
Trust and Betrayals:
Reputational Payoffs and Behaviors without Commitment

Harry PEI∗

October 19, 2019

Abstract: I introduce a reputation model in which all types of the reputation-building player are facing lack-of-
commitment problems. I study a repeated trust game in which a patient player (e.g., a seller) wants to win the
trust of some myopic opponents (e.g., buyers) but can strictly benefit from betraying them. Her benefit from
betrayal is her persistent private information. I provide a tractable formula for the highest equilibrium payoff for
every type of that patient player. Interestingly, incomplete information affects this payoff only through the lowest
benefit in the support of the prior belief. In every equilibrium that attains this highest payoff, the patient player’s
behavior depends nontrivially on past play. I establish bounds on her long-run action frequencies that apply to
all of her equilibrium best replies. These features of her behavior are essential for her to extract information rent
while preserving her informational advantage. I construct a class of such high-payoff equilibria in which the
patient player’s reputation depends only on the number of times she has betrayed as well as the number of times
she has been trustworthy in the past. The method I developed is useful for studying other repeated incomplete
information games between a patient informed player and a sequence of myopic uninformed players.
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1 Introduction

Trust is essential in many socioeconomic activities, yet it is also susceptible to opportunism and exploitation. To

illustrate this, consider the example of a supplier who promises his clients to make on-time deliveries. After the

client agrees to purchase and makes a relationship-specific investment, the supplier has an incentive to delay in

order to save cost.1 Similarly, firms try to convince consumers of their high quality standards. But after receiving

upfront payments, they may be tempted to undercut quality, especially on aspects that are hard to verify. Similar

situations also occur when incumbent firms threaten to fight potential entrants but then accommodate them after
∗Department of Economics, Northwestern University. I thank Daron Acemoglu, Ricardo Alonso, Guillermo Caruana, Mehmet

Ekmekci, Jeff Ely, Drew Fudenberg, Bob Gibbons, Aditya Kuvalekar, Elliot Lipnowski, Debraj Ray, Bruno Strulovici, Jean Tirole,
Juuso Toikka, Tristan Tomala, Alex Wolitzky, Muhamet Yildiz and my seminar audiences for helpful comments. Errors are mine.

1As documented by Banerjee and Duflo (2000), non-contractible delays and cost overruns are important concerns in the custom
software industry, so that suppliers who wish to build their reputations have a strong motivation to minimize or avoid them. See Dellarocas
(2006) and Bar-Isaac and Tadelis (2008) for more examples of lack-of-commitment problems in business transactions.
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entry happens, when politicians seek support from their electorate but later renege on their campaign promises,

and when entrepreneurs raise funding for their projects but then divert those funds for other purposes.

The common theme in these examples is a lack-of-commitment problem faced by the firms, politicians, and

entrepreneurs. As a response, these agents build reputations for being trustworthy, from which they derive

benefits in the future. In practice, a key challenge to reputation building is that all agents face temptations to

renege, including even those role-models that others wish to imitate. As a result, the heterogeneity across agents

is more about how much temptation they are facing, rather than whether or not they are facing temptations.

For example, all firms can save costs by undercutting quality, but their costs can be different due to different

production technologies. This challenge is not addressed in the classic theories of Sobel (1985), Fudenberg and

Levine (1989,1992), and Benabou and Laroque (1992), in which agents of some types are committed to playing

prespecified strategies, and others can establish their reputations by imitating those committed types.

I introduce a reputation model that incorporates these realistic concerns. To highlight the lack-of-commitment

problems in the applications, I study the following trust game that is played repeatedly over an infinite time

horizon between a patient long-run player (e.g., a seller) and a sequence of myopic short-run players (e.g.,

buyers).2 In every period, the long-run player wants to win her opponent’s trust by promising high effort, but

has a strict incentive to renege and exert low effort once trust is granted. Her cost of exerting high effort is her

persistent private information, which I call her type. Each short-run player observes the outcomes of all past

interactions and prefers to trust the long-run player if the probability of high effort is above some cutoff.

I show that although all types of the long-run player are tempted to renege, she can still overcome her

lack-of-commitment problem and attain high payoffs. This includes her optimal commitment payoff, or (mixed)

Stackelberg payoff, when the lowest possible cost vanishes. I derive properties of the long-run player’s behavior

that apply to all equilibria in which she attains her highest equilibrium payoff.3 I establish tight bounds on

her action frequencies that apply not only to all of her equilibrium strategies, but also to all of her equilibrium

best replies. This merit of my result is meaningful from the perspective of applications, since one can estimate

the parameters of the model (e.g., the lowest cost in the support of the short-run players’ belief) by observing

a realized path of play instead of the entire distribution over plays. I construct a class of those high-payoff

equilibria in which the long-run player’s reputation depends only on the number of times she has exerted high

and low effort in the past. This captures some realistic features of online rating systems, such as eLance, Uber

and Yelp (Dellarocas 2006, Dai et al. 2018), in which a seller’s score depends only on the number of times she
2The assumption about myopia is motivated by the applications, such as in durable good markets in which each buyer has unit demand

and online platforms (such as Airbnb, Uber, Lyft), where buyers are unlikely to meet with the same seller twice. Relaxing this assumption
does not affect the attainability of high payoffs. Nevertheless, it can expand the long-run player’s equilibrium payoff set.

3For every ε > 0, there exist equilibria such that every type’s payoff is at least her highest equilibrium payoff minus ε. By “attain her
highest equilibrium payoff,” I mean every type of the long-run player approximately attains her highest equilibrium payoff.
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has received each rating, instead of on other more complicated metrics.4

My first result (Theorem 1) characterizes the highest equilibrium payoff for every type of the patient long-run

player. It unifies the incomplete information setting with the complete information benchmark in Fudenberg, et

al. (1990). Every type’s highest equilibrium payoff admits a tractable formula, which is the product of her

Stackelberg payoff and an incomplete-information multiplier. The latter is a sufficient statistic for the effect of

incomplete information and depends only on the lowest cost in the support of the short-run players’ prior belief.

Moreover, the multiplier coincides with the maximal probability attached to the Stackelberg outcome such that

the payoff of the lowest-cost type does not exceed her highest payoff in the repeated complete information game

where her cost is common knowledge. My formula implies that every type except the lowest-cost type benefits

from incomplete information, in the sense that her highest equilibrium payoff is strictly higher compared to

the complete information benchmark. Furthermore, when the lowest cost in the support vanishes to zero, the

multiplier converges to one and every type’s highest equilibrium payoff converges to her Stackelberg payoff.

Next, I study properties of the patient player’s behavior that apply to all equilibria in which she approximately

attains her highest equilibrium payoff (or high-payoff equilibria). As a first step, Theorem 2 shows that no type

of the patient player uses stationary strategies or has a completely mixed best reply. This conclusion extends

to a type whose cost of high effort is zero. It implies that in every high-payoff equilibrium, every type of the

patient player faces nontrivial incentives and chooses actions based on the history of play. It also contrasts with

the stationary commitment strategies in the reputation literature that prescribe the same action at every history.

To further explore these nonstationary behaviors, Theorem 3 derives bounds on the patient player’s long-term

action frequencies that apply to all of her best replies (to her opponents’ equilibrium strategies). In particular,

for every type that does not have the highest cost, and for every one of her pure-strategy best replies, the relative

frequency of high and low effort cannot fall below the ratio between their probabilities in the Stackelberg action

(or critical ratio). Similarly, for every type that does not have the lowest cost, the relative frequency of high and

low effort cannot exceed the above critical ratio under each of her pure-strategy best replies. The two bounds

together pin down the action frequencies for all types except for the ones with the highest and the lowest cost.

Since these bounds apply to all equilibrium best replies of the patient player, they are stronger than the ones that

apply only to her equilibrium strategies. This distinction is economically important since the resulting predictions

can be tested by observing a realized path of the long-run player’s actions, instead of the entire distribution.

Intuitively, the properties of behavior identified in Theorems 2 and 3 allow the high-cost types to shirk

occasionally without losing too much reputation, while discouraging them from shirking too frequently in order

to provide the short-run players with the incentive to trust. To achieve the first objective, the rational reputational
4Websites such as eBay and eLance consider only ratings obtained in the past six months when they compute sellers’ scores. This is

motivated by concerns such as changes in the seller’s characteristics over time, which is beyond the scope of this paper.
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type needs to have an incentive to shirk so that the high-cost types can conceal their private information while

extracting rent. To achieve the second objective, one needs to take into account the short-run players’ learning. As

suggested by the learning results in Fudenberg and Levine (1992), the short-run players can predict the long-run

player’s future actions with high precision in all periods except for a bounded number of them.

The proofs of Theorems 2 and 3 exploit the rationality of all types of the long-run player as well as the

supermodularity of her stage-game payoffs. For a snapshot of the argument, suppose it is optimal for the

lowest-cost type to exert low effort at every history (which happens if she has a completely mixed best reply).

Due to the high-cost types’ comparative advantage in exerting low effort, they will shirk for sure at every on-path

history. However, if they behave like this in equilibrium, then the short-run players will believe that low effort

will occur with a high enough probability in all future periods after they observe low effort for a bounded number

of periods. They will then stop trusting the long-run player, leaving those high-cost types with a low payoff. In

general, this logic leads to an upper bound on the frequencies with which the low-cost types exert low effort.

Conversely, suppose it is optimal for a high-cost type to exert high effort at a given frequency. Then, according

to every best reply of the lowest-cost type, her frequency of exerting high effort must be weakly higher. In order

for a high-cost type to hide behind the reputational type and extract information rent, the long-run frequencies of

her actions cannot be too different from the equilibrium action frequencies of the reputational type. Therefore, a

lower bound on the high-cost type’s equilibrium payoff leads to an upper bound on the frequency of high effort

not only under each of her equilibrium strategies but also under each of her pure-strategy best replies.

My proof of Theorem 1 offers a more concrete illustration of players’ behaviors by constructing a class

of such high-payoff equilibria. The main conceptual challenge arises from the observation that extracting

information rent (that is, shirking during which she wins her opponent’s trust) inevitably reveals information

about the long-run player’s type, which undermines her informational advantage as well as her ability to extract

information rent in the future. This tension grows as the long-run player becomes more patient, since she needs

to extract information rent in an increasing number of periods to obtain a discounted average payoff strictly above

her highest equilibrium payoff in the repeated complete information game.

My main technical contribution is to overcome the above challenge while taking the reputational type’s

incentives into account. The equilibria I construct exhibit slow learning and reputation cycles that end in finite

time. Play starts from an active learning phase, in which (1) the short-run players trust, and (2) the long-run

player’s reputation improves after high effort and deteriorates after low effort. Every high-cost type plays a

nontrivially mixed action unless her reputation (which is the probability of her being the lowest-cost type) is

sufficiently close to one, at which point she shirks for one period and extracts information rent. The above

arrangement that high-cost type shirks for sure only at histories where low-cost type occurs with sufficiently

high probability reduces the magnitude of her reputation loss in the process of extracting information rent.
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Moreover, she can rebuild her reputation after milking it, which leads to reputation cycles and allows her to

extract information rent in the long run. Play transits to one of the two absorbing phases either when the long-run

player has extracted enough information rent by shirking too much in the past, or when her reputation becomes

perfect by exerting too much effort in the past. One of these events must happen in finite time. Intuitively,

the first absorbing phase discourages the long-run player from shirking too frequently. The second absorbing

phase discourages the high-cost types from exerting high effort too frequently, which is important to ensure that

the high-cost types’ continuation payoffs are low enough so that they can be attained in some equilibria of the

continuation game.

