is an invertible mapping which maps each

output message into the belief over types that it induces:

U(Mt)(st) = Z :u*(htthalaSt)('vhihMta lamtast)'

hteHY (ht),mie MMt

Note that we obtain the belief over V' by taking the marginal over all agent histories
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consistent with the public history h'. Using this, we can define a communication
device fM7 : V — A*(A(V)) and an allocation rule oM : A(V) — A*(A) as

follows:

ME(ulo) = Y M (o (M) () fm)rs (g, My, 1)(m)

meMMt

ME () = oM (o7 (M) (k).

o
The proof then shows that when faced with this mechanism, the agent’s best re-
sponse is to participate and report truthfully and that when the principal observes

an output of u, his beliefs are indeed pu.

We have yet to discuss why Theorem 3.1 only requires that the agent partici-
pates with probability 1 is required for her types to which the principal assigns
positive probability. Consider then a history A’ such that the principal’s belief
assigns probability 0 to the agent’s type being v*. Suppose the principal selects
mechanism M;. Assume also the agent’s strategy at v* specifies sending an input
message m*, which assigns positive probability to an output s*. Finally, assume
that s* has zero probability under all other m € MMt PBE does not impose
restrictions on the principal’s belief when he observes s*; in particular, it could
be that p*(h', My, 1,s*) = p*(h', My, 1,s"), where s’ is an output message with
positive probability under the equilibrium strategy. This would, of course, break

the one-to-one mapping between output messages and posterior beliefs.

To deal with the aforementioned issue, we show that, given a PBE, we can always
modify the mechanisms chosen in equilibrium by the principal so that the agent
does not have access to messages like m*. Namely, he can make the distribution
of the communication device for any such message the same as that of a message
that is used on the path. The principal can always do this without affecting the
incentives of those types that have positive probability; however, he may change

the participation incentives of those types that have probability 0.
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3.2 The Canonical Game

Theorem 3.1 shows that any equilibrium payoff of the game between the principal
and the agent can be achieved with the principal selecting at each history a canon-
ical mechanism such that the agent participates with probability one and reports
her type truthfully. This observation motivates the analysis in this section where

we study the equilibria of the canonical game.

An immediate corollary of Theorem 3.1 is the following:

Corollary 3.1. Any PBFE payoff of the mechanism-selection game can be achieved
as a PBE payoff of the canonical game.

Because it features a restricted set of choices for the principal, one may suspect
that in the canonical game, the principal is able to implement more mechanisms
than in the mechanism-selection game. However, this is not the case. Indeed, we
show that given any equilibrium of the mechanism-selection game, without loss of
generality, the best deviation for the principal after any history can be achieved by
offering a canonical mechanism for that period and also in the continuation histo-
ries, whereas the agent participates with probability one and truthfully reports her
type. This observation implies the canonical game contains all relevant deviations
for the principal. It is not then possible to achieve payoffs in the canonical game
that cannot be achieved in the mechanism-selection game. This is recorded in

Proposition 3.1 below:

C

Proposition 3.1. If (I*° (7% r*) ey, n*) is a PBE of the canonical game,

then there is an equilibrium of the mechanism-selection game (I'*, (7%, r¥)ev, p*)

that achieves the same payoff.

Two important lessons follow from Proposition 3.1 and its proof. First, to char-
acterize the equilibrium payoffs of the mechanism-selection game, it suffices to

characterize the equilibrium payoffs of the canonical game.'® Second, the proof of

16Tt is not obvious that such a result should hold. To see this, we reason by analogy with the
informed principal problem of Myerson (1983), where the principal is also a player, and focusing
on deviations to direct and incentive compatible mechanisms is with loss of generality. Two of the
equilibrium notions Myerson analyzes have analogues in our paper. In expectational equilibria,
the principal can choose from any mechanism, as in the model in Section 2. Undominated
mechanisms are direct incentive compatible mechanisms that weakly dominate any other direct
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Proposition 3.1 highlights that it is enough for the principal to look among those
canonical mechanisms that incentivize the agent to participate and truthfully re-
port her type. This second observation is important. In finite-horizon settings, it
justifies writing down the principal’s problem as a series of maximization problems
subject to constraints: the participation and incentive compatibility constraints
for the agent and the sequential rationality constraints for the principal. This pro-
vides a game-theoretic foundation for the programs studied by Bester and Strausz
(2001) and Bester and Strausz (2007). In Doval and Skreta (2018b) we show how
this approach also simplifies looking for the best equilibrium for the principal in

an infinite-horizon problem.
4 TRANSFERABLE UTILITY AND INCREASING DIFFERENCES

Section 4 considers a simplified version of the game in Section 2. The purpose is
to show how one can harness the results in Section 3 to solve for the principal’s
optimal mechanism under limited commitment. In particular, our formulation of
the canonical set of output messages as beliefs allows us to write the principal’s
problem as a constrained information design problem. Using this formulation and
an extension'” of the techniques in Le Treust and Tomala (2017), we characterize
upper bounds on the set of posteriors used in an optimal mechanism. Along the
way, we also highlight the differences between the problem considered here and

the one introduced by Kamenica and Gentzkow (2011).
Consider the following simpler version of the game in Section 2:
- The agent observes her type v; € {vy,...,vx}. Let uf = Pr(v = ;).
- The principal offers the agent a mechanism M = {((M, 3, 5), a).
- The agent observes M and decides whether to participate.
— If she does not participate, a* is implemented.

— If she participates, she privately submits a report m € M:

and incentive compatible mechanism, as in the canonical game in Section 3.2. Myerson shows
that strong solutions, which is a strengthening of undominated mechanisms, are expectational
equilibria, but the reverse does not necessarily hold.

17See Doval and Skreta (2018a) for further details.
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- s € S is drawn according to B(-|m), which is publicly observed,
- a € A is drawn according to «(+|s), which is publicly observed.

- The principal selects an action y € Y(a), where Y(a) € Y is a compact

(possibly finite) space.

The non-contractible action y captures in reduced form the principal’s limited com-
mitment: In the example in Section 2.1, y corresponds to the choice of mechanism
in the second period.'® The correspondence Y (a) plays the role of the correspon-
dence A in Section 2: It captures how past allocations may affect the principal’s

available choices in the continuation.

The above is the game that underlies the maximization problem analyzed by
Bester and Strausz (2007). Theorem 3.1 and Proposition 3.1 provide a game-
theoretic foundation for why the search for the principal’s best equilibrium can
be cast in terms of such a program. To facilitate the comparison between the
papers, we follow their notation as much as possible. In what follows, w;(a,y)
denotes the principal’s utility when v = v;; similarly, u;(a, y) is the agent’s utility

when her type is v;.

In standard mechanism design fashion, we focus here on the case of transfer-
able utility and increasing differences, leaving the full analysis to Section I in the
Supplementary Material.' First, we assume A = @ x R, where ¢ € ) denotes
the physical part of the allocation and ¢ € R denotes a monetary transfer from
the agent to the principal. Hereafter, we take Y (q,t) = Y(¢), and in a slight
abuse of notation, we denote u;(a,y) = u;i(q,y) — t,w;(a,y) = w;(q,y) + t.*° Sec-
ond, because mechanisms in our setting determine lotteries over outcomes, the

appropriate notion of increasing differences is the one in Kartik et al. (2017):

18The beauty of the simple model is that the non-contractible part of the allocation y may
stand for other forms of contractual incompleteness, such as renegotiation. From this point of
view, we believe the techniques presented herein could be used to understand optimal contract-
ing in other environments of interest, where distortions arise, for instance, from the need to
renegotiate contracts or hold-up problems.

19We comment at the end of this section how the results we obtain translate to the case of
non-transferable utility

20Under transferable utility, if the action y represents the choice of a continuation mechanism,
then the assumption that Y(-) does not depend on ¢ is innocuous. Section I in the supplementary
material does not restrict how the correspondence Y (-) depends on a.
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Definition 4.1 (Kartik et al. (2017)). The family {u;}Y, satisfies monotonic ez-
pectational differences if for any two distributions P,Q € A(A x Y) §u;(-)dP —

§u;(+)dQ is monotonic in 7.%!

The analysis in Section 3 implies the solutions to the following program charac-

terize the PBE of the aforementioned game:??

maxz M?Bi,h[z an(q, t)(wilq, yn(q)) +1)] (P)

70{7 .
Aoy i,h (g,t)

(S0 Bin (Z) an(q, ) [ui(q, yn(q)) —t] = 0,i > 1
S(Bin — Brn) X anla,)uiq, yn(q)) —t] = 0,i,k € {1,2,...,N},i # k

(g;t)
s.t. <

N
Yn(q) € y*(1n, ¢) = arg maxyey (g Zl fon,iwi (g, y)

N
fhi 25 19 Bin = 110 Bin,

\ J=1

where 5, = B(un|vi),an = af-|un) and H = {1,..., H} indexes the posteriors.
That is, the principal selects the best canonical mechanism from among the ones
that (i) induce participation with probability 1, (ii) induce truthtelling with prob-
ability 1, and (iii) satisfy the principal’s sequential rationality constraints. Implicit
in this program is that the number of posteriors induced by the principal is also a

variable of choice.

The rest of the section proceeds as follows. First, Proposition 4.1 shows how,
under our assumptions, we can simplify the number of constraints in program (P).
Second, we show how to cast the simpler program as a constrained information

design one. Finally, we use this connection to characterize an upper bound on the

21Kartik et al. (2017) show that u satisfies monotonic expectational differences if, and only
if, it takes the form w;(a,y) = g1(a,y)f1(i) + g2(a,y) + c(i), where g1, g2 are finitely integrable
and f7 is monotonic.

22Tn the event that the agent does not participate in the mechanism, allocation a* gets im-
plemented. Moreover, the principal chooses y € Y (a*) to maximize his expected utility, where
expectations are taken with respect to his beliefs after observing the agent does not participate
of the mechanism, which is an off-path event. Implicit in the agent’s participation constraint
in program (P) is that the above choices can be made so that the agent obtains a payoff of 0
regardless of her type. This allows us to focus on the issues of limited commitment, without
having to worry of the issue of type dependent participation constraints.
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number of posteriors in the optimal mechanism.

Transferable utility implies that focusing on mechanisms that do not randomize
on transfers is without loss of generality. Hereafter, we replace t with its ex-
pectation, denoted by t,. Like increasing differences in mechanism design with
commitment, monotonic expectational differences implies the solutions to (P) co-
incide with the solutions to a simpler program, which imposes only a subset of
the incentive compatibility constraints. Finally, both assumptions imply that the
participation constraint of the lowest type binds. The above remarks are recorded

in Proposition 4.1.

Proposition 4.1. If {u;}Y | satisfies monotonic expectational differences, then to

characterize the solution to (P), it suffices to gquarantee the following hold:
1. The agent’s participation constraint binds when her type is vy.

2. Adjacent incentive constraints are satisfied.

See Appendix D for a proof. In mechanism design with commitment, we could
simplify (P) further by showing the downward-looking® incentive constraints al-

ways bind at the optimum. This then justifies the study of the so-called relazed

program:
max )1y B[, an(@)wila, yn(a)) + ta] (R)
Y i,h q
Do Bl an(@)ui(q, yn(q)) — ta] =0,
ot Do Bin = Bicin) [ an(@ui(q, yn(q)) —tn] = 0,i€ {2,..., N}

yn(q) € y*(1n, q) = argmaxyey (g) 2, Hn,iwi(q, y)
[Zj‘\;l M?ﬁj,h] fhi = 13 Bih

23That is, the constraints that say v; does not report her type is v;_1.
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obtained by dropping the monotonicity constraints:**

2 Bin = Bicin) D an(@)(wilg, ya(a)) — wimi(@, 94(a)) = 0,6 € {2, N} (M)

In mechanism design with commitment, it suffices to check that the solution to
the relaxed program satisfies the monotonicity constraints, (M), to show it is the

solution to (P) (see the discussion in footnote 24).

However, in mechanism design with limited commitment, the solution to the
relaxed program is not necessarily a solution to (P) even if it satisfies the mono-
tonicity constraints, when the type space is finite and there are three or more types.
This is illustrated in Example 2 in Appendix D. Whereas in the relaxed program
the binding downward-looking incentive constraints together with v;’s participa-
tion constraint impose N restrictions on the transfers (t;), the solution to the
relaxed program might use less than N posteriors. Therefore, finding transfers ¢,
that satisfy all constraints may not possible.?® Alternatively, not all downward-

looking constraints may bind in the optimal mechanism.

Fortunately, the above is not an issue when there are two types or a continuum
of types. In both cases, it is possible to show that downward looking constraints
bind (see Appendices D and IV). Because most of the literature focuses on one
of these cases, and because the relaxed program provides a useful benchmark, the

rest of this section studies its properties.

We can use the binding constraints to substitute the transfers out of the princi-

pal’s program and obtain the following:

24The constraints in equation (M) are obtained from combining the restriction that v; does
not want to report v;_1 and v;_; does not want to report v;. Under Definition 4.1, the binding
downward-looking incentive constraints together with the monotonicity constraints imply the
local constraints in Proposition 4.1.

25This is never an issue in mechanism design with commitment: Without loss of generality,
we can always have one transfer for each type.
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N 0
I}g;(ZTWh) Z Mh,z’Z an(q)[wi(q, yn(q)) + win — Tg(uiﬂ,h — Ui )]
7 h i=1 q {

5.6 7 (i) = 1,

where 7(up) = X, 1 Bin and w;p, = ui(q, yn(q)).
Define:

1 - ani :u(r)z
1
wile, yu(@)) + i, (@) 1) = Y ala)(wila, (@) + (g, yu(0); 1))

q

(e, ;1) = By [wile, yu(a))) + di(e, yu(a); 1],

ai(q,y; 1°) = wi(q, y) — (uir1(q,y) — uiq, v)),

where 1, is type ¢’s virtual utility from (q,y) and @ is the expectation according
to p of the virtual surplus at {«,y,(-))}, for some selection y,(q) € y*(1, q) (see
Remark 4.1). Moreover, we drop the index h because thinking about these objects

as functions of beliefs 1 in what follows is useful.

Program (R) is then equivalent to

max E,(c, p; 1°) (3)
T,0,Y
st. Bop=p

That is, the solution to the relaxed problem is obtained by maximizing a version
of the virtual surplus, represented by w, and then choosing a distribution over
posteriors that averages out to the prior. Equation (3) generalizes the program
obtained in Section 2.1. The following remark is in order:

Remark 4.1 (Tie-breaking in favor of the principal). So far, we have remained
silent about how y,(q) is chosen, beyond the restriction that y,(q) € y*(r, q). We
can use the function w(q, u; 1°) to determine how to break the possible ties in

y* and make the principal’s objective upper-hemicontinuous. In fact, if y,y’ €
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y*(, q), then in the relaxed problem, y is selected as long as

E,u[wi(g,y) + @i(q, y: 1°)] = Eulwila. ') + @il y's 1°)).
In other words, ties are broken in favor of the virtual surplus.

We now illustrate how to solve the program in (3). Towards this, fix the selection
y as in Remark 4.1. Because the program is separable in the allocation, «, across
posteriors, the solution can be obtained in two steps. First, for each posterior
@, we maximize w(-, u; u°) with respect to . Denote the value of this problem
w(p; po). Second, we choose T to maximize w(u; 19) subject to the constraint that
the posteriors must average out to the prior, u°. This separability between the
choice of the allocation rule, a;, and the communication device, 3, is afforded by
ignoring the monotonicity constraints in (M). The latter may impose additional

restrictions on how the allocation varies across different posteriors.

This discussion implies the solution to (3) can be obtained by solving:

max E, max w(a, u; u°) (4)
B(40)
st. E-pu = p

An advantage of the above formulation is that a straightforward application of
Carathéodory’s theorem (see Rockafellar (1970)) implies that in (4), the solution

never uses more than N posteriors:%°

Proposition 4.2. The solution to (R) uses at most N posteriors.

