
Inference in Dynamic, Nonparametric Models of
Production: Central Limit Theorems for

Malmquist Indices
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Abstract
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1 Introduction

Malmquist indices for measurement of productivity change in dynamic contexts are based

on the quantity index of Malmquist (1953), with adaptation to the production framework

by Caves et al. (1982) and Nishimizu and Page (1982). Malmquist indices are widely used to

measure productivity change over time, and are often estimated using nonparametric, data

envelopment analysis (DEA) estimators due to the work of Färe et al. (1992).1 Applied re-

searchers typically report geometric means of estimates of Malmquist indices, and sometimes

report estimates of Malmquist indices for individual producers.

Most papers appearing in the literature presenting empirical estimates of Malmquist

indices make no attempt at inference. The few that attempt inference either rely on standard

central limit theorem (CLT) results (e.g., the Lindeberg-Feller CLT) or the bootstrap method

proposed by Simar and Wilson (1999). Inference relying on standard CLT results is invalid

for cases with more than one input and one output as shown below due to reasons similar

to those given by Kneip et al. (2015) in the context of mean efficiency in a cross-sectional

setting. Alternatively, Simar and Wilson (1999) provide only heuristic arguments to develop

their bootstrap method without any theoretical results. Although the simulation evidence

provided by Simar and Wilson seems to indicate that the smooth bootstrap on which the

method of Simar and Wilson (1999) is based works well, the approach cannot be justified

from a theoretical viewpoint due to the results obtained below.

This paper provides the theoretical developments needed to make inference about pro-

ductivity change measured by Malmquist indices, both in the case of individual firms and

the case of geometric means over a sample of firms. In particular, the properties of a Farrell

(1957)-type estimator of distance to the boundary of the convex cone of the production set

are developed. Additional results are then developed to permit the sub-sampling approach

of Simar and Wilson (2011) to be used to make inference about the Malmquist index for

a single firm. We also provide new CLTs that permit inference about geometric means of

Malmquist indices across multiple firms. These in turn can be used to make statistical tests

regarding differences in mean productivity change across groups of firms, along the lines of

Kneip et al. (2016).

1 A search on 5 February 2018 using Google Scholar and the keywords “Malmquist,” “index” and “pro-
ductivity” and excluding patents or citations yields approximately 15,400 papers and books.
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Färe et al. (1992) explicitly assume constant returns to scale, as do others, and estimate

their Malmquist index while imposing constant returns to scale on their nonparametric

estimators. Grifell-Tatjé and Lovell (1995) note that others estimate Malmquist indices

while allowing for variable returns to scale, and discuss the consequences of doing so. In

fact, whether the underlying technology exhibits constant or variable returns to scale is

a red herring; what is required is that the Malmquist index must be defined in terms of

the convex cone of the production set in order to be properly interpreted as a measure of

productivity change. At a given point in time, the convexity test developed by Kneip et al.

(2016) can be used to test constant returns to scale versus variable returns to scale.

Malmquist indices present several problems for statistical inference. First, Malmquist

indices for individual firms observed at times t ∈ {1, 2} are defined in terms of a geometric

mean of two ratios of Farrell (1957) efficiency measures. Even if the underlying technology

exhibits global constant returns to scale, one cannot simply replace the true efficiency mea-

sures with corresponding DEA estimates (imposing constant returns to scale) and then rely

on the results of Park et al. (2010) and Kneip et al. (2015) to make inference due to the

definition in terms of ratios and a geometric mean. Second, if the underlying technology

exhibits variable returns to scale, there are no results (to date) on estimates of measures of

distance from an observed point in input-output space to the boundary of the convex cone of

the variable-returns-to-scale production set. Third, if the applied researcher wants to report

the geometric mean of estimated estimated Malmquist indices over the firms in his sample,

neither standard CLTs nor the CLTs for sample means of nonparametric efficiency estimates

developed by Kneip et al. (2015) can be used for inference.

These issues are addressed below as follows. Section 2 defines notation, lays out a sta-

tistical model and introduces the relevant estimators. Section 3 provides the theoretical

developments, first for the static case and then for the dynamic case. These results are then

used in Section 4 to provide methods for making inferences about productivity change and

for testing hypotheses about productivity change. Simulation results showing how well the

methods for inference can be expected to perform are given in Section 5, while Section 6

gives a summary and conclusions. Proofs and technical details appear in Appendix A.
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2 A Dynamic, Nonparametric Production Process

2.1 A Statistical Model

In order to establish notation, let x ∈ Rp
+ and y ∈ Rq

+ be vectors of fixed input and output

quantities. Throughout, vectors are assumed to be column-vectors, as opposed to row-

vectors. At time t, the set of feasible combinations of inputs and outputs is given by

Ψt := {(x, y) | x can produce y at time t} . (2.1)

The technology, or efficient frontier of Ψt, is given by

Ψt∂ :=
{

(x, y) | (x, y) ∈ Ψt, (γx, γ−1y) 6∈ Ψt ∀ γ ∈ (0, 1)
}
. (2.2)

Various economic assumptions regarding Ψt can be made; the assumptions of Shephard

(1970) and Färe (1988) are typical and are used here.

Assumption 2.1. Ψt is closed and strictly convex.

Assumption 2.2. (x, y) 6∈ Ψt if x = 0, y ≥ 0, y 6= 0; i.e., all production requires use of

some inputs.

Assumption 2.3. For x̃ ≥ x, ỹ ≤ y, if (x, y) ∈ Ψ then (x̃, y) ∈ Ψt and (x, ỹ) ∈ Ψt; i.e.,

both inputs and outputs are strongly disposable.

Here and throughout, inequalities involving vectors are defined on an element-by-element

basis, as is standard. Assumption 2.3 imposes weak monotonicity on the frontier, and is

standard in microeconomic theory of the firm.

The Farrell (1957) output efficiency measure at time t measures the feasible proportionate

expansion of output quantities and is defined by

λ(x, y | Ψt) := sup
{
λ | (x, λy) ∈ Ψt

}
. (2.3)

This gives a radial measure of efficiency since all output quantities are scaled by the same

factor λ. The Farrell (1957) input efficiency measure at time t is given by

θ(x, y | Ψt) := inf
{
θ | (θx, y) ∈ Ψt

}
(2.4)
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and measures efficiency in terms of the amount by which input levels can be scaled downward

by the same factor without reducing output levels. Clearly, λ(x, y | Ψt) ≥ 1 and θ(x, y |
Ψt) ≤ 1 for all (x, y) ∈ Ψt.

An alternative measure of efficiency is the hyperbolic graph measure of efficiency at time

t introduced by Färe et al. (1985), i.e.,

γ(x, y | Ψt) := inf
{
γ > 0 | (γx, γ−1y) ∈ Ψt

}
. (2.5)

By construction, γ(x, y | Ψt) ≤ 1 for (x, y) ∈ Ψt. Just as the measures θ(x, y | Ψt) and

λ(x, y | Ψt) provide measures of the technical efficiency of a firm operating at a point

(x, y) ∈ Ψt, so does γ(x, y | Ψt), but along a hyperbolic path to the frontier of Ψt. The

measure in (2.5) gives the amount by which input levels can be feasibly, proportionately

scaled downward while simultaneously scaling output levels upward by the same proportion.

Now, for (x, y) ∈ Rp+q, define

L(x, y) := {(x̃, ỹ) | x̃ = ax, ỹ = ay ∀ a ∈ R1
+)}. (2.6)

Then L(x, y) is the set of points in the ray emanating from the origin and passing through

the point (x, y) ∈ Rp+q
+ .

Next, define the operator C(·) so that

C(Ψt) := {L(x, y) | (x, y) ∈ Ψt} (2.7)

is the convex cone of the set Ψt. Note that this is a pointed cone (i.e., C(Ψt) includes

{(0, 0)}). Analogous to (2.2), the frontier of this set is given by

C∂(Ψt) :=
{
L(x, y) | L(x, y) ∈ C(Ψt), L(x, λy) 6∈ C(Ψt) for any λ ∈ (1,∞)

}
. (2.8)

If C(Ψt) = Ψt, then the frontier Ψt∂ at time t exhibits globally constant returns to scale

(CRS), although this is ruled out by strict convexity of Ψt in Assumption 2.1. Otherwise,

Ψt ⊂ C(Ψt) and Ψt∂ is said to exhibit variable returns to scale (VRS), with returns to scale

either increasing, constant, or decreasing depending on the particular region of the frontier.

It is well known that the choice of orientation (either input or output) can have a large

impact on measured efficiency. As discussed by Wilson (2011), under VRS, a large firm

could conceivably lie close to the frontier in the output direction, but far from the frontier
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the input direction. Similarly, a small firm might lie close to the frontier in the input

direction, but far from the frontier in the output direction. Such differences are related to

the slope and curvature of the frontier. Moreover, there seems to be no criteria telling the

applied researcher whether to use the input- or output-orientation. The hyperbolic measure

in (2.5) can be viewed as a compromise between the two extremes (i.e., input or output

orientations).

Now consider a sample Xn = {(X1
i , Y

1
i ), (X2

i , Y
2
i )}ni=1 of input-output combinations for

n firms observed in periods t = 1 and 2. Firm i’s change in productivity between periods 1

and 2 is measured by the hyperbolic Malmquist index

Mi :=

(
γ (X2

i , Y
2
i | C(Ψ1))

γ (X1
i , Y

1
i | C(Ψ1))

× γ (X2
i , Y

2
i | C(Ψ2))

γ (X1
i , Y

1
i | C(Ψ2))

)1/2

. (2.9)

This is the geometric mean of two ratios, each providing a measure of productivity change,

in the first case using the boundary of C(Ψ1) as a benchmark, and in the second case using

the boundary of C(Ψ2) as a benchmark. For firm i, Mi (>, = or <) 1 if productivity

(increases, remains unchanged or decreases) between periods 1 and 2.

In addition to estimating Mi for individual firms, applied researchers (e.g., Ball et al.,

2004) often report estimates of geometric means

Mn =

(
n∏
i=1

Mi

)1/n

(2.10)

of Malmquist indices for each of n firms. Interest lies in whether such means are signifi-

cantly greater than or less than 1. Similarly, geometric means of estimates of components of

Malmquist indices are are also often reported. In the literature, geometric means are used

to define Malmquist indices and to measure average productivity change over firms due to

the multiplicative nature of radial efficiency measures such as those defined in (2.4), (2.3),

and (2.5).

Of course, the production sets Ψt, t ∈ {1, 2} and their frontiers are unobserved, and

must be estimated from data. Due to this, the efficiency measures defined in (2.4), (2.3),

and (2.5) are also unobserved, as are Mi and Mn defined in (2.9) and (2.10). All of these

must be estimated, and inference is needed in order to have any idea of what is learned

from the available data. In turn, the results of Bahadur and Savage (1956) make clear the

necessity of a statistical model in order to make inference.
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The following assumptions are analogous to Assumptions 3.1–3.4 of Kneip et al. (2015).

Here, the assumptions below are understood to hold at time t, or when considering two

points in time, they must hold at both points in time. In order to draw upon previous

results, we state the assumptions below in terms of the input-oriented measure of efficiency.

Of course one could also state the assumptions in terms of the output-oriented or hyperbolic

efficiency measures introduced above as will be made clear by Lemma 3.1 which appears

below in Section 3.

Assumption 2.4. (i) The random variables (X t, Y t) possess a joint density f t with support

Dt ⊂ Ψt; and (ii) f t is continuously differentiable on Dt.

Assumption 2.5. (i) Dt∗ := {θ(x, y | Ψt)x, y) | (x, y) ∈ Dt} ⊂ Dt; (ii) Dt∗ is compact; and

(iii) f(θ(x, y)x, y) > 0 for all (x, y) ∈ D.

Recalling that the strong (i.e., free) disposability assumed in Assumption 2.3 implies

that the frontier is weakly monotone, the next assumption strengthens this by requiring the

frontier to be sufficiently smooth to obtain results on moments of DEA estimators.

Assumption 2.6. θ(x, y | Ψt) is three times continuously differentiable on Dt.

In addition, the VRS-DEA estimator described below in Section 2.2 requires the following

assumption.

Assumption 2.7. Dt is almost strictly convex; i.e., for any (x, y), (x̃, ỹ) ∈ Dt with ( x
‖x‖ , y) 6=

( x̃
‖x̃‖ , ỹ), the set {(x∗, y∗) | (x∗, y∗) = (x, y)+α((x̃, ỹ)−(x, y)) for some 0 < α < 1} is a subset

of the interior of Dt.

Assumptions 2.1–2.7 comprise a statistical model similar to the one defined in Kneip

et al. (2015). Some additional assumptions will be necessary for establishing properties of

estimators of Mi and Mn, but these are introduced later as needed.

2.2 DEA Estimators

Given the sample Xn, the production set Ψt can be estimated for t ∈ {1, 2} by

Ψ̂t =
{

(x, y) ∈ Rp+q
+ | y ≤ Y tω, x ≥X tω, i′nω = 1, ω ∈ Rn

+

}
(2.11)
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where X t =
[
X t

1 . . . X t
n

]
, where Y t =

[
Y t

1 . . . Y t
n

]
, and in denotes an n-vector of ones.

Note that for t = 1, only the pairs (X1
i , Y

1
i ) in Xn are used; similarly, for t = 2, only the

pairs (X2
i , Y

2
i ) are used.

Substituting for Ψt in (2.3)–(2.5) leads to the variable returns to scale DEA (VRS-DEA)

estimators

λ(x, y | Ψ̂t) = max
λ,ω

{
λ | λy ≤ Y tω, x ≥X tω, i′nω = 1, ω ∈ Rn

+

}
, (2.12)

θ(x, y | Ψ̂t) = min
θ,ω

{
θ | y ≤ Y tω, θx ≥X tω, i′nω = 1, ω ∈ Rn

+

}
(2.13)

and

γ(x, y | Ψ̂t) = min
γ,ω

{
θ | γ−1y ≤ Y tω, γx ≥X tω, i′nω = 1, ω ∈ Rn

+

}
(2.14)

of λ(x, y | Ψt), θ(x, y | Ψt) and γ(x, y | Ψt) (respectively). The estimators λ(x, y | Ψ̂t) and

θ(x, y | Ψ̂t) can be computed using standard linear programming methods, while Wilson

(2011) gives a numerical algorithm for computation of γ(x, y | Ψ̂t). Asymptotic properties of

the input-oriented VRS-DEA estimator of θ(x, y | Ψt) are developed by Kneip et al. (1998),

Jeong (2004), Jeong and Park (2006), and Kneip et al. (2008, 2015). These results extend

to the output-oriented VRS-DEA estimator of λ(x, y | Ψt) after straightforward changes

in notation. Wilson (2011) extends the asymptotic results to the VRS-DEA estimator of

γ(x, y, | Ψt). In each case, under appropriate assumptions, the VRS-DEA estimators are

consistent, have non-degenerate limiting distributions, and converge at rate n2/(p+q+1) under

variable returns to scale. See Simar and Wilson (2013, 2015) for summary and discussion.

The convex cone C(Ψt) of Ψt is estimated by C(Ψ̂t) obtained by dropping the constraint

inω = 1 in (2.11). Substituting for Ψt in (2.3)–(2.5) leads to the conical-DEA (CDEA)

estimators λ(x, y | C(Ψ̂t)), θ(x, y | C(Ψ̂t)) and γ(x, y | C(Ψ̂t) of λ(x, y | C(Ψt)), θ(x, y | C(Ψt))

and γ(x, y | C(Ψt)) corresponding to (2.12)–(2.14) after dropping the constraint i′nω = 1

(respectively). As with the DEA estimators, CDEA estimators λ(x, y | C(Ψt)) θ(x, y | C(Ψt))

can be computed by standard linear programming methods (again, see Simar and Wilson,

2013 for details), and γ(x, y | C(Ψt)) can be computed from the other two estimators due

to Lemma 3.2 below. In the input-oriented case under constant returns to scale (i.e., when

Ψt = C(Ψt)) and appropriate regularity conditions, properties of the CDEA estimator θ(x, y |
C(Ψ̂t)) are provided by Park et al. (2010). Due to Lemmas 3.1 and 3.2 that appear below
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in Section 3, these results extend trivially to the hyperbolic and output-oriented estimators.

Under constant returns to scale and other appropriate assumptions given by Park et al.

