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HALFSPACE DEPTHS FOR SCATTER,
CONCENTRATION AND SHAPE MATRICES

By Davy Paindaveine∗ and Germain Van Bever†

Université libre de Bruxelles

We propose halfspace depth concepts for scatter, concentration
and shape matrices. For scatter matrices, our concept is similar to
those from Chen, Gao and Ren (2017) and Zhang (2002). Rather
than focusing, as in these earlier works, on deepest scatter matri-
ces, we thoroughly investigate the properties of the proposed depth
and of the corresponding depth regions. We do so under minimal
assumptions and, in particular, we do not restrict to elliptical distri-
butions nor to absolutely continuous distributions. Interestingly, fully
understanding scatter halfspace depth requires considering different
geometries/topologies on the space of scatter matrices. We also dis-
cuss, in the spirit of Zuo and Serfling (2000), the structural properties
a scatter depth should satisfy, and investigate whether or not these
are met by scatter halfspace depth. Companion concepts of depth
for concentration matrices and shape matrices are also proposed and
studied. We show the practical relevance of the depth concepts con-
sidered in a real-data example from finance.

1. Introduction. Statistical depth measures the centrality of a given
location in Rk with respect to a sample of k-variate observations, or, more
generally, with respect to a probability measure P over Rk. The most fa-
mous depths include the halfspace depth (Tukey, 1975), the simplicial depth
(Liu, 1990), the spatial depth (Vardi and Zhang, 2000) and the projection
depth (Zuo, 2003). In the last decade, depth has also known much success in
functional data analysis, where it measures the centrality of a function with
respect to a sample of functional data. Some instances are the band depth
(López-Pintado and Romo, 2009), the functional halfspace depth (Claeskens
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et al., 2014) and the functional spatial depth (Chakraborty and Chaudhuri,
2014). The large variety of available depths made it necessary to introduce
an axiomatic approach identifying the most desirable properties of a depth
function; see Zuo and Serfling (2000) in the multivariate case and Nieto-
Reyes and Battey (2016) in the functional one.

Statistical depth provides a center-outward ordering of the observations
that allows to tackle in a robust and nonparametric way a broad range of
inference problems; see Liu, Parelius and Singh (1999). For most depths,
the deepest point is a robust location functional that extends the univariate
median to the multivariate or functional setups; see, in particular, Cardot,
Cénac and Godichon-Baggioni (2017) for a recent work on the functional
spatial median. Beyond the median, depth plays a key role in the classical
problem of defining multivariate quantiles; see, e.g., Hallin, Paindaveine and
Šiman (2010) or Serfling (2010). In line with this, the collections of loca-
tions in Rk whose depth does not exceed a given level are sometimes called
quantile regions; see, e.g., He and Einmahl (2017) in a multivariate extreme
value theory framework. In the functional case, the quantiles in Chaudhuri
(1996) may be seen as those associated with functional spatial depth; see
Chakraborty and Chaudhuri (2014). Both in the multivariate and functional
cases, supervised classification and outlier detection are standard applica-
tions of depth; we refer, e.g., to Cuevas, Febrero and Fraiman (2007), Pain-
daveine and Van Bever (2015), Dang and Serfling (2010), Hubert, Rousseeuw
and Segaert (2015) and to the references therein.

In Mizera (2002), statistical depth was extended to a virtually arbi-
trary parametric framework. In a generic parametric model indexed by an
`-dimensional parameter ϑ, the resulting tangent depth DPn(ϑ0) measures
how appropriate a parameter value ϑ0 is, with respect to the empirical mea-
sure Pn of a sample of k-variate observations X1, . . . , Xn at hand, as one
could alternatively do based on the likelihood LPn(ϑ0). Unlike the MLE
of ϑ, the depth-based estimator maximizing DPn(ϑ) is robust under mild
conditions; see Section 4 of Mizera (2002). The construction, that for linear
regression provides the Rousseeuw and Hubert (1999) depth, proved useful in
various contexts. However, tangent depth requires evaluating the halfspace
depth of a given location in R`, hence can only deal with low-dimensional
parameters. In particular, tangent depth cannot cope with covariance or
scatter matrix parameters (` = k(k + 1)/2), unless k is as small as 2 or 3.

The crucial role played by scatter matrices in multivariate statistics,
however, makes it highly desirable to have a satisfactory depth for such
parameters, as phrased by Serfling (2004), that calls for an extension of
the Mizera and Müller (2004) location-scale depth concept into a location-
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scatter one. While computational issues prevent from basing this extension
on tangent depth, a more ad hoc approach such as the one proposed in
Zhang (2002) is suitable. Recently, another concept of scatter depth, that is
very close in spirit to the one from Zhang (2002), was introduced in Chen,
Gao and Ren (2017). Both proposals dominate tangent depth in the sense
that, for k-variate observations, they rely on projection pursuit in Rk rather
than in Rk(k+1)/2, which allowed Chen, Gao and Ren (2017) to consider
their depth even in high dimensions, under, e.g., sparsity assumptions. Both
works, however, mainly focus on asymptotic, robustness and/or minimax
convergence properties of the sample deepest scatter matrix. The properties
of these scatter depths thus remain largely unknown, which severely affects
the interpretation of the sample concepts.

In the present work, we consider a concept of halfspace depth for scatter
matrices that is close to the Zhang (2002) and Chen, Gao and Ren (2017)
ones. Unlike these previous works, however, we thoroughly study the prop-
erties of the scatter depth and of the corresponding depth regions. We do so
under minimal assumptions and, in particular, we do not restrict to elliptical
distributions nor to absolutely continuous distributions. Interestingly, fully
understanding scatter halfspace depth requires considering different geome-
tries/topologies on the space of scatter matrices. Like Donoho and Gasko
(1992) and Rousseeuw and Ruts (1999) did for location halfspace depth, we
study continuity and quasi-concavity properties of scatter halfspace depth,
as well as the boundedness, convexity and compacity properties of the cor-
responding depth regions. Existence of a deepest halfspace scatter matrix,
which is not guaranteed a priori, is also investigated. We further discuss,
in the spirit of Zuo and Serfling (2000), the structural properties a scatter
depth should satisfy and we investigate whether or not these are met by
scatter halfspace depth. Moreover, companion concepts of depth for concen-
tration matrices and shape matrices are proposed and studied. To the best
of our knowledge, our results are the first providing structural and topo-
logical properties of depth regions outside the classical location framework.
Throughout, numerical results illustrate our theoretical findings. Finally, we
show the practical relevance of the depth concepts considered in a real-data
example from finance.

The outline of the paper is as follows. In Section 2, we define scatter halfs-
pace depth and investigate its affine invariance and uniform consistency. We
also obtain explicit expressions of this depth for two distributions we will
use as running examples in the paper. In Section 3, we derive the properties
of scatter halfspace depth and scatter halfspace depth regions when consid-
ering the Frobenius topology on the space of scatter matrices, whereas we
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do the same for the geodesic topology in Section 4. In Section 5, we identify
the desirable properties a generic scatter depth should satisfy and investigate
whether or not these are met by scatter halfspace depth. In Sections 6 and 7,
we extend this depth to concentration and shape matrices, respectively. In
Section 8, we treat a real-data example from finance. Final comments and
perspectives for future work are provided in Section 9. Proofs and further
numerical results are provided in the supplemental article Paindaveine and
Van Bever (2017).

Before proceeding, we list here, for the sake of convenience, some notation
to be used throughout. The collection of k×k matrices, k×k invertible ma-
trices, and k × k symmetric matrices will be denoted as Mk, GLk, and Sk,
respectively (all matrices in this paper are real matrices). The identity ma-
trix in Mk will be denoted as Ik. For any A ∈ Mk, diag(A) will stand for
the k-vector collecting the diagonal entries of A, whereas, for any k-vector v,
diag(v) will stand for the diagonal matrix such that diag(diag(v)) = v.
For p ≥ 2 square matrices A1, . . . , Ap, diag(A1, . . . , Ap) will stand for the
block-diagonal matrix with diagonal blocks A1, . . . , Ap. Any matrix A in Sk
can be diagonalized into A = O diag(λ1(A), . . . , λk(A))O′, where λ1(A) ≥
. . . ≥ λk(A) are the eigenvalues of A and where the columns of the k × k
orthogonal matrix O = (v1(A), . . . , vk(A)) are corresponding unit eigen-
vectors (as usual, eigenvectors, and possibly eigenvalues, are only partly
identified, but this will not play a role in the sequel). The spectral inter-
val of A is Sp(A) := [λk(A), λ1(A)]. For any mapping f : R → R, we
let f(A) = O diag(f(λ1(A)), . . . , f(λk(A)))O′. If Σ is a scatter matrix, in
the sense that Σ belongs to the collection Pk of symmetric and positive
definite k × k matrices, then this defines log(Σ) and Σt for any t ∈ R. In
particular, Σ1/2 is the unique A ∈ Pk such that Σ = AA′, and Σ−1/2 is the in-
verse of this symmetric and positive definite square root. Throughout, T will
denote a location functional, that is, a function mapping a probability mea-
sure P to a real k-vector TP . A location functional T is affine-equivariant
if TPA,b = ATP + b for any A ∈ GLk and b ∈ Rk, where the probability
measure PA,b is the distribution of AX + b when X has distribution P . A
much weaker equivariance concept is centro-equivariance, for which TPA,b =
ATP +b is imposed for A = −Ik and b = 0 only. For a probability measure P
over Rk and a location functional T , we will let αP,T := min(sP,T , 1− sP,T ),
where sP,T := supu∈Sk−1 P [{x ∈ Rk : u′(x − TP ) = 0}] involves the unit
sphere Sk−1 := {x ∈ Rk : ‖x‖2 = x′x = 1} of Rk. We will say that P is
smooth at θ(∈ Rk) if the P -probability of any hyperplane of Rk containing θ
is zero and that it is smooth if it is smooth at any θ. Finally,

D
= will denote

equality in distribution.
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2. Scatter halfspace depth. We start by recalling the classical con-
cept of location halfspace depth. To do so, let P be a probability measure
over Rk and X be a random k-vector with distribution P , which allows us
throughout to write P [X ∈ B] instead of P [B] for any k-Borel set B. The
location halfspace depth of θ(∈ Rk) with respect to P is then

HDloc
P (θ) := inf

u∈Sk−1
P [u′(X − θ) ≥ 0].

