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Data envelopment analysis (DEA) and free disposal hull (FDH) estimators are
widely used to estimate efficiencies of production units. In applications, both ef-
ficiency scores for individual units as well as average efficiency scores are typically
reported. While several bootstrap methods have been developed for making infer-
ence about the efficiencies of individual units, until now no methods have existed
for making inference about mean efficiency levels. This paper shows that standard
central limit theorems do not apply in the case of means of DEA or FDH efficiency
scores due to the bias of the individual scores, which is of larger order than ei-
ther the variance or covariances among individual scores. The main difficulty comes
from the fact that such statistics depend on efficiency estimators evaluated at random
points. Here, new central limit theorems are developed for means of DEA and FDH
scores, and their efficacy for inference about mean efficiency levels is examined via
Monte Carlo experiments.

1. INTRODUCTION

Nonparametric envelopment estimators are widely used to measure producers’
performances. These estimators are based on estimators of the attainable set ob-
tained by “enveloping” the observed cloud of points given by a sample of ob-
served input and output levels of firms. Among estimators that have appeared in
the literature, those that envelop the observed input–output combinations with a
convex set are known as data envelopment analysis (DEA) estimators, while those
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that do not impose convexity are known as free-disposal hull (FDH) estimators.1

The statistical properties of these estimators evaluated at a single, fixed point, in-
cluding their asymptotic distributions and rates of convergence, are well known;
see Simar and Wilson (2013) for a recent survey.

Sample means of efficiency estimates are frequently used to summarize results,
especially when sample sizes are large. In applications where producers are cat-
egorized into two or more groups, one may wish to compare mean efficiency
across the groups. For example, in hospital studies, one might want to compare
mean efficiencies among for-profit and nonprofit hospitals; in studies of banks or
hospitals, one might want to compare mean efficiency across quartiles, quintiles,
or deciles of total assets (in the case of banks) or total beds (in the case of hos-
pitals). One might also want to test hypotheses about returns to scale, convexity
of the production set, etc., or in dynamic settings, to characterize changes in pro-
ductivity, efficiency, technology, etc. Obvious statistics one might use to do so
often consist of sample means of efficiency estimates or means of differences in
efficiency estimates.

To date, little is known about the statistical properties of sample means of effi-
ciency estimators. A good deal is now known about the asymptotic properties of
DEA and FDH estimators of efficiency for a fixed point (e.g., see Kneip, Park, and
Simar, 1998; Kneip, Simar, and Wilson, 2008; Park, Jeong, and Simar, 2010; Park,
Simar, and Weiner, 2000), and bootstrap methods are now available for making
inference about the efficiency of a single fixed point (e.g., see Kneip et al., 2008;
Simar and Wilson, 2011a), but no such results or methods are available for sample
means of efficiency estimators. This is a serious problem for practitioners in view
of the uses of sample means listed above.

This paper derives new results on the properties of sample means of nonpara-
metric efficiency estimators. The problem is complicated because the estimators
are biased, and in the case of sample means, the efficiency estimators are com-
puted at random points. Hence the results existing to date are not helpful. The
results presented below establish that existing central limit theorems (e.g., the
Lindeberg–Feller theorem) cannot be used for inference about population means
except in a few special cases where the number of dimensions is quite small.
New theorems are given establishing properties of moments of nonparametric
efficiency estimators. The proofs are complicated due to the fact that there is a
support boundary, i.e., a frontier, which affects the rate of convergence for points
lying near the frontier.

The results in these theorems are then used to establish new central limit theo-
rems that confirm that whenever the number of dimensions exceeds a small num-
ber (depending on the particular estimator that is used), ordinary sample means
of efficiency estimators will have limiting distributions involving unknown bias,
or will be degenerate in the sense that variance tends to zero as sample size tends
to infinity. The results are then used to fix this problem, providing several ap-
proaches to inference about (population) mean efficiency. A new central limit
theorem is provided, involving a jackknife estimate of bias. In addition, a new,
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rescaled estimator of mean efficiency is given along with a corresponding cen-
tral limit theorem. This result allows construction of confidence intervals with
asymptotically correct coverage. Finally, a simple trick allows recentering of these
confidence intervals to obtain confidence intervals of the same width, but with
improved coverage.

Although the results in this paper are interesting and useful in their own right,
they are needed also to develop tests of more complicated hypotheses such as
returns to scale, convexity of the production set, productivity change and its com-
ponents (i.e., changes in efficiency, technology, etc.). In addition, if one wishes to
compare distributions of efficiency, one might do so by comparing nonparametric
kernel estimates of densities of efficiency estimates, and the results we derived
below will be useful in this endeavor since kernel density estimates involve sam-
ple means, in this case of functionals of estimated efficiencies. Similar remarks
hold for tests of stochastic dominance.2 As will be seen below, derivation of prop-
erties of sample means of nonparametric efficiency estimators is arguably enough
complication for one paper; we defer use of the results obtained below to develop
other tests for subsequent papers.

The next section introduces the nonparametric efficiency estimators, estab-
lishes some notation, and describes the main problem. Section 3 gives the results
on moments of the efficiency estimators when evaluated at random data points
(as opposed to the results obtained by Kneip et al., 1998, 2008; Park et al., 2000
for fixed points). In Section 4, these results are used to establish results permit-
ting inference about (population) mean efficiency. The results are then extended
in Section 5 to two-stage problems, where estimated efficiencies are regressed on
some covariates. This problem has been examined in Simar and Wilson (2007,
2011b), but here some new results and strategies for inference are provided.
Simulation results are given in Section 6, followed by some concluding remarks
in Section 7.

2. DEA AND FDH ESTIMATORS OF TECHNICAL EFFICIENCY

Consider a production process where input quantities x ∈Rp
+ are transformed into

output quantities y ∈ Rq
+. The production set

� = {(x, y) ∈ Rp+q
+ | x can produce y} (2.1)

is the set of feasible combinations of inputs and outputs. The technology, or effi-
cient frontier of �, is defined by

�∂ =
{
(x, y) ∈ � |

(
γ −1x,γ y

)
�∈ � for all γ > 1

}
. (2.2)

The Farrell (1957) input-oriented measure of technical efficiency is given by

θ(x, y) = inf{θ > 0 | (θx, y) ∈ �}. (2.3)
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By construction, θ(x, y) ∈ (0,1] for all (x, y) ∈ �. This measure gives the feasi-
ble, proportionate reduction in input levels, holding output levels constant, for a
firm operating at (x, y) ∈ �. If θ(x, y) = 1, the firm is said to be technically effi-
cient in the input direction, while if θ(x, y) < 1, the firm is said to be technically
inefficient.

Similar measures can be defined to measure technical efficiency in the out-
put direction, in a hyperbolic direction, or in an arbitrary, linear direction toward
the frontier; see Färe, Grosskopf, and Lovell (1985), Chambers, Chung, and Färe
(1996), Simar and Wilson (2000), Wilson (2011), Simar and Vanhems (2012), and
Simar, Vanhems, and Wilson (2012) for details. For simplicity, the analysis below
is presented only in terms of the input-oriented measure defined in (2.3); how-
ever, all of the results can be extended to the other directions after straightforward
changes in notation.

Standard assumptions regarding the production set � (e.g., Shephard, 1970;
Färe, 1988; Simar and Wilson, 2000; and others) include the following.

Assumption 2.1. � is closed, and �∂ exists.

Assumption 2.2. Both inputs and outputs are strongly disposable; i.e., for
x̃ ≥ x, 0 ≤ ỹ ≤ y, if (x, y) ∈ �, then (̃x, y) ∈ � and (x, ỹ) ∈ �.3

Assumption 2.2 amounts to an assumption of weak monotonicity for the fron-
tier, and is standard in microeconomic theory of the firm. Of course, the set
� is unobserved, and hence must be estimated from a sample Xn = {(Xi ,Yi )}n

i=1
of observed input–output pairs Xi ∈ Rp

+, Yi ∈ Rq
+. Additional assumptions

(e.g., convexity of � or assumptions about returns to scale) will be introduced
later in Section 3.

Deprins, Simar, and Tulkens (1984) proposed estimating � by the FDH of the
sample observations in Xn , i.e., by

�̂FDH(Xn) =
⋃

(Xi ,Yi )∈Xn

{
(x, y) ∈ Rp+q | y ≤ Yi , x ≥ Xi

}
. (2.4)

Then the FDH estimator θ̂FDH(x, y |Xn) of θ(x, y) is obtained by replacing � on
the right-hand side (RHS) of (2.3) with �̂FDH(Xn).4

Alternatively, if � is believed to be convex, then � can be estimated by the
convex hull of �̂FDH(Xn) as in Farrell (1957) and Banker, Charnes, and Cooper
(1984), i.e., by

�̂VRS(Xn) = {
(x, y) ∈ Rp+q | y ≤ Y ω, x ≥Xω, i′nω = 1, ω ∈ Rn

}
, (2.5)

whereX = (
X1, . . . , Xn

)
andY = (

Y1, . . . , Yn
)

are (p×n) and (q ×n) matrices
of input and output vectors, respectively; in is an (n ×1) vector of ones, and ω is
a (n ×1) vector of weights. This is the variable returns to scale DEA (VRS-DEA)
estimator of �, and the VRS-DEA estimator of θ(x, y) is obtained by replacing
� on the RHS of (2.3) with �̂VRS(Xn).
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If �∂ exhibits globally constant returns to scale (CRS), i.e, if (ax,ay) ∈ � for
all (x, y) ∈ � and a ∈ [0,∞), then � can be estimated by the CRS version of
the DEA estimator of � obtained by dropping the constraint inω = 1 from the
RHS of (2.5). The resulting estimator of �, used by Charnes et al. (1978) and
denoted by �̂CRS(Xn), is the conical hull of �̂FDH(Xn). The CRS-DEA estimator
θ̂VRS(x, y | Xn) of θ(x, y) is obtained by replacing � on the RHS of (2.3) with
�̂CRS(Xn).

