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Abstract

We propose and investigate a market model for power prices, including most basic

features exhibited by previous models and taking into account self-exciting properties.

The model proposed extends Hawkes-type models by introducing a two-fold integral

representation property. A Random Field approach was already exploited by Barndorff-

Nielsen et al., who adopted the Ambit Field framework for describing the power price

dynamics. The novelty contained in our approach consists in combining the basic

features of both Branching Processes and Random Fields in order to get a realistic and

parsimonious model setting. We shall provide some closed-form evaluation formulae

for forward contracts. We discuss the risk premium behavior, by pointing out that

in the present framework, a very realistic description arises. We outline a possible

methodology for parameters estimation. We illustrate by graphical representation the

main achievements of this approach.

Keywords: Branching Processes, Energy Markets, Self-Exciting Structures, Risk Pre-

mium Term Structure, Random Fields.

1 Introduction

Energy markets, and in particular, electricity markets, exhibit very peculiar features. The

historical series of both futures and spot prices include seasonality, mean-reversion, spikes

and small fluctuations.

After the pioneering paper by Schwartz [34], where an Ornstein-Uhlenbeck dynamics

is assumed to describe the spot price behavior, several different approaches have been

investigated in order to describe the price evolution. A comprehensive presentation of
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the literature until 2008 is offered in the book by F.E. Benth, J. Salthythe-Benth and S.

Koekebakker [7].

High frequency trading, on the other hand, introduced some new features in commodity

prices dynamics: in the paper by V. Filimonov, D. Bicchetti, N. Maystre and D. Sornette

[21] evidence is shown of endogeneity and structural regime shift, and in order to quantify

this level the branching ratio is adopted as a measure of this endogenous impact and a

Hawkes processes dynamics is assumed as a reasonable modeling framework taking into

account the self-exciting properties [1].

Among the several different approaches proposed in the literature in order to describe

the spiking phenomenon characterizing the power price dynamics we mention the paper

by C. Lucheroni [32], where two alternative models based on Stochastic FitzHugh-Nagumo

system are introduced. By exploiting the stochastic resonating properties of the solutions

in a suitable regime, the author is able to explain several basic features of the power market

behavior. Moreover, a systematic investigation performed on the Alberta Power Market

data from April 7, 2002 and April 6, 2007, exhibits a very good fitting of the model to real

data; in particular, the interspike distribution described by both models seems to reproduce

very well the spike frequency observed.

V. Barbu, F. Cordoni and L. Di Persio [16], and F. Cordoni, L. Di Persio [17] provided

recently some results on an optimal control problem for the stochastic FitHugh-Nagumo

model, pointing out the impossibility to apply standard optimal control methods due to

the cubic nonlinearity of the system and making the financial applicability of this model

quite challenging, especially considering that some of the most extensively traded options

on energy markets, that is swing options, belong, roughly speaking, to the class of American

options.

In contrast with the papers just cited, the main focus of the present work is on the jump

clustering phenomenon, which is another puzzling feature exhibited by spiking patterns.

The purpose of the present paper is to propose a new modeling framework including all the

above mentioned features, still keeping a high level of tractability. The model considered

allows to obtain the most common derivatives prices in closed or semi-closed form. Here

with semi-closed we mean that the Laplace transform of the derivative price admits an

explicit expression.

R. Kiesel and F. Paraschiv [29] presented recently a systematic empirical investigation

of electricity intraday prices and suggested an approach based on Hawkes processes in order

to describe the power price dynamics and the jump clustering feature. Self-exciting features

in electricity prices attracted already some attention by several authors: although the above

mentioned paper by V. Filimonov, D. Bicchetti, N. Maystre and D. Sornette [21] did not

investigate endogenous effects in power markets, R. Herrera and N. Gonzalez [24] proposed

a self-excited model for electricity spot prices, while T.M. Christensen, A.S. Hurn and K.A.

Lindsay [11], Christensen, and A. Clements, J. Fuller and A.S. Hurn [12] pointed out that

time between spikes has a significant impact on the likelihood of future occurrences, thus

providing a strong support to models including self-exciting properties.

The models we are going to introduce can describe the price dynamics in two different

forms, that can be proved to be equivalent: the first is a representation based on random
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fields, the second is based on Continuous State Branching Processes with Immigration

(CBI in the following). The idea of adopting a random fields framework for power prices

description is not new: O.E. Barndorff-Nielsen, F.E. Benth and A. Veraart introduced the

Ambit Fields to this end, showing how this approach can provide a very flexible and still

tractable setting for derivatives pricing [3], [4]. Moreover CBI processes exhibit the Markov

property, while Hawkes processes enjoy this property only in particular cases, and this

feature makes our approach more appealing.

A model based on CBI has been proposed recently by Y. Jiao, C. Ma and S. Scotti in

view of short interest rate modeling, and in that paper it was shown that, with a suitable

choice of the Lévy process driving the CBI dynamics, the model can offer a significant

extension of the popular CIR model [25].

The model we propose extends in different ways some relevant models already available

in the literature. It belongs to the class of arithmetic models (following the classification

proposed by F.E. Benth, J. Salthythe-Benth and S. Koekebakker), and the driving processes

are Lévy processes with positive jumps, i.e. subordinators, so it extends the model proposed

by F.E. Benth, J. Kallsen and T. Meyer-Brandis [5] by formulating the dynamics via a

random field approach, which allows to include some self-exciting features. On the other

hand, the random field approach highlights some similarities with the Ambit Field-based

models introduced by O.E. Barnorff-Nielsen, F.E. Benth and A. Veraart [4]; the main

difference between the model proposed in this paper and the Ambit Field-based models

consists in the character of the extra dimension appearing in the random field adopted:

while in the Ambit Field setting the parameter of this dimension is a time parameter, in

the present setting this will be a parameter of space type. This main difference will be

reflected moreover in the integration domain of the integrals defining the dynamics.

The features of our modeling approach just outlined, allow to introduce the so-called

self-exciting properties in a simple and natural way and, although the pricing formulas for

basic contracts like forward will exhibit very small changes with respect to those obtained

for the previous models, the present model will exhibit a substantially different risk premium

term structure.

The paper is organized as follows: in Section 2 we introduce the market model we are

going to consider, while in Section 3 we discuss the relations between our model and the

CBI processes. In Section 4 we derive some closed formulas for Futures and Option prices

when the underlying dynamics is assumed to be given by the model introduced. Section

5 includes a theoretical analysis of the jumps behavior and the self-exciting property. In

Section 6 we provide some evidence of clustering behavior of power prices based on real data.

In the final section we provide some concluding remarks and discuss futures extensions of

the present work.