Related Literature: This paper relates to the literatures on reputations and repeated incomplete information

games. The conceptual contributions lie both in the approach taken and in the research questions.

The canonical approach for studying reputations, which has been adopted by Fudenberg and Levine (1989,

1992), Gossner (2011), and many others, fixes the behavior of at least one type of the long-run player (call

these types commitment types). These papers show that every type of the strategic long-run player can attain her

commitment payoff when her discount factor approaches 1 (call this attainability). This includes commitment

payoffs that are not attainable in the repeated complete information game. When the long-run player’s action

choices are identifiable (which is the case in the simultaneous-move trust game but not in the sequential-move

game), she can guarantee her commitment payoff in all equilibria (call this refinement).

I take a complementary approach in which all types of the long-run player are rational, have reasonable

stage-game payoff functions (that is, they share the same ordinal preferences over stage-game outcomes), and

can flexibly choose their strategies in order to maximize their payoffs.

Compared to the canonical approach, my approach has the advantage of raising and answering novel questions

related to the long-run player’s behavior, such as (1) how the reputational types behave when they are also

rational, and (2) how the other types behave to take advantage of this rational reputational type. The canonical

approach is not well-suited to answer these questions since the long-run player’s behaviors are sensitive to the

commitment types’ strategies, and those commitment behaviors are usually viewed as modeling shortcuts to

attain reputational payoffs instead of capturing realistic aspects of economic agents’ behaviors.5 Moreover, there

are many commitment behaviors that lead to the same commitment payoff, and the modeling specification of

commitment types does not respond to changes in the payoff environment. This includes, but not limited to,

changes in the long-run player’s discount factor and her initial reputation.

My approach addresses these concerns by treating the reputational type as a strategic player whose behavior
5Weinstein and Yildiz (2016) point out the sensitivity of the game’s predictions to the specifications of the commitment types’

strategies. Their findings call for a careful selection of types in setting up incomplete information game models, including types that
occur with very low probability. My approach follows this spirit by requiring all types to have reasonable payoff functions.
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responds to changes in the payoff environment.6 Focusing on trust games, which are classic examples to

demonstrate the value of reputations, I characterize the patient long-run player’s highest equilibrium payoff in

this repeated incomplete information game. By exploiting the incentives of all types of the long-run player,

I derive properties of her behaviors that are true for all high-payoff equilibria. In terms of complementing the

canonical reputation models, the implications of my results on the lowest-cost type’s behavior can evaluate which

of the many commitment strategies are more reasonable. From this perspective, it helps to refine the commitment

strategies when commitment types are simplifications for rational types whose temptation to deviate is low or

zero. My results are also potentially useful for future applied work both in the computation of optimal equilibria

and in identifying bounds for a seller’s cost of supplying high quality goods.

The main drawback of my approach is that it only leads to the attainability part of the reputational payoff

result, but not the refinement part. This is a loss in the simultaneous-move trust game since it cannot rule out

equilibria with low payoffs but the commitment type approach can, but not in the sequential-move trust game as

neither approach can rule out low-payoff equilibria and the only role of reputation is to attain higher payoffs.

My work is also related to the study of repeated incomplete information games. Instead of restricting attention

to zero-sum games (as in Aumann and Maschler 1965) or games with equally patient long-run players (as in Hart

1985, Cripps and Thomas 2003, and Pȩski 2014), I study non-zero-sum games with unequal discount factors.

This class of games is important for understanding dynamic interactions like those between firms and consumers,

or between governments and citizens. In these scenarios, it is common to see gains from cooperation, as well as

a lack of intertemporal incentives for one class of players, such as the consumers or the citizens.

I develop a tractable method to construct high-payoff equilibria in models with multiple strategic types and no

commitment type. It generalizes to other repeated incomplete information games with monotone-supermodular

payoffs, including those with interdependent values (Pei 2018). In these settings with short-run players, the

belief-free equilibrium approach in Hörner, Lovo, and Tomala (2011) is not applicable. This is because at every

history in which some types of the long-run player can extract information rent, the short-run player’s best reply

depends on her belief about the long-run player’s type.

The class of equilibria I construct start from active learning phases followed by absorbing phases. Different

from the learning phases in Wiseman (2005, 2012), during which players experiment and learn about their

payoffs, the role of the learning phase in my model is to allow the informed player to extract information rent.

As a result, the length of the learning phase in my model increases with the discount factor.

To make things tractable when learning and rent extraction persist in the long run, the informed player’s

equilibrium reputation can be computed via the number of times he has played the high action and the low action.
6This differs from other approaches that endogenize commitment in dynamic games, which include introducing switching costs

(Caruana and Einav 2008), and perturbing players’ belief hierarchies and introducing interdependent values (Weinstein and Yildiz 2016).
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Figure 1: The stage game, where θ ∈ (0, 1), b > 0, c > 0

Using this tractable property, I show a result that verifies the attainability of continuation payoffs which takes

into account the changes in the short-run players’ beliefs (Lemma A.1). It overcomes the following difficulty of

applying the self-generation argument in Abreu, Pearce, and Stacchetti (1990) to repeated games with incomplete

information, that is, the set of equilibrium payoffs depends on the uninformed players’ beliefs about the informed

player’s type.

Those equilibria also exhibit interesting reputation dynamics that are different from the behavioral patterns

in models with commitment types such as those in Sobel (1985), Barro (1986), Schmidt (1993), Phelan (2006),

Ekmekci (2011), Liu (2011), Jehiel and Samuelson (2012), and Liu and Skrzypacz (2014). These differences in

dynamic reputation building and reputation milking behaviors highlight the role played by rational reputational

types in shaping players’ incentives. I will explain these differences in behavior in subsection 4.3.

2 The Baseline Model

I introduce a repeated trust game that captures the lack-of-commitment problem in many situations. Different

from the canonical reputation models with commitment types, all types of the reputation-building player are

rational and have qualitatively similar payoff functions, that is, they share the same ordinal preferences over

stage-game outcomes. My approach is motivated by realistic concerns that no agent is immune to reneging

temptations. It helps to answer novel questions, such as (1) how the rational reputational type behaves in

equilibrium, and (2) how the other types behave to take advantage of this rational reputational type.

Stage Game: Consider a trust game described in Figure 1 between a seller (player 1, she) and a buyer (player

2, he). The buyer moves first, deciding whether to trust the seller (action T ) or not (action N ). If he chooses

N , then both players’ payoffs are normalized to 0. If he chooses T , then the seller chooses between high effort

(action H) and low effort (action L).7 If the seller chooses L, then her payoff is 1 and the buyer’s payoff is −c.
7Although the baseline model examines a sequential-move trust game in Bower et al. (1997) and Chassang (2010), my analysis and

results also apply to the simultaneous-move product choice games in Mailath and Samuelson (2001), Ekmekci (2011) and Liu (2011).
My results also extend to stage games with imperfect monitoring. See Section 5 for more details.
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If the seller chooses H , then her payoff is 1− θ and the buyer’s payoff is b, where:

• b > 0 is the buyer’s benefit from the seller’s high effort;

• c > 0 is the buyer’s loss from the seller’s low effort (or betrayal);

• θ ∈ Θ ≡ {θ1, ...θm} ⊂ (0, 1) is the seller’s cost of high effort, or more generally, player 1’s temptation to

betray her opponents’ trust. Without loss of generality, I assume that 0 < θ1 < θ2 < ... < θm < 1.

The benefit and cost parameters, b and c, are common knowledge. The cost of high effort θ is the seller’s private

information, or her type. This assumption is reasonable when θ depends on the seller’s production technology.

The unique equilibrium outcome in the stage game is N and the seller’s payoff is 0. This is because the seller

has a strict incentive to choose L after the buyer plays T , which motivates the latter to choose N .

Consider a benchmark scenario in which the seller commits to an action α1 ∈ ∆(A1) before the buyer moves.

When the seller can optimally choose which action to commit to, every type’s optimal commitment is to play H

with probability γ∗ ≡ c
b+c and L with probability 1− γ∗. For every j ∈ {1, 2, ...,m}, type θj’s payoff under her

optimal commitment is:

v∗∗j ≡ 1− γ∗θj , (2.1)

where v∗∗j is called her Stackelberg payoff, γ∗H + (1 − γ∗)L is called her Stackelberg action and γ∗(T,H) +

(1− γ∗)(T, L) is called the Stackelberg outcome.

The comparison between the seller’s Nash equilibrium payoff and her Stackelberg payoff highlights a lack-of-

commitment problem, which is of first order importance not only in business transactions (Mailath and Samuelson

2001, Ekmekci 2011), but also in fiscal and monetary policies (Barro 1986, Phelan 2006) and political economy

(Tirole 1996). The rest of this article sets up a repeated version of this game and explores (1) the extent to which

the seller can overcome this lack-of-commitment problem by building reputations, and (2) different types of the

seller’s payoffs as well as behaviors in those reputational equilibria.

Repeated Game: Time is discrete, indexed by t = 0, 1, 2, .... A long-lived seller is interacting with an infinite

sequence of buyers, arriving one in each period and each buyer plays the trust game only once.

Both b and c are common knowledge. The cost of high effort, θ, is the seller’s private information. I assume

that θ is perfectly persistent over time. The buyers have a full support prior belief π0 ∈ ∆(Θ). Outcomes of

all past interactions are perfectly observed. Let yt ∈ {N,H,L} be the stage-game outcome in period t. Let

ht = {ys}t−1
s=0 ∈ Ht be a public history with H ≡

⋃+∞
t=0 Ht the set of public histories.8 Let A1 ≡ {H,L}

8In the simultaneous-move stage game, my results remain robust in the presence of public randomizations. In the sequential-move
stage game, one can allow for public randomizations before player 2 moves. When public randomizations happen after player 2 moves,
the attainability part of my results go through aside from the payoff upper bound in the complete information benchmark.
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and A2 ≡ {T,N}. Let σ2 : H → ∆(A2) be the buyer’s strategy. Let σ1 ≡ (σθ)θ∈Θ be the seller’s strategy,

where σθ : H → ∆(A1) is type θ’s strategy that specifies her action choice at each public history after the buyer

chooses T . A strategy σθ is stationary if it takes the same value for all ht ∈ H.

The seller’s discount factor is δ ∈ (0, 1). Let u1(θ, yt) be the seller’s stage-game payoff when her cost is θ

and the stage-game outcome is yt. Type θ seller maximizes her expected discounted average payoff, given by:

E(σθ,σ2)
[ ∞∑
t=0

(1− δ)δtu1(θ, yt)
]
, (2.2)

with E(σθ,σ2)[·] the expectation overH under the probability measure induced by (σθ, σ2).

