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Abstract

We develop a tool akin to the revelation principle for mechanism design

with limited commitment. We identify a canonical class of mechanisms rich

enough to replicate the payoffs of any equilibrium in a mechanism-selection

game between an uninformed designer and a privately informed agent. A

cornerstone of our methodology is the idea that a mechanism should encode

not only the rules that determine the allocation, but also the information

the designer obtains from the interaction with the agent. Therefore, how

much the designer learns, which is the key tension in design with limited

commitment, becomes an explicit part of the design. We show how this

insight can be used to transform the designer’s problem into a constrained

optimization one: To the usual truthtelling and participation constraints,

one must add the designer’s sequential rationality constraint.
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1 Introduction

The standard assumption in dynamic mechanism design is that the designer can

commit to long-term contracts. This assumption is useful: It allows us to charac-

terize the best possible payoff for the designer in the presence of adverse selection

and/or moral hazard, and it is applicable in many settings. Often, however, this

assumption is done for technical convenience. Indeed, when the designer can com-

mit to long-term contracts, the mechanism-selection problem can be reduced to

a constrained optimization problem thanks to the revelation principle.1 However,

as the literature starting with Laffont and Tirole (1987, 1988) shows, when the

designer can only commit to short-term contracts, the tractability afforded by the

revelation principle is lost. Indeed, mechanism design problems with limited com-

mitment are difficult to analyze without imposing auxiliary assumptions either

on the class of contracts the designer can choose from, as in Gerardi and Maestri

(2018) and Strulovici (2017), or on the length of the horizon, as in Skreta (2006,

2015).

This paper provides a “revelation principle” for dynamic mechanism-selection

games in which the designer can only commit to short-term contracts. We study

a game between an uninformed designer and an informed agent with persistent

private information. Although the designer can commit within each period to the

terms of the interaction–the current mechanism–he cannot commit to the terms the

agent faces later on, namely, the mechanisms that are chosen in the continuation

game. First, we show there is a class of mechanisms that is sufficient to replicate

all equilibrium payoffs of the mechanism-selection game. Second, we show how

this insight can be used to transform the designer’s problem into a constrained

optimization one: To the usual truthtelling and participation constraints, one

must add the designer’s sequential rationality constraint.

The starting point of our analysis is the class of mechanisms we allow the de-

signer to select from. Following Myerson (1982) and Bester and Strausz (2007),

we consider mechanisms defined by a communication device and an allocation rule

1The “revelation principle” denotes a class of results in mechanism design; see Gibbard
(1973), Myerson (1979), and Dasgupta et al. (1979).

2



as illustrated in Figure 1:2

M S A
βp¨|mq αp¨|sq

Agent

rv

Designer

Figure 1: Mechanisms: communication device, pM,β, Sq, and allocation rule, α

Having observed her private information (her type, v P V ), the agent privately

reports an input message, m P M , into the mechanism; this then determines the

distribution, βp¨|mq, from which an output message, s P S, is drawn. In turn,

the output message determines the distribution, αp¨|sq, from which the allocation

is drawn. The output message and the allocation are publicly observable: They

constitute the contractible parts of the mechanism.

When the designer has commitment power, the revelation principle implies that,

without loss of generality, we can restrict attention to mechanisms satisfying the

following three properties: (i) M “ V , (ii) M “ S, and (iii) β is “invertible.” By

β being “invertible,” we mean the designer learns the input message by observing

the output message; in this case, the designer learns the agent’s type report upon

observing the output message. Moreover, the revelation principle implies we can

restrict attention to equilibria in which the agent reports her type truthfully, which

means the designer not only learns the agent’s type report upon observing the

output message, but also he learns the agent’s true type.

It is then clear why restricting attention to mechanisms that satisfy properties

(i)-(iii) and truthtelling equilibria is with loss of generality under limited commit-

ment: Upon observing the output message, the designer learns the agent’s type

2Myerson (1982) allows the designer to choose, as a function of the input message m, any
joint distribution over SˆA. It is a consequence of Theorem 3.1 that the mechanisms in Figure 1
are without loss of generality; see Appendix II for a proof. Since the formulation of a mechanism
in Figure 1 allows us to highlight the role of the communication device separately from that of
the allocation, we opt for this formulation for pedagogical purposes.
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report and hence her type. Then the agent may have an incentive to misreport if

the designer cannot commit not to react to this information. This is precisely the

intuition behind the main result in Bester and Strausz (2001), which is the first

paper to provide a general analysis of optimal mechanism design with limited com-

mitment. The authors restrict attention to mechanisms in which the cardinality of

the set of input and output messages is the same and β is “invertible.” They show

that to sustain payoffs in the Pareto frontier, mechanisms in which input messages

are type reports are without loss of generality. However, focusing on truthtelling

equilibria is with loss of generality. In a follow-up paper, Bester and Strausz (2007)

lift the restriction on the class of mechanisms (i.e., (ii) and (iii) above) and show

in a one-period model that focusing on mechanisms in which input messages are

type reports and truthtelling equilibria is without loss of generality. The authors,

however, do not characterize the output messages. It is also not clear whether

taking input messages to be type reports is without loss when the designer and

the agent interact repeatedly (see the discussion after Theorem 3.1).

The main contribution of this paper is to show that, under limited commitment,

taking the set of output messages to be the set of posterior beliefs of the designer

about the agent’s type, that is, S “ ∆pV q, is without loss of generality. Theorem

3.1 shows that in a general mechanism-selection game between an uninformed

designer and an informed agent introduced in Section 2, any equilibrium payoff

can be replicated by an equilibrium in which (a) the designer uses mechanisms in

which input messages are type reports and output messages are beliefs, (b) the

agent always participates in the mechanism, and (c) input and output messages

have a literal meaning: The agent reports her type truthfully, and if the mechanism

outputs a given posterior, this posterior coincides with the belief the designer holds

about the agent’s type given the agent’s strategy and the mechanism. Given that

any equilibrium payoff can be replicated by mechanisms in which input messages

are type reports and output messages are beliefs about the agent’s type, we call

this class of mechanisms canonical.

Theorem 3.1 implies that when the designer is subject to sequential rationality

constraints, the mechanism serves a dual role within a period. On the one hand, it

determines the allocation for that period. On the other hand, it determines the in-
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formation about the agent that is carried forward in the interaction. An advantage

of the language of posterior beliefs is that it avoids potential infinite-regress prob-

lems. Indeed, in a finite horizon problem, an alternative set of output messages

could be a recommendation for an allocation today and a sequence of allocations

from tomorrow on.3 In the final period, the revelation principle in Myerson (1982)

pins down the implementable allocations. Therefore, the recommended allocations

can be determined via backward induction. This idea cannot be carried to an in-

finite horizon setting: These sets of output messages would necessarily have to

make reference to the continuation mechanisms, which are themselves defined by

a set of output messages.

Another contribution of our analysis is to show that to characterize equilibrium

payoffs of the game between the designer and the agent, it suffices to consider a

simpler game, denoted the canonical game. We record this result in Proposition

3.1. In the canonical game–studied in Section 3.2–the designer is restricted to offer

mechanisms in which input messages are type reports and output messages are be-

liefs over the agent’s type. Theorem 3.1 (trivially) implies an equilibrium outcome

of the canonical game can be achieved by strategy profiles in which the principal

employs mechanisms that induce the agent to truthfully report his type and to

always participate. However, the principal has fewer deviations in the canonical

game and an equilibrium strategy may not be an equilibrium if the principal can

deviate to any mechanism, as he can in the mechanism-selection game. One may

then wonder whether analyzing the canonical game gives, unintentionally, some

commitment power to the principal.

Proposition 3.1 shows this is not the case: Leveraging the construction used to

establish Theorem 3.1, we show that, without loss of generality, the best devia-

tion in the mechanism-selection game is equivalent to a deviation to a canonical

mechanism that induces the agent to report truthfully and to participate with

probability one. In a finite horizon setting, Proposition 3.1 justifies writing the

designer’s problem as a sequence of maximization problems over canonical mecha-

nisms subject to the agent’s participation and incentive compatibility constraints

and the designer’s sequential rationality constraints.

3See Section 5.1 for a formal discussion of the approach and its potential issues.
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Section 4 illustrates the methodology for the case of transferable utility and

preferences that satisfy increasing differences in distributions. The resulting pro-

gram allows us to highlight the connection between our problem and the literature

on information design; after all, the designer can be thought of as a sender who

designs the information structure for a receiver, who happens to be his future

self. However, there are differences. In our setting, the first-period principal (the

sender in Kamenica and Gentzkow (2011)) also takes an action for each posterior

he induces. In addition, the first-period principal’s objective function depends on

the prior as well as the posterior, whereas in Kamenica and Gentzkow (2011), it

only depends on the posterior. Finally, the first-period principal cannot implement

any Bayes’ plausible distribution over posteriors, but only those that satisfy the

incentive compatibility and participation constraints of the agent.

An important difference between the mechanisms used by Hart and Tirole (1988),

Laffont and Tirole (1988), Freixas et al. (1985), and Bester and Strausz (2001)

and the ones considered here is that whereas in the former papers, the princi-

pal observes the agent’s choice out of a menu of contracts, here, the agent’s input

into the communication device is not observed. Under the assumptions of Section

4, Proposition 5.2 in Section 5.2 characterizes the mechanisms (i.e., the communi-

cation device and allocation pairs) that can be implemented with the agent making

a choice out of a menu. The result is useful for the following reasons. First, by

checking whether the solution to the program studied in Section 4 satisfies the

conditions in Proposition 5.2, we can understand whether the modeling of a mech-

anism as a menu of contracts in the aforementioned works is without loss. Second,

when the solution to the program does satisfy the conditions, it allows the analyst

to propose a “simple” implementation of the optimum.

The paper contributes to the literature on mechanism design with limited com-

mitment, referenced throughout the introduction.4 A large literature studies the

effect of limited commitment within a specific class of “mechanisms”: The papers

in the durable-good monopolist literature (Bulow (1982); Gul et al. (1986); Stokey

4A designer’s lack of commitment can take various forms, not considered in this paper,
but that have been studied in other papers. See, for instance, McAdams and Schwarz (2007),
Vartiainen (2013), and Akbarpour and Li (2018), in which the designer cannot commit even to
the obey the rules of the current mechanism.
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(1981)) study price dynamics and establish (under some conditions) Coase’s con-

jecture whereby a monopolist essentially loses all profits if he lacks commitment.

In an analogous vein, Burguet and Sakovics (1996), McAfee and Vincent (1997),

Caillaud and Mezzetti (2004), and Liu et al. (2018) study equilibrium reserve-price

dynamics without commitment in different setups. The common thread is, again,

that the seller’s inability to commit reduces monopoly profits.

Mechanism-selection in a dynamic environment with limited commitment is con-

sidered in Deb and Said (2015). The authors study a model of sequential screen-

ing, in which new buyers arrive over time. Like in Skreta (2006) and Skreta

(2015), Deb and Said (2015) consider general mechanisms but a finitely long in-

teraction. Infinitely long contract-selection games are studied in Strulovici (2017)

and Gerardi and Maestri (2018). The former studies renegotiation and finds that

equilibrium allocations become efficient as the parties become arbitrarily patient.

In Gerardi and Maestri (2018), however, the limit allocation is inefficient when-

ever firing the agent–what the authors refer to “firing allocation”– is not a solution

when there is commitment.

By highlighting the role that the designer’s beliefs about the agent play in mecha-

nism design with limited commitment, our paper also relates to Lipnowski and Ravid

(2017) and Best and Quigley (2017), who study models of direct communication

between an informed sender and an uninformed receiver.5 Lipnowski and Ravid

(2017) show how the posterior approach of Kamenica and Gentzkow (2011) can

be used to characterize equilibrium outcomes, and study their properties in the

cheap talk model of Crawford and Sobel (1982) (the leading model of commu-

nication without commitment), when the sender’s preferences do not depend on

the state of the world.6 Finally, given that the search for the best equilibrium

often reduces to solving a constrained information design problem we relate to,

among others, Le Treust and Tomala (2017), Georgiadis and Szentes (2018), and

Boleslavsky and Kim (2018).

5Salamanca (2016) studies mediated communication in Kamenica and Gentzkow (2011).
6Golosov and Iovino (2016) study a social insurance model with a continuum of agents, where

private information is not persistent across stages. They leverage the resulting repeated-game
structure to solve for the best equilibrium.
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The rest of the paper is organized as follows. Section 2 describes the model and

notation. Section 2.1 analyzes a simple version of the model in Skreta (2006); it

allows us to introduce the main ideas of the paper in a simple and well-known

setting. Section 2.2 discusses the modeling assumptions. Section 3 introduces the

main theorem and provides a sketch of the proof. Section 4 specializes the results

to the two-period model of Bester and Strausz (2007) with transferable utility

and single-crossing preferences. We compare the solution of the ‘relaxed’ problem

to the information design model of Kamenica and Gentzkow (2011). Section 5.1

discusses using recommendations as output messages. Section 5.2 studies imple-

mentation when the principal observes the agent’s choice. Section 5.3 discusses

an example with multiple agents. All proofs are relegated to the Appendix. The

supplementary material (Sections I-IV) contains omitted proofs and extensions

discussed throughout the main text.

2 Model

Primitives There are two players: a principal (he) and an agent (she). They

interact over T ď 8 periods. Before the game starts, the agent observes her type,

v P V . V is any finite set; however, the main insights extend to the case in which

V is a Polish space (see Appendix IV). Each period, as a result of the interaction

between the principal and the agent, an allocation a P A is determined. Assume

A is a compact (possibly finite) space.

Given a sequence of allocations at “ pa0, a1, ...., atq, the principal can only choose

at`1 P Apatq. That is, there is a correspondence A :
ŤT

n“0A
n ÞÑ A such that for

t P N, at P At, Apatq describes the set of allocations the principal can offer given

the allocations he has offered in the past. Assume A is compact-valued and there

exists an allocation a˚ P A such that a˚ is always available.7

Payoffs are defined as follows. For the principal, assume there exists a function,

7We later use allocation a˚ to model the agent’s participation decision within each period:
If the agent prefers not to participate, allocation a˚ is implemented automatically. For instance,
in a trade model such as the one in Section 2.1, a˚ corresponds to no trade and no transfers.
The constraint correspondence A also allows us to capture that the agent can walk away from
the mechanism as in Gerardi and Maestri (2018): We could specify that the first time a˚ is
implemented, then this allocation is the only one available thereafter.
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W : AT ˆ V ÞÑ R such that his payoff from allocation a P AT when the agent’s

type is v is given by W pa, vq. Similarly for the agent, when her type is v, her

payoff from allocation a P AT is given by Upa, vq.

Mechanisms: In each period, the principal offers the agent a mechanism, Mt “

xpMMt , βMt , SMtq, αMty, which consists of a communication device, pMMt , βMt, SMtq,

and an allocation rule, αMt, where

βMt : MMt ÞÑ ∆˚pSq

αMt : SMt ÞÑ ∆˚pAq,

and where ∆˚pCq denotes the set of distributions on C with finite support. We

endow the principal with a collection pMi, SiqiPI of input and output message

sets in which each Mi is finite, |V | ď |Mi|, and ∆pMiq Ď Si.
8 Moreover, we

assume pV,∆pV qq is an element in that collection. Denote by M the set of all

mechanisms with message sets pMi, SiqiPI . A mechanism is canonical if pV,∆pV qq

are its sets of input and output messages. Let MC denote the set of canonical

mechanisms and let MC
t denote an element in that set.

Three remarks are in order. First, the restriction that Mi has at least as many

messages as types is without loss of generality. The principal can always replicate

a mechanism with a smaller set of input messages by using a larger set of input

messages.9 Second, we restrict the principal to design βMt and αMt to be dis-

tributions with finite support, thus allowing us to focus on the novel conceptual

features of the environment, as opposed to dealing with measure-theoretic com-

plications. To replicate any equilibrium of the game when the principal selects

distributions with finite support using canonical mechanisms, we find the princi-

pal only needs to use distributions with finite support. This last observation, of

course, would not be true if the set of types were not finite.10,11 Finally, we re-

8Technically, we only need that Si contains an image of ∆pMiq.
9To see this, suppose the principal would rather use a mechanism, M

1
t, with a message

space MM
1

t with cardinality strictly less than |V |. Then he can choose a mechanism Mt with
MMt “ V , choose β to coincide with βM

1

t on the first |MM
1

t | messages, and have βMt coincide
with βM

1

tp¨|m1
1q for all remaining messages.

10Appendix IV extends our result to the case in which V is a compact and metrizable space.
11We conjecture, however, that the restriction to distributions with finite support is without
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strict the principal to choose input and output messages within the set pMi, SiqiPI .

This allows us to have a well-defined set of deviations for the principal, avoiding

set-theoretic issues related to self-referential sets. The analysis that follows shows

that the choice of the collection plays no further role in the analysis.

Timing: In each period t,

- The principal and the agent observe a draw from a correlating device ω „

Ur0, 1s.

- The principal offers the agent a mechanism Mt.

- The agent observes the mechanism and decides whether to participate (p “

1) or not (p “ 0). If she does not participate, a˚ is implemented and the

game proceeds to t ` 1.

- If she participates, she privately submits a report m P MMt .

- s P SMt is drawn according to βMtp¨|mq, which is publicly observed.

- a P A is drawn according to αMtp¨|sq, which is publicly observed.

This defines an extensive form game, which we dub the mechanism-selection game.

If, instead, the principal can only choose mechanisms in MC , we denote it as the

canonical game.

Public histories in this game are12

ht “ pω0,M0, p0, s0, a0, . . . , ωt´1,Mt´1, pt´1, st´1, at´1, ωtq,

where pr P t0, 1u denotes the agent’s participation with the restriction that pr “

0 ñ sr “ H, ar “ a˚. Public histories capture what the principal knows through

period t. Let H t denote the set of all period t public histories. A strategy for the

principal is then given by Γt : H
t ÞÑ ∆pMq.

loss of generality when the set of types is finite.
12The restriction that the support of βMtp¨|mq is finite for m P MMt , together with the

finiteness of MMt , imply that there are output messages s P SMt that can never arise. Thus, we
can remove from the tree all the histories that are consistent with mechanism Mt being offered
and s P SMt such that

ř
mPMMt

βMtps|mq “ 0, without affecting the equilibrium set. However,
for tractability, we do not make this distinction in our notation.
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A history for the agent consists of the public history of the game together with

the agent’s inputs into the mechanism (henceforth, the agent history) and her

private information. Formally, an agent history is an element

ht
A “ pω0,M0, m0, p0, s0, a0, . . . , ωt´1,Mt´1, pt´1, mt´1, st´1, at´1, ωtq.

Given a public history ht, let H t
Aphtq denote the set of agent histories consistent

with ht. The agent also knows her type, and hence a history through period t is

an element of tvu ˆ H t
A when her type is v. The agent’s participation strategy is

πv : H t
A ˆ Mt ÞÑ r0, 1s. Conditional on participating in the mechanism Mt, her

reporting strategy is a distribution rvpht
A,Mt, 1q P ∆pMMtq for each of her types

v and each ht
A P H t

A.

A belief for the principal at the beginning of time t, history ht, is a distribution

µphtq P ∆pV ˆH t
Aphtqq, whereH t

Aphtq is the set of agent histories that are consistent

with the public history ht, which is observed by the principal. The principal is thus

uncertain both about the agent’s payoff-relevant type, v, and her payoff-irrelevant

type, ht
A.

Our focus is on studying the equilibria of the mechanism-selection and canonical

games. By equilibrium, we mean Perfect Bayesian equilibrium (henceforth, PBE),

defined as follows:

Definition 2.1. A Perfect Bayesian Equilibrium is a tuple xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y

such that for each ht the following hold:

1. Given µ˚
t phtq, Γ˚

t phtq is sequentially rational given pπ˚
v , r

˚
v qvPV ,

2. Given Γ˚phtq, π˚
v pht

A, ¨q, r˚
v pht

A, ¨, 1q are sequentially rational for all ht
A P

H t
Aphtq,

3. µ˚phtq is derived via Bayes’ rule whenever possible.

Implicit in the definition of PBE is the assumption that the principal does not

update his beliefs about the agent following a deviation by the principal. That is,

we assume beliefs are pre-consistent (see Hendon et al. (1996)).

Remark 2.1. [Belief updating depends only on the realized output message] Fix
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a history ht. Given µ P ∆pV ˆH t
Aphtqq and a mechanism MMt , Bayesian updating

depends on the agent’s strategy and the communication device, but not on the

allocation rule. To see this, suppose the agent participates with positive probability

in the mechanism, the output message is s P SMt and allocation a is observed;

then the principal’s belief about the agent being at history pv, ht
A,Mt, 1, s, aq is

given by

µphtqpv, ht
Aqπ˚

v pht
A,Mtq

ř
mPMMt r

˚
v pht

A,Mt, 1qpmqβMtps|mqαMtpa|sq
ř

ṽ,Ăht
A

µpṽ, Ăht
Aqπ˚

ṽ pĂht
A,Mtq

ř
m̃PMMt r

˚
ṽ pĂht

A,Mt, 1qpm̃qβMtps|m̃qαMtpa|sq
,

and all the terms concerning αMtpa|sq drop out.

2.1 Example: two-period sale of a durable good.

To fix ideas, consider the following example. The principal is a seller who owns

one unit of a durable good and assigns value 0 to it. The agent is a buyer whose

valuation for the good is her private information. The buyer’s valuation can take

two values, v P tvL, vHu, where vH ´ vL ą 0. The seller’s belief that v “ vH is µ1.

An allocation is a pair pq, tq P t0, 1u ˆ R, where q indicates whether a sale occurs

(q “ 1) or not (q “ 0), and t is a transfer from the buyer to the seller. Utilities

are quasilinear so that the buyer’s utility is upq, t; vq “ vq ´ t and the seller’s is

wpq, t; vq “ t. Both players share a common discount factor δ P p0, 1q.

The timing is as follows: in each period t P t1, 2u

- The seller chooses a mechanism.

- The buyer observes the mechanism and decides whether to participate.

– If she does not participate, the good is not sold and no payments are

made; if t “ 1, we move to period 2.

– If she participates, the mechanism determines the allocation.

- If the good is not sold and t “ 1, move on to t “ 2.

Because the horizon is finite, we can solve the game by backward induction.

Then let t “ 2 and denote by µ2 the seller’s posterior belief that v “ vH . In t “ 2,

12



the seller has full commitment and the solution is routine. The seller posts a price

equal to vL when µ2 ă vL{vH ” µ, a price equal to vH when µ2 ą µ, and at µ2 “ µ,

then the seller is indifferent between the two prices. Thus, the seller’s revenue as

a function of µ2 is given by

R2pµ2q “

#
vL if µ2 ď µ

µ2vH otherwise
“

#
µ2vH ` p1 ´ µ2qv̂Lpµ2q if µ2 ď µ

µ2vH otherwise
,

where v̂Lpµ2q “ vL ´ pµ2{p1 ´ µ2qqpvH ´ vLq and the equality follows from noting

that when the price is vL, the seller leaves rents vH ´ vL with probability µ2 to the

high type.

We now turn to period 1. Recall that µ1 denotes the probability that the buyer’s

valuation is vH . Consistent with the mechanism-selection game introduced in

Section 2, we allow the seller to offer the buyer a mechanism that consists of a

communication device pM1, β1, S1q and an allocation rule α : S1 ÞÑ ∆pt0, 1u ˆ Rq.

The assumption of quasilinearity implies that, without loss of generality, the seller

does not randomize on the transfers, so that α1pq, t|s1q “ qps1q ˆ 1rt “ tps1qs.

Theorem 3.1 shows that, without loss of generality, input messages are type

reports, M1 “ V , and output messages are the seller’s beliefs about the buyer’s

valuation, S1 “ ∆pV q. We now provide intuition for this in the context of the

example.

1. To see thatM1 “ V , note that β1 together with the agent’s reporting strategy

induces another distribution on S1,

ÿ

m1PM1

β1ps1|m1qrvpm1q ” β˚ps1|vq.

If the seller offers xpV, β˚, S1q, α1yq to the buyer, then the buyer tells the

truth (see also Bester and Strausz (2007)).

2. To see why S1 can be taken to be ∆pV q, note that upon the realization of s1,

two things happen. First, the allocation αps1q is determined. Second, if the
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allocation is no trade, s1 is used to update the principal’s beliefs as follows:

µ2pv “ vH |s1q

˜
ÿ

vPV

µ1pvqβ˚ps1|vq

¸
“ µ1pvHqβ˚ps1|vHq,

where we have already used that M1 “ V and the buyer reports truthfully.

Given the belief induced by s1, we know what happens in period 2; there is

no use for s1 beyond that. Thus, we can take S1 “ ∆pV q. Thus, we write

βpµ2|vq, qpµ2q, tpµ2q instead of βps1|vq, qps1q, tps1q thereafter.