(2010), C(Ψt) = Ψt and each of the efficiency estimators λ(x, y | C(Ψ̂t)), θ(x, y | C(Ψ̂t)) and

γ(x, y | C(Ψ̂t) are consistent, with non-degenerate limiting distributions, and converge at

rate n2/(p+q). But under variable returns to scale where C(Ψt) 6= Ψt, the properties of these

estimators are (until now) unknown when used to estimate distance to C∂(Ψt).

An estimator M̂i of the Malmquist index defined in (2.9) is obtained by replacing Ψt

with Ψ̂t in (2.9), i.e., by replacing the four unknown, true efficiency measures with their

corresponding estimators. Note, however, that in applied work the question of whether Ψt∂

exhibits globally constant returns to scale is an empirical question. Kneip et al. (2016)

provide a test of constant versus variable returns to scale, but even if the null of constant

returns is not rejected, this does not mean that Ψt∂ is characterized by constant returns to

scale in the sense that failure to reject the null does not provide evidence that the null is

true. Properties of the input-oriented VRS-DEA estimator under constant returns to scale

are established by Kneip et al. (2016), and these extend trivially to the output-oriented and

hyperbolic cases. But the Malmquist index defined in (2.9) is defined in terms of distance

functions γ(Xs
i , Y

s
i | C(Ψt)) for s, t ∈ {1, 2}, but unless constant returns to scale prevails,

the properties of CDEA estimators of such distances are (until now) unknown.

In order to estimate and make inference about the Malmquist index in (2.9) and geometric

means of Malmquist indices such as (2.10), some additional results are needed. These are

developed in the next section.

3 Theoretical Results

3.1 Static case

In this section, we omit the superscript t denoting time in order to simplify notation. The

superscript is retained where ambiguity would result without it, e.g., when considering more

than one point in time. The results derived below are understood to hold for all values of t

for which the assumptions in Section 2 are satisfied.

The first two results, although not new (see, e.g., Färe et al., 1985) are useful for estab-

lishing properties of estimators of distance to the boundary C∂(Ψ) of the convex cone C(Ψ)
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of Ψ.

Lemma 3.1. Under Assumptions 2.1–2.3, For any (x, y) ∈ Ψ, (i) θ(x, y | C(Ψ))1/2 = λ(x, y |
C(Ψ))−1/2 = γ(x, y | C(Ψ)). In addition, for any (x̃, ỹ) ∈ L(x, y) with (x, y) ∈ Rp+q

+ , (ii)

λ(x, y | C(Ψ)) = λ(x̃, ỹ | C(Ψ)); (iii) θ(x, y | C(Ψ)) = θ(x̃, ỹ | C(Ψ)); and (iv) γ(x, y |
C(Ψ)) = γ(x̃, ỹ | C(Ψ)).

Lemma 3.2. Under Assumptions 2.1–2.3, For any (x, y) ∈ Ψ̂, (i) θ(x, y | C(Ψ̂))1/2 =

λ(x, y | C(Ψ̂))−1/2 = γ(x, y | C(Ψ̂)). In addition, for any (x̃, ỹ) ∈ L(x, y), (x, y) ∈ Rp+q
+ ,

(ii) λ(x, y | C(Ψ̂)) = λ(x̃, ỹ | C(Ψ̂)); (iii) θ(x, y | C(Ψ̂)) = θ(x̃, ỹ | C(Ψ̂)); and (iv) γ(x, y |
C(Ψ̂)) = γ(x̃, ỹ | C(Ψ̂)).

Lemmas 3.1 and 3.2 establish relationships between input, output, and hyperbolic mea-

sures of distance to frontiers of the convex cones C(Ψ) and C(Ψ̂). However, no such relation-

ships exist between measures of distance to frontiers of either Ψ and Ψ̂ when Ψ 6= C(Ψ) and

Ψ̂ 6= C(Ψ̂).

To further simplify notation and derivations, we now focus on the input-orientation. For

purposes of measuring distances to the boundary of the convex cone of Ψ, Lemmas 3.1 and

3.2 permit trivial extensions of results obtained for the input-oriented case to the hyperbolic

and output-oriented cases. Furthermore, focusing on the input orientation allows us to use

analytic methods similar to those used in Kneip et al. (2015) to establish moment properties

for the input-oriented VRS-DEA estimator. In addition, define θ(x, y) := θ(x, y | Ψ) and

θC(x, y) := θC(x, y | C(Ψ)) to reduce notational complexity where ambiguity does not result.

Analogously, define θ̂(x, y) := θ(x, y | Ψ̂) and θ̂C(x, y) := θC(x, y | C(Ψ̂)).

Note that for a point (x, y) ∈ D the input-oriented efficiency θC(x, y) can be written as2

θC(x, y) = min
a>0

{
θ(x, ay)

a
| (θ(x, ay)x, ay) ∈ Ψ

}
. (3.1)

In addition, let ax,ymin ∈ R+ denote the smallest a > 0 such that

θC(x, y) =
θ(x, ax,yminy)

ax,ymin
= min

a>0

{
θ(x, ay)

a
| (θ(x, ay)x, ay) ∈ Ψ

}
. (3.2)

2 For any efficiency estimator θ(x, y) considered in this section we will use the following conventions: if

(x, y) 6∈ Ψ with (bx, y) ∈ Ψ for some b > 1 we set θ(x, y) = bθ(bx, y). Otherwise, θ(x, y) := 1 (or θ̂(x, y) := 1)
whenever the set of all possible values satisfying the defining inequalities is the empty set. Asymptotically,
this has negligible effect.
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Necessarily, ax,ymin ∈ R+ is uniquely defined if Ψ is strictly convex.

Recall that due to Assumptions 2.4–2.7, the support of any observable data in each period

t is some subset D ≡ Dt ⊂ Ψ ≡ Ψt. In other words, D is the “observable part” of Ψ. The

difference between D and Ψ does not play an important role in Kneip et al. (2008, 2015

and 2016) since Assumption 2.5 requires (i) (θ(x, y)x, y) ∈ D for (θ(x, y)x, y) ∈ D and (ii)

f(θ(x, y)x, y) > 0. Here, however, the difference between D and Ψ is problematic for dealing

with θC(x, y). Furthermore, in order to ensure that Malmquist indices are well-defined, Dt

and Ds must “fit together” for different periods t, s. Therefore, some additional conceptual

work is necessary.

Let

Dnorm :=

{(
x

‖x‖
,
y

‖y‖

)
| (x, y) ∈ D

}
. (3.3)

If p + q = 2 then trivially Dnorm = {(1, 1)}. But when p + q > 2, Dnorm will quantify the

set of all possible “directions” of vectors x and y where it is possible to define a frontier.

Note that for any (x̃, ỹ) with ‖x̃‖ = 1 and ‖ỹ‖ = 1 and (x̃, ỹ) /∈ Dnorm, we necessarily have

{ax̃, bỹ | a, b > 0} ∩ D = ∅. This means that “in the direction” of (x̃, ỹ) it is not possible

to define any type of identifiable efficiency measure, since there is no information about an

efficient frontier in such directions.3

Introduction of Dnorm is of particular importance in a dynamic context where efficiencies

in two different time periods t and s are to be compared. Frontiers may change and we

may have different supports Dt and Ds in the two periods. However, it is necessary that

Dtnorm = Dsnorm. Otherwise, there will be observations in one period for which distance to

the other-period frontier cannot be defined. In this case Malmquist indices will be undefined

with non-zero, non-negligible probability.

On the other hand, for any
(

x
‖x‖ ,

y
‖y‖

)
∈ Dnorm there exists a unique ray defining the

corresponding part of the conical hull frontier C∂(Ψ). This can easily be seen by letting(
x
‖x‖ ,

y
‖y‖

)
∈ Dnorm. In addition, for a > 0, define

g̃x

(
a
y

‖y‖

)
:= min

b>0

{
b
x

‖x‖
|
(
b
x

‖x‖
, a

y

‖y‖

)
∈ Ψ

}
. (3.4)

3 Under the strong disposability assumed in Assumption 2.3, the DEA and CDEA estimators of θ(x, y)
and θC(x, y) described above in Section 2.2 are well-defined and can be computed, but they do not estimate
anything that does not depend entirely upon Assumption 2.3 or that can be identified from data when
(x, y) 6∈ Dnorm.
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Then there exists some αx,ymin > 0 such that

g̃x(α
x,y
min

y
‖y‖)

αx,ymin
= min

a>0

{
g̃x(a

y
‖y‖)

a
|
(
gx

(
a
y

‖y‖

)
x

‖x‖
, a

y

‖y‖

)
∈ Ψ

}
(3.5)

where αx,ymin ∈ R+ is necessarily uniquely defined if Ψ is strictly convex.4

Assuming that only values a leading to well-defined frontier points are taken into account,

for any (x, y) ∈ D we now have

min
a>0

θ(x, ay)

a
= min

a>0

g̃x(‖y‖a y
‖y‖)

‖x‖a
=
‖y‖
‖x‖

min
a>0

g̃x(‖y‖a y
‖y‖)

‖y‖a
=
‖y‖
‖x‖

g̃x(α
x,y
min

y
‖y‖)

αx,ymin
, (3.6)

and ax,ymin defined in (3.2) satisfies ax,ymin =
αx,ymin
‖y‖ .

Obviously, all we can hope to estimate is the version of (3.5) where Ψ is replaced by the

observable part D ⊂ Ψ. If αx,ymin ∈ R+ is such that (gx(α
x,y
min

y
‖y‖)

x
‖x‖ , α

x,y
min

y
‖y‖) /∈ D, then it is

impossible to estimate θC(x, y) consistently. Minimizing (3.5) with respect to D instead of Ψ

will then lead to a “boundary solution” α∗ ∈ D which is “as close as possible” to αx,ymin ∈ R+.

This can only be avoided by assuming that D is large enough such that (when minimizing

(3.5) over D instead of Ψ) the solution ax,ymin ∈ R+ is in the interior of D in the sense that

(gx((α
x,y
min−δ)

y
‖y‖)

x
‖x‖ , (α

x,y
min−δ)

y
‖y‖) ∈ D as well as (gx((α

x,y
min+δ) y

‖y‖)
x
‖x‖ , (αx,ymin+δ) y

‖y‖) ∈ D.

Since D is almost strictly convex by Assumption 2.7, αx,ymin ∈ R+ is necessarily unique, and
g̃x((ax,ymin−δ)

y
‖y‖ )

(ax,ymin−δ)
>

g̃x(αx,ymin
y
‖y‖ )

αx,ymin
as well as

g̃x((αx,ymin+δ) y
‖y‖ )

(αx,ymin+δ)
>

g̃x(αx,ymin
y
‖y‖ )

αx,ymin
. Convexity of Ψ then

necessarily implies implies that this value αx,ymin ∈ R+ also corresponds to the solution of the

original minimization problem with respect to Ψ. In this sense the following assumption

ensures well-defined estimators of θC(x, y).

Assumption 3.1. (i) The support D ⊂ Ψ of f is such that for any ( x
‖x‖ ,

y
‖y‖) ∈ Dnorm we have

(g̃x(α
x,y
min

y
‖y‖)

x
‖x‖ , α

x,y
min

y
‖y‖) ∈ D; (ii) there exists a δ > 0 such that for any ( x

‖x‖ ,
y
‖y‖) ∈ Dnorm

we also have (g̃x([α
x,y
min−δ]

y
‖y‖)

x
‖x‖ , [α

x,y
min−δ]

y
‖y‖) ∈ D and (g̃x([α

x,y
min+δ] y

‖y‖)
x
‖x‖ , [α

x,y
min+δ] y

‖y‖) ∈
D; (iii) There exists a constant 0 < M <∞ such that ‖x‖ ≤M for all (x, y) ∈ D.

Remark 3.1. Part (iii) of Assumption 3.1 is necessary to guarantee existence of moments.

Although moments necessarily exist for θC(Xi, Yi) ∈ (0, 1], | log θC(Xi, Yi)| is potentially un-

4 Note that g̃x

(
a y
‖y‖

)
corresponds to the function gx

(
0, a y
‖y‖

)
defined in Kneip et al. (2008). The

coordinate system introduced in Kneip et al. (2008) is not needed here, but is required in the proofs that
follow in Appendix A.
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bounded. Moreover, up to this point we have only assumed compactness of D∗ and not neces-

sarily of D. In principle, (iii) could be replaced by a weaker version requiring only existence

of all relevant moments, but boundedness of ‖x‖ greatly simplifies asymptotic arguments that

follow.

Since by Assumption 2.7 D is almost strictly convex (i.e., its frontier does not contain a

straight segment), Assumption (3.1) ensures that αx,ymin > 0 is uniquely defined for any (x, y)

with
(

x
‖x‖ ,

y
‖y‖

)
∈ Dnorm. The above arguments then imply that the ray

L
(
g̃x(α

x,y
min

y

‖y‖
)
x

‖x‖
, αx,ymin

y

‖y‖

)
⊂ C∂(Ψ) (3.7)

defines the part of the frontier of C(Ψ) corresponding to the specific vector
(

x
‖x‖ ,

y
‖y‖

)
∈

Dnorm.

Next, note that for any (x̃, ỹ) with x̃‖x̃‖−1 = x‖x‖−1 and ỹ‖ỹ‖−1 = y‖y‖−1 we have

(x̃, ỹ) =

(
‖x̃‖ x

‖x‖
, ‖ỹ‖ y

‖y‖

)
=

(
‖x̃‖

g̃x(α
x,y
min

y
‖y‖)

g̃x

(
αx,ymin

y

‖y‖

)
x

‖x‖
,
‖ỹ‖
αx,ymin

αx,ymin
y

‖y‖

)

=

((
‖x̃‖αx,ymin

g̃x(α
x,y
min

y
‖y‖)‖ỹ‖

)
·
(
‖ỹ‖
αx,ymin

)
· g̃x
(
αx,ymin

y

‖y‖

)
x

‖x‖
,

(
‖ỹ‖
αx,ymin

)
· αx,ymin

y

‖y‖

)
(3.8)

which implies

θC(x̃, ỹ) =
‖ỹ‖
‖x̃‖

g̃x

(
αx,ymin

y
‖y‖

)
αx,ymin

= argmin

{
θ | (θx̃, ỹ) ∈ L

(
g̃x

(
αx,ymin

y

‖y‖

)
x

‖x‖
, αx,ymin

y

‖y‖

)
⊂ C∂(Ψ)

)
. (3.9)

This shows that we can define an input-oriented efficiency measure for any (x̃, ỹ) ∈ {bx, ay |
a, b > 0,

(
x
‖x‖ ,

y
‖y‖

)
∈ Dnorm}, i.e. θC(x̃, ỹ) is well-defined even if (x̃, ỹ) /∈ D. The same then

holds for the hyperbolic graph measure γ(x̃, ỹ) which by Lemma 3.1 can be represented by

γ(x̃, ỹ) = θC(x̃, ỹ)1/2 =

(
‖ỹ‖
‖x̃‖

)1/2
(
g̃x(α

x,y
min

y
‖y‖)

αx,ymin

)1/2

. (3.10)

The result in (3.10) provides a basis for defining Malmquist indices for data from different

periods t, s with Dt 6= Ds. Recall, however, that Dtnorm = Dsnorm is a necessary condition to

12



ensure that (3.9) and (3.10) are well defined for all points (x, y) := (X t
i , Y

t
i ) and (x, y) :=

(Xs
i , Y

s
i ).

Relying on the VRS-DEA estimator, the estimator θ̂C(x, y) in a given period is given by

θ̂C(x, y | Xn) = min
a>0

{
θ̂VRS(x, ay | Xn)

a
| (θ̂VRS(x, ay | Xn)x, ay) ∈ Ψ̂

}
. (3.11)

Assumptions 2.1–2.7 and 3.1 now provide the basis for inference about θ̂C(x̃, ỹ).

Theorem 3.1. Under Assumptions 2.1–2.7 as well as 3.1, for each (x, y) ∈ D

n
2

p+q+1

(
θ̂C(x, y | Xn)

θC(x, y)
− 1

)
d−→ Fx,y (3.12)

as n→∞, where Fx,y is a continuous, non-degenerate distribution function with Fx,y(0) = 0.