Then, if the solution to the relaxed program satisfies the monotonicity con-
straints and it is possible to find transfers (¢;) that satisfy the downward looking
binding incentive constraints, we have found a solution to the principal’s problem,

(P).

In many instances, however, the solution to (R) will fail to satisfy the mono-

26Bester and Strausz (2007) derive this result using methods in semi-infinite linear program-
ming.
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tonicity constraints, (M). As we show next, adding as many posteriors as binding

monotonicity constraints at the optimum may be necessary:

Proposition 4.3. Consider the program obtained by adding the monotonicity con-
straints (M) to the relaxed program (R). The solution to the new program uses
at most N + K posteriors, where K is the number of binding constraints at the

optimum.

The proofis in Appendix D and follows from extending the techniques in Le Treust and Tomala
(2017) to our setting, where we have multiple inequality constraints and equality

constraints.

Finally, we note the connection between our problem and a constrained infor-
mation design problem holds beyond the case of transferable utility, as illustrated
in Section I in the supplementary material. In particular, we show the assumption
of monotonic expectational differences also reduces the problem to the analysis
of the local incentive constraints. Moreover, we can again bound the number of

posteriors by 3N — 1.

Whereas the above formulation harnesses the connection between our problem
and the one studied in information design, we close the section by highlighting two
conceptual differences with this literature. The reader eager to see the results in

the next section can skip it without loss of continuity.

First, the function @ (p; u°) in equation (4) stands for the sender’s objective func-
tion, 0(u), in Kamenica and Gentzkow (2011). Recall that in Kamenica and Gentzkow
(2011), v(p) is the sender’s expected utility of the receiver’s optimal action when
the posterior is p, where expectations are taken with respect to u. Two differ-
ences are worth pointing out. First, in our setting, the first-period principal (the
sender in Kamenica and Gentzkow (2011)) also takes an action for each posterior

he induces, because he chooses the allocation .

Second, the principal’s objective function in equation (3) depends both on the
posterior, p, and the prior, p, whereas in Kamenica and Gentzkow (2011), it only
depends on the posterior. We already saw an instance of this in the example

studied in Section 2.1. In fact, we saw that the virtual values are calculated using

33



the prior distribution, because this distribution is the one the principal uses to
calculate the probability with which he leaves rents to the different types of the
agent. That the principal’s payoff depends both on the prior and the posterior
may come as a surprise because when a distribution F' can be written as a convex
combination of distributions Fjy, so that F' = Zle A F, then

1-F, < 1-F,
fif dF—;ASJ 7 dF,.

That is, the posterior information handicap averages out to the prior informa-
tion handicap. Thus, we may have expected that the information handicap in
w(a, p; o) could be written solely as a function of p. Only when the allocation is
the same for all induced posteriors, and hence no type of the agent obtains rents,

we can think of the principal’s objective as only depending on the posterior.
5 DISCUSSION

5.1 Recommendations as output messages

As discussed in the introduction, in the finite-horizon case, there is another candi-
date for a canonical language: In period ¢, each output message could be associated
to an allocation for period t and a recommended allocation for the subsequent pe-

riods. We use the formulation in Section 4 to discuss this formally.

Section 4 illustrated how the relaxed program can be formulated as an informa-
tion design problem, where the principal in period 1 designs both the allocation for

the agent and the information structure for the principal in period 2 (see equation
(3))-

We borrow the terminology in Kamenica and Gentzkow (2011) and say a mech-
anism is straightforward if S S Ug{q} x Y(¢) and after message s = (gs, ys),
the principal chooses ¢, in period 1 to maximize w(a, p; 1°) and ys in period 2 to
maximize Y p; sw;(gs,y) in period 2, where p; are the beliefs generated by output

message S.

2"Laura Doval thanks René Leal Vizcaino for a discussion that led to this observation.
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Proposition 5.1. The following are equivalent:

1. There ezists a mechanism {(V, 3, S), a) and a mappingy : SxQ — UseqY (q)
that solves (R).

2. There exists a mechanism {(V, 3, A(V)),a) and a mapping y : A(V) x Q —
UgeqY (q) that solves (R).

3. There exists a straightforward mechanism that solves (R).

The proof is in Appendix E. Item 3 highlights that in the relaxed program (R),
the set of output messages can also be taken to be recommendations for both
incarnations of the principal, as in sender-receiver models of information design.
The proposition uses both the separability between the allocation, «, and the
information policy, 7, discussed in Section 4 and that there is a final period in which
the principal takes the non-committed action, y.?® The separability guarantees
the first-period principal chooses to implement allocations ¢ that are optimal for
each posterior he induces for period 2. However, in the case of infinite horizon,
the language of recommendations is self-referential: The principal would need to
recommend the continuation mechanisms, which themselves involve a set of output
messages. Thus, an advantage of the approach we advocate is that we can always

resort to beliefs regardless of the game at hand.

5.2 Implementation via contracts

Section 5.2 characterizes within the environment of Section 4 the tuples (5, q,y)
that can be implemented using the contracts studied previously in the literature.
An important difference between the mechanisms used by Hart and Tirole (1988),
Laffont and Tirole (1988), Freixas et al. (1985), and Bester and Strausz (2001)
and the ones considered here is that whereas in the former papers, the princi-
pal observes the agent’s choice out of a menu, in the latter, the agent’s input into
the communication device is not observed. A consequence of this is that in the

former setting, the agent has to be indifferent between all the elements of the menu

281f the final period corresponded to a design problem, such as the sale of a durable good
example, one could resort to the revelation principle in Myerson (1982) to reduce the principal’s
actions in the final period to the induced allocations.
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that she selects with positive probability. By contrast, in our setting, the agent’s
incentive compatibility constraint has to hold in expectation: Although she may
not be indifferent between all the allocations that arise with positive probability
after she communicates with the mechanism, on average, they must be better than

what she would obtain by reporting any other type.

Fix a canonical communication device f : V — A*(A(V)) and a tuple (q,y) :
A(V) — Q x Y, where we denote by y(u) = y(q(pn),n).> We want to find
t'" : A(V) — R such that for all v; € V, for all u : B(p|v;) > 0, and for all

1Y, B') >0,
ui(q(p), y() —t' (1) = wilg(w), y(p')) — ¢ (1), (DIC-P)

Note equation (DIC-P) corresponds to the definition of equivalence in Mookherjee and Reichelstein
(1992).3° Indeed, the problem we intend to solve is similar in spirit to the one
analyzed in the literature that studies the equivalence between Bayesian and
dominant-strategy implementation (Manelli and Vincent (2010) and Gershkov et al.
(2013)). However, there are some differences that, although subtle, turn out to
have important implications. First, in that literature, this problem only makes
sense when there are multiple agents, whereas in our case, the source of random-
ness the agent faces (the randomization by the communication device) is endoge-
nously chosen by the principal. Second, allocation and transfers in that setting
depend on the agent’s type, whereas here they depend on the belief induced when
the principal observes the output message. As we show next, this implies joint

restrictions on the communication device and the allocation rule.

As in Section 4, we assume the agent’s preferences satisfy monotonic expecta-
tional differences. Thus, label the types so that v; < .-+ < vy. Note that if
u;(q,y) satisfies Definition 4.1, then u;(q,y) has increasing differences. In effect,

uwi (¢, y') —ui(q,v) = F(0)(91(d,v') — g1(q,y)) + 92(d', ¥') — 92(q, y), which is strictly

29To keep notation simple, we ignore the possibility that ¢ and y may be randomized alloca-
tions. It is immediate that this restriction is not necessary for the results.

30Mookherjee and Reichelstein (1992) also require that ¢’ raises the same revenue as t (see
equation (DIC-T) below). We focus for now on the possibility of guaranteeing (DIC-P) holds
and discuss the difficulties associated with guaranteeing the same revenue is collected at the end
of Section 5.2.
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increasing in ¢ as long as ¢1(¢’,y") — ¢1(¢,y) # 0. In what follows, we make the

following assumption:
Assumption 1. For all p, ¢ € A(V) such that (3], B(plv)) x (X B |0)) >
0, we assume g1(q(p),y(1)) — g1(q(w’), y(u')) # 0.

Given two beliefs p and g/, let

Di(p, 1) = wiq(p), y(p)) — wilq(p'), q(1))

denote the difference in payoffs from (q(u),y(n)) and (q(¢), y(1')), when the agent

type is v;. The content of Assumption 1 is that D;(u, i) is strictly increasing in 1.
We have the following;:

Proposition 5.2. Suppose the agent’s Bernoulli utility function satisfies Defini-

tion 4.1 and (5, q,y) satisfies Assumption 1. A necessary and sufficient condition
for (B,q,y) to satisfy (DIC-P) is that (5, q,y) satisfies

1. Forallie{l,...,N} and j > i, for all p and /',
Dj(p', 1) = Di(pt', ), (DIC-M)

whenever p'(vj)pu(v;) > 0.

2. B induces a monotone information structure: We can label the beliefs induced

by (67Q7y); {Mla ce ,,UM} so that
(a) If i < j, then max supp p; < min supp p;,

(b) For any i, there are at most three beliefs {ii;, piy1, fivo} for which v; has
positive probability. Moreover, if v; has positive probability in all three,

then ;1 (v;) = 1.

The proof is in Appendix F. The first condition is the equivalent to the standard
monotonicity condition for dominant-strategy incentive compatibility: For any two
beliefs p and p/, the utility differential of the allocations (g,y) induced at these
beliefs is higher for higher types. The second is new to our setting. Recall that,

under Assumption 1, D;(u, i) is strictly increasing in 4, which places restrictions
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on the support of the beliefs induced by the principal’s mechanism. In particular,
to satisfy (DIC-P), when the agent’s type is v;, she must be indifferent between
the allocations (g, y) that correspond to posteriors that assign positive probability
to v;. Monotonic expectational differences implies that when v; is indifferent be-
tween (q(p),y(w)) and (q(p'), y(u')) and D;(u, 1) = 0, then all types higher than
v; (weakly) prefer (q(u),y(p)) to (¢(i'),y(1’)) (and the opposite holds for lower
types). Assumption 1 then guarantees that higher types cannot be in the support
of 1/ (and the opposite holds for lower types).

Note that we cannot dispense with the assumption that [ induces a mono-
tone information structure. In the example in Appendix B in Bester and Strausz
(2007), the agent can be of one of two types and her utility satisfies Definition 4.1;
however, the optimal mechanism induces three posteriors under which both types
have positive probability and having both types be indifferent between the three

allocations induced by the mechanism is not possible.

Besides allowing us to connect the results in this paper with the previous litera-
ture on mechanism design with limited commitment, the result in Proposition 5.2
is also of practical value. Section 4 highlights that the characterization of S as the
set of beliefs over the agent’s type allows us to harness the tools of mechanism and
information design to solve for the principal’s optimal mechanism. Proposition 5.2
allows us then to check when the solution to the program in Section 4 is also a
solution to the problem in which the principal observes the agent’s choice out of a

menu.

Proposition 5.2 is silent about whether the transfer scheme ¢’ collects the same

revenue as the original mechanism did, that is, whether ¢’ also satisfies that

D Bulw)t () =) Blulv)t(p), (DIC-T)

veV veV
for all u such that »; _, B(ulv) > 0.

Contrary to Mookherjee and Reichelstein (1992), we do not find that once (DIC-P)
is satisfied, then (DIC-T) is satisfied. In particular, with two types, only when the
solution features two beliefs, yu(vs) < pu® < Ti(v2) = 1, can one satisfy both (DIC-P)

38



and (DIC-T). We leave for future research the full analysis of the conditions under
which both (DIC-P) and (DIC-T) hold.3!

5.8  Multiple agents: Example in Bester and Strausz (2000)

Bester and Strausz (2000) show that, with multiple agents, the result for the single-
agent case in Bester and Strausz (2001) no longer holds. That is, if M = S and
is deterministic, then there are equilibria with mechanisms in which M # V', whose
payoffs cannot be replicated with canonical mechanisms. To keep the discussion
self-contained, we replicate here their example and then explain why it does not
invalidate the possibility of extending our techniques to the multi-agent case.

Example 1 (Bester and Strausz (2000)). There are two agents, labeled 1 and 2.
Only agent 1 has private information; let v € {v,7} denote her type. The prior
that the type is v is denoted by p € [0, 1]. The set of allocations A = [0, 2]. Payoffs

are defined as follows:

W(a,v) = —a®, W(a,?) = —(2 — a)?
Ui(a,v) = —(0.5 — a)?*, Uy (a,v) = —(1.5 — a)?
Us(a) = —10(1 — a)*.

<

That is, the principal’s payoff depends on agent 1’s type, whereas agent 2’s payoff

does not.

The timing is as follows. The principal selects a communication device for
the agents, who then submit messages. Upon seeing the messages, the principal

chooses a € A.

The principal’s payoffs are such that if, after seeing m, his posterior is p(m),

then he chooses allocation

a*(m) = 2(1 - u(m)).

31Note that Mookherjee and Reichelstein (1992), Manelli and Vincent (2010), Gershkov et al.
(2013) use the representation of the agent’s utility function obtained via the envelope theorem to
pin down transfers. As discussed in Section 4, we cannot guarantee downward-looking constraints
bind at the optimum when there are three or more types.
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Bester and Strausz (2000) construct an equilibrium with three messages {m,, my, m.}
that cannot be replicated with messages {v,v}. Let M = {m,, my, m.}. Then there
is a PBE such that

, p(my) = 1/2, p(me) =0
9

1
a*(mgy) =0, a*(my) =1, a*(me) =

However, the above mechanism cannot be replicated by a mechanism with two
messages, when the principal observes the output messages. The reason is not that
agent 1 is not indifferent between the allocations he obtains at different messages,
so that he is not willing to carry out the randomization himself. Rather, under the
assumptions of Bester and Strausz (2001), the mechanism can only have as many
input messages as output messages. Because the agent may be of one of two types,
the mechanism can only have two input messages. Therefore, the agent does not
have enough room to do the mixing and generate the required posteriors for the

principal.

However, if we allow the principal to offer canonical mechanisms as the ones in
this paper, the following communication device implements the same allocation as

the non-canonical mechanism:

After all, the result that taking M ~ V and S ~ A(V') is without loss of generality
dispenses with the restriction that the number of input messages must coincide

with the number of output messages.

Extending the model in Section 2 to the case of multiple agents involves dealing
with a number of subtleties that merit a full separate study and are thus beyond
the scope of this paper. We plan to address this important extension in future

research.
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A PROOF OF PRELIMINARY RESULTS

Appendix A is organized as follows:

Proposition A.1 shows we can focus without loss of generality on equilibria of the game
in which the agent does not condition her strategy on the payoff-irrelevant part of her

private history.

Proposition A.2 shows we can focus without loss of generality on equilibria of the game

in which the agent participates with probability one.

Proposition A.3 shows we can focus without loss of generality on equilibria in which
there is a one-to-one mapping between the output messages generated in the mechanism

and the continuation beliefs the principal holds about the agent’s type.

Because we have to deal with an abstract dynamic game, the proof is notationally
involved. As a first pass to most results, except Proposition A.1, the reader is invited to
first take a look at Appendix I in the supplementary material, where the constructions

are performed in a two-period version of the model.
We need a few more pieces of notation and definitions.

First, as noted in footnote 12, some output messages can never be observed. Given a
mechanism, My, define $*™* = {s € SM* : (Im e MM*)Mt(s|m) > 0}. Since removing
public histories from the tree that are consistent with mechanism M, and s € SMt\ S M
does not change the set of equilibrium outcomes, hereafter, these histories are removed

from the tree.