3 Results

I present three results on a patient seller’s equilibrium payoffs and behaviors. Theorem 1 provides a tractable

formula for every type’s highest equilibrium payoff, which converges to her Stackelberg payoff when the lowest

possible cost vanishes. Theorem 2 shows that no type uses stationary strategies or completely mixed strategies

in any equilibrium that approximately attains the seller’s highest equilibrium payoff. Theorem 3 puts bounds

on the seller’s action frequencies, which apply not only to all of her equilibrium strategies but also to all of her

equilibrium best replies. The equilibrium behaviors of types that have low or even zero cost contrast with the

stationary commitment strategies in the reputation literature that prescribe the same action at every history.

3.1 Highest Equilibrium Payoff

The seller’s payoff in the incomplete information game is a vector v = (v1, v2, ..., vm) ∈ Rm, where vj is the

discounted average payoff of type θj . To ensure the robustness of my characterization against the choice of

solution concepts and the ways of taking the limit, I introduce a lower bound and an upper bound of the seller’s

equilibrium payoff set, both of which are in the set inclusion sense. Formally, let V (π0, δ) ⊂ Rm be the set of

sequential equilibrium payoffs under parameter configuration (π0, δ).9 Let clo(·) be the closure of a set and let:10

V (π0) ≡ clo
(

lim inf
δ→1

V (π0, δ)
)
. (3.1)

Similarly, let V (π0, δ) ⊂ Rm be the set of Nash equilibrium payoffs under (π0, δ). Let

V (π0) ≡ clo
(

lim sup
δ→1

V (π0, δ)
)
. (3.2)

9I adopt the notion of sequential equilibrium introduced by Pȩski (2014, page 658) for this infinitely repeated game.
10For a family of sets {Eδ}δ∈(0,1), let lim infδ→1Eδ ≡

⋃
δ′∈(0,1)

⋂
δ≥δ′ Eδ and lim supδ→1Eδ ≡

⋂
δ′∈(0,1)

⋃
δ≥δ′ Eδ .
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Payoff of Type θ1

Payoff of Type θ2

(1− θ1, 1− θ2)

(1, 1)

(1− γ∗θ1, 1− γ∗θ2)
v∗

Figure 2: When m = 2, player 1’s highest equilibrium payoff v∗ in red and her equilibrium payoff set in yellow.

By definition, V (π0) ⊂ V (π0). For every j ∈ {1, 2, ...,m}, let

v∗j ≡ (1− γ∗θj)︸ ︷︷ ︸
Type θj ’s Stackelberg payoff

1− θ1

1− γ∗θ1︸ ︷︷ ︸
incomplete-information multiplier

, (3.3)

and let v∗ ≡ (v∗1, ..., v
∗
m). Theorem 1 characterizes every type of the patient seller’s highest equilibrium payoff,

which unifies this incomplete information setting with the complete information benchmark:

Theorem 1. If π0 has full support, then

• v∗ ∈ V (π0)

• vj ≤ v∗j for every v ≡ (v1, v2, ..., vm) ∈ V (π0) and j ∈ {1, 2, ...,m}.

The proof is in Appendices A and B with an intuitive explanation in Section 4. I depict v∗ in Figure 2.

According to Theorem 1, v∗j is type θj seller’s highest equilibrium payoff when she is patient, and moreover,

the highest equilibrium payoff for all types can be attained simultaneously in some sequential equilibria. Since

other notions of the patient seller’s limiting equilibrium payoff set contain V (π0) and are contained in V (π0), v∗

provides a robust description of the seller’s highest equilibrium payoff when she is patient.

Equation (3.3) provides a tractable formula for every type’s highest equilibrium payoff, which is the product

of her Stackelberg payoff and an incomplete-information multiplier. This multiplier is strictly below 1, common

for all types, and is a sufficient statistic for the effects of incomplete information. Moreover, it depends only

on the lowest cost in the support of the buyers’ prior belief, but not on the other costs in the support and the

probability distribution. Intuitively, this is because by adopting the equilibrium strategy of type θ, the seller can

build a reputation for behaving equivalently to type θ. The prior probabilities only affect the time it takes to build
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a reputation, which has negligible payoff consequences when the seller is patient. Since the lowest-cost type is

the best one available for the other types to imitate, the presence of other costs has no significant impact either.11

An interesting observation is that the multiplier coincides with the maximal probability attached to the

Stackelberg outcome such that type θ1’s payoff is no more than 1− θ1. The latter is type θ1’s highest equilibrium

payoff under complete information. To understand this observation, I explain the two linear constraints that pin

down v∗. The first constraint is: the lowest-cost type (or type θ1) cannot receive payoff strictly higher than 1−θ1.

Intuitively, recall the result in Fudenberg, Kreps, and Maskin (1990) that in the repeated complete information

game where θ is common knowledge, the seller’s equilibrium payoff is at most 1 − θ. To see why this is true,

note that in every period where a myopic buyer plays T , the seller needs to play H with positive probability.

Therefore, playing H in every period where the buyer plays T is one of the seller’s best replies to the buyer’s

strategy, from which her payoff in every period is at most 1 − θ.12 Back to the repeated incomplete information

game, since type θ1 seller has the least temptation to renege, she has no good candidate to imitate and her highest

payoff cannot increase compared to the complete information benchmark.

The second constraint is, according to every type’s equilibrium strategy, the (discounted average) frequency

of outcome (T,H) divided by that of (T, L) is no less than γ∗/(1 − γ∗). This follows from Gossner (2011),

who shows that the buyers are able to predict the seller’s average action with high precision in all but a bounded

number of periods, and they will play N after learning that H will be played with probability less than γ∗.

Theorem 1 has several implications. First, every type aside from the lowest-cost type can strictly benefit from

incomplete information. That is, the gap between v∗j and 1 − θj does not vanish as the seller becomes patient.

This is interesting since a patient seller needs to extract information rent (that is, playing L for sure at histories

where the buyer plays T with positive probability) in unbounded number of periods in order to get a payoff

strictly greater than 1− θj . However, extracting information rent inevitably reveals information about the seller’s

type, which can undermine her ability to extract information rent in the future.

Second, the multiplier converges to 1 as θ1 vanishes to 0. That is, every type’s highest equilibrium payoff

converges to her Stackelberg payoff. This suggests that although no type is immune to reneging temptations,

every type of the long-run player can approximately attain her optimal commitment payoff when she is patient.

This is stated as Corollary 1, the proof of which is implied by that of Proposition 4.1.

Corollary 1. For every ε > 0, there exist δ ∈ (0, 1) and θ1 > 0 such that when δ > δ and θ1 < θ1, there

exists a sequential equilibrium in which type θj’s equilibrium payoff is no less than v∗∗j − ε for all j ∈ {1, ...,m}.
11This is similar to the Coasian bargaining model of Gul et al. (1986) that the informed player’s information rent depends only on the

best type she can imitate. Nevertheless, both insights rely on a private value assumption that θ does not affect the buyers’ payoffs.
12This argument breaks down in repeated incomplete information games. This is because the short-run player’s incentive to trust at ht

does not imply that any particular type of the long-run player exerts high effort with positive probability at ht. As a result, some types of
the long-run player may obtain strictly higher payoffs.
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Third, in terms of the buyers’ learning, the lowest-cost type seller fully reveals her private information for

unboundedly many times in every equilibrium where the high-cost types can extract information rent. Formally,

let H(σθ,σ2) be the set of histories that occur with positive probability under (σθ, σ2). A subset of histories H′ is

called an independent set if no pair of elements in H′ can be ranked via the predecessor-successor relationship.

This implication is stated as the following corollary, the proof of which can be found in Online Appendix B.

Corollary 2. For every N ∈ N and v = (v1, ..., vm) such that vj > 1 − θj for every j ∈ {2, ...,m}, there

exists δ such that in every Nash equilibrium that attains v when δ > δ, there exists an independent set H′ with

|H′| > N andH′ ⊂ H(σθ1 ,σ2), such that player 2’s belief attaches probability 1 to θ1 for every ht ∈ H′.

3.2 Equilibrium Behaviors under Incomplete Information

This subsection focuses on environments with nontrivial incomplete information, that is, m ≥ 2. I derive

properties of the patient seller’s behavior that are true for all Nash equilibria in which she approximately attains

her highest equilibrium payoff v∗.

As a first step, I show that in the repeated game with incomplete information, no type of the patient player

uses stationary strategies or has completely mixed best replies, no matter how low her cost is. This contrasts with

the stationary commitment strategies in the reputation literature that prescribe the same action at every history.

Theorem 2. When m ≥ 2, for every small enough ε > 0, there exists δ ∈ (0, 1), such that when δ > δ, no

type of the long-run player uses stationary strategies or completely mixed strategies in any Nash equilibrium that

attains payoff within ε of v∗.13 Moreover, no type has a completely mixed equilibrium best reply.14

The proof, which is in Online Appendix C, exploits the interplay between supermodularity and incomplete

information. For an informal illustration, suppose towards a contradiction that type θj’s best reply is to mix

whenever she is trusted. Then both playing L at every on-path history and playing H at every on-path history

are her best replies. Since low-cost types enjoy comparative advantages in playing H and vice versa, every type

with cost higher than θj plays L with probability 1 at every on-path history, and every type with cost lower than

θj plays H with probability 1 at every on-path history.15 I will argue next that none of these pure stationary

strategies are compatible with the requirement that type θj’s payoff is strictly above 1− θj for every j ≥ 2.

First, suppose there exists a type θk that plays L with probability 1 at every on-path history. According to the

result in Fudenberg and Levine (1989), if the short-run players face type θk, then they will eventually believe that
13Strategy σθ : H → ∆(A1) is completely mixed, if σθ(ht) is a completely mixed action for every ht that (1) occurs with positive

probability under the probability measure induced by (σθ, σ2), and (2) T is played with positive probability at ht according to σ2.
14The conclusion in Theorem 2 fails when m = 1. See Online Appendix E.1 for a counterexample.
15If we order the states and actions according to T � N , H � L and θ1 � θ2 � ... � θm, then the stage-game payoff satisfies a

monotone-supermodularity condition in Liu and Pei (2018). This is sufficient to guarantee the monotonicity of the sender’s strategy with
respect to her type in one-shot signalling games. I use an implication of their result on repeated signalling games (Pei 2018).

12



L is played with probability greater than 1− γ∗ in all future periods, after which they will have a strict incentive

to play N . This leaves type θk with a discounted average payoff close to 0 when δ is close to 1.

Next, suppose j ≥ 2 and types θ1 to θj−1 play H with probability 1 at every on-path history. Then after type

θj plays L for one period, she becomes the lowest-cost type in the support of the short-run players’ posterior

belief. This implies that type θj cannot extract information rent in the continuation game (Proposition B.1), in

which case her discounted average payoff cannot exceed (1 − δ) + δ(1 − θj). The latter converges to 1 − θj as

δ → 1. Since 1− θj < v∗j , it contradicts the hypothesis that type θj’s equilibrium payoff is close to v∗j .

The above argument also suggests that the conclusion of Theorem 2 remains valid for a type whose cost of

high effort is zero. This is somewhat surprising since the seller’s best reply cannot be completely mixed although

she is indifferent between high and low effort in the stage game. It also implies that every type (including the

zero cost one) faces nontrivial intertemporal incentives in all high-payoff equilibria. In another word, some of

the seller’s stage-game action choices have a nontrivial impact on the frequencies of trust in the future.