The analytical structure of Fx,y is given by (A.21) in the proof of the theorem. Furthermore,

∃ a constant 0 < C0 <∞ such that for all i, j ∈ {1, . . . , n}, i 6= j,

E
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)

)
= C0n

− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
, (3.13)

VAR
(
θ̂C(Xi, Yi | Xn)− θ(Xi, Yi)

)
= O

(
n−

4
p+q+1 (log n)

4
p+q+1

)
, (3.14)

and∣∣∣COV
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi), θ̂C(Xj, Yj | Xn)− θC(Xj, Yj)

)∣∣∣
= O

(
n−

p+q+2
p+q+1 (log n)

p+q+2
p+q+1

)
= o

(
n−1
)
. (3.15)

The value of the constant C0 depends on f and on the structure of the set D ⊂ Ψ.

Among other things, Theorem 3.1 establishes that the rate of θ̂C(x, y | Xn) is determined

by the rate of the VRS-DEA estimator (as opposed to the faster n2/(p+q) rate of the CRS-DEA

estimator). This is perhaps intuitive, but until now unproven.

The next result is a straightforward consequence of Theorem 3.1 and Lemmas 3.1 and

3.2, and extends Theorem 3.1 to the hyperbolic estimator and its logarithm.

Theorem 3.2. Let either (i) Γ(θC(x, y)) := [θC(x, y)]1/2 = γ(x, y) or (ii) Γ(θC(x, y)) :=

log [θC(x, y)]1/2 = log γ(x, y). Under Assumptions 2.1–2.7 as well as Assumption 3.1, for

each (x, y) ∈ D

n
2

p+q+1

(
Γ(θ̂C(x, y | Xn))− Γ(θC(x, y))

)
d−→ F Γ

x,y (3.16)
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as n→∞, where F Γ
x,y is a continuous, non-degenerate distribution function with F Γ

x,y(0) = 0.

The analytical structure of F Γ
x,y depends on Γ and on the distribution function Fx,y defined

in Theorem 3.1. Furthermore, ∃ a constant 0 < CΓ
0 <∞ such that for all i, j ∈ {1, . . . , n},

i 6= j,

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))
)

= CΓ
0 n
− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
, (3.17)

VAR
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))
)

= O
(
n−

4
p+q+1 (log n)

4
p+q+1

)
, (3.18)

and∣∣∣COV
(

Γ
(
θ̂C(Xi, Yi | Xn)

)
− Γ (θC(Xi, Yi)) , Γ

(
θ̂C(Xj, Yj | Xn)

)
− Γ (θC(Xj, Yj))

)∣∣∣
= O

(
n−

p+q+2
p+q+1 (log n)

p+q+2
p+q+1

)
= o

(
n−1
)
. (3.19)

The value of the constant CΓ
0 depends on f , Γ and the structure of the set D ⊂ Ψ.

Note that it is trivial to extend the results of Theorems 3.1 and 3.2 to the output-

oriented estimator and its logarithm as well as the hyperbolic estimator and its logarithm

due to Lemmas 3.1 and 3.2. The value of the constants C0 and CΓ
0 will differ of course

depending on the direction in which efficiency is estimated.

3.2 Dynamic case

Now turn to the dynamic case. Suppose that for two different time periods t ∈ {1, 2}
we have the set Xn = {(X1

i , Y
1
i ), (X2

i , Y
2
i )}ni=1 defined earlier in Section 2.1 of independent,

identically distributed (iid) pairs (of pairs) of input and output quantities for the two different

periods. In each period there may exist additional observations which do not possess a

counterpart in the other period. More precisely, there are n1 ≥ n observations in period 1

which are used to estimate the hyperbolic distance γ1(x, y) := γ(x, y | C(Ψ1)), while there

are n2 ≥ n observations in period 2 which are used to estimate the hyperbolic distance

γ2(x, y) := γ(x, y | C(Ψ2)).

Assumption 3.2. (i) For t ∈ {1, 2} there are iid observations (X t
i , Y

t
i ), i = 1, . . . , nt,

such that Assumptions 2.1–2.7 and 3.1 are satisfied with respect to the underlying densities

f t with supports Dt; (ii) D1
norm = D2

norm; (iii) for some n ≤ min{n1, n2} the observations

((X1
i , Y

1
i ), (X2

i , Y
2
i )), i = 1, . . . , n are iid and their joint distribution possesses a continuous

14



density f12 with support D1 × D2; (iv) for any i = 1, . . . , n, (X1
i , Y

1
i ) is independent of

(X2
j , Y

2
j ) for all j = 1, . . . , n2 with i 6= j; (v) for any i = 1, . . . , n, (X2

i , Y
2
i ) is independent

of (X1
j , Y

1
j ) for all j = 1, . . . , n1 with i 6= j.

Note that condition (i) of this assumption only guarantees that all estimators θ̂tC(x, y |
X t
nt) and γ̂t(x, y | X t

nt) follow the asymptotic distributions derived in Theorems 3.1 and 3.2.

Condition (ii) together with (3.9) ensures that the cross-efficiency estimators θ̂1
C(X2

i , Y
2
i |

X 1
n1

) and θ̂2
C(X1

i , Y
1
i | X 2

n2
) are asymptotically well-defined and possess the same rates of

convergence as the contemporaneous efficiency estimators. Conditions (iv)–(v) permit de-

pendence of a given firm’s input-output quantities across periods 1 and 2, but require inde-

pendence of the firm’s input-output quantities from those of other firms in other periods.

Before analyzing “average” productivity change, first consider a firm operating at ob-

served, fixed points (x1, y1) and (x2, y2) in periods 1 and 2. Then from (2.9) the Malmquist

index for this firm is

M =

(
γ (x2, y2 | C(Ψ1))

γ (x1, y1 | C(Ψ1))
× γ (x2, y2 | C(Ψ2))

γ (x1, y1 | C(Ψ2))

)1/2

. (3.20)

Using the data X 1
n1

:= {(X1
i , Y

1
i }i=1,...,n1 and X 2

n2
:= {(X2

i , Y
2
i }i=1,...,n2 M can be estimated

by

M̂ =

(
γ̂
(
x2, y2 | X 1

n1
)
)

γ̂
(
x1, y1 | X 1

n1
)
) × γ̂

(
x2, y2 | X 2

n2
)
)

γ̂
(
x1, y1 | X 2

n2
)
))1/2

. (3.21)

Theorem 3.3. Under Assumptions 2.1–2.7, 3.1 and 3.2, for (x1, y1) ∈ D1 and (x2, y2) ∈ D2

n
2

p+q+1

(
M̂ −M

)
d−→ FM (3.22)

as n→∞, where FM is a continuous, non-degenerate distribution function with FM(0) = 0.

Theorem 3.3 establishes the existence of a non-degenerate limiting distribution as well

as the convergence rate for the estimator in (3.21) of the Malmquist index for a given firm

observed in periods 1 and 2. These results permit inference about the unobserved, true

Malmquist indexM using the subsampling methods described by Simar and Wilson (2011).

Now consider the log Malmquist index

logMi =
1

2

[
log γ1(X2

i , Y
2
i ) + log γ2(X2

i , Y
2
i )− log γ1(X1

i , Y
1
i )− log γ2(X1

i , Y
1
i )
]

(3.23)
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with mean

µM := E (logMi) . (3.24)

The log Malmquist index in (3.23) is estimated by

log M̂i =
1

2

(
log γ̂1(X2

i , Y
2
i | X 1

n1
) + log γ̂2(X2

i , Y
2
i | X 2

n2
)−

log γ̂1(X1
i , Y

1
i | X 1

n1
)− log γ̂2(X1

i , Y
1
i | X 2

n2
)
)

(3.25)

for firms indexed by i and observed in both periods 1 and 2, with sample average

µ̂M,n :=
1

n

n∑
i=1

log M̂i. (3.26)

In finite samples, it may be the case that (X2
i , Y

2
i ) 6∈ C(Ψ̂1) or (X1

i , Y
1
i ) 6∈ C(Ψ̂2) for some

observations i. Here, we use the convention that γ̂1(x, y | X 1
n1

) := 1 if (x, y) /∈ C(Ψ̂1), as

well as γ̂2(x, y | X 2
n2

) := 1 if (x, y) /∈ C(Ψ̂2), although this is seldom needed in practice.

Asymptotically this does not impose a problem due to Assumption 3.2(ii).

The next theorem provides one of the main results of the paper by enabling inference

on the difference between µM and µ̂M,n. Theorem 3.2 describes the asymptotic behavior

of log γ̂2(X2
i , Y

2
i | X 2

n2
) and log γ̂1(X1

i , Y
1
i | X 1

n1
). The following theorem provides rates of

convergence for the moments of all efficiency estimators determining logM̂i.

Theorem 3.4. Under Assumptions 2.1–2.7, 3.1 and 3.2, and for all t, s ∈ {1, 2}, there exist

constants 0 < Cts
0 <∞ such that for all i ∈ {1, . . . , n} and as n ≤ min{n1, n2} → ∞,

E
(
log γ̂s(X t

i , Y
t
i | X s

ns)− log γs(X t
i , Y

t
i )
)

= Cts
0 n
− 2
p+q+1

s +O

(
n
− 3
p+q+1

s (log ns)
3

p+q+1

)
(3.27)

and

E
([

log γ̂s(X t
i , Y

t
i | X s

ns)− log γs(X t
i , Y

t
i )
]2)

= O

(
n
− 4
p+q+1

s (log ns)
4

p+q+1

)
, (3.28)

and for t∗, s∗ ∈ {1, 2}, j 6= i,∣∣∣E([log γ̂s(X t
i , Y

t
i | X s

ns)− E(log γ̂s(X t
i , Y

t
i | X s

ns))]

[log γ̂s
∗
(X t∗

j , Y
t∗

j | X s∗

ns∗
)− E(log γ̂s

∗
(X t∗

j , Y
t∗

j | X s∗

ns∗
))]
)∣∣∣ = O

(
n−

p+q+2
p+q+1 (log n)

p+q+2
p+q+1

)
= o

(
n−1
)
. (3.29)

The value of the constant Cts
0 depends on f , g and the structure of the sets Ds ⊂ Ψs and

Dt ⊂ Ψt.
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These results permit inference about the log Malmquist index. The following corollary

is an immediate consequence of Theorem 3.4. A proof is omitted.

Theorem 3.5. Under Assumptions 2.1–2.7, 3.1 and 3.2 ∃ a constant CM < ∞ such that

as n ≤ min{n1, n2} → ∞,

E (µ̂M,n − µM) = CMn
− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
(3.30)

and

VAR ((µ̂M,n − µM) =
1

n
VAR(logMi) + o(n−1). (3.31)

The constant CM is a sum of positive and negative biases, and it can be either positive,

negative or equal to zero. It will be zero if the two distributions coincide, leading to the

following result.

Theorem 3.6. Assume Assumptions 2.1–2.7, 3.1 and 3.2 hold. In addition, assume that

(i) f := f 1 = f 2 (and hence D := D1 = D2); (ii) n = n1 = n2; and (iii) f12(x, y;x∗, y∗) =

f12((x∗, y∗), (x, y)) for all (x, y), (x∗, y∗) ∈ D. Then as n ≤ min{n1, n2} → ∞,

E (µ̂M,n − µM) = 0 (3.32)

and

VAR ((µ̂M,n − µM) =
1

n
VAR(logMi) + o(n−1). (3.33)

Remark 3.2. Note that (3.32) is a consequence of a somewhat trivial fact: If (a) there are

two samples with identical data generating processes, and (b) for both samples the same type

of estimator is applied, then all resulting biases are identical (and hence cancel out when

subtracting). In our context there only exists the difficulty that the roles of (X1
i , Y

1
i ) and

(X2
i , Y

2
i ) are different in log γ̂2(X1

i , Y
1
i | X 2

n2
) and log γ̂1(X2

i , Y
2
i | X 1

n1
), which is resolved by

the additional assumption (iii) of “symmetry” on the joint density.

Remark 3.3. Section 3.1 of Kneip et al. (2016) overlooks the point raised in Remark 3.2.

Indeed the results in Section 3.1 of Kneip et al. (2016) are incomplete (but not false; the

results provide bad approximations in the case of identical distributions). In Kneip et al.

(2016, Section 3.1) if n1 = n2 and if both samples possess identical distributions then the

biases cancel out, and in the notation of Kneip et al. (2016) E(µ̂1,n1 − µ̂2,n2) = 0.
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Remark 3.4. It is possible to achieve (3.32) while only requiring f 1 = f 2 (i.e., without

assuming n1 = n2 and symmetry of the joint density). This is possible by modifying the

estimator and using

log M̃i =
1

2
(log γ̂1(X2

i , Y
2
i | X 1

n1,−i) + log γ̂2(X2
i , Y

2
i | X 2

n2,−i)

− log γ̂1(X1
i , Y

1
i | X 1

n1,−i)− log γ̂2(X1
i , Y

1
i | X 2

n2,−i)),

where X s
ns,−i is the reduced sample of size (n− 1) obtained by eliminating the ith observation

(Xs
i , Y

s
i ), s = 0, 1. In other words, for any i = 1, . . . , n the estimates γ̂ are constructed

without taking into account the i-th observation. In this case everything is symmetric, and

for identical distributions arguments similar to those used above above lead to

E
(
log γ̂1(X1

i , Y
1
i | X 1

n1,−i)
)

= E
(
log γ̂1(X2

i , Y
2
i | X 1

n1,−i)
)

(3.34)

and

E
(
log γ̂2(X1

i , Y
1
i | X 2

n2,−i)
)

= E
(
log γ̂2(X2

i , Y
2
i | X 2

n2,−i)
)

(3.35)

independent of n1 and n2. Hence E
(

log M̃i

)
= 0.

Remark 3.5. Tests based on Theorem 3.6 are tests of f 1 = f 2 rather than of µM :=

E (logMi) = 0. Note that the true mean µM may be zero even if f 1 6= f 2. But if f 1 6= f 2

then biases do not cancel out in general, and one is back to (3.30). Since for large (p+q) bias

dominates variance, the test will (asymptotically) reject the null hypotheses even if µM = 0

if bias is not accounted for.

The results obtained so far lead to the following CLT.

Theorem 3.7. Under Assumptions 2.1–2.7, 3.1 and 3.2,

√
n (µ̂M,n − µM −Rn)

d−→ N(0,VAR(logMi)) (3.36)

as n ≤ min{n1, n2} → ∞ where

Rn := E (µ̂M,n − µM) = CMn
− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
. (3.37)

The geometric mean of the estimated Malmquist indices M̂i is given by

M̂n = exp(µ̂M,n) =

(
n∏
i=1

M̂i

)1/n

. (3.38)

The following CLT may be used for inference about M̂n.
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Theorem 3.8. Under Assumptions 2.1–2.7, 3.1 and 3.2, n ≤ min{n1, n2} → ∞

√
n
(
M̂n − M̃

)
d−→ N(0, exp(2µM)VAR(logMi)), (3.39)

where Rn is defined by (3.37) and

M̃ := exp(µM +Rn) = exp(µM)(1 +Rn)) +O
(
n−

4
p+q+1

)
= exp(µM) + exp(µM)CMn

− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
. (3.40)

Remark 3.6. Recall that under the additional conditions of Theorem 3.6 we even have

Rn = 0.

Remark 3.7. Consider the geometric mean Mn = exp( 1
n

∑n
i=1 logMi) = (

∏n
i=1Mi)

1/n
of

the true indices. We have E(n−1
∑n

i=1 logMi) = µM, but E(Mn) depends on n, and by

Jensen’s inequality

E(Mn) = E

(
exp(

1

n

n∑
i=1

logMi)

)
> exp

(
E(

1

n

n∑
i=1

logMi)

)
= exp(µM). (3.41)

Fortunately, Theorem 3.8 shows that this additional “bias” is asymptotically negligible, and

inference for M̂n follows from inference for log M̂n.

4 Making Inference about Productivity Change

Applied researchers often report estimates of Malmquist indices for individual producers

observed in periods 1 and 2. Confidence intervals for Malmquist indices of individual firms

can be estimated using the sub-sampling methods described by Simar and Wilson (2011)

while noting that the rate of convergence is nκ where κ = 2/(p + q + 1). In addition,

geometric means of estimated Malmquist indices are typically reported by applied researchers

to give an idea of productivity change over all firms in a group or in the entire sample.

Means are also useful for summarizing results when the sample size is large. Geometric

means are used instead of arithmetic means in order to preserve the multiplicative nature of

Malmquist indices (recall that the Malmquist indexMi defined in (2.9) is a geometric mean

of two ratios). Values of such geometric means greater than one suggest improved overall

productivity between periods 1 and 2, while values less than one suggest a decrease in overall
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productivity between the two periods. In this section, we show how the results obtained so

far can be used to make inference about overall changes in productivity working either with

arithmetic means of logs of estimated Malmquist indices in Section 4.1 or with geometric

means of estimated Malmquist indices in Section 4.2.