With these observations, we can describe the seller’s optimal mechanism in period

1 via the following program:

R1pµ1q ” max
β,q,t

ÿ

µ2P∆pV q

˜
ÿ

vPV

µ1pvqβpµ2|vq

¸
rtpµ2q ` p1 ´ qpµ2qqδR2pµ2qs

subject to for all v P tvL, vHu:

ÿ

µ2P∆pV q

βpµ2|vqpvqpµ2q ´ tpµ2q ` δp1 ´ qpµ2qquBpµ2, vqq ě 0 (PCv)

ÿ

µ2P∆pV q

pβpµ2|vq ´ βpµ2|v
1qqpvqpµ2q ´ tpµ2q ` δp1 ´ qpµ2qquBpµ2; vqq ě 0 (ICv,v1)

µ2pvHq

˜
ÿ

vPV

µ1pvqβpµ2|vq

¸
“ µ1pvHqβpµ2|vHq (BCµ2

).

That is, the seller chooses β, q, t to maximize his profit subject to the agent’s

participation and incentive compatibility constraint and a Bayesian consistency

constraint. The latter says that when the mechanism outputs µ2, then µ2 is the

belief that obtains via Bayesian updating. The buyer’s participation and incentive

compatibility constraints take into account her continuation values, denoted by

uBpµ2, vq: For low values of µ2, the high type is served at a low price in period 2.13

13Implicit in the buyer’s participation constraint is that, if she does not participate in t “ 1,
the seller has belief µ2 ě µ and then sets a price of vH in t “ 2. Thus, both types of the agent
earn a payoff of 0 in case they do not participate in t “ 1. Given Theorem 3.1, this is without loss
of optimality. Indeed, Theorem 3.1 shows that it is without loss of generality to have the agent
participate with probability 1. Hence, not participating of the mechanism becomes an off-path
event and beliefs are not pinned down by Bayes’ rule in this case.
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As usual, we can show that PCvL and ICvH ,vL bind, and these two constraints

imply the others. Therefore, we can use them to replace the transfers in the seller’s

objective to obtain

R1pµ1q ” max
τ,q

ÿ

τP∆pV q

τpµ2q rqpµ2qpµ2vH ` p1 ´ µ2qv̂Lpµ1qq ` δp1 ´ qpµ2qqR2pµ2;µ1qs

(1)

s.t.
ÿ

µ2P∆pV q

τpµ2qµ2 “ µ1,

where τpµ2q “
ř

vPV µ1pvqβpµ2|vq is the probability that µ2 is the induced posterior

and

δR2pµ2;µ1q “

#
δpµ2vH ` p1 ´ µ2qv̂Lpµ1qq if µ2 ă µ

δµ2vH if µ2 ą µ
(2)

is an adjusted version of the seller’s period 2 revenue. We now explain equations

(1) and (2) in detail. Equation (1) shows that the seller’s period 1 problem can be

solved by finding (i) a trade probability for each posterior and (ii) a distribution

over posteriors that averages out to the prior. Given a posterior µ2, the trade

probability, qpµ2q, is chosen to maximize a version of the virtual surplus, familiar

from mechanism design with commitment. To see this, note that in equation (1),

the probability of each type is evaluated using the posterior µ2, but the virtual

value for the low type is computed using the prior µ1. This reflects that the seller

in period 1 assigns probability µ1 to v “ vH , and µ1 is the rate at which he pays

rents to the high type. Similarly, δR2pµ2;µ1q adjusts the revenues in period 2 by

the rents the period 1 seller must leave to the buyer: In effect, should the period

1 seller induce µ2 ă µ, the buyer obtains a rent of δpvH ´ vLq, which the seller in

period 1 has to take into account.

Note that equation (2) does not specify what the seller’s payoff is when µ2 “

µ. This, in fact, depends on the prior µ1: When µ2 “ µ, the period 2 seller

is indifferent between prices vH and vL. The period 1 seller, however, is not

indifferent; this fact is illustrated in Figures 2 and 3 below:
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δv̂Lpµ1q

µ̄
µ2

δR2p¨;µ1q

δµvH

Figure 2: µ1 ď µ̄

δv̂Lpµ1q

µ̄
µ2

δR2p¨;µ1q

δµvH

Figure 3: µ̄ ă µ1

If the seller’s prior is such that he would sell to the low valuation buyer today

pµ1 ď µq, then he would rather have the period 2 seller also serve the low valuation

type when indifferent in period 2, as illustrated in Figure 2. However, if the period

1 seller would prefer to exclude the high valuation buyer when her valuation is

low, then he would prefer the low valuation buyer to be excluded in period 2 as

well when µ2 “ µ, as illustrated in Figure 3.

In what follows, we solve the seller’s problem for the case in which µ1 ą µ.14

Because the seller can choose qpµ2q for each µ2, the best he can do is choose it to

pointwise maximize the objective function in equation (1), as illustrated in Figures

4 and 5 below:

14The case in which µ1 ă µ is immediate: The seller can achieve the commitment solution by
selling to both types of the buyer in period 1.
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δv̂Lpµ1q

µ̄
µ2

δR2p¨;µ1q

δµ2vH

µ2vH ` p1 ´ µ2qv̂Lpµ1q

Figure 4: Value of setting qpµ2q “ 0
(black) and qpµ2q “ 1 (blue)

δv̂Lpµ1q

µ̄
µ2

δR2p¨;µ1q

maxtµ2vH ` p1 ´ µ2qv̂Lpµ1q, δR2pµ2;µ1qu

Figure 5: Pointwise maximum of the
blue and black lines in Figure 4

This reduces the principal’s problem to that of finding a distribution over pos-

teriors to solve:

max
τ

ÿ

µ2P∆pV q

τpµ2qmaxtµ2vH ` p1 ´ µ2qv̂Lpµ1q, δRpµ2;µ1qu,

subject to the constraint that the distribution must average to the prior. Under

some parameter values, the solution is as depicted in Figure 6 below:15

15When µ ă µ1, there are two possible solutions depending on the parameter values. When
µ1 ą µ is high enough, we obtain the solution depicted in Figure 6 and described in the main
text. For lower values of µ1 ą µ, we obtain the solution familiar to the literature on the ratchet
effect (see Hart and Tirole (1988)). In this case, the seller sets a price of vL in period 2, and a
price of vH ´ δ∆v in period 1; the buyer buys in period 1 when v “ vH and in period 2 when
v “ vL.
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δv̂Lpµ1q

µ̄
µ2

δR2p¨;µ1q

maxtµ2vH ` p1 ´ µ2qv̂Lpµ1q, δR2pµ2;µ1qu

µ1

Figure 6: Optimal mechanism for period 1 seller: The black dashed line depicts the
concavification of the function in Figure 5

The seller sets a price of vH in periods 1 and 2. The buyer does not buy when her

value is low, whereas the buyer randomizes between buying today and tomorrow

when her value is high. The randomization is such that when the seller sees no

sale at the end of period 1, he attaches probability µ to v “ vH .

The example highlights both how the language of type reports and posterior

beliefs is enough to replicate what the principal can obtain from any other mech-

anism and also how useful this language is to solve mechanism design problems

with limited commitment. Indeed, it allows us to reduce the problem of finding

the best equilibrium for the principal to a constrained optimization problem. In

Section 4, we return to the setting of transferable utility and preferences that sat-

isfy increasing differences and show that the connection between our problem and

information design extends beyond the example.

However, the example does not allow us to highlight some features of the model,

which we discuss in the next section. The reader eager to see the results can skip

to Section 3; however, the discussion may be useful to follow the proof sketch of

the main theorem.
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2.2 Discussion: Randomized allocations and public correlating device

We now discuss two aspects of the model that do not seem to play a role in the

example, but are important in what follows: The principal is allowed to offer a

randomization over allocations, and the principal and the agent have access to a

public correlating device.

Randomized allocations There are two reasons for allowing the principal to

choose randomized allocations. First, randomized allocations are necessary for

the set of input messages to be the set of type reports; this is inherited from the

revelation principle with commitment (see Strausz (2003)). To see this, consider

the situation illustrated in Figure 7 below. The mechanism is simple: If the agent

reports m, then the output message is m and the allocation is a, whereas if she

reports m1, the output is m1 and the allocation is a1. Assume that when her type

is v, the agent sends m and m1 with probability p and 1 ´ p, respectively; thus,

she obtains a and a1 with probability p and 1 ´ p, respectively.

v

m

m1

a

a1

p

1 ´ p
v v

a

a1

p

1 ´ p

Figure 7: Agent of type v randomizes over m and m1 generating a randomized
allocation

If we restrict the principal to offer deterministic allocations, then he cannot repli-

cate the agent’s allocation just by asking for a truthful type report. However, if

we allow the principal to offer a mechanism such that when the input is v and

the output is v, the allocation is a randomization between a and a1, then he can

replicate the allocation type v obtains just by soliciting a type report.

Second, randomized allocations are necessary for the set of output messages to be

the set of distributions over the agent’s type. To see this, note that two different

output messages, s and s1, may be associated with two different allocations, a

and a1, but with the same posterior belief, as illustrated in Figure 8 below:
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s

s1

µ, a

µ, a1

p

1 ´ p
s2

µ, a

µ, a1

p

1 ´ p

Figure 8: Two output messages, s and s1, induce same posterior but different
allocations

By allowing the principal to offer randomized allocations, we can collapse s and

s1 to one output message s2 associated to one posterior, µ.

Public correlating device The correlating device is important for output mes-

sages to be the principal’s posterior beliefs about the agent’s type. Note that

two output messages, s and s1, may be associated with two different continuation

equilibria, even if they induce the same allocation and posterior beliefs, as in

Figure 9 below:

s

s1

µ, a, eqbm1

µ, a, eqbm2

p

1 ´ p
s2 µ, a

ω1

ω2

eqbm 1

eqbm 2

p

1 ´ p

Figure 9: Two output messages, s and s1, induce same posterior and allocations, but
different continuation equilibria

The correlating device allows us to collapse s and s1 into one output message (and

hence, one posterior belief) and coordinate continuation play with the correlating

device, akin to what is done in repeated games. This feature arises, somewhat

trivially, in Section 2.1. In the example, for each posterior belief different from

µ, there is a unique continuation equilibrium in period 2, and hence there is no

need to select amongst continuation equilibria. However, when µ2 “ µ, there are

two continuation equilibria; when we allowed the first-period principal to select

between them, we implicitly made use of a (trivial) correlating device.
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3 Results

Section 3 presents the main results of the paper. Theorem 3.1 shows that any

equilibrium payoff of the mechanism-selection game can be replicated by an equi-

librium in which (a) the designer uses mechanisms in which input messages are

type reports and output messages are beliefs, (b) the agent always participates in

the mechanism, and (c) input and output messages have a literal meaning: The

agent reports her type truthfully, and if the mechanism outputs µ P ∆pV q at the

end of period t, then µ is indeed the belief the principal holds about the agent

at the end of that period. Motivated by Theorem 3.1, Section 3.2 studies the

PBE of the canonical game. It follows immediately from Theorem 3.1 that any

equilibrium payoff of the mechanism-selection game is also an equilibrium payoff

of the canonical game, after adapting the strategy profiles and systems of beliefs

to the canonical game. Because the canonical game has a smaller set of deviations

for the principal than the mechanism-selection game, one may conjecture that

there are dynamic mechanisms consistent with equilibrium in the canonical game,

which would not be consistent with equilibrium in the mechanism-selection game.

Proposition 3.1 shows this conjecture is false.

3.1 Revelation Principle for Sequentially Optimal Mechanism Design

Theorem 3.1. Fix any PBE of the mechanism-selection game, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y.

Then there exists a payoff-equivalent PBE, xΓ1, pπ1
v, r

1
vqvPV , µ

1y, such that

1. At all histories, the principal offers canonical mechanisms, that is, p@htqp@Mt :

Γ1phtqpMtq ą 0q, Mt P C.

2. At all histories where the principal assigns positive probability to the agent’s

type being v, the agent participates with probability 1 when her type is

v, that is, p@v, @ht
A P H t

Aqp@Mt P supp Γ1phtqq π1
vpht

A,Mtq “ 1 whenever

µ1phtqpvq ą 0.

3. At all histories, the agent reports her type truthfully, that is, p@v, @ht
A P

H t
Aqp@Mt P supp Γ1phtqq, r1

vpht
A,Mt, 1q “ δv.
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4. At all histories, recommended beliefs coincide with realized beliefs t ` 1:

µ1pht,Mt, 1, µqpvq “
µ1phtqpvqβMtpµ|vqř

v1PV µ1phtqpv1qβMtpµ|v1q
“ µpvq.

The proof is in Appendix B. In what follows, we provide a sketch of the main

steps in the proof.

The first main step shows that, without loss of generality, the agent’s participa-

tion and reporting strategy conditions only on her type v and the public history.

This step, which follows from Proposition A.1 in Appendix A, is key to showing

that the set of canonical input messages is the set of type reports. If the agent

conditioned her strategy on the payoff-irrelevant part of her private history, the

principal would need to elicit ht
A together with v in order to replicate the agent’s

behavior in the mechanism.

We now qualify what we mean by without loss of generality : We show that

given a PBE in which the agent conditions her strategy on the payoff-irrelevant

part of her private history at some public history ht, there exists another payoff-

equivalent PBE in which she does not and in which the principal obtains the

same payoff after each continuation history consistent with ht and the equilibrium

strategy. The proof of this consists of two parts. First, we observe that because

the input messages are payoff irrelevant and unobserved by the principal, if the

agent chooses different strategies at pv, ht
Aq and pv, ht

A
1q, with ht

A, h
t
A

1 P H t
Aphtq,

then she is indifferent between these two strategies. However, the principal may

not be indifferent between these two strategies. The second part shows we can

build an alternative strategy that does not condition on ht
A beyond ht and gives

the principal the same continuation payoff.

This first step also gives us an important conceptual insight: The principal

cannot peak into his past correlating devices. To do so, he would like to ask the

agent to report to him what she did in the previous mechanisms. Proposition A.1

shows that this information cannot be elicited in any payoff-relevant way.

The second main step shows that, without loss of generality, there is a one-to-one

mapping between the output messages used at history ht and the posterior beliefs
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of the principal in the PBE at history ht (see Proposition A.3 in Appendix A). This

step follows mainly from the observations we made in the discussion in Section 2.2.

The principal may have two other uses for the output messages. On the one hand,

because the allocation must be measurable with respect to the output messages,

he may use them to offer a richer set of alternatives. On the other hand, he may

use the output messages to coordinate continuation play. Proposition A.3 shows

that randomized allocations and the access to the public correlating device can

achieve these two goals, respectively.

These two steps deliver that, without loss of generality, input messages can be

taken to be type reports and output messages can be taken to be the designer’s

beliefs about the agent’s type. After all, knowing the agent’s type is all that is

needed to replicate her behavior within the mechanism, and hence the relevant

beliefs for the principal are about the agent’s payoff-relevant type.

Proposition A.2 in Appendix A shows that having the agent participate in the

mechanism is without loss of generality (we discuss at the end of the section why

Theorem 3.1 only requires this for types with positive probability.). The logic is

similar to the one in the case of commitment: Whatever the agent obtains when she

does not participate can be replicated by making her participate. However, there

is a caveat: When the agent does not participate, her outcome is an allocation for

today and a continuation mechanism for tomorrow. Therefore, we must guarantee

that, when the agent participates, the principal still offers the same continuation

as when she did not participate.

With these preliminary steps at hand, the proof of Theorem 3.1 in Appendix

B shows that any mechanism Mt offered by the principal at history ht can be

replicated by a canonical mechanism MC
t “ xpV, βMC

t ,∆pV qq, αMC
t y as follows.

The second step implies that there is an invertible mapping which maps each

output message into the belief over types that it induces:

σpMtqpstq “
ÿ

ht
APHt

Aphtq,mtPMMt

µ˚pht,Mt, 1, stqp¨, ht
A,Mt, 1, mt, stq.

Note that we obtain the belief over V by taking the marginal over all agent histories

23



consistent with the public history ht. Using this, we can define a communication

device βM
C
t : V ÞÑ ∆˚p∆pV qq and an allocation rule αM

C
t : ∆pV q ÞÑ ∆˚pAq as

follows:

βMC
t pµ|vq “

ÿ

mPMMt

βMtpσ´1pMtqpµq|mqr˚
v pht

A,Mt, 1qpmq

αMC
t pµq “ αMtpσ´1pMtqpµqq.

The proof then shows that when faced with this mechanism, the agent’s best re-

sponse is to participate and report truthfully and that when the principal observes

an output of µ, his beliefs are indeed µ.

We have yet to discuss why Theorem 3.1 only requires that the agent partici-

pates with probability 1 is required for her types to which the principal assigns

positive probability. Consider then a history ht such that the principal’s belief

assigns probability 0 to the agent’s type being v‹. Suppose the principal selects

mechanism Mt. Assume also the agent’s strategy at v‹ specifies sending an input

message m‹, which assigns positive probability to an output s‹. Finally, assume

that s‹ has zero probability under all other m P MMt . PBE does not impose

restrictions on the principal’s belief when he observes s‹; in particular, it could

be that µ˚pht,Mt, 1, s
‹q “ µ˚pht,Mt, 1, s

1q, where s1 is an output message with

positive probability under the equilibrium strategy. This would, of course, break

the one-to-one mapping between output messages and posterior beliefs.

To deal with the aforementioned issue, we show that, given a PBE, we can always

modify the mechanisms chosen in equilibrium by the principal so that the agent

does not have access to messages like m‹. Namely, he can make the distribution

of the communication device for any such message the same as that of a message

that is used on the path. The principal can always do this without affecting the

incentives of those types that have positive probability; however, he may change

the participation incentives of those types that have probability 0.
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3.2 The Canonical Game

Theorem 3.1 shows that any equilibrium payoff of the game between the principal

and the agent can be achieved with the principal selecting at each history a canon-

ical mechanism such that the agent participates with probability one and reports

her type truthfully. This observation motivates the analysis in this section where

we study the equilibria of the canonical game.

An immediate corollary of Theorem 3.1 is the following:

Corollary 3.1. Any PBE payoff of the mechanism-selection game can be achieved

as a PBE payoff of the canonical game.

Because it features a restricted set of choices for the principal, one may suspect

that in the canonical game, the principal is able to implement more mechanisms

than in the mechanism-selection game. However, this is not the case. Indeed, we

show that given any equilibrium of the mechanism-selection game, without loss of

generality, the best deviation for the principal after any history can be achieved by

offering a canonical mechanism for that period and also in the continuation histo-

ries, whereas the agent participates with probability one and truthfully reports her

type. This observation implies the canonical game contains all relevant deviations

for the principal. It is not then possible to achieve payoffs in the canonical game

that cannot be achieved in the mechanism-selection game. This is recorded in

Proposition 3.1 below:

Proposition 3.1. If xΓ˚C

, pπ˚C

v , r˚C

v qvPV , µ
˚C

y is a PBE of the canonical game,

then there is an equilibrium of the mechanism-selection game xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y

that achieves the same payoff.

Two important lessons follow from Proposition 3.1 and its proof. First, to char-

acterize the equilibrium payoffs of the mechanism-selection game, it suffices to

characterize the equilibrium payoffs of the canonical game.16 Second, the proof of

16It is not obvious that such a result should hold. To see this, we reason by analogy with the
informed principal problem of Myerson (1983), where the principal is also a player, and focusing
on deviations to direct and incentive compatible mechanisms is with loss of generality. Two of the
equilibrium notions Myerson analyzes have analogues in our paper. In expectational equilibria,
the principal can choose from any mechanism, as in the model in Section 2. Undominated

mechanisms are direct incentive compatible mechanisms that weakly dominate any other direct
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Proposition 3.1 highlights that it is enough for the principal to look among those

canonical mechanisms that incentivize the agent to participate and truthfully re-

port her type. This second observation is important. In finite-horizon settings, it

justifies writing down the principal’s problem as a series of maximization problems

subject to constraints: the participation and incentive compatibility constraints

for the agent and the sequential rationality constraints for the principal. This pro-

vides a game-theoretic foundation for the programs studied by Bester and Strausz

(2001) and Bester and Strausz (2007). In Doval and Skreta (2018b) we show how

this approach also simplifies looking for the best equilibrium for the principal in

an infinite-horizon problem.

4 Transferable utility and increasing differences

Section 4 considers a simplified version of the game in Section 2. The purpose is

to show how one can harness the results in Section 3 to solve for the principal’s

optimal mechanism under limited commitment. In particular, our formulation of

the canonical set of output messages as beliefs allows us to write the principal’s

problem as a constrained information design problem. Using this formulation and

an extension17 of the techniques in Le Treust and Tomala (2017), we characterize

upper bounds on the set of posteriors used in an optimal mechanism. Along the

way, we also highlight the differences between the problem considered here and

the one introduced by Kamenica and Gentzkow (2011).

Consider the following simpler version of the game in Section 2:

- The agent observes her type vi P tv1, . . . , vNu. Let µ0
i “ Prpv “ viq.

- The principal offers the agent a mechanism M “ xpM,β, Sq, αy.

- The agent observes M and decides whether to participate.

– If she does not participate, a˚ is implemented.

– If she participates, she privately submits a report m P M :

and incentive compatible mechanism, as in the canonical game in Section 3.2. Myerson shows
that strong solutions, which is a strengthening of undominated mechanisms, are expectational
equilibria, but the reverse does not necessarily hold.

17See Doval and Skreta (2018a) for further details.
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- s P S is drawn according to βp¨|mq, which is publicly observed,

- a P A is drawn according to αp¨|sq, which is publicly observed.

- The principal selects an action y P Y paq, where Y paq Ď Y is a compact

(possibly finite) space.

The non-contractible action y captures in reduced form the principal’s limited com-

mitment: In the example in Section 2.1, y corresponds to the choice of mechanism

in the second period.18 The correspondence Y paq plays the role of the correspon-

dence A in Section 2: It captures how past allocations may affect the principal’s

available choices in the continuation.

The above is the game that underlies the maximization problem analyzed by

Bester and Strausz (2007). Theorem 3.1 and Proposition 3.1 provide a game-

theoretic foundation for why the search for the principal’s best equilibrium can

be cast in terms of such a program. To facilitate the comparison between the

papers, we follow their notation as much as possible. In what follows, wipa, yq

denotes the principal’s utility when v “ vi; similarly, uipa, yq is the agent’s utility

when her type is vi.

In standard mechanism design fashion, we focus here on the case of transfer-

able utility and increasing differences, leaving the full analysis to Section I in the

Supplementary Material.19 First, we assume A “ Q ˆ R, where q P Q denotes

the physical part of the allocation and t P R denotes a monetary transfer from

the agent to the principal. Hereafter, we take Y pq, tq “ Y pqq, and in a slight

abuse of notation, we denote uipa, yq “ uipq, yq ´ t, wipa, yq “ wipq, yq ` t.20 Sec-

ond, because mechanisms in our setting determine lotteries over outcomes, the

appropriate notion of increasing differences is the one in Kartik et al. (2017):

18The beauty of the simple model is that the non-contractible part of the allocation y may
stand for other forms of contractual incompleteness, such as renegotiation. From this point of
view, we believe the techniques presented herein could be used to understand optimal contract-
ing in other environments of interest, where distortions arise, for instance, from the need to
renegotiate contracts or hold-up problems.

19We comment at the end of this section how the results we obtain translate to the case of
non-transferable utility

20Under transferable utility, if the action y represents the choice of a continuation mechanism,
then the assumption that Y p¨q does not depend on t is innocuous. Section I in the supplementary
material does not restrict how the correspondence Y p¨q depends on a.
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Definition 4.1 (Kartik et al. (2017)). The family tuiu
N
i“1 satisfies monotonic ex-

pectational differences if for any two distributions P,Q P ∆pA ˆ Y q
ş
uip¨qdP ´ş

uip¨qdQ is monotonic in i.21

The analysis in Section 3 implies the solutions to the following program charac-

terize the PBE of the aforementioned game:22

max
β,α,y

ÿ

i,h

µ0
iβi,hr

ÿ

pq,tq

αhpq, tqpwipq, yhpqqq ` tqs (P)

s.t.

$
’’’’’’’’’’&
’’’’’’’’’’%

ř
h βi,h

ř
pq,tq

αhpq, tqruipq, yhpqqq ´ ts ě 0, i ě 1

ř
hpβi,h ´ βk,hq

ř
pq,tq

αhpq, tqruipq, yhpqqq ´ ts ě 0, i, k P t1, 2, ..., Nu, i ‰ k

yhpqq P y˚pµh, qq ” argmaxyPY pqq

Nř
i“1

µh,iwipq, yq

µh,i

Nř
j“1

µ0
jβj,h “ µ0

iβi,h,

where βi,h “ βpµh|viq, αh “ αp¨|µhq and H “ t1, . . . , Hu indexes the posteriors.

That is, the principal selects the best canonical mechanism from among the ones

that (i) induce participation with probability 1, (ii) induce truthtelling with prob-

ability 1, and (iii) satisfy the principal’s sequential rationality constraints. Implicit

in this program is that the number of posteriors induced by the principal is also a

variable of choice.

The rest of the section proceeds as follows. First, Proposition 4.1 shows how,

under our assumptions, we can simplify the number of constraints in program (P).

Second, we show how to cast the simpler program as a constrained information

design one. Finally, we use this connection to characterize an upper bound on the

21Kartik et al. (2017) show that u satisfies monotonic expectational differences if, and only
if, it takes the form uipa, yq “ g1pa, yqf1piq ` g2pa, yq ` cpiq, where g1, g2 are finitely integrable
and f1 is monotonic.