To further explore the properties of these nonstationary behaviors, I establish bounds on the seller’s action

frequencies that can be applied to all of her equilibrium best replies.

Theorem 3. For every small enough ε > 0, there exists δ such that when δ > δ, in every Nash equilibrium(
(σθ)θ∈Θ, σ2

)
that attains payoff within ε of v∗,

1. For every θ 6= θm, and for every pure-strategy best reply σ̂θ of type θ against σ2,

E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]

E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
] ≥ γ∗ − ε

1− (γ∗ − ε)
. (3.4)

2. For every θ 6= θ1, and for every pure-strategy best reply σ̂θ of type θ against σ2,16

E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]

E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
] ≤ γ∗ + ε

1− (γ∗ + ε)
. (3.5)

The proof is in Appendix C. According to Theorem 3, when the patient player’s cost is not the highest

one in the support, the relative (discounted average) frequency of high effort and low effort under each of her

pure-strategy best replies cannot be lower than γ∗/(1−γ∗). Conversely, when her cost is not the lowest one in the

16Although playing H at every history can never be type θ1’s equilibrium strategy in any high-payoff equilibrium, it can be her
equilibrium best reply in some high-payoff equilibria. Examples of this include the constructed equilibria in the proof of Theorem 1.
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support, this relative frequency under each of her pure-strategy best replies cannot be greater than γ∗/(1 − γ∗).

For every j ∈ {2, 3, ...,m − 1}, type θj long-run player’s payoff is approximately v∗j in every high-payoff

equilibrium, which together with the above bounds on the relative frequencies between (T,H) and (T, L), pin

down the frequencies of each stage-game outcome:

E(σ̂θj ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]
≈ γ∗ 1− θ1

1− γ∗θ1
, (3.6)

E(σ̂θj ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
]
≈ (1− γ∗) 1− θ1

1− γ∗θ1
(3.7)

and

E(σ̂θj ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = N}
]
≈ (1− γ∗)θ1

1− γ∗θ1
. (3.8)

Next, I explain the differences between the bounds in Theorem 3 and the following bound implied by

Fudenberg and Levine (1992)’s result, which is, under every type’s equilibrium strategy, the relative discounted

average frequency between outcome (T,H) and outcome (T, L) is no less than γ∗/(1 − γ∗). In contrast, the

lower and upper bounds in Theorem 3 apply to all pure strategies in the support of any given type’s equilibrium

strategy, not just on average. A direct implication is that they apply to all equilibrium best replies, pure or mixed.

As an illustrative example, the strategy of playing the Stackelberg action at every history satisfies the requirement

in Fudenberg and Levine (1992), but has been ruled out by Theorem 3. This is because for some pure strategies

in its support (such as playing L at every history), the frequency of L exceeds the bound in (3.4), and for others

in its support (such as playing H at every history), the frequency of L falls below the bound in (3.5).

Theorem 3 has more implications than just ruling out completely mixed best replies. For example, it sheds

light on how different types of the long-run player cherry-pick actions based on the history of play, which provides

guidance for computing those high-payoff equilibria. For the lowest-cost type, she has a strict incentive to play

H when she has already played L with occupation measure greater than the RHS of (3.7). In general, this

lower bound on the occupation measure of H helps to evaluate which of the many commitment strategies in the

canonical reputation models are more reasonable.

For types ranging from θ2 to θm−1, all of their equilibrium best replies lead to the same frequencies of actions

in the long run. The only difference between these best replies is in the timing of actions. As a result, these types

have strict incentives to play H when the occupation measure of L exceeds the RHS of (3.7) and have strict

incentives to play L when the occupation measure of H exceeds the RHS of (3.6).

Moreover, the bounds that apply to all equilibrium best replies have stronger testable implications compared

to the ones that only apply to all equilibrium strategies. This distinction is economically important since in many
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markets, researchers can only observe a few realized paths of the seller’s dynamic behavior instead of an entire

distribution of her action paths. For example, since the RHS of (3.8) is strictly increasing in θ1, a researcher can

identify the position of the seller’s cost in the cost distribution as well as bounds on θ1 as long as he knows the

value of γ∗ and can observe the frequencies of outcomes under a realized path of the long-run player’s actions.

4 Ideas Behind the Proof of Theorem 1

In subsection 4.1, I explain the necessity of the two constraints that characterize v∗. In subsection 4.2, I construct

a class of equilibria that approximately attain v∗ when the long-run player becomes patient. In subsection 4.3, I

compare the reputation dynamics in those equilibria to the ones in other models of reputation building.

4.1 Necessity of Constraints

Recall that v∗ is characterized by two linear constraints. First, the equilibrium payoff of type θ1 cannot exceed

1− θ1. Second, the ratio between the convex weight attached to (T,H) and the convex weight attached to (T, L)

is no less than γ∗/(1− γ∗) in the long-run player’s equilibrium payoff.

To understand the necessity of the first constraint, it is instructive to focus on an environment with two types.

Let σ ≡ (σθ1 , σθ2 , σ2) be a generic Nash equilibrium. Let H(σ) be the set of histories that occur with positive

probability under σ. For every ht ∈ H(σ) such that σ2(ht) attaches positive probability to T , let Θ(ht) be the

support of the short-run player’s posterior belief at ht. The long-run player’s highest action path is defined as:

σ1(ht) ≡

 H if H ∈
⋃
θ∈Θ(ht) supp

(
σθ(h

t)
)

L otherwise .
(4.1)

By definition, the short-run player has an incentive to play T at ht ∈ H(σ) only when σ1(ht) = H .

I show that type θ1’s equilibrium payoff is no more than 1 − θ1. First, suppose σ1 is type θ1’s best reply to

σ2. Since type θ1’s payoff in every period cannot exceed 1− θ1 when she plays according to σ1, her equilibrium

payoff is at most 1 − θ1. Next, suppose following σ1 is optimal for type θ1 until ht. Then we know that first,

θ2 ∈ Θ(ht), and second, type θ2’s continuation payoff at ht is no more than 1− θ2. Since the difference between

type θ1’s and type θ2’s stage-game payoffs is at most θ2 − θ1, type θ1’s continuation payoff at ht is no more than

1 − θ1. Moreover, by following σ1 until ht, which is optimal for type θ1, her stage-game payoffs from h0 to ht

cannot exceed 1− θ1. Therefore, her continuation payoff at h0 cannot exceed 1− θ1.

For the second constraint, I provide an alternative explanation based on the relative rate of reputation building

versus reputation milking. The motivation is to offer a new perspective which is complementary to the one that is

based on the canonical reputation logic (see subsection 3.1). For this purpose, I introduce an alternative version
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of the highest action path based on type θ2’s equilibrium strategy:

σθ2(ht) ≡

 H if H ∈ supp
(
σθ2(ht)

)
L otherwise.

(4.2)

By construction, σθ2 is type θ2’s best reply to σ2. If type θ2 plays according to σθ2 , then her stage-game payoff

exceeds 1 − θ2 only at histories where player 2 plays T but σθ2 prescribes L. Player 2’s incentive constraint

implies that at those histories, σθ1 needs to prescribe H with a sufficiently high probability. Let η(ht) be the

probability of type θ1 at ht, which I call reputation. The above argument implies that when type θ2 plays

according to σθ2 , she can only extract information rent at the expense of her reputation, that is, η(ht, L) < η(ht).

But nevertheless, she may rebuild her reputation in periods where σθ2 prescribes H , that is, η(ht, H) > η(ht).

Next comes the key question: suppose play proceeds according to (σθ2 , σ2), what is the maximal relative

frequency between L and H under which player 2 has an incentive to trust whenever σ2 prescribes him to do so?

The answer to this question depends on the speed with which player 1 rebuilds her reputation (by playing H),

relative to the speed with which her reputation deteriorates (by playing L). Player 2’s incentive to trust requires

H to be played with probability at least γ∗. The martingale property of beliefs bounds this relative speed from

above, namely,
η(ht, H)− η(ht)

η(ht)− η(ht, L)
≤ 1− γ∗

γ∗
. (4.3)

The above inequality suggests that the long-run player needs to play H and L with relative frequency at least

γ∗/(1−γ∗) in order to ensure that (1) the short-run players’ have incentives to trust, and (2) the long-run player’s

long-term reputation does not decline compared to the prior.

4.2 Overview of Equilibrium Construction

To approximate v∗, let v(γ) ≡
(
vj(γ)

)m
j=1

, with

vj(γ) ≡ (1− γθj)
1− θ1

1− γθ1
, (4.4)

for every j ∈ {1, 2, ...,m} and γ ∈ [γ∗, 1]. An example of v(γ) is shown in Figure 3. By definition, vj(γ∗) = v∗j

and vj(1) = 1− θj . The sufficiency part of Theorem 1 is implied by the following proposition:

Proposition 4.1. For every η ∈ (0, 1) and γ ∈ (γ∗, 1), there exists δ ∈ (0, 1), such that for every δ > δ and

π0 ∈ ∆(Θ) satisfying π0(θ1) ≥ η, there exists an equilibrium in which player 1’s payoff is v(γ).

The proof is in Appendix A. The rest of this subsection provides an overview of the ideas behind the

construction. Part I describes players’ strategies and their induced beliefs. Part II summarizes how my construction
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Payoff of Type θ1

Payoff of Type θ2

(1, 1)

(1− γ∗θ1, 1− γ∗θ2)

v(γ)

v∗

(1− θ1, 1− θ2)

Figure 3: The set of attainable payoffs in yellow and v(γ) in blue for some γ ∈ (γ∗, 1).

overcomes the aforementioned challenges, such as (1) how to ensure that the promised continuation payoffs can

be delivered in the continuation game, (2) how to provide incentives to the rational reputational type, and (3) how

to let the high-cost types extract information rent while preserving their informational advantage.

Part I: Equilibrium Strategies The equilibrium consists of three phases. Play starts from an active learning

phase, and transits to one of the two absorbing phases in finite time. Phase transitions happen either when the

long-run player has played H too many times or has played L too many times. The high-cost types extract

information rent only in the active learning phase and the long-run player’s continuation payoff in the absorbing

phase depends on her action choices in the active learning phase before transition happens. The long-run player’s

reputation is built and milked gradually. In another word, the absolute speed of learning is slow.

I keep track of the following state variables: (1) the probability with which player 2’s posterior attaches

to type θ1. I refer this as player 1’s reputation, denoted by η(ht); and (2) the remaining weights of the three

stage-game outcomes, denoted by pN (ht), pH(ht) and pL(ht). The initial values of these state variables are:

η(h0) = π0(θ1) , pN (h0) =
θ1(1− γ)

1− γθ1
, pH(h0) =

(1− θ1)γ

1− γθ1
and pL(h0) =

(1− θ1)(1− γ)

1− γθ1
.

