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Abstract

Being able to assess conflict risk at local level is crucial for preventing political violence or

mitigating its consequences. This paper develops a new methodological approach for measur-

ing violence risk across space and time that improves the prediction of future conflict events.

Violence is modeled as a stochastic process with an unknown underlying distribution. Each

conflict event observed on the ground is interpreted as a random realization of this process

and its underlying distribution is estimated using kernel density estimation methods in a

three-dimensional space. The optimal smoothing parameters are estimated to maximize the

likelihood of future conflict events. An illustration of the practical gains (in terms of out-of-

sample forecasting performance) of this new methodology compared to standard space-time

autoregressive models is shown using data from Ivory Coast.
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1 Introduction

Violent conflicts are serious humanitarian and economic threats in many developing countries.1

Preventing political violence or mitigating its consequences for local populations is a daunting

challenge that requires an efficient allocation of scarce resources in peace keeping missions, hu-

manitarian aid, and other development projects. Anticipation of when and where violence is likely

to occur is key for these types of operations and there is a growing demand for reliable tools for

conflict forecasting from countries, non-governmental organizations (NGOs) and international

organizations such as the United Nations (UN) and the World Bank (O’brien, 2010).

At local level, violence history is one of the most relevant and easily available sources of

information for assessing violence risk (Bazzi et al., 2019; Hegre et al., 2019). This is mostly due

to the persistence of violence over time and its diffusion in space through contagion. Data on

other risk factors is either time invariant (terrain, geographic location, etc.) or rarely available

in conflict-prone areas because they lack the stability and resources to produce them.

Using information on the timing and location of conflict events, this paper develops a new

approach for measuring violence risk that can improve conflict prediction at local level. It models

violence as a space-time point process with an unknown underlying distribution that has two

main characteristics.2 First, the occurrence of an event increases the likelihood that another

event occurs in the same area. Second, violence can spread through the local environment via

contagion.3 The density of the underlying violence process is backed out of the observed pattern

of conflict events. To do so, each event observed on the ground is interpreted as a random

realization of the underlying process. Its density is estimated using kernel density estimation

methods (Li and Racine, 2007; Silverman, 1986) in which the optimal smoothing parameters can

be estimated to maximize the likelihood of occurrence of future events.

The basic principle behind this approach is that each event has its own contribution to the

overall density at a given location. This contribution is given by a trivariate Gaussian kernel

function. It is highest at the exact location of the event and fades out as we move away from

1More than 3/4 of countries in sub-Saharan Africa have experienced civil war since 1960 (Gleditsch et al., 2002)
and the Internal Displacement Monitoring Centre estimated that more than 2 million people were newly displaced
in Africa during the first six months of 2017 alone due to conflict.

2A space-time point process is a collection of random variables where each point represents the time and location
of an event (Diggle, 2013). They have been used in the literature to model events such as crime, disease incidence,
or the occurrences of natural disasters (fires, earthquakes, lightning strikes, tsunamis, etc.).

3An illustration of the first case is when battles between organized actors trigger waves of retaliatory or follow-
up violence in a given area. For the second case, troops repeatedly attack clusters of nearby targets. This may
happen because local vulnerabilities are well-known to them. Moreover, armed combatants can easily migrate from
one area to another and violence in a given city can disrupt regional economic stability.
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it in space or time. The dispersion of the kernel mass is controlled by a matrix of smoothing

parameters. The density at a given point in space and time is obtained by summing up all

the contributions. The estimated density is proportional to the statistical risk of violence in

this framework. The performance of this new approach can therefore be evaluated based on its

ability to predict future violence. The choice of the optimal smoothing parameters is crucial in

this kernel density estimation approach. This paper also proposes a new bandwidth selection

approach in which the optimal smoothing parameters are chosen to maximize the likelihood of

future events.4

This simple density estimation approach allows for the use of all the information on the

exact timing and location of conflict events when measuring violence risk. It also takes into

account higher moments of the underlying violence process, such as its variance/dispersion. This

is not feasible with the standard space-time autoregressive approach used so far in the literature

to exploit conflict history data (Bazzi et al., 2019; Hegre et al., 2019; Weidmann and Ward,

2010). This approach consists indeed in slicing a given window of interest (country or region

in a given time period) into space-time units.5 Events that occur in each unit are counted and

used to run space-time autoregressive regressions. The information on the exact timing and

location of conflict events is therefore aggregated at a certain level leading to a potential loss

of valuable data.6 Moreover, this approach only uses distance to neighboring events (first order

moment of violence process) to measure risk at a given location. The kernel density estimation

approach imposes instead some desirable structure on the extent to which the risk generated

by each event spreads in space and time. It assumes that this risk fades out at an exponential

rate following a Gaussian kernel function. The dispersion of the kernel mass is estimated to

maximize the likelihood of future events which gives flatter kernel functions for processes with

higher dispersion. This framework allows one to run conflict prediction equations equivalent to

the space-time autoregressive models but with just one regressor at the right hand side in which

we can feed the exact timing and location of past events. The entire pattern of violence observed

until time t is therefore used to measure the statistical risk of future violence in a single index.