2 The Modeling Framework

2.1 Model setup

We now introduce our modeling framework for the electricity price, which is based on

stochastic differential equations driven by Lévy random field. We consider a Lévy random

3



field which is a combination of a Gaussian random measure W and a compensated Poisson

random measureN independent toW . For background for such general stochastic equations

with jumps, we refer the readers to Dawson and Li [15], Li and Ma [31] and Walsh [35].

Let us briefly present the preliminaries. We fix a probability space (Ω,A,P). A white

noise W on R2
+ is a Gaussian random measure such that, for any Borel set A ∈ B(R2

+) with

finite Lebesgue measure |A|, W (A) is a normal random variable of mean zero and variance

|A|; and that if A1, · · · , An are disjoint Borel sets in B(R2
+), then W (A1), · · · ,W (An) are

mutually independent. We denote by N the Poisson random measure on R3
+ with intensity

λ which is a Borel measure on R3
+ in form of the product of the Lebesgue measure on

R+ ×R+ with a Borel measure µ on R+ such that
∫∞
0 (ζ ∧ ζ2)µ(dζ) < +∞. Note that µ is

a Lévy measure since
∫∞
0 (1 ∧ ζ2)µ(dζ) < +∞. Recall that for each Borel set A ∈ B(R3

+)

with λ(A) < +∞, the random variable N(A) has the Poisson distribution with parameter

λ(A); moreover, if A1, . . . , An are disjoint Borel sets in B(R3
+), then N(B1), · · · , N(Bn) are

mutually independent. We let Ñ = N − λ be the compensated Poisson random measure

on R3
+ associated to N .

We introduce the filtration F = (Ft)t>0 as the natural filtration generated by the Lévy

random field and satisfying the usual conditions, namely, for any Borel subset A ∈ B(R+)

and B ∈ B(R2
+) of finite Lebesgue measure, the processes (W ([0, t] × A), t ≥ 0) and

(Ñ([0, t]×B), t ≥ 0) are F-martingales.

We consider the following stochastic differential equation in the integral form.

Definition 2.1. Let a, b, σ, γ ∈ R+ be constant parameters. Consider the equation

Y (t) = Y (0)+

∫ t

0
a (b− Y (s)) ds+σ

∫ t

0

∫ Y (s)

0
W (ds, du)+γ

∫ t

0

∫ Y (s−)

0

∫
R+

ζÑ(ds, du, dζ)

(2.1)

where W (ds, du) is a white noise on R2
+ with unit covariance, Ñ(ds, du, dζ) is an indepen-

dent compensated Poisson random measure on R3
+ with intensity λ = dsduµ(dζ) with µ(dζ)

being a Lévy measure on R+ and satisfying
∫∞
0 (ζ ∧ ζ2)µ(dζ) <∞.

The integral appearing in the previous formula (and in the following) is in the sense of

[35]. It follows from [15, Theorem 3.1] or [31, Theorem 2.1] that the equation (2.1) has a

unique strong solution. Below are several particular examples.

Example 2.1. (CIR model) In the case where γ = 0, we have

Y (t) = Y (0) +

∫ t

0
a (b− Y (s)) ds+ σ

∫ t

0

∫ Y (s)

0
W (ds, du)

= Y ∗(t) + σ

∫ t

0

∫ Y (s)

0
e−a(t−s)W (ds, du),

(2.2)

where Y ∗(t) = r0e
−at + ab

∫ t
0 e
−a(t−s)ds is a deterministic function. This corresponds to

the classic CIR model in the interest rate where an equivalent representation of (2.2) in

probability is given as

Y (t) = Y (0) +

∫ t

0
a(b− Y (s))ds+ σ

∫ t

0

√
Y (s)dB(s)

where B = (B(t), t ≥ 0) is a Brownian motion.
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Example 2.2. (α-CIR model) As a generalization of the CIR model with jumps, let σ = 0

and the Lévy measure µ be given by as

µ(dζ) = −
1{ζ>0}dζ

cos(πα/2)Γ(−α)ζ1+α
, 1 < α < 2, (2.3)

then the model (2.1) admits the following representation

Y (t) = Y (0) +

∫ t

0
a (b− Y (s)) ds+ γ

∫ t

0
(Y (s−))

1
αdL(s) (2.4)

where L = (L(t), t ≥ 0) is a spectrally positive compensated α-stable Lévy process with

parameter α ∈ (1, 2], which is independent of B and whose Laplace transform is given, for

q ≥ 0, by

E
[
e−qL(t)

]
= exp

(
− tqα

cos(πα/2)

)
.

When α = 2, L reduces to a Brownian motion scaled by
√

2 and we recover the standard

CIR model. This model is studied in [25] for short interest rate.

2.2 Model comparison

In the literature on energy modeling, both random fields and Lévy processes have been

adopted to describe electricity prices such as in Barndorff-Nielsen, Benth and Veraart [3, 4].

In [4], ambit fields have been used to model future prices and in [3], the so-called volatility

modulated Lévy-driven Volterra (VMLV) processes have used to model spot prices. Both

approaches provide tractable results and allow to capture stylized facts observed on energy

markets.

We can compare our model to the ambit fields model introduced in [3, 4]. From the

mathematical point of view, both formulations exhibit a random field setting where one

more integrated variable appears with respect to classical stochastic evolution models. The

main difference between the two approaches is that in [4] the variable is of time type whereas

in our case is of space type. This difference in turn implies a different integration domain,

that in our case depends on the process itself. Then, the main financial difference here

is that the model (2.1) exhibits explicitly the self-exciting property which is suitable to

describe the clustering effect in the power price dynamics. We explain in more detail the

self-exciting feature of our model and start by considering the following example.

Example 2.3. Let σ = 0 and µ(dζ) = δ1(dζ), then the (non-compensated) Poisson mea-

sure N(ds, du, dζ) reduces to a random measure on R2
+ with intensity dsdu, denoted by

N(ds, du). Hence Y can be rewritten as

Y (t) = Y (0) + abt−
∫ t

0
(a+ σN )Y (s)ds+ γ

∫ t

0

∫ Y (s−)

0
N(ds, du).

We note that Y is the intensity of the Hawkes process
∫ t
0

∫ Y (s−)
0 N(ds, du) by using the

equivalent form

Y (t) = Y (0)e−(a+γ)t +
ab

a+ γ

(
1− e(a+γ)t

)
+ γ

∫ t

0

∫ Y (s−)

0
e−(a+γ)(t−s)N(ds, du). (2.5)
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More precisely, let us consider a simple Hawkes process J with exponential kernel with

the intensity given by:

Y (t) = Y ∗(t) + γ

∫ t

0
e−a(t−s)dJ(s) (2.6)

where Y ∗ is the background rate, i.e., the deterministic part of the process J . When a jump

arrives, the intensity increases, which also increases the probability of a next jump, that is

the self-exciting property of Hawkes processes. In order to facilitate the comparison with

our integral representation, we give an alternative characterization of the intensity. Let N

be a Poisson process on R2
+ with measure dsdu, so J(t) can be written as

∫ t
0

∫ Y (s−)
0 N(ds, du)

and Y (t) as Y ∗(t) + γ
∫ t
0

∫ Y (s−)
0 e−a(t−s)N(ds, du). In this form, the self-exciting feature

can be observed more explicitly: the frequency of jumps grows with the process itself due

to the presence of the integral with respect to the variable u. Therefore we note from the

expressions (2.2) and (2.5) the self-exciting property inherited from our model framework.