4.1 Inference Based on Arithmetic Means of Logs

Theorem 3.7 from Section 3.2 provides the basis for making inference about productivity

change while working with arithmetic means of estimated Malmquist indices. To simplify

notation, let σM = VAR(logMi) = E ((logMi − E(logMi))
2) where the expectations are

over (X, Y ) in both periods 1 and 2. Recall that in the definition of µM in (3.24) the

expectation is also with respect to (X, Y ) in both periods 1 and 2. Assume both µM and

σM are finite.

Theorem 3.7 can now be written as

√
n
(
µ̂M,n − µM − CMn−κ − ξn,κ

) d−→ N
(
0, σ2

M
)

(4.1)

where κ = 2/(p+ q + 1) and ξn,κ = O
(
n−

3
p+q+1 (log n)

3
p+q+1

)
= o (n−κ).

The following lemma provides a consistent estimator of the variance term σ2
M in (4.1).

Lemma 4.1. Under the conditions of Theorem 3.7,

σ̂2
M,n = n−1

n∑
i=1

(
log M̂i − µ̂M,n

)2 p−→ σ2
M. (4.2)

From (4.1) it is clear that µ̂M,n is a consistent estimator of µM, but with a bias of CMn
−κ

since E (µM,n) = µM+CMn
−κ. If κ > 1/2, then the bias term as well as the remainder term

ξn,κ are dominated by the factor
√
n and therefore can be ignored. Hence when κ > 1/2, a

(1− α)× 100-percent confidence interval for µ̂M,n is estimated by[
µ̂M,n ± z1−α

2

σ̂M,n√
n

]
, (4.3)

where z1−α
2

is the corresponding quantile of the standard normal distribution function. Under

the conditions of Theorem 3.7, provided κ > 1/2 (i.e., p + q ≤ 2), the interval in (4.3) has

asymptotically correct coverage.

However, if κ = 1/2, the bias in (4.1) is constant, and if κ < 1/2, the bias tends to infinity

as n→∞. In cases where κ ≤ 1/2, Replacing the scaling factor
√
n with nζ with ζ ∈ (0, κ)
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does not solve the problem. Doing so would drive the bias to zero as n → ∞, but would

also drive the variance to zero, resulting in a degenerate limiting distribution and preventing

inference from being made. Moreover, note that κ > 1/2 if and only if (p+ q) ≤ 2. Theorem

3.7 and (4.1) can be used for inference in situations where the dimension-reduction methods

of Wilson (2018) can be reasonably used to reduce a (p + q)-dimensional problem to only

two dimensions, but otherwise the bias term must be dealt with. An approach similar to the

one of Kneip et al. (2015) is useful here.

Suppose κ ≤ 1/2. Let nκ = min (bn2κc, n), where bac denotes the largest integer less

than or equal to a. Assume that the observations in Xn are randomly sorted (the algorithm

described by Daraio et al., 2018, Appendix D can be used to randomly sort the observations

while allowing results to be replicated by other researchers using the same data and the same

sorting algorithm). Let

µ̂M,nκ := n−1
κ

nκ∑
i=1

log M̂i (4.4)

where the estimates M̂i are computed using n (not nκ) observations; i.e., the 4 estimates

comprising M̂i are each computed using all of the available observations in each period. The

next result establishes the properties of this estimator.

Theorem 4.1. Under the conditions of Theorem 3.7, for cases where κ ≤ 1/2,

nκ
(
µ̂M,nκ − µM − CMn−κ − ξn,κ

) d−→ N
(
0, σ2

M
)

(4.5)

as n→∞, where ξn,κ = O
(
n−

3
p+q+1 (log n)

3
p+q+1

)
.

The bias term CMn
−κ remains in (4.5), but it is now multiplied by the factor nκ and

hence is constant instead of exploding to infinity as before when κ < 1/2. In order to

estimate the bias, a generalized jackknife estimator similar to the one proposed by Kneip

et al. (2015) can be used, taking care to split the data into sub-samples appropriately for

the two periods in which firms are observed.

In order to simplify notation, let Zt
i = (X t

i , Y
t
i ), t ∈ {1, 2} so that the sample can be

described by Xn = {(Z1
i , Z

2
i )}ni=1. Now split Xn randomly into two sub-samples X (1)

m1 and

X (2)
m2 of sizes m1 = bn/2c and m2 = n−bn/2c (respectively). Note that if n is even, m1 = m2,

but if n is odd then m1 = m2−1. Asymptotically, this makes no difference since m1/m2 → 1
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as n→∞. Define

µ̂
(j)
M,mj

:= m−1
j

∑
(Z1
i ,Z

2
i )∈X (j)

mj

log M̂i(X (j)
mj

) (4.6)

for j ∈ {1, 2}, where the notation M̂i(X (j)
mj ) indicates that the four estimates comprising the

estimated Malmquist index M̂i are each computed for observation i in the jth sub-sample

using only the observations in the jth sub-sample X (j)
mj . Then set

µ̂∗M,n/2 =
1

2

(
µ̂

(1)
M,m1

+ µ̂
(2)
M,m2

)
. (4.7)

By following arguments similar to those in Kneip et al. (2015, Section 4) it is easy to show

that

B̃n,κ = (2κ − 1)−1 (µ̂∗M,n/2 − µ̂M,n

)
= CMn

−κ + ξ∗n,κ + op
(
n−1/2

)
, (4.8)

where ξ∗n,κ is of the same order as ξn,κ appearing in (4.1), provides an estimator of the bias

CMn
−κ.

Note that there are
(
n
n/2

)
possible splits of the original n observations. To reduce the

variance of the bias estimate in (4.8), the sample can be split K <<
(
n
n/2

)
times while

randomly shuffling the observations before each split, and computing B̃n,κ,k using (4.8) for

k = 1, . . . , K. Then

B̂n,κ = K−1

K∑
k=1

B̃n,κ (4.9)

gives a generalized jackknife estimate of the bias CMn
−κ (Gray and Schucany, 1972, Defini-

tion 2.1). Averaging in (4.9) reduces the variance by a factor of K−1 relative to the bias in

(4.8).

Combining Theorem 3.7 and (4.9) leads to the following result.

Theorem 4.2. Under the conditions of Theorem 3.7, for cases where κ ≥ 2/5,

√
n
(
µ̂M,n − B̂n,κ − µM + ξn,κ

)
d−→ N

(
0, σ2

M
)

(4.10)

as n→∞.

The interplay between the root-n scaling factor and the remainder term ξn,κ ensures

that the result in Theorem 4.10 holds for κ ≥ 2/5, and hence for (p + q) ≤ 4. However,

it is important to note that Theorem 4.2 does not hold in cases where κ < 2/5. In such
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cases, remainder term ξn,κ, when multiplied by
√
n, diverges toward infinity. Alternatively,

combining Theorem 4.1 and (4.9) yields the following result.

Theorem 4.3. Under the conditions of Theorem 3.7, for cases where κ < 1/2,

nκ
(
µ̂M,nκ − B̂n,κ − µM − ξn,κ

)
d−→ N

(
0, σ2

M
)

(4.11)

as n→∞.

Note that in all cases (i.e., for all values of κ), ξn,κ = o(n−κ) and hence nκξn,κ = o(1).

Therefore the remainder term can be neglected.

Whenever κ ≥ 2/5 and hence (p + q) ≤ 4, Theorem 4.2 can be used to construct an

asymptotically correct (1− α) confidence interval for µM given by[
µ̂M,n − B̂n,κ ± z1−α

2

σ̂M,n√
n

]
, (4.12)

where as in (4.3) z1−α
2

represents the
(
1− α

2

)
quantile of the standard normal distribution

function.

Alternatively, in cases where κ < 1/2 and hence (p + q) ≥ 4, Theorem 4.3 permits

construction of the asymptotically correct (1− α confidence interval[
µ̂M,nκ − B̂n,κ ± z1−α

2

σ̂M,n

nκ

]
(4.13)

for µM. This interval is centered on µ̂M,nκ−B̂n,κ, and µ̂M,nκ computed from a random subset

of estimates M̂i (where each estimate M̂i is computed using all of the sample observations

in Xn). While this may seem arbitrary, note that any confidence interval for µM is arbitrary

since any asymmetric confidence interval for µM can be constructed simply by using different

quantiles of the N(0, 1) distribution to establish the bounds. The main point is always to

achieve a high level of coverage without making the confidence interval too wide to be

informative.

In cases where κ < 1/2, the randomness of the interval in (4.13) due to centering on a

mean over a subsample of size nκ < n can be eliminated by averaging the center of (4.13) over

all possible draws (without replacement) of subsamples of size nκ. This yields an interval[
µ̂M,n − B̂n,κ ± z1−α

2

σ̂M,n

nκ

]
(4.14)

23



centered on µ̂M,n − B̂n,κ. The only difference between the intervals in (4.13) and (4.14) is

the centering value. Both intervals have the same length and hence are equally informative.

But the interval in (4.14) should be more accurate (i.e., should have higher coverage in

finite samples) because the estimator µ̂M,n uses more information than the estimator µ̂M,nκ .

Therefore, for κ < 1/2, nκ < n and hence the interval in (4.14) contains the true value µM

with probability greater than (1 − α). Due to the results given above, it is clear that the

coverage of the interval in (4.14) converges to 1 as n→∞.

Note that when (p+ q) = 4, either Theorems 4.2 or 4.3 can be used to provide different

but asymptotically correct confidence intervals for µM. The interval in (4.12) uses the scaling

factor
√
n and hence neglects the term

√
nξn,κ = O

(
n−1/10

)
in Theorem 4.2. By contrast, the

interval in (4.13) uses the scaling factor nκ and hence neglects the term nκξn,κ = O
(
n−1/5

)
in Theorem 4.3. Therefore one should expect (4.13) to provide a better approximation in

finite samples than (4.12) when (p+ q) = 4.

The null hypothesis of no change in productivity versus change in productivity between

periods 1 and 2 can be tested by computing the appropriate interval for µM. Under the

null, µM = 0, while under the alternative hypothesis, µM 6= 0. Hence the null is rejected

whenever the estimated confidence interval does not include zero.

The intervals given so far in (4.3), (4.12) and (4.13) are for µM defined in (3.24). Theorem

3.8 and Remark 3.7 ensure that these intervals can be used to make inference about the

geometric mean E(Mn) where Mn is defined by (2.10). In particular, asymptotically valid

intervals for E(Mn) are obtained by taking exponentials of the bounds of the appropriate

interval for µM.

4.2 Inference Based on Geometric Means

Theorem 3.8 from Section 3.2 provides the starting point for making inference about pro-

ductivity change while working with geometric means of estimated Malmquist indices. Com-

bining (3.39) and (3.40), the result of Theorem 3.8 can be expressed as

√
n
(
M̂n − exp(µM)CMn

−κ − exp(µM) + ηn,κ

)
d−→ N

(
0, exp(2µM)σ2

M
)

(4.15)

where κ = 2/(p+ q + 1) and ηn,κ+ = O
(
n−

3
p+q+1 (log n)

3
p+q+1

)
= o (n−κ). Viewing the result

this way confirms the observation in Remark 3.7; i.e., from (4.15) it is clear that M̂n is a
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consistent estimator of its asymptotic expectation exp(µM) with a bias of exp(µM)CMn
−κ.

The variance exp(2µM)σ2
M in (4.15) is consistently estimated by exp (2µ̂M,n) σ̂2

M,n due

to the results in Section 4.1. However, similar to the situation in Section 4.1, the result in

(4.15) can only be used to make inference when κ > 1/2. As before, if κ = 1/2, the bias is

constant, whereas if κ < 1/2 the bias explodes as n → ∞. When κ > 1/2, (4.15) can be

used to construct the (1− α)× 100-percent confidence interval[
M̂n ± z1−α

2

exp (µ̂M,n) σ̂M,n√
n

]
(4.16)

for exp(µM), but otherwise the bias must be reckoned with.

Suppose κ ≤ 1/2, and let recall that nκ = min (bn2κc, n). Assume the observations in

Xn are randomly sorted. Define

M̂nκ :=

(
nκ∏
i=1

M̂i

)1/nκ

(4.17)

where the estimates M̂i are computed using the full sample of observations, but the geo-

metric mean is over only the first nκ estimates of Mi. The properties of this estimator are

established by the following theorem.

Theorem 4.4. Under the conditions of Theorem 3.8, for cases where κ ≤ 1/2,

nκ
(
M̂nκ − exp(µM)CMn

−κ − exp(µM) + ηn,κ

)
d−→ N

(
0, exp(2µM)σ2

M
)

(4.18)

as n→∞.

The bias term is stabilized in (4.18) and no longer explodes as n → ∞ when κ < 1/2.

For any κ ≤ 1/2, the bias is constant and can be estimated using a generalized jackknife

similar to the one used earlier in Section 4.1. In particular, split the sample as described in

Section 4.1 into two sub-samples X (j)
mj , j ∈ {1, 2}. Define

M̂ (j)
mj

:=

 ∏
(Z1
i ,Z

2
i )∈X (j)

mj

M̂i

(
X (j)
mj

)
1/mj

(4.19)

for j ∈ {1, 2}. As in (4.6), the notation M̂i

(
X (j)
mj

)
serves to remind that the estimates

under the product sign are computed using only the estimates in the jth subsample X (j)
mj .
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Next, define

M̂∗
n/2 =

1

2

(
M̂ (1)

m1
+ M̂ (2)

m2

)
. (4.20)

Using arguments similar to those of Kneip et al. (2015, Section 4) it is clear that

B̃∗n,κ = (2κ − 1)−1
(
M̂∗

n/2 − M̂n

)
= exp(µM)CMn

−κ + η∗n,κ + op
(
n−1/2

)
, (4.21)

where η∗n,κ is of the same order as ηn,κ in (4.15), provides an estimator of the bias term

exp(µM)CMn
−κ.

As discussed above in Section 4.1, the variance of the bias estimate B̃∗n,κ can be reduced

by randomly splitting the sample K <<
(
n
n/2

)
times and using (4.21) to compute B̃∗n,κ,k for

each split k = 1, . . . , K and then computing

B̂∗n,κ = K−1

K∑
k=1

B̃∗n,κ,k. (4.22)

Combining (4.22) and Theorem 3.8 leads to the following result.

Theorem 4.5. Under the conditions of Theorem 3.8, for cases where κ ≥ 2/5,

√
n
(
M̂n − B̂∗n,κ − exp(µM) + ηn,κ

)
d−→ N

(
0, exp(2µM)σ2

M
)

(4.23)

as n→∞.

As with Theorem 4.2, the result here holds for κ ≥ 2/5 for similar reasons. In addition,

Theorem 4.5 does not hold for κ < 2/5. In such cases, the next result combining Theorem

4.4 and (4.22) is useful for inference.

Theorem 4.6. Under the conditions of Theorem 3.8, for cases where κ < 1/2,

nκ
(
M̂nκ − B̂∗n,κ − exp(µM) + ηn,κ

)
d−→ N

(
0, exp(2µM)σ2

M
)

(4.24)

as n→∞.

Recall that ηn,κ = o (n−κ). Therefore nκηn,κ = o(1), and hence the remainder term can

be ignored.

For cases where κ ≥ 2/5, Theorem 4.5 permits construction of an asymptotically correct

(1− α) confidence interval for exp(µM) given by[
M̂n − B̂∗n,κ ± z1−α

2

exp (µ̂M,n) σ̂M,n√
n

]
. (4.25)
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Alternatively, whenever κ < 1/2, Theorem 4.6 can be used to construct the asymptotically

correct (1− α) confidence interval[
M̂nκ − B̂∗n,κ ± z1−α

2

exp (µ̂M,n) σ̂M,n

nκ

]
. (4.26)

Analogous to the discussion in Section 4.1, one could also replace M̂nκ with M̂n in (4.26),

with the coverage of the resulting interval converging to 1 as n→∞.