An illustration of the practical gains, in terms of out-of-sample prediction performance, of

the new methodology proposed here compared to space-time autoregressive models is shown us-

4The goal in modeling space-time processes is often to predict the risk of an incident occurring in a given area.
Being able to target the prediction of future events when choosing the degree of smoothing to apply to the data is
therefore a substantial advancement for space-time kernel density estimation methods in general.

5The spatial dimension of the units can be administrative subdivisions or geographical cell grids and the temporal
dimension can be monthly, quarterly, yearly, etc.

6In the space-time autoregressive approach, one has to use coarse space-time units and limited lags to reduce
the number of regressors in order to improve out-of-sample forecasting performance.
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ing data from Ivory Coast. This country has experienced a relatively low-intensity but highly

disruptive conflict between 2002 and 2011 that opposed the sitting government at the time to

rebel groups that were powerful enough to control half of the country for a long period of time.

Most of the conflict events that happened during the two civil wars in Ivory Coast were clashes

between well organized armed groups.7 This paper shows that kernel density approach system-

atically outperforms the standard space-time autoregressive models in out-of-sample prediction

of violence. This gain is still present even in the prediction of violence onset at local level. This

suggests that the gain in forecasting power does not only come from the persistence of violence

over time in conflict affected areas. It also comes from its diffusion across space. The results are

robust to several alternative data and model specifications.

Beyond its ability to make better conflict predictions based on violence history data, the

methodology proposed here to measure violence risk is general and can be useful for several other

purposes. In particular, it provides a new metric of violence risk that goes beyond the incidence

of conflict events in a given space-time window. This is crucial because economic agents often

change their consumption/production behavior in reaction to violence risk even before or without

any manifestation of violence around them. The kernel density estimation method can therefore

provide a better measure of exposure to the adverse effects of conflict. Based on this intuition,

Tapsoba (2018) uses this method to show that insecurity in conflict-prone areas can lead to major

health setbacks for young children even in absence of immediate violence around them.

The kernel density approach also has the advantage of modeling violence in an agnostic way

in the sense that it tries to capture variations in the density of the equilibrium violence process

without making any claim on the mechanisms behind it. Whether violence occurs in a given

space-time window because of terrain, presence of natural resources, negative income shocks,

propagation of heinous rhetoric, etc., it always mobilizes actors and resources (at local level)

that can be used to perpetrate future attacks in the same area or in neighboring locations. The

clustering of events in space and time is an indication of high violence risk irrespective of what

is the initial source of this violence.

This paper is related to 3 main strands of literature. First, it is related to the conflict

prediction literature. This literature has made significant progress in assessing violence risk at

7Civil wars that oppose organized armed groups are more likely to diffuse in space and time by escalation or
relocation (Schutte and Weidmann, 2011) and the method proposed here is able to capture such diffusion. Even
in cases of one-sided violence and mass repression such as the Rwandan genocide, Yanagizawa-Drott (2014) shows
that "heinous" radio broadcasts increased militia violence directly by influencing behavior in villages with radio
reception but also indirectly by increasing participation in violence in neighboring villages. He also shows that
only 10 percent of the total violence could be attributed to radio.
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country level, with recent contributions that use text analysis of newspaper content to predict civil

wars (Mueller and Rauh, 2016; Chadefaux, 2014). At local level, this literature has relied heavily

on the diffusion of violence across space and over time to forecast future violence. Weidmann

and Ward (2010) use, for instance, spatial and temporal autoregressive models to predict conflict

in Bosnia. Hegre et al. (2019) use an ensemble model to predict conflict at disaggregated level

in Africa. A substantial part of their prediction power comes from violence history data that

they also exploit using space-time autoregressive models. Bazzi et al. (2019) use a wide range of

machine learning techniques and hundreds of annual risk factors to predict violence in Colombia

and Indonesia. Their models are able to identify persistent, high-violence hot spots but not

variations of violence risk over time.8 The new approach used in this paper models violence

as a stochastic process in space and time in order to aggregate conflict history data into a

single index that captures variations in violence risk. This new approach outperforms (in terms

of out-of-sample prediction) the standard space-time autoregressive approach used in all the

papers mentionned above. It is therefore a better way of incorporating violence history data into

ensemble models such as those developed in Bazzi et al. (2019) and Hegre et al. (2019).

This paper also belongs to a small but growing literature in both Economics and Political

Science that focuses on understanding how (and why) violence spreads across space and time.