Remark 2.1. By focusing on the last example, we can better illustrate the relation between

the Hawkes-based approach and our framework. In the last example the jump measure is

just a Dirac measure. By considering a more general Poisson measure, we can obtain again

the process (2.1) by simply introducing a mark ζ. The process defined by (2.1) then can be

interpreted as a “marked” Hawkes process.

Moreover, when Y ∗ takes certain particular form, Y becomes a branching process, also

known as the affine process in finance (see Duffie, Filipović and Schachermayer [18] and

Filipović [22]). In this context, the self-exciting features is equivalent to the branching

property and the jump intensity is proportional to the process Y itself. Then the models

we have introduced can describe the prices dynamics in two ways: the first is the random

field formulation exhibiting explicitly the clustering behavior, the second is the Continuous

Branching processes with Immigration (CBI) structure, that will be presented in the next

subsection.

2.3 Connection with CBI and affine processes

The purpose of this section is to highlight the relation between the process class introduced

in the previous section and the classes of CBI processes and affine processes. This relation

will turn out to be relevant in order to apply transform-based methods to derivatives

evaluation. Our model actually belongs to the family of CBI processes. We briefly recall

the definition by Kawazu and Watanabe [28]. A Markov process X with state space R+

is called a CBI process characterized by branching mechanism Ψ(·) and immigration rate

Φ(·), if its characteristic representation is given, for p ≥ 0, by

Ex
[
e−pX(t)

]
= exp

(
−xv(t, p)−

∫ t

0
Φ
(
v(s, p)

)
ds

)
, (2.7)

where the function v : R+ × R+ → R+ satisfies the following differential equation

∂v(t, p)

∂t
= −Ψ(v(t, p)), v(0, p) = p (2.8)
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and Ψ and Φ are functions of the variable q ≥ 0 given by

Ψ(q) = βq +
1

2
σ2q2 +

∫ ∞
0

(e−qu − 1 + qu)π(du),

Φ(q) = δq +

∫ ∞
0

(1− e−qu)ν(du),

with σ, γ ≥ 0, β ∈ R and π, ν being two Lévy measures such that∫ ∞
0

(u ∧ u2)π(du) <∞,
∫ ∞
0

(1 ∧ u)ν(du) <∞. (2.9)

It is proved in Dawson and Li [15, Theorem 3.1] that the process (2.1) is a CBI process

with the branching mechanism Ψ given by

Ψ(q) = aq +
1

2
σ2q2 +

∫ ∞
0

(e−qσZζ − 1 + qσZζ)µ(dζ) (2.10)

and the immigration rate Φ(q) = abq.

The link between CBI processes and the affine interest rate term structure models has

been established by Filipović [22]. If the process takes values in R+ he proves equivalence

between the two classes. We recall the joint Laplace transform of a CBI process X and its

integrated process, which is given in [22, Theorem 5.3], as follows. For non-negative real

numbers ξ and θ, we have

Ex
[
e−ξX(t)−θ

∫ t
0 X(s)ds

]
= exp

{
− xv(t, ξ, θ)−

∫ t

0
Φ
(
v(s, ξ, θ)

)
ds
}
, (2.11)

where v(t, ξ, θ) is the unique solution of

∂v(t, ξ, θ)

∂t
= −Ψ(v(t, ξ, θ)) + θ, v(0, ξ, θ) = ξ. (2.12)

Remark 2.2. We just proved that for the present model class an explicit expression of the

moment generating function is available, from which all moments of the density distribution

can be computed, as long as they exist and are finite. These moments can be used, in prin-

ciple, as a statistical tool for inference. An extensive investigation on statistical properties

of the present class of models and a rigorous discussion of possible estimation methods will

be anyway presented in a forthcoming paper .

3 Modeling the electricity price

In this section, we apply the previous modeling framework to the description of electricity

price dynamics. We follow the arithmetic model as in [3, 5, 6] in which the power price

dynamics is assumed to be the sum of several factors which follow for example VMLV

processes in [3] and non-Gaussian Ornstein-Uhlenbeck processes in [5, 6]. In our model the

factors are assumed to be given by the SDE (2.1).
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3.1 An arithmetic model for the spot price

We assume that the spot price process S = (S(t), t ≥ 0) evolves according to the following

dynamics

S(t) = α(t) +X(t) (3.13)

where α(t) is a deterministic function representing the seasonality, and the process X =

(X(t), t ≥ 0) is a superposition of the factors Yi as

X(t) =

n∑
i=1

Yi(t). (3.14)

The factors Yi(t) evolve according to the equation (2.1), more precisely,

Yi(t) = Yi(0) +

∫ t

0
ai (bi − Yi(s)) ds+ σi

∫ t

0

∫ Yi(s)

0
Wi(ds, du)

+ γi

∫ t

0

∫ Yi(s−)

0

∫
R+

ζÑi(ds, du, dζ)

(3.15)

where Wi(ds, du) are independent Gaussian random measures and Ñi(ds, du, dζ) are inde-

pendent compensated Poisson measures with compensators dsduµi(dζ) as defined in Defi-

nition 2.1. The factor model described by (3.15) extends naturally the one proposed in [5]

by keeping the basic features of an Ornstein-Uhlenbeck process driven by a subordinator

but introducing the self-exciting properties in a direct way.

In the case where
∫
R+
ζµi(dζ) < ∞, we can separate the Poisson random measure

N(ds, du, dζ) from its predictable compensator dsduµi(dζ). One typical example is the

Pareto distribution with

µi(ξ > z) =

(
max{z, z0}

z0

)−α
, 1 < α < 2,

which has been studied in Meyer-Brandis and Tankov [33]. In this case, we can describe

the dynamics (3.15) as follows:

Yi(t) = Yi(0)−
∫ t

0
ai(bi − Yi(s))ds+ σi

∫ t

0

∫ Yi(s)

0
Wi(ds, du)

−γi
∫ t

0
ds

∫ Yi(s−)

0
du

∫
R+

ζµi(dζ) + γi

∫ t

0

∫ Yi(s−)

0

∫
R+

ζNi(ds, du, dζ)

which is equivalent to

Yi(t) = Yi(0)−Ai
∫ t

0
(Bi − Yi(s))ds+ σi

∫ t

0

∫ Yi(s)

0
Wi(ds, du)

+ γi

∫ t

0

∫ Yi(s−)

0

∫
R+

ζNi(ds, du, dζ),

(3.16)

where

Ai := ai − γi
∫
R+

ζµi(dζ), Bi :=
aibi
Ai

.
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The expression (3.16) shows how a different mean-reversion speed for each factor Yi can

arise even if a common mean-reversion speed is assigned in the form (2.1).