Second, fix a PBE of the dynamic mechanism-selection game (I'*, (7*, r*) ey, u*) and a
public history h? for some ¢ > 0 (if ¢ = 0, then h° = ¢f denotes the initial public history).
For T > t, the history hT = (h', My, py, S, @, .., Mp_1, D71, S7_1,ar_1,wr) is on the

path of the equilibrium strategy profile given h! if forallt <7< T — 1

+1
h" = (hT7MT7pT7ST7aT7wT+1>7
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where

M, € supp I'*(h")
D w07 (v, h)ws (W, M) (pr) > 0
(v;h7)
pr=1= >, PR (0, b)Yy (R M, 1)(m) M (s [m)a™ (a|s,) > 0
(v,h7):md (RT,M7)>0 meMMr

pT2038T2@7aT:a*-

That is, along the path from h* to h™*!, the principal made choices according to his
equilibrium strategy, the agent made participation choices according to her equilibrium
strategy, and the output-message labels and allocations correspond to those in the mech-
anism chosen by the principal. Note that we do not say anything about the reports of
the agent, because they are not part of the public history.

We sometimes need to talk about the histories that are on the path of the equilibrium
strategy profile given a public history A’ and a mechanism M,;.The only difference with

the above definition is that M; need not have positive probability according to I'*(h').

The above notation is used as follows. Proposition A.1 shows that for any PBE, there is
a payoff-equivalent PBE in which the agent does not condition her strategy on the payoft-
irrelevant part of her private history. To do so, starting from any history ht, we need to
modify the strategy for all continuation histories on the path of the strategy. Similarly,
the main theorem shows we can transform any PBE of the game into one in which the
principal’s strategy selects only canonical mechanisms on and off the equilibrium path.
To do so, we must map the continuation strategy starting from any history A’ in the
game to one in which the continuation strategy only offers canonical mechanisms. When
we perform this mapping for h°, we are doing the transformation for the path of the
equilibrium strategy; when we do this for histories that can be reached from h', we are

doing the transformation for the path of the continuation strategy.

Proposition A.1. Fiz a PBE (T*, (7%, 1¥) ey, u*) and a public history h*. Then, there

vt

exists a continuation strategy for the agent (m*, r**),cy such that:

v v

1. For any mechanism My, for all iy, ht, € HY(hY), and for allv e V, m**(hl, M) =
(b, My) and r2*(hYy, My, 1) = r* (bt My, 1).
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2. For all mechanisms My, for 7 =t + 1, for all histories h™ on the equilibrium path
starting from (ht, My), for all b7y, hY' € HY(h"), for all M, € supp T*(h"), and for
allveV m¥* (b7, M,) = m**(h7', M,) and r*(h7, M,, 1) = r**(h7', M,, 1).

3. For all histories h™ on the equilibrium path starting from ht, the continuation payoff
for the principal at (I'*, (7%, r¥*),ev, n*) is the same as at (I'*, (7}, 75)vev, u*);
similarly, for each v € V and each h7y € H3(h") the continuation payoff for the

agent at (v, h7y) is the same under both strategy profiles.

4. (0% (7 r¥*) pev, u*) is also a PBE.

’U”U

Proof. le a PBE (I'* (7%, r¥) ey, u*). Let h* be a public history such that there exists
M,, hy, Iy, both consistent with h?, and v € V such that either 7*(h%,, M,) # 7 (b, My)
or 13 (hly, My, 1) # ry (R, My, 1).

Note that for each m € M™:, the agent’s continuation payoff at (v,h%) and (v, hY’)
must be the same: after all, the continuation strategy of (v, h%) is feasible for (v, h’y) and
vice versa. Therefore, the agent at (v, hY) is not only indifferent between all the messages
in the support of 7¥(hY, My, 1), but is also indifferent between all messages in the support
of 7*(R’y, My, 1). Therefore, the agent at (v, k') is indifferent between r*(ht,, My, 1) and
any randomization between r*(ht,, My, 1) and r*(hy, My, 1).

Moreover, the above is true for any continuation public history that is reached with
positive probability from A for the same reasons. That is, for any 7 > ¢ and A" that
succeeds (h', M;) along which the principal follows I'* and the agent at (v,h%) and

t (v, hy) follows 7* * and for any h7, R’y that succeed h% and Ry, respectively, the

agent is indifferent between her reportmg strategy r*(h7, M,,1) and r*(h’;, M,, 1) for
M, e I'*(h7).

Therefore, starting from h’, the following is also an optimal strategy for the agent when
her valuation is v. Consider first those types v for which thA eH', () pw*(ht) (v, hly) > 0.
For any h'y € HY(h'), she participates with probability

W:*<hf4,Mt) _ Z *(h't>(v ht )

5 (h Mt)a
ht’zht eHY, ht):u (h't><v h )
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and reports m € MMt with probability:

*(h") (v, By )i (hYy', M
**<h 1\/[257 )( ): Z H ( )( A) U,(\/A ,i) (h Mt7 )( ),
/ X *(ht) (v, hiy)ms (B M)
ht,/eHY (ht) ZapT e HY, (ht) H 3 1V )Top (5 VL
as long as Z/@f:eHg(ht) p*(ht)(v, @)W:(ﬁ\i, M,) > 0.3 For each h” that has positive proba-
bility from (h*, M;) and h7 € H}(h"), for each M, € supp I'*(h7), the agent participates
with probability

ﬂ'**( :r4 M ) _ Z ,LL*(hT)(U h'T/)
o T ST AN
A Sy ASH 4

(W', M), ()

as long as Z}EGH;(M) w*(h7) (v, Ej) > 0 and reports m € MM~ with probability

M ) =Y P B M) v 1)),

h7'eH (h7) ZhTeHT(m)ﬂ (A7) (v, )™ (h,TmM )

(6)

as long as ZE;eH;(hT):u (R7) (v, A7) ( A,M ) > 0.

Before dealing with the zero probability events, note that the above transformation can
be applied to all (v,hYy), hYy € HY(h'), regardless of whether p*(h')(v,h’;) > 0. This is
because sequential rationality applies to all information sets of the agent and, thus, to all
hYy € HY(h'). A consequence of the above transformation is that as long as the principal
assigns positive probability to the event that the agent’s type is v € V, the agent plays
the same at all of her payoff-irrelevant histories; even at those to which the principal

assigns zero probability.

Now consider those types v € V such that X, e ey " (h') (v, iYy) = 0. For any

32Recall we are applying this transformation only at histories that are on the equilibrium strategy

given h'. Hence, if >, (ht) w¥ (hY) (v, hy)m* (hYy,M;) = 0, we continue doing the transformation at
A A

htt1 = (ht,My,0, J, as). Remark A.1 discusses how in this case we can apply a similar construction

starting from history (hf, My, 1).
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hYy € HY(h'), she participates with probability

HUABYD
w2 (bl My) = Y T pASE,
MO = 23T )

Suppose that (h', My, 1) has positive probability conditional on the principal offering
M,. Then, modify the agent’s reporting strategy so that she reports m € M™¢ with
probability:

ﬂ-:(hféxlv Mt)
W;k(hixa Mt)

(W, My, 1)(m) = ) ri(hly', My, 1) (m),

ht,'eH', (ht) Zﬁgeﬂg(ht)
i Y e 7*(hY,, M) > 0 and with probability

ra(hly', My, 1)(m)
[HA(h]

(i, M, 1) (m) = )

ht'eHY, (ht)
otherwise.
For each h™ that has positive probability from (h',M;) and h% € H3(h"), for each

M, € supp I'*(h7), the agent participates with probability

(k7' M,
Ty (R, M) = Z W- (7)

h7/eH (h7)

If the principal assigns positive probability to (A7, M., 1) at A", then modify the agent’s
reporting strategy so that she reports m € M™+ with probability

e M () = Y Tl M) e M ), (®)

h7/eH (h7) ZE;eH;(hT) m5(hly, M;)

if Y gz ur) i (R, M) > 0 and with probability

B ry(hy', My, 1)(m)
Tv (hA7M7'7 1)(m) = Z THT(hT” )
h7/eH, (ht) A
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otherwise. Thus, for those valuations v € V' to which the principal assigns 0 probability—
either at A! or at a continuation history A™ on the equilibrium path of the strategy given

h'— their strategies also do not depend on the payoff-irrelevant part of the private history.

Fix 7 = t. Under the new strategy, the principal’s beliefs that the agent is of type v
and her private history is 7! at history h"™' = (b7, M, 1, 5,,a,), M, € supp ['*(h7)

are given by:

(A7) (v, by )y (hl, M )ry* (hy, My, 1) (me) B (s, |m.)

v v

M**(hT+1)(’l},h2+1) _ H N __ _ - -
Zﬁﬁi Zﬁ% (0, R ma* (hly, Mo )ra*(hly, My, 1) (1) BM7 (57| )

(9)

where p**(h')(v,hY) = p*(ht)(v, k) and at history A" = (h7,M,,0, s,,a,), M, €
supp I'*(h") are given by:

)

pr(h7) (0, ) (1 — my* (W), M)

M**<hr+1)(v7h;+1) _ AL N
o (W) (0, ) (1= w3 (1, ML)

: (10)

We now show by induction that for any 7 > t,

Z M**(hT+1)(U, hZH) _ Z M*(hT+1)(’l}, h2+1).

R FLeHT T (hT+1) R FLeHT T (hT+1)

We do so for histories A” that are consistent with the equilibrium strategy for which the
agent participates; it is immediate that the same holds for those histories in which she

does not.

For 7 =t and Rt = (h', My, 1, 84, a;), note the denominator on the right-hand side of

equation (9) can be written as:

D > W@ R (g, Me)rs* (ly, My, 1) (m) 5™ (s]m)

0,hty meM™Mt

=0 D (bl Me)rr*(hly, My, 1) (m) g™ (sm) ) (h') (3, hy)

U meMMt

=20 X s ()@ ), M)y, M, 1) (m) 8 (s]m),

0,hty me MMt
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where the first equality uses that 7* * does not depend on A’y and the second equality

U”U

uses the definition of 7* r**; see equations (7) and (8). Note the last expression is

the denominator in p*(h'*1)(v, h'{'). Therefore, for hi*! = (h*, My, 1, s, a0), b1 =
(h’tAv Mt7 17mt7 St; at)7 h'tA € HAtA(ht)

Do, 15 (RE) (0, Ry )™ (R, M) (R, M, 1) () BM (s¢[my )
S, i Somenpsae 1 (1) (0, ) (b, Ma)rz* (B, My, 1) (m) 3 (si]m)
L ARl M) (R, M 1) (m) BN (s mg) S 17 () (0, 1Y)
X Smearsn () (B, B)TE (bl My, 1)rs* (hly, My, 1) (1) BM: (s m)
L B (R, ) (B, M (B, My, 1) () B (s fmy)
X Smearsn () (B, B)TE (bl My (W, My, 1)(m) M« (s, m)
S ), B (R M (B M, 1) (m) BN (i)
X Smearn (), B 7E (W, M) (B, My, 1) (m) M (| m)
= Dt (0, B,

M

D () 0, 1) =

where the second equahty uses that 7* * do not depend on Ry, the third equality uses

’U”U

the definition of 7*, r** the fourth equality uses the observation about the denominator,

and the last equality follows by definition of u*(h'*1'). Adding up both sides of the

expression over m; delivers the desired expression.

Now suppose we have established the above claim for each 77 < 7. We now show
that it holds to 7/ = 7. To see that it holds for 7/ = 7, note the probability of h7*! =
(h",M,, 1, s,) conditional on A7, which is given by the denominator on the right hand
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side of equation (9), can be written as:

23w (@, By (hly, ML)rs* (i, M, 1) (g ) 8™ (s i)

hT mT

- ZET{' hz, **(h;,MT,l Zu** 0] hT)ﬁM (s7|mr)
v hT

= 3w (B, M) (R, M, 1) () > (8, ) 8™ (s [
v mr ﬁi

= 33 (@, W) (kT ML)k (R, M, 1) () 8™ (s iy )

UhT mT

where the second equality makes use of the inductive hypothesis for 7/ = 7—1, > 1 (h7)(0, f?j) =

Z@ w*(h7) (2, }Tz), and the third equality uses the definition of the participation and re-
porting strategies defined in equations (7) and (8). Note the last line corresponds to the

expression of the denominator of p*(h™*1)(v, h7;'!) in the original PBE.

Therefore,

S 145 (07) (v, h) e (i, M )re* (B, ML, 1) (m) BM (s, m)
S S, 17 (07) (8, W)k (B, ML)t (R, My, 1) (1707 BM- (s )
m (B, ML) e (i, My, 1) (me) BM (s, m.) Sy 17 (h7) (v, )
S S () (0, 1) e (5, ML) (7, M, 1) 1, ) 5 (s, i)
m (W, M) (W, M, 1) (me) BN (s, fme) 3 0% (h7) (v, 1)
S S (070, B (1 ML) (7, M, 1) () B (s, v,
)
(h

2/.1/**<h7—+1><v, h2+1) _

S (BT (0, W) (T, ML )7 (R, ML, 1) () B (s m.)
zvh S, 1) (0, W) (B, M) (R, My, 1) (772,) BM7 (s, i, )
= > (W) (v, A,

where the first equality makes use of our conclusion for the denominator, the second

equality uses that 7 * do not depend on A7, the third equality makes use of the

v 7 U

inductive hypothesis, the fourth equality makes use of equations (7) and (8), and the
fiftth equality follows from the definition of the beliefs via Bayes’ rule. Adding up the
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above expression over m. delivers the desired conclusion.

We now use the above properties to show the payoffs of the principal do not change along
the path that starts from h'. Fix any history h” that is on the path of the equilibrium
strategy starting from h'. The principal’s payoffs are given by:

S ) o, W) { (1= (o, B )ES T [ (a7, 6%, 0% o, B, M, 0] 4+ (0, M) x
(v,h%)

Do, M, 1)(m) D M (s|m)E [W(a(hT),as,a>T+1,v)|v,h;,1,m,s]}

meMMr seSMr

= (1= my* (W, M) D i (07 (0, R)ET ™50 [W(a(hT), 0%, > ) o, Wy, My, 0] + i (R, M) x

ha

Do (s M 1)(m) Yt (W) (0, hG) Yy B (sm)E T (W (a(hT), ag, T ) v, 1y, 1, my s

meMMr I seSMr J

_ Z 1 _ 71' hAa )Z,U,*(hT)(U,h;)EF*’ﬂj*’rZ‘* [W(a(hT),a* >T+1)|U % ,MT,O] +7T**( A7M )X

h

Do G M 1)(m) Yt (W) (0, hG) Y5 BM (slm)ET T (W (a(hT), as, a® T v) o, iy, 1 my s

meMMr h7 seSMr

= 0 ) ) {0 o, W)ES T (W (a7, %, 0% o, 1, M 0]
(v;h7)

ﬂ-:(h;"MT) x Z 74:;( Z’MT71)(m) Z ’8MT(S|m)EF*’W** i [W( (hT) as, Q >T+17v)|y7h271’m’8]}

meMMr seSMr

= 3 w0 k) { (1= o, RA)ET T [W(a(hT), 0%, > o, G, M, 0]
(v,h%)

mo(hl M) x 3 (g My 1)(m) Y5 BN (slm) BT W (a(hT), a, >T“,v>|v,h21,m,s]},
meMMr seSMr

where the first equality follows from noting that the agent’s strategy does not depend on

h7, the second equality follows from the previous result and noting that under 7}*, r>*,

the continuation strategy does not depend on A7, the third equality follows from the

definition of the strategy, and the last equality follows from noting this equality holds

after every history on the path of the equilibrium strategy starting from h’. O
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Remark A.1. Suppose that at history h' and after offering M, the principal assigns
probability 0 to the agent participating. In that case, his beliefs p*(h*, My, 1) € A(V x
HY(h', My, 1)) are not determined by Bayes’ rule. It is immediate to extend the proof
of Proposition A.1 to show that starting from (h', My, 1), we can modify the agent’s
strategy along the path of the equilibrium strategy so that she does not condition on her

payoft-irrelevant private history.

Remark A.2. The payoff-equivalent PBE assessment one obtains from Proposition A.1
satisfies the following property. On the equilibrium path, the principal’s beliefs over the
agent’s payoff-relevant type, v € V, do not depend on her payoff-irrelevant history, hY.
That is, for any public history on the equilibrium path of the strategy profile given the
initial history, for any v € V, ht;, " € HY(ht) such that p*(ht)(v, hY), u*(h) (v, ') > 0,
we have p*(h')(v, hYy) = p*(h?)(v, ).