There is evidence that violent events are clustered in space and time (Townsley et al., 2008;

Schutte and Weidmann, 2011). Using the case of Northern Ireland, Mueller et al. (2017) show

that distance between attackers and targets of attacks is a cost that can explain the distribution

of violent events. Another diffusion mechanism explored in this literature is the feasibility (or

sustainability) of rebellions and insurgencies. Berman et al. (2017) show that a rise in world price

of specific minerals leads to more violence around the mining areas of these minerals and more

attacks perpetrated by the armed groups that control them. Yanagizawa-Drott (2014) also shows

that radio broadcast played an important role in the diffusion of violence during the genocide in

Rwanda. The new approach proposed in this paper to measure violence risk is complementary to

these studies in the sense that it uses data on the realizations of conflict events to estimate the

density of the underlying violence generating process. This underlying process is an equilibrium

state that could have been generated by any combination of the mechanisms studied in this

literature. Irrespective of the mechanism behind, violence begets violence that often persists over

time or spreads across space so conflict history is able to inform us on future risk.

8Other attempts of violence forecasting at sub-national level include Blair et al. (2017), Chiba and Gleditsch
(2017) and Witmer et al. (2017).
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Finally, this paper is related to the literature on the cost of conflict, specially at micro level.

Standard approach in this literature consists in counting the number of events in a given space-

time window to define exposure to the adverse effects of conflict (Dagnelie et al., 2018; Akresh et

al., 2016; Leon, 2012). The few papers that look beyond the incidence of violence include Besley

and Mueller (2012) that uses a Markov switching process over time to model violence in Northern

Ireland; Rockmore (2017) that uses self-reported data on perceived risk in Uganda; and Arias

et al. (2014) that uses data on presence of armed groups in Colombia. The new methodology

proposed here can be used to capture violence risk beyond the incidence of conflict events in order

to estimate correctly the cost of insecurity on households and firms. Its main advantage compared

to the approaches used in the other papers is that it provides a measure of the statistical risk of

violence and relies solely on the observed pattern of events in space and time.

The remainder of the paper is organized as follows. The next section points out the limits of

the standard approach used so far to measure violence risk in the literature. Section 3 presents

the new methodological approach proposed here to measure violence risk across space and time.

Section 4 discusses an application to conflict prediction in Ivory Coast. Section 5 concludes.

2 Limits of Standard Space-Time Autoregressive Approach

Violence history is one of the most relevant sources of information for predicting future violence

(Bazzi et al., 2019; Hegre et al., 2019). Standard conflict event datasets such as ACLED (Armed

Conflict Location and Event Dataset (Raleigh et al., 2010)) and UCDP-GED (Sundberg and

Melander, 2013) provide information on exact timing and location of different conflict events.

The standard space-time autoregressive approach used so far in the literature is not able to fully

account for all the information contained in such detailed violence history data. This approach

consists indeed of splitting the area considered into space-time windows of a given size in order

to run a regression with spatial and temporal lags as regressors following Equation 1.9

Yi,t+1 =
K∑

k=0

Q∑
q=0

α
(t−q)
k YNk(i),t−q + η + εi,t+1, (1)

9The space windows can be administrative units or geographic cells of a certain size and time window can be
monthly, quarterly or yearly. The size of the space-time window is usually hand-picked.
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where Nk(i), t− q is the neighborhood order k of cell i at period t− q, Yi,t+1 is dummy equal 1

if cell i experiences a conflict event at period t+ 1.10

Ideally, one could split the area of interest into very fine space-time windows to account for all

the information on the exact timing and location of conflict events. However, this will increase

substantially the number of regressors in the spatio-temporal autoregressive model. It leads

at best to an overfitting of the regression model which translates into very poor out-of-sample

forecasting performance.11 An other alternative is to run a LASSO (Least Absolute Shrinkage

and Selection Operator) regression to reduce the number of lags to include in the prediction

regression, but this leads to a mechanical exclusion of some lags without any improvement in

out-of-sample performance specially with fined-grained space-time windows.12

The second limitation of the standard approach is that it relies only on distance in space and

time to different conflict events to capture the risk of occurrence of future events. It is not able

to account for higher moments of the violence process such as the dispersion of conflict events

or the trajectory of the process in space. The new approach proposed in this paper allows us to

deal with these limitations of the existing methods by modeling violence as a stochastic process

across space and time.13

3 Estimation of Violence Risk in Space and Time: Kernel Den-

sity Estimation Approach

In order to predict conflict events in space and time, we need a way to quantify violence risk

at the local level. To do this, I model the observed conflict events as random realizations of

an underlying process that can be backed out of the violence pattern, and used to predict the

likelihood of future events. In this section, I show how non-parametric density estimation methods

can be used for this purpose.

Non-parametric density estimation methods have been initially used in the literature to as-

10Spatio-temporal autoregressive models like the ones in Harari and Ferrara (2018) are special cases of the one
shown here. They are used in spatial econometrics to estimate the impact of a given regressor (climate shocks in
Harari and Ferrara (2018)) on a dependent variable (violence) accounting for the spatial and temporal correlation
in both the dependent variable and the variable of interest. This method uses spatial and temporal filters to remove
the spatial and temporal autoregressive terms in the corresponding regression equation.