The corresponding depth regions Rloc
P (α) := {θ ∈ Rk : HDloc

P (θ) ≥ α} form
a nested family of closed convex subsets of Rk. The innermost depth region,
namely M loc

P := {θ ∈ Rk : HDloc
P (θ) = maxη∈Rk HD

loc
P (η)} (the maximum

always exists; see, e.g., Proposition 7 in Rousseeuw and Ruts, 1999), is a set-
valued location functional. When a unique representative of M loc

P is needed,
it is customary to consider the Tukey median θP of P , that is defined as the
barycenter of M loc

P . The Tukey median has maximal depth (which follows
from the convexity of M loc

P ) and is an affine-equivariant location functional.
In this paper, for a location functional T , we define the T -scatter halfspace

depth of Σ(∈ Pk) with respect to P as

HDsc
P,T (Σ) := inf

u∈Sk−1
min

(
P
[
|u′(X − TP )| ≤

√
u′Σu

]
,

P
[
|u′(X − TP )| ≥

√
u′Σu

])
.(2.1)

This extends to a probability measure with arbitrary location the centered
matrix depth concept from Chen, Gao and Ren (2017). If P is smooth,
then the depth in (2.1) is also equivalent to the (Tukey version of) the
dispersion depth introduced in Zhang (2002), but for the fact that the latter,
in the spirit of projection depth, involves centering through a univariate
location functional (both Zhang (2002) and Chen, Gao and Ren (2017) also
propose bypassing centering through a pairwise difference approach that
will be discussed in Section 9). While they were not considered in these
prior works, it is of interest to introduce the corresponding depth regions

(2.2) Rsc
P,T (α) :=

{
Σ ∈ Pk : HDsc

P,T (Σ) ≥ α
}
, α ≥ 0.

We will refer to Rsc
P,T (α) as the order-α (T -scatter halfspace) depth region

of P . Obviously, one always has Rsc
P,T (0) = Pk. Clearly, the concepts in

(2.1)-(2.2) give practitioners the flexibility to freely choose the location func-
tional T ; numerical results below, however, will focus on the depth HDsc

P (Σ)
and on the depth regions Rsc

P (α) based on the Tukey median θP , that is the
natural location functional whenever halfspace depth objects are considered.
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To get a grasp of the scatter depth HDsc
P (Σ), it is helpful to start with

the univariate case k = 1. There, the location halfspace deepest region is
the “median interval” M loc

P = arg maxθ∈R min(P [X ≤ θ], P [X ≥ θ]) and the
Tukey median θP , that is, the midpoint of M loc

P , is the usual representative
of the univariate median. The scatter halfspace deepest region is then the
median interval M sc

P := arg maxΣ∈R+
0

min(P [(X−θP )2 ≤ Σ ], P [(X−θP )2 ≥
Σ ]) of (X − θP )2; call it the median squared deviation interval IMSD[X]
(or IMSD[P ]) of X ∼ P . Below, parallel to what is done for the median,
MSD[X] (or MSD[P ]) will denote the midpoint of this MSD interval. In
particular, if IMSD[P ] is a singleton, then scatter halfspace depth is uniquely
maximized at Σ = MSD[P ] = (MAD[P ])2, where MAD[P ] denotes the
median absolute deviation of P . Obviously, the depth regions Rsc

P (α) form
a family of nested intervals, [Σ−α ,Σ

+
α ] say, included in P1 = R+

0 . It is easy
to check that, if P is symmetric about zero with an invertible cumulative
distribution function F and if T is centro-equivariant, then

HDsc
P (Σ) = HDsc

P,T (Σ) = 2 min
(
F (
√

Σ)− 1
2 , 1− F (

√
Σ)
)

and(2.3)

Rsc
P (α) = Rsc

P,T (α) =
[
(F−1(1

2 + α
2 ))2, (F−1(1− α

2 ))2
]
.(2.4)

This is compatible with the fact that the maximal value of Σ 7→ HDsc
P (Σ)

(that is equal to 1/2) is achieved at Σ = (MAD[P ])2 only.
For k > 1, elliptical distributions provide an important particular case.

We will say that P = PX is k-variate elliptical with location θ(∈ Rk) and

scatter Σ(∈ Pk) if and only if X
D
= θ + Σ1/2Z, where Z = (Z1, . . . , Zk)

′

is (i) spherically symmetric about the origin of Rk (that is, OZ
D
= Z for

any k × k orthogonal matrix O) and is (ii) standardized in such a way
that MSD[Z1] = 1 (one then has TP = θ for any affine-equivariant location
functional T ). Denoting by Φ the cumulative distribution function of the
standard normal, the k-variate normal distribution with location zero and
scatter Ik is then the distribution of X := W/b, where b := Φ−1(3

4) and W
is a standard normal random k-vector. In this Gaussian case, we obtain

HDsc
P,T (Σ) = inf

u∈Sk−1
min

(
P
[
|u′X| ≤

√
u′Σu

]
, P
[
|u′X| ≥

√
u′Σu

])
= 2 min

(
Φ
(
bλ

1/2
k (Σ)

)
− 1

2 , 1− Φ
(
bλ

1/2
1 (Σ)

))
.(2.5)

One can check directly that HDsc
P,T (Σ) ≤ HDsc

P,T (Ik) = 1/2, with equal-
ity if and only if Σ coincides with the “true” scatter matrix Ik (we refer
to Theorem 5.1 for a more general result). Also, Σ belongs to the depth
region Rsc

P,T (α) if and only if Sp(Σ) ⊂ [(1
bΦ
−1(1

2 + α
2 ))2, (1

bΦ
−1(1− α

2 ))2].
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Provided that the location functional used is affine-equivariant, extension
to an arbitrary multinormal is based on the following affine-invariance result,
which ensures in particular that scatter halfspace depth will not be affected
by possible changes in the marginal measurement units (a similar result is
stated in Zhang (2002) for the dispersion depth concept considered there).

Theorem 2.1. Let T be an affine-equivariant location functional. Then,
(i) scatter halfspace depth is affine-invariant in the sense that, for any
probability measure P over Rk, Σ ∈ Pk, A ∈ GLk and b ∈ Rk, we have
HDsc

PA,b,T
(AΣA′) = HDsc

P,T (Σ), where PA,b is as defined on page 4. Conse-

quently, (ii) the regions Rsc
P,T (α) are affine-equivariant, in the sense that,

for any probability measure P over Rk, α ≥ 0, A ∈ GLk and b ∈ Rk, we
have Rsc

PA,b,T
(α) = ARsc

P,T (α)A′.

This result readily entails that if P is the k-variate normal with location θ0

and scatter Σ0, then, provided that T is affine-equivariant,

(2.6) HDsc
P,T (Σ) = 2 min

(
Φ
(
bλ

1/2
k (Σ−1

0 Σ)
)
− 1

2 , 1− Φ
(
bλ

1/2
1 (Σ−1

0 Σ)
))

and Rsc
P,T (α) is the collection of scatter matrices Σ for which Sp(Σ−1

0 Σ) ⊂
[(1
bΦ
−1(1

2 + α
2 ))2, (1

bΦ
−1(1− α

2 ))2]. For a non-Gaussian elliptical probability
measure P with location θ0 and scatter Σ0, it is easy to show that HDsc

P,T (Σ)
will still depend on Σ only through λ1(Σ−1

0 Σ) and λk(Σ
−1
0 Σ).

As already mentioned, we also intend to consider non-elliptical probability
measures. A running non-elliptical example will be the one for which P is
the distribution of a random vector X = (X1, . . . , Xk)

′ with independent
Cauchy marginals. If T is centro-equivariant, then
(2.7)

HDsc
P,T (Σ) = 2 min

(
Ψ
(
1/max

s

√
s′Σ−1s

)
− 1

2 , 1−Ψ
(√

max(diag(Σ))
))
,

where Ψ is the Cauchy cumulative distribution function and where the max-
imum in s is over all sign vectors s = (s1, . . . , sk) ∈ {−1, 1}k; see the sup-
plemental article Paindaveine and Van Bever (2017) for a proof. For k = 1,
this simplifies to HDsc

P,T (Σ) = 2 min
(
Ψ
(√

Σ
)
− 1

2 , 1−Ψ
(√

Σ
))
, which agrees

with (2.3). For k = 2, we obtain

HDsc
P,T (Σ) = 2 min

(
Ψ
(√

det(Σ)/sΣ

)
− 1

2 , 1−Ψ
(√

max(Σ11,Σ22)
))
,

where we let sΣ := Σ11 + Σ22 + 2|Σ12|. For a general k, a scatter ma-
trix Σ belongs to Rsc

P,T (α) if and only if 1/(s′Σ−1s) ≥ (Ψ−1(1
2 + α

2 ))2 for all



8 D. PAINDAVEINE AND G. VAN BEVER

s ∈ {−1, 1}k and Σ`` ≤ (Ψ−1
(
1 − α

2 ))2 for all ` = 1, . . . , k. The problem of
identifying the scatter matrix achieving maximal depth, if any (existence is
not guaranteed), will be considered in Section 4. Figure 1 plots scatter half-
space depth regions in the Gaussian and independent Cauchy cases above.
Examples involving distributions that are not absolutely continuous with
respect to the Lebesgue measure will be considered in the next sections.

Fig 1. Level sets of order α = .2, .3 and .4, for any centro-symmetric T , of (x, y, z) 7→
HDsc

P,T (Σx,y,z), where HDsc
P,T (Σx,y,z) is the T -scatter halfspace depth of Σx,y,z =

(
x z
z y

)
with respect to two probability measures P , namely the bivariate multinormal distribution
with location zero and scatter I2 (left) and the bivariate distribution with independent
Cauchy marginals (right). The red points are those associated with I2 (left) and

√
2I2

(right), which are the corresponding deepest scatter matrices (see Sections 4 and 5).

In the supplemental article Paindaveine and Van Bever (2017), we vali-
date through a Monte Carlo exercise the expressions for HDsc

P,T (Σ) obtained
in (2.6)-(2.7) above. Such a numerical validation is justified by the following
uniform consistency result; see (6.2) and (6.6) in Donoho and Gasko (1992)
for the corresponding location halfspace depth result, and Proposition 2.2(ii)
in Zhang (2002) for the dispersion depth concept considered there.

Theorem 2.2. Let P be a smooth probability measure over Rk and T
be a location functional. Let Pn denote the empirical probability measure
associated with a random sample of size n from P and assume that TPn → TP
almost surely as n→∞. Then supΣ∈Pk |HD

sc
Pn,T

(Σ)−HDsc
P,T (Σ)| → 0 almost

surely as n→∞.
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This result applies in particular to the scatter halfspace depth HDsc
P (Σ),

as the Tukey median is strongly consistent without any assumption on P
(for completeness, we show this in the supplemental article Paindaveine and
Van Bever, 2017). Inspection of the proof of Theorem 2.2 reveals that the
smoothness assumption is only needed to control the estimation of TP , hence
is superfluous when a constant location functional is used. This is relevant
when the location is fixed, as in Chen, Gao and Ren (2017).