However, at a public history h! reached after a deviation by the agent, either because she
changes her participation strategy in a detectable way or because she triggers an output
message that was not supposed to be triggered according to the equilibrium strategy,
the requirements of PBE do not rule out that the principal’s updated beliefs depend

non-trivially on both v and hY,.

However, it follows from Proposition A.1 that without loss of generality, we can assume
that when the principal observes a deviation by the agent, his updated beliefs do not
depend on RY. After all, the agent’s behavior after the deviation does not depend on his
payoff irrelevant private history and the principal cannot offer mechanisms as a function of
hYy. We record this in Corollary A.1 below and prove it in Section III of the supplementary

material.

Corollary A.l. Fiz a PBE, (I'* (7¥,r¥)ev, u*). Then, without loss of generality,
for any t, public history h, v € V and private histories h;, bt/ € HY(h) such that

p*(R) (v, By), p* (h) (v, W) > 0,
u*(h) (0, hy) = p* () (0, 1Y),

Remark A.3. Note that the corollary states that equality holds only for (v, hY), (v, hY,")

that have positive probability given the equilibrium beliefs, because the agent’s strategy
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may assign probability 0 to some input messages and hence some h’y’s cannot be given

positive probability.

Hereafter, we focus on equilibria in which the agent’s strategy does not depend on the

payoftf-irrelevant part of her private history.

We introduce one final piece of notation. Given a strategy profile (I'*, (7, r*),ev) and

v)ov

a history h!, denote the continuation strategy starting at h! implied by this profile as
(T*, (75, 75 oev ) -
The next result shows that without loss of generality, we can focus on equilibria in
which the agent participates with probability 1:
Proposition A.2. Fiza PBE, (I'*, (7, 1)vev, u*). Then, there is a PBE, (U** (7 r¥*) ey, p**)

U v

where

1. For every t = 0, for every v € V, for every hYy, m**(hYy,M;) = 1 for all M, €
supp T**(h').

2. The principal and the agent’s payoffs are the same after every history as in (U*, (75,15 ey, 1*).
3. For every t and public history ht, the distribution over allocations is the same as in

A, (my Ty v)veva,u>

Proof. Fix t and h' such that there exists M, € supp I'*(h") such that 7*(h%, M;) <
1. Recall MMt is a finite set and SM¢ contains A(M™¢). Recall that for all m €
Me o gMe(.m) e A*(SMt) has finite support. Then there exists s* € S™* such that
BMt(s*Im) = 0 for all m e MM,
Let Vi = {v e V : w(hly, My) > 0} = {vy, ..., vy} Since [V| < [MMt], we can label the
latter set MMt = {my,....,m, oy Mg §. Modify Mt as follows. Fori =1,...,|Vi],

let

Blslms) = > BM (slm)ry (hly, My, 1) (m).

meMMt

Note that B does not depend on h; since 1. does not depend on RY,.

If |Vi| < [MMe| let B(s*|m;) = 1 for all i > |Vi| and let a(s*) = d,+. Modify the
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strategies so that the principal, instead of offering M, offers 1\7[/,5 = {(MMt] E, SMes &}

mh (hYy, M) it m=m;
rat(hly, My, 1)(m) = (1= 7 (b, My))  if mo= myy 41
0 otherwise

and let (T, (5%, 75 )oev )| e g, 1y = (0% (T8 75 )0ev )| g g, ) fOT @1l other s € SMe et

(F** ( Ty >T:*)UEV)‘(ht,Mt7175) (F* ( Ty s U)Uev)}(ht,Mt,l,s)'

If [V4| = |[M™t| (which implies that V; = V), modify 3 once more so that:

. - w (hYy, M) ( Im;) if s # s*
B(slm;) —{ (1_7T (hy,M;)) otherwise ’

and let a(s*) = d,+ as before. Modify the strategies so that the principal, instead of
offering My, offers M, = {<MM‘,E, SMes A}

ro (hly, My, 1)(m) = 1[m = my],

and let (T, (75, 75*)uev)| e g, .00y = (O (T8 75)vev)| e g, o0 for all other s € SM, Tet

(F** ( T 7T:*)U€V>‘(ht,1\"/[t71,s) (F* ( Ty U)UEV)}(ht,Mt,l,s)'

It follows immediately that the principal’s and the agent’s payoffs remain the same and

we have not changed the distribution over allocations at any history starting from ht. [

Remark A.4. To keep things simple, the proof of Proposition A.2 uses the restriction
that Mt has finite support and SMt is a large set to add an output message that allows

the principal to
1. replicate the agent’s non-participation decision and,

2. make it incentive compatible for him to offer the same continuation upon observing

a* as he was offering before.

One can write an albeit more notationally involved proof that (i) does not rely on
the existence of an output message that is never sent and (ii) respects the one-to-one
mapping between posteriors and output messages. This alternative proof is available

from the authors upon request.
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Proposition A.3. Fiz a PBE, {I'*, (7}, 1) ey, u*) that satisfies the properties of Propo-
sitions A.1 and A.2. Then, without loss of generality, there is a one-to-one map between

output messages and continuation beliefs. That is, for every t, public history ht, M, €
supp T*(ht), if s, 8, € S is such that s, # s, then p*(ht, My, 1,s,) # p*(ht, My, 1, 5}).

Lemma A.1 is used to prove Proposition A.3:

Lemma A.1l. Fix a PBE assessment, {I'*, (7, r*) ey, u*), that satisfies the properties

v v

of Proposition A.1 and A.2. Then, there is another assessment (I'"™**, (7** r**) oy, u**)

that satisfies the properties of Proposition A.1 and the following holds:

1. For all h', for all My € supp I'**(h'), ©**(hYy,M;) = 1 for all v € V such that
S (W) (0. 1) > 0
2. For all ht, for all M, € supp **(ht), if s € S*"*, then

ST () (o, B (B, M) (m) 8™ (s]m) > 0,

(v,hty),;me MMt

3. For all A, the principal’s continuation payoff remains the same and he faces the
same distribution over allocations at each continuation history on the path of the
equilibrium strategy given ht. The same holds for the agent for each of her types
v € V which have positive probability at h'.

Among other things, Lemma A.l guarantees that if the principal’s strategy specifies
that mechanism M, is played at history h’, then any output message s € M (={se
SMe 2 (3m e MM+)Me(slm) > 0}) has positive probability under the equilibrium strategy

profile. Thus, the principal is never surprised by the output messages he observes.

Proof of Lemma A.1. Consider a PBE assessment, (I'*, (7, 7¥) e, u*), that satisfies the
properties of Propositions A.1 and A.2. Suppose there exists a history h* and a typev e V
to which the principal assigns probability 0. That is, thquZ(htA) p*(ht) (v, hYy) = 0. Let
M € supp T*(h'). Let M*™ = {me MMt 23 oo () (0, KL )rs(hty, My, 1) (m) >
0}. If MMAM™ £ 75 note that we can do the following transformation without up-

setting the equilibrium:

First, replace M; by M, = ({gM:, MM: SM:) oMt) where MMt = MMe SM:i =

53



SMe oM — oMeand M (|m) = Mt (-|m) for m e M+ and otherwise, let SM(-|m) =
AMe(m*) for some m* e M+ Modify the principal’s strategy at h' so that instead of
offering My, he offers Mj; that is, let T**(h?)(M,) = I'*(h*)(M,)

Second, modify continuation strategies so that

(F** ( T >T:*)UEV)|(ht M, 1,st,at) = (F* ( s ’U)UEV)|(ht,Mt,175t7at)

for those output messages and allocations consistent with M;.

Third, modify the agent’s strategy as follows. For v’ € V such that
St et gy 1 () (0 1y) > 0, Tet w5 (s, M) = w8 (hy, M) = 1 and 7 (hfy, My, 1) =
r¥(hty, My, 1). Note that for these types we have not really modified the mechanism—in
effect, we have removed the choices they were not making and, hence, removed possible

deviations for them.

Consider now v € V such that thAEHg(ht) p*(ht) (v, hYy) = 0. Set r¥*(hYy, M}, 1) so that
r¥*(hty, M}, 1)(m) > 0 if and only if m solves

max Z 5Mt(5|m) Z aMt(m|s)EF*’”*’r* [U(a(h?), a, a”ttL v)|hl, My, 1,m, s, al,

M
+ My
meM seSM¢ acA

where we are using that M} is only relabeling the input messages and the continuation

histories remain the same as before so that for all m e MfMt:

D0 BMi(slm) Y aMi(m|s)ETT T [U(a(h!), a, @ v) |, MY, 1,m, s, d

sesMi acA
Z M (s|m) Z o™t (m| )BT (U (a(RY), a, a®E 0) R, My, 1,m, s, al.
seSMt acA

Note that the PBE assessment already specified what the agent would have done when
her type is v after she reported m € M 50 we only need to choose her strategy at

(h%y, M, 1).

For such a type v € V, however, it may no longer be optimal to participate in the
mechanism when the principal offers M. Thus, set 7 (h’;, M}) = 1 only if the agent’s

payoff from participating is at least the payoff from not participating. Note that since we
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only made worse the mechanism at h' for the agent when her type has zero probability at
ht, this does not affect her incentives at earlier histories. Hence, this modification does
not alter the PBE, nor the payoffs or the distribution over allocations at each continuation
history from the perspective of the principal and those types that have positive probability
at ht. It does alter the payoff and the distribution over allocations for the agent when
her type has zero probability at h'; however, this only happens at an event that has zero

probability for her given her type. O

Proof of Proposition A.3. Take any h', M; € supp I'*(h') such that there exists s;, s} €
SMe with p*(ht, My, 1,5,) = p*(ht, My, 1, s}), where p*(ht, My, 1, s,) € AV x Hy ™ (R, My, 1, 80)).
Note that by construction, the belief does not depend on the agent’s private history. In
what follows, we abuse notation and denote by i the marginal distribution on the agent’s
type.

The finite support assumption implies that there is K > 1 such that we can index the
principal’s posteriors at history (h*, M,,1,) as follows {1, ..., ux}. Partition S*"* as

follows:
P Jtsee S (B M 1) = i} = S
=1 =1

Item 2 in Lemma A.1 implies that all the output messages in S are generated with

positive probability (from the point of view of the principal).
For each [ € {1,..., K}, let SMt () = {s}", ..., 8%}

Consider the following mechanism: M, = ((fM:, MM SMiy oMi where MM: =
MMe SMi — SMi For each L e {1,..., K}, let

pM (sthlm ZﬁMt slm), M (Sth|m)_0 hel2,....H}

Hl

Pr st
M;(|8é1;ll) Z “*I*,ﬂ'*,r*( t,h) OéMt(' S'ul )

he1 Zh’ 1PTM*7F*77T*77"*(SZZ]1/) t,h/)>
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where for h e {1,..., H},

Prygs s s (sf5) = > p* (B (0, b)Y s (hly, My, 1) (m) 8™ (s [m),

(v,hY) meMMz

where we are using that p*(h')(v, h’y) > 0 implies that the agent participates with prob-
ability 1.

Modify the continuation strategies as follows:

First, for those types v € V such that th p(ht) (v, hYy) > 0, let 7¥(hY, M}) =
i (hYy, My) = 1 and r*(hy, M}, 1) = r¥(h’, M, 1). Because the original strategies do
not depend on h’y beyond A, the new strategies inherit this feature. We modify the
participation and reporting strategy of the types that have zero probability at h! at the
end since their strategies do not matter for the principal’s incentives.

Second, for each [ € {1,..., K} and each a € A(h') such that ZhHilaMt(anh) > 0,

partition [0,1] = Uy [we, we ), where w§ = 0,wf, = 1land for h=1,..., H:

P’I’“* I T*(sflh)ont(a| i )

Zh, L Prys pe e o (84 h,)aMt(a|st h,).

a a _
Wp —Wh_1 =

Fix any a € supp o™(-|s} ). Then, for w € [wi_;,wi),h > 1, let

(%, (75, 7 wev) = (I, (7, 70)eev) i

g —
(h*, M, s, 5 ,a,w) (ht,My,s}' 5y b el

)

That is we append to history (h*, M}, 1 st \,a,w), the continuation strategy that corre-
sponds to (h', My, 1, st a, =—=L)

’thwhfl ’

This clearly guarantees that the principal’s payoff is the same, that he updates to py
after observing séf L for [ € {1,..., K}, and that the continuation strategies are indeed
sequentially rational for the principal. Next we show that payoffs remain the same for
those types of the agent to which the principal assigns positive probability, so that the

above strategies are sequentially rational for them.
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Fix le{l,...,K}. For he {2,..., H}, let k!, denote the following ratio:

B PT‘M*I*J*J’* (S?fh)

h PT}L*7F*77T*,T‘*($ZL1) '

and let k}; = 1. Because the principal updates to the same belief about the agent’s type
after each s € SMt(u), we have that for all v; € supp p and for all h e {1,...,]SM(u)|},

D, b My D) (m)B(stlm) = Ky | Y (R, My 1) (m)B (st m)

meMMt meMMt

The above expression implies that we can write

H ] H l
M) = 3 et ) s 2 57 B Moo
' Pr * Tk ¥ *(Sul,) ’ / kl ’ ’
h=1 h’lH ¥ r# (S h=1 hllh
N PTM*7F*7W*7T*(St,h)a t(a|55fh) B k?llha (a|5th)
L L Pricre s (st )aM (alsth) X MyeaMe(als))
Moreover, we also have the following:
i ZmEMMt T:(h%, Mg, 1)(m>ﬁMt(3m |m) oMt (a sMt )
H, t,h
hm1 21 ey 75 (g, My, 1) (m/) BM: (37, [m))
S kllh M Hy M; Hy
= 3 e (alsth) = aMi{alsfh),
h=1 Zah'=1 V1,1
and
Dmearnte Ty (g, My, 1) (m) M () [m)a™ (alsyy) kllhO‘Mt<a|Sf W
H, - . = = Wh
Z;;i1 Dmeni T (Ml M, 1)(m)5Mt(35lﬁ|m)aMt (a|3ifl,;) h’ | KoM (a|3t W)

o7

a

- Wh_l.



Thus, we can write the agent’s payoff in the original mechanism M; as follows:

Y, e My 1)(m) Yo Mi(sjm) Y, oMi(als)E[U(a(h'), a, ™ 0)|hly, My, 1,m, s, 0] =

meMMt seSMy¢ acA(ht)

K H
= Z r*(hYy, My, 1) Z Z M ( s Z oM a\sth) [U(a(ht),a,a”™t v)|hly, My, 1, m, si‘fh,a]
meMMt =1h=1 acA(ht)

K
= > [Z Do 7kl My 1) (m) BN (s, [m)a™ (alst'y JE[U (a(h'), a, a® 1 v) [y, My, 1, m, s, ]

I=1aeA(h?) Lh=1 meMM:¢
= Z Z Z Z ht ,Mt7 )(m)ﬂMt(S?%‘m)aMt(a|sfl]~1) y
I=1acA(ht) \h=1meMM: ) ,
& Yene T (hly, My, 1) (m) BN (s1, [m)a™: (alst,)
H pat ~
1 Zflil ZrheMMt T:(hil? Mg, 1)(m)/8Mt <Szlll‘m)06Mt (G‘SZLB)

K / H
:Z<Z 2, *(hf“’Mt’l)(m/)B*(th’|m)> > aMi(alsp)x

h=1m/e MMt acalht)
i Dmenr, Ty (W, My, 1) (m) 8™ (s, [m) o™ (a s}, )

H ~
i S Sneara, (Bl M, 1) (1m) BMe (7% [ )M (als) )

E[U(a(ht),a, a>t+1,v)\ht ,Mt,l,m,sf’h,a]

ing

E[U(a(h'),a,a™""*,v)|hly, My, 1,m, s}, a]

= Y ML ZW sthlm) 3 aMialsh) x BIU(a(h), 0,0 o)l My, 1,m, 514 a],
me MMt aeA(ht)
where the first equality uses the labeling of the posteriors we have used throughout the
proof, the second equality is obtained by changing the order of summation, the third
equality is obtained by multiplying and dividing by the probability that, conditional on
the belief being p;, allocation a was obtained, the fourth equality is obtained by using
the definition of o™ and grouping the terms that represent the total probability that the
output message corresponds to belief y;, and the final equality is obtained by realizing

this rewriting corresponds to the payoff the agent obtains under mechanism Mj.