11In extreme cases we can end up with more regressors than observations which is not feasible in the standard
regression framework.

12LASSO model is a logistic regression model that penalizes large coefficients and forces all but the most impor-
tant ones to zero.

13This paper tries to predict violence at t+1 given information at hand at the end of period t. This is the reason
why there is no spatial lag variables at t + 1 in Equation 1. The Kernel density estimation approach also uses the
same information set.
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sess basic characteristics of an unknown distribution such as skewness, tail behavior, number,

location and shape of modes (Silverman, 1986). Nowadays, they play a major role in machine

learning, classification and clustering.14 They are popular methods in crime literature for hotspot

mapping and in seismology literature for seismic hazard estimation. They can also be used (like

in this paper) as input for more sophisticated analysis. DiNardo et al. (1996) used kernel density

estimation method to build counter-factual densities in order to study the effects of institutional

and labor market factors on changes in the U.S. distribution of wages in the 80s. Kernel density

estimation methods have also been extensively used in poverty analysis to measure poverty from

grouped data (mean incomes of a small number of population quantiles) through the estima-

tion of the underlying global income distribution (Sala-i-Martin, 2006; Minoiu and Reddy, 2014;

Sala-i-Martin, 2002).

3.1 Principle of Kernel Density Estimation (KDE)

Let’s assume violence process X has an unknown probability density function (pdf) f . Density

estimation consists of constructing an estimate of f based on a representative sample of random

realizations {x1, ..., xn} of X.

Let’s begin with the simple case of a continuous, univariate random variable X.15 Each ob-

served event has its own contribution to the density at a given location x. This contribution is

given by a kernel Gaussian function k ∼ N (0, h).16 The value of the kernel function is highest

at the exact location of the data point, and fades out at an exponential rate as we move away

from it. The density estimate at x is obtained by summing up all the contributions according to

Equation 2. Closer events have higher contributions to the density and clustered events generate

peaks corresponding to the modes of the underlying density function as shown in Figure 1.

f̂(x) = 1
nh

n∑
i=1

k
(x− xi

h

)
(2)

14For instance, some clustering methods are based on bump hunting, i.e., locating the modes in the density
and Bayes classifiers are based on density ratios that can be implemented via density estimation. Applications
of density estimation in machine learning and classification are discussed in more depth in the books of Izenman
(2008) and Hastie et al. (2009).

15To estimate violence risk across space and time, an extension to 3 dimensions (latitude, longitude and time)
is shown below.

16The bandwidth is the most crucial choice to make in KDE because it controls the degree of smoothing applied to
the data. The kernel form is only responsible for the regularity of the resulting estimate (continuity, differentiability)
and Gaussian kernels give estimated density function that has derivatives of all orders (Silverman, 1986).
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Figure 1: Aggregation of Individual Kernels in KDE
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Notes: Kernel density estimation with 4 data points (in green). The Red Gaussian functions are individual kernels aggregated
to get the density estimate in black.

3.2 Generalization to More Than One Dimension

The univariate kernel density estimation can easily be extended to the multivariate case. The

estimated density is given by

f̂(x̄) =
n∑

i=1

1
n | H |

K
(
H−1(x̄i − x̄)

)
,

where x̄i and x̄ are d-dimensional vectors, H is a dxd symmetric matrix of parameters to be

estimated and K is a multivariate kernel function.

To measure conflict risk in space and time, we need to consider 3 dimensions: latitude,

longitude and time. I assume independence between each of the 3 dimensions because of the

relatively small number of conflict events given the estimation space. I also follow the space-time

kernel density estimation literature and assume that latitude and longitude dimensions have the

same smoothing parameter hs. The matrix of smoothing parameters H is therefore parametrized

in the most simplistic way possible as follows:17

H =


hs 0 0

0 hs 0

0 0 ht

 .

The density at a given point x̄ = (x, y, t) in space and time is therefore given by:

17See Appendix C for a discussion on the role of off-diagonal elements of the matrix H.
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f̂(x, y, t) = 1
nh2

sht

n∑
i=1

k
(x− xi

hs

)
k
(y − yi

hs

)
k
( t− ti

ht

)
,

where n is the number of events that occurred before time t. The value of this function reflects

the likelihood of an incident occurring around location (x, y) at time t. Space-time kernel density

estimation of this type have been used to study patterns of forest fire (Tonini et al., 2017), crime

(Brunsdon et al., 2007; Nakaya and Yano, 2010), occurence of disease (Eaglin et al., 2017), etc.

Choice of Smoothing Parameters and Violence Prediction

Kernel Density Estimation method imposes some structure in the contribution of each conflict

event to violence risk. The space-time smoothing parameters control the dispersion of the kernel

mass. The choice of the smoothing parameters h (for space or time) is crucial in this method.

Small values of h reduce the bias by putting all the mass just around each data point and the

density estimate displays spurious variations in the data. When h is too big, each individual

kernel becomes flatter and important details in the distribution can be obscured (see Appendix

Section A for an illustration).