Below two trajectories are plotted of the spot price in a two-factor model where the

first factor Y1 follows a standard CIR model as in Example 2.1 and the second factor Y2
is an α-CIR process as in Example 2.2. For simplicity of illustration, we let the seasonal

deterministic function α(t) = 0. We observe the clustering effect for large jumps.

In Figure 1 the trajectory is plotted with parameters Y1(0) = 30, a1 = 3, b1 = 30,

σ1 = 3, the second factor includes just the jump contribution with Y2(0) = 35 a2 = 5,

b2 = 35, γ2 = 5 and the tail parameter α = 1.5.

In order to get a more faithful description of the power prices dynamics it is convenient

to increase the values of the parameters, in agreement with the values proposed in the

previous literature, see [6], in particular the mean reversion speed and the jumps sizes

should be magnified. In Figure 2 the trajectory is plotted with same parameters as in the

previous case except Y1(0) = Y2(0) = 5, a1 = 10, a2 = 20, b1 = b2 = 5, γ2 = 10, exhibiting

a more realistic behavior.

Figure 1: Small values for the mean reversion speed and jumps size.

The following result computes the expected value of the factors Yi given in (3.15) and

will be useful for the pricing of energy derivatives in the next section.

Lemma 3.1. For any T ≥ 0 and τ ≤ T , we have

E
[
Yi(T )

∣∣Fτ ] = bi + (Yi(τ)− bi)e−ai(T−τ). (3.17)

Proof. First of all we have

E [Yi(T )] = Yi(0) + E
[∫ T

0
ai (bi − Yi(s)) ds

]
.

Then, thanks to the uniqueness of solution of (3.15), denoting φ(t) := E [Yi(t)] and applying

Fubini’s theorem we obtain the following ordinary differential equation

∂

∂t
φ(t) = ai (bi − φ(t)) .
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Figure 2: Simulation of the spot price in a two-factor model with magnified parameters.

The solution is then

E [Yi(t)] = bi + (Yi(0)− bi) e−ait.

By a direct application of Markov property we obtain (3.17).

Remark 3.3. In the model just proposed all the jumps are assumed to be positive. Due to

renewable energy production negative jumps can be also observed in power prices. Negative

jumps could also be considered in the present modelling framework, but the introduction of

negative jumps breaks out some of the properties related to the moment generating functions

existence. CBI with negative jumps have been considered in [2] in order to model cell

infection dynamics. Negative jumps can be introduced also in an indirect way by considering

factors of the same form proposed here, but with a negative sign. In a two factor model this

would mean X(t) = Y1(t) − Y2(t). This choice would preserve all the basic properties of

the model, but the existence of a common domain of definition for the moment generating

function of both driving factors is a delicate issue that must be carefully considered for each

jump structure proposed.

4 Evaluation of energy derivatives

In this section, we investigate how to evaluate derivatives in our modeling framework for

power dynamics. We first explain how to choose a risk-neutral probability Q in the model

setup described in the previous section. We then discuss the pricing issues together with

the risk premium in the electricity market.

4.1 Change of probability measure

In the electricity market, the risk-neutral probability Q is often chosen by introducing a

drift adjustment in the dynamics of an underlying asset. Compared to the original historical

probability P, such measure change is done by using Esscher transform such as in [3, 4].

We now define the equivalent probability measures in our model. The following proposition
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shows that the spot process S defined in (3.13) will remain in the same class, that is, the

factors Yi are still CBI processes but with modified coefficients under a suitable equivalent

change of probability. The proof is based on the CBI characterization for the factors defined

in (2.1).

Proposition 4.1. Let Y1, Y2, · · · , Yn be independent CBI processes where for each i ∈
{1, · · · , n}, Yi is a CBI process under the probability measure P. Assume that the filtration

F = (Ft)t≥0 is generated by the random fields W1,W2, · · · ,Wn and Ñ1, Ñ2, · · · , Ñn. For

each i, fix ηi ∈ R and θi ∈ R+ and define

Ut :=

n∑
i=1

ηi

∫ t

0

∫ Yi(s)

0
Wi(ds, du) +

n∑
i=1

∫ t

0

∫ Yi(s−)

0

∫ ∞
0

(e−θiζ − 1)Ñi(ds, du, dζ). (4.18)

Then the Doléans-Dade exponential E(U) is a martingale and the probability measure Q
defined by

dQ
dP

∣∣∣∣
Ft

= E(U)t, (4.19)

is equivalent to P. Moreover, under Q, the processes Y1, Y2, · · ·Yn are independent of each

other and, for each i, Yi is a CBI process with the parameters (a′i, b
′
i, σ
′
i, γ
′
i, µ
′
i), where

a′i = ai − σiηi − γi
∫ ∞
0

ζ(e−θiζ − 1)µi(dζ), b′i = aibi/a
′
i, σ′i = σi, γ′i = γi (4.20)

µ′i(dζ) = e−θiζµi(dζ). (4.21)

Proof. The process (Y1, Y2, · · · , Yn, U) is a time homogeneous affine process (c.f. [18, The-

orem 2.12]). The Doléans-Dade exponential E(U) is a true martingale by checking that

the conditions in [27, Corollary 3.2] are satisfied, so it defines an equivalent probability

measure Q. Note that Z = E(U) is the unique strong solution of dZt = Zt−dUt. Then for

any function F ∈ C2(Rn+), the process

ZtF (Y1(t), · · · , Yn(t))−
n∑
i=1

σ2i
2

∫ t

0
ZsF

′′
ii(Y1(s), · · · , Yn(t))Yi(s)ds

−
n∑
i=1

∫ t

0
ZsF

′
i (Y1(s), · · · , Yn(s))

{
aibi −

[
ai − σiηi − γi

∫ ∞
0

ζ
(
e−θiζ − 1

)
µi(dζ)

]
Yi(s)

}
ds

−
n∑
i=1

∫ t

0
ZsYi(s)ds

∫ ∞
0

[
F (Y1(s−), · · · , Yi(s−) + γiζ, · · · , Yn(s−))

−F (Y1(s−), · · · , Yi(s−), · · · , Yn(s−))− F ′i (Y1(s−), · · · , Yn(s−))γiζ
]
e−θiζµi(dζ)

is a local martingale, which implies that under Q, Y1, Y2, · · ·Yn are independent of each

other and, for each i, Yi is a CBI process with the parameters (a′i, b
′
i, σ
′
i, γ
′
i, µ
′
i).