3. Frobenius topology. Our investigation of the further structural
properties of the scatter halfspace depth HDsc

P,T (Σ) and of the corresponding
depth regions Rsc

P,T (α) depends on the topology that is considered on Pk.
In this section, we focus on the topology induced by the Frobenius met-
ric space (Pk, dF ), where dF (Σa,Σb) = ‖Σb − Σa‖F is the distance on Pk
that is inherited from the Frobenius norm ‖A‖F =

√
tr[AA′] on Mk. The

resulting Frobenius topology (or simply F -topology), generated by the F -
balls BF (Σ0, r) := {Σ ∈ Pk : dF (Σ,Σ0) < r} with center Σ0 and radius r,
gives a precise meaning to what we call below F -continuous functions on Pk,
F -open/F -closed subsets of Pk, etc. We then have the following result.

Theorem 3.1. Let P be a probability measure over Rk and T be a loca-
tion functional. Then, (i) Σ 7→ HDsc

P,T (Σ) is upper F -semicontinuous on Pk,
so that (ii) the depth region Rsc

P,T (α) is F -closed for any α ≥ 0. (iii) If P is
smooth at TP , then Σ 7→ HDsc

P,T (Σ) is F -continuous on Pk.

For location halfspace depth, the corresponding result was derived in
Lemma 6.1 of Donoho and Gasko (1992), where the metric on Rk is the
Euclidean one. The similarity between the location and scatter halfspace
depths also extends to the boundedness of depth regions, in the sense that,
like location halfspace depth (Proposition 5 in Rousseeuw and Ruts, 1999),
the order-α scatter halfspace depth region is bounded if and only if α > 0.

Theorem 3.2. Let P be a probability measure over Rk and T be a lo-
cation functional. Then, for any α > 0, Rsc

P,T (α) is F -bounded (that is, it is
included, for some r > 0, in the F -ball BF (Ik, r)).

This shows that, for any probability measure P , HDsc
P,T (Σ) goes to zero

as ‖Σ‖F →∞. Since ‖Σ‖F ≥ λ1(Σ), this means that explosion of Σ (that
is, λ1(Σ) → ∞) leads to arbitrarily small depth, which is confirmed in
the multinormal case in (2.5). In this Gaussian case, however, implosion
of Σ (that is, λk(Σ) → 0) also provides arbitrarily small depth, but this
is not captured by the general result in Theorem 3.2 (similar comments
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can be given for the independent Cauchy example in (2.7)). Irrespective of
the topology adopted (so that the F -topology is not to be blamed for this
behavior), it is actually possible to have implosion without depth going to
zero. We show this by considering the following example. Let P = (1 −
s)P1 + sP2, where s ∈ (1

2 , 1), P1 is the bivariate standard normal and P2 is
the distribution of

(
0
Z

)
, where Z is univariate standard normal. Then, it can

be showed that, for Σn :=
(

1/n 0
0 1

)
and any centro-equivariant T , we have

HDsc
P,T (Σn)→ 1− s > 0 as n→∞.

In the metric space (Pk, dF ), any bounded set is also totally bounded, that
is, can be covered, for any ε > 0, by finitely many balls of the form BF (Σ, ε).
Theorems 3.1-3.2 thus show that, for any α > 0, Rsc

P,T (α) is both F -closed
and totally F -bounded. However, since (Pk, dF ) is not complete, there is
no guarantee that these regions are F -compact. Actually, these regions may
fail to be F -compact, as we show through the example from the previous
paragraph. For any α ∈ (0, 1− s), the scatter matrix Σn belongs to Rsc

P,T (α)

for n large enough. However, the sequence (Σn) F -converges to
(

0 0
0 1

)
, that

does not belong to Rsc
P,T (α) (since it does not even belong to P2). Since this

will also hold for any subsequence of (Σn), we conclude that, for α ∈ (0, 1−s),
Rsc
P,T (α) is not F -compact in this example. This provides a first discrepancy

between location and scatter halfspace depths, since location halfspace depth
regions associated with a positive order α are always compact.

The lack of compacity of scatter halfspace depth regions may allow for
probability measures for which no halfspace deepest scatter exists. This
is actually the case in the bivariate mixture example above. There, let-
ting e1 = (1, 0)′ and assuming again that T is centro-equivariant, any Σ ∈ P2

indeed satisfies HDsc
P,T (Σ) ≤ P [|e′1X| ≥

√
e′1Σe1] = P [|X1| ≥

√
Σ11] = (1−

s)P [|Z| ≥
√

Σ11] < 1 − s = supΣ∈P2
HDsc

P,T (Σ), where the last equality fol-
lows from the fact that we identified a sequence (Σn) such thatHDsc

P,T (Σn)→
1 − s. This is again in sharp contrast with the location case, for which a
halfspace deepest location always exists; see, e.g., Propositions 5 and 7 in
Rousseeuw and Ruts (1999). Identifying sufficient conditions under which
a halfspace deepest scatter exists requires considering another topology,
namely the geodesic topology considered in Section 4 below.

The next result states that scatter halfspace depth is a quasi-concave
function, which ensures convexity of the corresponding depth regions; we
refer to Proposition 1 (and to its corollary) in Rousseeuw and Ruts (1999)
for the corresponding results on location halfspace depth.

Theorem 3.3. Let P be a probability measure over Rk and T be a loca-
tion functional. Then, (i) Σ 7→ HDsc

P,T (Σ) is quasi-concave, in the sense that,
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for any Σa,Σb ∈ Pk and t ∈ [0, 1], HDsc
P,T (Σt)≥min(HDsc

P,T (Σa), HD
sc
P,T (Σb)),

where we let Σt := (1− t)Σa + tΣb; (ii) for any α ≥ 0, Rsc
P,T (α) is convex.

Strictly speaking, Theorem 3.3 is not directly related to the F -topology
considered on Pk. Yet we state the result in this section due to the link
between the linear paths t 7→ Σt = (1− t)Σa + tΣb it involves and the “flat”
nature of the F -topology (this link will become clearer below when we will
compare with what occurs for the geodesic topology). Illustration of Theo-
rem 3.3 will be provided in Figure 2 below, as well as in the supplemental
article Paindaveine and Van Bever (2017).

4. Geodesic topology. Equipped with the inner product <A,B >=
tr[A′B], Mk is a Hilbert space. The resulting norm and distance are the
Frobenius ones considered in the previous section. As an open set in Sk,
the parameter space Pk of interest is a differentiable manifold of dimen-
sion k(k+ 1)/2. The corresponding tangent space at Σ, which is isomorphic
(via translation) to Sk, can be equipped with the inner product <A,B> =
tr[Σ−1AΣ−1B]. This leads to considering Pk as a Riemannian manifold, with
the metric at Σ given by the differential ds = ‖Σ−1/2dΣ Σ−1/2‖F ; see, e.g.,
Bhatia (2007). The length of a path γ : [0, 1]→ Pk is then given by

L(γ) =

∫ 1

0

∥∥∥γ−1/2(t)
dγ(t)

dt
γ−1/2(t)

∥∥∥
F
dt.

The resulting geodesic distance between Σa,Σb ∈ Pk is defined as

(4.1) dg(Σa,Σb) := inf
{
L(γ) : γ ∈ G(Σa,Σb)

}
= ‖ log(Σ−1/2

a ΣbΣ
−1/2
a )‖F ,

where G(Σa,Σb) denotes the collection of paths γ from γ(0) = Σa to γ(1) =
Σb (the second equality in (4.1) is Theorem 6.1.6 in Bhatia, 2007). It directly
follows from the definition of dg(Σa,Σb) that the geodesic distance satisfies
the triangle inequality. Theorem 6.1.6 in Bhatia (2007) also states that all
paths γ achieving the infimum in (4.1) provide the same geodesic {γ(t) : t ∈
[0, 1]} joining Σa and Σb, and that this geodesic can be parametrized as

(4.2) γ(t) = Σ̃t := Σ1/2
a

(
Σ−1/2
a ΣbΣ

−1/2
a

)t
Σ1/2
a , t ∈ [0, 1].

By using the explicit formula in (4.1), it is easy to check that this partic-
ular parametrization of this unique geodesic is natural in the sense that
dg(Σa, Σ̃t) = tdg(Σa,Σb) for any t ∈ [0, 1].

Below, we consider the natural topology associated with the metric space
(Pk, dg), that is, the topology whose open sets are generated by geodesic balls
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of the form Bg(Σ0, r) := {Σ ∈ Pk : dg(Σ,Σ0) < r}. This topology — call
it the geodesic topology, or simply g-topology — defines subsets of Pk that
are g-open, g-closed, g-compact, and functions that are g-semicontinuous,
g-continuous, etc. We will say that a subset R of Pk is g-bounded if and
only if R ⊂ Bg(Ik, r) for some r > 0 (we can safely restrict to balls centered
at Ik since the triangle inequality guarantees that R is included in a finite-
radius g-ball centered at Ik if and only if it is included in a finite-radius
g-ball centered at an arbitrary Σ0 ∈ Pk). A g-bounded subset of Pk is also
totally g-bounded, still in the sense that, for any ε > 0, it can be covered
by finitely many balls of the form Bg(Σ, ε); for completeness, we prove this
in Lemma S.2.6 from the supplemental article Paindaveine and Van Bever
(2017). Since (Pk, dg) is complete (see, e.g., Proposition 10 in Bhatia and
Holbrook, 2006), a g-bounded and g-closed subset of Pk is then g-compact.

We omit the proof of the next result as it follows along the exact same lines
as the proof of Theorem 3.1, once it is seen that a sequence (Σn) converging
to Σ0 in (Pk, dg) also converges to Σ0 in (Pk, dF ).

Theorem 4.1. Let P be a probability measure over Rk and T be a loca-
tion functional. Then, (i) Σ 7→ HDsc

P,T (Σ) is upper g-semicontinuous on Pk,
so that (ii) the depth region Rsc

P,T (α) is g-closed for any α ≥ 0. (iii) If P is
smooth at TP , then Σ 7→ HDsc

P,T (Σ) is g-continuous on Pk.

The following result uses the notation sP,T := supu∈Sk−1 P [u′(X − TP ) =
0] and αP,T := min(sP,T , 1− sP,T ) defined in the introduction.