For the purpose of predicting future conflict events, the optimal smoothing parameters can be

chosen to minimize Mean Integrated Square Error in a 2-stage approach, following the existing

literature, or to directly maximize the likelihood of future events across space following a new

approach developed in this paper.

The 2-Stage Approach

In the 2-stage approach, the optimal smoothing parameters are estimated by minimizing the

Mean Integrated Squared Error (MISE)

MISE(H) =
∫

[f̂(x̄, H)− f(x̄)]2dx̄

=
∫
f̂(x̄, H)2dx̄− 2

∫
f̂(x̄, H)f(x̄)dx̄+

∫
f(x̄)2dx̄,

where f̂(x̄, H) is the kernel density estimate and f(x̄) is the unknown density.

MISE(H) can be evaluated and minimized without knowing explicitly f(x̄) by using a boot-

strap method (Taylor, 1989) as described in Section B of the appendix.

The density of the violence process (risk measure) is then estimated, using the optimal smooth-

ing parameters, for each location (i, t) in space and time as follows:
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Riski,t ∝
∑

j∈H(t)
K
(
(H)−1(x̄j − x̄i)

)
, (3)

where H(t) is the set of events that happened up till time t. The estimated risk can then be used

to predict future events:

Yi,t+1 = αRiski,t + η + εi,t+1. (4)

The Direct Approach

A more intuitive approach is to estimate the optimal smoothing parameters directly by maxi-

mizing the likelihood of future events across space. To do so, I use a latent variable representation

of violence risk in a logit framework. The latent violence state Y ∗ is given by:

Y ∗ = γ
∑

j∈H(t)
K
(
(H)−1(x̄j − x̄)

)
+ η + ε, ε ∼ F (.),

where F (.) follows standard logistic distribution. We observe violence only if latent risk is high

enough: Y = 1⇔ Y ∗ > 0

The probability of occurrence of an event in a given space-time window is:

P [Yi,t+1 = 1|H(t)] = P
[
ε > −γ

∑
j∈H(t)

K
(
(H)−1(x̄i − x̄)

)
− η

]
.

The log-likelihood of observed sample of events is:

L(H, η, γ) =
∑
i,t

Yitln
(
P [Yi,t = 1|H(t− 1)]

)
+ (1− Yit)ln

(
P [Yi,t = 0|H(t− 1)]

)
.

The optimal smoothing parameters are therefore estimated to maximize the likelihood of

future events in the data. This new method turns the kernel density estimation approach into

a "logit-like" estimation in which we can feed all the events from the violence history with their

exact timing and location without any issue of dimensionality. It also maximizes the prediction

power of the kernel density estimation approach compared to choosing the smoothing parameters

based on the minimization of MISE(H).

The dispersion of the observed sample of events is a feature of the underlying density, so

minimizing theMISE(H) (or maximizing the likelihood of future events) leads to larger optimal
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smoothing parameters for samples with more dispersion. The smoothing parameter is indeed

an increasing function of the sample variance.18 This is illustrated (for 1 dimension) in Figure

2 where both panels show individual kernels and density estimates from 4 data points at equal

distance from a given location x = 10. There is less dispersion in the event data in panel A

compared to panel B and location x should be more at risk in B than A. The kernel density

estimation is able to distinguish these two cases when estimating them as two separate processes.

The standard approach is not able to distinguish these two situations because it relies only on

distance to neighboring events.

Figure 2: Fixed KDE and Sample Variance in Separate Processes
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3.3 Discussion and Comparison With Standard Approach

The KDE approach proposed in this section imposes some structure in the way in which each

event contributes to the likelihood of future events. This very simple approach allows us to use

all the information on exact timing and location of conflict events by shrinking them into a single

indicator of risk for conflict prediction.

The choice of the smoothing parameters controls the speed at which the contribution of

each individual event to the risk fades out. The data-driven methods used here to choose these

18In the particular case of the underlying pdf being normally distributed, one can show that the optimal smooth-
ing parameter hopt is actually proportional to sample variance Silverman (1986).
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parameters ensure that higher moments of violence process such as the dispersion of conflict

events are used in the estimation of the risk. In particular, the idea of choosing KDE bandwidth

by maximizing the likelihood of future events can be useful for other applications that use space-

time kernel density estimation approach.

Finally, the KDE approach is also less sensitive to measurement errors in the conflict event

data. It only requires, for instance, a representative sample of random realizations of the under-

lying process unlike the standard approach that requires an exhaustive list of events. Moreover,

isolated events or coding errors in the timing or location of few events in the conflict data will

still translate into low violence risk with the KDE approach. In this approach, it is only the

aggregation of contributions from several nearby events that can lead to substantial increase in

violence risk.