22In the event that the agent does not participate in the mechanism, allocation a˚ gets im-
plemented. Moreover, the principal chooses y P Y pa˚q to maximize his expected utility, where
expectations are taken with respect to his beliefs after observing the agent does not participate
of the mechanism, which is an off-path event. Implicit in the agent’s participation constraint
in program (P) is that the above choices can be made so that the agent obtains a payoff of 0
regardless of her type. This allows us to focus on the issues of limited commitment, without
having to worry of the issue of type dependent participation constraints.
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number of posteriors in the optimal mechanism.

Transferable utility implies that focusing on mechanisms that do not randomize

on transfers is without loss of generality. Hereafter, we replace t with its ex-

pectation, denoted by th. Like increasing differences in mechanism design with

commitment, monotonic expectational differences implies the solutions to (P) co-

incide with the solutions to a simpler program, which imposes only a subset of

the incentive compatibility constraints. Finally, both assumptions imply that the

participation constraint of the lowest type binds. The above remarks are recorded

in Proposition 4.1.

Proposition 4.1. If tuiu
N
i“1 satisfies monotonic expectational differences, then to

characterize the solution to (P), it suffices to guarantee the following hold:

1. The agent’s participation constraint binds when her type is v1.

2. Adjacent incentive constraints are satisfied.

See Appendix D for a proof. In mechanism design with commitment, we could

simplify (P) further by showing the downward-looking23 incentive constraints al-

ways bind at the optimum. This then justifies the study of the so-called relaxed

program:

max
β,α,y

ÿ

i,h

µ0
iβi,hr

ÿ

q

αhpqqwipq, yhpqqq ` ths (R)

s.t.

$
’’’’&
’’’’%

ř
h β1,hr

ř
αhpqqu1pq, yhpqqq ´ ths “ 0,ř

hpβi,h ´ βi´1,hqr
ř

αhpqquipq, yhpqqq ´ ths “ 0, i P t2, ..., Nu

yhpqq P y˚pµh, qq ” argmaxyPY pqq

ř
µh,iwipq, yq”řN

j“1 µ
0
jβj,h

ı
µh,i “ µ0

iβi,h

,

23That is, the constraints that say vi does not report her type is vi´1.
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obtained by dropping the monotonicity constraints :24

ÿ

h

pβi,h ´ βi´1,hq
ÿ

q

αhpqqpuipq, yhpqqq ´ ui´1pq, yhpqqqq ě 0, i P t2, . . . , Nu. (M)

In mechanism design with commitment, it suffices to check that the solution to

the relaxed program satisfies the monotonicity constraints, (M), to show it is the

solution to (P) (see the discussion in footnote 24).

However, in mechanism design with limited commitment, the solution to the

relaxed program is not necessarily a solution to (P) even if it satisfies the mono-

tonicity constraints, when the type space is finite and there are three or more types.

This is illustrated in Example 2 in Appendix D. Whereas in the relaxed program

the binding downward-looking incentive constraints together with v1’s participa-

tion constraint impose N restrictions on the transfers pthq, the solution to the

relaxed program might use less than N posteriors. Therefore, finding transfers th

that satisfy all constraints may not possible.25 Alternatively, not all downward-

looking constraints may bind in the optimal mechanism.

Fortunately, the above is not an issue when there are two types or a continuum

of types. In both cases, it is possible to show that downward looking constraints

bind (see Appendices D and IV). Because most of the literature focuses on one

of these cases, and because the relaxed program provides a useful benchmark, the

rest of this section studies its properties.

We can use the binding constraints to substitute the transfers out of the princi-

pal’s program and obtain the following:

24The constraints in equation (M) are obtained from combining the restriction that vi does
not want to report vi´1 and vi´1 does not want to report vi. Under Definition 4.1, the binding
downward-looking incentive constraints together with the monotonicity constraints imply the
local constraints in Proposition 4.1.

25This is never an issue in mechanism design with commitment: Without loss of generality,
we can always have one transfer for each type.
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max
τ,α,y

ÿ

h

τpµhq
Nÿ

i“1

µh,i

ÿ

q

αhpqqrwipq, yhpqqq ` ui,h ´
1 ´

ř
nďi µ

0
n

µ0
i

pui`1,h ´ ui,hqs

s.t.
ÿ

τpµhqµh “ µ0,

where τpµhq “
ř

i µ
0
iβi,h and ui,h “ uipq, yhpqqq.

Define:

ûipq, y;µ
0q ” uipq, yq ´

1 ´
ř

nďi µ
0
n

µ0
i

pui`1pq, yq ´ uipq, yqq,

wipα, yµpαqq ` ûipα, yµpαq;µ0q ”
ÿ

q

αpqqpwipq, yµpqqq ` ûipq, yµpqq;µ0qq

w̃pα, µ;µ0q ” Eµ

“
wipα, yµpαqqq ` ûipα, yµpαq;µ0q

‰
,

where ûi is type i’s virtual utility from pq, yq and w̃ is the expectation according

to µ of the virtual surplus at tα, yµp¨qqu, for some selection yµpqq P y˚pµ, qq (see

Remark 4.1). Moreover, we drop the index h because thinking about these objects

as functions of beliefs µ in what follows is useful.

Program (R) is then equivalent to

max
τ,α,y

Eτ w̃pα, µ;µ0q (3)

s.t. Eτµ “ µ0

That is, the solution to the relaxed problem is obtained by maximizing a version

of the virtual surplus, represented by w̃, and then choosing a distribution over

posteriors that averages out to the prior. Equation (3) generalizes the program

obtained in Section 2.1. The following remark is in order:

Remark 4.1 (Tie-breaking in favor of the principal). So far, we have remained

silent about how yµpqq is chosen, beyond the restriction that yµpqq P y˚pµ, qq. We

can use the function w̃pq, µ;µ0q to determine how to break the possible ties in

y˚ and make the principal’s objective upper-hemicontinuous. In fact, if y, y1 P
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y˚pµ, qq, then in the relaxed problem, y is selected as long as

Eµrwipq, yq ` ûipq, y;µ
0qs ě Eµrwipq, y

1q ` ûipq, y
1;µ0qs.

In other words, ties are broken in favor of the virtual surplus.

We now illustrate how to solve the program in (3). Towards this, fix the selection

y as in Remark 4.1. Because the program is separable in the allocation, α, across

posteriors, the solution can be obtained in two steps. First, for each posterior

µ, we maximize w̃p¨, µ;µ0q with respect to α. Denote the value of this problem

ŵpµ;µ0q. Second, we choose τ to maximize ŵpµ;µ0q subject to the constraint that

the posteriors must average out to the prior, µ0. This separability between the

choice of the allocation rule, α, and the communication device, β, is afforded by

ignoring the monotonicity constraints in (M). The latter may impose additional

restrictions on how the allocation varies across different posteriors.

This discussion implies the solution to (3) can be obtained by solving:

max
τ

Eτ max
α

w̃pα, µ;µ0q
loooooooomoooooooon

ŵpµ;µ0q

(4)

s.t. Eτµ “ µ0

An advantage of the above formulation is that a straightforward application of

Carathéodory’s theorem (see Rockafellar (1970)) implies that in (4), the solution

never uses more than N posteriors:26

Proposition 4.2. The solution to (R) uses at most N posteriors.

Then, if the solution to the relaxed program satisfies the monotonicity con-

straints and it is possible to find transfers pthq that satisfy the downward looking

binding incentive constraints, we have found a solution to the principal’s problem,

(P).

In many instances, however, the solution to (R) will fail to satisfy the mono-

26Bester and Strausz (2007) derive this result using methods in semi-infinite linear program-
ming.
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tonicity constraints, (M). As we show next, adding as many posteriors as binding

monotonicity constraints at the optimum may be necessary:

Proposition 4.3. Consider the program obtained by adding the monotonicity con-

straints (M) to the relaxed program (R). The solution to the new program uses

at most N ` K posteriors, where K is the number of binding constraints at the

optimum.

The proof is in Appendix D and follows from extending the techniques in Le Treust and Tomala

(2017) to our setting, where we have multiple inequality constraints and equality

constraints.

Finally, we note the connection between our problem and a constrained infor-

mation design problem holds beyond the case of transferable utility, as illustrated

in Section I in the supplementary material. In particular, we show the assumption

of monotonic expectational differences also reduces the problem to the analysis

of the local incentive constraints. Moreover, we can again bound the number of

posteriors by 3N ´ 1.

Whereas the above formulation harnesses the connection between our problem

and the one studied in information design, we close the section by highlighting two

conceptual differences with this literature. The reader eager to see the results in

the next section can skip it without loss of continuity.

First, the function ŵpµ;µ0q in equation (4) stands for the sender’s objective func-

tion, v̂pµq, in Kamenica and Gentzkow (2011). Recall that in Kamenica and Gentzkow

(2011), v̂pµq is the sender’s expected utility of the receiver’s optimal action when

the posterior is µ, where expectations are taken with respect to µ. Two differ-

ences are worth pointing out. First, in our setting, the first-period principal (the

sender in Kamenica and Gentzkow (2011)) also takes an action for each posterior

he induces, because he chooses the allocation α.

Second, the principal’s objective function in equation (3) depends both on the

posterior, µ, and the prior, µ0, whereas in Kamenica and Gentzkow (2011), it only

depends on the posterior. We already saw an instance of this in the example

studied in Section 2.1. In fact, we saw that the virtual values are calculated using
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the prior distribution, because this distribution is the one the principal uses to

calculate the probability with which he leaves rents to the different types of the

agent. That the principal’s payoff depends both on the prior and the posterior

may come as a surprise because when a distribution F can be written as a convex

combination of distributions Fs, so that F “
řS

s“1 λsFs, then

ż
p1 ´ F q

f
dF “

Sÿ

s“1

λs

ż
1 ´ Fs

fs
dFs.

27

That is, the posterior information handicap averages out to the prior informa-

tion handicap. Thus, we may have expected that the information handicap in

w̃pα, µ;µ0q could be written solely as a function of µ. Only when the allocation is

the same for all induced posteriors, and hence no type of the agent obtains rents,

we can think of the principal’s objective as only depending on the posterior.

5 Discussion

5.1 Recommendations as output messages

As discussed in the introduction, in the finite-horizon case, there is another candi-

date for a canonical language: In period t, each output message could be associated

to an allocation for period t and a recommended allocation for the subsequent pe-

riods. We use the formulation in Section 4 to discuss this formally.

Section 4 illustrated how the relaxed program can be formulated as an informa-

tion design problem, where the principal in period 1 designs both the allocation for

the agent and the information structure for the principal in period 2 (see equation

(3)).

We borrow the terminology in Kamenica and Gentzkow (2011) and say a mech-

anism is straightforward if S Ď YqPQtqu ˆ Y pqq and after message s “ pqs, ysq,

the principal chooses qs in period 1 to maximize w̃pα, µs;µ
0q and ys in period 2 to

maximize
ř

µi,swipqs, yq in period 2, where µs are the beliefs generated by output

message s.

27Laura Doval thanks René Leal Vizcaino for a discussion that led to this observation.
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Proposition 5.1. The following are equivalent:

1. There exists a mechanism xpV, β, Sq, αy and a mapping y : SˆQ ÞÑ YqPQY pqq

that solves (R).

2. There exists a mechanism xpV, β,∆pV qq, αy and a mapping y : ∆pV q ˆ Q ÞÑ

YqPQY pqq that solves (R).

3. There exists a straightforward mechanism that solves (R).

The proof is in Appendix E. Item 3 highlights that in the relaxed program (R),

the set of output messages can also be taken to be recommendations for both

incarnations of the principal, as in sender-receiver models of information design.

The proposition uses both the separability between the allocation, α, and the

information policy, τ , discussed in Section 4 and that there is a final period in which

the principal takes the non-committed action, y.28 The separability guarantees

the first-period principal chooses to implement allocations q that are optimal for

each posterior he induces for period 2. However, in the case of infinite horizon,

the language of recommendations is self-referential : The principal would need to

recommend the continuation mechanisms, which themselves involve a set of output

messages. Thus, an advantage of the approach we advocate is that we can always

resort to beliefs regardless of the game at hand.

5.2 Implementation via contracts

Section 5.2 characterizes within the environment of Section 4 the tuples pβ, q, yq

that can be implemented using the contracts studied previously in the literature.

An important difference between the mechanisms used by Hart and Tirole (1988),

Laffont and Tirole (1988), Freixas et al. (1985), and Bester and Strausz (2001)

and the ones considered here is that whereas in the former papers, the princi-

pal observes the agent’s choice out of a menu, in the latter, the agent’s input into

the communication device is not observed. A consequence of this is that in the

former setting, the agent has to be indifferent between all the elements of the menu

28If the final period corresponded to a design problem, such as the sale of a durable good
example, one could resort to the revelation principle in Myerson (1982) to reduce the principal’s
actions in the final period to the induced allocations.
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that she selects with positive probability. By contrast, in our setting, the agent’s

incentive compatibility constraint has to hold in expectation: Although she may

not be indifferent between all the allocations that arise with positive probability

after she communicates with the mechanism, on average, they must be better than

what she would obtain by reporting any other type.

Fix a canonical communication device β : V ÞÑ ∆˚p∆pV qq and a tuple pq, yq :

∆pV q ÞÑ Q ˆ Y , where we denote by ypµq “ ypqpµq, µq.29 We want to find

t1 : ∆pV q ÞÑ R such that for all vi P V , for all µ : βpµ|viq ą 0, and for all

µ1 :
ř

v1 βpµ1|v1q ą 0,

uipqpµq, ypµqq ´ t1pµq ě uipqpµ1q, ypµ1qq ´ t1pµ1q. (DIC-P)

Note equation (DIC-P) corresponds to the definition of equivalence in Mookherjee and Reichelstein

(1992).30 Indeed, the problem we intend to solve is similar in spirit to the one

analyzed in the literature that studies the equivalence between Bayesian and

dominant-strategy implementation (Manelli and Vincent (2010) and Gershkov et al.

(2013)). However, there are some differences that, although subtle, turn out to

have important implications. First, in that literature, this problem only makes

sense when there are multiple agents, whereas in our case, the source of random-

ness the agent faces (the randomization by the communication device) is endoge-

nously chosen by the principal. Second, allocation and transfers in that setting

depend on the agent’s type, whereas here they depend on the belief induced when

the principal observes the output message. As we show next, this implies joint

restrictions on the communication device and the allocation rule.

As in Section 4, we assume the agent’s preferences satisfy monotonic expecta-

tional differences. Thus, label the types so that v1 ă ¨ ¨ ¨ ă vN . Note that if

uipq, yq satisfies Definition 4.1, then uipq, yq has increasing differences. In effect,

uipq
1, y1q ´uipq, yq “ fpiqpg1pq

1, y1q ´ g1pq, yqq ` g2pq
1, y1q ´ g2pq, yq, which is strictly

29To keep notation simple, we ignore the possibility that q and y may be randomized alloca-
tions. It is immediate that this restriction is not necessary for the results.

30Mookherjee and Reichelstein (1992) also require that t1 raises the same revenue as t (see
equation (DIC-T) below). We focus for now on the possibility of guaranteeing (DIC-P) holds
and discuss the difficulties associated with guaranteeing the same revenue is collected at the end
of Section 5.2.
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increasing in i as long as g1pq1, y1q ´ g1pq, yq ‰ 0. In what follows, we make the

following assumption:

Assumption 1. For all µ, µ1 P ∆pV q such that p
ř

vPV βpµ|vqq ˆ p
ř

vPV βpµ1|vqq ą

0, we assume g1pqpµq, ypµqq ´ g1pqpµ1q, ypµ1qq ‰ 0.

Given two beliefs µ and µ1, let

Dipµ, µ
1q ” uipqpµq, ypµqq ´ uipqpµ1q, qpµ1qq

denote the difference in payoffs from pqpµq, ypµqq and pqpµ1q, ypµ1qq, when the agent

type is vi. The content of Assumption 1 is that Dipµ, µ
1q is strictly increasing in i.

We have the following:

Proposition 5.2. Suppose the agent’s Bernoulli utility function satisfies Defini-

tion 4.1 and pβ, q, yq satisfies Assumption 1. A necessary and sufficient condition

for pβ, q, yq to satisfy (DIC-P) is that pβ, q, yq satisfies

1. For all i P t1, . . . , Nu and j ą i, for all µ and µ1,

Djpµ
1, µq ě Dipµ

1, µq, (DIC-M)

whenever µ1pvjqµpviq ą 0.

2. β induces a monotone information structure: We can label the beliefs induced

by pβ, q, yq, tµ1, . . . , µMu so that

(a) If i ă j, then max supp µi ď min supp µj,

(b) For any i, there are at most three beliefs tµi, µi`1, µi`2u for which vi has

positive probability. Moreover, if vi has positive probability in all three,

then µi`1pviq “ 1.

The proof is in Appendix F. The first condition is the equivalent to the standard

monotonicity condition for dominant-strategy incentive compatibility: For any two

beliefs µ and µ1, the utility differential of the allocations pq, yq induced at these

beliefs is higher for higher types. The second is new to our setting. Recall that,

under Assumption 1, Dipµ, µ
1q is strictly increasing in i, which places restrictions
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on the support of the beliefs induced by the principal’s mechanism. In particular,

to satisfy (DIC-P), when the agent’s type is vi, she must be indifferent between

the allocations pq, yq that correspond to posteriors that assign positive probability

to vi. Monotonic expectational differences implies that when vi is indifferent be-

tween pqpµq, ypµqq and pqpµ1q, ypµ1qq and Dipµ, µ
1q ě 0, then all types higher than

vi (weakly) prefer pqpµq, ypµqq to pqpµ1q, ypµ1qq (and the opposite holds for lower

types). Assumption 1 then guarantees that higher types cannot be in the support

of µ1 (and the opposite holds for lower types).

Note that we cannot dispense with the assumption that β induces a mono-

tone information structure. In the example in Appendix B in Bester and Strausz

(2007), the agent can be of one of two types and her utility satisfies Definition 4.1;

however, the optimal mechanism induces three posteriors under which both types

have positive probability and having both types be indifferent between the three

allocations induced by the mechanism is not possible.

Besides allowing us to connect the results in this paper with the previous litera-

ture on mechanism design with limited commitment, the result in Proposition 5.2

is also of practical value. Section 4 highlights that the characterization of S as the

set of beliefs over the agent’s type allows us to harness the tools of mechanism and

information design to solve for the principal’s optimal mechanism. Proposition 5.2

allows us then to check when the solution to the program in Section 4 is also a

solution to the problem in which the principal observes the agent’s choice out of a

menu.

Proposition 5.2 is silent about whether the transfer scheme t1 collects the same

revenue as the original mechanism did, that is, whether t1 also satisfies that

ÿ

vPV

βpµ|vqt1pµq “
ÿ

vPV

βpµ|vqtpµq, (DIC-T)

for all µ such that
ř

vPV βpµ|vq ą 0.

Contrary to Mookherjee and Reichelstein (1992), we do not find that once (DIC-P)

is satisfied, then (DIC-T) is satisfied. In particular, with two types, only when the

solution features two beliefs, µpv2q ă µ0 ă µpv2q “ 1, can one satisfy both (DIC-P)
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and (DIC-T). We leave for future research the full analysis of the conditions under

which both (DIC-P) and (DIC-T) hold.31

5.3 Multiple agents: Example in Bester and Strausz (2000)

Bester and Strausz (2000) show that, with multiple agents, the result for the single-

agent case in Bester and Strausz (2001) no longer holds. That is, if M “ S and β

is deterministic, then there are equilibria with mechanisms in which M ‰ V , whose

payoffs cannot be replicated with canonical mechanisms. To keep the discussion

self-contained, we replicate here their example and then explain why it does not

invalidate the possibility of extending our techniques to the multi-agent case.

Example 1 (Bester and Strausz (2000)). There are two agents, labeled 1 and 2.

Only agent 1 has private information; let v P tv, vu denote her type. The prior

that the type is v is denoted by µ P r0, 1s. The set of allocations A “ r0, 2s. Payoffs

are defined as follows:

W pa, vq “ ´a2,W pa, vq “ ´p2 ´ aq2

U1pa, vq “ ´p0.5 ´ aq2, U1pa, vq “ ´p1.5 ´ aq2

U2paq “ ´10p1 ´ aq2.

That is, the principal’s payoff depends on agent 1’s type, whereas agent 2’s payoff

does not.

The timing is as follows. The principal selects a communication device for

the agents, who then submit messages. Upon seeing the messages, the principal

chooses a P A.

The principal’s payoffs are such that if, after seeing m, his posterior is µpmq,

then he chooses allocation

a˚pmq “ 2p1 ´ µpmqq.

31Note that Mookherjee and Reichelstein (1992), Manelli and Vincent (2010), Gershkov et al.
(2013) use the representation of the agent’s utility function obtained via the envelope theorem to
pin down transfers. As discussed in Section 4, we cannot guarantee downward-looking constraints
bind at the optimum when there are three or more types.
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Bester and Strausz (2000) construct an equilibrium with three messages tma, mb, mcu

that cannot be replicated with messages tv, vu. LetM “ tma, mb, mcu. Then there

is a PBE such that

µpmaq “ 1, µpmbq “ 1{2, µpmcq “ 0

a˚pmaq “ 0, a˚pmbq “ 1, a˚pmcq “ 2.

However, the above mechanism cannot be replicated by a mechanism with two

messages, when the principal observes the output messages. The reason is not that

agent 1 is not indifferent between the allocations he obtains at different messages,

so that he is not willing to carry out the randomization himself. Rather, under the

assumptions of Bester and Strausz (2001), the mechanism can only have as many

input messages as output messages. Because the agent may be of one of two types,

the mechanism can only have two input messages. Therefore, the agent does not

have enough room to do the mixing and generate the required posteriors for the

principal.

However, if we allow the principal to offer canonical mechanisms as the ones in

this paper, the following communication device implements the same allocation as

the non-canonical mechanism:

βpµpmaq|vq “ 1{2, βpµpmaq|vq “ 0,

βpµpmbq|vq “ 1{2, βpµpmbq|vq “ 1{2,

βpµpmcq|vq “ 0, βpµpmcq|vq “ 1{2.

After all, the result that taking M » V and S » ∆pV q is without loss of generality

dispenses with the restriction that the number of input messages must coincide

with the number of output messages.

Extending the model in Section 2 to the case of multiple agents involves dealing

with a number of subtleties that merit a full separate study and are thus beyond

the scope of this paper. We plan to address this important extension in future

research.
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A Proof of preliminary results

Appendix A is organized as follows:

Proposition A.1 shows we can focus without loss of generality on equilibria of the game

in which the agent does not condition her strategy on the payoff-irrelevant part of her

private history.

Proposition A.2 shows we can focus without loss of generality on equilibria of the game

in which the agent participates with probability one.

Proposition A.3 shows we can focus without loss of generality on equilibria in which

there is a one-to-one mapping between the output messages generated in the mechanism

and the continuation beliefs the principal holds about the agent’s type.

Because we have to deal with an abstract dynamic game, the proof is notationally

involved. As a first pass to most results, except Proposition A.1, the reader is invited to

first take a look at Appendix I in the supplementary material, where the constructions

are performed in a two-period version of the model.

We need a few more pieces of notation and definitions.

First, as noted in footnote 12, some output messages can never be observed. Given a

mechanism, Mt, define S˚Mt “ ts P SMt : pDm P MMtqβMtps|mq ą 0u. Since removing

public histories from the tree that are consistent with mechanism Mt and s P SMtzS˚Mt

does not change the set of equilibrium outcomes, hereafter, these histories are removed

from the tree.

Second, fix a PBE of the dynamic mechanism-selection game xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y and a

public history ht for some t ě 0 (if t “ 0, then h0 “ H denotes the initial public history).

For T ě t, the history hT “ pht,Mt, pt, st, at, . . . ,MT´1, pT´1, sT´1, aT´1, ωT q is on the

path of the equilibrium strategy profile given ht if for all t ď τ ď T ´ 1

hτ`1 “ phτ ,Mτ , pτ , sτ , aτ , ωτ`1q,
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where

Mτ P supp Γ˚phτ q
ÿ

pv,hτ
Aq

µ˚phτ qpv, hτ
Aqπ˚

v phτ
A,Mτ qppτ q ą 0

pτ “ 1 ñ
ÿ

pv,hτ
Aq:π˚

v phτ
A,Mτ qą0

µ˚phτ qpv, hτ
Aq

ÿ

mPMMτ

r˚
v phτ

A,Mτ , 1qpmqβMτ psτ |mqαMτ paτ |sτ q ą 0

pτ “ 0 ñ sτ “ H, aτ “ a˚.

That is, along the path from ht to hτ`1, the principal made choices according to his

equilibrium strategy, the agent made participation choices according to her equilibrium

strategy, and the output-message labels and allocations correspond to those in the mech-

anism chosen by the principal. Note that we do not say anything about the reports of

the agent, because they are not part of the public history.

We sometimes need to talk about the histories that are on the path of the equilibrium

strategy profile given a public history ht and a mechanism Mt.The only difference with

the above definition is that Mt need not have positive probability according to Γ˚phtq.