Theorem 4.2. Let P be a probability measure over Rk and T be a lo-
cation functional. Then, for any α > αP,T , Rsc

P,T (α) is g-bounded, hence
g-compact (if sP,T ≥ 1/2, then this result is trivial in the sense that Rsc

P,T (α)
is empty for any α > αP,T ). In particular, if P is smooth at TP , then Rsc

P,T (α)
is g-compact for any α > 0.

This result complements Theorem 3.2 by showing that implosion always
leads to a depth that is smaller than or equal to αP,T . In particular, in
the multinormal and independent Cauchy examples in Section 2, this shows
that both explosion and implosion lead to arbitrarily small depth, whereas
Theorem 3.2 was predicting this collapsing for explosion only. Therefore,
while the behavior of HDsc

P,T (Σ) under implosion/explosion of Σ is indepen-
dent of the topology adopted, the use of the g-topology provides a better
understanding of this behavior than the F -topology.

It is not possible to improve the result in Theorem 4.2, in the sense that
Rsc
P,T (αP,T ) may fail to be g-bounded. For instance, consider the probabil-

ity measure P over R2 putting probability mass 1/6 on each of the six
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points (0,±1/2) and (±2,±2), and let T be a centro-equivariant location
functional. Clearly, αP,T = sP,T = 1/3. Now, letting Σn :=

(
1/n 0

0 1

)
, we have

P [|u′Σ−1/2
n X| ≤ 1] ≥ 1/3 and P [|u′Σ−1/2

n X| ≥ 1] ≥ 1/3 for any u ∈ S1

(here, X is a random vector with distribution P ), which entails that

HDsc
P,T (Σn) = inf

u∈S1
min

(
P
[
|u′X| ≤

√
u′Σnu

]
, P
[
|u′X| ≥

√
u′Σnu

])
= inf

u∈S1
min

(
P [|u′Σ−1/2

n X| ≤ 1], P [|u′Σ−1/2
n X| ≤ 1]

)
≥ 1

3
= αP,T ,

so that Σn ∈ Rsc
P,T (αP,T ) for any n. Since dg(Σn, I2) → ∞, Rsc

P,T (αP,T ) is
indeed g-unbounded.

An important benefit of working with the g-topology is that, unlike the
F -topology, it allows to show that, under mild assumptions, a halfspace
deepest scatter does exist. More precisely, we have the following result.

Theorem 4.3. Let P be a probability measure over Rk and T be a lo-
cation functional. Assume that Rsc

P,T (αP,T ) is non-empty. Then, α∗P,T :=
supΣ∈Pk HD

sc
P,T (Σ) = HDsc

P,T (Σ∗) for some Σ∗ ∈ Pk.

In particular, this result shows that for any probability measure P that
is smooth at TP , there exists a halfspace deepest scatter Σ∗. For the k-
variate multinormal distribution with location zero and scatter Ik (and any
centro-equivariant T ), we already stated in Section 2 that Σ 7→ HDsc

P,T (Σ)
is uniquely maximized at Σ∗ = Ik, with a corresponding maximal depth
equal to 1/2. The next result identifies the halfspace deepest scatter (and
the corresponding maximal depth) in the independent Cauchy case.

Theorem 4.4. Let P be the k-variate probability measure with indepen-
dent Cauchy marginals and let T be a centro-equivariant location functional.
Then, Σ 7→ HDsc

P,T (Σ) is uniquely maximized at Σ∗ =
√
kIk, and the corre-

sponding maximal depth is HDsc
P,T (Σ∗) = 2

π arctan
(
k−1/4

)
.

For k = 1, the Cauchy distribution in this result is symmetric (hence, el-
liptical) about zero, which is compatible with the maximal depth being equal
to 1/2 there (Theorem 5.1 below shows that the maximal depth for abso-
lutely continuous elliptical distributions is always equal to 1/2). For larger
values of k, however, this provides an example where the maximal depth
is strictly smaller than 1/2. Interestingly, this maximal depth goes (mono-
tonically) to zero as k → ∞. Note that, for the same distribution, location
halfspace depth has, irrespective of k, maximal value 1/2 (this follows, e.g.,
from Lemma 1 and Theorem 1 in Rousseeuw and Struyf, 2004).
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In general, the halfspace deepest scatter Σ∗ is not unique. This is typically
the case for empirical probability measures Pn (note that the existence of
a halfspace deepest scatter in the empirical case readily follows from the
fact that HDsc

Pn,T
(Σ) takes its values in {`/n : ` = 0, 1, . . . , n}). For several

purposes, it is needed to identify a unique representative of the halfspace
deepest scatters, that would play a similar role for scatter as the one played
by the Tukey median for location. To this end, one may consider here a
center of mass, that is, a scatter matrix of the form

(4.3) ΣP,T := arg min
Σ∈Pk

∫
Rsc
P,T (α∗P,T )

d2
g(m,Σ) dm,

where dm is a mass distribution on Rsc
P,T (α∗P,T ) with total mass one (the

natural choice being the uniform over Rsc
P,T (α∗P,T )). This is a suitable so-

lution if Rsc
P,T (α∗P,T ) is g-bounded (hence, g-compact), since Cartan (1929)

showed that, in a simply connected manifold with non-positive curvature
(as Pk), every compact set has a unique center of mass; see also Proposi-
tion 60 in Berger (2003). Convexity of Rsc

P,T (α∗P,T ) then ensures that ΣP,T

has maximal depth. Like for location, this choice of ΣP,T as a represen-
tative of the deepest scatters guarantees affine equivariance (in the sense
that ΣPA,b,T = AΣP,TA

′ for any A ∈ GLk and any b ∈ Rk), provided
that T itself is affine-equivariant. An alternative approach is to consider
the scatter matrix ΣP,T whose vectorized form vec ΣP,T is the barycenter
of vecRsc

P,T (α∗P,T ). While this is a more practical solution for scatter ma-
trices, the non-flat nature of some of the parameter spaces in Section 7 will
require the more involved, manifold-type, approach in (4.3).

As a final comment related to Theorem 4.3, note that if Rsc
P,T (αP,T ) is

empty, then it may actually be so that no halfspace deepest scatter does
exist. An example is provided by the bivariate mixture distribution P in
Section 3. There, we saw that, for any centro-equivariant T , no halfspace
deepest scatter does exist, which is compatible with the fact that, for any Σ,
HDsc

P,T (Σ) < 1− s = αP,T , so that Rsc
P,T (αP,T ) is empty.

5. An axiomatic approach for scatter depth. Building on the prop-
erties derived in Liu (1990) for simplicial depth, Zuo and Serfling (2000)
introduced an axiomatic approach suggesting that a generic location depth
Dloc
P ( · ) : Rk → [0, 1] should satisfy the following properties: (P1) affine

invariance, (P2) maximality at the symmetry center (if any), (P3) mono-
tonicity relative to any deepest point, and (P4) vanishing at infinity. With-
out entering into details, these properties are to be understood as follows:
(P1) means that Dloc

PA,b
(Aθ + b) = Dloc

P (θ) for any A ∈ GLk and b ∈ Rk,
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where PA,b is as defined on page 4; (P2) states that if P is symmetric (in
some sense), then the symmetry center should maximize Dloc

P ( · ); accord-
ing to (P3), Dloc

P ( · ) should be monotone non-increasing along any halfline
originating from any P -deepest point; finally, (P4) states that as θ exits
any compact set in Rk, its depth should converge to zero. There is now an
almost universal agreement in the literature that (P1)-(P4) are the natural
desirable properties for location depths.

In view of this, one may wonder what are the desirable properties for
a scatter depth. Inspired by (P1)-(P4), we argue that a generic scatter
depth Dsc

P ( · ) : Pk → [0, 1] should satisfy the following properties, all involv-
ing an (unless otherwise specified) arbitrary probability measure P over Rk:

(Q1) Affine invariance: for any A ∈ GLk and b ∈ Rk, Dsc
PA,b

(AΣA′) =

Dsc
P (Σ), where PA,b is still as defined on page 4;

(Q2) Fisher consistency under ellipticity : if P is elliptically symmetric with
location θ0 and scatter Σ0, then Dsc

P (Σ0) ≥ Dsc
P (Σ) for any Σ ∈ Pk;

(Q3) Monotonicity relative to any deepest scatter : if Σa maximizes Dsc
P ( · ),

then, for any Σb ∈ Pk, t 7→ Dsc
P ((1 − t)Σa + tΣb) is monotone non-

increasing over [0, 1];
(Q4) Vanishing at the boundary of the parameter space: if (Σn) F -converges

to the boundary of Pk (in the sense that either dF (Σn,Σ) → 0 for
some Σ ∈ Sk \ Pk or dF (Σn, Ik)→∞), then Dsc

P (Σn)→ 0.

While (Q1) and (Q3) are the natural scatter counterparts of (P1) and (P3),
respectively, some comments are in order for (Q2) and (Q4). We start
with (Q2). In essence, (P2) requires that, whenever an indisputable location
center exists (as it is the case for symmetric distributions), this location
should be flagged as most central by the location depth at hand. A similar
reasoning leads to (Q2): we argue that, for an elliptical probability measure,
the “true” value of the scatter parameter is indisputable, and (Q2) then im-
poses that the scatter depth at hand should identify this true scatter value
as the (or at least, as a) deepest one. One might actually strengthen (Q2)
by replacing the elliptical model there by a broader model in which the true
scatter would still be clearly defined. In such a case, of course, the larger
the model for which scatter depth satisfies (Q2), the better (a possibility,
that we do not explore here, is to consider the union of the elliptical model
and the independent component model ; see Ilmonen and Paindaveine, 2011
and the references therein). This is parallel to what happens in (P2): the
weaker the symmetry assumption under which (P2) is satisfied, the better
(for instance, having (P2) satisfied with angular symmetry is better than
having it satisfied with central symmetry only); see Zuo and Serfling (2000).
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We then turn to (Q4), whose location counterpart (P4) is typically read
by saying that the depth/centrality Dloc

P (θn) goes to zero when the point θn
goes to the boundary of the sample space. In the spirit of parametric depth
(Mizera, 2002; Mizera and Müller, 2004), however, it is more appropriate
to look at θn as a candidate location fit and to consider that (P4) imposes
that the appropriateness Dloc

P (θn) of this fit goes to zero as θn goes to the
boundary of the parameter space. For location, the confounding between the
sample space and parameter space (both are Rk) allows for both interpreta-
tions. For scatter, however, there is no such confounding (the sample space
is Rk and the parameter space is Pk), and we argue (Q4) above is the natural
scatter version of (P4): whenever Σn goes to the boundary of the parameter
space Pk, scatter depth should flag it as an arbitrarily poor candidate fit.

