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Abstract Wavelet bases and frames consisting of band limited functions of nearly
exponential localization on R

d are a powerful tool in harmonic analysis by making
various spaces of functions and distributions more accessible for study and utilization,
and providing sparse representation of natural function spaces (e.g. Besov spaces)
on R

d . Such frames are also available on the sphere and in more general homoge-
neous spaces, on the interval and ball. The purpose of this article is to develop band
limited well-localized frames in the general setting of Dirichlet spaces with doubling
measure and a local scale-invariant Poincaré inequality which lead to heat kernels
with small time Gaussian bounds and Hölder continuity. As an application of this
construction, band limited frames are developed in the context of Lie groups or ho-
mogeneous spaces with polynomial volume growth, complete Riemannian manifolds
with Ricci curvature bounded from below and satisfying the volume doubling prop-
erty, and other settings. The new frames are used for decomposition of Besov spaces
in this general setting.
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1 Introduction

Decomposition systems (bases or frames) consisting of band limited functions of
nearly exponential space localization have had significant impact in theoretical and
computational harmonic analysis, PDEs, statistics, approximation theory and their
applications. Meyer’s wavelets [39] and the frames (the ϕ-transform) of Frazier
and Jawerth [21–23] are the most striking examples of such decomposition sys-
tems playing a pivotal role in the solution of numerous theoretical and compu-
tational problems. The key to the success of wavelet type bases and frames is
rooted in their ability to capture a great deal of smoothness and other norms in
terms of respective coefficient sequence norms and provide sparse representation
of natural function spaces (e.g. Besov spaces) on R

d . Frames of a similar na-
ture have been recently developed in non-standard settings such as on the sphere
[42, 43] and more general homogeneous spaces [24], on the interval [35, 47] and
ball [36, 48] with weights, and extensively used in statistical applications (see e.g.
[31, 32]).

The primary goal of this paper is to extend and refine the construction of band
limited frames with elements of nearly exponential space localization to the gen-
eral setting of strictly local regular Dirichlet spaces with doubling measure and local
scale-invariant Poincaré inequality which lead to a Markovian heat kernel with small
time Gaussian bounds and Hölder continuity. The key point of our approach is to be
able to deal with (a) different geometries, (b) compact and noncompact spaces, and
(c) spaces with nontrivial weights, and at the same time to allow for the development
and frame decomposition of Besov and Triebel-Lizorkin spaces with complete range
of indices. This will enable us to cover and shed new light on the existing frames and
space decompositions and develop band limited localized frames in the context of Lie
groups or homogeneous spaces with polynomial volume growth, complete Rieman-
nian manifold with Ricci curvature bounded from below and satisfying the volume
doubling condition, and other new settings. To this end we shall make advances on
several fronts: development of functional calculus of positive self-adjoint operators
with associated heat kernel (in particular, localization of the kernels of related in-
tegral operators), development of lower bounds on kernel operators, development
of a Shannon sampling theory, Littlewood-Paley analysis, and development of dual
frames.

As a first application of our frames we shall develop rapidly and characterize the
classical Besov spaces Bs

pq with positive smoothness and p ≥ 1. Classical and non-
classical Besov and Triebel-Lizorkin spaces in the general framework of this paper
with full range of indices and their frame and heat kernel decompositions are devel-
oped in the follow-up paper [33].

In this preamble we outline the main components and points of this undertaking,
including the underlying setting, a general scenario for realization of the setting and
examples, and a description of the main results.
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1.1 The Setting

We now describe precisely all the ingredients we need to develop our theory.

I. We assume that (M,ρ,μ) is a metric measure space, which satisfies the condi-
tions:

(a) (M,ρ) is a locally compact metric space with distance ρ(·, ·) and μ is a posi-
tive Radon measure such that the following volume doubling condition is valid

0 < μ
(
B(x,2r)

)≤ 2dμ
(
B(x, r)

)
< ∞ for x ∈ M and r > 0. (1.1)

Here B(x, r) is the open ball centered at x of radius r and d > 0 is a constant that
plays the role of a dimension. Note that (M,ρ,μ) is also a homogeneous space in
the sense of Coifman and Weiss [10, 11].