The KDE approach presented here assumes that all the conflict events are equivalent, irre-

spective of their nature (violence against civilians, battle between armed groups, etc.) or their

human toll (number of casualties).19 With a large enough sample, one can split conflict events

into the relevant sub-categories and estimate different smoothing parameters for each of them in

the direct approach. Events that generate high number of fatalities, for instance, could therefore

have smaller or larger smoothing parameters compared to low intensity events.20 Similarly, events

that happen across country or regional borders could also have different smoothing parameters

if there are enough conflict events to estimate them.

4 Application: Conflict Prediction in Ivory Coast

4.1 Background and Data

Ivory Coast is a previous French colony that enjoyed a prolonged period of economic growth since

its independence in 1960 until 1990. Political instability has been sparked by the power struggle

following the death of the country’s first president, Felix Houphouet-Boigny, in 1993. The Interim

President, Henri Konan Bedie, in order to secure a win in the 1995 elections, changed the electoral

code to exclude his rival and former Prime Minister, Alassane Dramane Ouattara, from running

based on his status of son of a migrant. The 1995 election was then boycotted by the other

19A possible interpretation of the assumption that conflict events are equivalent, irrespective of their human toll,
is that the timing and location of events are determined by the underlying violence process but the number of
casualties that they could each generate is random and does not affect how risk spreads in space and time.

20The smoothing parameters control the dispersion of kernel mass. Smaller values mean that most of the mass
is concentrated around the data point and larger values mean the mass is more spread. Whether events with high
death toll should have smaller or larger smoothing parameters is an empirical issue.
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opposition leaders in protest against this discrimination and Bedie was elected with 96% of the

votes.

In July 1999, Alassane Ouattara, left his job at the International Monetary Fund and returned

to run for the 2000 presidential elections. His plan to challenge Bedie again split the country

along ethnic and religious lines based on their own origins which determined their electoral basis.

This political turmoil gave a pretext to a group of army soldiers to intervene and overthrow Bedie

by a coup in December 1999. Robert Guei, an army officer was chosen to lead a transition to new

elections and restore the order. New elections took place in October 2000, but Alassane Ouattara

was still excluded from the electoral process because of not being "Ivorian enough". General Guei

proclaimed himself president after announcing he had won the presidential elections, but was

forced to flee in the wake of a popular uprising and was replaced by his challenger Laurent

Gbagbo. Fighting erupted between President Gbagbo’s mainly southern Christian supporters

and followers of his main opponent Alassane Ouattara, who were mostly Muslims from the north.

Tensions lasted for almost a year before both challengers agreed to work towards reconciliation

in March 2001.

This fragile reconciliation process was disrupted in September 2002 when a mutiny in Abidjan

grew into a full-scale rebellion with Ivory Coast Patriotic Movement rebels seizing control of the

north. French interposition troops were sent to limit the clashes between the two armies as shown

in Figure A1 but intense battles between the two sides took place until March 2003 when the first

peace agreement was signed and rebels made their entry into the government. Many other peace

talks were held as actors were resuming clashes at one point or another during the implementations

of the different peace agreements. This went on until March 2007 when a power sharing deal was

signed. Under this deal, Guillaume Soro, leader of the rebel group, was made Prime Minister of

Ivory Coast and the new government was put in charge of preparing the elections that would end

the crisis and restore a stable constitutional order. The elections after being postponed twice were

finally held in December 2010 but led to another crisis. The electoral commission declared Mr

Ouattara the winner of presidential election run-off. Mr Gbagbo refused to accept these results

and the dispute between the two camps soon escalated into extremely violent clashes until the

capture of Gbagbo in April 2011 after the loyalist army has been defeated by the rebels backed

by French troops under UN mandate.
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Figure 3: Distribution of Violent Events in Ivory Coast Between 1997 and 2012
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Conflict Event Data

To locate violence in space and time, I use information from ACLED on the exact timing (day)

and location (latitude and longitude) of conflict events that happened in the country. These

events are obtained from various sources, including press accounts from regional and local news,

humanitarian agencies or research publications during the conflict. ACLED records all political

violence, including battle between armed groups, violence against civilians, rioting and protesting.

I focus on war-related events: battles, explosions/remote violence and violence against civilians.

I also only keep all the events recorded with geographical precision at municipality level or lower

(more than 90 percent of all the events). Duplicates (same location and time) are eliminated to

have a list of different days and location with at least one conflict event.

Figure 3a shows the number of recorded events per month across the whole country. We can

see that the recorded events are consistent with the timing described in the preceding paragraphs

with some violence peaks after the 2000 elections, during the first months following the start of

the first civil war in 2002 and the second civil war following the 2010 elections. Fewer events

were recorded during the negotiations period until the comprehensive power sharing treaty was

signed in 2007. The spatial distribution of the events is also shown in Figure 3b. One can see

that conflict incidents are mostly clustered in the central and western parts of the country.
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4.2 Out-of-Sample Prediction and Performance Metrics

The sample of conflict events is split between training and evaluation sets. The training set uses

data from 1997 to 2005 to estimate parameters of the different models discussed in this paper.