Theorem 2.1 states that scatter halfspace depth satisfies (Q1) as soon as
it is based on an affine-equivariant T . Scatter halfspace depth satisfies (Q3)
as well: if Σa maximizes HDsc

P,T ( · ), then Theorem 3.3 indeed readily implies
that HDsc

P,T ((1 − t)Σa + tΣb) ≥ min(HDsc
P,T (Σa), HD

sc
P,T (Σb)) = HDsc

P,T (Σb)
for any Σb ∈ Pk and t ∈ [0, 1]. The next Fisher consistency result shows
that, provided that T is affine-equivariant, (Q2) is also met.

Theorem 5.1. Let P be an elliptical probability measure over Rk with
location θ0 and scatter Σ0, and let T be an affine-equivariant location func-
tional. Then, (i) HDsc

P,T (Σ0) ≥ HDsc
P,T (Σ) for any Σ ∈ Pk, and the equality

holds if and only if Sp(Σ−1
0 Σ) ⊂ IMSD[Z1], where Z = (Z1, . . . , Zk)

′ D=

Σ
−1/2
0 (X − θ0); (ii) in particular, if IMSD[Z1] is a singleton (equivalently,

if IMSD[Z1] = {1}), then Σ 7→ HDsc
P,T (Σ) is uniquely maximized at Σ0.

While (Q1)-(Q3) are satisfied by scatter halfspace depth without any
assumption on P , (Q4) is not, as the mixture example considered in Section 3
shows (since the sequence (Σn) considered there has limiting depth 1−s > 0).
However, Theorem 3.2 reveals that (Q4) may fail only when dF (Σn,Σ)→ 0
for some Σ ∈ Sk \Pk. More importantly, Theorem 4.2 implies that T -scatter
halfspace depth will satisfy (Q4) at any P that is smooth at TP .

In a generic parametric depth setup, (Q3) would require that the pa-
rameter space is convex. If the parameter space rather is a non-flat Rie-
mannian manifold, then it is natural to replace the “linear” monotonicity
property (Q3) with a “geodesic” one. In the context of scatter depth, this
would lead to replacing (Q3) with

(Q̃3) Geodesic monotonicity relative to any deepest scatter : if Σa maxi-
mizes Dsc

P ( · ), then, for any Σb ∈ Pk, t 7→ Dsc
P (Σ̃t) is monotone non-

increasing over [0, 1] along the geodesic path Σ̃t from Σa to Σb in (4.2).



SCATTER, CONCENTRATION AND SHAPE HALFSPACE DEPTHS 17

We refer to Section 7 for a parametric framework where (Q3) cannot
be considered and where (Q̃3) needs to be adopted instead. For scatter,
however, the hybrid nature of Pk, which is both flat (as a convex subset
of the vector space Sk) and curved (as a Riemannian manifold with non-

positive curvature), allows to consider both (Q3) and (Q̃3). Just like (Q3)

follows from quasi-concavity of the mapping Σ 7→ HDsc
P,T (Σ), (Q̃3) would

follow from the same mapping being geodesic quasi-concave, in the sense
that HDP,T (Σ̃t) ≥ min(HDP,T (Σa), HDP,T (Σb)) along the geodesic path Σ̃t

from Σa to Σb. Geodesic quasi-concavity would actually imply that scatter
halfspace depth regions are geodesic convex, in the sense that, for any Σa,Σb ∈
Rsc
P,T (α), the geodesic from Σa to Σb is contained in Rsc

P,T (α). We refer to
Dümbgen and Tyler (2016) for an application of geodesic convex functions
to inference on (high-dimensional) scatter matrices.

Theorem 3.3 shows that Σ 7→ HDsc
P,T (Σ) is quasi-concave for any P . A nat-

ural question is then whether or not this extends to geodesic quasi-concavity.
The answer is positive at any k-variate elliptical probability measure and at
the k-variate probability measure with independent Cauchy marginals.

Theorem 5.2. Let P be an elliptical probability measure over Rk or the
k-variate probability measure with independent Cauchy marginals, and let
T be an affine-equivariant location functional. Then, (i) Σ 7→ HDsc

P,T (Σ) is
geodesic quasi-concave, so that (ii) Rsc

P,T (α) is geodesic convex for any α ≥ 0.

We close this section with a numerical illustration of the quasi-concavity
results in Theorems 3.3 and 5.2 and with an example showing that geodesic
quasi-concavity may actually fail to hold. Figure 2 provides, for three bivari-
ate probability measures P , the plots of t 7→ HDsc

P (Σt) and t 7→ HDsc
P (Σ̃t),

where Σt = (1 − t)Σa + tΣb is the linear path from Σa = I2 to Σb =

diag(0.001, 20) and where Σ̃t = Σ
1/2
a (Σ

−1/2
a ΣbΣ

−1/2
a )tΣ

1/2
a is the correspond-

ing geodesic path. The three distributions considered are (i) the bivariate
normal with location zero and scatter I2, (ii) the bivariate distribution with
independent Cauchy marginals, and (iii) the empirical distribution associ-
ated with a random sample of size n = 200 from the bivariate mixture
distribution P = 1

2P1 + 1
4P2 + 1

4P3, where P1 is the standard normal, P2 is
the normal with mean (0, 4)′ and covariance matrix 1

10I2, and P3 is the nor-
mal with mean (0,−4)′ and covariance matrix 1

10I2. Figure 2 illustrates that
(linear) quasi-concavity of scatter halfspace depth always holds, but that
geodesic quasi-concavity may fail to hold. Despite this counterexample, ex-
tensive numerical experiments led us to think that geodesic quasi-concavity
is the rule rather than the exception.
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Fig 2. Plots, for various bivariate probability measures P , of the scatter halfspace depth
function Σ 7→ HDsc

P (Σ) along the linear path Σt = (1 − t)Σa + tΣb (red), the geodesic

path Σ̃t = Σ
1/2
a (Σ

−1/2
a ΣbΣ

−1/2
a )tΣ

1/2
a (blue), and the harmonic path Σ∗t = ((1 − t)Σ−1

a +
tΣ−1

b )−1 (orange), from Σa = I2 to Σb = diag(0.001, 20); harmonic paths are introduced in
Section 6. The probability measures considered are the bivariate normal with location zero
and scatter I2 (top left), the bivariate distribution with independent Cauchy marginals
(top right), and the empirical probability measure associated with a random sample of
size n = 200 from the bivariate mixture distribution described in Section 5 (bottom right).
The scatter plot of the sample used in the mixture case is provided in the bottom left panel.

6. Concentration halfspace depth. In various setups, the parameter
of interest is the concentration matrix Γ := Σ−1 rather than the scatter
matrix Σ. For instance, in Gaussian graphical models, the (i, j)-entry of Γ is
zero if and only if the ith and jth marginals are conditionally independent
given all other marginals. It may then be useful to define a depth for inverse
scatter matrices. The scatter halfspace depth in (2.1) naturally leads to
defining the T -concentration halfspace depth of Γ with respect to P as

HDconc
P,T (Γ) := HDsc

P,T (Γ−1)

and the corresponding T -concentration halfspace depth regions as Rconc
P,T (α)

:=
{

Γ ∈ Pk : HDconc
P,T (Γ) ≥ α

}
, α ≥ 0. As indicated by an anonymous ref-
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eree, the definition of T -concentration halfspace depth alternatively results,
through the use of “innovated transformation” (see, e.g., Hall and Jin, 2010,
Fan, Jin and Yao, 2013, or Fan and Lv, 2016), from the concept of (an
affine-invariant) T -scatter halfspace depth.

Concentration halfspace depth and concentration halfspace depth regions
inherit the properties of their scatter antecedents, sometimes with sub-
tle modifications. The former is affine-invariant and the latter are affine-
equivariant as soon as they are based on an affine-equivariant T . Concen-
tration halfspace depth is upper F - and g-semicontinuous for any probabil-
ity measure P (so that the regions Rconc

P,T (α) are F - and g-closed) and F -
and g-continuous if P is smooth at TP . While the regions Rconc

P,T (α) are still g-
bounded (hence also, F -bounded) for α > αP,T , the outer regions Rconc

P,T (α),
α ≤ αP,T , here may fail to be F -bounded (this is because implosion of Σ,
under which scatter halfspace depth may fail to go below αP,T , is associ-
ated with explosion of Σ−1). Finally, uniform consistency and existence of
a concentration halfspace deepest matrix are guaranteed under the same
conditions on P and T as for scatter halfspace depth.

Quasi-concavity of concentration halfspace depth and convexity of the
corresponding regions require more comments. The linear path t 7→ (1 −
t)Γa + tΓb between the concentration matrices Γa = Σ−1

a and Γb = Σ−1
b

determines a harmonic path t 7→ Σ∗t := ((1 − t)Σ−1
a + tΣ−1

b )−1 between
the corresponding scatter matrices Σa and Σb. In line with the definitions
adopted in the previous sections, we will say that f : Pk → R is harmonic
quasi-concave if f(Σ∗t ) ≥ min(f(Σa), f(Σb)) for any Σa,Σb ∈ Pk and t ∈
[0, 1], and that a subset R of Pk is harmonic convex if Σa,Σb ∈ R implies
that Σ∗t ∈ R for any t ∈ [0, 1]. Clearly, concentration halfspace depth is quasi-
concave if and only if scatter halfspace depth is harmonic quasi-concave,
which turns out to be the case in the elliptical and independent Cauchy
cases. We thus have the following result.

Theorem 6.1. Let P be an elliptical probability measure over Rk or the
k-variate probability measure with independent Cauchy marginals, and let
T be an affine-equivariant location functional. Then, (i) Γ 7→ HDconc

P,T (Γ) is
quasi-concave, so that (ii) Rconc

P,T (α) is convex for any α ≥ 0.

However, concentration halfspace depth may fail to be quasi-concave,
since, as we show by considering the mixture example in Figure 2, scat-
ter halfspace depth may fail to be harmonic quasi-concave. The figure, that
also plots scatter halfspace depth along harmonic paths, confirms that, while
scatter halfspace depth is harmonic quasi-concave for the Gaussian and in-
dependent Cauchy examples there, it is not in the mixture example. In
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this mixture example, thus, concentration halfspace depth fails to be quasi-
concave and the corresponding depth regions fail to be convex. This is not
a problem per se — recall that famous (location) depth functions, like, e.g.,
the simplicial depth from Liu (1990), may provide non-convex depth regions.

For completeness, we present the following result which shows that some
form of quasi-concavity for concentration halfspace depth survives.