Therefore, the agent’s incentives remain the same when her type has positive probability
at ht.

Finally, for those v € V' such that ZhgeHg(ht) p*(ht) (v, hYy) = 0, choose rk(h%y, M}, 1) to
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solve:

K
max Z/BM;<SQLZI|m> Z O[M; (a|8/12/”1) X EF*’T(*J‘* [U<a(ht>7a7 a>t+17v)|h’%47M:f7 17m7 S/lglll’a]7
meMMt 1 , ac A(ht) ’ 7

and use the payoff of this to calculate 7 (h%y, M}).

It is immediate that with all these modifications the assessment remains a PBE. O
B PRroor or THEOREM 3.1

Proof. Let (I'*, (7, r¥),ev, 1*) denote a PBE that satisfies the properties of Propositions

v v

A.1-A.3. That is, the agent’s strategy only depends on her payoff-relevant type, v € V,
the agent participates with probability 1 when her type has positive probability, and each

output message corresponds to exactly one posterior belief.

Fix ¢ > 0, a history h', and a history hA™ on the path given h' for some 7 > t. For each

M, € supp I'*(h"), define the injective mapping:

o(h™,M,) : M A(V)
o(h, M)(s) = >, p*(h", M, 1,5,)(-, by, m), (11)

h7,eHT ,me MM~
which is well-defined by Propositions A.1 and A.3

Using this, we can define the corresponding canonical mechanism MY as follows:

MS = {(V, M7, A(V)), M7}, (12)
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where??

M (o) = Y B (o7 (T ML) ()| m) e (R, M, 1) (m), (13)
oM () = ™7 (07 (W, ML) (). (14)

Note the construction of SM7 uses the fact that the agent’s reporting strategy only

depends on her private type and not on the payoff-irrelevant part of her private history.

Having done this transformation for ¢t < 7 < 7, we can map any history
T = (A", My, 1,8,...,M;, 1,8, ar, w,),
on the path of the equilibrium strategy starting from h® to:3*
= (K, MC,1,0(h', My) (1), s, . .., ME, 1, 0(h™, M., )(s,), ar, wy).

Thus, we can define the principal’s strategy so that I"(h7")(MC) = T'*(h7)(M,).

Given h™ = (b, My, 1, 84, a4, ..., M,, 1, 8,,a,,w,) and the corresponding h™, the set of

agent histories that is consistent with T given by:

TC TC
Hy (h7) =
{ (thaMtca1avtag(htaMt)(St)aa'ta"'7M7- 171 VUr—1,0r— 1(hT ! MT—l)(ST—1)7aT—17w’T):

Rty e HY (W), (v, ... v,1) € VT

Let «/ (7, MS) = n*(h7;, M) = 1 and 7, (h7 ,MC,1) = §,.

Let [V x H;C (hTC)]* denote the set of truthful histories starting from h’, i.e., those that

have the agent of type v report v throughout ¢, ..., 7 — 1 conditional on her participating

33Suppose that v € V has probability 0 at history ™. We can use the agent’s strategy profile to
construct ﬁMg(-|’U). A consequence of Lemma A.1 and Proposition A.3 is that the principal assigns
C
probability 0 to such v for all s € 5*™" and hence at all Wwe 5*™7  In other words, M~ (ulv) >0
implies that u(v) = 0.
34Note that the agent always participates on the path of the strategy.
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in the mechanism. With this notation at hand, let:

W (W) (o, b ) = p* (R ()L[(v, b ) € [V x Hy (h7)]*]

It remains to check that at history h™, when the principal offers M¢ e supp I (hTC)

and the output message is v, his beliefs are

D1t My 1o (BT, ML) (0)) (B, m) = v

h7 ,meM™Mr

Suppose that we have shown this for A™ and now we show it for A7*! = (b7, MY 1,v).

T b

Note that the probability that the agent is of type v and reports v to the mechanism is:

C

o) = IO )

o 25 1*(h7) () BMF (v[0)

B p*(h7)(v) Zh;eH;(hf) Dimenrms Ty (hly, My, 1)(m) M- (o= (A7, M) (v)m)

- (W) (@) Xy vy Lmvears 75 (W, M, 1) (m/) BMr (0= (b7, M) (v) )

¢

T

W (R, ME 1, ) (v, B, M

T )

~ Y () (), M, 1) (m) BN (07 (7, ML) () [ m)
ettt 2 D ®) Zit ey 1) Sopvearae 730, Mo ) B (o1 (17, ML) ()]

= Z ZM*(thMTa 170_1(thMT)(V))(U7 hzam) = :u*(hTaMTvg_l(hTaMT)(V))(U)

M T
meMMr hA

0

where the first equality uses that the agent participates with probability one and reports
her type truthfully, the second equality uses the definition of BMTC in equation (13), the
third line is a rewriting of the second by taking the summation over h7y € H}, m € MM~
outside, the fourth is obtained by recognizing the expression within the summation is the
principal’s belief at history A” that the agent is of type v is at history A7, and submitted
message m, conditional on the output message being o=*(h™, M, )(v), and the final line

uses the definition of ¢ to arrive to the desired expression.

For any h!, any 7 > t, and any A7 that is on the path given h!, and the corresponding
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K¢, if M, ¢ supp F’(hTC), then

C

7T:)( ZX 7MT) = ﬂ-:( ZUMT)
(b M, 1) = 75 (hG, M, 1)

Note that for any m € MM~ s € SM7_ the previous transformation will take the con-
tinuation strategy that follows (h™, M., s;, a,,w,,1) = h™ ™! to one in which the principal

offers canonical mechanisms.
For any other histories, specify the strategies as in the original game.

Note that we have not modified the outcome of the game after any history h'; in
particular, the new strategy profile implements the path of the original profile. Moreover,
the agent does not have an incentive to lie; otherwise, she would have had a deviation
in the original profile. Additionally, the principal also has no deviations; otherwise, he
would have had an incentive to deviate in the original profile. This completes the proof
of Theorem 3.1. U

C PROPERTIES OF THE CANONICAL GAME

Proposition C.1. Fiz a canonical PBE of the mechanism-selection game (I'*, (73, 1%) vev, ).
Then, without loss of generality, for any public history h, there exists a canonical mech-

anism MY such that

1. MY mazimizes the principal’s payoff from a deviation at ht,

2. Tr:(hfﬁlaMtC) =1,

3. r¥(hy, MY, 1) = §,.
Proof. Fix a history h' and suppose that there exists a non-canonical mechanism M that
maximizes the principal’s payoff from a deviation. Let 7¥(h%, M¥), r*(hY, M?, 1) denote

the agent’s participation and reporting strategy upon observing the principal’s choice of

We make three observations:
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1. In a canonical PBE the continuation strategy for the agent for any h'{* = (h%, M, ...)
does not depend on h'*. (Recall the proof of Proposition A.1 does not rely on the
public history h' being on the path.)

2. Therefore, we can use the same construction as in Propositions A.2 and A.3 to
transform the mechanism and the continuation strategy to guarantee that the agent
participates with probability 1 after observing My and each output message maps

exactly to one continuation belief. Denote by Mj* the transformed mechanism.

3. Finally, we can use the transformation in Theorem 3.1 to construct from M;* a
canonical mechanism, Mtc*, in which the agent reports truthfully and the rec-
ommended beliefs for the principal are indeed the beliefs obtained via Bayesian

updating.

Note that Mtc* is an available choice for the principal. It follows from the previous
observations that in the original strategy profile, we can replace the best response for the
agent and the continuation strategy after the principal offers M by those obtained in

transforming M} to M? *. In the new strategy profile, the principal is now indifferent

between deviating to M and to M¢". O
Corollary C.1. If (T* (7 r*7)ev, i*) is a canonical PBE of the canonical game,

then there is an equilibrium of the mechanism-selection game (I'*, (7}, r%)pev, p*) that

vyt v

implements the same choices by the principal and the agent on the equilibrium path.
D PROOFS OF SECTION 4

D.1  Proof of Proposition 4.1

Compare the solution to (P) to the solution to the following program:

max Y 1o > Bin Y, an(@)[wi(gn, yn(q)) + th] (A)

70/7 7t .
L) h=1 qeQ

> Binluin —tn] =0
s.t. Zh(ﬁl}h — ﬁk,h)[ui,h - th] =0, (Vl)(Vk’ € {Z — 1,7+ 1}) ;
yn(qn) € argmax 32| 110,465 nwi(qn, y)

63



where w; 5, is shorthand for Y, ., an(q)ui(qn, yn(q))-
Theorem D.1. If u; satisfies Definition 4.1, then the values of (P) and (A) coincide.

Proof. We show that the solution to (A) satisfies all the constraints of (P). Note first
that the solution to (\A) satisfies that for all i > 2

Z Binlwin —th] = 2 Bi—1,n[in — th]
h I

Z Bi—1nltiz1n — th] = 2 Binltwi—1,n — th],
h I

so that for all i > 2, we have

Z(ﬁi,h — Bic1in)(Wip —ui—1p) = 0. (15)

h

To show that the statement of the theorem holds, consider ¢ and j < ¢ — 1.The solution
to (A) satisfies

Z Binlwin —tn] = Z Bi—1.n[win — th]
3 h
Z Bi—1n[wi—1n — th] = Z Bi—o.n[wi—1,n — th]
3 I

Zﬁjﬂ,h[ug‘ﬂ,h —tn] = Eﬁj,h[ujﬂ,h — ta).
h h

Adding up, we obtain

Z Z Breh — Bre—1,1)Uk,n = Zﬁzh—ﬁjh (16)

k=j+1h=1 h

Monotonic expectational differences together with equation (15) implies the left-hand

side is bounded above by

M
Z Zﬁkh—ﬁk L)in = O, (Bin = Bin)uin. (17)
h=1

k=j+1h=1
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Equations (16) and (17) imply

Z Binlwin —tn] = Z Bjnlugn — ta]
h P

Therefore, the constraint that ¢ does not report j < — 1 holds.

Similarly, consider ¢ and j > ¢ + 1. The solution to (A) satisfies

Z Binlwin —tn] = Z Biv1.n[tin — th]
3 I
Z Bis1n[Wiv1n — th] = Z Bivo.n[Wiv1n — th]
7 h

Zﬁjfl,h[ujfl,h —th] = Eﬁj,h[ujfl,h — ty].
h h

Adding up, we obtain
j—1

M
Z E(Bk,h — Brt1,0) Uk p = 2(5@',h — Bjn)th. (18)
—1

h

Monotonic expectational differences together with equation (15) imply that the left-hand
side is bounded above by

-1 M M

ZZ Bih = Br+1,0) Uik Zﬁzh Bjn) i p- (19)
k=i h=1 h=1

Equation (19) follows because equation (15) implies Yn (Be.n — Brr1.n) . is decreasing
in k.

Equations (18) and (19) imply

2 Binlwin —th] = 2 Binltjn — th]
h h

Therefore, the incentive constraint that ¢ does not report j, 5 > ¢ + 1 holds.

Finally, because we have all incentive compatibility constraints, it follows that, when
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u; satisfies Definition 4.1, the participation constraints for ¢« > 2 are implied by the

participation constraint for i = 1. 0
Proposition D.1. The participation constraint for i = 1 binds in the solution to (A).
Proof. Otherwise, let € = 31 - (u; —t) and consider the mechanism that charges th = th+e.

All incentive constraints continue to be satisfied, the participation constraint for ¢ = 1

holds, and revenue increases. O

D.2  Proof of Propositions 4.2 and 4.3

We consider program (A) but with the following modifications:
1. The participation constraint binds for ¢ = 1.

2. We write everything in terms of distribution over posteriors as opposed to commu-

nication devices.

3. We replace the principal’s sequential rationality constraint by the correspondence

yi(q) = arg maxyey(q) vazl 1w (q,y) and the Bayesian plausibility constraint.

Therefore, we obtain

max > 7(u, Z/MZ an(@)[wi(a, yi(q)) + ta] (A)

T,a,t
i=1 qe@

224 1 T(Mh)iﬁi [uip —th] =0
s.t. Zh L 71 )(Zgz ZZ:)[uzh —ty] =0, (Vi)(Vk e {i —1,i+1})
thl T(pn) poni = o, i € {1,..., N}

where u;, is shorthand for 3}, an(q)ui(q, yi(q))

Now fix an allocation a = (a,t,y) where o : A(V) — A*(Q),t : A(V) — R and

Y Q x AV) = A*(Uguy*(q, 1), y*(q, 1) = argmaxyey(q) 2 tiwi(q, y), supp y(q, p) <
y*(q, ).
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Consider the program

maXZ 7(pn ZumZah [wi(q; yn(q)) + tr] (Ad)

=1 qe@

Snia T(1n) 2t [ugp = t4] = 0
S48 S () (B2 — B, — ] 3 0, (V) (Y € {i— 1,i + 1))

Mo,k

thl T(pn) poni = o, 1 € {1,..., N}

Note that not all allocations a can be made incentive compatible. To address this is-
sue, let C§ denote the policies 7 that satisfy the constraints in (A,). Letting f§(7) =
SV () SN pnilwi(qn, yn(an)) + th], consider the modified objective function

F(r) = { fo(r) ifreCe

—o0  otherwise

In what follows, f®(7) is the objective function under consideration.

In Doval and Skreta (2018a), we extend the results in Le Treust and Tomala (2017) to

show that given a constrained maximization problem,3’

Zm )\m,um = W,
Vs, g f (171 k) = 50D 4 > A () - S g (pt) = 1€ {1,
" Do AmGi(pm) =y, le{r +1,... K}

(20)

where f,g1,..., 9 Grs1,---, 95 : A(V) — R U {—w0} is a tuple of functions defined on
A(V), it follows that

Cavglw-ngf(u? BATREE 7/YK) = Cavfg17..'7gK (,u, Yiye ooy ’YK)

35We extend the construction in their paper for completeness given that our problem includes multiple
inequality constraints and equality constraints.
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where f919% 1 A(V) x RE +— R U {—o0} is such that

—o0  otherwise

fgl ..... gK(M/yl)"'a,yK):{
(21)

That is, the constrained Bayesian persuasion problem with r inequality constraints and
K — r equality constraints in (20) can be thought of a Bayesian persuasion problem in
which the objective has domain A(V) x RX as defined in (21). We use this to derive

properties about the number of posteriors used in the optimal solution.

Note that (A,) is a version of this program with r = 2N — 2 and

) = [ = L] S (@)t ) — )€ (1N = 1)

qeQ
ooni() = |2 = EELNY () (@) [wilg, (@) — tw)) i € {2, N}
gv-24i( [MW Mo,il]quQ ) (@)[uila, yu(a)) —
gan-1 (1) = /j‘— S ) (@) [ (4. 9 (0)) — £()]
0.1 220

and ~; = 0 for all 2. We then have the following:

Corollary D.1. Suppose the value of (A,) is finite. Then, T puts positive probability in
at most 3N — 1 beliefs.

Proof. This follows from Proposition 7?7 in Doval and Skreta (2018a) and Carathéodory’s
theorem (see, e.g., Rockafellar (1970)). O

Similarly, we can construct a program (M,)
M N )
0,
max » 7(un) Y i Y on(@)[wilg, yn(a) + il yn(@) — D E (wiarn — win)]
=i i=1 o) i1t H0

10,i+1 10,

M (M)
Zh:l (o)t = Ho

st { Zf]y:ﬂ'(/‘h) [M—w] (Wisrn —uip) =0, 1e{l,...,N—1}

Corollary D.2. Suppose the value of (M) is finite. Then T puts positive probability
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on at most 2N — 1 beliefs.