Usually we choose ηi and θi such that a′i > 0. When θi = 0, µ′i coincides with µi, so that

the CBI process Yi will remain in the same class under an equivalent change of probability

measure. When θi > 0, Yi will become a new CBI process driven by another Lévy process

with Lévy measure related by an exponential tilting to the original one.
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4.2 Forward Pricing

By applying the results presented in the previous sections, we can provide an explicit and

simple expression for the (instantaneous) forward contract price in the present modeling

framework. Recalling the definition of a forward contract, we have for any τ ≤ T that

F (τ, T ) := EQ[S(T )
∣∣Fτ ]. (4.22)

In the following of the present section, the model parameters are assumed to be those

defined by the historical dynamics, in such a way that ai, bi and µi will denote respectively

the mean-reversion speed, the long-term value and the jump measure with respect to P.

Then we effectuate the equivalent change of probability measure as in Proposition 4.1 and

the parameters a′i, b
′
i and µ′i will be with respect to the probability Q.

Since the factors Yi remain to be CBI processes under the probability change, the Lemma

3.1 can still be applied to deduce the forward price, as given in the following proposition.

Proposition 4.2. We have the following expression for the forward contract

F (τ, T ) = S(τ) +
(
α(T )− α(τ)

)
+

n∑
i=1

(
e−a

′
i(T−τ) − 1

)(
Yi(τ)− b′i

)
(4.23)

where a′i and b′i are as in (4.20).

Proof. By (4.22) and applying Lemma 3.1 under the probability Q, we have

F (τ, T ) = α(T ) +

n∑
i=1

EQ[Yi(T )|Fτ
]

= α(T ) +

n∑
i=1

b′i + (Yi(τ)− b′i)e−α
′
i(T−τ)

and in particular,

S(τ) = F (τ, τ) = α(τ) +

n∑
i=1

b′i + (Yi(τ)− b′i).

Hence

F (τ, T ) = S(τ) +F (τ, T )−F (τ, τ) = α(T )−α(τ) +S(τ) +
n∑
i=1

(
e−a

′
i(T−τ) − 1

)(
Yi(τ)− b′i

)
.

That concludes the proof.

From the above proposition, we note the Markovian property of the forward price

F (τ, T ), which depends on the instantaneous value of the spot price at the time τ and

of the different factors .

4.3 Flow Forward Pricing

Forward contracts in electricity markets deliver the underlying commodity over a period

rather than at a fixed time, and for this reason they are sometimes called flow forwards.

The future price with delivery period [T1, T2] is defined by

F (τ, T1, T2) =
1

T2 − T1
EQ
[ ∫ T2

T1

S(u)du | Ft
]

=
1

T2 − T1

∫ T2

T1

F (τ, u)du,

which leads directly to the following result.
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Corollary 4.1. The value of the flow forward contract F (τ ;T1, T2) is given, for τ < T1 <

T2, by

F (τ, T1, T2) = S(τ) +
( 1

T2 − T1

∫ T2

T1

α(u)du− α(τ)
)

−
n∑
i=1

(
1− e−a

′
i(T1−τ) − e−a′i(T2−τ)

a′i(T2 − T1)

)(
Yi(τ)− b′i

) (4.24)

By comparing our results with those obtained by Benth, Kallsen and Meyer-Brandis [5],

we can remark that the expressions of the forward and the flow forward contracts are very

similar. In fact, taking into account the linearity of the two contracts considered and the

arithmetic feature of the model, the contribution of the martingale term (which differenti-

ates the two models) vanishes. However, this property no longer holds for more complex

contracts as soon as non-linearity arises. Moreover, we will see in the next subsection that

the risk premium also allows to differentiate between the two frameworks with the measure

change.

4.4 The Risk Premium

The risk premium is an important quantity in power markets which provides a link between

the forward and expected spot prices. We present an explicit representation formula for this

quantity in our modeling framework. The risk premium is defined as the difference between

conditional expectations of the underlying price computed with respect to the risk-neutral

measure Q and the historical measure P:

R(τ, T ) = EQ [S(T )|Fτ ]− EP [S(T )|Fτ ] (4.25)

Since the factors Yi remain to be CBI processes under the equivalent measure change,

according to Lemma 3.1 and Proposition 4.2, we have the following result.

Corollary 4.2. Let the risk-neutral probability Q be given as in Proposition 4.1. Then we

have

R(τ, T ) =

n∑
i=1

Yi(τ)
(
e−a

′
i(T−τ) − e−ai(T−τ)

)
−

n∑
i=1

[
b′i

(
e−a

′
i(T−τ) − 1

)
− bi

(
e−ai(T−τ) − 1

)] (4.26)

where the parameters a′i, b
′
i are related to the parameters ai and bi by the relations (4.20).

A systematic investigation on the risk premium for power markets models based on

Lévy-driven Ornstein-Uhlenbeck processes was presented in the paper by Benth and Sgarra

[8], while the basic features of the risk premium for the most popular power market models

was discussed in the paper by Benth, Kiesel and Nazarova [6].

We note a few basic features of the risk premium in our model obtained by the previous

formula. The crucial parameter θ will play the major role in determining the risk premium
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sign, which, according to many empirical investigations performed in different power mar-

kets, can change suddenly, and induce a change between a contango to a backwardation

regime. A suitable choice of θ can give rise to this sign change typical of electricity markets.

The most relevant feature exhibited by the present modeling framework is that the very

simple measure change introduced in the previous section implies a change in the mean

speed reversion parameter. This feature is not feasible for Lévy-driven Ornstein-Uhlenbeck

models as long as simple measure changes are considered. The Esscher transform for the

Lévy driver implies a change in the long-term mean, but not in the mean-reversion speed;

this in turn implies a risk premium term structure exhibiting sign change only for very

special choice of the exponential tilting parameter θ (see Benth and Sgarra [8]).

Figure 3 presents the risk premium R(τ, T ) given by (4.26) as a function of the time

to maturity T − τ . We consider again a two-factor model with the following parameters

(specified under the historical measure): Y1(0) = 0, Y2(0) = 5, a1 = 10, a2 = 2, b1 = 3,

b2 = 3.5, σ1 = γ2 = 10, while the values of the parameters specifying the measure change

are η1 = 1 and θ2 = 0.005 respectively. Notably, we are interested in the impact of α

which is a determinant parameter in the second factor Y2 modelled by an α-CIR process.