Play starts from an active learning phase, in which player 2 plays T in every period. Since the belief process is

a martingale, each type of player 1’s mixed action at ht is pinned down by the following pair of belief-updating

formulas:

η(ht, L)− η∗ = (1− λγ∗)(η(ht)− η∗), (4.5)

η(ht, H)− η∗ = min
{

1− η∗,
(
1 + λ(1− γ∗)

)(
η(ht)− η∗

)}
, (4.6)

where η∗ is an arbitrary number between γ∗η(h0) and η(h0), and λ > 0.
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According to (4.5) and (4.6), H is played with probability at least γ∗ at history ht. This implies that player

2 has an incentive to play T . The parameter η∗ is player 1’s reputation lower bound in the active learning phase,

which is to satisfy player 2’s incentive constraint by the end of this phase (Appendix A.3). The parameter λ

measures the absolute speed of learning. When λ is small enough, it is sufficient to guarantee that player 1’s

long-term reputation is no less than her initial reputation, given that first, player 2s’ beliefs are updated according

to (4.5) and (4.6), and second, the relative frequencies with which player 1 plays H and L is at least γ∗/(1−γ∗).

This is because for every γ > γ∗, there exists λ > 0, such that for every λ ∈ (0, λ),

(
1− λγ∗

)1−γ(
1 + λ(1− γ∗)

)γ
> 1. (4.7)

The other three state variables evolve according to the realized stage-game outcomes:

py(ht, yt) ≡

 py(ht) if yt 6= y

py(ht)− (1− δ)δt if yt = y,
(4.8)

for every y, yt ∈ {N,H,L}. Intuitively, player 1 has three accounts, one for each stage-game outcome. If

outcome y is realized in period t, then her account for outcome y is deducted by (1 − δ)δt. Therefore, the

interpretation of py(ht) is the remaining credit in the account for outcome y.

Play transits to the first absorbing phase when η(ht) reaches 1, after which the continuation value of type θj

is v1(ht)
1−θj
1−θ1 for every j ∈ {1, 2, ...,m}, with

v1(ht) ≡ pH(ht)(1− θ1) + pL(ht)

pH(ht) + pL(ht) + pN (ht)
. (4.9)

The resulting payoff vector can be delivered by a convex combination of outcomes N and (T,H). Intuitively,

when type θ1 reaches the first absorbing phase, her continuation payoff equals the payoff that has been promised

to her by the end of the active learning phase. However, if another type that is not type θ1 reaches this absorbing

phase, then her continuation payoff is strictly less than what she has been promised before. This discourages her

from doing so. Such an inequality is driven by the supermodularity of stage-game payoffs, namely, a lower cost

type has a stronger preference for (T,H), and reaching the first absorbing phase leads to a higher frequency of

trust at the expense of a higher relative frequency of (T,H) to (T, L).

Play transits to the second absorbing phase when pL(ht) is less than (1 − δ)δt, or intuitively, the remaining

credit in the account for (T, L) is low enough such that playing L for another period makes it negative. In the
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simple situation where pL(ht) = 0, type θj’s continuation payoff is:

vj(h
t) ≡ pH(ht)(1− θj) + pL(ht)

pH(ht) + pL(ht) + pN (ht)
(4.10)

for every j ∈ {1, 2, ...,m}. The resulting payoff vector
(
vj(h

t)
)m
j=1

can be delivered by a convex combination

of outcomes N and (T,H). The more complicated case in which pL(ht) ∈
(
0, (1− δ)δt

)
requires the design of

a reshuffling stage, the description of which is relegated to Appendix A.

Part II: Summary of Main Ideas To start with, I introduce reputation cycles so that the long-run player can

rebuild her reputation after extracting information rent. This idea is incorporated in the design of the active

learning phase. In particular, the long-run player can flexibly choose when to build and milk reputations,

and her equilibrium reputation depends only on the number of times she has played each action in the past.

Since extracting information rent requires learning, the high-cost and low-cost types need to mix with different

probabilities. Therefore, one needs to provide them the incentive to mix at each of those histories.

These incentive issues are addressed by designing transition rules to the absorbing phases. First, if the

long-run player shirks too frequently by front-loading the play of L, then the second absorbing phase is reached

at an earlier date, after which it becomes impossible for her to extract information rents in the future. Second,

in order to deliver the high-cost types their promised continuation payoffs, one also needs to deter them from

front-loading the play of H . This is because type θ’s continuation value increases whenever she plays H at

histories where her continuation value is strictly greater than 1 − θ. If her equilibrium payoff exceeds 1 − θ

and she plays H for many consecutive periods, her continuation payoff will become so high that it cannot be

delivered in any equilibrium of the continuation game.

The first absorbing phase solves this problem by introducing an upper bound on the extent to which the

high-cost types can front-load the play of H . It screens out those high-cost types by promising a higher absolute

frequency of trust as well as a higher relative frequency between H and L compared to the active learning phase.

It ensures that at every history of the active learning phase, if the relative weight of L and H in the high-cost

types’ continuation payoffs exceeds its prior value (which is 1−γ
γ ), then the short-run player’s posterior belief

attaches higher probability to the lowest-cost type compared to his prior (Lemma A.1). Since the constraint on

front-loading the play of H is tighter when the long-run player’s initial reputation is higher, one can use the

self-generation argument similar to the one in Abreu, Pearce and Stacchetti (1990) to conclude that there exists

an equilibrium in the continuation game that can deliver the continuation payoff promised to the long-run player.

Given the above building blocks, what remains to be designed is the speed of learning in the active learning

phase. In order to maximize the long-run player’s equilibrium payoff, one needs to maximize the frequency

of outcome (T, L) while simultaneously providing incentives for the short-run players to trust. This leads to
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the role of slow learning. To understand why, first, the short-run player’s incentive to trust translates into an

upper bound on the relative rate of learning defined in (4.3). Second, fixing the relative rate of learning and

the long-run frequencies of H and L, the amount of reputation loss per period vanishes as the absolute speed of

learning goes to zero. As a result, lowering the absolute speed of learning improves the patient player’s long-term

reputation without compromising on the short-run players’ willingness to trust. This allows for an increase in the

long-run frequency of low effort without sacrificing the patient player’s long-term reputation, which can increase

the patient player’s payoff.

4.3 Comparisons on Equilibrium Dynamics

I compare the equilibrium dynamics in my model to those in reputation models with behavioral biases (Jehiel

and Samuelson 2012), models of reputation cycles (Sobel 1985, Phelan 2006, Liu 2011, Liu and Skryzpacz

2014), models with gradual learning (Benabou and Laroque 1992, Ekmekci 2011, Wiseman 2005,2012) and the

capital-theoretic models of reputations (Board and Meyer-ter-Vehn 2013, Bohren 2018, Dilmé 2018).

Analogical-Based Reasoning Equilibria: The long-run player alternates between her actions in order to

manipulate her opponents’ belief is reminiscent of the analogy-based reasoning equilibria in the reputation

model of Jehiel and Samuelson (2012). In their setting, there are multiple commitment types of the long-run

player who are playing stationary mixed strategies, and one strategic type who can flexibly choose her actions.

The short-run players mistakenly believe that the strategic long-run player is playing a stationary strategy. In

the trust game, their results imply that the strategic long-run player’s behavior experiences a reputation building

phase in which she plays H for a bounded number of periods, followed by a reputation manipulation phase

that resembles the active learning phase in my model where she alternates between H and L according to the

Stackelberg frequencies. The short-run players’ posterior belief fluctuates within a small neighborhood of the

cutoff belief, implying that the long-run player’s type is never fully revealed.

Comparing my model to theirs, there are two qualitative differences in the reputation dynamics that highlight

the distinctions between rational and analogical-based short-run players. First, the expected duration of the

reputation manipulation phase is finite in my model while it is infinite in theirs. This is driven by the constraint

that type θ1’s equilibrium payoff cannot exceed 1− θ1, which comes from the rational short-run players’ ability

to correctly predict the long-run player’s average action in every period. This constraint is absent when short-run

players use analogy-based reasoning since they can only correctly predict the average action across all periods.

Second, the short-run players learn the true state with positive probability in every high-payoff equilibrium of

my model, while in Jehiel and Samuelson (2012), the probability with which they learn the true state is zero.

This is because analogy-based short-run players’ posterior beliefs depend only on the empirical frequencies of
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Figure 4: The horizontal axis represents the timeline and the vertical axis measures the informed player’s
reputation, that is, the probability of the commitment type or lowest-cost type. Left: Reputation cycles in Phelan
(2006). Right: A sample path of the reputation cycle in my model.

the observed actions. That is to say, their beliefs are not responsive enough to each individual observation.

Reputation Building-Milking Cycles: The behavioral pattern that a patient player builds her reputation in

order to milk it in the future has been identified in commitment type models with either changing types (Phelan

2006), or limited memories (Liu 2011, Liu and Skrzypacz 2014). Two differences emerge once comparing the

reputation dynamics in my model to theirs.

First, the reputation cycles in Phelan (2006), Liu (2011) and Liu and Skrzypacz (2014) can last forever while

the expected duration of the active learning phase is finite in mine. This is driven by the constraint that the

reputational type’s equilibrium payoff cannot exceed 1 − θ1, which arises only when the reputational type is

rational and faces a strict temptation to betray.

Second and more importantly, reputations are built and milked gradually in my model while in theirs, the

agent’s reputation falls to its lower bound every time she milks it. This is because the commitment types in

their models never betray. As a result, one misbehavior reveals the long-run player’s rationality.17 In my model,

the comparison between good and bad types is not that stark since all types share the same ordinal preferences

over stage-game outcomes and have strict temptations to betray. In the long-run player’s optimal equilibrium,

the lowest-cost type betrays with positive probability for unbounded number of periods, which does not reduce

her own payoff while at the same time, covering up the other types when they are milking reputations. These

differences are depicted in Figure 4.

This feature of gradual learning is supported empirically by several studies of online markets. As documented

in Dellarocas (2006), consumers judge the quality of sellers based on their reputation scores, which are usually

obtained via averaging the ratings they have obtained in the past. In particular, one recent negative rating neither
17Similarly in Ghosh and Ray (1996), players are matched to play repeated prisoner’s dilemma, and each player has private information

about whether she is patient or myopic. In their renegotiation-proof equilibria, cheating immediately reveals a player’s myopia.
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significantly affects the amount of sales nor the prices of a reputable seller who has obtained many positive ratings

in the past. This observation is better explained by the reputation dynamics in my model.

Benabou and Laroque (1992) and Ekmekci (2011) study reputation games with commitment types and the

long-run player’s actions are imperfectly monitored. In their equilibria, learning also happens gradually since

the short-run players cannot tell the difference between intended cheating and exogenous noise. In contrast, my

model has perfect monitoring but no commitment type. Gradual learning occurs since the reputational type cheats

with positive probability. The different driving forces behind gradual learning also lead to different long-run

outcomes. In my model, the reputation building-milking cycles will stop in finite time while in theirs, reputation

cycles can last forever. This is because the rational reputational type has a strict incentive to betray. This together

with the short-run players’ incentive constraints lead to an upper bound on the reputational type’s equilibrium

payoff. Another difference is that the short-run players never fully learn the state in the models of Benabou and

Laroque (1992) and Ekmekci (2011), while in mine, the lowest-cost type fully reveals her private information at

unbounded number of on-path histories in every high-payoff equilibrium.