To run space-time autoregressive models, I use PRIO-GRID cells (Tollefsen et al., 2012) for Ivory

Coast. PRIO-GRID is a vector grid network with a resolution of 0.5 x 0.5 decimal degrees (

around 50 x 50 kilometers), covering all terrestrial areas of the world. For a country such as

Ivory Coast, it provides a full grid of the entire country divided in sub-national units. The

temporal frequency considered is monthly. From the centroid of each PRIO-GRID cell, I define

spatial lag variables by drawing several rings of increasing radius around. I then count the number

of events that occur between ring k − 1 and rink k for a given month.21 This approach allows

for more flexibility in defining the size of the spatial lags to use in the space-time autoregessive

method.22

The outcome variable in each model is a dummy variable Yi,t+1 equal 1 if there is at least one

conflict event that happenned in cell grid i during month t. Each model also uses violence history

data up till month t to predict violence next period. In the space-time autoregressive models, I

use violence history data of events that happened within 200 kilometers from the centroid of cell

i up to 2 years before time t. I also use events that happen in the same space-time window to

compute the risk estimate for each cell Yi,t in the KDE approach in order to properly compare

the two methods.

Figure 4 shows the share of conflict affected cells per year-month. More than 20 percent of

the 111 PRIO cells in Ivory coast were affected by a conflict event during violence peaks in 2002

and 2011. There are also few months with no violent event in the whole country and substantial

variation in the share of conflict-affected cells between these two extremes.

Prediction power of each model is evaluated out-of-sample using receiver operating charac-

teristic (ROC) curves with data from 2006 till 2011. These curves plot the tradeoff between true

and false positive rates in conflict prediction for a given model. The area under the curve, or

AUC, captures the probability that a randomly chosen pair of observations is correctly ordered

21First spatial lag corresponds to events that occur between 50km and 60km (70 kilometers) if we consider a lag
frequency of 10 kilometers (20 kilometers) for instance.

22The standard approach in the literature is to consider the 50 x 50 kilometers cell grids and their first and
second degree neighbors for instance. This is equivalent to drawing rings of 50, 100 and 150 kilometers. First
degree neighborhood corresponds to area between 50 and 100 kilometers, second degree neighborhood corresponds
to area between 100 and 150 kilometers.
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Figure 4: Share of PRIO Cells With at Least One Conflict Event
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in terms of predicted risk of violence. A model that performs no better than chance would have

an AUC of 0.5 (45 degree line in ROC curve) while a perfect model would have an AUC of 1: a

true positive rate of 1 at a false positive rate of 0.23

4.3 Violence Forecasting at Local Level

Figure 5a shows that the "direct" (or 1-stage) approach in the KDE method has an AUC of

0.82 which is slightly higher than the AUC of the "2-stage" approach (0.80). The KDE methods

strictly outperform the spatio-temporal autoregressive approach which gives an AUC of 0.69. At

a false positive rate (FPR) of 25 percent both KDE methods reach a true positive rate (TPR)

of about 75 percent versus 60 percent for the spatio-temporal autoregressive method. At a false

positive rate of 50 percent, the gap widens even more. Figure 5b shows that using finer lags in

space does not improve out-of-sample performance of the space-time autoregressive model.24

To check whether the gain in prediction power comes mostly from persistence of violence in

conflict affected cells over time, I also compare the performance of the different methods in the

prediction of violence onset. This is to rule out the concern that all the forecasting gain shown

previously could be coming from situations in which conflict cell x month windows are following

each other. Figure 6a and 6b show performance in prediction of violence onset at local level. In

Figure 6a, onset is defined as the occurrence of a conflict event after at least 3 months without

violence in a given grid cell and in Figure 6b after 6 months. They both show that predicting

onset as opposed to incidence is harder in general but KDE methods still outperform substantially

23An AUC of 1 means that all conflict windows (space and time) are predicted without raising any false alarms.
24I also show in appendix Figure A3 that using the number of events in each space-time lag rather than a dummy

variable does not improve prediction power of the standard model.
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Figure 5: ROC Curves for Out-Of-Sample Violence Prediction from 2006 to 2012
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(b) Spatio-temporal Autoregressive Approach

Figure 6: ROC Curves for Out-Of-Sample Violence Onset Prediction from 2006 to 2012
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(b) 6 Months Onset

the standard approach with AUC improving by up to 0.15. This suggests that KDE approach is

not just tapping into the persistent effect of violence in time but also its diffusion in space.

Figure 7 shows out-of-sample forecasting power after controlling for cell fixed effect. The

space-time autoregressive model now performs less while the KDE approach performs almost

equally as before. At a false positive rate of 25 percent, the gap between the two approaches is

now of 20 percent (as opposed to 12 percent before). This suggests that a larger part of variation
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in the predicted conflict risk using the autoregressive model is explained by the fixed effect.