Theorem 6.2. Let P be a probability measure over Rk and T be a lo-
cation functional. Then, (i) Γ 7→ HDconc

P,T (Γ) is harmonic quasi-concave, so
that (ii) Rconc

P,T (α) is harmonic convex for any α ≥ 0.

Since concentration halfspace depth is harmonic quasi-concave if and only
if scatter halfspace depth is quasi-concave, the result is a direct corollary of
Theorem 3.3. Quasi-concavity and harmonic quasi-concavity clearly are dual
concepts, relative to scatter and concentration halfspace depths (which justi-
fies the ∗ notation in the path Σ∗t , dual to Σt). Interestingly, Γ 7→ HDconc

P,T (Γ)
is geodesic quasi-concave if and only if Σ 7→ HDsc

P,T (Σ) is, so that concen-
tration halfspace depth regions are geodesic convex if and only if scatter
halfspace depth regions are.

7. Shape halfspace depth. In many multivariate statistics problems
(PCA, CCA, sphericity testing, etc.), it is sufficient to know the scatter
matrix Σ up to a positive scalar factor. In PCA, for instance, all scat-
ter matrices of the form cΣ, c > 0, indeed provide the same unit eigen-
vectors v`(cΣ), ` = 1, . . . , k, hence the same principal components. More-
over, when it comes to deciding how many principal components to work
with, a common practice is to look at the proportions of explained vari-
ance

∑m
`=1 λ`(cΣ)/

∑k
`=1 λ`(cΣ), m = 1, . . . , k − 1, which do not depend

on c either. In PCA, thus, the parameter of interest is a shape matrix, that
is, a normalized version, V say, of the scatter matrix Σ.

The generic way to normalize a scatter matrix Σ into a shape matrix V is
based on a scale functional S, that is, on a mapping S : Pk → R+

0 satisfying
(i) S(Ik) = 1 and (ii) S(cΣ) = cS(Σ) for any c > 0 and Σ ∈ Pk. In this paper,
we will further assume that (iii) if Σ1,Σ2 ∈ Pk satisfy Σ2 ≥ Σ1 (in the sense
that Σ2 − Σ1 is positive semidefinite), then S(Σ2) ≥ S(Σ1). Such a scale
functional leads to factorizing Σ(∈ Pk) into Σ = σ2

SVS , where σ2
S := S(Σ)

is the scale of Σ and VS := Σ/S(Σ) is its shape matrix (in the sequel, we
will drop the subscript S in VS to avoid overloading the notation). The
resulting collection of shape matrices V will be denoted as PSk . Note that
the constraint S(Ik) = 1 ensures that, irrespective of the scale functional S
adopted, Ik is a shape matrix. Common scale functionals satisfying (i)-(iii)
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are (a) Str(Σ) = (tr Σ)/k, (b) Sdet(Σ) = (det Σ)1/k, (c) S∗tr(Σ) = k/(tr Σ−1),
and (d) S11(Σ) = Σ11; we refer to Paindaveine and Van Bever (2014) for
references where the scale functionals (a)-(d) are used. The corresponding
shape matrices V are then normalized in such a way that (a) tr[V ] = k,
(b) detV = 1, (c) tr[V −1] = k, or (d) V11 = 1.

In this section, we propose a concept of halfspace depth for shape matrices.
More precisely, for a probability measure P over Rk, we define the (S, T )-
shape halfspace depth of V (∈ PSk ) with respect to P as

(7.1) HDsh,S
P,T (V ) := sup

σ2>0

HDsc
P,T (σ2V ),

where HDsc
P,T (σ2V ) is the T -scatter halfspace depth of σ2V with respect

to P . The corresponding depth regions are defined as

Rsh,S
P,T (α) := {V ∈ PSk : HDsh,S

P,T (V ) ≥ α}

(alike scatter, we will drop the index T in HDsh,S
P,T (V ) and Rsh,S

P,T (α) when-
ever T is the Tukey median). The halfspace deepest shape (if any) is obtained
by maximizing the “profile depth” in (7.1), in the same way a profile like-
lihood approach would be based on the maximization of a (shape) profile
likelihood of the form Lsh

V = supσ2>0 Lσ2V . To the best of our knowledge,
such a profile depth construction has never been considered in the literature.

We start the study of shape halfspace depth by considering our running,
Gaussian and independent Cauchy, examples. For the k-variate normal with
location θ0 and scatter Σ0 (hence, with S-shape matrix V0 = Σ0/S(Σ0)),

σ2 7→ HDsc
P,T (σ2V ) = 2 min

(
Φ

(
bσλ

1/2
k (V −1

0 V )√
S(Σ0)

)
−1

2
, 1−Φ

(
bσλ

1/2
1 (V −1

0 V )√
S(Σ0)

))
(see (2.6)) will be uniquely maximized at the σ2-value for which both argu-
ments of the minimum are equal. It follows that

HDsh,S
P,T (V ) = 2Φ

(
c(V −1

0 V )λ
1/2
k (V −1

0 V )
)
− 1,

where c(Υ) is the unique solution of Φ
(
c(Υ)λ

1/2
k (Υ)

)
−1

2 = 1−Φ
(
c(Υ)λ

1/2
1 (Υ)

)
.

At the k-variate distribution with independent Cauchy marginals, we still
have that (with the same notation as in (2.7))

HDsc
P,T (σ2V ) = 2 min

(
Ψ
(
σ/max

s
(s′V −1s)1/2

)
−1

2 , 1−Ψ
(
σ
√

max(diag(V ))
))
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is maximized for fixed V when both arguments of the minimum are equal,

that is, when σ2 =
(

maxs(s
′V −1s)/max(diag(V ))

)1/2
. Therefore,

HDsh,S
P,T (V ) = 2 Ψ

((
max
s

(s′V −1s) max(diag(V ))
)−1/4

)
− 1

=
2

π
arctan

((
max
s

(s′V −1s) max(diag(V ))
)−1/4

)
.

Figure 3 draws, for six probability measures P and any affine-equivariant T ,
contour plots of (V11, V12) 7→ HDsh,Str

P,T (V ), where HDsh,Str

P,T (V ) is the shape

halfspace depth of V =
(
V11 V12
V12 2−V11

)
with respect to P . Letting ΣA =

(
1 0
0 1

)
,

ΣB =
(

4 0
0 1

)
and ΣC =

(
3 1
1 1

)
, the probability measures P considered are

those associated (i) with the bivariate normal distributions with location

zero and scatter ΣA, ΣB and ΣC , and (ii) with the distributions of Σ
1/2
A Z,

Σ
1/2
B Z and Σ

1/2
C Z, where Z has independent Cauchy marginals. Note that

the maximal depth is larger in the Gaussian cases than in the Cauchy ones,
that depth monotonically decreases along any ray originating from the deep-
est shape matrix and that it goes to zero if and only if the shape matrix
converges to the boundary of the parameter space. Shape halfspace depth
contours are smooth in the Gaussian cases but not in the Cauchy ones.

In both the Gaussian and independent Cauchy examples above, the supre-
mum in (7.1) is a maximum. For empirical probability measures Pn, this will
always be the case since HDsc

Pn,T
(σ2V ) then takes its values in {`/n : ` =

0, 1, . . . , n}. The following result implies in particular that a sufficient condi-
tion for this supremum to be a maximum is that P is smooth at TP (which
is the case in both our running examples above).

Theorem 7.1. Let P be a probability measure over Rk and T be a lo-
cation functional. Fix V ∈ PSk such that cV ∈ Rsc

P,T (αP,T ) for some c > 0.

Then, HDsh,S
P,T (V ) = HDsc

P,T (σ2
V V ) for some σ2

V > 0.

The following affine-invariance/equivariance and uniform consistency re-
sults are easily obtained from their scatter antecedents.

Theorem 7.2. Let T be an affine-equivariant location functional. Then,
(i) shape halfspace depth is affine-invariant in the sense that, for any prob-
ability measure P over Rk, V ∈ PSk , A ∈ GLk and b ∈ Rk, we have

HDsh,S
PA,b,T

(AVA′/S(AVA′)) = HDsh,S
P,T (V ), where PA,b is as defined on page 4.

Consequently, (ii) shape halfspace depth regions are affine-equivariant, in the

sense that Rsh,S
PA,b,T

(α) =
{
AVA′/S(AVA′) : V ∈ Rsh,S

P,T (α)
}

for any probabil-

ity measure P over Rk, α ≥ 0, A ∈ GLk and b ∈ Rk.
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Fig 3. Contour plots of (V11, V12) 7→ HDsh,Str
P,T (V ), for several bivariate probability mea-

sures P and an arbitrary affine-equivariant location functional T , where HDsh,Str
P,T (V ) is

the shape halfspace depth, with respect to P , of V =
(
V11 V12
V12 2−V11

)
. Letting ΣA =

(
1 0
0 1

)
,

ΣB =
(
4 0
0 1

)
and ΣC =

(
3 1
1 1

)
, the probability measures P considered are those associated

(i) with the bivariate normal distributions with location zero and scatter ΣA, ΣB and ΣC

(top, middle and bottom left), and (ii) with the distributions of Σ
1/2
A Z, Σ

1/2
B Z and Σ

1/2
C Z,

where Z has mutually independent Cauchy marginals (top, middle and bottom right). In
each case, the “true” Str-shape matrix is marked in red.
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Theorem 7.3. Let P be a smooth probability measure over Rk and T
be a location functional. Let Pn denote the empirical probability measure
associated with a random sample of size n from P and assume that TPn → TP
almost surely as n → ∞. Then supV ∈PSk

|HDsh,S
Pn,T

(V ) − HDsh,S
P,T (V )| → 0

almost surely as n→∞.

Shape halfspace depth inherits the F - and g-continuity properties of scat-
ter halfspace depth (Theorems 3.1 and 4.1, respectively), at least for a
smooth P . More precisely, we have the following result.

Theorem 7.4. Let P be a probability measure over Rk and T be a loca-
tion functional. Then, (i) V 7→ HDsh,S

P,T (V ) is upper F - and g-semicontinuous

on Rsh,S
P,T (αP,T ), so that (ii) for any α ≥ αP,T , the depth region Rsh,S

P,T (α) is

F - and g-closed. (iii) If P is smooth at TP , then V 7→ HDsh,S
P,T (V ) is F - and

g-continuous.

The g-boundedness part of the following result will play a key role when
proving the existence of a halfspace deepest shape.

Theorem 7.5. Let P be a probability measure over Rk and T be a lo-
cation functional. Then, for any α > αP,T , Rsh,S

P,T (α) is F - and g-bounded,
hence g-compact. If sP,T ≥ 1/2, then this result is trivial in the sense that

Rsh,S
P,T (α) is empty for α > αP,T .