(b) The reverse doubling condition is assumed to be valid, that is, there exists a
constant β > 0 such that

μ
(
B(x,2r)

)≥ 2βμ
(
B(x, r)

)
for x ∈ M and 0 < r ≤ diamM

3
. (1.2)

It will be shown in Sect. 2 that this condition is a consequence of the above doubling
condition if M is connected.

(c) The following non-collapsing condition will also be stipulated: There exists a
constant c > 0 such that

inf
x∈M

μ
(
B(x,1)

)≥ c, x ∈ M. (1.3)

As will be shown in Sect. 2 in the case μ(M) < ∞ the above inequality follows by
(1.1). Therefore, it is an additional assumption only when μ(M) = ∞.

Since we consider in this paper inhomogeneous function spaces only, it would be
natural to make only purely local assumptions, and in particular to assume doubling
only for balls with radius bounded by some constant, which would enlarge consider-
ably our range of examples. This would require however more work and more space.
On the other hand, our next assumptions on the heat kernel are local, in the sense
that they are required for small time only. Clearly, by assuming global doubling and
global heat kernel bounds, one can treat homogeneous spaces as well.

II. Our main assumption is that the local geometry of the space (M,ρ,μ) is related
to an essentially self-adjoint positive operator L on L2(M,dμ) such that the associ-
ated semigroup Pt = e−tL consists of integral operators with (heat) kernel pt (x, y)

obeying the conditions:
(d) Small time Gaussian upper bound:

pt(x, y) ≤ C exp{− cρ2(x,y)
t

}
√

μ(B(x,
√

t))μ(B(y,
√

t))
for x, y ∈ M, 0 < t ≤ 1. (1.4)

One can see that by combining the results in [9, 45] and [13], this estimate and the
doubling condition (1.1) coupled with the fact that e−tL is actually a holomorphic
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semigroup on L2(M,dμ), i.e. e−zL exists for z ∈ C, Re z ≥ 0, imply that e−zL is
an integral operator with kernel pz(x, y) satisfying the following estimate: For any
z = t + iu, 0 < t ≤ 1, u ∈ R, x, y ∈ M ,

∣∣pz(x, y)
∣∣≤ C exp{−c Re ρ2(x,y)

z
}

√
μ(B(x,

√
t))μ(B(y,

√
t))

. (1.5)

(e) Hölder continuity: There exists a constant α > 0 such that

∣
∣pt(x, y) − pt

(
x, y′)∣∣≤ C

(
ρ(y, y′)√

t

)α exp{− cρ2(x,y)
t

}
√

μ(B(x,
√

t))μ(B(y,
√

t))
(1.6)

for x, y, y′ ∈ M and 0 < t ≤ 1, whenever ρ(y, y′) ≤ √
t .

(f) Markov property:
∫

M

pt(x, y)dμ(y) ≡ 1 for t > 0, (1.7)

which readily implies, by analytic continuation,
∫

M

pz(x, y)dμ(y) ≡ 1 for z = t + iu, t > 0. (1.8)

Above C,c > 0 are structural constants that will affect almost all constants in what
follows.

The main results in this article will be derived from the above conditions. However,
it is perhaps suitable to exhibit a more tangible general scenario that guarantees the
validity of these conditions.

1.2 Realization of the Setting in the Framework of Dirichlet Spaces

We would like to point out that in a general framework of Dirichlet spaces the needed
Gaussian bound, Hölder continuity, and Markov property of the heat kernel follow
from the local scale-invariant Poincaré inequality and the doubling condition on the
measure, which in turn are equivalent to the parabolic Harnack inequality. The point
is that situations where our theory is applicable are quite common and it just amounts
to verifying the local scale-invariant Poincaré inequality and the doubling condition
on the measure. We shall further illustrate this point on several examples and, in
particular, on the “simple” example of [−1,1] with the heat kernel induced by the
Jacobi operator, seemingly not covered in the literature.