Figure 7: ROC Curves for Out-Of-Sample Violence Prediction Using Cell Fixed Effects
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5 Conclusion

This paper introduced a new way of exploiting violence history information to measure conflict

risk at local level. Violence is modeled as a stochastic process with an unknown underlying

distribution that is backed out of the observed pattern of conflict events using kernel density

estimation methods. A new method for estimating the optimal smoothing parameters is also

proposed.

This new approach allows us to use all the information on the exact timing and location of

conflict events without any issue of dimensionality in prediction equations. It also uses higher

moments of the violence process to estimate risk compared to standard space-time autoregressive

models. An application of this approach to conflict prediction in Ivory Coast shows that it

outperforms (in terms of out-of-sample prediction) the standard space-time autoregressive models.

This gain in performance is substantial even when predicting violence onset at local level.

The kernel density estimation approach can be used in combination with other sources of

information to build reliable early warning systems for governments, NGOs and international

organizations that intervene in conflict-prone areas. Ensemble models like those proposed in

Bazzi et al. (2019) and Hegre et al. (2019) could be improved by using the proposed methodology

to model the violence history component of such models.

The new methodology developed here also opens the doors for revisiting some of the findings in

the conflict cost literature. Insecurity in conflict-prone areas often triggers changes in economic
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behavior even in absence of immediate violence. With the new method proposed here, one

can easily build a new metric of exposure to the adverse effects of conflict. The integral of

the estimated density of the underlying process over a given space-time window gives indeed a

measure of the likelihood of occurrence of a conflict event in this window. This metric captures

violence risk beyond the incidence of conflict events. The statistical risk of violence risk can

be high in space-time windows with no conflict event and conversely, it can be low in windows

with isolated events. If we assume that beliefs of economic agents on the ground are driven by

the underlying violence process, this methods provides better way of defining treatment when

estimating the cost of insecurity in conflict-prone areas.
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Appendix

Figure A1: Partition of Ivory Coast during Conflict

A Importance of the Smoothing Parameter in KDE

To illustrate the importance of the smoothing parameter h in KDE, I draw 500 data points from

a bi-modal distribution given by a mixture of 2 normal distributions with means 5 and 15 and

standard deviation 3. The underlying distribution is shown in panel (a) of Figure A4. Panel (b)

shows the estimated density with a small and large smoothing parameter h. The first graph still

shows some spurious variations from the data while the second one over-smooths the distribution

to the extent of almost not reflecting its bi-modal nature.
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Figure A2: Spatial Distribution of Events in Ivory Coast by Year
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Figure A3: ROC Curves With Space-Time Lags: 50km by Month
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Figure A4: The Role of the Smoothing Parameter
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(b) KDE with small and large bandwidth

B Bootstrap

The idea of using bootstrap resampling to choose a smoothing bandwidth has been introduced

by (Taylor, 1989). The bootstrap approach is used in conjunction with the MISE(h) as a

target criterion. The basic idea is to construct a "reference" density estimate of the data at

hand, repeatedly simulate data from that reference density, and calculate the empirical integrated

squared error at each iteration; doing so at different bandwidths. The bandwidth that minimises

the bootstrap-estimated MISE is taken as the optimal value.

• Select a pilot bandwidth g and compute estimator f̂g of f

• Draw bootstrap samples X∗1 , ..., X∗J from f̂g
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• Compute the bootstrap version of the MISE and minimise it over h:

J−1
J∑

j=1

∫
[f̂h(y|X∗j )− fg(y|X)]2dy

• Set new pilot bandwidth to the value h0 that minimizes the MISE and iterate untill it

converges

C Parametrization of H

Given the relatively small number of realizations of the violence process in Ivory Coast compared

to the estimation space (entire country for over 15 years), I parametrize H in the most simplistic

way possible. I only consider one smoothing parameter hs for both latitude and longitude and

another smoothing parameter ht for time.

In multivariate kernel density estimation, the parametrization of the matrix of smoothing

parameters H is crucial. Diagonal elements correspond to the smoothing parameter with respect

to each dimension and off diagonal elements capture the trajectory of the process. The violence

process could spread more on one dimension (latitude) rather than the other (longitude). Setting

off-diagonal parameters to zero implies that the process spreads in symetric way along both axis.

In theory the trajectory/symmetry of the violence process in space can also play an important

role. To illustrate that, let’s ignore time dimension and consider a 2 dimensional violence process

that follows a bivariate normal distribution.x
y

 ∼ N


 0

0

 ,
 4 7

7 16




Figure A5 shows the contour plots of the underlying density. I draw sample N=200 from

this distribution and compare performance of kernel density estimation when allowing for full

parametrization of matrix H or not.

Figure A6 shows that allowing for a full parametrization of H fits better the true density

compared to the restricted parametrization. It also implies that everything else equal, locations

that are on the trajectory of the violence process will have higher density estimate.
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Figure A5: Density countour plot of bivariate normal distribution
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Figure A6: Contour plot KDE with full and diagonal matrix H
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