Also as in Section 4.1, one can use either of the intervals in (4.25) and (4.26) when

(p + q) = 4. The interval in (4.25) uses the scaling factor
√
n and hence neglects the term

√
nηn,κ = O

(
n−1/10

)
in Theorem 4.5, while the interval in (4.13) uses the scaling factor nκ

and hence neglects the term nκηn,κ = O
(
n−1/5

)
in Theorem 4.6. Therefore one should expect

(4.26) to provide a better approximation in finite samples than (4.25) when (p+ q) = 4. For

testing purposes, however, one cannot escape the tradeoff between size and power. This

issue is further examined in the section reporting simulation results that follows below.

The null hypothesis of no productivity change corresponds to exp(µM) = 1, while the

alternative hypothesis of change in productivity between periods 1 and 2 corresponds to

exp(µM) 6= 1. Hence the null is rejected whenever the relevant estimated confidence interval

in (4.25) or (4.26) does not include unity. The results of such tests are expected to be similar

to the results of similar tests based on log values discussed near the end of Section 4.1, but

some differences may arise due to the different asymptotic approximations involved. This

issue is also examined in the next section.

5 Monte Carlo Evidence

5.1 Experimental Framework

In order to examine the size and power of tests of H0 : no productivity change versus

H1 : productivity change between two periods using Malmquist indices, we need to simulate

data from two different DGPs where (i) the technology in each period is characterized by

VRS and (ii) the amount of productivity change between the two periods can be controlled,

varied, and known.

First, consider the function R1 7→ R1 : t = ψ(s | δ) such that

t = c
(
a2 + δ2s2

)1/2 − d (5.1)
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where a = 0.5, c = 0.75, d = 0.375 and δ ∈ {0, 0.6}. Clearly, when δ = 0 t = 0 for all values

of s. When δ = 0.6, t ≥ 0 and the function is a convex (from below) parabola. The function

ψ(·) is illustrated in panel (a) of Figure 1 for both values of δ. In the figure, the function is

illustrated over the triangle with corners at (−
√

2, 0), (
√

2, 0) and (0,
√

2) in (s, t)-space.

Now consider the transformation from (s, t)-space to (v, y)-space obtained by rotating

the curves shown in Figure 1(a) about the origin through a counter-clockwise angle of 5π/4

radians, and then shifting by a distance 1 northeast along the ray from the origin at angle

π/4. In general, the rotation matrix

R(φ) =

[
cosφ sinφ
− sinφ cosφ

]
(5.2)

can be used to rotate a point around the origin by an angle φ.5 Then for R1 = R(5π/4) we

have [
v y

]′
= R1

[
s t

]′
+
[
1 1

]′
. (5.3)

The resulting curve (corresponding to δ = 0.6) is shown in panel (b) of Figure 1, with the

line from the origin (corresponding to δ = 0) tangent at the point (1, 1) in (v, y)-space.

Now consider rotating the curves shown in Figure 1(b) counter-clockwise around the

origin by an angle ω ∈ [0, 0.1π]. This amounts to transforming points (s, t) lying on the

function t = ψ(s | δ) in (s, t)-space to points (v, y) where[
v y

]′
= R2

(
R1

[
s t

]′
+
[
1 1

]′)
(5.4)

with R2 = R(ω). Panel (c) of Figure 1 shows the curves from panel (b) of the same figure as

dashed curves—here, ω = 0. Panel (c) also shows in solid curves the corresponding functions

when ω = 0.05π. It is easy to see that if ω = 0 then R2 is an identity matrix and (5.4)

reduces to (5.3).

For δ = 0.6 and a given value ω, simulating a sample of n input-output pairs

{((X1
i , Y

1
i ), (X2

i , Y
2
i ))}ni=1 for periods 1 and 2 is now straightforward. In both periods,

set δ = 0.6. In period 1, set ω = 0. In period 2 set ω = βπ where β ∈ [0, 0.1]. First, con-

sider the point in Figure 1(a) where the strictly convex (from below) curve t = ψ(s | δ = 0.6)

intersects the line t =
√

2− s. Simple algebra reveals that he s-coordinate of this point is

s0 =

(√
2 + d

)
−
[(√

2 + d
)2 − (1− c2δ2)

((√
2 + d

)2 − c2a2
)]1/2

(1− c2δ2)
. (5.5)

5 See, for example, Noble and Daniel (1977, pp. 411–413).
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Then set smax = min
(
s0, 0.9

√
(2)
)

, smin = −smax. In order to induce correlation across

periods, as is typical in real production data, we use Gaussian copulas. Let Cv denote a (2×2)

correlation matrix with off-diagonal elements ρv and with Cholesky decomposition Cv = U ′vUv
where Uv is upper-triangular. Generate an (n× 2) matrix Rv of iid N(0, 1) pseudo-random

deviates and set S = smin + Φ(RvUv) (smax − smin) where Φ(·) denotes the standard normal

distribution function applied element-by-element to the (n× 2) matrix RvUv. Then S is an

(n× 2) matrix of uniform deviates on (smin, smax) and the columns of S are correlated with

correlation ρv. Finally, for each element sij of S the corresponding value tij can be computed

using (5.1), and then the pair (s, t) can be used in (5.3) and (5.4) to obtain pseudo-random

draws {((Ṽ 1
i , Y

1
i ), (Ṽ 2

i , Y
2
i ))}ni=1. For the case where p = q = 1, simply set X̃ t

i = Ṽ t
i for

t ∈ {1, 2}. Then {(X̃1
i , Y

1
i )}ni=1 and {(X̃2

i , Y
2
i )}ni=1 are sets of technically efficient input

output pairs lying on the frontiers in periods 1 and 2, respectively.

For the case of q = 1 and multivariate inputs with p > 1, an additional step is needed.

First, generate pseudo-random draws {((Ṽ 1
i , Y

1
i ), (Ṽ 2

i , Y
2
i ))}ni=1 exactly as before. In order

to induce cross-period correlation among firms’ mixes of outputs, we again use a Gaussian

copula. Construct the (2p× 2p) correlation matrix

Cu =

[
Ip ρuIp
ρuIp Ip

]
(5.6)

with Cholesky decomposition U ′uUu where Ip denotes a (p× p) identity matrix, ρu ∈ (0, 1) is

a scalar correlation coefficient and Uu is upper-triangular. Next, generate an (n×2p) matrix

Ru of iid N(0, 1) deviates, and compute the (n× 2p) matrix Z = Φ(RuUu). Then partition

Z by writing Z =
[
Z1 Z2

]
where Z1 and Z2 are (n×p). Note that Z1 and Z2 each contain

iid uniform (0,1) deviates, but corresponding elements of Z1 and Z2 have correlation ρu by

construction. For t ∈ {1, 2} let Z∗t denote the (n × 1) vector obtained by summing the

p columns of Z t. Compute W =
[
W1 W2

]
where W t = Z t/(Z∗ti′p) where ip denotes a

(p× 1) vector of ones and the division is understood to be element-by-element. The (n× p)
sub-matrices W t contain weights in each row that sum to one, and which are correlated

across t = 1 and 2. The p weights in a given row of W t amount to p independent uniform

random deviates divided by their sum. Finally, for period t ∈ {1, 2}, set X̃ t
ki = (Ṽ t

i )pW
2
i,k to

form the (p×n) matrices X̃ t−
[
X̃ t
ki

]
. The vector X̃ t

·i is the efficient level of outputs for firm

i in period j, and X̃1
·i andX̃2

·i are correlated (provided ρu > 0) by construction as is typical
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in real production data.

Note that one can solve for s in the two equations represented by (5.4), equate the two

resulting expressions, and then solve for y to obtain an explicit expression for the function

y = g(v | δ, ω). Then univariate input with p = 1, the DGP described above amounts a

technology described by

Y t
i = g(X̃ t

i | δ = 0.6, ω). (5.7)

In the case of multivariate inputs X̃ t
ij, j = 1, . . . , p, the technology corresponds to

Y t
i = g

(
p∏
j=1

(
X̃ t
ij

)1/p

| δ = 0.6, ω

)
. (5.8)

It remains to add inefficiency in both periods. Again, we employ a Gaussian copula

to maintain correlation between the efficiency of firm i in period 1 and in period 2. Let

Cθ denote the (2 × 2) correlation matrix with correlation coefficient ρθ, and via Cholesky

decomposition let Cθ = U ′θUθ where Uθ is upper-triangular. Next, generate an (n× 2) matrix

Rθ of iid N(0, 1) deviates. Then compute the (n×2) matrix J = Φ(RθUθ). The elements of

J are thus uniformly distributed on (0, 1), and are independent within a given column but

have correlation ρθ across the two columns. Now for the (i, t)th element Jit of J , compute

the (n × 2) matrix Θ =
[
θit
]

where θit = β−1(Jit | aθ = 4, bθ = 1) and β−1(· | aθ, bθ) is the

quantile function of a beta distribution with shape parameters aθ and bθ.
6 Then the columns

of Θ contain iid beta(4,1) random values with expected value E(θit) = aθ(aθ + bθ) = 0.8).

The values in T are correlated across the two columns with correlation ρθ by construction.

Finally, for i = 1, . . . , n and t = 1, 2 set X t
·,i = θ−1

it X̃·,i to form the simulated sample

{((X1
i , Y

1
i ), (X2

i , Y
2
i ))}ni=1.

As noted above, it is easy to solve for g(v | δ, ω). The function is monotonic, and hence

after some additional algebra one obtains the inverse function v = g−1(y | δ, ω). The inverse

function g−1(y | δ, ω) can be used to find the expected value of geometric means of Malmquist

indices for various values of ω, with the expectation over X and Y .

Recall that in cases where p > 1, the Ṽ s are replaced by a homogeneous (of degree 1)

function of efficient input levels, which are then projected away from the frontier to reflect

inefficiency. Clearly, however, one could obtain the same values of the inefficient levels of

6 The beta quantile function has no closed-form expression, but can be computed numerically using the
algorithm of Cran et al. (1977).
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inputs by computing V = θ−1Ṽ and then replacing V with a homogeneous function of input

levels simulated as before. Consequently, for purposes of evaluating the expected value of the

geometric mean of Malmquist indices, we can work in the two dimensional space of (v, y).

Now consider a simulated observation ((Ṽ 1
i , Y

1
i ), (V 2

i , Y
2
i ))) generated as described above

for a particular value of the angle of rotation ω. For (V 1
i , Y

1
i ) define ζ11

i = g−1(Y 1
i | 0, 0)/V 1

i ,

where (g−1(Y 1
i | 0, 0), Y 1

i ) gives the projection of (V 1
i , Y

1
i ) onto the conical hull of the tech-

nology in period 1 in the input direction. We can also define ζ12
i = g−1(Yi | 0, ω)/V 1

i , where

g−1(Y 1
i | 0, ω) gives the projection of (V 1

i , Y
1
i ) onto the conical hull of the technology in

period 2 in the input direction. Similarly, for (V 2
i , Y

2
i ) define ζ22

i = g−1(Y 2
i | 0, ω)/V 2

i , where

(g−1(Y 2
i | 0, ω), Y 2

i ) gives the projection of (V 2
i , Y

2
i ) onto the conical hull of the technol-

ogy in period 2 in the input direction. In addition, define ζ21
i = g−1(Y 2

i | 0, 0)/V 2
i , where

g−1(Y 2
i | 0, 0) gives the projection of (V 2

i , Y
2
i ) onto the conical hull of the technology in period

1 in the input direction. Then the “true” Malmquist index defined in terms of input-oriented

efficiency measures for observation i is Mθ,i = [(ζ21
i /ζ

11
i )(ζ22

i /ζ
12
i )]

1/2
. For a given value of

ω, we generate a sample of size n = 1.28× 1012 and then compute the sample mean µ̂Mθ,n of

the values {log(Mθ,i)}ni=1. We then take the exponential of this sample mean, yielding an es-

timate of exp(µMθ
) = exp(E(µ̂Mn)) accurate to 5–6 decimal places. For β = 0, 0.005, 0.010,

0.015, 0.020, 0.030, 0.040 and 0.050 we have exp(µ̂M,n) = 1.0000, 1.0132, 1.0270, 1.0415,

1.0566, 1.0892, 1.1250 and 1.1645 (respectively). These values provide some perspective

helpful for interpreting the results discussed below.

5.2 Simulation Results

Tables 1–2 report results of 200 Monte Carlo experiments for q = 1 and p ∈ {1, 2, 3, 4, 5},
n ∈ {25, 50, 100, 500, 1, 000} and β ∈ {0, 0.005, 0.010, 0.015, 0.020, 0.030, 0.040, 0.050}
(the values of beta yield values for the angle ω equal to 0.000, 0.016, 0.031, 0.047, 0.063, 0.094,

0.126 and 0.157 radians, or 0.000, 0.900, 1.800, 2.700, 3.600, 5.400, 7.200 and 9.000 degrees,

respectively). For each experiment (i.e., for each combination of p, n and β) we draw a

sample of size n and test the null hypothesis of no productivity change versus the alternative

hypothesis of productivity change for each of 250,000 trials within a given experiment. In

both tables we report the proportion of samples where we reject the null in tests of nominal

size .10, .05 and .01. With 250,000 trials in each experiment, the standard deviation of
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the estimated rejection rates for tests of size 0.1, 0.05 and 0.01 are 0.000600, 0.000436 and

0.000199.

The results in Table 1 for p ∈ {1, 2, 3} are from tests based on Theorem 4.2 and

intervals computed using (4.12), while results for p ∈ {4, 5} are based on Theorem 4.3

and intervals computed from (4.13). Results in Table 2 are obtained with untransformed

Malmquist indices as opposed to the logs of Malmquist indices as in Table 1. In Table 2,

results for p ∈ {1, 2, 3} are obtained using Theorem 4.5 and intervals computed from (4.25),

whereas results for p ∈ {4, 5} are obtained using Theorem 4.6 and intervals computed from

(4.26).

Both tests show good size properties and good power. For each value of n, the rows of

results where β = 0 reflect the realized sizes of the tests for each of the three levels 0.1, 0.05

and 0.01. Even with only 25 observations, there is very little deterioration in the realized

sizes as dimensionality increases from 2 to 6 moving from left to right in the either table. For

each value of n, increasing values of β reflect increasing departures from the null hypothesis

of no productivity change. While size is hardly affected by dimensionality, but there is an

effect on power. As dimensionality is increases, the power for a given value of β and a given

nominal test size decreases. Even so, with only 100 observations and a nominal test size of

0.1, the probability of rejecting the null is about 0.5 when p = 5 and q = 1 when relying on

Theorem 4.2 as seen in Table 1.

Comparing results overall between the two tables reveals similar qualitative results, but

there are some differences in the qualitative results across the two tables. While both tests

appear to have similar size properties, the test based on Theorem 4.2 (i.e., working in log-

space) yields greater power than the test based on Theorem 4.5 (i.e., working with the

untransformed indices) for moderate departures from the null (e.g., for β between 0.005 and

0.015 or 0.020). This is not surprising in view of Remark 3.7. While the additional bias ac-

cumulated in moving from Theorem 3.7 to Theorem 3.8 is asymptotically negligible, in finite

samples it degrades the performance in terms of power of tests based on the untransformed

Malmquist indices relative to the performance of tests based on logs of the indices. Further

comparison of the results across Tables 1 and 2 shows that the differences in power become

smaller as n increases for given values of (p+ q), as one should expect from Remark 3.7, but

the effect persists even when n = 1000 in the larger dimensions.
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Rejection rates were also estimated from the same Monte Carlo experiments but using

the re-centered interval in (4.14) when working with the log-Malmquist index and the re-

centered interval obtained by replacing M̂nκ with M̂n in (4.26). Results from this exercise

confirm the remarks in Sections 4.1 and 4.2; i.e., using the re-centered intervals, the rejection

rate when the null is true tends to 0 as n→∞ for .90, .95, and .99 confidence intervals, even

though the re-centered intervals are of the same width as those in (4.13) and (4.26) used in

Tables 1 and 2. Remarkably, using the re-centered intervals gives (asymptotically) superior

coverage without widening the confidence intervals.7

As a final remark, recall from the discussion in Section 4 that when (p + q) = 4, one

can use either Theorem 4.2 or Theorem 4.3 while working in log-space, or either Theorem

4.5 or Theorem 4.6 while working with the original, untransformed indices. As noted above,

the results in Tables 1–2 for p = 3, q = 1 are based on Theorems 4.2 and Theorem 4.5,

respectively. Using instead Theorems 4.3 and 4.3 when (p+ q) = 4 yields slightly better size

for both tests than when using Theorems 4.2 and 4.5. However, the power of the tests is

worse when relying on Theorems 4.3 and 4.3 rather than Theorems 4.2 and 4.5. For example,

when n = 100, β = 0.000, and p = 3, q = 1, the realized sizes in Table 1 are 0.113, 0.058 and

0.011 for tests of size 0.1, 0.05 and 0.01, while using Theorem 4.3 results in realized sizes of

0.106, 0.054 and 0.011. But when β = 0.010, the rejection rates in Table 1 are 0.789, 0.688

and 0.445 compared to rejection rats of 0.451, 0.332 and 0.149 obtained using Theorem 4.3.