Computation of the FDH and DEA efficiency estimators is straightforward.
FDH efficiency estimates can be computed as

θ̂FDH(x, y) = min
i∈I(y)

(
max

j=1, ..., p

(
X j

i

x j

))
, (2.6)

where I(y) = {i | Yi ≥ y, i = 1, . . . , n} and X j
i , x j are the j th elements of Xi

and x , respectively (throughout, subscripts will be used to index different vectors,
while superscripts will be used to index elements of vectors). DEA efficiency
estimates are typically computed by solving linear programs; for the VRS-DEA
estimator, one can compute

θ̂VRS(x,y) = min
θ,ω

{
θ | y ≤ Y ω, θx ≥Xω, i′nω = 1, ω ∈ Rn

}
. (2.7)

The CRS-DEA estimator θ̂CRS(x, y | Xn) can be computed similarly by dropping
the constraint i′nω = 1 on the RHS of (2.7).

Asymptotic properties of input-oriented VRS-DEA efficiency estimators are
investigated in Kneip et al. (1998, 2008), Jeong (2004), Jeong and Park (2006),
Jeong, Park, and Simar (2010); and for the input-oriented FDH efficiency estima-
tor by Park et al. (2000). These results have been extended to the hyperbolic and
directional orientations by Wilson (2011), Simar and Vanhems (2012), and Simar
et al. (2012), with similar limiting distributions and rates of convergence. In each
case, the estimators are consistent under appropriate assumptions, and converge
at rate nκ , where κ = 2/(p +q + 1), 2/(p +q), or 1/(p +q) for the VRS-DEA,
CRS-DEA, and FDH cases, respectively, and have limiting distributions.

To date, there are no tractable, analytical expressions for the asymptotic dis-
tributions of the VRS-DEA and CRS-DEA efficiency estimators. The FDH esti-
mators have been shown to have limiting Weibull distributions, but these involve
unknown parameters that are difficult to estimate. Consequently, bootstrap meth-
ods appear to be the only practical avenue toward inference on θ(x, y); see Kneip
et al. (2008, 2011) and Simar and Wilson (2011a) for results on consistent infer-
ence about θ(x, y) using bootstrap or subsampling methods.

As noted in Section 1, however, much less is known about how to make infer-
ence about the population mean μθ = E(θ(X,Y )) from a sample Xn of n iden-
tically, independently distributed (iid) observations (Xi ,Yi ). One might wish to
make inference about μθ for several reasons. For example, means are often used
to summarize results, to compare efficiency among different groups of producers,
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to characterize what one might expect “on average,” etc. An empirical mean of
VRS-DEA, CRS-DEA, or FDH estimators, using the n observations in Xn , might
seem to be a natural estimator of μθ . For example, one might use

μ̂n = n−1
n∑

i=1

θ̂ (Xi ,Yi | Xn) (2.8)

to estimate μθ where θ̂ (Xi ,Yi | Xn) denotes either the VRS-DEA, CRS-DEA,
or FDH estimator of θ(Xi ,Yi ). The notation θ̂ (Xi ,Yi | Xn) on the RHS of (2.8)
signifies that efficiency for a random point (Xi ,Yi ) ∈ Xn is estimated relative to
the random sample Xn .5

Sample means are arguably the most common statistics in use, and existence of
the well-known set of central limit theorem results makes inference straightfor-
ward in many contexts. Here, however, a number of problems arise. The sample
mean in (2.8) involves a mean of estimators, as opposed to true values θ(Xi ,Yi ).
In addition, the θ̂ (Xi ,Yi ) on the RHS of (2.8) are evaluated at random points
(Xi ,Yi ), instead of at fixed points.6 This is an important distinction, because all
of the available results on VRS-DEA, CRS-DEA, and FDH estimators cited above
are for fixed points, and not for random points. Since the θ̂ (Xi ,Yi ) are evaluated
at random points, one must consider covariances among the terms on the RHS
of (2.8). Still another complication arises from the fact that only points in a neigh-
borhood of the frontier (as opposed to those in the interior of � lying “far” from
the frontier �∂ ) have potential to affect θ̂ (Xi ,Yi ), and some of the (Xi ,Yi ) on
the RHS of (2.8) may fall near the frontier. As will be seen below, the bias of
the estimators of θ(Xi ,Yi ) turns out to be far more critical than the covariance.
In fact, due to the rates of the bias and variance, standard central limit theorem
results cannot be used with (2.8) to make inference about μθ except in special
cases where the number of dimension (p +q) is exceptionally small.

3. ASYMPTOTIC MOMENTS OF EFFICIENCY ESTIMATORS

This section presents new results on the moments of VRS-DEA, CRS-DEA, and
FDH efficiency estimators when evaluated at random points; these results will be
used later in Section 4 (i) to demonstrate why standard central limit theorems such
as the Lindeberg–Feller theorem cannot be used in the case of sample means of
nonparametric efficiency estimators when there are more than a small number of
dimensions; (ii) to derive new results which can be used to make inference about
μθ , and (iii) in Section 5 to show that there are additional problems, beyond those
described by Simar and Wilson (2007, 2011b), when efficiency estimates from a
first-stage analysis are regressed on some covariates in a second stage.

Some additional assumptions are needed. Proofs of the theorems, which can
be skipped by less-technical readers, are given in a separate, technical appendix
available from the authors on request. The following assumptions are needed for
the case of the VRS-DEA estimator; some of these will be used also for the
CRS-DEA and FDH cases.
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Assumption 3.1. (i) The random variables (X,Y ) possess a joint density f
with support D ⊂ � and (ii) f is continuously differentiable on D.

Assumption 3.2. (i)D∗ := {θ(x, y)x, y) | (x, y) ∈D} ⊂D; (ii)D∗ is compact;
and (iii) f (θ(x, y)x, y) > 0 for all (x, y) ∈D.

Assumption 3.3. θ(x, y) is three times continuously differentiable on D.

Assumption 3.4. D is almost strictly convex; i.e., for any (x, y), (̃x, ỹ) ∈
D with ( x

‖x‖ , y) �= ( x̃
‖x̃‖ , ỹ), the set {(x∗, y∗) | (x∗, y∗) = (x, y) + α((̃x, ỹ) −

(x, y)) for some 0 < α < 1} is a subset of the interior of D.

Assumptions 3.1–3.3 are similar to assumptions needed by Kneip et al. (2008)
to establish the limiting distribution of the VRS-DEA estimator, except that
there, θ(x, y) was only required to be twice continuously differentiable. Here,
the addition of Assumption 3.4 and the additional smoothness of θ(x, y) in
Assumption 3.3 are needed to establish results beyond those obtained in Kneip
et al. (2008).

The first result gives moments of the VRS-DEA estimator of θ(Xi ,Yi ).

THEOREM 3.1. Under Assumptions 2.1, 2.2, and 3.1–3.4, there exists a con-
stant 0 < C0 < ∞ such that for all i, j ∈ {1, . . . ,n}, i �= j ,

E
(
θ̂VRS(Xi ,Yi | Xn)− θ(Xi ,Yi )

)
= C0n− 2

p+q+1 + O

(
n− 3

p+q+1 (logn)
p+q+4
p+q+1

)
, (3.1)

VAR
(
θ̂VRS(Xi ,Yi | Xn)− θ(Xi ,Yi )

) = O
(

n− 3
p+q+1 (logn)

3
p+q+1

)
, (3.2)

and∣∣∣COV
(
θ̂VRS(Xi ,Yi | Xn)− θ(Xi ,Yi ), θ̂VRS(X j ,Yj | Xn)− θ(X j ,Yj )

)∣∣∣
= O

(
n− p+q+2

p+q+1 (logn)
p+q+2
p+q+1

)
= o

(
n−1

)
. (3.3)

The value of the constant C0 depends on f and on the structure of the set D ⊂ �.

As seen in the proof of Theorem 3.1 in the separate, technical appendix men-
tioned earlier, for any (x, y) in the interior of D, the asymptotic variance of the

VRS-DEA estimator is of order n− 4
p+q+1 . The slower rate of convergence estab-

lished in (3.2) is due to (a rough approximation of) boundary effects.
For the case of the CRS-DEA estimator, Assumption 3.4 must be replaced by

the following condition.

Assumption 3.5. (i) For any (x, y) ∈ � and any a ∈ [0,∞), (ax,ay) ∈ �;
(ii) the support D ⊂ � of f is such that for any (x, y), (̃x, ỹ) ∈ D with( x

‖x‖ , y
‖y‖

) �= ( x̃
‖x̃‖ , ỹ

‖ỹ‖
)
, the set {(x∗, y∗) | (x∗, y∗) = (x, y)+α((̃x, ỹ)− (x, y))
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for some 0 < α < 1} is a subset of the interior of D; and (iii) (x, y) /∈ D for any
(x, y) ∈Rp

+ ×Rq with y1 = 0, where y1 denotes the first element of the vector y.

The conditions on the structure of � (and D) given in Assumptions 3.4 and 3.5
are incompatible. It is not possible that both assumptions hold simultaneously.

In the following, for any compact, convex set H ⊂ R
p
+ × R

q
+, let

θ̂CH(x, y | H) := min{θ > 0 | (θx, y) ∈ H} for all (x, y) with (ax, y) ∈ H for
some a > 0. Furthermore, letH0

n denote the convex hull of X 0
n := Xn ∪{(0,0)}.