Capital-Theoretic Models of Reputation: Similar reputation cycles also occur in the Poisson good news

models of Board and Meyer-ter-Vehn (2013) and Dilmé (2018).18 They characterize Markov equilibria in which

the long-run player exerts effort if and only if her belief is below a cutoff. Different from my model, reputation

jumps up immediately after the arrival of good news. Moreover, the long-run player’s reputation depends only

on the most recent time of news arrival in their models while it depends on the frequencies of her past actions in

mine. These distinctions are caused by the differences in the sources of learning. In my model, learning arises

from the differences in different types’ behaviors, while in their models, all types adopt the same behavior but

face different news arrival rates. In terms of the applications, my model fits into online platforms where feedback

arrives frequently while their models fit into markets with infrequent news arrival.

5 Extensions

I examine two variants of the trust game in which the insights from my baseline model remain robust. I start from

simultaneous-move stage games and then move on to games with imperfect monitoring.

Simultaneous-Move Stage Game: Consider a simultaneous-move trust game with stage-game payoffs given

by:
18In the Poisson bad news model of those papers and in the Brownian model of Bohren (2018), the long-run player’s effort is increasing

in her reputation. These differ from my model in which the high-cost types cheat for sure when reputation is close to being perfect.
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- T N

H 1− θ, b −d(θ), 0

L 1,−c 0, 0

where b, c > 0, θ ∈ Θ ≡ {θ1, θ2, ..., θm} ⊂ (0, 1) is player 1’s persistent private information and d(θ) > 0

measures player 1’s loss when she exerts high effort while player 2 does not trust. Three interpretations of this

game are provided in Online Appendix D.

In the repeated version of this game, players’ past action choices are perfectly monitored and the public

history ht ≡ {a1,s, a2,s}t−1
s=0 consists of both players’ past action choices. Players can also have access to a

public randomization device. Other features of the game remain the same as in the baseline model.

For the results on equilibrium payoffs, recall the definition of v∗ ≡ (v∗j )
m
j=1 in (3.3). Using the idea described

in subsection 4.2, one can show that v∗ is approximately attainable as δ → 1. The constructed equilibria have the

feature that only outcomes (T,H), (T, L) and (N,L) occur with positive probability. Under a supermodularity

condition on the stage-game payoffs, namely:

0 ≤ d(θj)− d(θi) ≤ θj − θi for every j < i, (5.1)

one can show that for every j ∈ {1, 2, ...,m}, v∗j is type θj patient long-run player’s highest equilibrium payoff.

Under the supermodularity condition in (5.1), the conclusions in Theorem 2 and Theorem 3 extend to the

simultaneous-move stage game. In particular, no type of the long-run player uses a stationary strategy or has a

completely best reply in any equilibrium that approximately attains v∗. For the bounds on the long-run player’s

action frequencies that apply to all of her pure-strategy best replies, one needs to replace yt = (T,H) and

yt = (T, L) in (3.4) and (3.5) with a1,t = H and a1,t = L, respectively. The driving force behind these

results is the monotone-supermodularity of players’ stage-game payoffs, which is a sufficient condition for the

monotonicity of all equilibria in one-shot signalling games (Liu and Pei 2018). Their result implies that in every

Nash equilibrium of the repeated game, for every i > j, and compare any equilibrium best reply of type θi with

any equilibrium best reply of type θj , the discounted average frequency of H under the former must be weakly

lower compared to the discounted average frequency of H under the latter.

Stage Game with Imperfect Monitoring: Player 1 is an agent, for example a worker, a supplier or a private

contractor. In every period, a principal (player 2, for example an employer or a final good producer) is randomly

matched with the agent. The principal then decides whether to incur a fixed cost and interact with the agent

or to skip the interaction.19 The agent chooses her effort from a closed interval unbeknownst to the principal.
19Interpretations of this fixed cost includes, an upfront payment made by the final good producer to his supplier and a relationship

specific investment the principal needs to make in order to collaborate with the agent.
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The probability with which the service quality being high increases with her effort. In line with the literature on

incomplete contracts, the service quality is not contractible but is observable to the agent and all the subsequent

principals. The cost of effort is linear and the marginal cost of effort is the agent’s persistent private information.20

Players move sequentially in the stage game. Different from the baseline model, after player 2 chooses to

trust, player 1 chooses among a continuum of effort levels e ∈ [0, 1]. The quality of the output being produced is

denoted by z ∈ {G,B}, which is good (or z = G) with probability e and is bad (or z = B) with complementary

probability. The cost of effort for type θi is θie. Player 1’s benefit from her opponent’s trust is normalized to

1. Therefore, her stage-game payoff under outcome N is 0 and that under outcome (T, e) is 1 − θie. Player 2’s

payoff is 0 if he chooses N . His benefit from good output is b while his loss from bad output is c, with b, c > 0.

Therefore, player 2 is willing to trust only when player 1’s expected effort exceeds γ∗ ≡ c
b+c .

Consider the repeated version of this game in which the public history consists of player 2’s actions and

the realized output quality. In another word, player 1’s effort choice is her private information. Formally, let

a1,t, a2,t and zt be player 1’s action, player 2’s action and the realized output quality in period t, respectively.

Let ht = {a2,s, zs}t−1
s=0 ∈ Ht be a public history with H ≡

⋃+∞
t=0 Ht the set of public histories. Let ht1 =

{a1,s, a2,s, zs}t−1
s=0 ∈ Ht1 be player 1’s private history with H1 ≡

⋃+∞
t=0 Ht1 the set of private histories. Let σ2 :

H → ∆(A2) be player 2’s strategy and let σθ : H1 → ∆(A1) be type θ player 1’s strategy, with σ1 ≡ (σθ)θ∈Θ.

The above game with a continuum of effort, linear effort cost and imperfect monitoring is equivalent to the

baseline model with binary effort and perfect monitoring. To see this, choosing effort level e under imperfect

monitoring is equivalent to choosing a mixed action eH + (1 − e)L under perfect monitoring. In terms of the

results on payoffs, one can show that v∗j is type θj’s highest equilibrium payoff when she is patient, and payoff

vector v∗ is approximately attainable when δ is close to 1. In terms of behaviors, the bounds on the relative

frequencies can be applied to realized paths of public signals, namely, one needs to replace yt = (T,H) and

yt = (T, L) in (3.4) and (3.5) with (a2,t, zt) = (T,G) and (a2,t, zt) = (T,B), respectively.

6 Conclusion

This paper introduces a new approach to studying reputations, in which all types of the long-run player are

rational and have reasonable stage-game payoffs. Motivated by various applications of reputation effects, I

require all types to share the same ordinal preferences over stage-game outcomes, that is, all types are facing

strict lack-of-commitment problems. This captures, for example, the fact that most consumers are likely to

understand that firms profit from their purchases, and that providing high-quality products and making timely
20Chassang (2010) studies a game in which players face similar incentives. The main difference is that the agent’s cost of effort is

common knowledge but the set of actions that are available in each period is the agent’s private information. Tirole (1996) uses a similar
model to study the collective reputations for commercial firms and the corruption of bureaucrats.
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deliveries are costly for the firms. In contrast, a firm’s cost of providing high-quality products and making timely

deliveries tends to be its private information.

I characterize the highest equilibrium payoff for every type of the patient player in this repeated game with

incomplete information. My formula identifies a sufficient statistic for the effects of incomplete information and

helps to compute every type’s gain from persistent private information. Focusing on equilibria that approximately

attain the long-run player’s highest equilibrium payoff, I characterize the properties of her behavior that applies

not only to all of her equilibrium strategies, but also to all of her equilibrium best replies.

The implications of my results on the behavior of the lowest-cost type can be used to choose among the many

commitment strategies in the process of setting up reputation models. My results deliver behavioral predictions

that can be tested by observing a realized path of the long-run player’s actions, rather than the cross-section

distributions. I develop a tractable method to construct high-payoff equilibria which is potentially useful for

future work, both in the equilibrium analysis of dynamic markets with active learning, and in theoretical studies

of repeated games with incomplete information.

A Proof of Theorem 1: Sufficiency

In this Appendix, I provide a constructive proof to Proposition 4.1 Recall that the target payoff for type θj is:

vj(γ) ≡ (1− γθj)
1− θ1

1− γθ1
, (A.1)

and v(γ) ≡
(
vj(γ)

)
1≤j≤m. In subsection A.1, I define several variables that are key to my construction. In

subsection A.2, I describe players’ strategies and belief systems. In subsection A.3, I verify players’ incentive
constraints and the consistency of their beliefs. The proof of a result that verifies the attainability of continuation
payoffs, Lemma A.1, is relegated to Online Appendix A.

A.1 Defining the Variables

In this subsection, I define several variables that are critical for my construction. I will also specify how large δ
needs to be for every given γ ∈ (γ∗, 1) and π0(θ1).

Fixing γ ∈ (γ∗, 1), there exists a rational number n̂/k̂ ∈ (γ∗, γ) with n̂, k̂ ∈ N. Moreover, there exists an
integer j ∈ N such that

n̂

k̂
=
n̂j

k̂j
<

n̂j

k̂j − 1
< γ.

Let n ≡ n̂j and k ≡ k̂j. Let

γ̃ ≡ 1

2

(n
k

+
n

k − 1

)
, (A.2)

and
γ̂ ≡ 1

2

(n
k

+ γ∗
)
. (A.3)

Let δ1 ∈ (0, 1) to be large enough such that for every δ > δ1,

δ + δ2 + ...+ δn

δ + δ2 + ...+ δk
< γ̃ <

δk−n−1(δ + δ2 + ...+ δn)

δ + δ2 + ...+ δk−1
. (A.4)
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By construction, γ∗ < γ̂ < n
k < γ̃ < n

k−1 < γ. Let η(h0) ≡ π0(θ1), which is the probability of type θ1

according to player 2s’ prior belief. Let η∗ be an arbitrary real number satisfying:

η∗ ∈
(
γ∗η(h0), η(h0)

)
.

Let λ > 0 be small enough such that:(
1 + λ(1− γ∗)

)γ̂(
1− λγ∗

)1−γ̂
> 1. (A.5)

Given γ∗ < γ̂, the existence of such λ is implied by the Taylor’s Theorem. Let X ∈ N be a large enough integer
such that (

1 + λ(1− γ∗)
)X−1

>
1− η∗

η(h0)− η∗
. (A.6)

Let
Y ≡ 1

2

(
γ − (1− γ)

γ̃

1− γ̃

)
︸ ︷︷ ︸

>0

1− θ1

1− γθ1
, (A.7)

which is strictly positive. Let δ2 ∈ (0, 1) be large enough such that for every δ > δ2,

Y > max
{

1− δX , 1− δ
1− γ

}
and

δ − θ1

1− θ1
>

1− δ
1− γ

. (A.8)

The existence of such δ2 is implied by γ̃ < γ.
Let δ ≡ max{δ1, δ2}, which will be referred to as the cutoff discount factor. Let vL, vH and vN ∈ Rm be

player 1’s payoff vectors from stage-game outcomes (T, L), (T,H) andN , respectively. The target payoff vector
v(γ) can be written as the following convex combination of vL, vH and vN :

v(γ) =
θ1(1− γ)

1− γθ1︸ ︷︷ ︸
≡pN

vN +
(1− θ1)γ

1− γθ1︸ ︷︷ ︸
≡pH

vH +
(1− θ1)(1− γ)

1− γθ1︸ ︷︷ ︸
≡pL

vL, (A.9)

with pN , pH and pL being the convex weights of outcomes N , H and L, respectively.
Importantly, for every δ that meets the above requirements under η(h0), it also meets all the requirements

under every η′(h0) ≥ η(h0). This is because the required X decreases with η(h0), so an increase in η(h0) only
slackens inequality (A.8) while having no impact on the other requirements.