Comparing with the scatter result in Theorem 3.2, the shape result for
F -boundedness requires the additional condition α > αP,T (for g-bounded-
ness, this condition was already required in Theorem 4.2). This condition is
actually necessary for scale functionals S for which implosion of a shape
matrix V cannot be obtained without explosion, as it is the case, e.g.,
for Sdet (the product of the eigenvalues of an Sdet-shape matrix being equal
to one, the smallest eigenvalue of V cannot go to zero without the largest
going to infinity). We illustrate this on the bivariate discrete example dis-
cussed below Theorem 4.2, still with an arbitrary centro-equivariant T . The
sequence of scatter matrices Σn = diag( 1

n , 1) there defines a sequence of
Sdet-shape matrices Vn = diag( 1√

n
,
√
n), that is neither F - nor g-bounded.

Since HDsh,Sdet
P,T (Vn) ≥ HDsc

P,T (Σn) ≥ 1/3 = αP,T for any n, we conclude

that Rsh,Sdet
P,T (αP,T ) is both F - and g-unbounded. Note also that F -bounded-

ness of Rsh,S
P,T (α) depends on S. In particular, it is easy to check that the

condition α > αP,T for F -boundedness is not needed for the scale func-

tional S∗tr (that is, R
sh,S∗tr
P,T (α) is F -bounded for any α > 0). Finally, one
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trivially has that all Rsh,Str

P,T (α)’s are F -bounded since the corresponding col-

lection of shape matrices, PStr
k , itself is F -bounded. Unlike F -boundedness,

g-boundedness results are homogeneous in S, which further suggests that
the g-topology is the most appropriate one to study scatter/shape depths.

As announced, the g-part of Theorem 7.5 allows to show that a halfspace
deepest shape exists under mild conditions. More precisely, we have the
following result.

Theorem 7.6. Let P be a probability measure over Rk and T be a lo-
cation functional. Assume that Rsh,S

P,T (αP,T ) is non-empty. Then, αS∗P,T :=

supV ∈PSk
HDsh,S

P,T (V ) = HDsh,S
P,T (V∗) for some V∗ ∈ PSk .

Alike scatter, a sufficient condition for the existence of a halfspace deep-
est shape is thus that P is smooth at TP . In particular, a halfspace deepest
shape exists in the Gaussian and independent Cauchy examples. In the k-
variate independent Cauchy case, it readily follows from Theorem 4.4 that,
irrespective of the centro-equivariant T used, HDsh,S

P,T (V ) is uniquely maxi-

mized at V∗ = Ik, with corresponding maximal depth 2
π arctan

(
k−1/4

)
. The

next Fisher-consistency result states that, in the elliptical case, the halfspace
deepest shape coincides with the “true” shape matrix.

Theorem 7.7. Let P be an elliptical probability measure over Rk with
location θ0 and scatter Σ0, hence with S-shape matrix V0 = Σ0/S(Σ0), and

let T be an affine-equivariant location functional. Then, (i) HDsh,S
P,T (V0) ≥

HDsh,S
P,T (V ) for any V ∈ PSk ; (ii) if IMSD[Z1] is a singleton (equivalently,

if IMSD[Z1] = {1}), where Z = (Z1, . . . , Zk)
′ D= Σ

−1/2
0 (X − θ0), then V 7→

HDsh,S
P,T (V ) is uniquely maximized at V0.

We conclude this section by considering quasi-concavity properties of
shape halfspace depth and convexity properties of the corresponding depth
regions. It should be noted that, for some scale functionals S, the col-
lection PSk of S-shape matrices is not convex; for instance, neither PSdet

k
nor PS

∗
tr

k is convex, so that it does not make sense to investigate whether
or not V 7→ HDsh,S

P,T (V ) is quasi-concave for these scale functionals. It does,
however, for Str and S11, and we have the following result.

Theorem 7.8. Let P be a probability measure over Rk and T be a lo-
cation functional. Fix S = Str or S = S11. Then, (i) V 7→ HDsh,S

P,T (V ) is

quasi-concave, that is, for any Va, Vb ∈ PSk and t ∈ [0, 1], HDsh,S
P,T (Vt) ≥

min(HDsh,S
P,T (Va), HD

sh,S
P,T (Vb)), where we let Vt := (1 − t)Va + tVb; (ii) for

any α ≥ 0, Rsh,S
P,T (α) is convex.
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As mentioned above, neither PSdet
k nor PS

∗
tr

k are convex in the usual sense
(unlike for Str and S11, thus, a unique halfspace deepest shape could not
be defined through barycenters but would rather require a center-of-mass
approach as in (4.3)). However, PSdet

k is geodesic convex, which justifies
studying the possible geodesic convexity of Rsh

P,Sdet
(α) (this provides a para-

metric framework for which the shape version of (Q3) in Section 5 cannot
be considered and for which it is needed to adopt the corresponding Prop-

erty (Q̃3) instead). Similarly, PS
∗
tr

k is harmonic convex, so that it makes sense

to investigate the harmonic convexity of R
sh,S∗tr
P,T (α). We have the following

results.

Theorem 7.9. Let T be an affine-equivariant location functional and P
be an arbitrary probability measure over Rk for which T -scatter halfspace
depth is geodesic quasi-concave. Then, (i) V 7→ HDsh,Sdet

P,T (V ) is geodesic

quasi-concave, so that (ii) Rsh,Sdet
P,T (α) is geodesic convex for any α ≥ 0.

Theorem 7.10. Let T be an affine-equivariant location functional and P
be an arbitrary probability measure over Rk for which T -scatter halfspace

depth is harmonic quasi-concave. Then, (i) V 7→ HD
sh,S∗tr
P,T (V ) is harmonic

quasi-concave, so that (ii) R
sh,S∗tr
P,T (α) is harmonic convex for any α ≥ 0.

An illustration of Theorems 7.8-7.10 is provided in the supplemental ar-
ticle Paindaveine and Van Bever (2017).

8. A real-data application. In this section, we analyze the returns
of the Nasdaq Composite and S&P500 indices from February 1st, 2015 to
February 1st, 2017. During that period, for each trading day and for each
index, we collected returns every 5 minutes (that is, the difference between
the index at a given time and 5 minutes earlier, when available), resulting
in usually 78 bivariate observations per day. Due to some missing values,
the exact number of returns per day varies, and only days with at least
70 observations were considered. The resulting dataset comprises a total of
38489 bivariate returns distributed over D = 478 trading days.

The goal of this analysis is to determine which days, during the two-year
period, exhibit an atypical behavior. In line with the fact that the main
focus in finance is on volatily, atypicality here will refer to deviations from
the “global” behavior either in scatter (i.e., returns do not follow the global
dispersion pattern) or in scale only (i.e., returns show a usual shape but
their overall size is different). Atypical days will be detected by comparing
intraday estimates of scatter and shape with a global version.



SCATTER, CONCENTRATION AND SHAPE HALFSPACE DEPTHS 27

Below, Σ̂full will denote the minimum covariance determinant (MCD)
scatter estimate on the empirical distribution Pfull of the returns over the
two-year period, and V̂full will stand for the resulting shape estimate V̂full =
Σ̂full/Sdet(Σ̂full). For any d = 1, . . . , D, Σ̂d and V̂d will denote the corre-
sponding estimates on the empirical distribution Pd on day d.

The rationale behind the choice of MCD rather than standard covariance
as an estimation method for scatter/shape is twofold. First, the former will
naturally deal with outliers inherently arising in the data (the first few re-
turns after an overnight or weekend break are famously more volatile and
their importance should be downweighted in the estimation procedure). Sec-
ond, as hinted above, the global estimate will provide a baseline to measure
the atypicality of any given day, which will be done, among others, using its
intraday depth. It would be natural to use halfspace deepest scatter/shape
matrices on Pfull as global estimates for scatter/shape. While locating the
exact maxima is a non-trivial task, the MCD shape estimator has already
a high depth value (HDsh,Sdet

Pfull
(V̂full) = 0.481), which makes it a very good

proxy for the halfspace deepest shape. For the same reason, the scaled MCD
estimator Σ̄full = σ2

fullVfull with σ2
full = argmaxσ2HDsc

Pfull
(σ2Vfull) (that, obvi-

ously, satisfies HDsc
Pfull

(Σ̄full) = 0.481) is similarly an excellent proxy for the
halfspace deepest scatter. In contrast, the shape estimate associated with
the standard covariance matrix (resp., the deepest scaled version of the co-
variance matrix) has a global shape (resp., scatter) depth of only 0.426.

For each day, the following measures of (a)typicality (three for scatter,
three for shape) are computed: (i) the scatter depth HDsc

Pd
(Σ̄full) of Σ̄full

in day d, (ii) the shape depth HDsh,Sdet
Pd

(V̂full) of V̂full in day d, (iii) the
scatter Frobenius distance dF (Σ̂d, Σ̂full), (iv) the shape Frobenius distance
dF (V̂d, V̂full), (v) the scatter geodesic distance dg(Σ̂d, Σ̂full), and (vi) the
shape geodesic distance dg(V̂d, V̂full). Of course, low depths or high distances
point to atypical days. Practitioners might be tempted to base the distances
in (iii)-(vi) on standard covariance estimates, which would actually provide
poorer performances in the present outlier detection exercise (due to the
masking effect resulting from using a non-robust global dispersion measure
as a baseline). Here, we rather use MCD-based estimates to ensure a fair
comparison with the depth-based methods in (i)-(ii).

Figure 4 provides the plots of the quantities in (i)-(vi) above as a function
of d, d = 1, . . . , D. Major events affecting the returns during the two years
are marked there. They are (1) the Black Monday on August 24th, 2015
(orange) when world stock markets went down substantially, (2) the crude
oil crisis on January 20th, 2016 (dark blue) when oil barrel prices fell sharply,
(3) the Brexit vote aftermath on June 24th, 2016 (dark green), (4) the end
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of the low volatility period on September 13th, 2016 (red), (5) the Donald
Trump election on November 9th, 2016 (purple), and (6) the announcement
and aftermath of the federal rate hikes on December 14th, 2016 (teal).