As noted near the end of Section 4, there is not escape from the inherent tradeoff between

size and power. In this case, the differences in sizes are much smaller than the differences in

power.

6 Summary and Conclusions

Malmquist indices estimated by nonparametric DEA estimators are widely used to analyze

changes in productivity in dynamic settings, and applied researchers typically report geo-

metric means of estimated Malmquist indices to summarize results and to make statements

about overall changes in productivity. Until now, however, valid inference in the context of

geometric means has been impossible. Moreover, until now, even the statistical properties

7 Tables showing the rejection rates obtained with the re-centered intervals are not shown here in order
to conserve space, but are available from the authors on request.
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of estimators of Malmquist indices for individual firms have been unknown.

The results of Kneip et al. (2015) strongly suggest that standard CLT results cannot be

used to make inference about means of logs of Malmquist indices. However, the results of

Kneip et al. (2015) cannot be used directly, as estimating Malmquist indices requires the

conical-DEA estimator introduced in Section 3. Kneip et al. (2015) provide results on mo-

ments of a constant-returns-to scale version of the DEA estimator under constant returns

to scale, but the situation here is very different. When Malmquist indices are estimated,

researchers often assume that variable returns to scale prevail in both periods under con-

sideration. Properties of the conical-DEA estimator in this setting have not been examined

until now.

This paper provides the tools needed by researchers for making inference either about

changes in productivity of an individual firm or overall change in productivity. Theoretical

results are provided that allow researchers to work in terms of logs of Malmquist indices or

in terms of the original, untransformed indices. The simulation results presented in Section

5 strongly suggest that for purposes of testing the null hypothesis of no productivity change

on average versus a change in productivity, one should work in terms of logs of Malmquist

indices.

A Proofs and Technical Details

A.1 Proof of Lemma 3.1

Consider rays L1 = L(x, y) and L2 = L(x, λ(x, y | C(Ψ))y) ⊂ C∂(Ψ).

Since (θ(x, y | C(Ψ))x, y) ∈ L2 and (x, λ(x, y | C(Ψ))y) ∈ L2, λ(x,y|C(Ψ))‖y‖
‖x‖ = ‖y‖

θ(x,y|C(Ψ))‖x‖|

and hence λ(x, y | C(Ψ))−1 = θ(x, y | C(Ψ)). In addition, (γ(x, y | C(Ψ))x, γ(x, y |
C(Ψ))−1y) ∈ L2. Therefore γ(x,y|C(Ψ))−1‖y‖

γ(x,y|C(Ψ))‖x‖ = ‖y‖
θ(x,y|C(Ψ))‖x‖ . Result (i) follows immediately.

To prove (ii), consider two points (x, y) ∈ L1 and (x̃, ỹ) ∈ L1. Clearly, (x, λ(x, y |
C(Ψ)y) ∈ L2 and (̃, λ(x̃, ỹ | C(Ψ)ỹ) ∈ L2. It follows that λ(x,y|C(Ψ)‖y‖

‖x‖ = λ(x̃,ỹ|C(Ψ)‖ỹ‖
‖x̃‖ . Hence

λ(x, y | C(Ψ) = λ(x̃, ỹ | C(Ψ) since ‖y‖‖x‖ = ‖ỹ‖
‖x̃‖ , establishing (ii). Results (iii) and (iv) follow

from (i) and (ii).
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A.2 Proof of Lemma 3.2

The results follow from the proof of Lemma 3.1 after replacing C(Ψ) with C(Ψ̂)).

A.3 Some Background Material used in Proof of Theorem 3.1

The proof of Theorem 3.1 that follows relies on the structural analysis used in the proof of

Theorem 3.1 in Kneip et al. (2015). Let us first recall some of the notation used in there.

Consider an arbitrary point (x, y) ∈ D. Let V(x) denote the (p − 1)-dimensional linear

space of all vectors z ∈ Rp such that zTx = 0. Any input vector Xi adopts a unique

decomposition of the form Xi = γi
x
‖x‖ + Zi for some Zi ∈ V(x) and γi = xTXi

‖x‖ , where

‖ · ‖ denotes the Euclidean norm. Let Ψ∗(x) denote the set of all (z, y) ∈ V(x) × Rq with

(γ x
‖x‖ + z, y) ∈ D for some γ > 0. Note that the point of interest (x, y) ∈ Ψ has coordinates

(0, y) in Ψ∗(x).

The maintained assumptions imply that for any (z, y) ∈ Ψ∗(x), there exists γ > 0

such that (γ x
‖x‖ + z, y) ∈ Ψ. The efficient boundary of Ψ can therefore be described by the

function gx(z, y) := inf
{
γ |
(
γ x
‖x‖ + z, y

)
∈ Ψ

}
defined for any (z, y) ∈ Ψ∗(x). Furthermore,

with only a small abuse of notation, one may extend the definition of gx to all (v, y) with(
v − xT v

‖x‖2x, y
)
∈ Ψ∗(x) by taking gx(v, y) = gx

(
v − xT v

‖x‖2x, y
)

.

Properties of gx are discussed in Kneip et al. (2008). In particular, under the assumptions

of the theorem, gx is a three times continuously differentiable, strictly convex function, and

there exists a constant C1 > 0 such that wTg′′x(0, y)w ≥ C1 for all w ∈ V(x) × Rq with

‖w‖ = 1 and all x ∈ Rq with (x, y) ∈ D. Moreover, g′′x(0, y) changes continuously in x. In

the following we will additionally use g′′x;zz(z̃, ỹ) to denote the (p − 1) × (p − 1)-matrix of

partial derivatives with respect to the z-coordinates at a point (z̃, ỹ), while g′′x;yy(z̃, ỹ) will

denote the q × q-matrix of partial derivatives with respect to the y-coordinates.

The decomposition described above establishes a new coordinate system in which each

observation (Xi, Yi) can be equivalently represented by the corresponding vector (θi, Zi, Yi),

where θi := θ(Xi, Yi). Any point (x, ay) of interest has coordinates (θ(x, ay), 0, ay) in this

system.

Different from Kneip et al. (2015) we will need an additional decomposition of the vari-
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ables Yi

Yi = αiy + Vi for some Vi ∈ Rq, V t
i y = 0, and αi =

yTYi
‖y‖2

. (A.1)

This establishes another coordinate system with (Zi, Vi) ∈ V(x, y), where V(x, y) denotes the

(p− 1)× (q− 1)-dimensional linear space of all vectors z ∈ Rp and v ∈ Rp such that zTx = 0

and vTy = 0. Instead of using (θi, Zi, Yi), each observation (Xi, Yi) can be equivalently

represented by the corresponding vector (θi, Zi, αi, Vi), where θi := θ(Xi, Yi). Any point

(x, ay) of interest has coordinates (θ(x, ay), 0, ay, 0) in this new system.

Let z
(1)
x , . . . , z

(p−1)
x and v

(1)
y , . . . , v

(q−1)
y be orthonormal bases of Zi and Vi. Clearly, the

z
(j)
x and v

(j)
y can be chosen as continuous functions of x and y, respectively. Every vector Zi

can be expressed in the form Zi = Zxζi, where Zx is the p × (p − 1) matrix with columns

z
(j)
x , j = 1, . . . , p − 1, and ζi ∈ Rp−1. Similarly, every vector Vi can be expressed in the

form Vi = Vyvi, where Vy is the q× (q− 1) matrix with columns v
(j)
y , j = 1, . . . , q− 1, and

vi ∈ Rq−1.

Since θi = θ(Xi, Yi), Zi = Xi − xTXi
‖x‖2 x, αi = yTYi

‖y‖2 , and Vi = Yi − yTYi
‖y‖2 y are smooth

functions of (Xi, Yi), the joint density f of (Xi, Yi) translates into a density f̃x,y on (0, 1] ×
Rp−1 × R × Rq−1 of (θi, ζi, αi, vi). Let D̃ denote the support of this density. Since f is

continuously differentiable, f̃x,y(θ, ζ, α, v) is also continuously differentiable on (θ, ζ, α, v) ∈
D̃. Furthermore, compactness of D∗, as well as f(θ(x, y)x, y) > 0 for all (x, y) ∈ D, imply

that there exists a constant cinf > 0 such that

f̃x,y(θ, ζ, α, v) ≥ cinf (A.2)

whenever (Zxζ, αy + Vyv) ∈ Ψ∗(x) and (x, y) ∈ D.

A.4 Proof of Theorem 3.1

Consider an arbitrary point (x, y) ∈ D and recall the notation introduced above. First note

that gx(0, ay) = ‖x‖θ(x, ay) and hence

θC(x, y) =
1

‖x‖
·min
a>0

{
gx(0, ay)

a
| (gx(0, ay)

‖x‖
x, ay) ∈ Ψ

}
. (A.3)
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Assumption 3.1 together with strict convexity of gx therefore imply that ax,ymin ∈ R+ is

uniquely defined and (θ(x, ax,yminy)x, ax,yminy) ∈ D. Taking derivatives yields

∂

∂a

gx(0, ay)

a

∣∣∣∣
a=ax,ymin

= 0, Ax,y :=
∂2

∂a2

gx(0, ay)

a

∣∣∣∣
a=ax,ymin

=
yTg′′x;yy(0, a

x,y
miny)y

ax,ymin
> 0. (A.4)

Since by assumption gx is at least three times continuously differentiable, Taylor expansions

lead to ∣∣∣∣gx(0, ay)

a
− gx(0, a

x,y
miny)

ax,ymin
− Ax,y

2
(a− ax,ymin)2

∣∣∣∣ ≤ D|a− ax,ymin|3 (A.5)

for some D > 0 and all a with (θ(x, ay)x, ay) ∈ D. Since D∗ = {θ(x̃, ỹ)x̃, ỹ)|(x̃, ỹ) ∈ D} is

compact, D can be chosen independent of a > 0 and (x, y) ∈ D.

Let κ = 2
p+q+1

. Since by Assumption 3.1 no relevant point lies in the “observable bound-

ary” for sufficiently large n, it follows from (A.6) and (A.9) in the proof of Theorem 3.1 in

Kneip et al. (2015) that for any a > 0 with |a−ax,ymin| < δ there exists some 0 < D1, D2 <∞,

which can be chosen independent of (x, y), such that

Pr
(∣∣∣‖x‖θ̂VRS(x, ay | Xn)− ‖x‖θ(x, ay)

∣∣∣ ≥ D1n
−κ(log n)κ

)
≤ D2n

−2 (A.6)

On the other hand, by (A.5) there exists a 0 < d1 <∞ such that

gx(0, (a
x,y
min − d1n

−κ
2 (log n)

κ
2 )y)

ax,ymin − d1n
−κ

2 (log n)
κ
2

− gx(0, a
x,y
miny)

ax,ymin
≥ 3D1n

−κ(log n)κ,

gx(0, (a
x,y
min + d1n

−κ
2 (log n)

κ
2 )y)

ax,ymin + d1n
−κ

2 (log n)
κ
2

− gx(0, a
x,y
miny)

ax,ymin
≥ 3D1n

−κ(log n)κ. (A.7)

Since necessarily inf(x,y)∈D Ax,y > 0, d1 can be chosen independent of (x, y) ∈ D. Inequalities

(A.5) and (A.6) now imply that with probability converging to 1 we obtain

‖x‖ θ̂VRS(x, ay | Xn)

a
> ‖x‖ θ̂VRS(x, ax,yminy | Xn)

ax,ymin
(A.8)

for a = ax,ymin − d1n
−κ

2 (log n)
κ
2 as well as for a = ax,ymin + d1n

−κ
2 (log n)

κ
2 . But convexity

then additionally implies that (A.8) also holds for all a ≤ ax,ymin − d1n
−κ

2 (log n)
κ
2 and a ≥

ax,ymin + d1n
−κ

2 (log n)
κ
2 . More precisely, there exists a constant 0 < D3 < ∞, which can be

chosen independent of (x, y), such that

1− Pr

(
θ̂C(x, y | Xn) = min

ax,ymin−d1n
−κ2 (logn)

κ
2 ≤a≤ax,ymin+d1n

−κ2 (logn)
κ
2

θ̂VRS(x, ay | Xn)

a

)
≤ D3n

−2.

(A.9)
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Recall that Yi = αiy+Vi. Representation (A.15) of the VRS-DEA estimator in the proof

of Theorem 3.1 in Kneip et al. (2015) tells us that

θ̂VRS(x, y | Xn)

a
= min

{ n∑
i=1

ωi
gx(θiZi, αiy + Vi)

a‖x‖θi
| iTnω = 1, Zω = 0,

V ω = 0,αTω = a,ω ∈ Rn
+

}
= θC(x, y)×min

{ n∑
i=1

ωi
ax,ymingx(θiZi, αiy + Vi)

agx(0, a
x,y
miny)θi

| iTnω = 1, Zω = 0,

V ω = 0,αω = a,ω ∈ Rn
+

}
(A.10)

where in = (1, 1, . . . , 1)T ∈ Rn, ωi represents the ith element of ω, θi = θ(Xi, Yi), Zi =

Xi−
xTXi

||x||2
x is a (p×1) vector and Z = (Z1, . . . , Zn) is a (p×n) matrix, V = (V1, . . . , Vn)

is a ((q − 1)× n) matrix, and αT = (α1, . . . , αn).

An essential step of the proof now consists in the localization argument developed in

Kneip et al. (2008) and reconsidered in Kneip et al. (2015) which states that VRS-DEA

estimators are is asymptotically determined by local information. In Kneip et al. (2008,

2015) the argument relies on using the coordinates (θi, Zi, Yi), but a generalization to the

coordinates (θi, Zi, αi, Vi) is immediate. For any h > 0, define the set

C(x, ax,yminy;h) =
{

(θ̃, z̃, α̃, ṽ) ∈ (0, 1]× Rp−1 × R+ × Rq−1 | 1− θ̃ ≤ h2, |α̃− ax,ymin| ≤ h,

z̃ =
∑
j

ζjz
(j)
x , |ζj| ≤ h ∀ j = 1, . . . , p− 1, ṽ =

∑
r

vrv
(r)
y , |vr| ≤ h ∀ r = 1, . . . , q

}
,

(A.11)

and let Xn(x, ax,yminy;h) := {(Xi, Yi) ∈ Xn | (θi, Zi, αi, Vi) ∈ C(x, ax,yminy;h)}.
In the following it will be necessary to distinguish between points (x, y) lying in the

interior and on the observable boundary of D. For (x, y) ∈ D let

Ψ∗∂(x, y) =

{
(z̃, ṽ) ∈ V(x, y) | (gx(z̃, ax,yminy + ṽ)

x

||x||
+ z̃, ax,yminy + ṽ) ∈ D∗ while for any

ε > 0 there is some (z, v) ∈ Rp−1 × Rq−1 with ‖z̃ − z‖ < ε and ‖ṽ − v‖ < ε

such that (gx(z, a
x,y
miny + v)

x

||x||
+ z, ax,yminy + v) /∈ D∗

}
(A.12)

denote the boundary of possible vectors (z, v), where of course Ψ∗∂(x, y) = ∅ if min p, q = 1.
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Then define the observable boundary as

W(h) :=

{
(x, y) ∈ D |min

{
min

j=1, ..., p−1
|ζj|, min

r=1, ..., q−1
|vr|
}
≤ h

for some (z̃, ṽ) ∈ Ψ∗∂(x, y) with z̃ =
∑
j

ζjz
(j)
x , ṽ =

∑
r

vrv
(r)
y

}
.

(A.13)

If p ≤ 1 and q ≤ 1, then W(h) = ∅; but for p + q > 2, compactness of D∗ implies that for

any h > 0 the observable boundary W(h) is nonempty.8

Recall the constant d1 in (A.8) and choose some constant b ≥ 4(p+ q)(1 + d1). Then set

νn := b(
log n

nf̃x,y(1, 0, a
x,y
min, 0)

)
1

p+q+1 as well as ν∗n := b(
log n

cinfn
)

1
p+q+1 .