THEOREM 3.2. Under Assumptions 2.1, 2.2, 3.1–3.3, and 3.5, the following
results hold for any (x, y) ∈H0

n:

(i) For any y = (y1, . . . , yq)′ ∈ Rq with y1 > 0, define the q −1 dimensional

vector ỹ = (y2/y1, . . . , yq/y1)′, and let X ∗
n =

{
(Xi/y1

i , Ỹi )
}n

i=1
. Then

θ̂CRS(x, y | Xn) = θ̂CH

(
x/y1, ỹ |H∗

n

)
, (3.4)

where H∗
n is the convex hull of X ∗

n . Furthermore, let Xn,≥y1 := {(Xi ,Yi ) |
y1

i ≥ y1}, and let H∗
n,≥y1 be the convex hull of X ∗

n,≥y1 = {(Xi/yi1, Ỹi ) |
y1

i ≥ y1}. Then

θ̂CRS (x, y | Xn) ≤ θ̂VRS

(
x, y | X 0

n

)
≤ θ̂CRS

(
x, y | Xn,≥y1

)
= θ̂CH

(
x/y1, ỹ |H∗

n,≥y1

)
. (3.5)

(ii) There exists a constant 0 < C1 < ∞ such that for all i, j ∈ {1, . . . ,n}, i �= j ,

E
[
θ̂CRS(Xi ,Yi | Xn)− θ(Xi ,Yi )

]
= C1n− 2

p+q + O

(
n− 3

p+q (logn)
p+q+3

p+q

)
, (3.6)

VAR
(
θ̂CRS(Xi ,Yi | Xn)− θ(Xi ,Yi )

) = O
(

n− 3
p+q (logn)

3
p+q

)
, (3.7)

and∣∣∣COV
(
θ̂CRS(Xi ,Yi | Xn)− θ(Xi ,Yi ), θ̂CRS(X j ,Yj | Xn)− θ(X j ,Yj )

)∣∣∣
= O

(
n− p+q+1

p+q (logn)
p+q+1

p+q

)
= o

(
n−1

)
. (3.8)

The value of the constant C1 depends on f and on the structure of the set
D ⊂ �.

Part (i) of Theorem 3.2 is a key for deriving part (ii), but is otherwise
not directly necessary for deriving the central limit theorem results below in
Section 4. Since the number of observations with y1

i ≥ y will be proportional
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to n, the inequality in (3.5) indicates that under the assumption of CRS, the ordi-
nary VRS-DEA estimator (when adding the point (0,0) to Xn) also converges at

rate n− 2
p+q . This result is new and unexpected.

Turning now to the FDH estimator, the following assumption is needed.

Assumption 3.6. (i) θ(x, y) is twice continuously differentiable on D and
(ii) all the first-order partial derivatives of θ(x, y) with respect to x and y are
nonzero at any point (x, y) ∈D.

Note that the free disposability assumed in Assumption 2.2 implies that θ(x, y)
is monotone, increasing in x and monotone, decreasing in y. Assumption 3.6
additionally requires that the frontier is strictly monotone and does not possess
constant segments (which would be the case, for example, if outputs are discrete
as opposed to continuous, as in the case of ships produced by shipyards). Finally,
part (i) of Assumption 3.6 is weaker than Assumption 3.3; here the frontier is
required to be smooth, but not as smooth as required by Assumption 3.3.7

THEOREM 3.3. Under Assumptions 2.1, 2.2, 3.1, 3.2, and 3.6, there exists a
constant 0 < C2 < ∞ such that for all i, j ∈ {1, . . . ,n}, i �= j ,

E
(
θ̂FDH(Xi ,Yi | Xn)− θ(Xi ,Yi )

) = C2n− 1
p+q + O

(
n− 2

p+q (logn)
p+q+2

p+q

)
, (3.9)

VAR
(
θ̂FDH(Xi ,Yi | Xn)− θ(Xi ,Yi )

) = O
(

n− 2
p+q (logn)

2
p+q

)
, (3.10)

and∣∣∣COV
(
θ̂FDH(Xi ,Yi | Xn)− θ(Xi ,Yi ), θ̂FDH(X j ,Yj | Xn)− θ(X j ,Yj )

)∣∣∣
= O

(
n− p+q+1

p+q (logn)
p+q+1

p+q

)
= o

(
n−1

)
. (3.11)

The value of the constant C2 depends on f and on the structure of the set D ⊂ �.

Theorems 3.1–3.3 extend the results of Kneip et al. (1998, 2008) for VRS-DEA
estimators, Park et al. (2010) for CRS-DEA estimators, and Park et al. (2000) for
FDH estimators by giving results for random, instead of fixed, points, by giving
second-order results for the first two moments, and by giving results on covari-
ances. The results are surprising in that for each of the three estimators, covari-
ances are of order o(n−1) and hence disappear rapidly as n → ∞. In addition, the
biases of the DEA estimators are of larger order than the corresponding standard
deviations.

4. ASYMPTOTIC DISTRIBUTION OF μ̂N AND INFERENCE ON μθ

As noted earlier, the results from the previous section can now be used to explain
why existing central limit theorems are inapplicable when using sample means
of VRS-DEA, CRS-DEA, or FDH efficiency estimators in more than 2, 3, or 1
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dimensions (respectively) to make inference about μθ , and to derive new results
that permit inference about μθ .

In order to simplify notation, results from Section 3 can be summarized by
writing

E
(
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )

) = Cn−κ + Rn,κ , (4.1)

where Rn,k = o
(
n−κ

)
,

E
((

θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )
)2

)
= o

(
n−κ

)
, (4.2)

and∣∣COV
(
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi ), θ̂ (X j ,Yj | Xn)− θ(X j ,Yj )

) ∣∣ = o
(

n−1
)

(4.3)

for all i, j ∈ {1, . . . , n}, i �= j . The values of the constant C , the rate κ , and
the remainder term Rn,κ depend on which estimator is used (here, we sup-
press the labels “VRS,” “CRS,” or “FDH” on θ̂ and μ̂n . Of course, the results
outlined here depend on the corresponding relevant assumptions required by
Theorems 3.1–3.3. Under VRS with the VRS-DEA estimator, κ = 2/(p +q +1)
and Rn,κ = O

(
n−3κ/2(logn)α1

)
; under CRS with either the VRS-DEA or VRS-

CRS estimator, κ = 2/(p +q) and Rn,κ = O
(
n−3κ/2(logn)α2

)
; while under only

the free disposability assumption (but not necessarily CRS or convexity) with the
FDH estimator, we have κ = 1/(p+q) and Rn,κ = O

(
n−2κ(logn)α3

)
. The values

of αj > 1, j = 1,2,3 are given in the theorems from Section 3. For purposes of
the results in this section, the logn factor appearing in the theorems of Section 3
will not play a role. Most of the results below rely on the fact that in each case,
Rn,κ = o

(
n−κ

)
; the remainder term will only be considered when it is possible to

obtain asymptotic refinements.
Denote μθ = E(θ(X,Y )) and σ 2

θ = VAR(θ(X,Y )), and assume both quantities
are finite. In order to make inference about μθ , consider the quantities

θn = n−1
n∑

i=1

θ(Xi ,Yi ) (4.4)

and

μ̂n = n−1
n∑

i=1

θ̂ (Xi ,Yi | Xn). (4.5)

Under mild assumptions, the Lindeberg–Feller Central Limit Theorem establishes
the limiting distribution of θn ; i.e.,

√
n
(
θn −μθ

) L−→ N
(

0,σ 2
θ

)
. (4.6)
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Of course, θn is unobserved, as is μθ ; as noted in Section 1, μ̂n is typically used to
estimate μθ . The following basic result will be useful for examining the properties
of μ̂n .

LEMMA 4.1. Under the appropriate set of assumptions described in
Theorem 3.1, for the VRS-DEA estimator, Theorem 3.2 for the CRS-DEA esti-
mator, or Theorem 3.3 for the FDH estimator, with κ = 2/(p +q +1), 2/(p +q),
or 1/(p +q), respectively, we have

E
(
θ̂ (Xi ,Yi | Xn)

) = μθ +Cn−κ +o
(
n−κ

)
(4.7)

and

VAR
(
θ̂ (Xi ,Yi | Xn)

) = σ 2
θ +o

(
n−κ/2

)
. (4.8)

Proof. Assertion 4.7 follows directly from the theorems in Section 3. To
prove 4.8, first note that

VAR(θ̂(Xi ,Yi | Xn))

= E
([

θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )
]2

)
+ E

([
θ(Xi ,Yi )− E

(
θ̂ (Xi ,Yi | Xn)

)]2
)

+2E
([

θ(Xi ,Yi )− E
(
θ̂ (Xi ,Yi | Xn)

)][
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )

])
.

Using (4.1),

E
([

θ(Xi ,Yi )− E
(
θ̂ (Xi ,Yi | Xn)

)]2
)

= σ 2
θ + [

E
(
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )

)]2

= σ 2
θ +C2n−2κ +o

(
n−2κ

)
. (4.9)

Using the Cauchy–Schwartz inequality, (4.2), and (4.9), the last term in
VAR(θ̂(Xi ,Yi | Xn)) can be bounded by o

(
n−κ/2

)
, completing the proof. n

The following theorem provides a consistent estimator of σ 2
θ and establishes

the basic properties of μ̂n .

THEOREM 4.1. Let μ̃n = E(μ̂n). Under the assumptions of Lemma 4.1,
the following conditions hold: (i) μ̃n = μθ + Cn−κ + Rn,κ ; (ii) μ̂n − μ̃n =
θ̄n − μθ + op(n−1/2); (iii)

√
n (μ̂n − μ̃n)

L−→ N (0,σ 2
θ ); and (iv) σ̂ 2

θ,n = n−1∑n
i=1

[
θ̂ (Xi ,Yi | Xn)− μ̂n

]2 p−→ σ 2
θ .