The above notation is used as follows. Proposition A.1 shows that for any PBE, there is

a payoff-equivalent PBE in which the agent does not condition her strategy on the payoff-

irrelevant part of her private history. To do so, starting from any history ht, we need to

modify the strategy for all continuation histories on the path of the strategy. Similarly,

the main theorem shows we can transform any PBE of the game into one in which the

principal’s strategy selects only canonical mechanisms on and off the equilibrium path.

To do so, we must map the continuation strategy starting from any history ht in the

game to one in which the continuation strategy only offers canonical mechanisms. When

we perform this mapping for h0, we are doing the transformation for the path of the

equilibrium strategy; when we do this for histories that can be reached from ht, we are

doing the transformation for the path of the continuation strategy.

Proposition A.1. Fix a PBE xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y and a public history ht. Then, there

exists a continuation strategy for the agent pπ˚˚
v , r˚˚

v qvPV such that:

1. For any mechanism Mt, for all ht
A, h

t
A

1
P H t

Aphtq, and for all v P V , π˚˚
v pht

A,Mtq “

π˚˚
v pht

A
1
,Mtq and r˚˚

v pht
A,Mt, 1q “ r˚˚

v pht
A

1
,Mt, 1q.
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2. For all mechanisms Mt, for τ ě t ` 1, for all histories hτ on the equilibrium path

starting from pht,Mtq, for all hτ
A, h

τ
A

1 P Hτ
Aphτ q, for all Mτ P supp Γ˚phτ q, and for

all v P V π˚˚
v phτ

A,Mτ q “ π˚˚
v phτ

A
1,Mτ q and r˚˚

v phτ
A,Mτ , 1q “ r˚˚

v phτ
A

1,Mτ , 1q.

3. For all histories hτ on the equilibrium path starting from ht, the continuation payoff

for the principal at pΓ˚, pπ˚˚
v , r˚˚

v qvPV , µ
˚q is the same as at pΓ˚, pπ˚

v , r
˚
v qvPV , µ

˚q;

similarly, for each v P V and each hτ
A P Hτ

Aphτ q the continuation payoff for the

agent at pv, hτ
Aq is the same under both strategy profiles.

4. pΓ˚, pπ˚˚
v , r˚˚

v qvPV , µ
˚q is also a PBE.

Proof. Fix a PBE xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y. Let ht be a public history such that there exists

Mt, h
t
A, h

1t

A, both consistent with ht, and v P V such that either π˚
v pht

A,Mtq ‰ π˚
v pht

A
1
,Mtq

or r˚
v pht

A,Mt, 1q ‰ rvph1t

A,Mt, 1q.

Note that for each m P MMt , the agent’s continuation payoff at pv, ht
Aq and pv, ht

A
1q

must be the same: after all, the continuation strategy of pv, ht
Aq is feasible for pv, h1t

Aq and

vice versa. Therefore, the agent at pv, ht
Aq is not only indifferent between all the messages

in the support of r˚
v pht

A,Mt, 1q, but is also indifferent between all messages in the support

of r˚
v ph1t

A,Mt, 1q. Therefore, the agent at pv, ht
Aq is indifferent between r˚

v pht
A,Mt, 1q and

any randomization between r˚
v pht

A,Mt, 1q and r˚
v ph1t

A,Mt, 1q.

Moreover, the above is true for any continuation public history that is reached with

positive probability from ht for the same reasons. That is, for any τ ě t and hτ that

succeeds pht,Mtq along which the principal follows Γ˚ and the agent at pv, ht
Aq and

at pv, h1t

Aq follows π˚
v , r

˚
v and for any hτ

A, h
1τ

A that succeed ht
A and h1t

A, respectively, the

agent is indifferent between her reporting strategy r˚
v phτ

A,Mτ , 1q and r˚
v ph1τ

A ,Mτ , 1q for

Mτ P Γ˚phτ q.

Therefore, starting from ht, the following is also an optimal strategy for the agent when

her valuation is v. Consider first those types v for which
ř

ht
APHt

Aphtq µ
˚phtqpv, ht

Aq ą 0.

For any ht
A P H t

Aphtq, she participates with probability

π˚˚
v pht

A,Mtq “
ÿ

ht
A

1

µ˚phtqpv, ht
A

1q
ř

Ăht
APHt

Aphtq
µ˚phtqpv, Ăht

Aq
π˚
v pht

A

1
,Mtq,
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and reports m P MMt with probability:

r˚˚
v pht

A,Mt, 1qpmq “
ÿ

ht
A

1PHt
A

phtq

µ˚phtqpv, ht
A

1
qπ˚

v pht
A

1
,Mtqř

Ăht
APHt

Aphtq
µ˚phtqpv, Ăht

Aqπ˚
v pĂht

A,Mtq
r˚
v pht

A

1
,Mt, 1qpmq,

as long as
ř

Ăht
APHt

Aphtq
µ˚phtqpv, Ăht

Aqπ˚
v pĂht

A,Mtq ą 0.32 For each hτ that has positive proba-

bility from pht,Mtq and hτ
A P Hτ

Aphτ q, for each Mτ P supp Γ˚phτ q, the agent participates

with probability

π˚˚
v phτ

A,Mτ q “
ÿ

hτ
A

1PHτ
Aphτ q

µ˚phτ qpv, hτ
A

1q
ř

Ăhτ
APHτ

Aphτ q µ
˚phτ qpv, Ăhτ

Aq
π˚
v phτ

A
1,Mτ q, (5)

as long as
ř

Ăhτ
APHτ

Aphτ q µ
˚phτ qpv, Ăhτ

Aq ą 0 and reports m P MMτ with probability

r˚˚
v phτ

A,Mτ , 1qpmq “
ÿ

hτ
A

1PHτ
Aphτ q

µ˚phτ qpv, hτ
A

1qπ˚
v phτ

A
1,Mτ q

ř
h̄τ
APHτ

Aphτ q µ
˚phτ qpv, h̄τ

Aqπ˚
v pĂhτ

A,Mτ q
r˚
v phτ

A
1,Mτ , 1qpmq,

(6)

as long as
ř

h̄τ
APHτ

Aphτ q µ
˚phτ qpv, h̄τ

Aqπ˚
v pĂhτ

A,Mτ q ą 0.

Before dealing with the zero probability events, note that the above transformation can

be applied to all pv, ht
Aq, ht

A P H t
Aphtq, regardless of whether µ˚phtqpv, ht

Aq ą 0. This is

because sequential rationality applies to all information sets of the agent and, thus, to all

ht
A P H t

Aphtq. A consequence of the above transformation is that as long as the principal

assigns positive probability to the event that the agent’s type is v P V , the agent plays

the same at all of her payoff-irrelevant histories; even at those to which the principal

assigns zero probability.

Now consider those types v P V such that
ř

ht
APHt

Aphtq µ
˚phtqpv, ht

Aq “ 0. For any

32Recall we are applying this transformation only at histories that are on the equilibrium strategy

given ht. Hence, if
ř

Ąht

A
PHt

A
phtq

µ˚phtqpv, Ăht

A
qπ˚

v pĂht

A
,Mtq “ 0, we continue doing the transformation at

ht`1 “ pht,Mt, 0,H, a˚q. Remark A.1 discusses how in this case we can apply a similar construction
starting from history pht,Mt, 1q.
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ht
A P H t

Aphtq, she participates with probability

π˚˚
v pht

A,Mtq “
ÿ

ht
A

1

π˚
v pht

A
1
,Mtq

|H t
Apht

Aq|
,

Suppose that pht,Mt, 1q has positive probability conditional on the principal offering

Mt. Then, modify the agent’s reporting strategy so that she reports m P MMt with

probability:

r˚˚
v pht

A,Mt, 1qpmq “
ÿ

ht
A

1PHt
Aphtq

π˚
v pht

A
1
,Mtqř

Ăht
APHt

Aphtq
π˚
v pĂht

A,Mtq
r˚
v pht

A

1
,Mt, 1qpmq,

if
ř

Ăht
A

PHt
A

phtq
π˚
v pĂht

A,Mtq ą 0 and with probability

r˚˚
v pht

A,Mt, 1qpmq “
ÿ

ht
A

1PHt
Aphtq

r˚
v pht

A
1
,Mt, 1qpmq

|H t
Aphtq|

,

otherwise.

For each hτ that has positive probability from pht,Mtq and hτ
A P Hτ

Aphτ q, for each

Mτ P supp Γ˚phτ q, the agent participates with probability

π˚˚
v phτ

A,Mτ q “
ÿ

hτ
A

1PHτ
Aphτ q

π˚
v phτ

A
1,Mτ q

|Hτ
Aphτ q|

. (7)

If the principal assigns positive probability to phτ ,Mτ , 1q at hτ , then modify the agent’s

reporting strategy so that she reports m P MMτ with probability

r˚˚
v phτ

A,Mτ , 1qpmq “
ÿ

hτ
A

1PHτ
Aphτ q

π˚
v phτ

A
1,Mτ q

ř
h̄τ
APHτ

Aphτ q π
˚
v pĂhτ

A,Mτ q
r˚
v phτ

A
1,Mτ , 1qpmq, (8)

if
ř

h̄τ
APHτ

Aphτ q π
˚
v pĂhτ

A,Mτ q ą 0 and with probability

r˚˚
v phτ

A,Mτ , 1qpmq “
ÿ

hτ
A

1PHτ
Aphtq

r˚
v phτ

A
1,Mτ , 1qpmq

|Hτ
Aphτ q|

,
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otherwise. Thus, for those valuations v P V to which the principal assigns 0 probability–

either at ht or at a continuation history hτ on the equilibrium path of the strategy given

ht– their strategies also do not depend on the payoff-irrelevant part of the private history.

Fix τ ě t. Under the new strategy, the principal’s beliefs that the agent is of type v

and her private history is hτ`1
A at history hτ`1 “ phτ ,Mτ , 1, sτ , aτ q, Mτ P supp Γ˚phτ q

are given by:

µ˚˚phτ`1qpv, hτ`1
A q “

µ˚˚phτ qpv, hτ
Aqπ˚

v phτ
A,Mτ qr˚˚

v phτ
A,Mτ , 1qpmτqβMτ psτ |mτ q

ř
ṽ,Ăhτ

A

ř
m̃τ

µ˚˚pṽ, Ăhτ
Aqπ˚˚

ṽ pĂhτ
A,Mτ qr˚˚

ṽ pĂhτ
A,Mτ , 1qpm̃τ qβMτ psτ |m̃τ q

,

(9)

where µ˚˚phtqpv, ht
Aq “ µ˚phtqpv, ht

Aq and at history hτ`1 “ phτ ,Mτ , 0, sτ , aτ q, Mτ P

supp Γ˚phτ q are given by:

µ˚˚phτ`1qpv, hτ`1
A q “

µ˚˚phτ qpv, hτ
Aqp1 ´ π˚˚

v phτ
A,Mτ qq

ř
ṽ,Ăhτ

A
µ˚˚phτ qpṽ, Ăhτ

Aqp1 ´ π˚˚
ṽ pĂhτ

A,Mτ qq
, (10)

We now show by induction that for any τ ě t,

ÿ

hτ`1

A PHτ`1

A phτ`1q

µ˚˚phτ`1qpv, hτ`1
A q “

ÿ

hτ`1

A PHτ`1

A phτ`1q

µ˚phτ`1qpv, hτ`1
A q.

We do so for histories hτ that are consistent with the equilibrium strategy for which the

agent participates; it is immediate that the same holds for those histories in which she

does not.

For τ “ t and ht`1 “ pht,Mt, 1, st, atq, note the denominator on the right-hand side of

equation (9) can be written as:

ÿ

ṽ,ht
A

ÿ

mPMMt

µ˚phtqpṽ, ht
Aqπ˚˚

ṽ pht
A,Mtqr

˚˚
ṽ pht

A,Mt, 1qpmqβMtps|mq

“
ÿ

ṽ

ÿ

mPMMt

π˚˚
ṽ pht

A,Mtqr
˚˚
ṽ pht

A,Mt, 1qpmqβMtps|mq
ÿ

ht
A

µ˚phtqpṽ, ht
Aq

“
ÿ

ṽ,ht
A

ÿ

mPMMt

µ˚phtqpṽ, ht
Aqπ˚

ṽ pht
A,Mtqr

˚
ṽ pht

A,Mt, 1qpmqβMtps|mq,
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where the first equality uses that π˚˚
v , r˚˚

v does not depend on ht
A and the second equality

uses the definition of π˚˚
v , r˚˚

v ; see equations (7) and (8). Note the last expression is

the denominator in µ˚pht`1qpv, ht`1
A q. Therefore, for ht`1 “ pht,Mt, 1, st, atq, h

t`1
A “

pht
A,Mt, 1, mt, st, atq, h

t
A P H t

Aphtq

ÿ

ht
A

µ˚˚pht`1qpv, ht`1
A q “

ř
ht
A
µ˚phtqpv, ht

Aqπ˚˚
v pht

A,Mtqr
˚˚
v pht

A,Mt, 1qpmtqβ
Mtpst|mtq

ř
ṽ,Ăht

A

ř
mPMMt µ

˚phtqpṽ, Ăht
Aqπ˚˚

ṽ pĂht
A,Mtqr˚˚

ṽ pĂht
A,Mt, 1qpmqβMtpst|mq

“
π˚˚
v pht

A,Mtqr
˚˚
v pht

A,Mt, 1qpmtqβ
Mtpst|mtq

ř
ht
A
µ˚phtqpv, ht

Aq
ř

ṽ,Ăht
A

ř
mPMMt µ

˚phtqpṽ, Ăht
Aqπ˚˚

ṽ pĂht
A,Mt, 1qr˚˚

ṽ pĂht
A,Mt, 1qpmqβMtpst|mq

“

ř
ht
A
µ˚phtqpv, ht

Aqπ˚
v pht

A,Mtqr
˚
v pht

A,Mt, 1qpmtqβ
Mtpst|mtq

ř
ṽ,Ăht

A

ř
mPMMt µ

˚phtqpṽ, Ăht
Aqπ˚˚

ṽ pĂht
A,Mtqr˚˚

ṽ pĂht
A,Mt, 1qpmqβMtpst|mq

“

ř
ht
A
µ˚phtqpv, ht

Aqπ˚
v pht

A,Mtqr
˚
v pht

A,Mt, 1qpmtqβ
Mtpst|mtq

ř
ṽ,Ăht

A

ř
mPMMt µ

˚phtqpṽ, Ăht
Aqπ˚

ṽ pĂht
A,Mtqr˚

ṽ pĂht
A,Mt, 1qpmqβMtpst|mq

“
ÿ

ht
A

µ˚pht`1qpv, ht`1
A q,

where the second equality uses that π˚˚
v , r˚˚

v do not depend on ht
A, the third equality uses

the definition of π˚˚
v , r˚˚

v , the fourth equality uses the observation about the denominator,

and the last equality follows by definition of µ˚pht`1q. Adding up both sides of the

expression over mt delivers the desired expression.

Now suppose we have established the above claim for each τ 1 ă τ . We now show

that it holds to τ 1 “ τ . To see that it holds for τ 1 “ τ , note the probability of hτ`1 “

phτ ,Mτ , 1, sτ q conditional on hτ , which is given by the denominator on the right hand
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side of equation (9), can be written as:

ÿ

ṽ,Ăhτ
A

ÿ

m̃τ

µ˚˚pṽ, Ăhτ
Aqπ˚˚

ṽ pĂhτ
A,Mτ qr˚˚

ṽ pĂhτ
A,Mτ , 1qpm̃τ qβMτ psτ |m̃τ q

“
ÿ

ṽ

ÿ

m̃τ

π˚˚
ṽ pĂhτ

A,Mτ qr˚˚
v pĂhτ

A,Mτ , 1qpm̃τ q
ÿ

Ăhτ
A

µ˚˚pṽ, Ăhτ
AqβMτ psτ |m̃τ q

“
ÿ

ṽ

ÿ

m̃τ

π˚˚
v pĂhτ

A,Mτ qr˚˚
v pĂhτ

A,Mτ , 1qpm̃τ q
ÿ

Ăhτ
A

µ˚pṽ, Ăhτ
AqβMτ psτ |m̃τ q

“
ÿ

ṽ,Ăhτ
A

ÿ

m̃τ

µ˚pṽ, Ăhτ
Aqπ˚

v pĂhτ
A,Mτ qr˚

v pĂhτ
A,Mτ , 1qpm̃τ qβMτ psτ |m̃τ q,

where the second equality makes use of the inductive hypothesis for τ 1 “ τ´1,
ř

Ăhτ
A
µ˚˚phτ qpṽ, Ăhτ

Aq “
ř

Ăhτ
A
µ˚phτ qpṽ, Ăhτ

Aq, and the third equality uses the definition of the participation and re-

porting strategies defined in equations (7) and (8). Note the last line corresponds to the

expression of the denominator of µ˚phτ`1qpv, hτ`1
A q in the original PBE.

Therefore,

ÿ

hτ
A

µ˚˚phτ`1qpv, hτ`1
A q “

ř
hτ
A
µ˚˚phτ qpv, hτ

Aqπ˚˚
v phτ

A,Mτ qr˚˚
v phτ

A,Mτ , 1qpmτ qβMτ psτ |mτ q
ř

ṽ,Ăhτ
A

ř
m̃τ

µ˚phτ qpṽ, Ăhτ
Aqπ˚

ṽ pĂhτ
A,Mτ qr˚

ṽ pĂhτ
A,Mτ , 1qpm̃τ qβMτ psτ |m̃τ q

“
π˚˚
v phτ

A,Mτ qr˚˚
v phτ

A,Mτ , 1qpmτ qβMτ psτ |mτ q
ř

hτ
A
µ˚˚phτ qpv, hτ

Aq
ř

ṽ,Ăhτ
A

ř
m̃τ

µ˚phτ qpṽ, Ăhτ
Aqπ˚

ṽ pĂhτ
A,Mτ qr˚

ṽ pĂhτ
A,Mτ , 1qpm̃τ qβMτ psτ |m̃τ q

“
π˚˚
v phτ

A,Mτ qr˚˚
v phτ

A,Mτ , 1qpmτ qβMτ psτ |mτ q
ř

hτ
A
µ˚phτ qpv, hτ

Aq
ř

ṽ,Ăhτ
A

ř
m̃τ

µ˚phτ qpṽ, Ăhτ
Aqπ˚

ṽ pĂhτ
A,Mτ qr˚

ṽ pĂhτ
A,Mτ , 1qpm̃τ qβMτ psτ |m̃τ q

“

ř
hτ
A
µ˚phτ qpv, hτ

Aqπ˚
v phτ

A,Mτ qr˚
v phτ

A,Mτ , 1qpmτ qβMτ psτ |mτ q
ř

ṽ,Ăhτ
A

ř
m̃τ

µ˚phτ qpṽ, Ăhτ
Aqπ˚

ṽ pĂhτ
A,Mτ qr˚

ṽ pĂhτ
A,Mτ , 1qpm̃τ qβMτ psτ |m̃τ q

“
ÿ

hτ
A

µ˚phτ`1qpv, hτ`1
A q,

where the first equality makes use of our conclusion for the denominator, the second

equality uses that π˚˚
v , r˚˚

v do not depend on hτ
A, the third equality makes use of the

inductive hypothesis, the fourth equality makes use of equations (7) and (8), and the

fifth equality follows from the definition of the beliefs via Bayes’ rule. Adding up the
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above expression over mτ delivers the desired conclusion.

We now use the above properties to show the payoffs of the principal do not change along

the path that starts from ht. Fix any history hτ that is on the path of the equilibrium

strategy starting from ht. The principal’s payoffs are given by:

ÿ

pv,hτ
Aq

µ˚˚phτ qpv, hτAq
!

p1 ´ π˚˚
v pv, hτAqqEΓ˚,π˚˚

v ,r˚˚
v

“
W paphτ q, a˚, aěτ`1q|v, hτA,Mτ , 0

‰
` π˚˚

v phτA,Mτ qˆ

ÿ

mPMMτ

r˚˚
v phτA,Mτ , 1qpmq

ÿ

sPSMτ

βMτ ps|mqEΓ˚,π˚˚
v ,r˚˚

v
“
W paphτ q, as, a

ěτ`1, vq|v, hτA, 1,m, s
‰
+

“
ÿ

v

$
&
%p1 ´ π˚˚

v phτA,Mτ qq
ÿ

hτ
A

µ˚˚phτ qpv, hτAqEΓ˚,π˚˚
v ,r˚˚

v
“
W paphτ q, a˚, aěτ`1q|v, hτA,Mτ , 0

‰
` π˚˚

v phτA,Mτ qˆ

ÿ

mPMMτ

r˚˚
v phτA,Mτ , 1qpmq

ÿ

hτ
A

µ˚˚phτ qpv, hτAq
ÿ

sPSMτ

βMτ ps|mqEΓ˚,π˚˚
v ,r˚˚

v
“
W paphτ q, as, a

ěτ`1, vq|v, hτA, 1,m, s
‰
,
.
-

“
ÿ

v

$
&
%p1 ´ π˚

v phτA,Mτ qq
ÿ

hτ
A

µ˚phτ qpv, hτAqEΓ˚,π˚˚
v ,r˚˚

v
“
W paphτ q, a˚, aěτ`1q|v, hτA,Mτ , 0

‰
` π˚˚

v phτA,Mτ qˆ

ÿ

mPMMτ

r˚˚
v phτA,Mτ , 1qpmq

ÿ

hτ
A

µ˚phτ qpv, hτAq
ÿ

sPSMτ

βMτ ps|mqEΓ˚,π˚˚
v ,r˚˚

v
“
W paphτ q, as, a

ěτ`1, vq|v, hτA, 1,m, s
‰
,
.
-

“
ÿ

pv,hτ
Aq

µ˚phτ qpv, hτAq
!

p1 ´ π˚
v pv, hτAqqEΓ˚,π˚˚

v ,r˚˚
v

“
W paphτ q, a˚, aěτ`1q|v, hτA,Mτ , 0

‰

` π˚
v phτA,Mτ q ˆ

ÿ

mPMMτ

r˚
v phτA,Mτ , 1qpmq

ÿ

sPSMτ

βMτ ps|mqEΓ˚,π˚˚
v ,r˚˚

v
“
W paphτ q, as, a

ěτ`1, vq|v, hτA, 1,m, s
‰
+

“
ÿ

pv,hτ
Aq

µ˚phτ qpv, hτAq
!

p1 ´ π˚
v pv, hτAqqEΓ˚,π˚

v ,r
˚
v

“
W paphτ q, a˚, aěτ`1q|v, hτA,Mτ , 0

‰

` π˚
v phτA,Mτ q ˆ

ÿ

mPMMτ

r˚
v phτA,Mτ , 1qpmq

ÿ

sPSMτ

βMτ ps|mqEΓ˚,π˚
v ,r

˚
v

“
W paphτ q, as, a

ěτ`1, vq|v, hτA, 1,m, s
‰
+
,

where the first equality follows from noting that the agent’s strategy does not depend on

hτ
A, the second equality follows from the previous result and noting that under π˚˚

v , r˚˚
v ,

the continuation strategy does not depend on hτ
A, the third equality follows from the

definition of the strategy, and the last equality follows from noting this equality holds

after every history on the path of the equilibrium strategy starting from ht.
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Remark A.1. Suppose that at history ht and after offering Mt, the principal assigns

probability 0 to the agent participating. In that case, his beliefs µ˚pht,Mt, 1q P ∆pV ˆ

H t
Apht,Mt, 1qq are not determined by Bayes’ rule. It is immediate to extend the proof

of Proposition A.1 to show that starting from pht,Mt, 1q, we can modify the agent’s

strategy along the path of the equilibrium strategy so that she does not condition on her

payoff-irrelevant private history.

Remark A.2. The payoff-equivalent PBE assessment one obtains from Proposition A.1

satisfies the following property. On the equilibrium path, the principal’s beliefs over the

agent’s payoff-relevant type, v P V , do not depend on her payoff-irrelevant history, ht
A.

That is, for any public history on the equilibrium path of the strategy profile given the

initial history, for any v P V , ht
A, h

t
A

1
P H t

Aphtq such that µ˚phtqpv, ht
Aq, µ˚phtqpv, ht

A
1
q ą 0,

we have µ˚phtqpv, ht
Aq “ µ˚phtqpv, ht

A
1
q.

However, at a public history ht reached after a deviation by the agent, either because she

changes her participation strategy in a detectable way or because she triggers an output

message that was not supposed to be triggered according to the equilibrium strategy,

the requirements of PBE do not rule out that the principal’s updated beliefs depend

non-trivially on both v and ht
A.

However, it follows from Proposition A.1 that without loss of generality, we can assume

that when the principal observes a deviation by the agent, his updated beliefs do not

depend on ht
A. After all, the agent’s behavior after the deviation does not depend on his

payoff irrelevant private history and the principal cannot offer mechanisms as a function of

ht
A. We record this in Corollary A.1 below and prove it in Section III of the supplementary

material.