We observe that for the three values of α, there is a change of sign in the risk premium

with positive values in short term and negative values in long term. In particular, small

values of α implying more significant variations in the risk premium, especially in the short

term. This is due to the fact that the parameter α is an inverse measure of heaviness of

distribution tails. More as α close to 1, more likely that the large jumps appear with deeper

compensation between the jumps, so more probable there will be clustering effect.
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Figure 3: Risk premium term structure in a two factor model for different values of jump

tail parameter α.
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4.5 Forward Option Pricing

In the present modeling framework it is possible to obtain in an almost closed-form the

prices of European options written on Forward contracts. We want to determine the no-

arbitrage value at time t < τ of a European call option with maturity τ and strike K written

on a forward contract with maturity T . The payoff of this option is max(F (τ, T ) −K, 0).

Fourier and/or Laplace transform-based methods allow to obtain in closed form the value

of the option considered if the underlying value (in this case the Forward value) transform

is known in explicit form. We point out again that in all the present section the model

parameters are assumed to be those defined by the risk-neutral dynamics, in such a way

that ai, bi and µ will denote the mean-reversion speed, the long-term value and the jump

measure with respect to Q. The formula obtained in the previous section providing the

forward value, which we recall here for reading ease, is the following:

F (τ, T ) = α(T )− α(τ) + S(τ) +
∑
i

[
e−a

′
i(T−τ) − 1

] [
Yi(τ)− b′i

]
.

By remembering the expression of S(τ), we can write the previous expression in a slighly

modified form:

F (τ, T ) = α(T ) +
∑
i

Yi(τ) +
∑
i

[
e−a

′
i(T−τ) − 1

] [
Yi(τ)− b′i

]
. (4.27)

For each of the terms appearing in the previous equation it is possible to compute the

Laplace transform by applying Equation (2.7). Once this Laplace transform has been

computed, the method proposed by P. Carr and D. Madan [10] or alternatively the method

proposed by Lewis [30] allow to get the option price transform, from which the option price

can be obtained by numerically inverting the transform considered. This last numerical

step can be performed in an accurate and fast way.

As far as Flow Forward are concerned, it must be pointed out that one more integration

step must be included in the computation according to Equation (4.24), but under suitable

integrability conditions, it will be possible to exchange the integration sequence.

5 Jumps Analysis in a Two-Factor Model

In this section, we consider a model with two factors, which is similar as in Meyer-Brandis

and Tankov [33]. The first factor is continuous and corresponds to a standard CIR model

and the second one is with jumps. Our objective is to make a thorough analysis of the

jump behavior, in particular, for large jumps and spikes.

Let the first factor Y1 be driven by a Gaussian random measure as

Y1(t) = Y1(0) +

∫ t

0
a1 (b1 − Y1(s)) ds+ σ1

∫ t

0

∫ Y1(s)

0
W1(ds, du), t ≥ 0 (5.28)

and the second factor Y2 be driven by a pure jump Poisson random measure as

Y2(t) = Y2(0) +

∫ t

0
a2 (b2 − Y2(s)) ds+ γ2

∫ t

0

∫ Y2(s−)

0

∫
R+

ζÑ2(ds, du, dζ), t ≥ 0. (5.29)
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The presence of large jumps and spikes is an important feature discussed in literature for

electricity prices. A “spike” here means a sudden large rise in the price followed by a rapid

drop to its regular level.

Remark 5.4. Comparing our model, given by equations (5.28) and (5.29), we can highlight

that the main difference with respect to the model of Meyer-Brandis and Tankov is on the

martingale part of (5.28) and (5.29) and in particular the integral until the process itself.

The original model can then be obtained again suppressing this integral or freezing the time

and obtaining a locally equivalent Lévy-Ornstein-Uhlenbeck as proposed in Definition 2.7 in

[25].

In the following of this section, we focus on the jump factor Y2 in order to analyze

the spikes behavior in our model and to make a comparison with the previous models. In

order to develop this analysis, it is necessary to get some theoretical intermediate results

before focusing our interest on the statistical properties. In particular, we are interested in

investigating the jumps frequency in order to validate the self-exciting features introduced

[21]. We distinguish the contributions of different parts of the process Y2, notably the large

jumps and the remaining part which is regarded as a truncated process. We show below

that apart from the large jumps, the truncated process will still behave as a CBI process

but with a larger mean-reverting coefficient, which makes it go back more quickly to the

standard level.

5.1 Locally equivalent jump process

The purpose of the present section is threefold: the first target is to introduce the spike

frequency by identifying a suitable auxiliary process, the second is to prove formally that

the last process is, up to a constant factor, the intensity of the next spike; the third is

to show how Y2 can be approximated by the intensity of a Hawkes-type process and this

result will allow to adopt the maximum likelihood estimator for Hawkes processes as an

approximate estimator for the model described. Consider a family of jump times {τk}k∈N
of the process Y2 which corresponds to significant movements of the market. For example,

it can denote jump times larger than a threshold. More precisely, for a given constant z0,

we denote {τ (z0)k }k∈N as the sequence of jump times of Y2 whose jump sizes are equal or

larger than γ2z0, i.e.,

τ
(z0)
k = inf{t > τ

(z0)
k−1 : ∆Y2(t) > γ2z0}, τ

(z0)
0 = 0. (5.30)

In the following, we shall suppress the over-quote z0 for sake of readability. We are inter-

ested in the evolution of process Y2 between two jump times, that is for any t ∈ [τk, τk+1),

Y2(t) = Y2(τk) +

∫ t

τk

a2 (b2 − Y2(s)) ds+ γ2

∫ t

τk

∫ Y2(s−)

0

∫
R+

ζÑ2(ds, du, dζ). (5.31)

With these notations, the time τk+1 is the arrival time of the first jump after τk larger

than z0 for the measure N2 or equivalently, larger than γ2z0 for Y2. By the following result,

we can separate small and large jumps and move the compensation inside the speed and

mean coefficients. We remark that the second line of (5.32) describes a finite activity pure

16



jump process, then it can be seen as a compounded Poisson process jumping only at an

increasing sequence of times, such that only an almost surely finite number of jumps arrive

in a compact set of time.

Proposition 5.3. The process Y2 can be written, for all t ∈ [τk, τk+1), as

Y2(t) = Y2(τk) +

∫ t

τk

A2

(
B2 − Y (z0)

2 (s)
)
ds+ γ2

∫ t

τk

∫ Y
(z0)
2 (s−)

0

∫ z0

0
ζÑ2(ds, du, dζ)

+γ2

∫ t

τk

∫ Y
(z0)
2 (s−)

0

∫ ∞
z0

ζN2(ds, du, dζ),

(5.32)

where z0 > 0 is a fixed constant,

A2 := a2 + γ2

∫ ∞
z0

ζµ(dz), B2 :=
a2b2
A2

(5.33)

and Y
(z0)
2 is the truncated process, for all t ∈ [τk, τk+1), defined by

Y
(z0)
2 (t) = Y2(τk) +

∫ t

τk

A2

(
B2 − Y (z0)

2 (s)
)
ds+ γ2

∫ t

τk

∫ Y
(z0)
2 (s−)

0

∫ z0

0
ζÑ2(ds, du, dζ).