Proof. Consider the sequence of random variables ζn = n−1 ∑n
i=1(

θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )
)
. From (4.1) we have E(ζn) = Cn−κ + Rn,κ , and

using (4.2) and (4.3) we obtain

VAR(ζn) = n−2
n∑

i=1

VAR
(
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )

)+o
(

n−2
)
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= n−2
n∑

i=1

[
E

(
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )

)2

+(
E

(
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )

))2
]

= n−1o
(
n−κ

)
.

Since μ̃n = μθ + E(ζn), we have (i). For part (ii), we have μ̂n −μ̃n = θn −μθ +ηn

where ηn = ζn − E(ζn) has mean zero and variance VAR(ηn) = VAR(ζn) =
n−1o(n−κ). Hence ηn = op

(
n−1/2

)
. Part (iii) is a direct consequence of (ii).

The proof of (iv) is also direct:

σ̂ 2
θ,n = n−1

n∑
i=1

(
θ̂ (Xi ,Yi | Xn)

)2 − μ̂2
n

p−→ E
[
(θ̂(Xi ,Yi | Xn))2

]
−μ2

θ

= VAR
(
θ̂ (Xi ,Yi | Xn)

)+ [
E

(
θ̂ (Xi ,Yi | Xn)

)]2 −μ2
θ .

Using the results of Lemma 4.1 yields the desired result. n

This theorem shows in particular that in each of the three settings (i.e., VRS-
DEA, CRS-DEA, or FDH), and under the appropriate set of assumptions, μ̂n is a
consistent estimator of μθ , with a bias term of order Cn−κ . But it also illustrates
the fact that the bias will kill the variance if we want to use μ̂n to make inference
about μθ . This can be seen by writing result (iii) explicitly as

√
n
(
μ̂n −μθ −Cn−κ − Rn,κ

) L−→ N (0,σ 2
θ ). (4.10)

If κ > 1/2, the bias term in (4.10) is dominated by the factor
√

n and thus can
be ignored; in this case, standard, conventional methods can be used to obtain
confidence intervals for μθ . Otherwise, the bias is constant if κ = 1/2, or explodes
if κ < 1/2. Note that κ > 1/2 if and only if p + q ≤ 2 in the VRS case, or if
and only if p + q ≤ 3 in the CRS case. In the FDH case, this occurs only in the
univariate case with p = 1, q = 0. Replacing the scale factor

√
n in (4.10) with nγ ,

with γ < κ ≤ 1/2, is not a viable option. Although doing so would make the bias
disappear as n → ∞, it would cause the variance to converge to zero whenever
κ ≤ 1/2.8

In general, whenever κ ≤ 1/2, Theorem 4.1 makes clear that additional work
is needed to make inference about the mean μθ in general situations. The results
so far suggest either (i) using a different estimator for μθ , or (ii) incorporating a
suitable estimator of the bias.

An easy way to address the issue of controlling both bias and variance, for gen-
eral number of dimensions (p + q), is to rescale the estimator of the population
mean μθ by an appropriate factor different from

√
n when κ ≤ 1/2. Consider the

factor nκ = [n2κ ] ≤ n, where [a] denotes the integer part of a (note that this covers
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the limiting case of κ = 1/2). Then assume the observations in the sample Xn are
randomly ordered, and consider the latent estimator

θnκ = n−1
κ

nκ∑
i=1

θ(Xi ,Yi ). (4.11)

Of course, θnκ is unobserved, but it can be estimated by

μ̂nκ = n−1
κ

nκ∑
i=1

θ̂ (Xi ,Yi | Xn), (4.12)

where the notation θ̂ (Xi ,Yi | Xn) serves to remind the reader that the individual
efficiency estimates are computed from the full sample of n observations. Here
again, one can use either the VRS, CRS, or FDH version of the estimator. Under
the appropriate set of assumptions, the properties of this estimator are given in the
next theorem.

THEOREM 4.2. Under the assumptions of Lemma 4.1, for cases where κ ≤
1/2, as n → ∞,

nκ
(
μ̂nκ −μθ −Cn−κ − Rn,κ

) L−→ N (0,σ 2
θ ). (4.13)

Proof. Since nκ = n2κ → ∞ as n → ∞,
√

nκ

(
θnκ −μθ

) L−→ N
(
0,σ 2

θ

)
. The

result follows by the same arguments leading to Theorem 4.1. In particular,

(
μ̂θ,nκ −μθ

) = (
θnκ −μθ

)+n−1
κ

nκ∑
i=1

(
θ̂ (Xi ,Yi | Xn)− θ(Xi ,Yi )

)
. (4.14)

The right hand term has mean given by (4.1), i.e., Cn−κ + Rn,κ , and variance
(1/nκ)o

(
n−κ

)
. Multiplying the two terms of the equation by

√
nκ = nκ yields

the result. n

Since Theorem 4.2 establishes that
√

nκ

(
μ̂nκ −μθ

)
has a limiting distribution,

with unknown mean, bootstrap approaches could be used to estimate this bias
and so to provide confidence intervals for μθ (note that the variance could also
be estimated by the same bootstrap, or by the consistent estimator σ̂ 2

θ,n defined
above). In theory, subsampling along the lines of Simar and Wilson (2011a) could
also be used to make consistent inference about μθ . However, the estimator in
(4.12) uses only a subset of the original n observations; unless n is extraordinarily
large, taking subsamples among a subset of nκ observations will leave too little
information to provide useful inference.
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However, Theorem 4.1 provides another way to correct for the bias in (4.13).
Assume that the observations (Xi ,Yi ) are randomly ordered, and let X (1)

n/2 de-

note the set of the first n/2 observations in Xn ; let X (2)
n/2 denote the set of re-

maining observations from Xn (for simplicity, assume n is even). Let μ̂
( j)
n/2 =

2n−1 ∑n/2
i=1 θ̂ (Xi ,Yi | X ( j)

n/2), where (Xi ,Yi ) ∈ X ( j)
n/2 for j ∈ {1, 2}. Then set

μ̂∗
n/2 =

(
μ̂

(1)
n/2 + μ̂

(2)
n/2

)
/2. (4.15)

It follows from Theorem 4.1(ii) that as n → ∞,

μ̂
( j)
n/2 − μ̃n/2 = 2n−1

n/2∑
i=1

(θ(Xi ,Yi )−μθ)+op

(
n−1/2

)
(4.16)

for j ∈ {1, 2}. Consequently,

μ̂∗
n/2 − μ̃n/2 = n−1

n∑
i=1

(θ(Xi ,Yi )−μθ)+op

(
n−1/2

)
, (4.17)

while for the original estimator the result in Theorem 4.1(ii) holds. Subtracting
the result in Theorem 4.1(ii) from (4.17) and rearranging terms yields

μ̂∗
n/2 − μ̂n = μ̃n/2 − μ̃n +op

(
n−1/2

)
, (4.18)

which makes clear that the difference
(
μ̂∗

n/2 − μ̂n

)
reflects the bias differences.

Moreover, the estimation error is of order smaller than n1/2. On the other hand,
Theorem 4.1(i) implies that

μ̃n/2 − μ̃n = C(2κ −1)n−κ + Rn,κ , (4.19)

where the remainder has the same order as the original Rn,κ . Therefore,

(2κ −1)−1
(
μ̂∗

n/2 − μ̂n

)
= Cn−κ + Rn,κ +op

(
n−1/2

)
(4.20)

provides an estimator of the bias term Cn−κ . Combining results yields the fol-
lowing:

THEOREM 4.3. Under the assumptions of Lemma 4.1, for κ ≥ 2/5 for the VRS
and CRS cases or κ ≥ 1/3 for the FDH case,

√
n
(
μ̂n − (

2κ −1
)−1

(
μ̂∗

n/2 − μ̂n

)
−μθ + Rn,κ

) L−→ N (0,σ 2
θ ), (4.21)

as n → ∞.
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It is important to note that Theorem 4.3 is not valid for κ smaller that the bounds
given in the theorem. This is due to the fact that for a particular definition of Rn,κ

(i.e., in either the VRS/CRS or FDH cases), values of κ smaller than the boundary
value cause the remainder term, multiplied by

√
n, to diverge toward infinity.

Interestingly, the normal approximation in Theorem 4.3 can be used with either
the VRS-DEA or CRS-DEA estimators under the assumption of CRS if and only
if p +q ≤ 5; with the DEA-VRS estimator under convexity (but not CRS) if and
only if p + q ≤ 4; and with the FDH estimator assuming only free disposability
(but not necessarily convexity nor CRS) if and only if p +q ≤ 3. For these cases,
an asymptotically correct (1−α) confidence interval for μθ is given by[
μ̂n − (

2κ −1
)−1

(
μ̂∗

n/2 − μ̂n

)
± z1−α/2σ̂θ,n/

√
n
]
, (4.22)

where z1−α/2 is the corresponding quantile of the standard normal distribution.

The expression μ̂n − (2κ −1)−1
(
μ̂∗

n/2 − μ̂n

)
appearing in Theorem 4.3 and

in (4.22) can be viewed as resulting from a generalized jackknife statistic
(e.g., see Gray and Schucany, 1972, Defn. 2.1). Here, we have used jackknife
samples of size n/2, but one could more generally use instead jackknife samples
of size ρn, where ρ ∈ (0,1) is a fixed constant. Of course, this would cause the
term 2κ appearing in Theorem 4.3, (4.22), and elsewhere to become instead ρ−κ .
In addition, there are

( n
ρn

)
possible jackknife samples. We average over only two

combinations in (4.15) to avoid excessive computational burden; note that each
jackknife sample requires solution of ρn linear programs in the cases of the VRS-
DEA and CRS-DEA estimators. The Monte Carlo evidence presented below in
Section 6 suggests that this works well, although some improvements might be
possible if one is willing to incur the cost.9

In cases where κ is smaller than the bounds given in Theorem 4.3, the idea
of estimating μθ by a sample mean of nκ efficiency estimates as above in
Theorem 4.2 can be used with the bias correction introduced in this section. This
leads to the following result.