Corollary A.1. Fix a PBE, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y. Then, without loss of generality,

for any t, public history ht, v P V and private histories ht
A, h

t
A

1
P H t

Aphtq such that

µ˚phtqpv, ht
Aq, µ˚phtqpv, ht

A
1q ą 0,

µ˚phtqpv, ht
Aq “ µ˚phtqpv, ht

A

1
q.

Remark A.3. Note that the corollary states that equality holds only for pv, ht
Aq, pv, ht

A
1q

that have positive probability given the equilibrium beliefs, because the agent’s strategy
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may assign probability 0 to some input messages and hence some ht
A’s cannot be given

positive probability.

Hereafter, we focus on equilibria in which the agent’s strategy does not depend on the

payoff-irrelevant part of her private history.

We introduce one final piece of notation. Given a strategy profile pΓ˚, pπ˚
v , r

˚
v qvPV q and

a history ht, denote the continuation strategy starting at ht implied by this profile as

pΓ˚, pπ˚
v , r

˚
v qvPV q

ˇ̌
ht .

The next result shows that without loss of generality, we can focus on equilibria in

which the agent participates with probability 1:

Proposition A.2. Fix a PBE, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y. Then, there is a PBE, xΓ˚˚, pπ˚˚
v , r˚˚

v qvPV , µ
˚˚y

where

1. For every t ě 0, for every v P V , for every ht
A, π˚˚

v pht
A,Mtq “ 1 for all Mt P

supp Γ˚˚phtq.

2. The principal and the agent’s payoffs are the same after every history as in xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y.

3. For every t and public history ht, the distribution over allocations is the same as in

xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y.

Proof. Fix t and ht such that there exists Mt P supp Γ˚phtq such that π˚
v pht

A,Mtq ă

1. Recall MMt is a finite set and SMt contains ∆pMMtq. Recall that for all m P

MMt , βMtp¨|mq P ∆˚pSMtq has finite support. Then there exists s˚ P SMt such that

βMtps˚|mq “ 0 for all m P MMt .

Let V1 “ tv P V : π˚
v pht

A,Mtq ą 0u “ tv1, ..., v|V1|u. Since |V | ď |MMt |, we can label the

latter set MMt “ tm1, ...., m|V1|, ..., m|MMt |u. Modify βMt as follows. For i “ 1, . . . , |V1|,

let

rβps|miq “
ÿ

mPMMt

βMtps|mqr˚
vi

pht
A,Mt, 1qpmq.

Note that rβ does not depend on ht
A since r˚

vi
does not depend on ht

A.

If |V1| ă |MMt |, let rβps˚|miq “ 1 for all i ą |V1| and let α̃ps˚q “ δa˚ . Modify the
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strategies so that the principal, instead of offering Mt, offers ĂMt “ txMMt , rβ, SMty, rαu

r˚˚
vi

pht
A,Mt, 1qpmq “

$
’&
’%

π˚
vi

pht
A,Mtq if m “ mi

p1 ´ π˚
vi

pht
A,Mtqq if m “ m|V1|`1

0 otherwise

and let pΓ˚˚, pπ˚˚
v , r˚˚

v qvPV q
ˇ̌
pht,M̃t,1,s˚q

“ pΓ˚, pπ˚
v , r

˚
v qvPV q

ˇ̌
pht,Mt,0q

, for all other s P SMt , let

pΓ˚˚, pπ˚˚
v , r˚˚

v qvPV q
ˇ̌
pht,M̃t,1,sq

“ pΓ˚, pπ˚
v , r

˚
v qvPV q

ˇ̌
pht,Mt,1,sq

.

If |V1| “ |MMt | (which implies that V1 “ V ), modify rβ once more so that:

˜̃
βps|miq “

#
π˚
vi

pht
A,Mtqβ̃ps|miq if s ‰ s˚

p1 ´ π˚
vi

pht
A,Mtqq otherwise

,

and let α̃ps˚q “ δa˚ as before. Modify the strategies so that the principal, instead of

offering Mt, offers ĂMt “ txMMt ,
rrβ, SMty, rαu

r˚˚
vi

pht
A,Mt, 1qpmq “ 1rm “ mis,

and let pΓ˚˚, pπ˚˚
v , r˚˚

v qvPV q
ˇ̌
pht,M̃t,1,s˚q

“ pΓ˚, pπ˚
v , r

˚
v qvPV q

ˇ̌
pht,Mt,0q

, for all other s P SMt , let

pΓ˚˚, pπ˚˚
v , r˚˚

v qvPV q
ˇ̌
pht,M̃t,1,sq

“ pΓ˚, pπ˚
v , r

˚
v qvPV q

ˇ̌
pht,Mt,1,sq

.

It follows immediately that the principal’s and the agent’s payoffs remain the same and

we have not changed the distribution over allocations at any history starting from ht.

Remark A.4. To keep things simple, the proof of Proposition A.2 uses the restriction

that βMt has finite support and SMt is a large set to add an output message that allows

the principal to

1. replicate the agent’s non-participation decision and,

2. make it incentive compatible for him to offer the same continuation upon observing

a˚ as he was offering before.

One can write an albeit more notationally involved proof that (i) does not rely on

the existence of an output message that is never sent and (ii) respects the one-to-one

mapping between posteriors and output messages. This alternative proof is available

from the authors upon request.
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Proposition A.3. Fix a PBE, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y that satisfies the properties of Propo-

sitions A.1 and A.2. Then, without loss of generality, there is a one-to-one map between

output messages and continuation beliefs. That is, for every t, public history ht, Mt P

supp Γ˚phtq, if st, s
1
t P S˚Mt is such that st ‰ s1

t, then µ˚pht,Mt, 1, stq ‰ µ˚pht,Mt, 1, s
1
tq.

Lemma A.1 is used to prove Proposition A.3:

Lemma A.1. Fix a PBE assessment, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y, that satisfies the properties

of Proposition A.1 and A.2. Then, there is another assessment xΓ˚˚, pπ˚˚
v , r˚˚

v qvPV , µ
˚˚y

that satisfies the properties of Proposition A.1 and the following holds:

1. For all ht, for all Mt P supp Γ˚˚phtq, π˚˚
v pht

A,Mtq “ 1 for all v P V such thatř
ht
A
µ˚phtqpv, ht

Aq ą 0.

2. For all ht, for all Mt P supp Γ˚˚phtq, if s P S˚Mt , then

ÿ

pv,ht
Aq,mPMMt

µ˚˚phtqpv, ht
Aqr˚˚

v pht
A,MtqpmqβMtps|mq ą 0.

3. For all ht, the principal’s continuation payoff remains the same and he faces the

same distribution over allocations at each continuation history on the path of the

equilibrium strategy given ht. The same holds for the agent for each of her types

v P V which have positive probability at ht.

Among other things, Lemma A.1 guarantees that if the principal’s strategy specifies

that mechanism Mt is played at history ht, then any output message s P S˚Mt p” ts P

SMt : pDm P MMtqβMtps|mq ą 0uq has positive probability under the equilibrium strategy

profile. Thus, the principal is never surprised by the output messages he observes.

Proof of Lemma A.1. Consider a PBE assessment, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y, that satisfies the

properties of Propositions A.1 and A.2. Suppose there exists a history ht and a type v P V

to which the principal assigns probability 0. That is,
ř

ht
APHt

Apht
Aq µ

˚phtqpv, ht
Aq “ 0. Let

Mt P supp Γ˚phtq. LetM`Mt “ tm P MMt :
ř

pṽ,Ăht
AqPV ˆHt

Aphtq
µ˚phtqpṽ, Ăht

AqrṽpĂht
A,Mt, 1qpmq ą

0u. If MMtzM`Mt ‰ H, note that we can do the following transformation without up-

setting the equilibrium:

First, replace Mt by M1
t “ pxβM

1
t,MM

1
t , SM

1
ty, αM

1
tq where MM

1
t “ MMt , SM

1
t “
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SMt , αM1
t “ αMt and βM1

tp¨|mq “ βMtp¨|mq for m P M`Mt and otherwise, let βM1
tp¨|mq “

βMtp¨|m`q for some m` P M`Mt . Modify the principal’s strategy at ht so that instead of

offering Mt, he offers M1
t; that is, let Γ

˚˚phtqpM1
tq “ Γ˚phtqpMtq

Second, modify continuation strategies so that

pΓ˚˚, pπ˚˚
v , r˚˚

v qvPV q|pht,M1
t,1,st,atq “ pΓ˚, pπ˚

v , r
˚
v qvPV q|pht,Mt,1,st,atq

for those output messages and allocations consistent with M1
t.

Third, modify the agent’s strategy as follows. For v1 P V such thatř
ht
APHt

Aphtq µ
˚phtqpv1, ht

Aq ą 0, let π˚˚
v1 pht

A,M
1
tq “ π˚

v1 pht
A,Mtq “ 1 and r˚˚

v1 pht
A,M

1
t, 1q “

r˚
v1pht

A,Mt, 1q. Note that for these types we have not really modified the mechanism–in

effect, we have removed the choices they were not making and, hence, removed possible

deviations for them.

Consider now v P V such that
ř

ht
APHt

Aphtq µ
˚phtqpv, ht

Aq “ 0. Set r˚˚
v pht

A,M
1
t, 1q so that

r˚˚
v pht

A,M
1
t, 1qpmq ą 0 if and only if m solves

max
mPM`Mt

ÿ

sPSMt

βMtps|mq
ÿ

aPA

αMtpm|sqEΓ˚,π˚,r˚

rUpaphtq, a, aět`1, vq|ht
A,Mt, 1, m, s, as,

where we are using that M1
t is only relabeling the input messages and the continuation

histories remain the same as before so that for all m P M`Mt

t :

ÿ

sPSM
1
t

βM
1
tps|mq

ÿ

aPA

αM
1
tpm|sqEΓ˚˚,π˚˚,r˚˚

rUpaphtq, a, aět`1, vq|ht
A,M

1
t, 1, m, s, as

“
ÿ

sPSMt

βMtps|mq
ÿ

aPA

αMtpm|sqEΓ˚,π˚,r˚

rUpaphtq, a, aět`1, vq|ht
A,Mt, 1, m, s, as.

Note that the PBE assessment already specified what the agent would have done when

her type is v after she reported m P M`Mt , so we only need to choose her strategy at

pht
A,M

1
t, 1q.

For such a type v P V , however, it may no longer be optimal to participate in the

mechanism when the principal offers M1
t. Thus, set π˚

v pht
A,M

1
tq “ 1 only if the agent’s

payoff from participating is at least the payoff from not participating. Note that since we
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only made worse the mechanism at ht for the agent when her type has zero probability at

ht, this does not affect her incentives at earlier histories. Hence, this modification does

not alter the PBE, nor the payoffs or the distribution over allocations at each continuation

history from the perspective of the principal and those types that have positive probability

at ht. It does alter the payoff and the distribution over allocations for the agent when

her type has zero probability at ht; however, this only happens at an event that has zero

probability for her given her type.

Proof of Proposition A.3. Take any ht, Mt P supp Γ˚phtq such that there exists st, s
1
t P

SMt with µ˚pht,Mt, 1, stq “ µ˚pht,Mt, 1, s
1
tq, where µ

˚pht,Mt, 1, stq P ∆pV ˆH t`1
A pht,Mt, 1, stqq.

Note that by construction, the belief does not depend on the agent’s private history. In

what follows, we abuse notation and denote by µ the marginal distribution on the agent’s

type.

The finite support assumption implies that there is K ě 1 such that we can index the

principal’s posteriors at history pht,Mt, 1, ¨q as follows tµ1, . . . , µKu. Partition S˚Mt as

follows:

S˚Mt
“

Kď

l“1

tst P S˚Mt
: µ˚pht,Mt, 1, stq “ µlu “

Kď

l“1

S˚Mt
pµlq.

Item 2 in Lemma A.1 implies that all the output messages in S˚Mt are generated with

positive probability (from the point of view of the principal).

For each l P t1, . . . , Ku, let SMtpµlq “ tsµl

t,1, . . . , s
µl

t,Hl
u.

Consider the following mechanism: M1
t “ pxβM

1
t,MM

1
t , SM

1
ty, αM

1
t, where MM

1
t “

MMt , SM1
t “ SMt. For each l P t1, . . . , Ku, let

βM
1
tpsµl

t,1|mq “
Hlÿ

h“1

βMtps|mq, βM
1
tpsµl

t,h|mq “ 0 h P t2, . . . , Hlu

αM1
tp¨|sµl

t,1q “
Hlÿ

h“1

Prµ˚,Γ˚,π˚,r˚psµl

t,hq
řHl

h1“1 Prµ˚,Γ˚,π˚,r˚psµl

t,h1q
αMtp¨|sµl

t,hq,
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where for h P t1, . . . , Hlu,

Prµ˚,Γ˚,π˚,r˚psµl

t,hq “
ÿ

pv,ht
A

q

µ˚phtqpv, ht
Aq

ÿ

mPMMt

r˚
v pht

A,Mt, 1qpmqβMtpsµl

t,h|mq,

where we are using that µ˚phtqpv, ht
Aq ą 0 implies that the agent participates with prob-

ability 1.

Modify the continuation strategies as follows:

First, for those types v P V such that
ř

ht
A
µ˚phtqpv, ht

Aq ą 0, let π˚
v pht

A,M
1
tq “

π˚
v pht

A,Mtq “ 1 and r˚
v pht

A,M
1
t, 1q “ r˚

v pht
A,Mt, 1q. Because the original strategies do

not depend on ht
A beyond ht, the new strategies inherit this feature. We modify the

participation and reporting strategy of the types that have zero probability at ht at the

end since their strategies do not matter for the principal’s incentives.

Second, for each l P t1, . . . , Ku and each a P Aphtq such that
řHl

h“1 α
Mtpa|sµl

t,hq ą 0,

partition r0, 1s “ YHl´1
h“0 rωa

h, ω
a
h`1q, where ωa

0 “ 0, ωa
Hl

“ 1 and for h “ 1, ..., Hl:

ωa
h ´ ωa

h´1 “
Prµ˚,Γ˚,π˚,r˚psµl

t,hqαMtpa|sµl

t,hq
řHl

h1“1 Prµ˚,Γ˚,π˚,r˚psµl

t,h1qαMtpa|sµl

t,h1q
.

Fix any a P supp αM1
tp¨|s1t,µq. Then, for ω P rωa

h´1, ω
a
hq, h ě 1, let

pΓ˚, pπ˚
v , r

˚
v qvPV q

∣

∣

∣

∣

pht,M1
t,s

µl
t,1,a,ωq

“ pΓ˚, pπ˚
v , r

˚
v qvPV q

∣

∣

∣

∣

pht,Mt,s
µl
t,h

,a,
ω´ωa

h´1

ωa
h

´ωa
h´1

q

.

That is we append to history pht,M1
t, 1, s

µl

t,1, a, ωq, the continuation strategy that corre-

sponds to pht,Mt, 1, s
µl

t,h, a,
ω´ωh´1

ωh´ωh´1

q.

This clearly guarantees that the principal’s payoff is the same, that he updates to µl

after observing s
µl

t,1 for l P t1, . . . , Ku, and that the continuation strategies are indeed

sequentially rational for the principal. Next we show that payoffs remain the same for

those types of the agent to which the principal assigns positive probability, so that the

above strategies are sequentially rational for them.
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Fix l P t1, . . . , Ku. For h P t2, . . . , Hlu, let k
l
1h denote the following ratio:

kl
1h “

Prµ˚,Γ˚,π˚,r˚psµl

t,hq

Prµ˚,Γ˚,π˚,r˚psµl

t,1q
.

and let kl
11 “ 1. Because the principal updates to the same belief about the agent’s type

after each s P SMtpµq, we have that for all vj P supp µ and for all h P t1, . . . , |SMtpµq|u,

ÿ

mPMMt

r˚
v pht

A,Mt, 1qpmqβpsµl

t,h|mq “ kl
1h

«
ÿ

mPMMt

r˚
v pht

A,Mt, 1qpmqβpsµl

t,1|mq

ff
.

The above expression implies that we can write

αM1
tp¨|sµl

t,1q “
Hlÿ

h“1

Prµ˚,Γ˚,π˚,r˚psµl

t,hq
řHl

h1“1 Prµ˚,Γ˚,π˚,r˚psµl

t,h1q
αMtp¨|sµl

t,hq “
Hlÿ

h“1

kl
1hřHl

h1“1 k
l
1h1

αMtpa|sµl

t,hq,

ωa
h ´ ωa

h´1 “
Prµ˚,Γ˚,π˚,r˚psµl

t,hqαMtpa|sµl

t,hq
řHl

h1“1 Prµ˚,Γ˚,π˚,r˚psµl

t,h1qαMtpa|sµl

t,h1q
“

kl
1hα

Mtpa|sµl

t,hq
řHl

h1“1 k
l
1h1αMtpa|sµl

t,h1q
.

Moreover, we also have the following:

Hlÿ

h“1

ř
mPMMt r

˚
v pht

A,Mt, 1qpmqβMtpsµl

t,h|mq
řHl

h1“1p
ř

m1PMMt r
˚
v pht

A,Mt, 1qpm1qβMtpsµl

t,h1|m1qq
αMtpa|sµl

t,hq

“
Hlÿ

h“1

kl
1hřHl

h1“1 k
l
1,h1

αMtpa|sµl

t,hq “ αM1
tpa|sµl

t,1q,

and

ř
mPMMt r

˚
v pht

A,Mt, 1qpmqβMtpsµl

t,h|mqαMtpa|sµl

t,hq
řHl

h̃“1

ř
m̃PMMt r

˚
v pht

A,Mt, 1qpm̃qβMtpsµl

t,h̃
|m̃qαMtpa|sµl

t,h̃
q

“
kl
1hα

Mtpa|sµl

t,hq
řHl

h1“1 k
µl

1h1αMtpa|sµl

t,h1q
“ ωa

h ´ ωa
h´1.
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Thus, we can write the agent’s payoff in the original mechanism Mt as follows:

ÿ

mPMMt

r˚
v phtA,Mt, 1qpmq

ÿ

sPSMt

βMtps|mq
ÿ

aPAphtq

αMtpa|sqErUpaphtq, a, aět`1, vq|htA,Mt, 1,m, s, as “

“
ÿ

mPMMt

r˚
v phtA,Mt, 1qpmq

Kÿ

l“1

Hlÿ

h“1

βMtpsµl

t,h|mq
ÿ

aPAphtq

αMtpa|sµl

t,hqErUpaphtq, a, aět`1, vq|htA,Mt, 1,m, s
µl

t,h, as

“
Kÿ

l“1

ÿ

aPAphtq

«
Hlÿ

h“1

ÿ

mPMMt

r˚
v phtA,Mt, 1qpmqβMtpsµl

t,h|mqαMtpa|sµl

t,hqErUpaphtq, a, aět`1, vq|htA,Mt, 1,m, s
µl

t,h, as

ff

“
Kÿ

l“1

ÿ

aPAphtq

¨
˝

Hlÿ

h̃“1

ÿ

m̃PMMt

r˚
v phtA,Mt, 1qpm̃qβMtpsµl

t,h̃
|m̃qαMtpa|sµl

t,h̃
q

˛
‚ˆ

Hlÿ

h“1

ř
mPMMt r

˚
v phtA,Mt, 1qpmqβMtpsµl

t,h|mqαMtpa|sµl

t,hq
řHl

h̃“1

ř
m̃PMMt r

˚
v phtA,Mt, 1qpm̃qβMtpsµl

t,h̃
|m̃qαMtpa|sµl

t,h̃
q
ErUpaphtq, a, aět`1, vq|htA,Mt, 1,m, s

µl

t,h, as

“
Kÿ

l“1

˜
Hlÿ

h1“1

ÿ

m1PMMt

r˚
v phtA,Mt, 1qpm1qβ˚psµl

t,h1 |m
1q

¸
ÿ

aPAphtq

αM1
tpa|sµl

t,1qˆ

Hlÿ

h“1

ř
mPMMt r

˚
v phtA,Mt, 1qpmqβMtpsµl

t,h|mqαMtpa|sµl

t,hq
řHl

h̃“1

ř
m̃PMMt r

˚
v phtA,Mt, 1qpm̃qβMtpsµl

t,h̃
|m̃qαMtpa|sµl

t,h̃
q
ErUpaphtq, a, aět`1, vq|htA,Mt, 1,m, s

µl

t,h, as

“
ÿ

mPMMt

r˚
v phtA,M

1
t, 1qpmq

Kÿ

l“1

βM1
tpsµl

t,1|mq
ÿ

aPAphtq

αM1
tpa|sµl

t,1q ˆ ErUpaphtq, a, aět`1, vq|htA,M
1
t, 1,m, s

µl

t,1, as,

where the first equality uses the labeling of the posteriors we have used throughout the

proof, the second equality is obtained by changing the order of summation, the third

equality is obtained by multiplying and dividing by the probability that, conditional on

the belief being µl, allocation a was obtained, the fourth equality is obtained by using

the definition of αM1
t and grouping the terms that represent the total probability that the

output message corresponds to belief µl, and the final equality is obtained by realizing

this rewriting corresponds to the payoff the agent obtains under mechanism M1
t.

Therefore, the agent’s incentives remain the same when her type has positive probability

at ht.

Finally, for those v P V such that
ř

ht
APHt

Aphtq µ
˚phtqpv, ht

Aq “ 0, choose r˚
v pht

A,M
1
t, 1q to
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solve:

max
mPMM1

t

Kÿ

l“1

βM1
tpsµl

t,1|mq
ÿ

aPAphtq

αM1
tpa|sµl

t,1q ˆ E
Γ˚,π˚,r˚

rUpaphtq, a, aět`1, vq|ht
A,M

1
t, 1, m, s

µl

t,1, as,

and use the payoff of this to calculate π˚
v pht

A,M
1
tq.

It is immediate that with all these modifications the assessment remains a PBE.

B Proof of Theorem 3.1

Proof. Let xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y denote a PBE that satisfies the properties of Propositions

A.1-A.3. That is, the agent’s strategy only depends on her payoff-relevant type, v P V ,

the agent participates with probability 1 when her type has positive probability, and each

output message corresponds to exactly one posterior belief.

Fix t ě 0, a history ht, and a history hτ on the path given ht for some τ ě t. For each

Mτ P supp Γ˚phτ q, define the injective mapping:

σphτ ,Mτ q : SMτ ÞÑ ∆pV q

σphτ ,Mτ qpsq “
ÿ

hτ
APHτ

A,mPMMτ

µ˚phτ ,Mτ , 1, sτqp¨, hτ
A, mq, (11)

which is well-defined by Propositions A.1 and A.3

Using this, we can define the corresponding canonical mechanism MC
τ as follows:

MC
τ “ tpV, βMC

τ ,∆pV qq, αMC
τ u, (12)
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where33

βMC
τ pµ|vq “

ÿ

mPMτ

βMτ pσ´1phτ ,Mτ qpµq|mqr˚
v phτ

A,Mτ , 1qpmq, (13)

αMC
τ pµq “ αMτ pσ´1phτ ,Mτ qpµqq. (14)

Note the construction of βMC
τ uses the fact that the agent’s reporting strategy only

depends on her private type and not on the payoff-irrelevant part of her private history.

Having done this transformation for t ď τ 1 ď τ , we can map any history

hτ “ pht,Mt, 1, st, . . . ,Mτ , 1, sτ , aτ , ωτ q,

on the path of the equilibrium strategy starting from ht to:34

hτC “ pht,MC
t , 1, σpht,Mtqpstq, at, . . . ,M

C
τ , 1, σphτ ,Mτ qpsτ q, aτ , ωτ q.

Thus, we can define the principal’s strategy so that Γ1phτC qpMC
τ q “ Γ˚phτ qpMτ q.

Given hτ “ pht,Mt, 1, st, at, . . . ,Mτ , 1, sτ , aτ , ωτq and the corresponding hτC , the set of

agent histories that is consistent with hτC is given by:

HτC

A phτC q “

“

#
pht

A,M
C
t , 1, vt, σpht,Mtqpstq, at, . . . ,M

C
τ´1, 1, vτ´1, στ´1phτ´1,Mτ´1qpsτ´1q, aτ´1, ωτq :

ht
A P H t

Aphtq, pvt, . . . , vτ´1q P V τ

+
.

Let π1
vphτC

A ,MC
τ q “ π˚

v phτ
A,Mτ q “ 1 and r1

vphτC

A ,MC
τ , 1q “ δv.

Let rV ˆHτC

A phτC qs˚ denote the set of truthful histories starting from ht, i.e., those that

have the agent of type v report v throughout t, . . . , τ ´ 1 conditional on her participating

33Suppose that v P V has probability 0 at history hτ . We can use the agent’s strategy profile to

construct βM
C

τ p¨|vq. A consequence of Lemma A.1 and Proposition A.3 is that the principal assigns

probability 0 to such v for all s P S˚Mτ

and hence at all µ P S˚M
C
τ . In other words, βM

C

τ pµ|vq ą 0
implies that µpvq “ 0.

34Note that the agent always participates on the path of the strategy.
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in the mechanism. With this notation at hand, let:

µ1phτCqpv, hτC

A q “ µ˚phτ qpvq1rpv, hτC

A q P rV ˆ HτC

A phτC qs˚s

It remains to check that at history hτC , when the principal offers MC
τ P supp Γ1phτC q

and the output message is ν, his beliefs are

ÿ

hτ
A,mPMMτ

µ˚phτ ,Mτ , 1, σ
´1phτ ,Mτ qpνqqp¨, hτ

A, mq “ ν.