Case(i): We first consider the case where (x, y) is in the interior of D in the sense

that (x, y) /∈ W(ν∗n). In this case, by Assumption 3.1 we have C(x, ax,yminy; νn) ⊂ D for all

sufficiently large n.

Following the arguments in Kneip et al. (2008, 2015) one can construct k = 2(p+ q− 1)

hypercubes Bs ⊂ Rp−1 × Rp, s = 1, . . . , k, of side lengths νn
2(p−1)+2q

and centered at values

(zj, yj) determined in the following way: zj =
∑

s ζsz
(s)
x , yj = (α+ ax,ymin)y+

∑
r vrv

(r)
y , where

for each j = 1, . . . , 2(p+ q− 1) exactly one of the coordinates (ζ1, . . . , ζp−1, α, v1, . . . , vq−1)

equals νn · 2(p−1)+2q−1
2(p−1)+2q

or −νn · 2(p−1)+2q−1
2(p−1)+2q

, while all others are identically zero. By definition

of νn, the probability that there exist at least k observations (θi1 , Zi1 , Yi1), . . . , (θik , Zik , Yik)

with θij ≥ 1− ν2
n and (Zij , Yij) ∈ Bj, j = 1, . . . , k, is of order 1− n−2 as n→∞.

On the other hand, if such a set of k observations exists, then by construction for

any a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ] the point (0, ay) is in the inte-

rior of the convex hull of (Zij , Yij), j = 1, . . . , k. If n is sufficiently large, by the

strict convexity of gx the arguments in the proof of Theorem 1 of Kneip et al. (2008)

can then be used to show then for any other observation (θi, Zi, Yi) with (θi, Zi, Yi)) /∈
C(x, ax,yminy; νn) and any vector ω ∈ Rn

+ with ωi > 0, satisfying the constraints in (A.10) for

a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ], there exists another vector ω∗ ∈ Rn

+ with

ω∗i = 0 and ω∗ij ≥ 0, j = 1, . . . , k, such that
∑n

i=1 ωi
gx(θiZi,Yi)

θi
>
∑n

i=1 ω
∗
i
gx(θiZi,Yi)

θi
. This

8 Note that there is an error in Appendix A of Kneip et al. (2015). The concept of the boundary Ψ∗∂(x)
used here is correct (as well as the arguments relying on Ψ∗∂(x)). But the definition in formula (A.4) of
Kneip et al. (2015) does not provide the proper boundary, and it should be replaced by an analog of A.12.
The proof of Theorem 3.1 in Kneip et al. (2015) still holds after this change.
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implies that for arbitrary a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ] the minimum in

(A.10) is achieved by assigning zero weight ωi = 0 to each observation with (θi, Zi, Yi) /∈
C(x, ax,yminy; νn). This then leads to θ̂VRS(x, ay | Xn) = θ̂VRS(x, ay | Xn(x, ax,yminy; νn)), where

θ̂VRS(x, ay | Xn(x, ax,yminy; νn)) denotes the VRS-DEA estimator only based on the subset of

all observations in Xn(x, ax,yminy; νn).

Therefore, there exists a D4 ∈ (0,∞), which can be chosen independent of (x, y) ∈ D
with (x, y) /∈ W(ν∗n), such that for all sufficiently large n,

Pr

(
θ̂C(x, y | Xn) = min

ax,ymin−d1( logn
n

)
κ
2 ≤a≤ax,ymin+d1( logn

n
)
κ
2

θ̂VRS(x, ay | Xn(x, ax,yminy; νn))

a

)
≥ 1−D4n

−2

(A.14)

Now consider the sums in (A.10) with respect to the (random) number Kn ≤
#Xn(x, ax,yminy; νn) of all observations with coordinates (θij , Zij , αij , Vij) ∈ C(x, ax,yminy; νn).

Furthermore, for some a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ] consider arbitrary

weight vectors ω = (ω1, . . . , ωKn)T ∈ RKn
+ such that

∑Kn
j=1 ωj = 1,

∑Kn
j=1 ωjZij = 0,∑Kn

j=1 ωjαij = a, and
∑Kn

j=1 ωjVij = 0. Let θ∗ij := 1 − θij , G(ay) := g′′x(0, ay), and note

that
∑Kn

j=1 ωj(αij − a
x,y
min)2 =

∑Kn
j=1 ωj(αij − a)2 + (a − ax,ymin)2. It then follows from Taylor

expansions of gx as well as from (A.5) that for some 0 ≤ Rn, R
∗
n <∞

Kn∑
j=1

ωj
gx(θijZij , αijy + Vij)

aθij
=
gx(0, ay)

a

+
1

a

Kn∑
j=1

ωj

[(
Zij
Vij

)T
G(ay)

2

(
Zij
Vij

)
+

(
0

(aij − a)y

)T
G(ay)

(
Zij
Vij

)
+ (αij − a)2

yTg′′x;yy(0, ay)y

2
+ θ∗ij

]
+Rnν

3
n

=
gx(0, a

x,y
miny)

ax,ymin

+
1

ax,ymin

Kn∑
j=1

ωj

[(
Zij

(αij − a
x,y
min)y + Vij

)T
G(ax,ymin)

2

(
Zij

(αij − a
x,y
min)y + Vij

)
+ θ∗ij

]
︸ ︷︷ ︸

=:τ((θ∗i1
,Zi1 ,αi1 ,Vi1 ),...,(θ∗iKn

,ZiKn
,αiKn

,ViKn
);ω)

+R∗nν
3
n

(A.15)

By our assumptions there exists a constant D5 < ∞ such that R∗n < D5 for all possible

Kn, all possible sets {(θij , Zij , αij , Vij)} ⊂ C(x, ax,yminy; νn), all a and all (x, y) ∈ D with

(x, y) /∈ W(ν∗n).
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The result in (A.15) shows that θ̂C(x, y | Xn) is essentially determined by minimizing τ(·)
over all possible ω with

∑Kn
j=1 ωiZij = 0 and

∑Kn
j=1 ωjVij = 0, independent of the correspond-

ing value of
∑Kn

j=1 ωjαij = a (even cases with a 6∈ [ax,ymin−d1n
−κ

2 (log n)
κ
2 , ax,ymin+d1n

−κ
2 (log n)

κ
2 ]

need not to be excluded since due to (A.5) they cannot constitute an optimal solution with

probability tending to 1). Recall that θ∗ij := 1− θij , and let

TKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
= min

{
τ((θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn );ω) | iTKnω = 1,

Kn∑
j=1

ωjZij =
Kn∑
j=1

ωjVij = 0
}

(A.16)

When combining these arguments with (A.10) and (A.14) one can conclude that there are

constants 0 < D6, D7 <∞ such that with probability at least 1−D6n
−2∣∣∣∣∣∣θ̂C(x, y | Xn)− θC(x, y)

1 +
TKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
gx(0, a

x,y
miny)

∣∣∣∣∣∣ ≤ D7ν
3
n

(A.17)

Here, D6 and D7 can be chosen independent of (x, y) ∈ D with (x, y) /∈ W(ν∗n). Since

necessarily, τ((θi1∗, Zi1 , αi1 , Vi1), . . . , (θ∗iKn , ZiKn , αiKn , ViKn );ω) ≤ D8ν
2
n, (A.17) immediately

implies that for some constant D8 <∞ and all β > 0

E

(∣∣∣θ̂C(x, y | Xn)− θ(x, y)
∣∣∣β) ≤ D8 max{n−

2β
p+q+1 (log n)

2β
p+q+1 , n−2} ∀ (x, y) ∈ D\W(ν∗n).

(A.18)

More precise results are to be obtained from the distribution of TKn . When trans-

lating the results of Kneip et al. (2008, (2015)) into the alternative (θ, ζ, α, v)-

coordinate system it turns out that the asymptotic behavior the VRS-DEA esti-

mator θ̂(x, ax,yminy | Xn) of θ(x, ax,yminy) is determined by a similar random variable

TDEAKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
defined by minimizing

τ((θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ
∗
iKn
, ZiKn , αiKn , ViKn );ω) with respect to all weight sequences with

iTKnω = 1,
∑Kn

j=1 ωjZij =
∑Kn

j=1 ωjVij = 0, and
∑Kn

j=1 ωjαij = ax,ymin. Therefore, the only

difference between TKn and TDEAKn
consists in the fact that (A.16) does not incorporate the

additional constraint
∑Kn

j=1 ωjαij = ax,ymin. But all arguments developed for analyzing TDEAKn

readily generalize to TKn .
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Obviously, the observations (θ∗ij , ζij , αij , vij) are independent. The conditional distribu-

tion of (θ∗ij , ζij , αij , vij) given (Xij , Yij) ∈ Xn(x, ax,yminy; νn) converges to a uniform distribution.

Also note that for all (x, y) in the interior of D we necessarily have (x, y) /∈ W(ν∗n) for all

sufficiently large n. For deriving the asymptotic distribution of TKn we rely on the construc-

tion presented in Kneip et al. (2008). Let (θ̃1, ζ̃1, α̃1, ṽ1), . . . , (θ̃k, ζ̃k, α̃k, ṽk) denote iid

random variables uniformly distributed on [0, 1]× [−1, 1]p−1× [ax,ymin−1, ax,ymin+1]× [−1, 1]q−1,

and set Z̃i =
∑

j ζ̃ijz
(j)
x , Ṽi =

∑
r ṽirv

(r)
y , i = 1, . . . , k. Then for any integer k and γ > 0

define the following event U [γ, k]: there exists a weight vector ω ∈ Rk
+ with iTkω = 1 and∑k

j=1 ωjZ̃j =
∑k

j=1 ωjṼj = 0 such that

τ((θ̃1, Z̃1, α̃1, Ṽ1), . . . , (θ̃k, Z̃k, α̃k, Ṽk);ω)

gx(0, a
x,y
miny)

≤ γ. (A.19)

Applying the same type of arguments as those used in the proof of Theorem 2 of Kneip et al.

(2008) it can then be derived that for any γ > 0

lim
n→∞

Pr

(
nκ
( θ̂C(x, y | Xn)− θC(x, y)

θC(x, y)

)
≤ γ

)

= lim
n→∞

Pr

(
nκ
TKn((θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn ))

gx(0, a
x,y
miny)

≤ γ

)
= Fx,y(γ) (A.20)

where Fx,y is a continuous distribution function with Fx,y(0) = 0 and

Fx,y(γ) = lim
k→∞

Pr

(
U
[
γ
f̃x,y(1, 0, a

x,y
min, 0)

2
p+q+1

k
2

p+q+1

, k

])
(A.21)

This proves (3.12). Analysis of expectations now relies on the techniques developed in Kneip

et al. (2015).

Let ν̃n :=
(

n

f̃x,y(1,0,ax,ymin,0)

) 1
p+q+1

, Z̃
(n)
j = Zxζ̃

(n)
j , Ṽ

(n)
j = Vyṽ

(n)
j and let (θ̃

(n)
j , ζ̃

(n)
j , α̃

(n)
j , ṽ

(n)
j ),

j = 1, . . . , n, denote iid random variables with a uniform distribution on [0, ν̃2
n] ×

[−ν̃n, ν̃n]p−1 × [ax,ymin − ν̃n, a
x,y
min + ν̃n] × [−ν̃n, ν̃n]p−1. Similar to TKn one can then define

the r.v. Tn

(
(θ̃

(n)
1 , Z̃

(n)
1 , α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃

(n)
n , Z̃

(n)
n , α̃

(n)
n , Ṽ

(n)
n )

)
by minimizing (A.16) with

respect to the set of observations {(θ̃(n)
j , ζ̃

(n)
j , α̃

(n)
j , ṽ

(n)
j )} instead of {(θ∗ij , Zij , αij , Vij)}.

In a straightforward generalization of the arguments leading to relations (A.13)–(A.18)

in the proof of Theorem 3.1 of Kneip et al. (2015) it can then be shown that the

asymptotic distributions of nκTKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
and of
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Tn

(
(θ̃

(n)
1 , Z̃

(n)
1 , α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃

(n)
n , Z̃

(n)
n , α̃

(n)
n , Ṽ

(n)
n )

)
coincide, and that all moments of

Tn

(
(θ̃

(n)
1 , Z̃

(n)
1 , α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃

(n)
n , Z̃

(n)
n , α̃

(n)
n , Ṽ

(n)
n )

)
converge rapidly to finite, fixed val-

ues as n→∞. Additionally using (A.17), we obtain the following generalization of relations

(A.16)–(A.18) in the proof of Theorem 3.1 of Kneip et al. (2015):∣∣∣E (θ̂C(x, y | Xn)− θC(x, y)
)
− θC(x, y)n−

2
p+q+1

C̃g′′x ,f̃x,y(1,0,ax,ymin,0)

gx(0, a
x,y
miny)

∣∣∣ ≤ D9n
− 3
p+q+1 (log n)

3
p+q+1

(A.22)

for all (x, y) ∈ D with (x, y) /∈ W(ν∗n). and some D9 ∈ (0,∞), where

C̃g′′x ,f̃x,y(1,0,ax,ymin,0) := lim
n→∞

E
[
Tn

(
(θ̃1, Z̃1, α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃n, Z̃n, α̃

(n)
n , Ṽ (n)

n )
)]

(A.23)

only depends upon g′′x and f̃x,y(1, 0, a
x,y
min, 0) and changes continuously in (x, y) ∈ D. Fur-

thermore, there exists some D10 ∈ (0,∞) such that

E
(∣∣θ̂C(x, y | Xn)− θC(x, y)

∣∣2) ≤ D10n
− 4
p+q+1 (A.24)

for all (x, y) ∈ D with (x, y) /∈ W(ν∗n).

Case (ii): For a further analysis of expectations we additionally have to consider the

alternative case where (x, y) ∈ W(ν∗n). We again rely on arguments similar to those used in

the proof of Theorem 3.1 of Kneip et al. (2015).

In this case, the problem arises that some of the sets Bj used in the above construction

surpass the boundary and are no longer in D. As a consequence, one cannot exclude that

θ̂C(x, y | Xn) is influenced by an observation with θi ≤ 1− ν2
n. But let

Hn(x, y; νn) := {(Xi, Yi) ∈ Xn | (1, Zi, ax,ymin, Vi) ∈ C(x, ax,yminy; , νn)} (A.25)

By a straightforward generalization of the arguments in the proof of Theorem 3.1 of Kneip

et al. (2015) it it follows that∣∣1− Pr
(
θ̂C(x, y | Xn) = θ̂C(x, y | Hn(x, y; νn))

) ∣∣ ≤ D11n
−2 (A.26)

for all (x, y) ∈ D, some D11 ∈ (0,∞), and all sufficiently large n.

Recall that boundary problems arise only if p+q > 2. In such cases, for r = 1, . . . , p−1,

define

vr;x,y := min
(ζ,v)∈Rp−1×Rq−1,

(
∑p−1
j=1 ζjz

(j)
x ,v)∈Ψ∗∂(x,y)

{νn, |ζr|} . (A.27)
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Similarly, for r = 1, . . . , q − 1, define vp−1+r;x,y by replacing |ζr| with |vr| in (A.27). These

vr;x,y can be viewed as measuring a “distance” from (x, y) to the boundary, with vr;x,y ≤ νn.

If
∏p+q−2

r=1 vr;x,y ≥ νp+q+1
n , i.e. (x, y) is not too near the boundary, an upper bound

for θ̂C(x, y | Xn) can then be obtained by relying on the observations with 1 − θi ≤(
νp+q+1
n∏p+q−2

r=1 vr;x,y

)2/3

and |αi−αx,ymin| ≤
(

νp+q+1
n∏p+q−2

r=1 vr;x,y

)1/3

. Arguments similar to those used above

then show that for all (x, y) ∈ W(ν∗n) with
∏p+q−2

r=1 vr;x,y ≥ νp+q+1
n , we have for α ∈ {1, 2}

E
(∣∣θ̂C(x, y | Xn)− θC(x, y)

∣∣α) ≤ Dα
12

(
νp+q+1
n∏p+q−2

r=1 vr;x,y

)2α/3

, (A.28)

for some constant D12 ∈ (0,∞), and for all sufficiently large n.

Now the moments of θ̂C(Xi, Yi | Xn) can be analyzed in a way similar to Kneip et al.