Another immediate corollary is that dropping constraints from a program lowers the

upper bound on the number of beliefs in the support of the solution to the program:

Corollary D.3. Suppose the value of (M,) is finite and only M constraints bind. Then,
T puts positive probability on at most N + M beliefs.

Proof. See Corollary 7?7 in Doval and Skreta (2018a). O

D.3 Ezxzample 2

The next example illustrates that even if the solution to the relaxed program, (R ), satisfies

the monotonicity constraints (M), it may not be a solution to the original problem.

Example 2. Consider the sale of a durable good example in Section 2.1, but with three
types V' = {vp, vy, vg}. We provide a parametrization of the problem such that the

solution to the relaxed program (R) has the following properties:

1. In period 1, vy buys with probability 1, vy buys with probability 0, and vy, buys
with positive probability (but bounded away from one).

2. The allocation satisfies the monotonicity constraints, (M).

3. The communication device generates two posteriors, u#™, ML where

v
P (o) = =, ™M () = 0
VH
v
ME(vyg) = —, M (vg) = 0.

0
UM

4. However, it is not possible to find two transfers, t(u*), t(u™"), that satisfy that
(i) v1’s participation constraint binds, and (ii) both vy, and vy’s downward-looking

incentive constraints bind.

36The reader may recognize u?M | ™ as two of the extremal beliefs in Bergemann et al. (2015): p#M
makes the principal indifferent between setting a price of vas or vy, whereas u™* makes the principal
indifferent between setting a price of vy; or vy. Indeed, the optimal mechanism for the principal need
only put weight on the extremal beliefs. Details are available from the authors upon request.
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The parameters are as follows.?” First, the prior is given by
MO(UH) = 04637, ,uo(UL) = 01194, ,uo(’UM) = 04169,

and is chosen so that it is a convex combination of M M The values for the types

are
vy = 4.8385, upr = 2.5528, v, = 0.0357,

and are chosen so that v;’s virtual valuation is negative, whereas v,,’s virtual valuation

is positive. Also, we set § = 0.95. With these values, we have that

™ (vg) = 0.5276
pME(var) = 0.0140.

and the communication device satisfies:

B og) =1
Blu' L) =1
B(uME ) = pME ()T (pME)0.0140 x 0.8789

Because vy, never buys (the monopolist in period 1 recommends a price of vy, is period 2),

it has to be that t(u*%) = 0. To determine ¢(u™), we have the following two equations:

v — t(u™™) = B foar) (v — (™) +B (M foar)d x (v — var)
B oar) (var — t(w™™)) + B |oar)d x (var — var) = —t(E™")d(var — var) = 0.

The first equality implies t(u™) = vy —§(vg—vas), whereas the second implies ¢(u?M)
vy Hence, it is not possible to find two transfers, ¢(uf™), t(u™*) that satisfy that the

downward looking constraints bind and implements the solution to the relaxed program.

37The Matlab code, which implements the linear program used to derive the example, is available
upon request.
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E OUuTPUT MESSAGES AS RECOMMENDATIONS

Proof of Proposition 5.1. We prove 2 implies 3. That 1 implies 2 follows from the results
of the paper. Because a straightforward mechanism is a particular case of a mechanism,

it follows immediately that 3 implies 1, thus completing the proof.

Thus, consider {(V,8,A(V)),a) and y : A(V) x @ — UA(Y(q)) that solves (R),
or equivalently (3). The finite support assumption implies we can label {uy, ..., uy}
the posteriors that are induced with positive probability by the mechanism. Given h €
{1,...,H}, let (QY)n = {(¢,y) : an(q) x yn(q)(y) > 0} denote the pairs (¢,y) that are
implemented when the belief is p5,. Let (QY)* = Upen(QY ). Consider now the following
mechanism ((V, §’, (QY)*), o) and the continuation strategy 3’ : (QY)*xQ — UA(Y(q))
such that o/, 1 (¢') = 1[¢' = ¢] and y, , (¢)(y') = 1[y" = y]. Moreover, let

m

(g y)lvi) = Z Bpinlvi) o (@)yn (@) (y)-

Clearly, this mechanism delivers the same payoff to the principal and the agent. We
now verify that it remains incentive compatible for the principal to follow the recom-
mendations. Fix (¢,y) € (QY)*. The principal’s belief upon observing the output (¢, )
is
138" (g, y)[vi)
Han(vi) = Z 138 ((a.y)lv;)
) 3 Blualvi)an(a)yn(@) (v)
319 S Blunlvy)an(@)yn(a) ()
_ D 198 (pn|v:) D BB (pnvy)
heH:(q,9)e(QY ), Zj’ “?’ﬁ(ﬂhm’) Zthl Zj M?ﬁ(ﬂh|7}j)ah(Q)yh(Q)(y)

_ Z ; 7(4n)

Hhi ,
heH:(q,y)€(QY ) Zh’:(q,y)E(QY)h, 7(fn)

where recall that 7(uy,) = Z;V L 9B (p5|v;). Then the payoff of the second-period principal
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when he observes (g, y) and chooses ¢’ € Y(gq) can be written as

) D pnawi(g,y) < )y ) 2 Hniwi(d,y):

heH:(q,9)e(QY ) Zh’:(q,y)E(QY)hr 7(pw) i=1 heH:(q,9)e(QY ) Zh/:(qu)E(Qy)h’ 7(pw) i=1

where the inequality follows from knowing that y,(q)(y) > 0 for all hA such that (q,y) €
QY )

Similarly, using the expression in (3), we can write the principal’s payoff from the new

mechanism conditional on the output being (¢, y) as:

N

T\Kn .
Yy (tn) 7 )Zﬂh,i[wi(q,?/;ﬂo) + 1i(q, y; o)),
heH:(q.9)e(QY), & (ay)e@Y), T\HR') =

and note he has no incentive to choose another ¢, because for each h such that (¢,y) €
(QY ), we have that g is in the set of maximizers of 31N | puni[wi (-, Yy s 1)+ (-, Yy, ; 110)]-
O

F  IMPLEMENTATION VIA CONTRACTS

Proof of Proposition 5.2.

Necessity: Assume there exists ¢’ such that (3, q,y) satisfies (DIC-P). Consider i < j
and i, ¢’ such that p(v;)p/(v;) > 0. Then, the following must hold:

WV

wi(q(p), y(p) — ' () = wilq(p'), y(p')) —t' (1)
ui(q(p'), y(p') — ' (1) = uiq(p), y(p) — ' (1),

which implies that

wi(q(u), y(1') —ui(q(p), y() = uilq(u'), y(1')) — uilq(p), y(1)) (22)

That is, letting

Di(p', i) = ui(q(p), y(1')) — uilq(p), y(1)), (23)
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we need that
D;(i' ) = Di(i', 1), whenever pf(vy)p(v;) > 0. (DIC-M)

Note that Assumption 1 implies D;(u, i) is strictly increasing in 7. Thus, (DIC-M)
holds with strict inequality when ¢ < j.

To derive the necessary conditions for the communication device, 3, suppose now that
p(v) ' (v;) > 0 for B(ulvy)B(p'|v;) > 0. Because (3, q,y) satisfies (DIC-P) for ¢/,

t'(1) — ') = Di(p, 1)

Because under Assumption 1 D;(u, p') is strictly increasing in 4, for all j > i, it has to
be the case that p/(v;) = 0, and for all j < ¢, it has to be the case that p(v;) = 0. To
see this, note that if j > 4, then D;(u, p') > t(p) — t(1'), and hence v; > v; can never
select the allocation at p/. Likewise, if j < ¢, then D;(u, ') < t(p) — t(1'), and hence

v; < v; can never select the allocation at .

Moreover, if there are three beliefs u, p/, " such that p(v;)p'(v;)p”(v;) > 0 such that
wilq(p),y(1) = wila(W),y(W)) = wila(p”),y(1")) and D;(p, i) and Dy(u',u") are
strictly increasing in 4, then it has to be the case that: (i) j > ¢, then p/(v;) = p”(v;) = 0,
and (ii) j < 4, then p/(v;) = p(v;) = 0. Then, p/(v;) = 1. It follows then that there are
at most three beliefs at which v; has positive probability — if we had four or more, the
ones that give intermediate utility to v; assign probability one to v;. Hence, they must

correspond to the same belief.

Finally, suppose p(v;)p'(v;) > 0, D;(p, ') > 0 and p(v;) > 0 for j > i. We now show
that for all [ € {i + 1,...,7 — 1}, it has to be the case that p(v;) > 0. Towards a
contradiction, assume there exists v;,l € {i +1,...,j — 1} such that u(v;) = 0. Because
all types have positive probability, there exists u/ : G(¢/|v;) > 0. Because under ¢/,
(B, 4q,y) satisfies (DIC-P), it follows that

w(q(p'), y(1') =t (1) = wilq(p), y(pm)) —t'(u).
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Because p(v;) > 0, we have that

u;i(q(p), y(p) —t' (1) = ui(q(i), y(1')) — ' (1)

It follows that

Di(p', ) = Dj(i, ),

and under our assumption, this inequality is strict. Monotonic expectational differences

implies that

Di(p'sp) = Di(p's o) = /(1) — /().
The above expression contradicts that (8, q,y) satisfies (DIC-P) under t', because v;
would strictly prefer to select the allocation in ' to the allocation in .

Sufficiency: Suppose ([, q,y) satisfies the assumptions in the statement of the propo-
sition. Then, it is possible to label the beliefs u', ..., ™ so that k& < [ implies that
v(p*) = max{v : pf(v) > 0} < v(p!) = min{v : p'(v) > 0}.

Set ¢/(ut) = ui(q(pt), y(u')). Note that, by definition, v; = v(u'). For n > 1, define

recursively

t (") = vy (q(1™), y (")) = (e (g™ 1), y (1) — /(1™ 1), (24)

We now verify that (5, ¢, y) together with ¢’ satisfies (DIC-P). We first check that v; is
indifferent between p and p' whenever p(v;)p'(v;) > 0. Monotonicity of the information
structure induced by S implies that, without loss of generality, v; = v(u) = v(u');
moreover, p = pu', i’ = p¥, with ke {{ + 1,1+ 2} and if k = [ + 2, then v; = v(p'*t!) =
o(plt).

Consider first the case in which k = [ + 1. Then, it follows from equation (24) that

() =) = wslq(u™), y (W) — wsla(uh), y(uh)),

so v; is indeed indifferent. Now consider the case in which k = [ + 2, then recalling that
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l+1) l+2)

(1 v(u?) = v;, we have

I

() = () = wilq(u™), y (W) — wila(uh), y(uh)),
() — (W) = g ), y (1) — wi(g(u' ™), y(p™h),

so that v; is indifferent between selecting the outcome that corresponds to either of the

+2 Finally, we show that when the agent is of type v;, she does

three beliefs, !, !+t p
not want to announce any other belief 1% such that p*(v;) = 0. To see this, let u!(v;) > 0

and consider the case in which [ < k. Note first that

t(u') = ua(q(p'), y(u") + X (e (@(1™), y(1") = vy (@™ ), y(1" ),

n=2
so that
k
() =t (1) = 7 (g (g™, y(1")) = ttaumy (g ("), w1 ™))
n=[+1
k
= 2 Dy(ﬂn)(,u”,,unfl).
n=I[l+1
Then,

wilq(uh), y(ph)) = wilq(u®), y(u*)) + ¢/ (u*) — t' (W) =

= ui(q(u), y(u) — wilq(u®), y(u*) + Y Doy (u", ")

> ui(q(n'), y(1")) — wilq(u®), y(u") + > Di(p", u"™) =0,

n=[+1

where the inequality follows from (DIC-M). A similar argument shows that the same
holds for | > k.
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Supplement to

Mechanism with Limited Commitment
I TwO-PERIOD MODEL

Appendix I shows how to cast the model in Bester and Strausz (2001) and Bester and Strausz
(2007) in the language of this paper (Section 4 does so for the case of transferable util-
ity and preferences that satisfy increasing differences in distributions). This exercise is
useful because one of the ingenuities of their model is that it can capture in the same
setting mechanism design with limited commitment, but also delegation and renegotia-
tion. Hence, understanding how the logic behind our results translates to this case as
well has additional value. To facilitate the comparison between both papers, we follow

their notation as much as possible.
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Their environment is as follows. There is a principal and an agent. The agent has types
v € {vy, ...,un}, each with probability u{ > 0. The principal can commit to a mechanism
(M, pB,S), ), where  : M — A*(S) is the communication device and the map « :
S +— A*(A) determines the allocation.®® The output message s and the allocation a are
publicly observed. The model captures limited commitment as follows. After observing
s and a, the principal updates his beliefs and chooses (possibly at random) y € Y (a); he
cannot commit ex-ante to this choice. We endow the principal with a collection (M;, S;)ier
of input and output message sets in which each M; is finite, |V| < |M;|, and A(M;) < S;.3
Moreover, we assume (V, A(V)) is an element in that collection. Denote by M the set of
all mechanisms with message sets (M;, S;)iez. A mechanism is canonical if (V, A(V)) are
its sets of input and output messages. Let MY denote the set of canonical mechanisms

and let M¢ denote an element in that set.

When the agent’s type is v;, the allocation is a, and the uncommitted action is y, the
agent obtains utility w;(a,y), while the principal obtains a payoff of w;(a,y). The above

ingredients define an extensive form game as in Section 2, where timing is as follows:

The agent observes her type, v;.

- The principal offers a mechanism M = (MM, M M) M} e M.

The agent observes the mechanism and decides whether to participate. Let 7,(M) €

[0,1] denote the probability that type v participates.

x If the agent does not participate, an allocation a* is determined. Having
observed the agent’s decision not to participate and a*, the principal chooses
(M, 0) € A*(Y (a)).

If the agent participates, she privately chooses m according to r,(M, 1) € A(M).

s is drawn according to fM(-|m). and a is drawn according to a™(-|s).

- The principal observes s and a and chooses v(M, 1, s,a) € A*(Y (a)).

38Bester and Strausz (2007) actually do not allow for randomized allocations. It follows from the
discussion in Section 2.2 in the paper that not allowing for randomized allocations may be with loss of
generality.

39Technically, we only need that S; contains an image of A(M;).

40Bester and Strausz (2007) do not model participation explicitly; rather, they solve for the optimal
mechanism that guarantees the agent receives at least a non-negative payoff.
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We are interested in characterizing the outcomes of the game, and we use Perfect Bayesian
equilibrium (PBE) as a solution concept. That is, a strategy profile (I', vy, (7, ry)vey ) and
a system of beliefs u such that the strategies are sequentially rational given the beliefs and
the beliefs are derived from Bayes’ rule whenever possible. That is, letting the principal’s
belief about the agent’s type after observing that the agent did not participate be denoted
w(M, 0)(v;), we have

[ (1= m,(M))]1(M, 0) (v;) = (1 = 7, (M)).

veV
Letting u(M, 1,s,a)(v;) denote the principal’s belief that the agent is of type v; when
he offers mechanism M, the agent participates, output s is realized, and allocation a is

drawn, we have

D) 20 M)y (M, 1)(m)BM (sjm)]u(M, 1, 5,a) (v) = pfm,, (M) Y 7y (M, 1)(m) 8 (s|m).

veEV meMM meMM

To simplify notation in what follows, let u;(a,v) = X cy () Y(¥)ui(a, y); define w;(a,v)

similarly.

We start by observing that, without loss of generality, the agent always participates in
any PBE. To see this, consider a PBE assessment (I', 7, (7, 7 )vev ), pt). Let M € supp T
be such that m,(M) < 1 for some v € V. Note that the finite support assumptions on the
communication device imply that there exists s* € SM such that Y, _,,m SM(s¥|m) = 0.