We shall operate in the framework of strictly local regular Dirichlet spaces (see
[2, 5, 6, 14, 20, 45, 55–57]). To be specific, we assume that M is a locally compact
separable metric space equipped with a positive Radon measure μ such that every
open and nonempty set has positive measure. Also, we assume that L is a positive
symmetric operator on (the real) L2(M,μ) with domain D(L), dense in L2(M,μ).
We shall denote briefly L

p := Lp(M,μ) in what follows. One can associate with L

a symmetric non-negative form

E (f, g) = 〈Lf,g〉 = E (g, f ), E (f,f ) = 〈Lf,f 〉 ≥ 0,
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with domain D(E ) = D(L). We consider on D(E ) the prehilbertian structure induced
by

‖f ‖2
E = ‖f ‖2

2 + E (f,f )

which in general is not complete (not closed), but closable ([14]) in L
2. Denote by

E and D(E ) the closure of E and its domain. It gives rise to a self-adjoint extension
L (the Friedrichs extension) of L with domain D(L) consisting of all f ∈ D(E ) for
which there exists u ∈ L

2 such that E (f, g) = 〈u,g〉 for all g ∈ D(E ) and Lf = u.
Then L is positive and self-adjoint, and

D(E ) = D
(
(L)1/2), E (f, g) = 〈(L)1/2f, (L)1/2g

〉
.

Using the classical spectral theory of positive self-adjoint operators, we can asso-
ciate with L a self-adjoint strongly continuous contraction semigroup Pt = e−tL on
L

2(M,μ). Then

e−tL =
∫ ∞

0
e−λtdEλ,

where Eλ is the spectral resolution associated with L. Moreover this semigroup has
a holomorphic extension to the complex half-plane Re z > 0.

Our next assumption is that Pt is a submarkovian semigroup: 0 ≤ f ≤ 1 and
f ∈ L

2 imply 0 ≤ Ptf ≤ 1. Then Pt can be extended as a contraction operator
on L

p , 1 ≤ p ≤ ∞, preserving positivity, satisfying Pt1 ≤ 1, and hence yielding a
strongly continuous contraction semigroup on L

p,1 ≤ p < ∞. A sufficient condi-
tion for this [2, 20], which can be verified on D(L), is that for every ε > 0 there
exists Φε : R �→ [−ε,1 + ε] such that Φε is non-decreasing, Φε ∈ Lip 1, Φε(t) = t

for t ∈ [0,1] and

Φε(f ) ∈ D(E ) and E
(
Φε(f ),Φε(f )

)≤ E (f,f ), ∀f ∈ D(L)

(in fact, this can be done easily only if Φε(f ) ∈ D(L)).
Under the above conditions, (D(E ), E ) is called a Dirichlet space and D(E ) ∩ L

∞
is an algebra.

We assume that the form E is strongly local, i.e. E (f, g) = 0 for f,g ∈ D(E )

whenever f is with compact support and g is constant on a neighbourhood of the
support of f . We also assume that E is regular, meaning that the space Cc(M) of
continuous functions on M with compact support has the property that the algebra
Cc(M) ∩ D(E ) is dense in Cc(M) with respect to the sup norm, and dense in D(E ) in

the norm
√

E (f,f ) + ‖f ‖2
2.

We next give a sufficient condition for strong locality and regularity ([20], Chap. 3)
which can be verified for D(L) : E is strongly local and regular if (i) D(L) is a
subalgebra of Cc(M) verifying the strong local condition: 0 = E (f, g) = 〈Lf,g〉 if
f,g ∈ D(L), f is with compact support, and g is constant on a neighbourhood of the
support of f , and (ii) for any compact K and open set U such that K ⊂ U there exists
u ∈ D(L), u ≥ 0, suppu ⊂ U , and u ≡ 1 on K (thus D(L) is a dense subalgebra of
Cc(M) and dense in D(E )).
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Under the above assumptions, there exists a bilinear symmetric form dΓ defined
on D(E ) × D(E ) with values in the signed Radon measures on M such that

E (φf,g) + E (f,φg) − E (φ,fg) = 2
∫

M

φdΓ (f,g) for f,g,φ ∈ Cc(M) ∩ D(E ),

which obviously verifies E (f, g) = ∫
M

dΓ (f,g) and dΓ (f,f ) ≥ 0.
In fact, if D(L) is a subalgebra of Cc(M), then dΓ is absolutely continuous with

respect to μ, and

dΓ (f,g)(u) = Γ (f,g)(u)dμ(u),

Γ (f,g) = 1

2

(
L(fg) − f Lg − gLf

) ∀f,g ∈ D(L).