(5.34)

Proof. It follows from [14, Theorem 5.1 and Theorem 5.2] that (5.34) has a unique strong

solution and Y (z0) is a CBI process defined by (2.7) with

Ψz0(q) = A2q +

∫ z0

0
(e−qγ2ζ − 1 + qγ2ζ)µ(dζ) and Φz0(q) = A2B2q.

Now we turn to (5.29). Obviously,

Y2(t) = Y2(τk) +

∫ t

τk

a2 (b2 − Y2(s)) ds+ γ2

∫ t

τk

∫ Y2(s−)

0

∫ z0

0
ζÑ2(ds, du, dζ)

+γ2

∫ t

τk

∫ Y2(s−)

0

∫ ∞
z0

ζÑ2(ds, du, dζ).

The above equation can be rewritten in the following form:

Y2(t) = Y2(τk) +

∫ t

τk

A2 (B2 − Y2(s)) ds+ γ2

∫ t

τk

∫ Y2(s−)

0

∫ z0

0
ζÑ2(ds, du, dζ)

+γ2

∫ t

τk

∫ Y2(s−)

0

∫ ∞
z0

ζN2(ds, du, dζ).

(5.35)

Note that for t ∈ [τk, τk+1) we have that
∫ t
τk

∫ Y2(s−)
0

∫∞
z0
ζN2(ds, du, dζ) = 0. Then, thanks

to (5.35), {Y2(t) : t ∈ [τk, τk+1)} satisfies (5.34). By the uniqueness of solutions of (5.34),

we get that P
(
Y2(t) = Y

(z0)
2 (t), ∀t ∈ [τk, τk+1)

)
= 1. Thus we have (5.32). 2
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The main idea of Proposition 5.3 is to distinguish the original process Y2 by the intensity

of its jumps, that is, the truncated process Y
(z0)
2 given by formula (5.32).

These two processes coincide up to the next large jump occurred.

The process Y
(z0)
2 is related to the intensity of large jumps since it appears inside the

last integral in (5.32) associated to large jumps. The instantaneous intensity of the jumps of

Y2 at time t is then Y
(z0)
2 (t−) times the normalization term associated to the jump measure,

i.e. 1{ζ>z0}µ(dζ).

We stated that the truncated process Y
(z0)
2 is linked to the intensity of the large jumps

of Y2. The following proposition explains in detail this link. Up to a constant, the process

Y
(z0)
2 is the stochastic intensity or hazard rate of the random time of the next big jump.

Proposition 5.4. Let {τk}k∈N be defined by (5.30). Then we have

P (τk+1 − τk > t) = E
[
exp

{
−K(z0)

Y

∫ τk+t

τk

Y
(z0)
2 (s)ds

}]
, (5.36)

where the renormalisation term K
(z0)
Y = γ2

∫∞
z0
ζµ2(dζ) which is the proper truncated mass

of the jumps distribution, and the frequency process Y
(z0)
2 is given by (5.34).

Proof. Here we use the method given by [23]. By (5.32) of Proposition 5.3, we see that

{τk+1 − τk > t} =

{∫ τk+t

τk

∫ Y
(z0)
2 (s−)

0

∫ ∞
z0

ζN2(ds, du, dζ) = 0

}
.

Let Ft = σ{Y2(s) : 0 ≤ s ≤ t}. Note that conditioned on Fτk , {
∫ t
τk

∫ v
0

∫∞
z0
N(ds, du, dζ) :

t ≥ τk, v ≥ 0} is independent of {Y (z0)
2 (t) : t ≥ τk}. Then

P
(
τk+1 − τk > t

∣∣Fτk ;Y
(z0)
2 (s), s ≥ τk

)
=P
(∫ τk+t

τk

∫ Y
(z0)
2 (s−)

0

∫ ∞
z0

ζN2(ds, du, dζ) = 0
∣∣Fτk ;Y

(z0)
2 (s), s ≥ τk

)
=exp

{
−K(z0)

Y

∫ τk+t

τk

Y
(z0)
2 (s)ds

}
.

2

Finally, we deal with the asymptotic behaviour of Y
(z0)
2 when the mean reverting speed

a2 diverges. Let us introduce the process Ŷ
(z0)
2 defined as

Ŷ
(z0)
2 (t) = b2 + e−A2t [Y2(0)− b2] + γ2

∫ t

0

∫ Ŷ
(z0)
2 (s−)

0

∫ ∞
z0

e−A2(t−s)ζN2(ds, du, dζ). (5.37)

Remark 5.5. The process Ŷ2 can be seen as the intensity of the marked Hawkes process∫ t
0

∫ Ŷ (z0)
2 (s−)

0

∫∞
z0
ζN2(ds, du, dζ) with exponential kernel, see section 2.2 in [25].

The next proposition shows that the two processes Y2 and Y
(z0)
2 have the same behaviour

when a2 goes to infinity. As a consequence, we can approximate the frequency of large jumps

by the one of the Hawkes process as soon as a2 is large. Then, if a2 is large enough, the

intensity of the jumps exhibits two behaviours. It is quite stable around b2 but it jumps at

all jumps times {τk}k∈N and exhibits an fast exponential decay to b2 with speed A2 ≥ a2.
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Proposition 5.5. Consider Y2 with E[Y2(0)] < ∞. As a2 → +∞, we have that for each

t > 0, Y2(t)− Ŷ2(t) goes to zero in probability.

Proof. First-of-all note that A2 → +∞ as a2 → +∞. Moreover B2 = a2b2
A2
→ b2 in the

same limit. We have that

Y2(t) = Y2(0) +

∫ t

0
A2 (B2 − Y2(s)) ds+ γ2

∫ t

0

∫ Y2(s−)

0

∫ z0

0
ζÑ2(ds, du, dζ)

+γ2

∫ t

0

∫ Y2(s−)

0

∫ ∞
z0

ζN2(ds, du, dζ).

By Itô’s formula,

Y2(t) = e−A2tY2(0) +

∫ t

0
A2B2e

−A2(t−s)ds+ γ2

∫ t

0

∫ Y2(s−)

0

∫ z0

0
e−A2(t−s)ζÑ2(ds, du, dζ)

+γ2

∫ t

0

∫ Y2(s−)

0

∫ ∞
z0

e−A2(t−s)ζN2(ds, du, dζ).