Detecting atypical events was achieved by flagging outliers in either collec-
tions of scatter or shape depth values. This was conducted by constructing
box-and-whisker plots of those collections and marking events with depth
value below 1.5 IQR of the first quartile. This procedure flagged events (1),
(2) and (6) as outlying in scatter and 21 days — including events (1), (2),
(3) and (5) — as atypical in shape. Most of the resulting 22 outlying days
can be associated (that is, are temporally close) to one of the events (1)-(6)
above. For example, 9 days are flagged within the period extending from
January 20th, 2016 to February 9th, 2016, during which continuous slump
in oil prices rocked the marked strongly, with biggest loss for S&P 500 in-
dex on February 9th. Remarkably, out of the 22 flagged outliers, only two
(namely October 1st, 2015 and December 14th, 2015) could not be associ-
ated with major events. Event (4), although not deemed outlying, was added
to mark the end of the low volatility period.

Events (1) and (2) are noticeably singled out by all outlyingness measures,
displaying low depth values and high Frobenius and geodesic distances, but
the four remaining events tell a very different story. In particular, event (6)
exhibits a low scatter depth but a relatively high shape depth, which means
that this day shows a shape pattern that is in line with the global one but
is very atypical in scale (that is, in volatility size). Quite remarkably, the
four distances considered fail to flag this day as an atypical one. A similar
behavior appears throughout the two-month period spanning July, August
and early September 2016 (between events (3) and (4)), during which the
markets have seen a historical streak of small volatility. This period presents
widely varying scatter depth values together with stable and high shape
depth values, which is perfectly in line with what has been seen on the
markets, where only the volatility of the indices was low in days that were
otherwise typical. Again, the four distance plots are blind to this relative
behavior of scatter and shape in the period.

Events (3) to (5) are picked up by depth measures and scatter distances,
though more markedly by the former. This is particularly so for event (3),
which sticks out sharply in both depths. The fact that the scatter depth
is even lower than the shape depth suggests that event (3) is atypical not
only in shape but also in scale. Interestingly, distance measures fully miss
the shape outlyingness of this event. Actually, shape distances do not assign
large values to any of the events (3) to (6) and, from March 2016 onwards,
these distances stay in the same range — particularly so for the Frobenius
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ones in (iv). In contrast, the better ability of shape depth to spot outlying-
ness may be of particular importance in cases where one wants to discard the
overall volatility size to rather focus on the shape structure of the returns.

To summarize, the detection of atypical patterns in the dispersion of in-
traday returns can more efficiently be performed with scatter/shape depths
than on the basis of distance measures. Arguably, the fact that the proposed
depths use all observations and not a sole estimate of scatter/shape allows
to detect deviations from global behaviors more sharply. As showed above,
comparing scatter and shape depth values provides a tool that permits the
distinction between shape and scale outliers.

9. Final comments and perspectives. In this work, we thoroughly
investigated the structural properties of a concept of scatter halfspace depth
linked to those proposed in Zhang (2002) and Chen, Gao and Ren (2017).
While we tried doing so under minimal assumptions, alternative scatter
halfspace depth concepts may actually require even weaker assumptions, but
they typically would make the computational burden heavier in the sample
case. As an example, one might alternatively define the scatter halfspace
depth of Σ(∈ Pk) with respect to P as

(9.1) HDsc,alt
P (Σ) = sup

θ∈Rk
HDsc

P,θ(Σ),

where HDsc
P,θ(Σ) is the scatter halfspace depth associated with the constant

location functional at θ. This alternative scatter depth concept satisfies a
uniform consistency result such as the one in Theorem 2.2 without any con-
dition on P , whereas the scatter halfspace depth HDsc

P,T (Σ) in (2.1) requires
that P is smooth (see Theorem 2.2). In the sample case, however, evalua-

tion of HDsc,alt
Pn

(Σ) is computationally much more involved than HDsc
Pn,T

(Σ).
Alternative concentration and shape halfspace depth concepts may be de-
fined along the same lines and will show the same advantages/disadvantages.
compared to those proposed in this paper.

Another possible concept of scatter halfspace depth bypasses the need to
choose a location functional T by exploiting a pairwise difference approach;
see Zhang (2002) and Chen, Gao and Ren (2017). In our notation, the re-
sulting scatter depth of Σ with respect to P = PX is

(9.2) HDsc,U
P (Σ) = HDsc

PX−X̃ ,0
(Σ),

where X̃ is an independent copy of X and where 0 denotes the origin of Rk.
On one hand, the sample version of (9.2) is a U -statistic of order two, which
will increase the computational burden compared to the sample version
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Fig 4. Plots of (i) HDsc
Pd

(Σ̄full), (ii) HD
sh,Sdet
Pd

(V̂full), (iii) dF (Σ̂d, Σ̂full), (iv) dF (V̂d, V̂full),

(v) dg(Σ̂d, Σ̂full) and (vi) dg(V̂d, V̂full), as a function of d, for the MCD scatter and shape
estimates described in Section 8. The horizontal dotted lines in (i)-(ii) correspond to the
global depths HDsc

Pfull
(Σ̄full) and HD

sh,Sdet
Pfull

(V̂full), respectively. All depths make use of the
Tukey median as a location functional. Vertical lines mark the six events listed in Section 8.

of (2.1). On the other hand, uniform consistency results for (9.2) (which
here follow from Glivenko-Cantelli results for U -processes, such as the one
in Corollary 3.3 from Arcones and Giné, 1993) will again hold without any
assumption on P , which is due to the fact that, as already mentioned, the
smoothness assumption in Theorem 2.2 is superfluous when a constant lo-
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cation functional T is used. At first sight, thus, the pros and cons for (9.2)
are parallel to those for (9.1), that is, weaker distributional assumptions are
obtained at the expense of computational ease. However, (9.2) suffers from
a major disadvantage: it does not provide Fisher consistency at the elliptical
model (see (Q2) in Section 5). This results from the fact that if P = PX is el-

liptical with location θ and scatter Σ, then PX−X̃ is elliptical with location 0
and scatter cPΣ, where the scalar factor cP depends on the type of ellip-
tical distribution: for multinormal and Cauchy elliptical distributions, e.g.,
cP = 2 and 4, respectively, so that if one replaces X − X̃ with (X − X̃)/

√
2

to achieve Fisher consistency at the multinormal, then Fisher consistency
will still not hold at the Cauchy. Actually, the maximizer of HDsc,U

P (Σ) is
useless as a measure of scatter for the original probability measure P , as
its interpretation requires knowing which type of elliptical distribution P is.
This disqualifies the pairwise difference scatter depth, as well as the compan-
ion concentration depth. Note, however, that the corresponding shape depth
will not suffer from this Fisher consistency problem since the normalization
of scatter matrices into shape matrices will get rid of the scalar factor cP .

As both previous paragraphs suggest and as it is often the case with
statistical depth, computational aspects are key for the application of the
proposed depths. Evaluating (good approximations of) the scatter halfspace
depth HDsc

Pn,T
(Σ) of a given Σ can of course be done for very small dimen-

sions k = 2 or 3 by simply sampling the unit sphere Sk−1. Even for such
small dimensions, however, computing the halfspace deepest scatter is non-
trivial: while scatter halfspace depth relies on a low-dimensional (that is,
k-dimensional) projection-pursuit approach, identifying the halfspace deep-
est scatter indeed requires exploring the collection of scatter matrices Pk,
that is of higher dimension, namely of dimension k(k+1)/2. Fortunately, the
fixed-location scatter halfspace depth — hence, also its T -version proposed
in this paper, after appropriate centering of the observations — can be com-
puted in higher dimensions through the algorithm proposed in Chen, Gao
and Ren (2017), where the authors performed simulations requiring to com-
pute the deepest scatter matrix for dimensions and sample sizes as large as 10
and 2000, respectively. Their implementation of this algorithm is available
as an R package at https://github.com/ChenMengjie/DepthDescent.

As pointed by an anonymous referee, the concept of scatter halfspace
depth also makes sense when the parameter space is the compactification
of Pk, that is, is the collection Pk of k× k symmetric positive semi-definite
matrices. Interestingly, it is actually easier to investigate the properties
of scatter halfspace depth over Pk than over Pk. The F -continuity and
F -boundedness results in Theorems 3.1-3.2 extend, mutatis mutandis, to Pk.

https://github.com/ChenMengjie/DepthDescent
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Unlike (Pk, dF ), the metric space (Pk, dF ) is complete, so that the re-
gions Rsc

P,T (α) are then F -compact for any α > 0. Consequently, a trivial
adaptation of the proof of Theorem 4.3 allows to show that there always ex-
ists a halfspace deepest scatter matrix in Pk. It is fortunate that these neat
results can be established by considering the F -distance only, as the geodesic
distance, that is unbounded on Pk×Pk, could not have been considered here.
Of course, in many applications, Pk remains the natural parameter space
since many multivariate statistics procedures will require inverting scatter
matrices. In such applications, it will be of little help to practitioners that
the deepest halfspace scatter matrix belongs to Pk \Pk, which explains why
our detailed investigation focusing on Pk is of key importance.

Perspectives for future research are rich and diverse. The proposed halfs-
pace depth concepts for scatter, concentration and shape can be extended to
other scatter functionals of interest. In particular, halfspace depths that are
relevant for PCA could result from the “profile depth” approach in Section 7.
For instance, the T -“first principal direction” halfspace depth of β(∈ Sk−1)
with respect to the probability measure P over Rk can be defined as

HD1stpd
P,T (β) = sup

Σ∈Pk,1,β
HDsc

P,T (Σ), with Pk,1,β := {Σ ∈ Pk : Σβ = λ1(Σ)β}.

The halfspace deepest first principal direction is a promising robust estima-
tor of the true underlying first principal direction, at least under ellipticity.
Obviously, the depth of any other principal direction, or the depth of any
eigenvalue, can be defined accordingly. Another direction of research is to
explore inferential applications of the proposed depths. Clearly, point esti-
mation is to be based on halfspace deepest scatter, concentration or shape
matrices; Chen, Gao and Ren (2017) partly studied this already for scatter
in high dimensions. Hypothesis testing is also of primary interest. In partic-
ular, a natural test for H0 : Σ = Σ0, where Σ0 ∈ Pk is fixed, would reject the
null for small values of HDsc

Pn,T
(Σ0). For shape matrices, a test of sphericity

would similarly reject the null for small values of HDsh,S
Pn,T

(Ik). These topics,
obviously, are beyond the scope of the present work.
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SUPPLEMENTARY MATERIAL

Supplement to “Halfspace Depths for Scatter, Concentration
and Shape Matrices”
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(doi: completed by the typesetter; .pdf). In this supplement, we conduct
a Monte Carlo exercise validating the explicit scatter halfspace depth ex-
pressions obtained in the Gaussian and independent Cauchy examples. We
also provide illustrations of Theorem 3.3 and Theorems 7.8-7.10. Finally, we
prove all theorems stated in this paper.
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