In other words, E admits a “carré du champ” ([8], Chap. 1, Sect. 4): There exists a
bilinear function D(E ) × D(E ) � f,g �→ Γ (f,g) ∈ L

1 such that Γ (f,f )(u) ≥ 0,

E (φf,g) + E (f,φg) − E (φ,fg)

= 2
∫

M

φ(u)Γ (f,g)(u)dμ(u) ∀f,g,φ ∈ D(E ) ∩ L
∞,

and E (f, g) = 2
∫
M

Γ (f,g)(u)dμ(u).
One can define an intrinsic distance on M by

ρ(x, y) = sup
{
u(x) − u(y) : u ∈ D(E ) ∩ Cc(M),dΓ (u,u) = γ (u)(x)dμ(x), γ (u)(x) ≤ 1

}
.

We assume that ρ : M × M → [0,∞] is actually a true metric that generates the
original topology on M and that (M,ρ) is a complete metric space.

As a consequence of this assumption, the space M is connected, the closure of an
open ball B(x, r) is the closed ball B(x, r) := {y ∈ M,ρ(x, y) ≤ r}, and the closed
balls are compact (see [55–57]).

We are now in a position to describe an optimal scenario when the needed Gaus-
sian bound (1.4), Hölder continuity (1.5), and Markov property (1.6) on the heat
kernel can be effectively realized. In the framework of strictly local regular Dirichlet
spaces with a complete intrinsic metric, the following two properties are equivalent
[28, 57]:

(i) The heat kernel satisfies

c′
1 exp{− c1ρ

2(x,y)
t

}
√

μ(B(x,
√

t))μ(B(y,
√

t))
≤ pt(x, y) ≤ c′

2 exp{− c2ρ
2(x,y)
t

}
√

μ(B(x,
√

t))μ(B(y,
√

t))
(1.9)

for x, y ∈ M and 0 < t ≤ 1.
(ii)(a) (M,ρ,μ) is a local doubling measure space: There exists d > 0 such that

μ(B(x,2r)) ≤ 2dμ(B(x, r)) for x ∈ M and 0 < r < 1.
(b) Local scale-invariant Poincaré inequality holds: There exists a constant C > 0

such that for any ball B = B(x, r) with 0 < r ≤ 1, x ∈ M , and any function
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f ∈ D(E ),
∫

B

|f − fB |2 ≤ Cr2
∫

B

dΓ (f,f ).

Here fB is the mean of f over B . Moreover, it is also well-known that the above prop-
erty is equivalent to a local parabolic Harnack inequality, and, furthermore, any of
these equivalent properties implies the validity of (1.6) and (1.7) (see [27, 28, 53, 57],
and the references therein).

Consequently, given a situation which fits into the framework of strictly local reg-
ular Dirichlet spaces with a complete intrinsic metric it suffices to only verify the
local Poincaré inequality and the global doubling condition on the measure and then
our theory applies in full.

In a future work we shall further develop this theory under the more general as-
sumption of the small time sub-Gaussian estimate:

pt(x, y) ≤ C exp{−c(
ρm(x,y)

t
)

1
m−1 }

√
μ(B(x, t1/m))μ(B(y, t1/m))

for x, y ∈ M, 0 < t ≤ 1, (1.10)

where m ≥ 2.

1.3 Examples

There is a great deal of set-ups which fit in the general framework of this article.
We next briefly describe several benchmark examples which are indicative for the
versatility and depth of our methods.

1.3.1 Uniformly Elliptic Divergence form Operators on R
d

Given a uniformly elliptic symmetric matrix-valued function {ai,j (x)} depending on
x ∈ R

d , one can define an operator

L = −
d∑

i,j=1

∂

∂xi

(
ai,j

∂

∂xj

)

on L2(Rd, dx) via the associated quadratic form. Thanks to the uniform ellipticity
condition, the intrinsic metric associated with this operator is equivalent to the Eu-
clidean distance. The Gaussian upper and lower estimates of the heat kernel in this
setting hold for all time and are due to Aronson, the Hölder regularity of the solutions
is due to Nash [44], the Harnack inequality was obtained by Moser [40, 41].