Suppose that we have shown this for hτ and now we show it for hτ`1 “ phτ ,MC
τ , 1, νq.

Note that the probability that the agent is of type v and reports v to the mechanism is:

µ1phτC ,MC
τ , 1, νqpv, hτ

A,M
C
τ , 1, v, νq “

µ˚phτ qpvqβMC
τ pν|vqř

rv µ
˚phτ qprvqβMC

τ pν|rvq

“
µ˚phτ qpvq

ř
hτ
APHτ

Aphτ q

ř
mPMMτ r

˚
v phτ

A,Mτ , 1qpmqβMτ pσ´1phτ ,Mτ qpνq|mq
ř

rv µ
˚phτ qprvq

ř
h1τ
A PHτ

Aphτ q

ř
m1PMMτ r

˚
rv ph1τ

A ,Mτ , 1qpm1qβMτ pσ´1phτ ,Mτ qpνq|m1q

“
ÿ

hτ
APHτ

Aphτ q,mPMMτ

µ˚phτ qpvqr˚
v phτ

A,Mτ , 1qpmqβMτ pσ´1phτ ,Mτ qpνq|mqř
rv µ

˚phτ qprvq
ř

h1τ
A PHτ

Aphτ q

ř
m1PMMτ r

˚
rv ph1τ

A ,Mτ , 1qpm1qβMτ pσ´1phτ ,Mτ qpνq|m1q

“
ÿ

mPMMτ

ÿ

hτ
A

µ˚phτ ,Mτ , 1, σ
´1phτ ,Mτ qpνqqpv, hτ

A, mq “ µ˚phτ ,Mτ , σ
´1phτ ,Mτ qpνqqpvq

“ νpvq

where the first equality uses that the agent participates with probability one and reports

her type truthfully, the second equality uses the definition of βM
C
τ in equation (13), the

third line is a rewriting of the second by taking the summation over hτ
A P Hτ

A, m P MMτ

outside, the fourth is obtained by recognizing the expression within the summation is the

principal’s belief at history hτ that the agent is of type v is at history hτ
A and submitted

message m, conditional on the output message being σ´1phτ ,Mτ qpνq, and the final line

uses the definition of σ to arrive to the desired expression.

For any ht, any τ ě t, and any hτ that is on the path given ht, and the corresponding
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hτC , if Mτ R supp Γ1phτC q, then

π1
vphτC

A ,Mτ q “ π˚
v phτ

A,Mτ q

r1
vphτC

A ,Mτ , 1q “ r˚
v phτ

A,Mτ , 1q

Note that for any m P MMτ , s P SMτ , the previous transformation will take the con-

tinuation strategy that follows phτ ,Mτ , sτ , aτ , ωτ`1q “ hτ`1 to one in which the principal

offers canonical mechanisms.

For any other histories, specify the strategies as in the original game.

Note that we have not modified the outcome of the game after any history ht; in

particular, the new strategy profile implements the path of the original profile. Moreover,

the agent does not have an incentive to lie; otherwise, she would have had a deviation

in the original profile. Additionally, the principal also has no deviations; otherwise, he

would have had an incentive to deviate in the original profile. This completes the proof

of Theorem 3.1.

C Properties of the canonical game

Proposition C.1. Fix a canonical PBE of the mechanism-selection game xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y.

Then, without loss of generality, for any public history ht, there exists a canonical mech-

anism MC
t such that

1. MC
t maximizes the principal’s payoff from a deviation at ht,

2. π˚
v pht

A,M
C
t q “ 1,

3. r˚
v pht

A,M
C
t , 1q “ δv.

Proof. Fix a history ht and suppose that there exists a non-canonical mechanism M˚
t that

maximizes the principal’s payoff from a deviation. Let π˚
v pht

A,M
˚
t q, r˚

v pht
A,M

˚
t , 1q denote

the agent’s participation and reporting strategy upon observing the principal’s choice of

M˚
t .

We make three observations:
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1. In a canonical PBE the continuation strategy for the agent for any ht`1
A “ pht

A,M
˚
t , ...q

does not depend on ht`1
A . (Recall the proof of Proposition A.1 does not rely on the

public history ht being on the path.)

2. Therefore, we can use the same construction as in Propositions A.2 and A.3 to

transform the mechanism and the continuation strategy to guarantee that the agent

participates with probability 1 after observing M˚
t and each output message maps

exactly to one continuation belief. Denote by M˚˚
t the transformed mechanism.

3. Finally, we can use the transformation in Theorem 3.1 to construct from M˚˚
t a

canonical mechanism, MC˚

t , in which the agent reports truthfully and the rec-

ommended beliefs for the principal are indeed the beliefs obtained via Bayesian

updating.

Note that MC˚

t is an available choice for the principal. It follows from the previous

observations that in the original strategy profile, we can replace the best response for the

agent and the continuation strategy after the principal offers MC˚

t by those obtained in

transforming M˚
t to MC˚

t . In the new strategy profile, the principal is now indifferent

between deviating to M˚
t and to MC˚

t .

Corollary C.1. If xΓ˚C

, pπ˚C

v , r˚C

v qvPV , µ
˚C

y is a canonical PBE of the canonical game,

then there is an equilibrium of the mechanism-selection game xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y that

implements the same choices by the principal and the agent on the equilibrium path.

D Proofs of Section 4

D.1 Proof of Proposition 4.1

Compare the solution to (P) to the solution to the following program:

max
β,a,y,t

Nÿ

i“1

µ0,i

Mÿ

h“1

βi,h

ÿ

qPQ

αhpqqrwipqh, yhpqqq ` ths (A)

s.t.

$
’&
’%

ř
β1,hru1h ´ ths ě 0ř

hpβi,h ´ βk,hqrui,h ´ ths ě 0, p@iqp@k P ti ´ 1, i ` 1uq

yhpqhq P argmax
řN

i“1 µ0,iβi,hwipqh, yq

,
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where ui,h is shorthand for
ř

qPQ αhpqquipqh, yhpqqq.

Theorem D.1. If ui satisfies Definition 4.1, then the values of (P) and (A) coincide.

Proof. We show that the solution to (A) satisfies all the constraints of (P). Note first

that the solution to (A) satisfies that for all i ě 2,

ÿ

h

βi,hrui,h ´ ths ě
ÿ

h

βi´1,hrui,h ´ ths

ÿ

h

βi´1,hrui´1,h ´ ths ě
ÿ

h

βi,hrui´1,h ´ ths,

so that for all i ě 2, we have

ÿ

h

pβi,h ´ βi´1,hqpui,h ´ ui´1,hq ě 0. (15)

To show that the statement of the theorem holds, consider i and j ă i ´ 1.The solution

to (A) satisfies

ÿ

h

βi,hrui,h ´ ths ě
ÿ

h

βi´1,hrui,h ´ ths

ÿ

h

βi´1,hrui´1,h ´ ths ě
ÿ

h

βi´2,hrui´1,h ´ ths

. . .
ÿ

h

βj`1,hruj`1,h ´ ths ě
ÿ

h

βj,hruj`1,h ´ ths.

Adding up, we obtain

iÿ

k“j`1

Mÿ

h“1

pβk,h ´ βk´1,hquk,h ě
ÿ

h

pβi,h ´ βj,hqth. (16)

Monotonic expectational differences together with equation (15) implies the left-hand

side is bounded above by

iÿ

k“j`1

Mÿ

h“1

pβk,h ´ βk´1,hqui,h “
Mÿ

h“1

pβi,h ´ βj,hqui,h. (17)
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Equations (16) and (17) imply

ÿ

h

βi,hrui,h ´ ths ě
ÿ

h

βj,hruj,h ´ ths.

Therefore, the constraint that i does not report j ă i ´ 1 holds.

Similarly, consider i and j ą i ` 1. The solution to (A) satisfies

ÿ

h

βi,hrui,h ´ ths ě
ÿ

h

βi`1,hrui,h ´ ths

ÿ

h

βi`1,hrui`1,h ´ ths ě
ÿ

h

βi`2,hrui`1,h ´ ths

. . .
ÿ

h

βj´1,hruj´1,h ´ ths ě
ÿ

h

βj,hruj´1,h ´ ths.

Adding up, we obtain

j´1ÿ

k“i

Mÿ

h“1

pβk,h ´ βk`1,hquk,h ě
ÿ

h

pβi,h ´ βj,hqth. (18)

Monotonic expectational differences together with equation (15) imply that the left-hand

side is bounded above by

j´1ÿ

k“i

Mÿ

h“1

pβk,h ´ βk`1,hqui,h “
Mÿ

h“1

pβi,h ´ βj,hqui,h. (19)

Equation (19) follows because equation (15) implies
řM

h“1pβk,h ´βk`1,hquk,h is decreasing

in k.

Equations (18) and (19) imply

ÿ

h

βi,hrui,h ´ ths ě
ÿ

h

βj,hruj,h ´ ths.

Therefore, the incentive constraint that i does not report j, j ą i ` 1 holds.

Finally, because we have all incentive compatibility constraints, it follows that, when
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ui satisfies Definition 4.1, the participation constraints for i ě 2 are implied by the

participation constraint for i “ 1.

Proposition D.1. The participation constraint for i “ 1 binds in the solution to (A).

Proof. Otherwise, let ǫ “ β1 ¨pu1´tq and consider the mechanism that charges t̃h “ th`ǫ.

All incentive constraints continue to be satisfied, the participation constraint for i “ 1

holds, and revenue increases.

D.2 Proof of Propositions 4.2 and 4.3

We consider program (A) but with the following modifications:

1. The participation constraint binds for i “ 1.

2. We write everything in terms of distribution over posteriors as opposed to commu-

nication devices.

3. We replace the principal’s sequential rationality constraint by the correspondence

y˚
µpqq ” argmaxyPY pqq

řN
i“1 µiwipq, yq and the Bayesian plausibility constraint.

Therefore, we obtain

max
τ,a,t

Mÿ

h“1

τpµhq
Nÿ

i“1

µh,i

ÿ

qPQ

αhpqqrwipq, y
˚
hpqqq ` ths (A1)

s.t.

$
’’&
’’%

řM

h“1 τpµhq
µh,1

µ0,1
ru1h ´ ths “ 0

řM

h“1 τpµhqp
µh,i

µ0,i
´

µh,k

µ0,k
qrui,h ´ ths ě 0, p@iqp@k P ti ´ 1, i ` 1uq

řM

h“1 τpµhqµh,i “ µ0,i, i P t1, . . . , Nu

,

where ui,h is shorthand for
ř

qPQ αhpqquipq, y
˚
hpqqq.

Now fix an allocation a “ pα, t, yq where α : ∆pV q ÞÑ ∆˚pQq, t : ∆pV q ÞÑ R and

y : Q ˆ ∆pV q ÞÑ ∆˚pYq,µy
˚pq, µqq, y˚pq, µq ” argmaxyPY pqq

ř
µiwipq, yq, supp ypq, µq Ď

y˚pq, µq.
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Consider the program

max
τ

Mÿ

h“1

τpµhq
Nÿ

i“1

µh,i

ÿ

qPQ

αhpqqrwipq, yhpqqq ` ths (Aa)

s.t.

$
’’&
’’%

řM

h“1 τpµhq
µh,1

µ0,1
ru1h ´ ths “ 0

řM
h“1 τpµhqp

µh,i

µ0,i
´

µh,k

µ0,k
qrui,h ´ ths ě 0, p@iqp@k P ti ´ 1, i ` 1uq

řM

h“1 τpµhqµh,i “ µ0,i, i P t1, . . . , Nu

Note that not all allocations a can be made incentive compatible. To address this is-

sue, let Ca

0 denote the policies τ that satisfy the constraints in (Aa). Letting f a

0 pτq “řM

h“1 τpµhq
řN

i“1 µh,irwipqh, yhpqhqq ` ths, consider the modified objective function

f apτq “

#
f a

0 pτq if τ P Ca

0

´8 otherwise
.

In what follows, f apτq is the objective function under consideration.

In Doval and Skreta (2018a), we extend the results in Le Treust and Tomala (2017) to

show that given a constrained maximization problem,35

cavg1,...,gKfpµ, γ1, . . . , γKq :“ sup

$
’&
’%

ÿ

m

λmfpµmq :

ř
m λmµm “ µ,ř
m λmglpµmq ě γl, l P t1, . . . , ru,ř
m λmglpµmq “ γl, l P tr ` 1, . . . , Ku

,
/.
/-

,

(20)

where f, g1, . . . , gr, gr`1, . . . , gK : ∆pV q ÞÑ R Y t´8u is a tuple of functions defined on

∆pV q, it follows that

cavg1,...,gKfpµ, γ1, . . . , γKq “ cavf g1,...,gKpµ, γ1, . . . , γKq

35We extend the construction in their paper for completeness given that our problem includes multiple
inequality constraints and equality constraints.
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where f g1,...,gK : ∆pV q ˆ R
K ÞÑ R Y t´8u is such that

f g1,...,gKpµ, γ1, . . . , γKq “

#
fpµq if γi ď gipµq, i P t1, . . . , ru ^ γi “ gipµq, i P tr ` 1, . . . , Ku

´8 otherwise
.

(21)

That is, the constrained Bayesian persuasion problem with r inequality constraints and

K ´ r equality constraints in (20) can be thought of a Bayesian persuasion problem in

which the objective has domain ∆pV q ˆ R
K as defined in (21). We use this to derive

properties about the number of posteriors used in the optimal solution.

Note that (Aa) is a version of this program with r “ 2N ´ 2 and

gipµq “

„
µi

µ0,i

´
µi`1

µ0,i`1

 ÿ

qPQ

αpµqpqqruipq, yµpqqq ´ tpµqs, i P t1, . . . N ´ 1u

gN´2`ipµq “

„
µi

µ0,i

´
µi´1

µ0,i´1

 ÿ

qPQ

αpµqpqqruipq, yµpqqq ´ tpµqs, i P t2, . . . Nu

g2N´1pµq “
µ1

µ0,1

ÿ

qPQ

αpµqpqqru1pq, yµpqqq ´ tpµqs

and γi “ 0 for all i. We then have the following:

Corollary D.1. Suppose the value of (Aa) is finite. Then, τ puts positive probability in

at most 3N ´ 1 beliefs.

Proof. This follows from Proposition ?? in Doval and Skreta (2018a) and Carathéodory’s

theorem (see, e.g., Rockafellar (1970)).

Similarly, we can construct a program pMaq

max
τ

Mÿ

h“1

τpµhq
Nÿ

i“1

µh,i

ÿ

qPQ

αhpqqrwipq, yhpqqq ` uipq, yhpqqq ´
ÿ

i`1ďl

µ0,l

µ0,i

pui`1,h ´ ui,hqs

s.t.

# řM

h“1 τpµhq
”
µh,i`1

µ0,i`1

´
µh,i

µ0,i

ı
pui`1,h ´ ui,hq ě 0, i P t1, . . . , N ´ 1u

řM

h“1 τpµhqµh “ µ0

(Ma)

Corollary D.2. Suppose the value of (Ma) is finite. Then τ puts positive probability
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on at most 2N ´ 1 beliefs.

Another immediate corollary is that dropping constraints from a program lowers the

upper bound on the number of beliefs in the support of the solution to the program:

Corollary D.3. Suppose the value of (Ma) is finite and only M constraints bind. Then,

τ puts positive probability on at most N ` M beliefs.

Proof. See Corollary ?? in Doval and Skreta (2018a).

D.3 Example 2

The next example illustrates that even if the solution to the relaxed program, (R), satisfies

the monotonicity constraints (M), it may not be a solution to the original problem.

Example 2. Consider the sale of a durable good example in Section 2.1, but with three

types V ” tvL, vM , vHu. We provide a parametrization of the problem such that the

solution to the relaxed program (R) has the following properties:

1. In period 1, vH buys with probability 1, vL buys with probability 0, and vM buys

with positive probability (but bounded away from one).

2. The allocation satisfies the monotonicity constraints, (M).

3. The communication device generates two posteriors, µHM , µML, where36

µHMpvHq “
vM

vH
, µHMpvLq “ 0

µMLpvMq “
vL

vM
, µMLpvHq “ 0.

4. However, it is not possible to find two transfers, tpµHMq, tpµMLq, that satisfy that

(i) vL’s participation constraint binds, and (ii) both vM and vH ’s downward-looking

incentive constraints bind.

36The reader may recognize µHM , µLM as two of the extremal beliefs in Bergemann et al. (2015): µHM

makes the principal indifferent between setting a price of vM or vH , whereas µML makes the principal
indifferent between setting a price of vM or vL. Indeed, the optimal mechanism for the principal need
only put weight on the extremal beliefs. Details are available from the authors upon request.
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The parameters are as follows.37 First, the prior is given by

µ0pvHq “ 0.4637, µ0pvLq “ 0.1194, µ0pvM q “ 0.4169,

and is chosen so that it is a convex combination of µHM , µML. The values for the types

are

vH “ 4.8385, vM “ 2.5528, vL “ 0.0357,

and are chosen so that vL’s virtual valuation is negative, whereas vM ’s virtual valuation

is positive. Also, we set δ “ 0.95. With these values, we have that

µHMpvHq “ 0.5276

µMLpvMq “ 0.0140.

and the communication device satisfies:

βpµHM |vHq “ 1

βpµML|vLq “ 1

βpµML|vMq “
µMLpvMqτpµMLq

µ0pvMq
“

0.0140 ˆ 0.8789

0.4169

Because vL never buys (the monopolist in period 1 recommends a price of vM is period 2),

it has to be that tpµMLq “ 0. To determine tpµHMq, we have the following two equations:

vH ´ tpµHMq “ βpµHM |vMqpvH ´ tpµHMqq`βpµML|vMqδ ˆ pvH ´ vMq

βpµHM |vMqpvM ´ tpµHMqq ` βpµML|vM qδ ˆ pvM ´ vMq “ ´tpµMLqδpvM ´ vMq “ 0.

The first equality implies tpµHMq “ vH´δpvH´vMq, whereas the second implies tpµHMq “

vM . Hence, it is not possible to find two transfers, tpµHMq, tpµMLq that satisfy that the

downward looking constraints bind and implements the solution to the relaxed program.

37The Matlab code, which implements the linear program used to derive the example, is available
upon request.

70



E Output messages as recommendations

Proof of Proposition 5.1. We prove 2 implies 3. That 1 implies 2 follows from the results

of the paper. Because a straightforward mechanism is a particular case of a mechanism,

it follows immediately that 3 implies 1, thus completing the proof.

Thus, consider xpV, β,∆pV qq, αy and y : ∆pV q ˆ Q ÞÑ Y∆pY pqqq that solves (R),

or equivalently (3). The finite support assumption implies we can label tµ1, . . . , µHu

the posteriors that are induced with positive probability by the mechanism. Given h P

t1, . . . , Hu, let pQY qh “ tpq, yq : αhpqq ˆ yhpqqpyq ą 0u denote the pairs pq, yq that are

implemented when the belief is µh. Let pQY q˚ “ YhPHpQY qh. Consider now the following

mechanism xpV, β 1, pQY q˚q, α1y and the continuation strategy y1 : pQY q˚ˆQ ÞÑ Y∆pY pqqq

such that α1
pq,yqpq

1q “ 1rq1 “ qs and y1
pq,yqpqqpy1q “ 1ry1 “ ys. Moreover, let

β 1ppq, yq|viq “
Hÿ

h“1

βpµh|viqαhpqqyhpqqpyq.

Clearly, this mechanism delivers the same payoff to the principal and the agent. We

now verify that it remains incentive compatible for the principal to follow the recom-

mendations. Fix pq, yq P pQY q˚. The principal’s belief upon observing the output pq, yq

is

µpq,yqpviq “
µ0
iβ

1ppq, yq|viqř
j µ

0
jβ

1ppq, yq|vjq

“
µ0
i

řH

h“1 βpµh|viqαhpqqyhpqqpyq
ř

j µ
0
j

řH
h“1 βpµh|vjqαhpqqyhpqqpyq

“
ÿ

hPH:pq,yqPpQY qh

µ0
iβpµh|viqř

j1 µ0
j1βpµh|vj1q

ř
j1 µ

0
j1βpµh|vj1q

řH
h“1

ř
j µ

0
jβpµh|vjqαhpqqyhpqqpyq

“
ÿ

hPH:pq,yqPpQY qh

µh,i

τpµhqř
h1:pq,yqPpQY qh1

τpµh1q
,

where recall that τpµhq “
řN

j“1 µ
0
jβpµj|vjq. Then the payoff of the second-period principal
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when he observes pq, yq and chooses y1 P Y pqq can be written as

ÿ

hPH:pq,yqPpQY qh

τpµhqř
h1:pq,yqPpQY qh1

τpµh1q

Nÿ

i“1

µh,iwipq, y
1q ď

ÿ

hPH:pq,yqPpQY qh

τpµhqř
h1:pq,yqPpQY qh1

τpµh1q

Nÿ

i“1

µh,iwipq, yq,

where the inequality follows from knowing that yhpqqpyq ą 0 for all h such that pq, yq P

pQY qh.

Similarly, using the expression in (3), we can write the principal’s payoff from the new

mechanism conditional on the output being pq, yq as:

ÿ

hPH:pq,yqPpQY qh

τpµhqř
h1:pq,yqPpQY qh1

τpµh1q

Nÿ

i“1

µh,irwipq, y;µ
0q ` ûipq, y;µ0qs,

and note he has no incentive to choose another q, because for each h such that pq, yq P

pQY qh, we have that q is in the set of maximizers of
řN

i“1 µh,irwip¨, yµh
;µ0q`ûip¨, yµh

;µ0qs.

F Implementation via contracts

Proof of Proposition 5.2. included to induce line break

Necessity: Assume there exists t1 such that pβ, q, yq satisfies (DIC-P). Consider i ă j

and µ, µ1 such that µpviqµ
1pvjq ą 0. Then, the following must hold:

uipqpµq, ypµqq ´ t1pµq ě uipqpµ1q, ypµ1qq ´ t1pµ1q

ujpqpµ1q, ypµ1qq ´ t1pµ1q ě ujpqpµq, ypµqq ´ t1pµq,

which implies that

ujpqpµ1q, ypµ1qq ´ ujpqpµq, ypµqq ě uipqpµ1q, ypµ1qq ´ uipqpµq, ypµqq (22)

That is, letting

Dipµ
1, µq “ uipqpµ1q, ypµ1qq ´ uipqpµq, ypµqq, (23)
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we need that

Djpµ
1, µq ě Dipµ

1, µq, whenever µ1pvjqµpviq ą 0. (DIC-M)

Note that Assumption 1 implies Dipµ, µ
1q is strictly increasing in i. Thus, (DIC-M)

holds with strict inequality when i ă j.

To derive the necessary conditions for the communication device, β, suppose now that

µpviqµ
1pviq ą 0 for βpµ|viqβpµ1|viq ą 0. Because pβ, q, yq satisfies (DIC-P) for t1,

t1pµq ´ t1pµ1q “ Dipµ, µ
1q.

Because under Assumption 1 Dipµ, µ
1q is strictly increasing in i, for all j ą i, it has to

be the case that µ1pvjq “ 0, and for all j ă i, it has to be the case that µpvjq “ 0. To

see this, note that if j ą i, then Djpµ, µ
1q ą tpµq ´ tpµ1q, and hence vj ą vi can never

select the allocation at µ1. Likewise, if j ă i, then Djpµ, µ
1q ă tpµq ´ tpµ1q, and hence

vj ă vi can never select the allocation at µ.

Moreover, if there are three beliefs µ, µ1, µ2 such that µpviqµ
1pviqµ

2pviq ą 0 such that

uipqpµq, ypµqq ě uipqpµ1q, ypµ1qq ě uipqpµ2q, ypµ2qq and Dipµ, µ
1q and Dipµ

1, µ2q are

strictly increasing in i, then it has to be the case that: (i) j ą i, then µ1pvjq “ µ2pvjq “ 0,

and (ii) j ă i, then µ1pvjq “ µpvjq “ 0. Then, µ1pviq “ 1. It follows then that there are

at most three beliefs at which vi has positive probability – if we had four or more, the

ones that give intermediate utility to vi assign probability one to vi. Hence, they must

correspond to the same belief.

Finally, suppose µpviqµ
1pviq ą 0, Dipµ, µ

1q ą 0 and µpvjq ą 0 for j ą i. We now show

that for all l P ti ` 1, . . . , j ´ 1u, it has to be the case that µpvlq ą 0. Towards a

contradiction, assume there exists vl, l P ti ` 1, . . . , j ´ 1u such that µpvlq “ 0. Because

all types have positive probability, there exists µ1 : βpµ1|vlq ą 0. Because under t1,

pβ, q, yq satisfies (DIC-P), it follows that

ulpqpµ1q, ypµ1qq ´ t1pµ1q ě ulpqpµq, ypµqq ´ t1pµq.
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Because µpvjq ą 0, we have that

ujpqpµq, ypµqq ´ t1pµq ě ujpqpµ1q, ypµ1qq ´ t1pµ1q.