THEOREM 4.4. Under the assumptions of Lemma 4.1, as n → ∞,

nκ
(
μ̂nκ − (

2κ −1
)−1

(
μ̂∗

n/2 − μ̂n

)
−μθ + Rn,κ

) L−→ N (0,σ 2
θ ). (4.23)

Proof. Since in all the cases Rn,κ = o(n−κ), it is clear that nκ Rn,κ = o(1).
Hence the remainder term can be neglected, yielding the result. n

Theorem 4.4 allows construction of consistent confidence intervals for μθ by
replacing the unknown σ 2

θ by its consistent estimator σ̂ 2
θ,n . An asymptotically

correct 1−α confidence interval for μθ is given by[
μ̂nκ − (

2κ −1
)−1

(
μ̂∗

n/2 − μ̂n

)
± z1−α/2σ̂θ,n/nκ

]
, (4.24)
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where z1−α/2 is the corresponding quantile of the standard normal distribution.
Here, the normal approximation can be used directly; bootstrap methods are not
necessary.

Note that when κ < 1/2, the center of the confidence interval in (4.24) is de-
termined by a random choice of nκ = n2κ < n elements θ̂ (Xi ,Yi | Xn). This may
be seen as arbitrary, but any confidence interval for μθ may be seen arbitrary in
practice since asymmetric confidence intervals can be constructed by using dif-
ferent quantiles to establish the endpoints. The main point, however, is always to
achieve a high level of coverage without making the confidence interval too wide
to be informative.

Again for κ < 1/2, the arbitrariness of choosing a particular subsample of size
nκ in (4.24) can be eliminated by averaging the center of the interval in (4.24) over
all possible draws (without replacement) of subsamples of size nκ . Of course, this
yields an interval centered on μ̂n , i.e.,[
μ̂n − (

2κ −1
)−1

(
μ̂∗

n/2 − μ̂n

)
± z1−α/2σ̂θ,n/nκ

]
. (4.25)

The only difference between the intervals (4.24) and (4.25) is the centering value.
Both intervals are equally informative, because they possess exactly the same
length, (2z1−α/2σ̂θ,n/nκ ). The interval (4.25) should be more accurate (i.e., should
have higher coverage) because μ̂n is a better estimator of μθ (i.e., has less mean-
square error) than μ̂nκ . If κ < 1/2, then nκ < n, and hence the interval in (4.25)
contains the true value μθ with probability greater than 1−α, since by the results
above, it is clear that the coverage of the interval in (4.25) converges to 1 as n →
∞. This is confirmed by the Monte Carlo evidence presented below in Section 6.

In cases with sufficiently small dimensions, either Theorem 4.3 or 4.4 can be
used to provide different asymptotically valid confidence intervals for μθ . For the
VRS-DEA and CRS-DEA estimators, this is possible whenever κ = 2/5 and so
nκ < n. The interval (4.22) uses the scaling

√
n and neglects, in Theorem 4.3,

a term
√

nRn,κ = O(n−1/10), whereas the interval (4.24) uses the scaling nκ ,
neglecting in Theorem 4.4 a term nκ Rn,κ = O(n−1/5). We thus may expect a
better approximation by using the interval (4.24). The same is true for the FDH
case when κ = 1/3, where the interval (4.22) neglects terms of order O(n−1/6)
whereas the error when using (4.24) is only of order O(n−1/3). These remarks
will be confirmed in some of our Monte-Carlo experiments.

5. EXTENSION TO TWO-STAGE APPROACHES

Two-stage estimation procedures where technical efficiencies are estimated in a
first stage and then regressed in a second stage on some environmental variables
Z ∈ Rr are very popular in the efficiency literature. Simar and Wilson (2007,
2011b) observed that hundreds of papers have used this approach for explain-
ing inefficiency in terms of environmental variables, and propose a well-defined,
coherent statistical model in which the second stage regression is meaningful.
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In particular, this involves a separability condition requiring that the shape of the
attainable set � is not affected by the variables in Z . Any effect of these vari-
ables on the production process is only through the distribution of the efficiencies
inside �, but the Z -variables do not affect the support of � itself. Banker and
Natarajan (2008) propose a different statistical model where the second-stage re-
gression is meaningful, but the model is rather restrictive and based on unrealistic
assumptions on the production process (see Simar and Wilson, 2011b for details).

Even if a statistical model is defined in which the second stage regression is
potentially meaningful, an additional difficulty arises in the second stage regres-
sion from the fact that, as in the problem described in Section 4, the true unob-
served Farrell measures of efficiencies are replaced by their DEA estimators on
the left-hand side of the second-stage regression. The analysis from Section 4 can
be easily extended to the case of second-stage regressions. For ease of exposi-
tion, the discussion below is presented in terms of a simple linear model where
the effects of covariates in Z on firms’ efficiencies can be estimated by ordinary
least squares (OLSs).10 The main part of the message coming from the following
analysis is analogous to the message in Theorem 4.1; i.e., under appropriate, mild
regularity conditions, second-stage regressions yield consistent estimators of the
given model, and inference by appropriate bootstrap methods is possible, but at
a much lower rate than

√
n as the number of dimensions, p + q, increases. This

was the message in Simar and Wilson (2007, 2011b), but the results obtained in
this paper give additional insight into the problem.

Consider a simple model where, in addition to the assumptions of Lemma 4.1,
we assume the following:

Assumption 5.1. (i) The environmental factors Z do not influence the shape
of the attainable set � (this is the “separability” condition described by Simar
and Wilson, 2007) and (ii) the variables Z influence on the production process
through the following simple mechanism:

θ(X,Y ) =Zβ+ ε, (5.1)

where Z denotes the n × (r + 1) matrix of observed values of Z , β is a vector
of parameters, E(ε | Z) = 0, VAR(ε | Z) = σ 2, and E(ε4 | Z) ≤ D for some
σ 2, D > 0 independent of Z .

Of course, the dependent variable in (5.1) is bounded, and so a truncated re-
gression specification such as the one in Simar and Wilson (2007) would be more
appropriate. Although one would use truncated regression in practice, the simple
linear specification in (5.1) serves to illustrate the issues without the additional
complication of nonlinear estimation required for a truncated regression speci-
fication, and allows the parameter vector β (which is the object of interest) to
be estimated by OLS. For purposes of the discussion here, assume that the first
element of Z is 1 to represent an intercept.
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If the true, but unknown θ(Xi ,Yi ) were available, the usual OLS estimator of
β would be given by

β̂ = (Z ′Z)−1Z ′θ, (5.2)

where θ is the n ×1 vector of elements θ(Xi ,Yi ), i = 1, . . . ,n. Under mild regu-
larity conditions on Z,

√
n
(
β̂−β) L−→ N (0,σ 2Q). (5.3)

However, the result in (5.3) is not helpful because θ, which is needed for β̂,
is not observable. The only possibility, and what is done in practice, is to replace
the unobserved θ with the vector θ̂ of efficiency estimators; each element of θ̂ is
an estimator of the corresponding element of θ. After substitution, (5.3) becomeŝ̂β = (Z ′Z)−1Z ′θ̂. (5.4)

This can be decomposed by writinĝ̂β−β = β̂−β+ (Z ′Z)−1Z ′ (̂θ−θ) . (5.5)

The asymptotic behavior of the latter term depends on the chosen estimator and
is given below in Theorem 5.1.

Before turning to the theorem, an additional assumption is needed.

Assumption 5.2. (i) (Xi ,Yi , Zi ), i = 1, . . . ,n, are iid random variables,
and the marginal density f of (Xi ,Yi ) has support D (which is assumed
to satisfy the assumptions imposed in Sections 2 and 3).

(ii) The variables Zis , s = 1, . . . ,r , have finite fourth moments, and the con-
ditional distributions of (Xi ,Yi ) given Zi = Z possess densities fZ with
support DZ ⊂ D. Moreover, fZ changes continuously with Z , and there
exists a constant δ0 < ∞ such that fZ (x, y) ≤ δ0 for all (x, y) ∈D and all
possible values of Z .

(iii) There exists a positive definite matrix Q such that n−1(Z ′Z) = Q+
OP (n−1/2).

Note that Assumption 5.2(i) does not exclude that, for example, the first ele-
ment Zi1 of Zi is an intercept and thus identical to 1. In this case Zi1, i = 1, . . . ,n,
can be interpreted as iid random variables with P(Zi1 = 1) = 1.

THEOREM 5.1. Under the conditions of Lemma 4.1 together with Assump-
tions 5.1 and 5.2 we obtain:

(i) There exists a vector C ∈ Rr as well as a sequence of vectors Rn,κ ∈ Rr

satisfying Rn,κ = O(n−κ∗
(logn)1+κ∗

) such that

n−1Z ′θ̂ = n−1Z ′θ+Cn−κ +Rn,κ +op(n
−1/2) (5.6)

and
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̂̂β− β̃ = β̂−β+op(n
−1/2) with β̃ = β+ Q−1Cn−κ + Q−1Rn,κ ; (5.7)

(ii)
√

n
(̂̂β− β̃

) L−→ N (0,σ 2Q); and

(iii) σ̂ 2
n = n−1‖Ẑ̂β− θ̂‖2

2
p−→ σ 2;

where κ = 2/(p + q + 1) and κ∗ = 3κ/2, κ = 2/(p + q) and κ∗ = 3κ/2, or
κ = 1/(p + q) and κ∗ = 2κ for the VRS-DEA, CRS-DEA, or FDH estimators,
respectively.