1.3.2 Domains in R
d

One can define uniformly elliptic divergence form operators on R
d by choosing

boundary conditions. In this case the upper bounds of the heat kernels are well un-
derstood (see for instance [45]). The problem for establishing Gaussian lower bounds
is much more complicated. One has to choose Neumann conditions and impose reg-
ularity assumptions on the domain. For the state of the art, we refer the reader to
[27].
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1.3.3 Riemannian Manifolds and Lie Groups

The conditions from Sect. 1.2 are verified for the Laplace-Beltrami operator of a Rie-
mannian manifold with non-negative Ricci curvature [38], also for manifolds with
Ricci curvature bounded from below if one assumes in addition that they satisfy the
volume doubling property, also for manifolds that are quasi-isometric to such a mani-
fold [25, 51, 52], also for co-compact covering manifolds whose deck transformation
group has polynomial growth [51, 52], for sublaplacians on polynomial growth Lie
groups [50, 61] and their homogeneous spaces [39]. We would like to point out that
the case of the sphere endowed with the natural Laplace-Beltrami operator treated in
[42, 43] and the case of more general compact homogeneous spaces endowed with
the Casimir operator considered in [24] fall into the above category. One can also
consider variable coefficients operators on Lie groups, see [54].

We refer the reader to [27, Sect. 2.1] for further details on the above examples. For
more references on the heat kernel in various settings, see [14, 26, 53, 61].

1.3.4 Heat Kernel on [−1,1] Generated by the Jacobi Operator

To show the flexibility of our general approach to frames and spaces through heat
kernels we consider in Sect. 7 the “simple” example of M = [−1,1] with dμ(x) =
wα,β(x)dx, where wα,β(x) is the classical Jacobi weight:

wα,β(x) = w(x) = (1 − x)α(1 + x)β, α,β > −1.

The Jacobi operator is defined by

Lf (x) = −[w(x)a(x)f ′(x)]′
w(x)

with a(x) := 1 − x2

and D(L) = C2[−1,1]. As is well-known [58], LPk = λkPk , where Pk (k ≥ 0) is the
kth degree (normalized) Jacobi polynomial and λk = k(k + α + β + 1). Integration
by parts gives

E (f, g) := 〈Lf,g〉 =
∫ 1

−1
a(x)f ′(x)g′(x)wα,β(x)dx.

In Sect. 7 it will be shown that in this case the general theory applies, resulting in a
complete strictly local Dirichlet space with an intrinsic metric defined by

ρ(x, y) = | arccosx − arccosy|, x, y ∈ [−1,1],
which is apparently compatible with the usual topology on [−1,1]. It will be also
shown that in this setting the measure μ verifies the doubling condition and the re-
spective scale-invariant Poincaré inequality is valid. Therefore, the example under
consideration fits in the general setting described in Sect. 1.2 and our theory applies.
In particular, the associated heat kernel with a representation

pt(x, y) =
∑

k≥0

e−λktPk(x)Pk(y)
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has Gaussian bounds (see Sect. 7), which to the best of our knowledge appears first in
the present article. Another consequence of this is that our theory covers completely
the construction of frames and the development of Besov and Triebel-Lizorkin spaces
on [−1,1] with Jacobi weights from [35, 47].

Finally, we would like to point out that there are other examples, e.g. the develop-
ment of frames and weighted Besov and Triebel-Lizorkin spaces on the unit ball B

in R
d in [36, 48], which perfectly fit in our general setting, but we shall not pursue in

this article.

1.4 Outline of the Paper

This paper is organized as follows: In Sect. 2 we give some auxiliary results which
are instrumental in proving our main results. In particular, we collect all needed facts
about doubling measures and related kernels, construction of maximal δ-nets, and
integral operators.

In Sect. 3 we develop some components of a non-holomorphic functional calculus
related to a positive self-adjoint operator L in the general set-up of the paper. In par-
ticular, we establish the nearly exponential localization of the kernels of operators of
the form f (

√
L) under suitable conditions on f . These localization results are crucial

for the development of the Littlewood-Paley theory in our setting. They also enable
us to explore the main properties of the spectral spaces and develop the linear ap-
proximation theory from spectral spaces through the machinery of Jackson-Bernstein
inequalities and interpolation. In this section we also give the main properties of finite
dimensional spectral spaces.

In Sect. 4 we establish a sampling theorem in the spirit of the Shannon theory and
develop a cubature rule/formula in the compact and non-compact case, which is exact
for spectral functions of a given order. This cubature rule is a critical component in
the development of our frames.