(2015). Let Xn,−i denote the sample of size n−1 obtained by eliminating the i-th observation

(Xi, Yi). When relying on Xn,−i, it is clear that all constants in the above inequalities can

be chosen independently of (x, y) and thus also apply for the (random) coordinate system

induced by the specific choice (x, y) = (Xi, Yi). Obviously,

θ̂C(Xi, Yi | Xn) = min
{
θ̂C(Xi, Yi | Xn,−i), 1

}
. (A.29)

Since (Xi, Yi) is independent of Xn,−i, (A.18) and (A.29) imply that

E
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi) | (Xi, Yi) /∈ W(ν∗n)

)
= C0n

− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
(A.30)

for some C0 ∈ (0,∞). If p = 1 and q ≤ 1, then assertion (3.13) follows directly from (A.30),

since in this case there is no boundary problem due to W(ν∗n) = ∅.
In order to quantify the influence of boundary effects for p + q > 2, let Wn,1 :={

(x, y) ∈ D | νp+q−2
n >

∏p+q−1
r=1 vr;x,y ≥ νp+q+1

n

}
contain points in W(ν∗n) but not too near

the boundary, and let Wn,2 :=
{

(x, y) ∈ D |
∏p+q−2

r=1 vr;x,y < νp+q+1
n

}
contain the other

points of W(ν∗n) very near the boundary where only the trivial upper bound |θ̂C(Xi, Yi |
Xn)− θ(Xi, Yi)| ≤ 1 can be used. For points in Wn,1, note that for all r = 1, . . . , p + q − 2,

ν4
n ≤ vr;x,y ≤ νn. Fortunately, the boundary is “smaller” than in the DEA-case, and its
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influence is less pronounced. Note that

E
(
θ̂C(Xi, Yi | Xn)− θ(Xi, Yi)

)
= E

(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi) | (Xi, Yi) /∈ W(ν∗n)

)
× Pr((Xi, Yi)) /∈ W(ν∗n))

+
2∑
s=1

E
(
θ̂C(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,s

)
×

Pr((Xi, Yi) ∈ Wn,s). (A.31)

When relying on (A.28), straightforward calculations similar to those in Kneip et al.

(2015) yield that with for some constants D13, D14 <∞,

E
(
θ̂C(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1)

≤ D13

∫
Wn,1

(
νp+q+1
n∏p+q−2

r=1 vr;x,y
)2/3f(x, y)dxdy

≤ D14

p+q−2∑
r=1

∫
B

ν
8/3
n

v
2/3
r;x,y

dx dy +Op

(
n−

4
p+q+1 (log n)

4
p+q+1

)
= Op

(
n−

4
p+q+1 (log n)

4
p+q+1

)
, (A.32)

where B := {(x, y) ∈ D |
νn > vr,x,y ≥ ν4

n} In addition, Pr((Xi, Yi) ∈ Wn,2) = O
(
n−

4
p+q+1 (log n)

4
p+q+1

)
. Together with

(A.30), this leads to (3.13).9

Recall (A.22) and (A.24). Assertion (3.14) follows from the fact that (A.28) implies the

existence of constants D15, D16 <∞ such that

VAR
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)

)
≤ D15n

− 4
p+q+1 × Pr ((Xi, Yi) /∈ W(ν∗n))

+D2
16

∫
Wn,1

(
(

νp+q+1
n∏p+q−2

r=1 vr;x,y
)4/3

)
f(x, y) dx dy + Pr ((Xi, Yi) ∈ Wn,2)

= O
(
n−

4
p+q+1 + n−

4
p+q+1 (log n)

4
p+q+1

)
. (A.33)

It remains to prove (3.15). Estimators θ̂C(Xi, Yi | Xn) exhibit stronger correlations than

the original VRS-DEA estimators θ̂VRS(Xi, Yi | Xn). The reason is that by (A.14), for any

9 Note that a typographical error appears in Appendix A of Kneip et al. (2015). The

quantity E
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
in formula (A.24) should be replaced by

E
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1).
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b > 0 the estimators θ̂C(x, y | Xn) and θ̂C(x, by | Xn) depend on the same local observa-

tions in Xn(x, ax,yminy; νn), while for sufficiently large b, DEA estimators θ̂DEA(x, y | Xn) and

θ̂DEA(x, by | Xn) will be asymptotically uncorrelated.

However, for all i, j ∈ 1, . . . , n, i 6= j, it follows from (A.26) that θ̂C(Xi, Yi | Xn) −
θ(Xi, Yi) and θ̂C(Xj, Yj | Xn)− θ(Xj, Yj) are asymptotically uncorrelated if Hn(Xi, Yi; νn) ∩
Hn(Xj, Yj; νn) = ∅. Since all observations are iid, the Cauchy-Schwarz inequality yields∣∣COV

(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi), θ̂C(Xj, Yj | Xn)− θC(Xj, Yj)

) ∣∣
≤ Pr (Hn(Xi, Yi; νn) ∩Hn(Xj, Yj; νn) 6= ∅)

× VAR
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)

)
+O

(
n−2
)
. (A.34)

Relation (3.14) as well as

Pr (Hn(Xi, Yi; νn) ∩Hn(Xj, Yj; νn) 6= ∅) = O
(
n−

p+q−2
p+q+1 (log n)

p+q−2
p+q+1

)
(A.35)

now lead to assertion (3.15), completing the proof of the theorem.

A.5 Proof of Theorem 3.2

The transformation defined by the respective function Γ is monotonic and differentiable with

nonzero derivatives on R+. Therefore, (3.16) follows via the delta method.

By Assumption 3.1 (iii) Γ(θC(Xi, Yi)) as well as its derivatives Γ′(θC(Xi, Yi)) and

Γ
′′
(θC(Xi, Yi)) are uniformly bounded for all (Xi, Yi) ∈ D. It thus follows from a Taylor

expansion and (3.14) that

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))
)

= E
(

Γ′(θC(Xi, Yi))[θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)]
)

+O
(
n−

4
p+q+1 (log n)

4
p+q+1

)
. (A.36)

Recall that (A.29) states that θ̂C(Xi, Yi | Xn) = min
{
θ̂C(Xi, Yi | Xn,−i), 1

}
. Moreover, the

arguments developed in the proof of Theorem 3.1 imply that

Pr
(
{θ̂C(Xi, Yi | Xn) = 1} ∩ {(Xi, Yi) /∈ W(ν∗n)}

)
= O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
, (A.37)

where the boundaryW(ν∗n) is defined as in the proof of Theorem 3.1. Since Γ′(θC(Xi, Yi) > 0,
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it follows from (A.36), (A.22), and (A.23) that similar to (A.30) we have

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) /∈ W(ν∗n)
)

=

CΓ
0 n
− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
(A.38)

for some 0 < CΓ
0 <∞. An immediate generalization of (A.31) yields

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))
)

=

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) /∈ W(ν∗n)
)
· Pr((Xi, Yi) /∈ W(ν∗n))

+
2∑
s=1

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) ∈ Wn,s

)
· Pr((Xi, Yi) ∈ Wn,s).

(A.39)

With 0 < M1 := sup(x,y)∈D Γ′(θC(x, y)) <∞ a Taylor expansion leads to

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1)

≤M1E
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1),

(A.40)

and Assertion (3.17) then is an immediate consequence of (A.38), (A.32), and Pr((Xi, Yi) ∈
Wn,2) = O

(
n−

4
p+q+1 (log n)

4
p+q+1

)
. Similarly, (A.33) implies

E
(

[Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))]
2
)
≤M2

1E
(

[θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)]
2
)

= O
(
n−

4
p+q+1 (log n)

4
p+q+1

)
, (A.41)

which proves Assertion (3.18). Analogous to (A.34) and (A.35) Assertion (3.19) finally

follows from the fact that Γ(θ̂C(Xi, Yi | Xn)) − Γ(θC(Xi, Yi)) and Γ(θ̂C(Xj, Yj | Xn)) −
Γ(θC(Xj, Yj)) are asymptotically uncorrelated if Hn(Xi, Yi; νn) ∩Hn(Xj, Yj; νn) = ∅.

A.6 Proof of Theorem 3.3

Note that Theorem 3.2 holds for both (x1, y1) and (x2, y2) due to Assumption 3.2. The log

transformation in Theorem 3.2 is monotonic, differentiable, and invertible. Hence the result

follows via the delta method.
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A.7 Proof of Theorem 3.4

For t = s Assertion (3.27) follows from (3.17). Now consider the case t 6= s. Following the

notation introduced in (3.4) let

(X̆ t
i , Y̆

t
i ) := (g̃x(α

Xt
i ,Y

t
i

min

Y t
i

‖Y t
i ‖

)
X t
i

‖X t
i‖
, α

Xt
i ,Y

t
i

min

Y t
i

‖Y t
i ‖

)

Since D1
norm = D2

norm we have (X̆ t
i , Y̆

t
i ) ∈ Ds. Then (3.10) implies that

log γ̂s(X t
i , Y

t
i | X s

ns)− log γs(X t
i , Y

t
i ) = log γ̂s(X̆ t

i , Y̆
t
i | X s

ns)− log γs(X̆ t
i , Y̆

t
i )

= Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns))− Γ(θsC(X̆ t
i , Y̆

t
i )), (A.42)

where Γ(θ) = log θ1/2 for all θ > 0. Recall the arguments developed in the proofs of Theorems

3.1 and 3.2 and the definitions of the boundaries W(ν∗ns) ≡ W
s(ν∗ns), Wns,1 ≡ Ws

ns,1 as well

as Wn2,2 ≡ Ws
ns,2. If (θ̂sC(X̆s

i , Y̆
s
i | X s

ns) 6= 1, then obviously θ̂sC(X̆ t
i , Y̆

t
i | X s

ns) = θ̂sC(X̆ t
i , Y̆

t
i |

X s
ns,−i), where again Xns,−i denote the sample of size n− 1 obtained by eliminating the i-th

observation (Xi, Yi). Moreover, the arguments developed in the proof of Theorem 3.1 imply

that Pr
(
{θ̂sC(X̆s

i , Y̆
s
i | X s

ns) = 1}}
)

= O

(
n
− 3
p+q+1

s (log ns)
3

p+q+1

)
. Hence,

E
(

Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns))− Γ(θsC(X̆ t
i , Y̆

t
i ))
)

= E
(

Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns,−i))− Γ(θsC(X̆ t
i , Y̆

t
i )) | (X̆ t

i , Y̆
t
i ) /∈ Ws(ν∗ns)

)
· Pr((X̆ t

i , Y̆
t
i ) /∈ Ws(ν∗ns))

+
2∑
l=1

E
(

Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns,−i))− Γ(θsC(X̆ t
i , Y̆

t
i )) | (X̆ t

i , Y̆
t
i ) ∈ Ws

ns,l

)
· Pr((X̆ t

i , Y̆
t
i ) ∈ Ws

ns,l)

+O

(
n
− 3
p+q+1

s (log ns)
3

p+q+1

)
(A.43)

Note that (X̆ t
i , Y̆

t
i ) is independent of X s

ns,−i, and that by definition of our coordinate sys-

tem (X̆ t
i , Y̆

t
i ) /∈ Ws(ν∗ns) if and only if (X t

i , Y
t
i ) /∈ Ws(ν∗ns), as well as (X̆ t

i , Y̆
t
i ) ∈ Ws

ns,l
if

and only if (X t
i , Y

t
i ) ∈ Ws

ns,l
for l = 1, 2. As ns → ∞, our assumptions on the densities

f 1 and f 2 the probabilities of these events are of the same order of magnitude as those

obtained when analyzing (Xs
i , Y

s
i ). Therefore, (3.27) follows from Pr((X̆ t

i , Y̆
t
i ) ∈ Ws

ns,2) =

O

(
n
− 4
p+q+1

s (log ns)
4

p+q+1

)
and arguments similar to (A.38) and (A.40).

In an analogous manner a straightforward generalizations of the arguments in the proof

of Theorem 3.1 lead to E
(

[θ̂sC(X̆ t
i , Y̆

t
i | X s

ns)− θ
s
C(X t

i , Y
t
i )]2
)

= O

(
n
− 4
p+q+1

s (log ns)
4

p+q+1

)
,
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and (3.28) is obtained by an argument similar to (A.41). Finally, (3.29) can be derived from

straightforward generalizations of (A.34) and (A.35).

A.8 Proof of Theorem 3.6

We only have to show (3.32). First note that the additional assumptions a) - c) imply

µM = 0. Since for both samples s = 1, 2 the same algorithm is employed to deter-

mine log γ̂s(x, y | X s
n), there exist a measurable function G such that log γ̂s(x, y | X s

n) =

G((x, y); (Xs
1 , Y

s
1 ), . . . , (Xs

n, Y
s
n )). Since by a) and b) distributions are identical, we necessar-

ily have

E
(
log γ̂1(X1

i , Y
1
i | X 1

n)
)

= E
(
G((X1

i , Y
1
i ); (X1

1 , Y
1

1 ), . . . , (X1
n, Y

1
n ))
)

= E
(
G((X2

i , Y
2
i ); (X2

1 , Y
2

1 ), . . . , (X2
n, Y

2
n ))
)

= E
(
log γ̂2(X2

i , Y
2
i | X 2

n)
)
.

for all i = 1, . . . , n. When additionally using c) we furthermore obtain

E
(
log γ̂1(X2

i , Y
2
i | X 1

n)
)

= E
(
G((X2

i , Y
2
i ); (X1

1 , Y
1

1 ), . . . , (X1
n, Y

1
n ))
)

=

∫
E
(
G((x2, y2); (X1

1 , Y
1

1 ), . . . , (x1, y1), . . . , (X1
n, Y

1
n ))
)
f12(x1, y1, x2, y2)dx1 . . . dy2

=

∫
E
(
G((x2, y2); (X1

1 , Y
1

1 ), . . . , (x1, y1), . . . , (X1
n, Y

1
n ))
)
f12(x2, y2, x1, y1)dx1 . . . dy2

=

∫
E
(
G((x1, y1); (X2

1 , Y
2

1 ), . . . , (x2, y2), . . . , (X2
n, Y

2
n ))
)
f12(x1, y1, x2, y2)dx1 . . . dy2

= E
(
G((X1

i , Y
1
i ); (X2

1 , Y
2

1 ), . . . , (X2
n, Y

2
n ))
)

= E
(
log γ̂2(X1

i , Y
1
i | X 2

n)
)
.

By definition of logM̂i this implies that E (µ̂M,n) = E
(

log M̂i

)
= 0.

A.9 Proof of Theorem 3.7

By theorem 3.7 we obtain

√
n(µ̂M,n − µM −Rn) =

√
n

n

n∑
i=1

(log M̂i − logMi − E(log M̂i) + µM) +

√
n

n

n∑
i=1

(logMi − µM) (A.44)

Since (3.28) and (3.29) imply
√
n
n

∑n
i=1(log M̂i − logMi − E(log M̂i) + µM) →P 0, the

assertion is now an immediate consequence of standard CLTs.
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A.10 Proof of Theorem 3.8

The result follows from straightforward arguments based on the delta method: Indeed, a

Taylor expansion yields

√
n (exp(µ̂M,n)− exp(µM +Rn)) = exp(µM +Rn) ·

√
n (µ̂M,n − µM −Rn) +OP (

1√
n

).

(A.45)

Since Rn = O
(
n−

2
p+q+1

)
, the desired result follows from a further Taylor expansion of

exp(µM +Rn) and Theorem 3.7.

A.11 Proof of Lemma 4.1

The proof is straightforward:

σ̂2
M,n = n−1

n∑
i=1

(
log M̂i − µ̂M,n

)2

p−→ E

[(
log M̂i

)2
]
− µ2

M

= VAR (logMi) + [E(logMi)]
2 − µ2

M

= σ2
M

since [E(logMi)]
2 − µ2

M = 0.

A.12 Proof of Theorem 4.1

The result follows directly from Theorem 3.7 after noting that the big-O remainder term in

(3.37) is o (n−κ) and noting that nκo (n−κ) = o(1). Since µ̂M,n in (3.36) has been replaced

with µ̂M,nκ in (4.5), the scale factor needed to stabilize variance is nκ.

A.13 Proof of Theorem 4.2

The result follows after substituting B̂n,κ for the bias term in (3.37). For (p+ q) = 4 we have

κ = 2/5. The remainder term is O
(
n−3κ/2

)
ignoring the (log n) term which does not affect

the rate. Then
√
nO
(
n−3κ/2

)
= O

(
n−1/10

)
.
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Figure 1: Technology in Two Periods
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