The proof is given in the separate, technical appendix.
Note that in the regression context, Theorem 5.1 constitutes a direct generaliza-

tion of Theorem 4.1 in Section 4. Again, result (ii) in Theorem 5.1 demonstrates
clearly why the usual central limit theorem results cannot be used for making
inference unless κ > 1/2, due to the inherent bias in β̃ which is of order O(n−κ).
In order to construct confidence intervals or test of significance for β we can thus
rely on techniques similar to those developed in Section 4 for inference about
sample means.

A first step consists in defining an estimator of the leading bias term. In the
same way as in Section 4 divide Xn into the sets X (1)

n/2 and X (2)
n/2 of the first and

second n/2 observations in Xn . Let θ̂
(1)
n/2 and θ̂

(2)
n/2 denote the efficiency estimators

obtained using only the observations in X (1)
n/2 and X (2)

n/2, respectively, and letZ( j)
n/2,

j = 1,2 be the corresponding matrices of Z -values. Then define

̂̂β∗
n/2 := (Z ′Z)−1

(
(Z

(1)
n/2)

′θ̂(1)
n/2 + (Z

(2)
n/2)

′θ̂(2)
n/2

)
.

By (5.6) and the definition of β̂ we have

̂̂β∗
n/2 = β̂+2κ Q−1Cn−κ + O(Rn,κ )+op(n

−1/2),

and therefore

(2κ −1)−1(̂̂β∗
n/2 − ̂̂β) = Q−1Cn−κ + O(Rn,κ )+op(n

−1/2) (5.8)

provides an approximation of the first order error term. If κ ≥ 2/5, then Rn,κ =
op(n−1/2), and the above arguments lead to the following theorem:

THEOREM 5.2. Under the Assumptions of Theorem 5.1, for κ ≥ 2/5 for the
VRS and CRS cases or κ ≥ 1/3 for the FDH case,

√
n
(̂̂β− (

2κ −1
)−1

(̂̂β∗
n/2 − ̂̂β)

−β
) L−→ N (0,σ 2Q), (5.9)

as n → ∞.

The diagonal elements of Q can be consistently estimated by the diago-
nal elements q̂ss := ((n−1Z ′Z)−1)ss of the matrix (n−1Z ′Z)−1, s = 1, . . . ,r .
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Theorem 5.1(c) defines a consistent estimator σ̂ 2
n of the error variance σ 2. Hence,

under the conditions of Theorem 5.2 an asymptotically valid (1 −α) confidence
interval for the s-th element βs of β is given by[̂̂βs − (

2κ −1
)−1

(̂̂β∗
n/2;s − ̂̂βs

)
± z1−α/2σ̂nq̂ss/

√
n
]
, (5.10)

where z1−α/2 is the corresponding quantile of the standard normal distribution.
If p + q is large, then the resulting value of κ will be smaller than required

by Theorem 5.2. Similar to the approach of Section 4 one may then rely on a
reduction of the sample size.

Define the OLS estimator of β based on a random subset of size nκ = [n2κ ] of
the data (drawn without replacement). For simplicity of notation, assume that the
order of the data is random, so that Znκ and θ̂nκ are the first nκ row entries of
Z and of θ̂, and̂̂βnκ

= (Z ′
nκ
Znκ )

−1Z ′
nκ
θ̂nκ . (5.11)

THEOREM 5.3. Under the Assumptions of Theorem 5.1, as n → ∞,

nκ
(̂̂βnκ

− (
2κ −1

)−1
(̂̂β∗

n/2 − ̂̂β)
−β

) L−→ N (0,σ 2Q). (5.12)

Proof. Similar to (5.3) we have nκ
(
β̂nκ

−β) L−→ N (0,σ 2Q) with β̂nκ
:=

(Z ′
nκ
Znκ )

−1Z ′
nκ
θnκ , and it is easily verified that (5.7) generalizes to ̂̂βnκ

−β−
Q−1Cn−κ − Q−1Rn,κ = β̂−β+ op(n−κ). Since Rn,κ = op(n−κ) and by (5.8)

(2κ −1)−1(̂̂β∗
n/2 − ̂̂β) = Q−1Cn−κ +op(n−κ), the assertion of the theorem is an

immediate consequence. n

Theorem 5.3 implies that for κ ≤ 1/2, an asymptotically correct 1 −α confi-
dence interval for βs , s = 1, . . . ,r is given by[̂̂βnκ ;s − (

2κ −1
)−1

(̂̂β∗
n/2;s − ̂̂βs

)
± z1−α/2σ̂nq̂ss/nκ

]
. (5.13)

Similar to the arguments in Section 4, for κ < 1/2, the arbitrariness of choosing

a particular subsample of size nκ in (4.24) can be eliminated by replacing ̂̂βnκ ;s
by the original estimator ̂̂βs , s = 1, . . . ,r . Since ̂̂βs possesses a faster rate of

convergence than ̂̂βnκ ;s , one can conclude that for large n the interval[̂̂βs − (
2κ −1

)−1
(̂̂β∗

n/2;s − ̂̂βs

)
± z1−α/2σ̂nq̂ss/nκ

]
(5.14)

contains the true values βs with probability greater than 1−α.
Note that due to “nonlinearities” introduced by (random) differences of the

matrices (Z ′
nκ
Znκ )

−1, ̂̂βs will typically not be equal to the average of ̂̂βnκ ;s over
all possible draws (without replacement) of subsamples of size nκ . This effect

can be eliminated by using a modified estimator ̂̂β∗
nκ

:= (n−1Z ′Z)−1n−1
κ Z

′
nκ
θnκ .
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Note also that Theorem 5.3 as well as (5.13) remain true if ̂̂βnκ ;s is replaced

by ̂̂β∗
nκ ;s . However, in any case the interval given by (5.14) possesses a superior

coverage probability.

6. MONTE CARLO EVIDENCE

For purposes of Monte Carlo experiments to analyze the coverages of estimated
confidence intervals, two technologies are considered. The first is characterized
by variable, nonconstant returns to scale, and consists of the part of a (hyper)-
sphere centered at (1p,0q) lying in the space [0,1]p × [0,1]q , where 1p denotes
a p-vector of ones and 0q denotes a q-vector of zeros. The second technology is
characterized by globally constant returns to scale, where

y =
p∏

j=1

x1/p
j (6.1)

with xj ∈ (0,1) ∀ j ∈ {1, . . . , p}. In addition, let the true (marginal) density of the
input inefficiency be given by

fθ (t) =
{

3t2 ∀ t ∈ [0,1],

0 otherwise
(6.2)

so that E(θ) = μθ = 0.75. In each Monte Carlo experiment, n points (X eff
i ,Yi )

are generated uniformly along the simulated technology, and then projected away
from the frontier using draws from fθ to compute Xi = θ−1

i X eff
i to create a simu-

lated sample Xn = {(Xi ,Yi )}n
i=1.11

Each experiment consists of 1,000 Monte Carlo trials. On each trial, a sample
of size n is generated, and efficiency is estimated for each simulated observation
(Xi ,Yi ), using the entire simulated sample as the reference set. Let μ̂nκ denote
the rescaled sample mean defined by (4.12), computed from either VRS-DEA,
CRS-DEA, or FDH efficiency estimates. Confidence intervals are then estimated
on each Monte Carlo trial for μθ using each of three methods:

(i) normal approximation using (4.22), based on Theorem 4.3, using μ̂n to
estimate μθ , but incorporating (4.20) to correct for bias;

(ii) normal approximation using (4.24), based on Theorem 4.4, using μ̂nκ to
estimate μθ and incorporating (4.20) to correct for bias; and

(iii) normal approximation using (4.25), based on averaging the intervals
obtained by method (iii) over the possible disjoint subsets of size nκ .

For each of these three methods, the proportion of Monte Carlo trials where the
estimated confidence intervals cover the true value μθ = 0.75 are reported as
estimated coverages. Experiments are conducted with two sets of four different
dimensionalities. For the VRS technology, these are p = q = 1, p = 2, q = 1,
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p = q = 2, and p = q = 3. For the CRS technology, the dimensions are p = q = 1;
p = 2, q = 1; p = 3, q = 1; and p = 5, q = 1.

Table 1 shows estimated coverages using methods (i)–(iii) listed above for the
case of the VRS-DEA estimator and the VRS technology. Since these methods use
normal approximations, no bootstrapping is required; this avoids some computa-
tional burden, and so experiments were performed in each case for sample sizes
n ∈ {100, 200, 500, 1,000, 5,000, 10,000} and with two, three, four, and six
dimensions as described earlier. Table 1 gives three sets of results corresponding
to methods (i)–(iii); in each set, estimated coverages of 90-, 95-, and 99-percent
confidence intervals are reported. Tables 2 and 3 are organized similarly, with
Table 2 giving results for the CRS-DEA estimator and the CRS technology, and
Table 3 showing results for the FDH estimator and the VRS technology.

Turning to the first column of results in Table 1 corresponding to method (i),
recall that Theorem 4.3 holds for κ ≥ 2/5. For the VRS-DEA estimator, under
VRS, this holds if and only if p + q ≤ 4. The results shown in column (i) of
Table 4.3 confirm that method (i) “works” in the sense that for a given number
of dimensions, coverages increase with sample size and approach the nominal
coverages (the results in the table show small decreases in coverages in some
cases when sample size is increased from 5,000 to 10,000, but the decreases are
not statistically significant). For given sample sizes, coverages worsen slightly as
the number of dimensions increases, as expected. However, with six dimensions
(p = q = 3), coverages obtained with method (i) are poor, and begin to decline
significantly when the sample size is increased from 5,000 to 10,000. This is to be
expected, since Theorem 4.3 holds in this case only if the number of dimensions
is no more than four.