A.2 Three-Phase Equilibrium

In this subsection, I describe players’ strategies and player 2s’ belief system. Players’ sequential rationality
constraints and the consistency of their beliefs are verified in the next step. To simplify the exposition, the
construction is performed when players have access to a public randomization device in the beginning of each
period. Since actions can be perfectly monitored, the public randomization device can be dispensed according to
the arguments in Fudenberg and Maskin (1991).

Every type other than type θ1 follows the same strategy, which is called high-cost types, while type θ1 is
called the low-cost type. Let η(ht) be the probability player 2s’ posterior belief at ht attaches to type θ1. Recall
the definition of η∗, which I will refer to as the belief lower bound. Let

∆(ht) ≡ η(ht)− η∗, (A.10)

which is the gap between player 2s’ posterior belief and the belief lower bound.
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State Variables: The equilibrium keeps track of the following set of state variables: ∆(ht) as well as py(ht)
for y ∈ {N,H,L} such that

py(h0) = py and py(ht+1) ≡
{
py(ht) if ht 6= (ht, y)
py(ht)− (1− δ)δt if ht = (ht, y).

(A.11)

Intuitively, py(ht) is the remaining occupation measure of outcome y at history ht, while py(h0)− py(ht) is the
occupation measure of y from period 0 to t− 1. Player 1’s continuation value at ht is

v(ht) ≡ δ−t
∑

y∈{N,H,L}

py(ht)vy. (A.12)

Equilibrium Phases: The constructed equilibrium consists of three phases: an active learning phase, an
absorbing phase and a reshuffling phase.

Play starts from the active learning phase, in which player 2 always plays T . Every type of player 1’s mixed
action at every history can be uniquely pinned down by player 2’s belief updating process:

∆(ht, L) = (1− λγ∗)∆(ht) and ∆(ht, H) = min
{

1− η∗,
(

1 + λ(1− γ∗)
)

∆(ht)
}
. (A.13)

Since η(h0) > η∗, we know that ∆(ht) > 0 for every ht in the active learning phase.
Play transits to the absorbing phase permanently when ∆(ht) reaches 1 − η∗ for the first time. Recall that

v(ht) ∈ Rm is player 1’s continuation value at ht. Let vi(ht) be the projection of v(ht) on the i-th dimension.
After reaching the absorbing phase, player 2s’ learning stops and the continuation outcome is either (T,H) in
all subsequent periods or N in all subsequent periods, depending on the realization of a public randomization
device, with the probability of (T,H) being v1(ht)/(1− θ1).

Play transits to the reshuffling phase at ht if ∆(ht) < 1− η∗ and pL(ht) ∈ [0, (1− δ)δt).

1. If pL(ht) = 0, then the continuation play starting from ht randomizes between N and (T,H), depending
on the realization of the public randomization device, with the probability of (T,H) being v1(ht)

1−θ1 .

2. If pL(ht) ∈ (0, (1 − δ)δt), then the continuation payoff vector can be written as a convex combination of
vH , vN and

(1− δ)vL + Q̃vH + (δ − Q̃)vN , (A.14)

for some
Q̃ ∈

[
min{Y, δ − θ1

1− θ1
}, δ − θ1

1− θ1

]
and Y being defined in (A.7). I will show in the next subsection that Q̃ indeed belongs to this range for
every history reaching the reshuffling phase.

If player 1’s realized continuation value at ht takes the form in (A.14), then player 2 plays T at ht, type θ1

player 1 plays H for sure while other types mix between H and L with the same probabilities (could be
degenerate) such that:

∆(ht, L) = −η∗ and ∆(ht, H) =

{
∆(h0) if ∆(ht) ≤ ∆(h0)
∆(ht) if ∆(ht) > ∆(h0).

(A.15)

If player 2 observes L at ht, then he attaches probability 0 to type θ1 and player 1’s continuation value is

δ−1Q̃vH + δ−1(δ − Q̃)vN , (A.16)

which can be delivered by randomizing between outcomes (T,H) and N , with probabilities δ−1Q̃ and
1− δ−1Q̃, respectively.
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If player 2 observes H at ht, then he attaches probability ∆(ht, H) + η∗ to type θ1 and player 1’s
continuation value is:

1− δ
δ

vL +
Q̃− (1− δ)

δ
vH +

δ − Q̃
δ

vN , (A.17)

which can be written as a convex combination of vN and

v
(

1− 1− δ
Q̃

)
. (A.18)

According to (A.8) and the range of Q̃,

γ < 1− 1− δ
Q̃

< 1, (A.19)

which implies that (A.18) can further be written as a convex combination of vH and v(γ).

If the continuation value is vH or vN , then the on-path outcome is (T,H) in every subsequent period or
is N in every subsequent period. If the continuation value is v(γ), then play switches back to the active
learning phase with belief max{∆(h0),∆(ht)}, which is no less than ∆(h0).

A.3 Verifying Constraints

In this subsection, I verify that the strategy profile and the belief system indeed constitute a sequential equilibrium
by verifying players’ sequential rationality constraints and the consistency of beliefs. This consists of two parts.
In Part I, I verify player 2’s incentive constraints. In Part II, I verify the range of Q̃ in Subsection A.2. In
particular, at every history of the active learning phase or reshuffling phase, the ratio between the occupation
measure of H and the occupation measure of L must exceed some cutoff.

Part I: Player 2’s incentive constraints consist of two parts: the active learning phase and the reshuffling phase.
If play remains in the active learning phase at ht, then (A.13) implies that the unconditional probability with
which H being played is at least γ∗, implying that player 2 has an incentive to play T . If play reaches the
reshuffling phase at ht and at this history, player 1 is playing a nontrivially mixed action, then according to
(A.15) and the requirement that η∗ > γ∗η(h0), the unconditional probability with which H is played is at least
γ∗. This verifies player 2’s incentives to play T .

Part II: In this part, I establish bounds on player 1’s continuation value at every history in the active learning
phase or in the beginning of the reshuffling phase. In particular, I establish a lower bound on the ratio between
the convex weight of H and the convex weight of L at such histories, or equivalently, a lower bound on the
depleted occupation measure of H and the depleted occupation measure of L. Recall the definitions of n and k
in Subsection A.1. The conclusion is summarized in the following Lemma:

Lemma A.1. If δ > δ and T ≥ 2k + X , then for every hT = (y0, ..., yT−1), if play remains in the active
learning phase for every ht � hT , then

(1− δ)
T−1∑
t=0

δt1{yt = (T,H)}︸ ︷︷ ︸
depleted weight of H

− (1− δX)︸ ︷︷ ︸
weight of initial X periods

≤ (1− δ)
T−1∑
t=0

δt1{yt = (T, L)}︸ ︷︷ ︸
depleted weight of L

· γ̃

1− γ̃
. (A.20)

Lemma A.1 implies that when play first reaches the reshuffling phase, the remaining occupation measure of
H is at least Q̃. This implies that player 1’s continuation value after reshuffling also attaches sufficiently high
convex weight on vH compared to the convex weight of vL. Adapting the self-generation arguments in Abreu,
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Pearce and Stacchetti (1990) to an environment with persistent private information, one can conclude that payoff
vector v(γ) is attainable in sequential equilibrium when δ > δ.

The proof is in Online Appendix A. The challenge is: we need to establish a bound on the discounted number
of periods with which the long-run player plays L relative to H while the constraints leading to this bound is
expressed in terms of the absolute number of periods. In particular, notice that on one hand, player 2’s belief,
measured by η(ht), depends on the number of periods with which H and L are being played. On the other
hand, player 1’s continuation value, summarized by pH(ht) and pL(ht), depend on the discounted number of the
periods with which H and L are being played. The translations between the above two constraints are difficult,
even when δ is arbitrarily close to 1. This is because the occupation measure of the active learning phase is
strictly positive even in the δ → 1 limit. Therefore, the discounted value of a period in the beginning of the active
learning phase and that by the end is significantly different.

B Proof of Theorem 1: Necessity

In this Appendix, I establish the necessity of the two linear constraints that characterize the highest equilibrium
payoff vector v∗. In subsection B.1, I establish a payoff upper bound for the lowest-cost type that uniformly
applies across all discount factors. In subsection B.2, I establish a payoff upper bound for other types that applies
in the δ → 1 limit. To accommodate applications where players move simultaneously, I prove the result under
the following simultaneous-move stage game:

θ = θi T N

H 1− θi, b −d(θi), 0

L 1,−c 0, 0

I assume that d(θi) ≥ 0 for every θi ∈ Θ and |θi − θj | ≥ |d(θi) − d(θj)| for every i < j. In another word,
the stage-game payoffs are monotone-supermodular according to Liu and Pei (2018). The proof consists of two
parts that establish the necessity of the two linear constraints characterizing v∗, respectively.

B.1 Necessity of Constraint One: Payoff Upper Bound for Type θ1

I show that type θ1’s payoff in any Bayesian Nash equilibrium is no more than 1 − θ1. This holds not only
when player 2 is myopic, but also applies whenever her discount factor δ2 is strictly less than c

b+c . I establish
the general version of this result by allowing for player 2 to be forward-looking, as well as player 2’s prior belief
attaches zero probability to some types of player 1.

Given strategy profile σ ≡
(

(σθ)θ∈Θ, σ2

)
, let Hσ be the set of histories that occur with positive probability

under σ. For every ht ∈ Hσ, let Θσ(ht) be the set of types in support of player 2’s posterior belief at ht, which
is nonempty and can be derived from Bayes Rule. I show the following result:

Proposition B.1. Suppose δ2 ∈ [0, c
b+c). For every Bayesian Nash equilibrium σ and every ht ∈ Hσ, if θi is

the smallest type in Θσ(ht), then type θi’s continuation payoff at ht is no more than 1− θi.

Proof. It is sufficient to show that for every prior belief π ∈ ∆(Θ), not necessarily have full support, the lowest
type in the support of π, denoted by θ, receives payoff at most 1− θ at h0. I show this by induction on |Θσ(h0)|,
the number of types in the support of player 2’s prior belief. The proof consists of three steps:

1. I show that when δ2 <
c
b+c , if player 2 plays T with positive probability at an on-path history, then there

exists some type in the support of player 2’s posterior belief (at that history) who plays H with strictly
positive probability at that history.

2. I show the result when |Θσ(h0)| = 1.21

21Notice that |Θσ(h0)| = 1 is not equivalent to the game has complete information. Given that the solution concept is Bayesian Nash
Equilibrium, player 2’s posterior belief at off-path histories can attach positive probability to multiple types.
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3. Suppose the result holds when |Θσ(h0)| ≤ n, I establish the conclusion for |Θσ(h0)| = n+ 1.