It follows that

Dlpµ
1, µq ě Djpµ

1, µq,

and under our assumption, this inequality is strict. Monotonic expectational differences

implies that

Dipµ
1, µq ě Dlpµ

1, µq ě t1pµ1q ´ t1pµq.

The above expression contradicts that pβ, q, yq satisfies (DIC-P) under t1, because vi

would strictly prefer to select the allocation in µ1 to the allocation in µ.

Sufficiency: Suppose pβ, q, yq satisfies the assumptions in the statement of the propo-

sition. Then, it is possible to label the beliefs µ1, . . . , µM so that k ă l implies that

vpµkq ” maxtv : µkpvq ą 0u ď vpµlq ” mintv : µlpvq ą 0u.

Set t1pµ1q “ u1pqpµ1q, ypµ1qq. Note that, by definition, v1 “ vpµ1q. For n ą 1, define

recursively

t1pµnq “ uvpµnqpqpµnq, ypµnqq ´ puvpµnqpqpµn´1q, ypµn´1qq ´ t1pµn´1qq. (24)

We now verify that pβ, q, yq together with t1 satisfies (DIC-P). We first check that vi is

indifferent between µ and µ1 whenever µpviqµ
1pviq ą 0. Monotonicity of the information

structure induced by β implies that, without loss of generality, vi “ vpµq “ vpµ1q;

moreover, µ “ µl, µ1 “ µk, with k P tl ` 1, l ` 2u and if k “ l ` 2, then vi “ vpµl`1q “

vpµl`1q.

Consider first the case in which k “ l ` 1. Then, it follows from equation (24) that

t1pµl`1q ´ t1pµlq “ uipqpµl`1q, ypµl`1qq ´ uipqpµlq, ypµlqq,

so vi is indeed indifferent. Now consider the case in which k “ l ` 2, then recalling that
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vpµl`1q “ vpµl`2q “ vi, we have

t1pµl`1q ´ t1pµlq “ uipqpµl`1q, ypµl`1qq ´ uipqpµlq, ypµlqq,

t1pµl`2q ´ t1pµl`1q “ uipqpµl`2q, ypµl`2qq ´ uipqpµl`1q, ypµl`1qq,

so that vi is indifferent between selecting the outcome that corresponds to either of the

three beliefs, µl, µl`1, µl`2. Finally, we show that when the agent is of type vi, she does

not want to announce any other belief µk such that µkpviq “ 0. To see this, let µlpviq ą 0

and consider the case in which l ă k. Note first that

t1pµlq “ u1pqpµ1q, ypµ1qq `
lÿ

n“2

puvpµnqpqpµnq, ypµnqq ´ uvpµnqpqpµn´1q, ypµn´1qqq,

so that

t1pµkq ´ t1pµlq “
kÿ

n“l`1

puvpµnqpqpµnq, ypµnqq ´ uvpµnqpqpµn´1q, ypµn´1qqq

“
kÿ

n“l`1

Dvpµnqpµ
n, µn´1q.

Then,

uipqpµlq, ypµlqq ´ uipqpµkq, ypµkqq ` t1pµkq ´ t1pµlq “

“ uipqpµlq, ypµlqq ´ uipqpµkq, ypµkqq `
kÿ

n“l`1

Dvpµnqpµ
n, µn´1q

ě uipqpµlq, ypµlqq ´ uipqpµkq, ypµkqq `
kÿ

n“l`1

Dipµ
n, µn´1q “ 0,

where the inequality follows from (DIC-M). A similar argument shows that the same

holds for l ą k.
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Supplement to

Mechanism with Limited Commitment

I Two-period model

Appendix I shows how to cast the model in Bester and Strausz (2001) and Bester and Strausz

(2007) in the language of this paper (Section 4 does so for the case of transferable util-

ity and preferences that satisfy increasing differences in distributions). This exercise is

useful because one of the ingenuities of their model is that it can capture in the same

setting mechanism design with limited commitment, but also delegation and renegotia-

tion. Hence, understanding how the logic behind our results translates to this case as

well has additional value. To facilitate the comparison between both papers, we follow

their notation as much as possible.
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Their environment is as follows. There is a principal and an agent. The agent has types

v P tv1, ..., vNu, each with probability µ0
i ą 0. The principal can commit to a mechanism

xpM,β, Sq, αy, where β : M ÞÑ ∆˚pSq is the communication device and the map α :

S ÞÑ ∆˚pAq determines the allocation.38 The output message s and the allocation a are

publicly observed. The model captures limited commitment as follows. After observing

s and a, the principal updates his beliefs and chooses (possibly at random) y P Y paq; he

cannot commit ex-ante to this choice. We endow the principal with a collection pMi, SiqiPI

of input and output message sets in which eachMi is finite, |V | ď |Mi|, and ∆pMiq Ď Si.
39

Moreover, we assume pV,∆pV qq is an element in that collection. Denote by M the set of

all mechanisms with message sets pMi, SiqiPI . A mechanism is canonical if pV,∆pV qq are

its sets of input and output messages. Let MC denote the set of canonical mechanisms

and let MC denote an element in that set.

When the agent’s type is vi, the allocation is a, and the uncommitted action is y, the

agent obtains utility uipa, yq, while the principal obtains a payoff of wipa, yq. The above

ingredients define an extensive form game as in Section 2, where timing is as follows:

- The agent observes her type, vi.

- The principal offers a mechanism M “ xpMM, βM, SMq.αMy P M.

- The agent observes the mechanism and decides whether to participate. Let πvpMq P

r0, 1s denote the probability that type v participates.40

‹ If the agent does not participate, an allocation a˚ is determined. Having

observed the agent’s decision not to participate and a˚, the principal chooses

γpM, 0q P ∆˚pY pa˚qq.

- If the agent participates, she privately chooses m according to rvpM, 1q P ∆pMq.

- s is drawn according to βMp¨|mq. and a is drawn according to αMp¨|sq.

- The principal observes s and a and chooses γpM, 1, s, aq P ∆˚pY paqq.

38Bester and Strausz (2007) actually do not allow for randomized allocations. It follows from the
discussion in Section 2.2 in the paper that not allowing for randomized allocations may be with loss of
generality.

39Technically, we only need that Si contains an image of ∆pMiq.
40Bester and Strausz (2007) do not model participation explicitly; rather, they solve for the optimal

mechanism that guarantees the agent receives at least a non-negative payoff.
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We are interested in characterizing the outcomes of the game, and we use Perfect Bayesian

equilibrium (PBE) as a solution concept. That is, a strategy profile pΓ, γ, pπv, rvqvPV q and

a system of beliefs µ such that the strategies are sequentially rational given the beliefs and

the beliefs are derived from Bayes’ rule whenever possible. That is, letting the principal’s

belief about the agent’s type after observing that the agent did not participate be denoted

µpM, 0qpviq, we have

r
ÿ

vPV

p1 ´ πvpMqqsµpM, 0qpviq “ µ0
i p1 ´ πvipMqq.

Letting µpM, 1, s, aqpviq denote the principal’s belief that the agent is of type vi when

he offers mechanism M, the agent participates, output s is realized, and allocation a is

drawn, we have

r
ÿ

vPV

ÿ

mPMM

πvpMqrvpM, 1qpmqβMps|mqsµpM, 1, s, aqpviq “ µ0
iπvipMq

ÿ

mPMM

rvipM, 1qpmqβMps|mq.

To simplify notation in what follows, let uipa, γq “
ř

yPY paq γpyquipa, yq; define wipa, γq

similarly.

We start by observing that, without loss of generality, the agent always participates in

any PBE. To see this, consider a PBE assessment xΓ, γ, pπv, rvqvPV q, µy. Let M P supp Γ

be such that πvpMq ă 1 for some v P V . Note that the finite support assumptions on the

communication device imply that there exists s˚ P SM such that
ř

mPMM βMps˚|mq “ 0.

Moreover, because |V | ď |MM|, label MM “ tm1, . . . , mN , . . . , m|MM|u. Define

ĂβMps|miq “
ÿ

mPMM

βMps|mqrvipM, 1qpmq.

Consider then the following mechanism M1 “ xpMM, βM1
, SM1

q, αM1
y:

βM1

ps|miq “

#
πvipMq ĂβMps|miq if s ‰ s˚

1 ´ πvipMq if s “ s˚
,

and αM1
ps˚q “ δa˚ . Moreover, let γpM1, 1, s˚, a˚q “ γpM, 0, a˚q. Note that if we modify

the strategies so that rvipM
1, 1q “ δmi

, the principal and the agent receive the same

payoff, and the agent finds it optimal to participate with probability 1.
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Bester and Strausz (2007) show that, without loss of generality, M ” tv1, ..., vNu and

the agent reports truthfully. Analogously, it follows that, without loss of generality, we

can focus on Perfect Bayesian equilibria where the principal offers M “ V and the agent

is truthful. To see this, consider a PBE assessment xΓ, γ, pπv, rvqvPV q, µy: Let M P supp Γ

and rvipM, 1q P ∆pMMq denote the reporting strategy of the agent when her type is vi

and the principal offers M. Then, her payoff can be written as

ÿ

mPMM

rvipM, 1qpmq
ÿ

sPSM

βMps|mq
ÿ

aPA

αMpa|squipa, γpM, s, aqq

“
ÿ

sPSM

˜
ÿ

mPMM

rvipM, 1qpmqβMps|mq

¸
ÿ

aPA

αMpa|squipa, γpM, s, aqq

“
ÿ

sPSM

β˚ps|viq
ÿ

aPA

αMpa|squipa, γpM, s, aqq.

Therefore, by selecting xpV, β˚, Sq, αy, the principal can implement the same outcome and

truthtelling is the agent’s best response. We focus hereafter on equilibria of the game in

which the principal chooses mechanisms with M “ V and the agent participates with

probability one and truthfully reports her type on the equilibrium path.

We now argue, that without loss of generality, if sh ‰ sj, then µh ‰ µj. Hence,

output messages can be taken to be the principal’s posterior beliefs about the agent’s

type. Consider, for example, a PBE and let M P supp Γ. Suppose sh ‰ sj exist, but

µ ” µpM, 1, sh, ¨q “ µpM, 1, sj, ¨q.41 Let Sµ “ tsµ1 , . . . , s
µ
Hµ

u denote the set of output

messages that lead to belief µ. One can alternatively define the following communication

device and allocation rule:

β 1psµ1 |vq “
ÿ

sPSµ

βMps|vq, β 1psµh|vq “ 0, h P t2, . . . , Hµu

α1pa|sµ1 q “
ÿ

sPSµ

řN

i“1 µ
0
iβ

Mps|viqř
s1PS

µh

řN
i“1 µ

0
iβ

Mps1|viq
αMpa|sq,

γ1pM1, 1, a, sµ1qpyq “
ÿ

sPS
µh

řN
i“1 µ

0
iβ

Mps|viqα
Mpa|sq

ř
s1PS

µh

řN

i“1 µ
0
iβ

Mps1|viqαMpa|s1q
γpM, 1, s, aqpyq,

41Recall that updating -conditional on participation-does not depend on the allocation a.
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where β 1, α1, γ1 coincide with the original mechanism and continuation strategy for the

remaining output messages, and we let M1 in the definition of the new strategy for the

principal be the mechanism defined by the above communication device and allocation

rule. Clearly this does not change the principal’s payoff, and when he observes s
µ
1 , his

beliefs are updated to µ, such that γ1 is optimal.

We now verify that the agent’s incentive to tell the truth remains the same. Toward

this end, for i P t2, . . . , Hµu, let ki denote the following ratio:

k1i “

řN

j“1 βpsi|vjqµ
0
jřN

j“1 βps1|vjqµ0
j

,

and let k11 “ 1. Because all output messages in Sµ lead to a belief of µ, we have that for

all vj in the support of µ,

βpsi|vjq “ k1iβps1|vjq.

Note that k1¨ is independent of vj . Using this we can write

β 1psµ1 |vq “ βMpsµ1 |vq

Hµÿ

i“1

k1i

α1pa|sµ1q “

Hµÿ

h“1

k1hřHµ

h1“1 k1h1

αMpa|shq,

γ1pM1, 1, sµ1 , aqpyq “

Hµÿ

h“1

k1hα
Mpa|shq

řHµ

h1“1 k1h1αMpa|sh1q
γpM, 1, sh, aqpyq.

Thus, we can write the agent’s utility when her type is vj P supp µ under the new

mechanism as follows

βpsµ1 |vjqr
ÿ

aPA

α1pa|sµ1 q
ÿ

y

γ1pM1, 1, sµ1 , aqpyqujpa, yqs

`
ÿ

sRSµ

βMps|vjq
ÿ

aPA

αMpa|sq
ÿ

yPY

γpM, 1, s, aqpyqujpa, yq,
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where we can expand the term in brackets to obtain

βpsµ1 |vjqr
ÿ

aPA

α1pa|sµ1q
ÿ

y

˜
Hµÿ

h“1

k1hα
Mpa|shq

řHµ

h1“1 k1h1αMpa|sh1q
γpM, 1, sh, aqpyq

¸
ujpa, yqs “

βpsµ1 |vjqr
ÿ

aPA

α1pa|sµ1q

˜
Hµÿ

h“1

k1hα
Mpa|shq

řHµ

h1“1 k1h1αMpa|sh1q

¸ ˜
ÿ

yPY

γpM, 1, sh, aqpyqujpa, yq

¸
s “

βpsµ1 |vjqr
ÿ

aPA

˜
Hµÿ

h“1

k1hřHµ

h1“1 k1h1

αMpa|shq

¸ ˜
Hµÿ

h“1

k1hα
Mpa|shq

řHµ

h1“1 k1h1αMpa|sh1q

¸ ˜
ÿ

yPY

γpM, 1, sh, aqpyqujpa, yq

¸
s

“ βpsµ1 |vjqr
ÿ

aPA

˜
Hµÿ

h“1

k1hřHµ

h1“1 k1h1

αMpa|shq

¸ ˜
ÿ

yPY

γpM, 1, sh, aqpyqujpa, yq

¸
s

“

Hµÿ

h“1

βpsh|vjq
ÿ

a

αMpsh|vjq
ÿ

y

γpM, 1, sh, aqpyqujpa, yq,

so that the agent’s utility remains the same. Similar steps also show that truthtelling is

preserved. Therefore, we can take S “ ∆pV q, β : V ÞÑ ∆˚p∆pV qq, α : ∆pV q ÞÑ ∆˚pAq.

Finally, arguments similar to those in the proof of Proposition 3.1 in the main text

imply the principal’s search for an optimal mechanism can be constrained to the class of

canonical mechanisms.

Thus, we can write the principal’s problem as follows. Following the notation in

Bester and Strausz (2007), given a canonical mechanism MC , label tµ1, ..., µHu Ď ∆pV q

the output messages in the support of the communication device. Let βi,h ” βpµh|viq.

Given tµ1, ..., µHu, we can write the principal’s problem as follows:

max
β,a

ÿ

i,h

µ0
iβi,h

ÿ

aPA

αpa|shqwipa, γhpaqq (25)

s.t.

$
’’’’&
’’’’%

p@i, i1 P t1, . . . , Nuq
ř

h βi,h

ř
aPA αpa|shquipa, γhpaqq ě

ř
h βi1,h

ř
aPA αpa|shquipa, γhpaqq

p@i P t1, . . . , Nuq
ř

h βi,h

ř
aPA αpa|shquipa, γhpaqq ě 0

supp γhpaq Ď argmaxyPY paq

ř
i µ

h
iwipa, yq

p
ř

j βj,hµ
0
jqµ

h
i “ βi,hµ

0
i

.
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Rewrite the objective function in (25) as follows:

ÿ

µP∆pV q

τpµq
ÿ

aPA

αpa|µq
Nÿ

i

µiwipa, γµpaqq,

where

τpµq “
ÿ

vPV

µ0pvqβpµ|vq.

Moreover, we can rewrite the incentive compatibility and participation constraints as

follows:

ÿ

µP∆pV q

τpµqµi

µ0
i

«
ÿ

aPA

αpa|µquipa, γµpaqq

ff
ě

ÿ

µP∆pV q

τpµqµi1

µ0
i1

«
ÿ

aPA

αpa|µquipa, γµpaqq

ff
(26)

ÿ

µP∆pV q

τpµqµi

µ0
i

«
ÿ

aPA

αpa|µquipa, γµpaqq

ff
ě 0. (27)

Then, letting wipα, γµq “
ř

aPA αpaqwipa, γµpaqq, we can write (25) as follows:

max
τ,α

EτEµrw¨pαpµq, γµs (28)

s.t.

$
’&
’%

Eτµ “ µ0

Equations (26)-(27)

p@a P Aqsupp γµpaq Ď argmaxyPY paq

řN
i“1 µiwipa, yq

.

We have the following:

Proposition I.1. The following are equivalent:

1. There exists a mechanism xpV, β, Sq, αy that solves (25).

2. There exists a canonical mechanism xpV, β 1,∆pV qq, α1y that solves (25).

3. There exists a Bayes’ plausible distribution over posteriors and an allocation rule

α : ∆pV q ÞÑ ∆˚pAq that solves (28).

The result follows immediately from the previous discussion. Proposition I.1 does

not allow us to interpret beliefs merely as recommendations, because αpµq need not
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maximize Eµwpα̃, γµq. As we showed in Section 4, when there is transferable utility and

the agent’s utility function satisfies single - crossing, this property holds for the solution

to the relaxed program: The first-period principal chooses αpµq to maximize the expected

virtual surplus, where expectations are taken with respect to µ, whereas the second-period

principal chooses γµpaq to maximize
ř

µiwipa, yq. Note, however, that for each realized

allocation a, we can think of the first period principal as sending recommendations to

the second period principal that will be obeyed.

As in Section 4, if we assume ui satisfies monotonic expectational differences (see

Kartik et al. (2017) or Definition 4.1 in the main text), we can reduce the principal’s

problem as follows:

Proposition I.2. Suppose the family puiq
N
i“1 satisfies monotonic expectational differ-

ences. Then, to find a solution to the principal’s problem, it suffices to check that

1. The local incentive compatibility constraint holds (for all vi, the agent does not

report vi´1 or vi`1 when her type is vi).

2. The participation constraint holds when the agent’s type is v1.

Using these conditions, and the results in Doval and Skreta (2018a), we can derive the

analogous result to Propositions 4.2-4.3 in the main text:42

Proposition I.3. Suppose the family puiq
N
i“1 satisfies monotonic expectational differ-

ences. Then the optimal mechanism for the principal uses at most 3N ´ 1 posteriors.

II General communication devices

As discussed in footnote 2 in the main text, we could have considered the following more

general version of a mechanism:

Mt “ pMMt , βMt, SMtq (29)

where βMt : MMt ÞÑ ∆˚pSMt ˆ Aq. That is, associated to each input message there is a

joint distribution over output messages and allocations.

It is immediate that for any M1
t as defined in the main text, we can let β̃ps, a|mq “

42See also the discussion following Proposition 4.3.
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βM1
tps|mqαM1

tpa|sq and obtain a mechanism as in equation (29). This appendix shows

that, conditional on showing that the canonical set of output messages is ∆pV q, then

the formulation in the main text is equivalent to that in equation (29). The formulation

of a mechanism in the main text has the advantage that it highlights the role of the

communication device separately from that of the allocation rule. Since this is without

loss of generality, we favored the definition in the main text for “pedagogical” purposes.

We proceed as follows. Section II.1 shows that Proposition A.3, which shows that

without loss of generality there is a one-to-one mapping between output messages and

posterior beliefs, extends to the case in which mechanisms are defined as in equation

(29).43 Section II.2 then shows that any mechanism as in equation (29) can be written

as in the main text once we know that SMt » ∆pV q.

II.1 Proof of Proposition A.3 for mechanisms as in equation (29)

Following the notation in the main text, given a mechanism Mt, define

pS b Aq˚Mt
“ tps, aq P SMt ˆ A : pDm P MMtq : βMtps, a|mq ą 0u,

to be the set of pairs ps, aq that are possible under mechanism Mt. As in the main text,

we remove from the tree all those public histories that are consistent with mechanism Mt

and ps, aq P SMt ˆ AzpS b Aq˚Mt .

Similarly, define S˚Mt “ ts P SMt : pDa P Aq : ps, aq P pS b Aq˚Mtu. Consider then a

Perfect Bayesian equilibrium assessment, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y, that satisfies the following

properties, which follow from Propositions A.1 and A.2 and Lemma A.1:

1. The agent’s equilibrium strategy only depends on her type v P V and the public

history,

2. For all t and public histories ht, for all v P V , ht
A, h

t
A

1
P H t

Aphtq such that µ˚phtqpv, ht
Aq, µ˚phtqpv, ht

A
1
q ą

0, then µ˚phtqpv, ht
A

1
q “ µ˚phtqpv, ht

Aq,

3. For all t, ht, for all v P V such that
ř

ht
APHt

Aphtq µ
˚phtqpv, ht

Aq ą 0, then π˚
v pht

A,Mtq “

1 for all Mt P supp Γ˚phtq,

43It is immediate that the proofs of Propositions A.1 and A.2 and Lemma A.1 do not depend on how
we defined the mechanism.
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4. For all t, ht, for all Mt P supp Γ˚phtq, if ps, aq P pS b Aq˚Mt , then

ÿ

pv,ht
AqPV ˆHt

Aphtq,mPMMt

µ˚phtqpv, ht
Aqr˚

v pht
A,Mt, 1qpmqβMtps, a|mq ą 0.

For such an assessment, we now show that, without loss of generality, there is a

one-to-one mapping between output messages s P S˚Mt and continuation beliefs.

That is, for every t, public history ht, Mt P supp Γ˚phtq, if st, s
1
t P S˚M

t is such

that st ‰ s1
t, then µ˚pht,Mt, 1, st, aq ‰ µ˚pht,Mt, 1, s

1
t, a

1q for any a, a1 such that

pst, aq, ps1
t, a

1q P pS b Aq˚Mt .

Proof. Fix a history ht and Mt P supp Γ˚phtq. The finiteness of MMt and the finite

support assumption on βMt implies that there exists 1 ď K ď |pS b Aq˚Mt | such

that the principal’s prior at ht splits into H posteriors, tµ1, . . . , µLu, after observing

ps, aq P pS b Aq˚Mt . Hence, we can write,

pS b Aq˚Mt
“

“
Kď

k“1

ppS b Aq˚Mt
qk “

Kď

k“1

tps, aq P pS b Aq˚Mt
: µ˚pht,Mt, 1, s, aqp¨q “ µku.

Let ts˚
1 , . . . , s

˚
Ku denote K elements of SMt. Define βM1

t : MMt ÞÑ ∆˚pSMt ˆ Aq as

follows

βM
1
tps˚

k, a|mq “
ÿ

ps,aqPppSbAq˚Mt qk

βMtps, a|mq.

Define M1
t “ pMMt , βM1

t, SMtq. At history ht, let the principal offer mechanism

M1
t instead of Mt. In a slight abuse of notation, let the agent’s best response be

determined as follows. For all v P V and ht
A P H t

Aphtq, let π˚
v pht

A,M
1
tq “ π˚

v pht
A,Mtq

and r˚
v pht

A,M
1
t, 1q “ r˚

v pht
A,Mt, 1q.

Note that (i) βps˚
k, a|mq ą 0 ô pDs P SMtq : ps, aq P ppS b Aq˚Mt qk, and (ii) when

the principal observes ps˚
k, aq for any a P A such that

ř
mPMMt βps˚

k, a|mq ą 0, his
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beliefs update to µk. To see that (ii) holds, note that

ÿ

ht
A

PHt
A

phtq,mPMMt

µ˚pht,M1
t, 1, s

˚
k , aqpv, htA,mq “

“
ÿ

ht
APHt

Aphtq,mPMMt

µ˚phtqpv, htAqr˚
v phtA,M

1
t, 1qpmqβM1

tps˚
k, a|mqř

pv1,ht
A

1q,m1PMMt µ
˚phtqpv1, htA

1qr˚
v1 phtA

1
,M1

t, 1qpm1qβM1
tps˚

k, a|m1q

“
ÿ

ps,aqPppSbAq˚Mt qh

$
&
%

ř
ht
APHt

Aphtq,mPMMt r
˚
v phtA,Mt, 1qpmqβMtps, a|mq

ř
prv,Ăht

Aq rmPMMt
µ˚pht,Mt, 1, s, aqrrvpĂhtA,Mt, 1qp rmqβMtps, a| rmq

ˆ

ř
prv,Ăht

Aq rmPMMt
µ˚pht,Mt, 1, s, aqrrvpĂhtA,Mt, 1qp rmqβMtps, a| rmq

ř
pv1 ,ht

A
1q,m1PMMt r

˚
v1 phtA

1
,M1

t, 1qpm1qβM1
tps˚

k, a|m1q

,
.
-

“
ÿ

ps,aqPppSbAq˚Mt qh

µkpvq

ř
prv,Ăht

Aq rmPMMt
µ˚pht,Mt, 1, s, aqrrvpĂhtA,Mt, 1qp rmqβMtps, a| rmq

ř
pv1,ht

A
1q,m1PMMt r

˚
v1 phtA

1
,M1

t, 1qpm1qβM1
tps˚

k, a|m1q

“ µkpvq.