Results shown for method (ii) in Table 1 are identical to those shown for method
(i) for p = q = 1 and p = 2, q = 1. This is due to the fact that, for the VRS-DEA
estimator, nκ = n. With p = q = 2 and p = q = 3, coverages attained by method
(ii) are greater, and closer to nominal values, than those achieved by method (i).
In particular, method (ii) does not break down for the six-dimensional case, unlike
method (i). With method (ii), achieved coverages are close to their nominal val-
ues with n = 500, even with six dimensions. For the case where (p + q) = 4,
coverages by method (ii) are better than those obtained with method (i) (i.e., closer
to nominal coverages) in every case, confirming the remarks in the last paragraph
of Section 4.

Coverages attained by method (iii) for p = q = 1 and p = 2, q = 1 are also
identical to those achieved by methods (i) and (ii), again due to the fact that
nκ = n in these cases. For p = q = 2, however, the coverages achieved by method
(iii) exceed nominal coverages for n ≥ 500; with p = q = 3, achieved coverages
are greater than nominal coverages for n ≥ 200. Recall from the discussion in
Section 4 that the intervals in (4.24) and (4.25) are of the same width, and differ
only in where they are centered. The width of the intervals in method (ii) reflects
the greater uncertainty in μ̂nκ , as opposed to μ̂n in method (iii). Since method (iii)
centers on an estimator of μθ with less mean-square error than does method (ii),
coverages of intervals constructed using method (iii) are larger than those
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TABLE 1. Coverages of estimated confidence intervals using VRS-DEA efficiency estimator

(i) (ii) (iii)
p q n .90 .95 .99 .90 .95 .99 .90 .95 .99

1 1 100 0.8120 0.8740 0.9530 0.8120 0.8740 0.9530 0.8120 0.8740 0.9530
1 1 200 0.8360 0.9050 0.9750 0.8360 0.9050 0.9750 0.8360 0.9050 0.9750
1 1 500 0.8660 0.9230 0.9830 0.8660 0.9230 0.9830 0.8660 0.9230 0.9830
1 1 1000 0.8710 0.9280 0.9830 0.8710 0.9280 0.9830 0.8710 0.9280 0.9830
1 1 5000 0.8870 0.9470 0.9940 0.8870 0.9470 0.9940 0.8870 0.9470 0.9940
1 1 10000 0.9120 0.9570 0.9920 0.9120 0.9570 0.9920 0.9120 0.9570 0.9920
2 1 100 0.7300 0.8220 0.9130 0.7300 0.8220 0.9130 0.7300 0.8220 0.9130
2 1 200 0.7960 0.8570 0.9490 0.7960 0.8570 0.9490 0.7960 0.8570 0.9490
2 1 500 0.8510 0.9030 0.9650 0.8510 0.9030 0.9650 0.8510 0.9030 0.9650
2 1 1000 0.8620 0.9310 0.9790 0.8620 0.9310 0.9790 0.8620 0.9310 0.9790
2 1 5000 0.8930 0.9500 0.9890 0.8930 0.9500 0.9890 0.8930 0.9500 0.9890
2 1 10000 0.8940 0.9450 0.9910 0.8940 0.9450 0.9910 0.8940 0.9450 0.9910
2 2 100 0.4270 0.5040 0.6450 0.6120 0.7040 0.8490 0.6560 0.7660 0.9000
2 2 200 0.5500 0.6350 0.7650 0.7290 0.8190 0.9350 0.8110 0.8880 0.9710
2 2 500 0.6920 0.7820 0.9070 0.8350 0.9020 0.9640 0.9490 0.9800 0.9980
2 2 1000 0.7930 0.8680 0.9440 0.8680 0.9080 0.9800 0.9880 0.9970 1.0000
2 2 5000 0.8710 0.9330 0.9820 0.8940 0.9530 0.9930 1.0000 1.0000 1.0000
2 2 10000 0.8660 0.9270 0.9770 0.8860 0.9460 0.9810 1.0000 1.0000 1.0000
3 3 100 0.1990 0.2470 0.3500 0.5860 0.6870 0.8390 0.6490 0.7690 0.9130
3 3 200 0.3300 0.3960 0.5280 0.7340 0.8140 0.9360 0.9020 0.9580 0.9970
3 3 500 0.4960 0.5680 0.7000 0.8580 0.9090 0.9750 0.9970 1.0000 1.0000
3 3 1000 0.6460 0.7380 0.8530 0.8740 0.9380 0.9860 1.0000 1.0000 1.0000
3 3 5000 0.7270 0.8100 0.9170 0.8840 0.9480 0.9860 1.0000 1.0000 1.0000
3 3 10000 0.6640 0.7410 0.8690 0.8880 0.9440 0.9890 1.0000 1.0000 1.0000
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TABLE 2. Coverages of estimated confidence intervals using CRS-DEA efficiency estimator

(i) (ii) (iii)
p q n .90 .95 .99 .90 .95 .99 .90 .95 .99

1 1 100 0.8980 0.9430 0.9860 0.8980 0.9430 0.9860 0.8980 0.9430 0.9860
1 1 200 0.8840 0.9340 0.9790 0.8840 0.9340 0.9790 0.8840 0.9340 0.9790
1 1 500 0.8980 0.9470 0.9880 0.8980 0.9470 0.9880 0.8980 0.9470 0.9880
1 1 1000 0.9010 0.9510 0.9900 0.9010 0.9510 0.9900 0.9010 0.9510 0.9900
1 1 5000 0.9050 0.9570 0.9930 0.9050 0.9570 0.9930 0.9050 0.9570 0.9930
1 1 10000 0.9070 0.9570 0.9920 0.9070 0.9570 0.9920 0.9070 0.9570 0.9920
2 1 100 0.8570 0.9080 0.9750 0.8570 0.9080 0.9750 0.8570 0.9080 0.9750
2 1 200 0.8650 0.9220 0.9780 0.8650 0.9220 0.9780 0.8650 0.9220 0.9780
2 1 500 0.8840 0.9380 0.9850 0.8840 0.9380 0.9850 0.8840 0.9380 0.9850
2 1 1000 0.8730 0.9280 0.9860 0.8730 0.9280 0.9860 0.8730 0.9280 0.9860
2 1 5000 0.9110 0.9500 0.9880 0.9110 0.9500 0.9880 0.9110 0.9500 0.9880
2 1 10000 0.9050 0.9570 0.9940 0.9050 0.9570 0.9940 0.9050 0.9570 0.9940
3 1 100 0.6590 0.7370 0.8590 0.6590 0.7370 0.8590 0.6590 0.7370 0.8590
3 1 200 0.7400 0.8160 0.9160 0.7400 0.8160 0.9160 0.7400 0.8160 0.9160
3 1 500 0.8160 0.8740 0.9440 0.8160 0.8740 0.9440 0.8160 0.8740 0.9440
3 1 1000 0.8280 0.8980 0.9690 0.8280 0.8980 0.9690 0.8280 0.8980 0.9690
3 1 5000 0.8690 0.9380 0.9900 0.8690 0.9380 0.9900 0.8690 0.9380 0.9900
3 1 10000 0.8930 0.9370 0.9900 0.8930 0.9370 0.9900 0.8930 0.9370 0.9900
5 1 100 0.1890 0.2350 0.3330 0.5110 0.6220 0.8090 0.5990 0.7070 0.8960
5 1 200 0.2120 0.2810 0.4140 0.5980 0.7100 0.8610 0.7200 0.8430 0.9650
5 1 500 0.2420 0.3170 0.4750 0.7140 0.8200 0.9320 0.9150 0.9680 1.0000
5 1 1000 0.2820 0.3640 0.5690 0.7990 0.8900 0.9650 0.9770 0.9980 1.0000
5 1 5000 0.3660 0.4750 0.6770 0.8460 0.9130 0.9760 0.9990 1.0000 1.0000
5 1 10000 0.5010 0.6150 0.7950 0.8760 0.9300 0.9800 1.0000 1.0000 1.0000
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TABLE 3. Coverages of estimated confidence intervals using FDH efficiency estimator