Step 1: Rank player 1’s actions according to H � L. Given strategy profile σ and history ht ∈ Hσ, let

aσ1 (ht) ≡ max
{ ⋃
θ∈Θσ(ht)

supp
(
σθ(h

t)
)}

(B.1)

be the highest action played by player 1 with positive probability at ht. I show the following lemma, which makes
use of the upper bound on player 2’s discount factor.

Lemma B.1. Suppose δ2 ∈ [0, c
b+c). For every Bayesian Nash equilibrium σ and ht ∈ Hσ, σ2(ht) assigns

positive probability to T only if aσ1 (ht) = H .

Proof of Lemma: Suppose toward a contradiction that σ2(ht) assigns positive probability to T but aσ1 (ht) = L.
Player 2’s maximal payoff by playing T at ht is:

(1− δ2)(−c)︸ ︷︷ ︸
P2’s stage-game payoff under (T, L)

+ δ2b︸︷︷︸
P2’s maximal continuation payoff

,

which is strictly lower than 0, that she can obtain by playing N in all subsequent histories given that δ2 <
c
b+c .

This leads to a contradiction.

Step 2: I show that when |Θσ(h0)| = 1, the only type in the support of player 2’s prior belief, denoted by θi,
receives payoff no more than 1 − θi. This also implies that for every equilibrium σ and for every ht ∈ Hσ, if
|Θσ(ht)| = {θi}, then type θi’s continuation payoff at ht cannot exceed 1− θi.

This is because Θσ(h0) = {θi} implies that |Θσ(ht)| = {θi} for every ht ∈ Hσ. Therefore, aσ1 (ht) is played
by type θi with positive probability at every ht ∈ Hσ. Given type θi’s equilibrium strategy σθi , the following
strategy σ̃θi : H → ∆(A1), defined as:

σ̃θi(h
t) ≡

{
aσ1 (ht) if ht ∈ Hσ
σθi(h

t) otherwise.
(B.2)

also best replies against player 2’s equilibrium strategy σ2, from which type θi receives his equilibrium payoff. If
type θi plays according to σ̃θi against σ2, then Lemma 1 implies that the outcome at every history inHσ is either
(T,H) or (N,H) or (N,L). Therefore, type θi’s stage-game payoff at every history inHσ cannot exceed 1− θi,
so his discounted average payoff cannot exceed 1− θi.

Step 3: I show that if the result holds when |Θσ(h0)| ≤ n, then it also holds when |Θσ(h0)| = n+ 1. I define
Hσt for every t ∈ N recursively. LetHσ0 ≡ {h0}. Given the definition ofHσt , let

Hσt+1 ≡ {ht+1 ∈ Hσ|∃ht ∈ Hσt s.t. ht+1 � ht and aσ1 (ht) ∈ ht+1},

and let Hσ ≡
⋃∞
t=0H

σ
t . Recall that θi is the smallest type in the support of player 2’s belief. Given type θi’s

equilibrium strategy σθi , let σ̂θi : H → ∆(A1) be defined as:

σ̂θi(h
t) ≡

{
aσ1 (ht) if ht ∈ Hσ and aσ1 (ht) ∈ supp

(
σθi(h

t)
)

σθi(h
t) otherwise.

(B.3)

By construction, σ̂θi is type θi’s best reply against σ2. LetH(σ̂θi ,σ2) be the set of histories that occur with positive
probability under (σ̂θi , σ2). Let

Hσ,θi ≡
{
ht ∈ Hσ

∣∣∣θi ∈ Θσ(ht) and aσ1 (ht) /∈ supp
(
σθi(h

t)
)}
.
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Intuitively, ht ∈ Hσ,θi if and only if first, at every hs ≺ ht, type θi plays aσ1 (hs) with positive probability; and
second, at ht, type θi plays aσ1 (ht) with zero probability.

Consider type θi’s payoff if he plays σ̂θi and player 2 plays σ2. For any given ht ∈ H(σ̂θi ,σ2),

1. If there does not exist hs � ht such that hs ∈ Hσ,θi , then Lemma 1 implies that type θi’s payoff at ht and
at all on-path histories preceding ht is no more than 1− θi.

2. If there exists hs � ht such that hs ∈ Hσ,θi , then I show below that type θi’s continuation payoff at hs is
no more than 1− θi.

First, since hs ∈ Hσ,θi , after player 2 observes aσ1 (hs) at hs, θi is no longer in the support of player 2’s
posterior belief. Therefore, for every hs+1 � hs with aσ1 (hs) being played at hs, there exist at most n
types in the support of player 2’s posterior belief at hs+1. Let θj be the lowest type in the support of this
posterior belief. Since θi is the lowest type in the support of player 2’s prior belief, we have θj > θi.

By induction hypothesis, type θj’s continuation payoff after playing aσ1 (hs) at hs is no more than 1 − θj .
Moreover, according to Lemma 1, type θj’s stage-game payoff by playing aσ1 (hs) at hs is also no more
than 1− θj . This implies that his continuation payoff at hs is at most 1− θj .
Therefore, type θj’s continuation payoff by deviating to σ̂θi starting from hs is no more than 1− θj . Since
θi < θj , and the maximal difference between type θi and θj’s stage-game payoff is θj − θi, we know that
type θi’s continuation payoff at hs under σ̂θi is no more than 1− θi.

The two parts together imply that type θi’s equilibrium payoff is no more than 1− θi when |Θσ(h0)| = n+ 1.

B.2 Necessity of Constraint Two: Maximal Relative Frequency Between L and H

Suppose towards a contradiction that there exists v = (v1, ..., vm) ∈ V (π0) and j ∈ {1, 2, ...,m} such that
vj > vj(γ

∗). Then given the constraint established in the first part that v1 ≤ 1− θ1, we know that j > 1. Under
the probability measure overH induced by (σθj , σ2), let X(σθj ,σ2) be the occupation measure of outcome (T,H)

and let Y (σθj ,σ2) be the occupation measure of outcome (T, L). Since vj > vj(γ
∗), we have:

X
(σθj ,σ2)

Y
(σθj ,σ2)

<
γ∗

1− γ∗
. (B.4)

Let the value of the left-hand-side be γ
1−γ for some γ ∈ [0, γ∗).

For every hτ ∈ H, let σθj (h
τ ) ∈ ∆(A1) be the (mixed) action prescribed by σθj at hτ and let α1(·|hτ ) be

player 2’s expected action of player 1’s at hτ . Let d(·‖·) be the Kullback-Leibler divergence between two action
distributions. Suppose player 1 plays according to σθj , the result in Gossner (2011) implies that:

E(σθj ,σ2)
[ +∞∑
τ=0

d(σθj (h
τ )||α1(·|hτ ))

]
≤ − log π0(θj). (B.5)

This implies that for every ε > 0, the expected number of periods such that d(σθj (h
τ )||α1(·|hτ )) > ε is no more

than

T (ε) ≡
⌈− log π0(θj)

ε

⌉
. (B.6)

Let
ε ≡ d

(γ + 2γ∗

3
H + (1− γ + 2γ∗

3
)L
∥∥∥γ∗H + (1− γ∗)L

)
, (B.7)
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and let δ be large enough such that:

X
(σθj ,σ2)

Y
(σθj ,σ2) − (1− δT (ε))

<
2γ + γ∗

3− 2γ − γ∗
. (B.8)

According to (B.5) and (B.6), if type θj plays according to her equilibrium strategy, then there are at most T (ε)
periods in which player 2’s expectation over player 1’s action differs from σθj by more than ε. According to
(B.7), aside from T (ε) periods, player 2 will trust player 1 at ht only when σθj (h

t) assigns probability at least
γ+2γ∗

3 to H . Therefore, under the probability measure induced by (σθj , σ2), the occupation measure with which
player 2 trusts player 1 is at most:

(1− δT (ε))︸ ︷︷ ︸
periods in which player 2’s prediction is wrong

+
(
X

(σθj ,σ2)
+ Y

(σθj ,σ2) − (1− δT (ε))
)2γ + γ∗

γ + 2γ∗︸ ︷︷ ︸
maximal frequency with which player 2 trusts after he learns

, (B.9)

which is strictly less than X(σθj ,σ2)
+ Y

(σθj ,σ2) when δ is close enough to 1, leading to a contradiction.

C Proof of Theorem 3

Statement 1: Suppose there exists type θi 6= θm and a pure strategy σ̂θi that is type θi’s best reply to σ2, such
that

E(σ̂θi ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]

E(σ̂θi ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
] =

γi
1− γi

(C.1)

for some γi < γ∗. Let pi be the discounted average frequency with which player 2 plays T under (σ̂θi , σ2).
Let σ̂θm be an arbitrary pure-strategy best reply of type θm against σ2. Let pm be the discounted average

frequency with which player 2 plays T under (σ̂θm , σ2) and let γm be pinned down via:

E(σ̂θm ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]

E(σ̂θm ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
] =

γm
1− γm

. (C.2)

The long-run player’s ex ante incentive constraints, namely, first, type θi prefers σ̂θi to σ̂θm , and second, type θm
prefers σ̂θm to σ̂θi imply that pi ≥ pm and γi ≥ γm. This further implies that according to type θm’s equilibrium
strategy σθm ,

E(σθm ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]

E(σθm ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
] ≤ γi

1− γi
,

or equivalently,

γiE(σθm ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
]
− (1− γi)E(σθm ,σ2)

[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]
> 0. (C.3)
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Since type θm’s payoff from σθm is at least v∗m− ε, which is strictly greater than 1− θm when ε is small enough.
This places a lower bound on pm. If type θm plays according to σθm , then the learning arguments in Fudenberg
and Levine (1992) and Gossner (2011) imply that for every ε > 0, there exists δ such that when δ > δ,

γ∗E(σθm ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
]
− (1− γ∗)E(σθm ,σ2)

[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]
< ε. (C.4)

This contradicts (C.3) once we pick ε to be small enough, which establishes the lower bound on the relative
frequencies of actions.

Statement 2: Suppose towards a contradiction that according to one of type θ ( 6= θ1)’s pure-strategy best reply
to σ2, denoted by σ̂θ,

E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]

E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
] =

γ

1− γ
(C.5)

where γ > γ∗. Let

p ≡ E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T,H)}
]

+ E(σ̂θ,σ2)
[ ∞∑
t=0

(1− δ)δt1{yt = (T, L)}
]
.

If type θ1 plays according to σ̂θ, her payoff is p(1− γθ1). According to Theorem 1,

p(1− γθ1) ≤ 1− θ1. (C.6)

If type θ plays according to σ̂θ, she receives her equilibrium payoff, which is p(1− γθ). The equilibrium payoff
is within ε of v∗ implies that:

p(1− γθ) ≥ 1− θ1

1− γ∗θ1
(1− γ∗θ)− ε. (C.7)

Inequalities (C.6) and (C.7) together imply that:

ε > (1− θ1)
{ 1− γ∗θ

1− γ∗θ1
− 1− γθ

1− γθ1

}
. (C.8)

The RHS is strictly positive since γ > γ∗ and θ > θ1. As a result, inequality (C.8) cannot hold for ε smaller than
the RHS. For every γ > γ∗, take ε to be smaller than

min
θ 6=θ1

(1− θ1)
{ 1− γ∗θ

1− γ∗θ1
− 1− γθ

1− γθ1

}
,

we obtain a contradiction. This establishes the upper bound on the relative frequencies.
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