We now modify the continuation strategies. For each 1 ď k ď K and a P A such

that
ř

mPMMt β
M1

tps˚
k, a|mq ą 0, label tsk1, . . . , s

k
Hk,a

u the output messages s such

that ps, aq P ppS b Aq˚Mt qk. Partition r0, 1s “ Y
Hk,a´1

h“0 rωa
h, ω

a
h`1q, where ωa

0 “ 0 “

1 ´ ωHk,a
, and for h “ 1, . . . , Hk,a ´ 1

ωa
h ´ ωa

h´1 “

ř
pv,ht

AqPV ˆHt
Aphtq,mPMMt

µ˚phtqpv, ht
Aqr˚

v pht
A,Mt, mqβMtpskh, a|mq

řHk,a

h1“1

ř
pv1,ht

A
1qPV ˆHt

Aphtq,m1PMMt

µ˚phtqpv1, ht
A

1qr˚
v1pht

A
1
,Mt, m1qβMtpskh1, a|m1q

Then, modify the continuation strategies so that

pΓ˚, pπ˚
v , r

˚
v qvPV q|pht,M1

t,1,s
˚
k
,a,ωq “ pΓ˚, pπ˚

v , r
˚
v qvPV q|

pht,Mt,1,s
k
h
,a,

ω´ωa
h´1

ωa
h

´ωa
h´1

q
.

Similar steps as in the proof of Proposition A.3 show that the agent’s payoff has

not changed and hence her the specified strategies are still a best response.
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II.2 Equivalence

Now consider an equilibrium assessment of the mechanism-selection game in which the

principal uses canonical mechanisms in each period t and history ht, that is

MC
t “ pV, βMC

τ ,∆pV qq, (30)

where βMC
τ : V ÞÑ ∆˚p∆pV q ˆ Aq. Thus, if MC

t P supp Γ˚phtq, then

µ˚pht,Mt, 1, ν, aqpv, ¨q “
µ˚phtqpvqβM

C
τ pν, a|vqř

v1PV µ˚phtqpv1qβMC
t pν, a|v1q

“ µpvq,

whenever
ř

v1PV µ˚phtqpv1qβMC
t pν, a|v1q ą 0. Fix v P V such that µphtqpvq ą 0 and νpvq ą

0. The finite support assumption allows us to label the set ta P A : βMC
t pν, a|vq ą 0u as

ta1, . . . , aNνu for some Nν P N
ν .44

Define

kν
i “

ÿ

vPV,ht
APHt

Aphtq

µ˚phtqpv, ht
AqβMC

t pν, ai|vq.

Note that Bayesian updating implies that for all v P V such that νpvq ą 0, the following

holds

kν
i

kν
1

“
βpν, ai|vq

βpν, a1|vq
. (31)

Define the following mechanism

M1C

t “ pxV, βM
1C

t ,∆pV qy, αM
1C

t q, (32)

44Note that as long as v satisfies the conditions, the set does not depend on the selected type
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where

αM1C

t pa|µq “

ř
vPV,ht

APHt
Aphtq µ

˚phtqpv, ht
AqβMC

t pµ, a|vq
ř

v1PV,ht
APHt

Aphtq µ
˚phtqpv1, ht

Aq
ř

a1PA βMC
t pµ, a1|v1q

βM1C

t pµ|vq “
ÿ

aPA

βMC
t pµ, a|vq.

Fix ν such that βM
C
t pν, a|vq ą 0 for some v P supp

ř
ht
A
µ˚phtqp¨, ht

Aq. Note that

αM1C

t pai|νq “ “

ř
vPV,ht

APHt
Aphtq µ

˚phtqpv, ht
AqβMC

t pν, ai|vq
ř

v1PV,ht
A

PHt
A

phtq µ
˚phtqpv1, ht

Aq
řNν

l“1 β
MC

t pν, a1|v1q

“

ř
vPV,ht

APHt
Aphtq µ

˚phtqpv, ht
AqβMC

t pν, a1|vq
kνi
kν
1ř

v1PV,ht
A

PHt
A

phtq µ
˚phtqpv1, ht

Aq
řNν

l“1 β
MC

t pν, a1|vq
kν
l

kν
1

“
kν
i

´ř
vPV,ht

A
µ˚phtqpv, ht

AqβM
C
t pν, a1|vq

¯
{kν

1

řNν

l“1 k
ν
l

´ř
v1PV,ht

A
µ˚phtqpv1, ht

AqβMC
t pν, a1|v1q

¯
{kν

1

“
kν
iřNν

l“1 k
ν
l

.

Moreover,

βM
1C

t pν|vq “
Nνÿ

l“1

βM
C
t pν, al|vq “

Nνÿ

l“1

βM
C
t pν, a1|vq

kν
l

kν
1

“
βMC

t pν, a1|vq

kν
1

Nνÿ

l“1

kν
l .
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Then,

βM
1C

t pν|vq
Nνÿ

l“1

αM
1C

t pal|νqEΓ˚,π˚,r˚ “
Upaphtq, al, ¨, vq|ht

A,M
C
t , 1, ν, al

‰
“

˜
βM

C
t pν, a1|vq

kν
1

Nνÿ

l“1

kν
l

¸
ˆ

Nνÿ

l“1

kν
lřNν

j“1 k
ν
j

E
Γ˚,π˚,r˚ “

Upaphtq, al, ¨, vq|ht
A,M

C
t , 1, ν, al

‰

“
Nνÿ

l“1

βMC
t pν, a1|vq

kν
l

kν
1

E
Γ˚,π˚,r˚ “

Upaphtq, al, ¨, vq|ht
A,M

C
t , 1, ν, al

‰

“
Nνÿ

l“1

βM
C
t pν, al|vqEΓ˚,π˚,r˚ “

Upaphtq, al, ¨, vq|ht
A,M

C
t , 1, ν, al

‰
.

Hence, we have not modified the agent’s payoffs.

III Proof of Corollary A.1

In the Appendix, we claim that it follows from Proposition A.1 that for any PBE as-

sessment, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y, there is a payoff-equivalent PBE assessment where the

principal’s beliefs at each public history ht satisfy that

µ˚phtqpv, ht
Aq “ µ˚phtqpv, h1t

Aq

whenever ht
A, h

t
A

1 P H t
Aphtq and µ˚phtqpv, ht

Aq, µ˚phtqpv, ht
A

1q ą 0. Clearly, Proposition A.1

implies that this holds on the equilibrium path. We now show that the same can be done

off the equilibrium path.

Thus, consider a PBE assessment, xΓ˚, pπ˚
v , r

˚
v qvPV , µ

˚y, such that the agent’s equilib-

rium strategy only depends on her payoff-relevant type and the public history. Let ht

be the shortest length public history off the equilibrium path that satisfies that there

exists v P V , ht
A, h

t
A

1
P H t

Aphtq with µ˚phtqpv, ht
Aq, µ˚phtqpv, ht

A
1
q ą 0 and µ˚phtqpv, ht

Aq ‰

µ˚phtqpv, ht
A

1
q.

Because the agent’s strategy does not condition on the payoff-irrelevant part of her pri-

vate history, the principal’s beliefs at histories hτ on the path of the equilibrium strategy

profile given ht depend on the agent’s payoff-irrelevant private history only through ht
A.

That is, if hτ
A, h

τ
A

1 are both successors of ht
A, then µ˚phτ qpv, hτ

Aq “ µ˚phτ qpv, hτ
A

1q.
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We now modify the principal’s beliefs at history ht so that they do not depend on the

agent’s payoff-irrelevant private history. Similar calculations as in the proof of Proposition

A.1 then show that the principal’s payoff does not change; hence, his strategy remains a

best response.

Define H t`

A phtqpvq “ tht
A P H t

Aphtq : µ˚phtqpv, ht
Aq ą 0u and let

µ˚˚phtqpv, ht
Aq “

$
&
%

ř
ht
A

PHt
A

phtq µ
˚phtqpv,ht

Aq

|Ht`
A pvq|

if ht
A P H t`

A pvq

0 otherwise.

We now modify the principal’s beliefs in the continuation histories to reflect the change

in the principal’s “prior”. Fix τ ě t ` 1. For any history, hτ , on the path of the

equilibrium strategy profile given ht, the principal’s beliefs that the agent is of type

v and her payoff irrelevant private history is hτ`1
A “ phτ

A,Mτ , 1, mτ , sτ , aτ q at history

hτ`1 “ phτ ,Mτ , 1, sτ , aτ q,Mτ P supp Γ˚phτ q are given by

µ˚˚phτ`1qpv, hτ`1
A q “

µ˚˚phτ qpv, hτ
Aqπ˚

v phτ
A,Mτ qr˚

v phτ
A,Mτ , 1qpmτ qβMτ psτ |mτ q

ř
ṽ,Ăhτ

A

ř
rmτ

µ˚˚phτ qpṽ, Ăhτ
Aqπ˚

ṽ pĂhτ
A,Mτ qr˚

ṽ pĂhτ
A,Mτ , 1qpm̃τqβMτ psτ |m̃τ q

,

(33)

and at history hτ`1 “ phτ ,Mτ , 0, sτ , aτ q,Mτ P supp Γ˚phτ q are given by

µ˚˚phτ`1qpv, hτ`1
A q “

µ˚˚phτ qpv, hτ
Aqp1 ´ π˚

v phτ
A,Mτ qq

ř
ṽ,Ăhτ

A

ř
rmτ

µ˚˚phτ qpṽ, Ăhτ
Aqp1 ´ π˚

ṽ pĂhτ
A,Mτ qq

, (34)

for hτ`1
A P Hτ`1

A phτ`1q.

As in the main text, we now show by induction that for any τ ě t,

ÿ

hτ`1

A PHτ`1

A

µ˚˚phτ`1qpv, hτ`1
A q “

ÿ

hτ`1

A PHτ`1

A phτ`1q

µ˚phτ`1qpv, hτ`1
A q. (35)

As in the main text, we do so for those histories at which the agent participates. It is

immediate that this also holds for those histories at which she does not.

For τ “ t and ht`1 “ pht,Mt, 1, st, atq, the denominator on the right-hand side of
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equation (33) can be written as:

ÿ

ṽ,ht
A

ÿ

mPMMt

µ˚˚phtqpṽ, ht
Aqπ˚

ṽ pht
A,Mtqr

˚
ṽ pht

A,Mt, 1qpmqβMtpst|mq

“
ÿ

ṽ

ÿ

mPMMt

π˚
ṽ pht

A,Mtqr
˚
ṽ pht

A,Mt, 1qpmqβMtpst|mq
ÿ

ht
APHt`

A phtqpvq

µ˚˚phtqpṽ, ht
Aq

“
ÿ

ṽ,ht
A

ÿ

mPMMt

µ˚phtqpṽ, ht
Aqπ˚

ṽ pht
A,Mtqr

˚
ṽ pht

A,Mt, 1qpmqβMtpst|mq,

where the first equality uses that the agent’s strategy does not depend on ht
A and that

only ht
A P H t`

A pvq have positive probability and the second equality uses the defini-

tion of µ˚˚phtqpv, ht
Aq. It then follows that for ht`1 “ pht,Mt, 1, st, atq and ht`1

A “

pht
A,Mt, 1, mt, st, atq

ÿ

ht
A

µ˚˚pht`1qpv, ht`1
A q “

ř
ht
A
µ˚phtqpv, ht

Aqπ˚
v pht

A,Mtqr
˚
v pht

A,Mt, 1qpmtqβ
Mtpst|mtqř

ṽ,ht
A

ř
mPMMt µ

˚˚phtqpṽ, ht
Aqπ˚

ṽ pht
A,Mtqr˚

ṽ pht
A,Mt, 1qpmqβMtpst|mq

“
ÿ

ht
A

µ˚phtqpv, ht
Aqπ˚

v pht
A,Mtqr

˚
v pht

A,Mt, 1qpmtqβ
Mtpst|mtqř

ṽ,ht
A

ř
mPMMt µ

˚phtqpṽ, ht
Aqπ˚

ṽ pht
A,Mtqr˚

ṽ pht
A,Mt, 1qpmqβMtpst|mq

“
ÿ

ht
A

µ˚pht`1qpv, ht`1
A q.

Adding up both sides over mt P MMt delivers equation (35) for τ “ t. Similar steps to

those in the proof of Proposition A.1 show that indeed equation (35) holds for τ ě t ` 1.

As in that proof, this is enough to show that the principal’s payoff does not change under

the new beliefs. Thus, his strategy remains a best response.

IV Continuum of types

IV.1 Preliminaries

Primitives: Let V,A denote compact, metrizable spaces. V denotes the set of agent

types, endowed with a full support distribution µ0. A denotes the set of allocations. Let

M,S denote two Polish spaces. All sets are endowed with their Borel σ´ algebras.

There is a set of ex-post allocations, Y , also compact and metrizable. The set of feasible
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ex-post allocations can depend on the allocation and is captured by a correspondence

Y , a measurable subset of A ˆ Y . For each allocation a P A, Ya “ ty P Y : pa, yq P Yu.

Given a Polish set Z, let PpZq denote the set of Borel probability measures on Z

endowed with the weak˚ topology, σpPpZq, CbpZqq. If X is any other measurable space,

a transition probability is a measurable mapping γ : X ÞÑ PpZq. That is, for any Borel

set Z 1 Ď Z, γpZ|xq is a measurable function of x P X .

All product sets are endowed with the product topology and the product Borel σ´algebra.

The principal’s von-Neumann Morgenstern utility function is w : A ˆ Y ˆ V ÞÑ R,

whereas the agent’s is u : A ˆ Y ˆ V ÞÑ R. Both functions are measurable.

A mechanism is any pβ, αq such that β : M ÞÑ PpSq and α : S ÞÑ PpAq are transition

probabilities. Let Γ denote the set of all mechanisms.

Equilibrium: A strategy for the principal consists of a choice of mechanism and the

specification of a mixed action conditional on every s P S he may observe. A strategy

for the agent maps each of her types to a distribution over messages. To keep matters

simple, we avoid discussing the agent’s participation decision, but dealing with it is

routine.

The focus is on equilibrium outcomes of this game, in which equilibrium means PBE. It

consists of a mechanism and three measurable maps: a strategy for A, r : V ÞÑ PpMq;

an ex-post choice for P , γ : S ˆ A ÞÑ PpY q and a belief system p : S ˆ A ÞÑ PpV q such

that

1. p is obtained from µ0, r and β whenever possible (‹)

2. γps, aq is supported on argmaxyPYa

ş
V
wpa, y, vqdppv|sq for all ps, aq P S ˆ A

3. rpvq is supported on argmaxmPM

ş
SˆAˆY

upa, y, vqdγpy|s, aqdαpa|sqdβps|mq for all

v P V

(‹) Define for each m P M ,

pβ b αqmpS 1 ˆ A1q “

ż

S1

αpA1|sqdβps|mq P PpS ˆ Aq,

for each measurable S 1 ˆ A1 Ď A ˆ S.
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Remark IV.1. Letting µpS 1ˆA1|mq ” pβbαqmpS 1ˆA1q, note that ppαs “ αp¨|sqqsPS, βp¨|mqq

are a disintegration of µp¨|mq (see, e.g., Balder (2001)). The meaning of this is that for

any bounded measurable function φ : S ˆ A ÞÑ R,

ż
φdµp¨|mq “

ż

S

p

ż

A

φps, aqdαspaqqdβps|mq.

Then, Bayesian updating

ż

V 1

ż

M

pβ b αqmpS 1 ˆ A1qdrpm|vqdµ0pvq “

ż

V

ż

M

ż

S1ˆA1

ppV 1|s, aqdpβ b αqmps, aqdrp¨|vqdµ0pvq.

IV.2 Revelation Principle

Canonical Messages: The agent’s reporting strategy and the mechanism β, induce a

measure on M ˆ S, pr b βqv, as follows:

pr b βqvpM 1 ˆ S 1q “

ż

M 1

βpS 1|mqdrpm|vq,

for any measurable M 1 ˆS 1 Ď M ˆS.45 Note this defines a new transition β˚ : V ˆPpSq

and that ppβmqmPM , rp¨|vqq are a disintegration of pr b βqv.

When her value is v, the agent’s payoff is given by

ż

M

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβps|mqdrpm|vq “ (36)

“

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβ˚ps|vq, (37)

where the equality follows from applying backwards the definition of a disintegration.

Let u˚
v “ maxmPM

ş
S

ş
A

ş
Y
upa, y, vqdγpy|s, aqdαpa|sqdβps|mq. By definition of rpm|vq,

ż

M

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβps|mqdrpm|vq “

ż

M

u˚
vdrpm|vq “ u˚

v . (38)

Moreover, for any m R supp rp¨|vq, u˚
v ě

ş
S

ş
A

ş
Y
upa, y, vqdγpy|s, aqdαpa|sqdβps|mq. We

45Recall we endow all product sets with their product Borel σ-algebra.
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argue that r˚pvq “ δpvq is an optimal reporting strategy when the mechanism is pβ˚, αq

and the ex-post choice is still γp|s, aq. Equation (36) implies r˚pvq “ δpvq achieves u˚
v .

Toward a contradiction, suppose that v1 P V , v1 ‰ v exist such that

u˚
v “

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβ˚ps|vq ă

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβ˚ps|v1q.

(39)

The right-hand side of the above expression equals

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβ˚ps|v1q “
ż

M

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβps|mqdrpm|v1q.

Therefore, equations (38) and (39) imply

ż

M

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβps|mqpdrpm|vq ´ drpm|v1qq ă 0.

This implies that a ǫ ą 0 and a set M 1 P BpMq : rpM 1|v1q ą 0 exist where

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβps|m1q ą u˚
v ` ǫ

for all m1 P M 1. This contradicts the optimality of rp¨|vq.

We now check that we have not changed: (a) P ’s payoff and (b) Bayesian updating.

To see that the principal’s payoff is the same as before, notice that

ż

V

ˆż

M

ż

S

ż

A

ż

Y

wpa, y, vqdγpy|s, aqdαpa|sqdβps|mqdrpm|vq

˙
dµ0pvq “

“

ż

V

ˆż

S

ż

A

ż

Y

wpa, y, vqdγpy|s, aqdαpa|sqdβ˚ps|vq

˙
dµ0pvq,

by definition of disintegration.

To see that Bayesian updating has not changed, notice that for any measurable S 1 ˆA1 Ď
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S ˆ A,

ż

V 1

pβ˚ b A1qvpS 1 ˆ A1qdµ0pvq “

ż

V 1

ˆż

S1

αpA1|sqdβ˚ps|vq

˙
dµ0pvq

“

ż

V 1

ˆż

M

ˆż

S1

αpA1|sqdβps|mq

˙
drpm|vq

˙
dµ0pvq

“

ż

V

ż

M

ż

S1ˆA1

ppV 1|s, aqdpβ b αqmps, aqdrp¨|vqdµ0pvq

“

ż

V

ż

S1ˆA1

ppV 1|s, aqdpβ˚ b αqvps, aqdµ0pvq,

which yields the desired expression.

Canonical Outputs: Given the result in the previous section, we focus hereafter on

mechanisms pβ˚, αq, where β˚ : V ÞÑ PpSq is a transition probability. For now, focus

on mechanisms such that α : S ÞÑ PpAq satisfies that αp¨|sq “ δa for every s P S. Then

Bayesian updating reduces to

ż

V 1

β˚pS 1|vqdµ0pvq “

ż

V

ż

S1

ppV 1|sqdβ˚ps|vqdµ0pvq,

for every measurable S 1 Ď S. Using the notation from before, this says that

pµ0 b β˚qpV 1 ˆ S 1q ”

ż

V

ż

S1

ppV 1|sqdpµ0 b β˚qpv, sq.

In what follows, we delineate rigorously how p : S ÞÑ PpV q is constructed. Consider

pV ˆ S,BV bSq and endow it with the measure pµ0 b β˚q. Let the measurable mapping

πS : V ˆS ÞÑ S denote the projection onto S and let σpπSq “ tπ´1
S

pS 1q : S 1 P BSu denote

the sigma algebra on V ˆ S induced by πS. Note that σpπSq Ď BV bS.

Given a function f P L1pV ˆ S,BV bS, pµ0 b β˚qq, that is, a random variable, the con-

ditional expectation of f with respect to σpπSq is the function Erf |σpπSqs that satisfies

that for every D P σpπSq,

ż

D

fdpµ0 b β˚q “

ż

D

Erf |σpπSqsdpµ0 b β˚q.

Recall that Erf |σpπSqs exists and is uniquely defined.
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Define the random variable Xpv, sq “ 1V 1ˆSpv, sq and PpV 1|Sq “ ErX|σpπSqs as the

random variable Y : V ˆ S ÞÑ R that satisfies that for any D P σpπSq,

ż

D

Y dpµ0 b β˚q “

ż

D

Xdpµ0 b β˚q.

In particular, if D “ D1 ˆ D2,

ż

D1

ż

D2

PpV 1|Sqdβ˚dµ0 “

ż

D1

ż

D2

1V 1ˆSpv, sqdβ˚ps|vqdµ0pvq “

ż

D1XV 1

β˚pD2|vqdµ0pvq

“

ż

V

ż

D2

ppD1 X V 1|sqdpµ0 b β˚q

“

ż

V

ż

D2

ppV 1|sqdpµ0 b β˚q

where the next to last equality follows from the definition of p by Bayesian updating

and the last equality follows from noting that if D “ D1 ˆ D2 P σpπSq, then D “

V ˆ D2, D2 P BS. Thus, ppV 1|sq is a version of the conditional probability PpV 1|Sq.

Letting PpV q denote the space of probability measures on pV,BpV qq, we can let p : V ˆ

S ÞÑ PpV q be defined by ppv,sqp¨q “ Pp¨|σpπSqqpv, sq. It follows that
ş
V ˆS

pv,sdpµ0ˆβ˚q “

µ0.

Assume finally that for each p, a, a unique maximizer y˚ exists. Define W : tpp, a, γq :

p P PpV q, a P A, γpY 1q ą 0 ñ Y 1 Ď Yau ÞÑ R to be

W pp, a, γq “

ż

V

ż

Y

wpa, y, vqdγpyqdppvq.

Then, by the definition of conditional expectation,

ż

V

ˆż

S

ż

Y

wpapsq, y, vqdγpy|s, aqdβ˚ps|vq

˙
dµ0pvq

“

ż

V

ż

S

Er

ż

Y

wpapsq, y, vqdγpy|s, aq|σpπSqsdβ˚ps|vqdµ0pvq

“

ż

V

ż

S

W ppv,s, apsq, γqdpµ0 ˆ β˚qps, vq

“

ż

PpV q

W pp, a, γqdτppq,
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where the last equality follows from defining for any Borel set P of PpV q, the measure

τpP q “ pµ0 b β˚qptpv, sq : pv,s P P uq.

IV.3 The envelope representation of payoffs

An advantage of the continuum assumption is that incentive compatibility of the mecha-

nisms implies the agent’s payoff from the mechanism can be represented via the envelope

theorem. We now derive the corresponding version for our setting. This implies that in

the program analyzed in Section 4, downward-looking incentive constraints are always

binding, so the relaxed program provides the correct benchmark.

We now make assumptions on the agent’s utility function so that we can apply the

envelope theorem of Milgrom and Segal (2002). Assume V is a compact subset of the

real line. Assume the agent’s utility function upa, y, ¨q is Lipschitz continuous and that

an integrable function b : V ÞÑ R existssuch that |uvpa, y, vq| ď bpvq. We first show this

condition implies

Upv̂, ¨q “

ż

S

ż

A

ż

Y

upa, y, vqdγpy|s, aqdαpa|sqdβps|v̂q

is absolutely continuous and differentiable for all v̂ P V .

To see this, note that taking v, v1,

|Upv̂, vq ´ Upv̂, v1q| “ |

ż

S

ż

A

ż

Y

pupa, y, vq ´ upa, y, v1qqdγpy|s, aqdαpa|sqdβps|v̂q|

ď

ż

S

ż

A

ż

Y

|upa, y, vq ´ upa, y, v1q|dγpy|s, aqdαpa|sqdβps|v̂q

ď K|v ´ v1|,

where the last inequality follows from Lipschitz continuity of upa, y, ¨q. That Upv̂, ¨q is

differentiable follows from the application of Lebesgue’s dominated convergence theorem

as v1 Ñ v in the above expression.

Then, defining

Upvq “ max
v̂PV

Upv̂, vq,
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Theorem 2 in Milgrom and Segal (2002) implies U is differentiable almost everywhere

and

Upvq “ Upvq `

ż v

v

Uvpt, vqdt,

where Uvpt, vq “
ş
A

ş
S

ş
Y
uvpa, y, tqdγpy|s, aqdαpa|sqdβps|tq. In particular, in the environ-

ment in Section 4 where A “ Q ˆ R, it follows that

Upvq `

ż

S

tsdβps|vq “

ż

S

ż

Q

ż

Y

upq, y, vqdγpy|s, aqdαpq|sqdβps|vq

´

ż v

v

ż

A

ż

S

ż

Y

uvpa, y, tqdγpy|s, aqdαpa|sqdβps|tqdt.
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