Then we have

Y2(t)− Ŷ (z0)
2 (t) = γ2

∫ t

0

∫ Y2(s−)

0

∫ z0

0
e−A2(t−s)ζÑ2(ds, du, dζ)

+γ2

∫ t

0

∫ Y2(s−)

Ŷ
(z0)
2 (s−)

∫ ∞
z0

e−A2(t−s)ζN2(ds, du, dζ).

Furthermore, we also have

E
[(∫ t

0

∫ Y2(s−)

0

∫ z0

0
e−A2(t−s)ζN2(ds, du, dζ)

)2]
= E

[ ∫ t

0
Y2(s)e

−2A2(t−s)ds

] ∫ z0

0
ζ2µ(dζ)

≤ C1(1− e−2A2t)/A2,

for some positive constants C1 and

E
[ ∫ t

0

∫ Y2(s−)

Ŷ
(z0)
2 (s−)

∫ ∞
z0

e−A2(t−s)ζN2(ds, du, dζ)

]
≤ E

[ ∫ t

0

∫ Y2(s−)

Ŷ
(z0)
2 (s−)

1{Y2(s−)≥Y
(z0)
2 (s−)}

∫ ∞
z0

e−A2(t−s)ζN2(ds, du, dζ)

]

+ E
[ ∫ t

0

∫ Ŷ
(z0)
2 (s−)

Y2(s−)
1{Y2(s−)<Y

(z0)
2 (s−)}

∫ ∞
z0

e−A2(t−s)ζN2(ds, du, dζ)

]
≤ E

[ ∫ t

0

∣∣∣Y2(s)− Ŷ (z0)
2 (s)

∣∣∣ e−A2(t−s)ds

] ∫ ∞
z0

ζµ(dζ) .

A suitable modification of Gronwall inequality provides then the required result. 2
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6 Jump Detection and Cluster Identification

The goal of the present section is not to provide an extensive statistical analysis for the

proposed model class, but to present some evidence based on real data enforcing the as-

sumption of self-exciting and clustering behavior of jumps in power price dynamics. Given

the observation of power price on Italian market we can perform a direct analysis and ex-

hibit the presence of jumps. In the same spirit of Callegaro el al. [9], we identify jumps

using an iterated re-weighted least squared technique. The daily data span the period be-

tween April 1, 2004 and December 31, 2015. We can identify 96 positive jumps, but their

distribution is far from being uniform. Picture 4 shows this distribution (the yellow lines

identify jumps times and sizes) and we easily observe the presence of clusters.

In order to reject the hypothesis of Poisson arrivals, i.e. jump with inter-temporal

distance following an exponential law with constant intensity, we recall the following well-

known result, see for instance O. El Euch and M. Rosenbaum [19] page 13.

Proposition 6.6. Let N be a non-homogeneous Poisson process with rate µ. Denote by Ti
the increasing sequence of arrival times of the jumps of N. Then, fix t > 0, conditionally

on Nt, the vector (T1;T2; . . . ;TNt) has the same law as (U(1);U(2); :::;U(Nt)), i.e. the order

statistics built from uniform IID random variables with density:

µ(s)I(s∈[0,t])∫ t
0 µ(u)du

. (6.38)

It is easy to see that if µ is constant, the inter-temporal jump arrival distance Ti−Ti−1
are uniformly distributed. We can then perform a Kolmogorov-Smirnov test by assuming a

uniform distribution for inter-temporal jumps arrival times and this hypothesis is definitely

rejected since the obtained value 1.82 is very large compared to the critical value for all

usual rejection levels.

If we suppose now that the price process is purely self-exciting, that is the intensity

of the jumps arrival is proportional to the process it-self, we can apply Proposition 6.6.

The idea is to compare the time distribution of the spikes using the historical time and

the cumulated price as a new time scale. To this end we introduce Λ(t) is such that

Λ(t) =
∫ t
0 P (s)ds, where P (s) is the electricity price itself. Then, the function Λ is the

cumulated value of the electricity price. By performing once more a Kolmogoroff-Smirnov

test on the hypothesis of a self-excited Poisson distribution for power prices, we get the

value 1.060, which allows to not reject the hypothesis at level α = 0.10. Figure 5 illustrates

the result of the goodness of fit: the small squares represent the historical values, while the

small circles represent their scaled values. It can be remarked that the historical values (the

small yellow diamonds) are not close to the ideal line in the central region of the graph,

while the scaled values (the small blue diamonds) are much closer.

7 Concluding Remarks

In the present paper we proposed a new modeling framework for power price dynamics,

combining all the basic features exhibited by power market, but including the jump clus-
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tering phenomenon. This modelling approach considered keeps a high level of tractability,

in fact it allows to obtain the most common derivatives prices in closed or semi-closed form.

The models introduced can describe the prices dynamics in two different forms, that

can be proved to be equivalent: the first is a representation based on random fields, the

second is based on Continuous State Branching Processes with Immigration.

The model we proposed extends in different ways some relevant models already available

in the literature. It belongs to the class of arithmetic models (following the classification

proposed by F.E. Benth, J. Salthythe-Benth and S. Koekebakker), and the driving processes

are Lévy processes with positive jumps, i.e. subordinators, so it extends the model proposed

by F.E. Benth, J. Kallsen and T. Meyer-Brandis [5] by formulating the dynamics via a

random field approach. On the other hand, this approach exhibits some similarities with

the Ambit Field-based models introduced by O.E. Barnorff-Nielsen, F.E. Benth and A.

Veraart [4].

In contrast with the approach presented in [32], where the spiking patterns of power

prices are described in terms of a resonating regime in a FitzHugh-Nagumo stochastic

dynamic framework, the main focus of this paper is on the jump clustering phenomenon

and the self-exciting properties exhibited by CBI processes.

The features of our modeling approach just outlined, allow to introduce the so-called

self-exciting properties in a simple and natural way and, although the pricing formulas for

basic contracts like forward will exhibit very small changes with respect to those obtained

for the previous models, the present model exhibits a substantially different, and much

more realistic risk premium term structure.

The analysis proposed on real data in Section 6 strongly supports the model approach

proposed.

The results illustrated in the present paper can be extended in several directions. Several

financial contracts traded in power market do not admit closed form expressions in the

present modelling framework and suitable numerical procedures must be proposed in order

to evaluate these contracts in the present setting. Moreover, a rigorous and exhaustive

statistical inference approach must be developed in order to allow a systematic investigation

of different power markets and their description in terms of CBI.
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Figure 4: Historic time series of power price on Italian market from April 1, 2004 to

December 31, 2015
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Figure 5: Kolmogorov-Smirnov test for self-excited Poisson hypothesis
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