(i) (ii) (iii)
p q n .90 .95 .99 .90 .95 .99 .90 .95 .99

1 1 100 0.3810 0.4710 0.6390 0.3810 0.4710 0.6390 0.3810 0.4710 0.6390
1 1 200 0.4740 0.5640 0.7390 0.4740 0.5640 0.7390 0.4740 0.5640 0.7390
1 1 500 0.5950 0.6950 0.8320 0.5950 0.6950 0.8320 0.5950 0.6950 0.8320
1 1 1000 0.6570 0.7550 0.8930 0.6570 0.7550 0.8930 0.6570 0.7550 0.8930
1 1 5000 0.8130 0.8930 0.9710 0.8130 0.8930 0.9710 0.8130 0.8930 0.9710
1 1 10000 0.8620 0.9200 0.9800 0.8620 0.9200 0.9800 0.8620 0.9200 0.9800
2 1 100 0.2200 0.2780 0.3710 0.5260 0.6290 0.7720 0.5540 0.6710 0.8580
2 1 200 0.2570 0.3090 0.4440 0.6450 0.7470 0.8690 0.7360 0.8490 0.9620
2 1 500 0.3190 0.3990 0.5510 0.7540 0.8460 0.9500 0.9340 0.9760 1.0000
2 1 1000 0.4260 0.5160 0.6710 0.8220 0.8980 0.9690 0.9940 0.9980 1.0000
2 1 5000 0.6320 0.7410 0.8720 0.8740 0.9380 0.9890 1.0000 1.0000 1.0000
2 1 10000 0.7200 0.8170 0.9220 0.8920 0.9420 0.9870 1.0000 1.0000 1.0000
2 2 100 0.0130 0.0160 0.0310 0.2020 0.2680 0.4270 0.1560 0.2260 0.4330
2 2 200 0.0120 0.0130 0.0250 0.2870 0.3810 0.5600 0.2090 0.3410 0.6490
2 2 500 0.0030 0.0040 0.0110 0.4540 0.5620 0.7690 0.4560 0.6990 0.9630
2 2 1000 0.0030 0.0040 0.0110 0.5760 0.7050 0.8970 0.8020 0.9640 1.0000
2 2 5000 0.0030 0.0030 0.0080 0.8000 0.8760 0.9610 1.0000 1.0000 1.0000
2 2 10000 0.0070 0.0100 0.0230 0.8520 0.9130 0.9750 1.0000 1.0000 1.0000
3 3 100 0.0050 0.0070 0.0100 0.1440 0.1840 0.2840 0.1060 0.1630 0.3020
3 3 200 0.0000 0.0010 0.0020 0.1970 0.2670 0.4310 0.1360 0.2360 0.4880
3 3 500 0.0010 0.0010 0.0020 0.3040 0.3990 0.6300 0.2090 0.4380 0.8480
3 3 1000 0.0000 0.0000 0.0000 0.4100 0.5210 0.7570 0.3850 0.7040 0.9890
3 3 5000 0.0000 0.0000 0.0000 0.5700 0.6840 0.8710 0.8600 0.9980 1.0000
3 3 10000 0.0000 0.0000 0.0000 0.7740 0.8780 0.9710 1.0000 1.0000 1.0000
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constructed using method (ii). In addition, since the intervals obtained by
method (ii) have asymptotically correct coverage, the intervals from method (iii)
must necessarily have coverages larger than nominal values. The results in Table
1 show that the intervals from method (iii) eventually yield coverages of 100-
percent as the sample size is increased.

Ordinarily, one might reject intervals that cover in every case; typically, this
would happen when intervals are too wide to be informative. Here, however,
the situation is different—the intervals obtained from method (iii) are, by con-
struction, of exactly the same width as the intervals from method (ii) which
have asymptotically correct coverages. Although the interpretation might differ,
the intervals from method (iii) are more informative about μθ than those from
method (ii).

Turn now to the results in Table 2 obtained with the CRS-DEA estimator and
the CRS technology. Results obtained with methods (i)–(iii) are identical for the
cases with two, three, or four dimensions. This is due to the fact that for the
CRS-DEA estimator under CRS, nκ = n for p + q ≤ 4. Method (i) is seen in
Table 2 to “work” when the number of dimensions is two, three, or four,
but not when p+q = 6. Again, this is due to the fact that Theorem 4.3 is valid only
for κ ≥ 2/5, or p + q ≤ 5. Results for methods (i)–(iii) with the CRS-DEA esti-
mator are qualitatively similar to those for the VRS-DEA estimator. For smaller
numbers of dimensions, the coverages in Table 2 are in many cases closer to
the corresponding nominal coverages than are the coverages in Table 1 when the
sample size is 100 or 200. This may be due to the faster convergence rate of the
CRS-DEA estimator.

In the case of the FDH estimator, the condition κ ≥ 1/3 in Theorem 4.3 means
that p+q must be no more than three in order for method (i) to provide consistent
inference. The first column of results in Table 3 indicates that with the FDH es-
timator, method (i) yields good coverage when p = q = 1. The results also show
that coverage increases with sample size when p = 2, q = 1, but in fact coverages
are well short of their nominal levels even with n = 10,000 with three dimensions.
With four or six dimensions, coverages appear to tend toward zero as sample size
increases. By contrast, methods (ii) and (iii) are seen to yield coverages that are
qualitatively similar to those achieved with the VRS-DEA and CRS-DEA estima-
tors. For the case where (p+q) = 3, coverages by method (ii) are better than those
obtained with method (i) (i.e., closer to nominal coverages) in every case, again
confirming the remarks in the last paragraph of Section 4. With the FDH estima-
tor, coverages when n = 100 or 200 are smaller than with the DEA estimators,
but the coverages improve as sample size increases. One might reasonably expect
coverages in Table 3 to be smaller than corresponding coverages in Tables 1and 2
due to the slower convergence rate of the FDH estimator.

7. CONCLUSIONS

Nonparametric estimators (DEA or FDH) of efficiency are widely used in pro-
duction analysis. The statistical properties of estimators of individual efficiencies
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are well-known and bootstrap techniques have been developed for making
inference. This paper establishes asymptotic properties of statistics that are func-
tions of these estimators. The main difficulty is that in such statistics, the effi-
ciency estimators are evaluated at random data points, where some of them may
fall near the boundary of the attainable set.

We first establish new results for the asymptotic moments (mean, variance, and
covariances) of the efficiency estimators evaluated at random data points. We then
analyze a simple and useful statistic: the mean of the efficiency estimates over the
sample points. We consider the FDH, the VRS-DEA, and the CRS-DEA cases.

Our results show that the usual central limit theorems are not applicable unless
the dimension of the problem (i.e., the number of inputs and outputs) is exception-
ally small. The problem comes mainly from the bias of the individual efficiency
estimates, and the fact that this bias does not vanish at an appropriate rate, except
in cases involving small dimensions. For the general case, we overcome this prob-
lem by using a mean computed over a subsample of data points; the subsample
size is chosen to tune the bias and variance in order to obtain a stable, nondegen-
erate limiting distribution. We then propose a more general central limit theorem
for DEA or FDH efficiency estimators.

In all cases, it is still necessary to remove the bias. This is accomplished
using an estimator of the bias that allows construction of confidence intervals
using normal quantiles, thereby avoiding computationally burdensome bootstrap
techniques. Monte-Carlo experiments confirm our theoretical results.

We show that our results can be extended to more sophisticated statistics,
e.g., to OLS estimators that are sometimes used in the literature as part of a
second-stage analysis to explain the variation in estimated efficiencies in terms
of environmental factors, for cases where such two-stage analysis is appropri-
ate. Future developments include extensions to various testing problems men-
tioned in Section 1, nonparametric second stage regressions along the lines of
Lewbel and Linton (2002), etc. Although it is rather uncommon to find situations
in econometrics where the bias of a statistic is of larger order than its standard
deviation, a similar situation arises in Daouia, Florens, and Simar (2012) where
a regularized, trimming estimator instead of an extreme value estimator linked to
the limiting Weibull distribution is used to estimate a nonparametric boundary.
The trimming estimator is found to have a normal limiting distribution, and when
the trimming parameter m → ∞ at an appropriate rate, the resulting estimator
has a limiting standard normal distribution when scaled by the appropriate rate
of convergence. However, the bias introduced by the trimming is of larger order
than this rate. Daouia et al. (2012) introduce a specific estimator of the bias; the
bias estimator is based on regularity conditions on the behavior of the density of
the data near the boundary. The method developed in this paper might be a useful,
perhaps less-restrictive alternative for estimating the bias term in more general
frameworks. In addition, our results might be useful in truncated regression prob-
lems such as the one considered by Khan and Lewbel (2007), where the point
at which the left-hand side variable is truncated is unknown, and the truncation
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induces truncation of the right-hand side variables; Khan and Lewbel are con-
cerned with multivariate support boundaries in the first stage of their estimation,
which is similar to the problem in our context.

NOTES

1. On November 19, 2013, Google Scholar returned about 179,000 results for “DEA” and
“efficiency” and about 10,700 results for “FDH” and “efficiency.”

2. Recall that nonzero difference in means is a necessary, but not sufficient, condition for first-
order stochastic dominance.

3. Note that as usual, inequalities involving vectors are defined on an element-by-element basis.
4. Afriat (1972, Thm. 1.1) defines a left- (but not right-) continuous function similar to the FDH

estimator �̂FDH(Xn) for the case p ≥ 1, q = 1. However, �̂FDH(Xn) is not a function and is defined
for arbitrary p ≥ 1 as well as q ≥ 1. Moreover, Afriat’s function does not permit measurement of
efficiency in the input direction, nor (in general) in hyperbolic or directional orientations.

5. We use θ(Xi ,Yi ) to denote the true efficiency of a random point (Xi ,Yi ), and we replace
(Xi ,Yi ) with (x, y) to denote the estimated and true efficiencies of a fixed, nonrandom point (x, y).
This notation will be used as necessary to avoid confusion.

6. By “fixed point,” we mean a point chosen, perhaps arbitrarily, by the researcher. This could
correspond to one of the observed input–output pairs, or could represent an hypothetical firm. In
either case, the point is nonstochastic and is not a realization of the random variables (Xi ,Yi ).

7. Assumption 3.6 is slightly stronger, but much simpler than assumptions AII–AIII in Park et al.
(2000).

8. It is well known that the nonparametric DEA and FDH estimators suffer from the curse of di-
mensionality, meaning that convergence rates decrease as (p+q) increases. For purposes of estimating
mean efficiency, the results here indicate that the curse is even worse than before, with the “explosion”
of bias coming at much smaller numbers of dimensions than found in many applied studies.

9. Note that one can often use a delete-k jackknife with samples of size (n −k) to correct for bias.
However, this does not allow us to obtain the result in Theorem 4.3, where the jackknife samples must
be a fixed, constant multiplicative factor of n.

10. OLS is used here only as an illustration; in practice, one would use truncated regression or other
methods as appropriate. The arguments given below are relevant to other second-stage specifications
such as the truncated normal regression described in Simar and Wilson (2007) or the nonparametric
truncated regression discussed by Park et al. (2008).

11. Points uniformly distributed on the surface of a hypersphere are generated using the method of
Muller (1959) and Marsaglia (1972).
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