Moreover, because |V| < |[MM]|, label MM = {my,... my,...,mpym}. Define

BM(slma) = > M (slm)ry, (M, 1)(m).

meMM

Consider then the following mechanism M’ = (MM, M §M') oM".

in(M)BK“(s|mi) if s # s*
1 —m,, (M) if s = s*

)

BM (slm;) = {

and a™'(s*) = §,+. Moreover, let y(M’, 1,5* a*) = v(M,0,a*). Note that if we modify
the strategies so that r, (M',1) = 4,,,, the principal and the agent receive the same

payoff, and the agent finds it optimal to participate with probability 1.
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Bester and Strausz (2007) show that, without loss of generality, M = {vy,...,vy} and
the agent reports truthfully. Analogously, it follows that, without loss of generality, we
can focus on Perfect Bayesian equilibria where the principal offers M =V and the agent
is truthful. To see this, consider a PBE assessment (I", 7y, (7, 7 )vev ), pt): Let M € supp T
and r,. (M, 1) € A(MM) denote the reporting strategy of the agent when her type is v;
and the principal offers M. Then, her payoff can be written as

S ML (m) Y M (slm) 3 aM(als)ui(a,1(M, 5, a)

meMM seSM acA

= ( S (ML 1) (m) M |m>Za (als)ui(a, y(M, 5, a))
seSM \meMM agA

= 2 6 |UZ ZOC (l| uz (M s (1))
sesSM acA

Therefore, by selecting {(V, 5%, S), &), the principal can implement the same outcome and
truthtelling is the agent’s best response. We focus hereafter on equilibria of the game in
which the principal chooses mechanisms with M = V and the agent participates with

probability one and truthfully reports her type on the equilibrium path.

We now argue, that without loss of generality, if s, # s;, then u" # p/. Hence,
output messages can be taken to be the principal’s posterior beliefs about the agent’s
type. Consider, for example, a PBE and let M e supp I'. Suppose s; # s; exist, but
p=uM,1,s,) = p(M,1,s;,-)." Let S, = {s1,..., s}, } denote the set of output
messages that lead to belief 4. One can alternatively define the following communication

device and allocation rule:

= > BM(sl), B(s)lv) = 0,h e {2,... H,}

seSy

oy S M)
o/ (a]st) Z,; Sres, S () (als),

’ / Z 1:uz (|1)) M(a|)
M, ,G,,Slf = L M7 S, a )
[ sghzsles#hzuu@ﬁw Ty M 1o 0

#1Recall that updating -conditional on participation-does not depend on the allocation a.
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where 3',a/,7 coincide with the original mechanism and continuation strategy for the
remaining output messages, and we let M’ in the definition of the new strategy for the
principal be the mechanism defined by the above communication device and allocation
rule. Clearly this does not change the principal’s payoff, and when he observes s/, his

beliefs are updated to ju, such that + is optimal.

We now verify that the agent’s incentive to tell the truth remains the same. Toward

this end, for i € {2,..., H,}, let k; denote the following ratio:

S Blsilvy)ud

kli = )
S Bsalvy)ul

and let ky; = 1. Because all output messages in .S, lead to a belief of 11, we have that for

all v; in the support of p,

B(silvj) = kuB(s1]vy).

Note that k;. is independent of v;. Using this we can write

B(stlv) = BM(sk o) Ekh

H, I
o'(als}) = 3 —<——a™(alsn),
h=

1 2w R
il kina™(als

~(M, 1, s, a) Z th 51) Y(M, 1, 81, @) (y).
22 koM (alsy)

Thus, we can write the agent’s utility when her type is v; € supp p under the new

mechanism as follows

Blstlv)[; o' (alsh) 27/ (M, 1, s}, a)(y)u;(a,y)]

acA

+ Z 6 |Uj 2 o a’| 2 ’7(M71737a)(y)uj(avy)a

S¢Sy acA yeY
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where we can expand the term in brackets to obtain

h=1 h’ L kiwa™(alsy)

m%m@}um®2<j ke (alsn) (M¢%JMOWWMF:

acA Y

zmmmZdwﬁ(j xpaT(alon) )(Zﬂmm%mwmww)=
acA h=1 h’ klh’aM(a|5h’) yeYy

S (3 gy ) (3 el ) (5 .

S UJ a|Sp 7( y Sh, @ )<y>u](a7y) ]

aeA \ho1 2y B h=1 h’ " ke (alsy) yey

= B(s o) (2 Lkh M(a|8h)) (Z Y(M, 1, 81, @ )(y)uj(a,y))]

acA \h=1 Lip/ 1n yey

Hy,
= Z Sh|U] ZOJ Sh|v_] 27 M L, sp,a <y>uj(a7 y)’

so that the agent’s utility remains the same. Similar steps also show that truthtelling is
preserved. Therefore, we can take S = A(V), 5:V — A*(A(V)),a: A(V) — A*(A).

Finally, arguments similar to those in the proof of Proposition 3.1 in the main text
imply the principal’s search for an optimal mechanism can be constrained to the class of

canonical mechanisms.

Thus, we can write the principal’s problem as follows. Following the notation in
Bester and Strausz (2007), given a canonical mechanism MY, label {u1, ..., ug} < A(V)
the output messages in the support of the communication device. Let £, = S(un|v;).

Given {p1, ..., iy}, we can write the principal’s problem as follows:

max ) i} ) elalsn)wila, 1a(a)) (25)
ik acA

(Viv i'€ {17 SRR N}> Zh Bi,h ZaeA a(a|3h>ui(a7 th(CL)) = Zh Bi'ﬁ ZaeA &<a|sh>ui(a7 th(CL))

(Vi€ {1,..., N}Y) 22 Bih 2igea @(alsn)uia, ym(a)) = 0

supp 7, (a) S arg maxyey () 2; prwi(a, y)

(Zj 5]‘&#?)#? = @,hﬂ?

s.t.
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Rewrite the objective function in (25) as follows:

> () Y alal) Y il ula))

neA(V) acA

where

() = > u’(0)B(ulv).

Moreover, we can rewrite the incentive compatibility and participation constraints as

follows:

> T(Mgm > alalpyui(a, v.(a) | = ngw > alalp)ui(a, vu(a)) | (26)

peavy Mo laca avy M |aea

Z T(Mg/ii Za(am)ui(a,w(a)) > 0. (27)

neA(V) Hi | acA

Then, letting w;(c, v,) = X ,eq (@)w;i(a, v,(a)), we can write (25) as follows:

maxE, B, [w.(a(u), 7] (28)

E-p= ,uO
s.t. ¢ Equations (26)-(27)

(Va € A)supp 7,(a) S argmax,ey (q) Zfil wiw;(a,y)
We have the following:
Proposition I.1. The following are equivalent:
1. There exists a mechanism {(V, 3,5), a) that solves (25).
2. There exists a canonical mechanism ((V, ', A(V)),a’) that solves (25).

3. There exists a Bayes’ plausible distribution over posteriors and an allocation rule
a: A(V) — A*(A) that solves (28).

The result follows immediately from the previous discussion. Proposition 1.1 does

not allow us to interpret beliefs merely as recommendations, because a(u) need not
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maximize E, w(&,,). As we showed in Section 4, when there is transferable utility and
the agent’s utility function satisfies single - crossing, this property holds for the solution
to the relaxed program: The first-period principal chooses a(u) to maximize the expected
virtual surplus, where expectations are taken with respect to p, whereas the second-period
principal chooses 7,(a) to maximize ) p;w;(a,y). Note, however, that for each realized
allocation a, we can think of the first period principal as sending recommendations to

the second period principal that will be obeyed.

As in Section 4, if we assume wu; satisfies monotonic expectational differences (see
Kartik et al. (2017) or Definition 4.1 in the main text), we can reduce the principal’s

problem as follows:

Proposition I1.2. Suppose the family (u;)Y., satisfies monotonic expectational differ-

ences. Then, to find a solution to the principal’s problem, it suffices to check that

1. The local incentive compatibility constraint holds (for all v;, the agent does not

report v;_1 or vir1 when her type is v;).

2. The participation constraint holds when the agent’s type s vy.

Using these conditions, and the results in Doval and Skreta (2018a), we can derive the

analogous result to Propositions 4.2-4.3 in the main text:*?

Proposition 1.3. Suppose the family (u;)Y., satisfies monotonic expectational differ-

ences. Then the optimal mechanism for the principal uses at most 3N — 1 posteriors.
II  GENERAL COMMUNICATION DEVICES

As discussed in footnote 2 in the main text, we could have considered the following more

general version of a mechanism:
M, = (MM, gMe gM) (29)

where Mt : MMt s A*(SMt x A). That is, associated to each input message there is a

joint distribution over output messages and allocations.

It is immediate that for any M, as defined in the main text, we can let 3(s,alm) =

42See also the discussion following Proposition 4.3.
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M (s|m)aMi(a|s) and obtain a mechanism as in equation (29). This appendix shows
that, conditional on showing that the canonical set of output messages is A(V), then
the formulation in the main text is equivalent to that in equation (29). The formulation
of a mechanism in the main text has the advantage that it highlights the role of the
communication device separately from that of the allocation rule. Since this is without

loss of generality, we favored the definition in the main text for “pedagogical” purposes.

We proceed as follows. Section II.1 shows that Proposition A.3, which shows that
without loss of generality there is a one-to-one mapping between output messages and
posterior beliefs, extends to the case in which mechanisms are defined as in equation
(29).%% Section II.2 then shows that any mechanism as in equation (29) can be written

as in the main text once we know that SMt ~ A(V).

II.1  Proof of Proposition A.3 for mechanisms as in equation (29)

Following the notation in the main text, given a mechanism M;, define
(S@A™ = {(s,a) € SM* x A: (Im e MM) : Mt (s, alm) > 0},

to be the set of pairs (s, a) that are possible under mechanism M;. As in the main text,

we remove from the tree all those public histories that are consistent with mechanism M,

and (s,a) € SMt x A\(S @ A)*™".

Similarly, define S*™ = {s e SM*: (Ja € A) : (s,a) € (S® A)*"*}. Consider then a
Perfect Bayesian equilibrium assessment, (I'* (7%, r*),c, u*), that satisfies the following

properties, which follow from Propositions A.1 and A.2 and Lemma A.1:

1. The agent’s equilibrium strategy only depends on her type v € V and the public
history,

2. For all  and public histories hf, for allv € V, hYy, b, € HY (ht) such that p*(ht) (v, BY), p*(h) (v, hY
0, then " (W)(v, By = " () (0, By,

3. For all ¢, k', for all v € V such that thAeHg(ht) p*(h) (v, hYy) > 0, then 7k (h%, M,) =
1 for all M, € supp I'*(h!),

43Tt is immediate that the proofs of Propositions A.1 and A.2 and Lemma A.1 do not depend on how
we defined the mechanism.
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4. For all ¢, ht, for all M, € supp [*(R!), if (s,a) € (S ® A)*"", then

D 4 (W) (0, 1y )y, M, 1) (m) 8 (s, alm) > 0.

(v,ht))eV x HY, (ht),me MMt

For such an assessment, we now show that, without loss of generality, there is a
one-to-one mapping between output messages s € S*™ and continuation beliefs.
That is, for every ¢, public history k', M; € supp I'*(h'), if s;, 8} € S*" is such
that s; # s}, then ,u*(ht Mt, 1,s4,a) # p*(h', My, 1,8},a’) for any a,a’ such that
(st,a), (s1,0) € (S @A™

Proof. Fix a history h! and M, € supp I'*(h?). The finiteness of M™* and the finite
support assumption on ™t implies that there exists 1 < K < |(S® A)*Mt| such

that the principal’s prior at h* splits into H posteriors, {ju1, ..., 1}, after observing
(s,a) € (S® A)*. Hence, we can write,

(S® A)*Mf _

U (S®A)™) = Jl(s,0) € (S@A™ ¢ (W', My, 1,5,)() = jur}

k=1

Let {s*,...,s%} denote K elements of SM¢. Define fM: : MMt > A*(SMt x A) as

follows

BMi(st, alm) = > BM (s, alm).
(s.0)e((S@A)™ ),

Define M} = (MM, gM: SMe) At history A', let the principal offer mechanism
M; instead of M;. In a slight abuse of notation, let the agent’s best response be
determined as follows. For all v € V and hy € HY(h'), let ¥ (h%y, M}) = m*(h'y, M)
and T:<hf47 M:fv 1) = T:<h’f47 Mtu 1)

Note that (i) B(s¥, alm) > 0 < (Is € SM*) : (s,a) € ((S® A)*™");, and (ii) when
the principal observes (s}, a) for any a € A such that Y _, i, B(s), alm) > 0, his
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beliefs update to ug. To see that (ii) holds, note that

Z p*(ht, M, 1,55, a) (v, hYy,m) =
ht,eHY (ht),meMMt
_ v g (BY) (v, Bly)ri (B, M, 1) (m) BM: (55, alm)
/ / i
p(hY) (v, by e (RY ' MG, 1) (m/) BMe (s, alm!)

Rt eHY (ht),me MMt Z(vchg’),m'eMMt
_ Z th e HY, (ht),me MMt r(hly, My, 1) (m) BMt (s, alm) y
(s,)e((SRA) ™Mt Y, Z@’@)meMMt p*(ht 7Mt,17Saa)7"z7(hA7Mt71)(m)ﬁMt(s,a\m)

Z(a,@)meMMt (B My, 1, 5, @)y (ly, My, 1) () S (s, al )

Sty e T (B M, 1) (m?) BME (s alm)

Z ( )2(5,@)%EMMt :U‘*(ht’Mt, 15 S,Q)Tﬁ(tha Mt’ 1)(7?71/)51\/[1& (S’ a|ﬁ1)
= iy (v

(s,a)e((S@A)*™M1), Z:(v’,htA'),m’eMMt T:’(hil/7 M, 1)(m')5M;(3z7 alm’)
= pk(v).

We now modify the continuation strategies. For each 1 < k < K and a € A such
that Y, ape, BM(s5,alm) > 0, label {s}, ..., s% } the output messages s such
ch a—

that (s,a) € ((S® A)*"")z. Partition [0,1] = U, [wg,wg+1), where w§ = 0 =
1 —wg,,,and for h=1,... , Hy,— 1

2 g (W) (v, W) (hly, My, m) BN (sf, alm)
o o (v,ht))eV x HY, (ht),me MMt
s H,a (Y (v'. btV (Rt M 1AM ( ok /
h'=1 Z ILL ( )(U7 A)Tv’< A t7m>/8 (Sh’7a|m>

(',ht, VeV x HY (ht),m/e MMt

Then, modify the continuation strategies so that

(F* ( Ty v)UEV)|(ht M1 7sk,aw) - (F* ( Ty v)UEV)|(h M, 1,5k wowp )'
Ry whwho1

Similar steps as in the proof of Proposition A.3 show that the agent’s payoff has

not changed and hence her the specified strategies are still a best response. O
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1.2 Equivalence

Now consider an equilibrium assessment of the mechanism-selection game in which the

principal uses canonical mechanisms in each period ¢ and history Af, that is
MY = (V. 8™ A(V)), (30)
where M7 : V> A*(A(V) x A). Thus, if M € supp I'*(h'), then

M*(ht,Mt,l,V, a)(v,-) _ M*(ht)(v>ﬁMT (V,CL|U) _ M('U)a

Dev 10 (1) () BME (v, alv’)

whenever Y, p*(h!) (/) M (v, av’) > 0. Fix v e V such that pu(h')(v) > 0 and v(v) >

0. The finite support assumption allows us to label the set {a € A : M (v, alv) > 0} as

{ai,...,ayv} for some NV € NV 4

Define

Ko=) (A (v, B BM (v, aif).

veV,hl, eHY (ht)

Note that Bayesian updating implies that for all v € V' such that v(v) > 0, the following
holds

kzy o ﬁ(]j7 ai|v)

¥ Bnal) (31

Define the following mechanism

ML = ((V, BME AV, oM, (32)

44 Note that as long as v satisfies the conditions, the set does not depend on the selected type
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where

Zyev,htAeHg(ht) p*(h) (v, B )51\/{? (p, alv)
Zv/e\/ht t eH!, (ht) (R (V' By ) e a BM (M a'lv’)
N|U 2 pM M, alv).

acA

,C
o™t (alp) =

Fix v such that gMf (v, alv) > 0 for some v € supp Zh% w*(hY) (-, hty). Note that

Zve\/h;em ht) e (h*) (v, B )BM‘C(’% a;|v)

D 'eV,ht, e HY, ( p*(ht) (', Y )Z BM?(V a'lv')
Zvevht eHY, (ht) p*(h*) (v, B )5M (v, al’“)_
D 'eV,ht e HY ( p*(ht) (v, hYy) 21:1 My (Va aﬂv)é
K (zvev,h; () (0, B )V (v, an ) ) /R
R (Dm0 ()00 W) B (v, o)) b

Ky

NY 3..,°
=1 kl

Moreover,

M y]v ZBM v,a|v) = ZBM v, a1|v)

_ly — BM?(I/’CLI’U) %ky
kY kY i
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Then,
t V|U ZO& t al| F* *r*[ (a<ht>7al7'7v>|hf47Mtc717V7al] =

N k"/ * ok ok

=1 1=1 Zuj=1";

—ZB (v, a4 |v EF* s [U(a(h'), ar,-,v) W'y, MY, 1,0, /]

1

— Z BME (v, @) BT (U (a(ht), ar, -, 0) |, ME 1 v, a]

Hence, we have not modified the agent’s payoffs.
IIT PROOF OF COROLLARY A.1l

In the Appendix, we claim that it follows from Proposition A.1 that for any PBE as-
sessment, (T* (7% r¥),ev, u*), there is a payoff-equivalent PBE assessment where the

v v

principal’s beliefs at each public history A satisfy that
() (0, ) = () (0, )

whenever hYy, bl € HY(h') and p* (k) (v, hY), w*(ht)(v, hY') > 0. Clearly, Proposition A.1
implies that this holds on the equilibrium path. We now show that the same can be done

off the equilibrium path.

Thus, consider a PBE assessment, (T'*, (7, 7¥),ev, u*), such that the agent’s equilib-
rium strategy only depends on her payoff-relevant type and the public history. Let h
be the shortest length public history off the equilibrium path that satisfies that there
exists v € V, hty, by e HY(h') with p*(h?)(v, hYy), w*(h') (v, hY") > 0 and p*(h)(v, hY) #

(R (v, BY).
Because the agent’s strategy does not condition on the payoff-irrelevant part of her pri-
vate history, the principal’s beliefs at histories h™ on the path of the equilibrium strategy

profile given h' depend on the agent’s payoff-irrelevant private history only through h',.
That is, if b7, 7" are both successors of h'y, then p*(h7)(v, h7) = p*(h7)(v, h7Y').
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We now modify the principal’s beliefs at history h' so that they do not depend on the
agent’s payoff-irrelevant private history. Similar calculations as in the proof of Proposition
A.1 then show that the principal’s payoff does not change; hence, his strategy remains a

best response.
Define HY (ht)(v) = {ht, € HY(h?) : p*(h?)(v, hY) > 0} and let

thAEHfA(ht) w* (ht)(v,h%)
u**(ht)(v, hf4) = |HY ()]
0 otherwise.

if bty € HY (v)

We now modify the principal’s beliefs in the continuation histories to reflect the change
in the principal’s “prior”. Fix 7 > ¢t + 1. For any history, h”, on the path of the
equilibrium strategy profile given h!, the principal’s beliefs that the agent is of type
v and her payoff irrelevant private history is A7, = (h7, M, 1,m,,s,,a,) at history
Rt = (h",M,, 1, s,;,a;), M, € supp I'*(h") are given by

¥ (W) (v, hyy)my (R, M )ri( Z,MT,I)(mT)ﬁMT(sT|mT)
2 2, W (W) (0, B ) s (R, M )ry (R, My, 1) () BM7 (s2[m7 )

(0 0, ) =

(33)

and at history A" = (h7, M., 0, s;, a,), M, € supp I'*(h") are given by

sk h’T h’T 1 o £ T M
,LL**(hTJrl)(U, hz:rl) _ I ( )(Ua A)E Nﬂ-v( A l}) ’ (34)
277 2am, W (AT)(0, ) (1 = w3 (R, M)
for hfl € Hjl“(h”l).
As in the main text, we now show by induction that for any 7 > t,

DI G (O v B S T Gl (G AR (35)

T+1 T+1 T+1 T+1 1
h,TeH}, h, T eH T (hTHY)

As in the main text, we do so for those histories at which the agent participates. It is

immediate that this also holds for those histories at which she does not.

For 7 = t and h'*' = (h', My, 1, s, as), the denominator on the right-hand side of
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equation (33) can be written as:

DT (R (@, By (R, My)rs (hly, My, 1) (m) BN (s¢|m)

0,ht, meM™Mt

=SS b M (b My Dm)BM e (sidm) S (0 (5, )

T meMMt hieHYT (ht)(v)
= 2D (@) (0 M) (B, My, 1) (m) 8 (s ).

0,h, me MMt

where the first equality uses that the agent’s strategy does not depend on h’; and that
only hly € Hﬁ; (v) have positive probability and the second equality uses the defini-
tion of pu**(ht)(v,hYy). It then follows that for A'*' = (h!, My, 1,5, a;) and At =
(hly, My, 1,my, s, ay)

Do (W (0, B = Do, 1 (RY) (v, W) (Rly, My)ry (hly, My, 1) (me) 8™ (s |me)
AR zmeMMt 5 ) o W 3 By, M Ay M, 1)) B0 s )

Z h') (v, ) (hly, M) rs(hly, ML, 1) (my) BN (54| my)
Zv ht, ZmEMMt ( )(’[},h%)ﬂ@(hi‘,Mt) 6(hf47Mt71)(m)6Mt(5t|m)

_ Eu*(htJrl)(U, hi;rl).

Adding up both sides over m; € M™ delivers equation (35) for 7 = t. Similar steps to
those in the proof of Proposition A.1 show that indeed equation (35) holds for 7 > ¢ + 1.
As in that proof, this is enough to show that the principal’s payoff does not change under

the new beliefs. Thus, his strategy remains a best response.
IV CONTINUUM OF TYPES

IV.1 Preliminaries

Primitives: Let V, A denote compact, metrizable spaces. V denotes the set of agent
types, endowed with a full support distribution uo. A denotes the set of allocations. Let

M, S denote two Polish spaces. All sets are endowed with their Borel o— algebras.

There is a set of ex-post allocations, Y, also compact and metrizable. The set of feasible
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ex-post allocations can depend on the allocation and is captured by a correspondence
YV, a measurable subset of A x Y. For each allocation a€ A, Y, ={yeY : (a,y) € V}.

Given a Polish set Z, let P(Z) denote the set of Borel probability measures on Z
endowed with the weak* topology, o(P(Z),Cy(Z)). If X is any other measurable space,
a transition probability is a measurable mapping v : X — P(Z). That is, for any Borel

set Z' < Z, v(Z|x) is a measurable function of x € X.
All product sets are endowed with the product topology and the product Borel c—algebra.

The principal’s von-Neumann Morgenstern utility function is w : A x Y x V — R,

whereas the agent’s is u : A x Y x V — R. Both functions are measurable.

A mechanism is any (3, «a) such that g : M — P(S) and o : S — P(A) are transition

probabilities. Let I'" denote the set of all mechanisms.

Equilibrium: A strategy for the principal consists of a choice of mechanism and the
specification of a mixed action conditional on every s € S he may observe. A strategy
for the agent maps each of her types to a distribution over messages. To keep matters
simple, we avoid discussing the agent’s participation decision, but dealing with it is

routine.

The focus is on equilibrium outcomes of this game, in which equilibrium means PBE. It
consists of a mechanism and three measurable maps: a strategy for A, r : V — P(M);
an ex-post choice for P, v:S x A — P(Y) and a belief system p: S x A — P(V) such
that

1. p is obtained from pg, r and § whenever possible (x)
2. (s, a) is supported on arg maxyey, §,, w(a,y, v)dp(v|s) for all (s,a) € S x A

3. r(v) is supported on arg maxpens §g, 4.y t(a, y,v)dv(y|s, a)da(a|s)dB(s|m) for all
veV

() Define for each m € M,

(3O (S x A) = | a(Als)dB(sim) € P(S x 4),

!’

for each measurable S’ x A’ < A x S.
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Remark IV.1. Letting u(S'xA’'|m) = (6®@a)™ (S’ x A"), note that ((as = a(:|s))ses, 5(-|m))
are a disintegration of u(-jm) (see, e.g., Balder (2001)). The meaning of this is that for

any bounded measurable function ¢ : S x A — R,
[ oauttm) = [ (] ots.a)do(@passim)
Then, Bayesian updating

J,JMW@OO”( S"x A')dr(mlv)dpo(v f f JA (V'|s,a)d(B @ )™ (s, a)dr(-|v)dpuo(v).

1V.2  Revelation Principle

Canonical Messages: The agent’s reporting strategy and the mechanism [, induce a

measure on M x S, (r® )", as follows:
@8O x8) = [ (S mydr(mlo),
M/

for any measurable M’ x S € M x S.%® Note this defines a new transition 3* : V x P(S)
and that ((Bm)menr, 7(+|v)) are a disintegration of (r ® 3)".

When her value is v, the agent’s payoff is given by
[ ]| wtesorntvls,apdatals)assimpde o) - (36)
mJsJaldy
- || | sty oarls.apdatals)asisp), (37)
sJdaldy

where the equality follows from applying backwards the definition of a disintegration.

Let uf = maxyen §g 4 5y w(a, y,v)dy(yls, a)da(als)dB(s|m). By definition of r(m|v),

JM L L L u(a,y,v)dy(y|s, a)da(als)dB(s|m)dr(m|v) = JM wrdr(mlv) = v, (38)

Moreover, for any m ¢ supp r(:|v), ui = {,§, §, u(a, y,v)dv(y|s, a)da(als)dB(s|m). W

45Recall we endow all product sets with their product Borel o-algebra.
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argue that 7*(v) = §(v) is an optimal reporting strategy when the mechanism is (8%, «)
and the ex-post choice is still y(|s,a). Equation (36) implies 7*(v) = d(v) achieves u?.

Toward a contradiction, suppose that v/ € V', v/ # v exist such that

wi= [ | e oisis etz o < [ | | atap ool adofals)as 6,
(39)

The right-hand side of the above expression equals
|| | sty oiaris. apdatals)asisi) -
sJaly
||| | wtavorartuis. ajdatals)aststmar o).
MmJsJaly

Therefore, equations (38) and (39) imply

JM L L L u(a, y, v)dy(yls, a)da(als)dB(s[m)(dr(m|v) — dr(m[v)) < 0.

This implies that a € > 0 and a set M’ € B(M) : r(M'|v") > 0 exist where

LLLWWMWMMMWMMMM>@+E

for all m’ € M'. This contradicts the optimality of r(-|v).
We now check that we have not changed: (a) P’s payoff and (b) Bayesian updating.

To see that the principal’s payoff is the same as before, notice that

L(LLLLW@%WMWMWMMMMMMWM)M@:
ZLKLLLM“WWMMWMmMﬂmOWM»

by definition of disintegration.

To see that Bayesian updating has not changed, notice that for any measurable S’ x A’ <
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L/(ﬁ*@A’)v(s’  A)dpio (v) :f/ U,O‘(A'|S)dﬁ*(s|v)) d(t)

- [ ([ ([ atarsastsim) ) artnle)) duate)

) JM f . PWVls:)d(5@ )" (s, a)dr(-|v)dpo(v)

[

N J‘S’ A/p(V’|s,a)d(ﬁ* ®O‘>U(S7a’)dlu0(v)’

Jv
which yields the desired expression.

Canonical Outputs: Given the result in the previous section, we focus hereafter on
mechanisms (5%, a), where 5* : V — P(S) is a transition probability. For now, focus
on mechanisms such that « : S — P(A) satisfies that «(:|s) = d, for every s € S. Then

Bayesian updating reduces to

(S et f | o195 o) dnato)

for every measurable S’ < S. Using the notation from before, this says that

@8V % 5) = | | V190 © 570 9)

In what follows, we delineate rigorously how p : S — P(V) is constructed. Consider
(V x S, Bygs) and endow it with the measure (uo ® £*). Let the measurable mapping
ms 1 V x S+ S denote the projection onto S and let o(7g) = {mg'(S’) : S’ € Bs} denote
the sigma algebra on V' x S induced by 7mg. Note that o(7s) € Bygs-

Given a function f € L'(V x S, Bygs, (o ® 5*)), that is, a random variable, the con-
ditional expectation of f with respect to o(rg) is the function E[f|o(7ws)] that satisfies
that for every D € o(mg),

| raae 57 = | Blflotms)dme 5)
D D
Recall that E[ f|o(7s)] exists and is uniquely defined.
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Define the random variable X (v,s) = Lyys(v,s) and P(V']S) = E[X|o(7g)] as the
random variable Y : V' x S +— R that satisfies that for any D € o(7s),

| vames) - | ximes)

In particular, if D = D’ x D",
J J P(V'|S)dB*dpy = J J Lyrws(v, 8)dB*(s|v)dug(v) = J B*(D"v)dpo(v)
! 4 D/ D// D/mvf

— | | o0 o visdgue )

- | | a1 s

where the next to last equality follows from the definition of p by Bayesian updating
and the last equality follows from noting that if D = D’ x D" € o(rng), then D =
V x D", D" € Bs. Thus, p(V'|s) is a version of the conditional probability P(V”|S).

Letting P(V') denote the space of probability measures on (V, B(V')), we can let p: V x
S — P(V) be defined by p(,s)(-) = P(-|o(ms)) (v, s). It follows that §,, ¢ py.d(pox 8*) =
Ho-

Assume finally that for each p,a, a unique maximizer y* exists. Define W : {(p,a,7) :

peP(V),ac A,vY')>0=Y" < ),} —» R tobe

W(p,a,v) = fv L w(a,y,v)dy(y)dp(v).

Then, by the definition of conditional expectation,

) U | wlats)..vpdrtls. s |v>) e

J f J L 0)dy(yls, a)|o(ms)]dB*(s|v)duo(v)
- Jv L W (pu,s; als),v)d(po x B*)(s,v)

= W(p,a,v)dr(p),
P(V)
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where the last equality follows from defining for any Borel set P of P(V'), the measure

7(P) = (1o ® *)({(v, 5) : pus € P}).

IV.3 The envelope representation of payoffs

An advantage of the continuum assumption is that incentive compatibility of the mecha-
nisms implies the agent’s payoff from the mechanism can be represented via the envelope
theorem. We now derive the corresponding version for our setting. This implies that in
the program analyzed in Section 4, downward-looking incentive constraints are always

binding, so the relaxed program provides the correct benchmark.

We now make assumptions on the agent’s utility function so that we can apply the
envelope theorem of Milgrom and Segal (2002). Assume V' is a compact subset of the
real line. Assume the agent’s utility function u(a,y,-) is Lipschitz continuous and that
an integrable function b: V — R existssuch that |u,(a,y,v)| < b(v). We first show this

condition implies

)= || | e itrolsadatals)asislo

is absolutely continuous and differentiable for all v € V.

To see this, note that taking v, v/,

(0, 0) — U(0,01)] = | f f f (ua, ,v) — u(a, y,))dr(yls, a)da(als)dB(s]o)]
j f f fu(a,,v) — u(a, y,v)|dv(yls, a)dalals)dB(sl0)

< Klv =1,

where the last inequality follows from Lipschitz continuity of u(a,y,-). That U(?,-) is
differentiable follows from the application of Lebesgue’s dominated convergence theorem

as v" — v in the above expression.

Then, defining

U(v) = max U(v,v),

eV
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Theorem 2 in Milgrom and Segal (2002) implies U is differentiable almost everywhere

and
UW) = U + | it

where U, (t,v) = §, 4§, w.(a,y,t)dy(y|s, a)da(als)dB(s|t). In particular, in the environ-
ment in Section 4 where A = ) x R, it follows that

W”*L““M”:LLLF@%”“@Mww@Mwwm
- J_ L L L uy(a,y,t)dy(yls, a)da(als)dB(s|t)dt.
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