Our main results are placed in Sect. 5, where we construct pairs of dual frames of
the form: {ψjξ : ξ ∈ Xj , j ≥ 0}, {ψ̃jξ : ξ ∈ Xj , j ≥ 0}, where each Xj is a δj -net
on M for an appropriate δj . The frame elements ψjξ , ψ̃jξ are band limited and
well-localized functions, which allow for decomposition of functions and distribu-
tions from various spaces (in particular, Besov and Triebel-Lizorkin spaces) of the
form

f =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ 〉ψjξ .

The most critical point in this paper is the construction of the dual frame {ψ̃jξ }.
We develop it in two settings: (i) in the general case, and (ii) in the case when the
spectral spaces have the polynomial property under multiplication (see Sect. 5.3).
In the second case the construction is simple and elegant, however, the setting
is somewhat restrictive, while in the first case the construction is much more in-
volved, but the localization of ψ̃jξ is inverse polynomial of an arbitrarily fixed or-
der.
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In Sect. 6 we develop the classical and most commonly used Besov spaces Bs
pq

with indices s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞ in the setting of this paper. These
spaces are defined through Littlewood-Paley decomposition and characterized as ap-
proximation spaces of linear approximation from spectral spaces. A frame decompo-
sition of Bs

pq is also established. In full generality, classical and non-classical Besov
and Triebel-Lizorkin spaces and their frame decomposition in the general setting of
the paper are developed in [33].

Section 7 is an Appendix, where we place the proofs of the Poincaré inequality for
the Jacobi operator and the doubling property of the respective measure. Gaussian
bounds of the associated heat kernel are also established.

Notation Throughout this article we shall use the notation |E| := μ(E) for E ⊂ M ,
L

p := Lp(M,μ), ‖ · ‖p := ‖ · ‖Lp , and ‖T ‖p→q will denote the norm of a bounded
operator T : L

p → L
q . UCB will stand for the space of all uniformly continuous

and bounded functions on M and L
∞ will be in most cases identified with UCB.

D(T ) will stand for the domain of a given operator T . We shall denote by C∞
0 (R+)

the set of all compactly supported C∞ functions on R+ := [0,∞). In most cases
“sup” will mean “ess sup”. Positive constants will be denoted by c, C, c1, c′, . . . and
they may vary at every occurrence, a ∼ b will stand for c1 ≤ a/b ≤ c2.

2 Doubling Metric Measure Spaces: Basic Facts

In this section we put together some simple facts related to metric measure spaces
(M,ρ,μ) obeying the doubling, inverse doubling and non-collapsing conditions
(1.1)–(1.3) and integral operators acting on functions defined on such spaces.

2.1 Consequences of Doubling and Clarifications

The doubling condition (1.1) readily implies
∣∣B(x,λr)

∣∣≤ (2λ)d
∣∣B(x, r)

∣∣, x ∈ M, λ > 1, r > 0, (2.1)

and, therefore, due to B(x, r) ⊂ B(y,ρ(y, x) + r)

∣∣B(x, r)
∣∣≤ 2d

(
1 + ρ(x, y)

r

)d ∣∣B(y, r)
∣∣, x, y ∈ M, r > 0. (2.2)

In turn, the reverse doubling condition yields

∣∣B(x,λr)
∣∣≥ (λ/2)β

∣∣B(x, r)
∣∣, λ > 1, r > 0, 0 < λr <

diamM

3
. (2.3)

Also, the non-collapsing condition (1.3) coupled with (2.1) implies

inf
x∈M

∣∣B(x, r)
∣∣≥ ĉrd , 0 < r ≤ 1, (2.4)

where ĉ = c2−d with c > 0 the constant from (1.3).
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Note that |B(x, r)| can be much larger than crd as is evidenced by the case of the
Jacobi operator on [−1,1], considered in Sects. 1.3.4 and 7, see (7.1).

Several clarifying statements are in order. We begin with a claim which, in
particular, shows that the non-collapsing condition is automatically obeyed when
μ(M) < ∞.

Proposition 2.1 Let (M,ρ,μ) be a metric measure space which obeys the doubling
condition (1.1). Then

(a) μ(M) < ∞ if and only if diamM < ∞. Moreover, if diamM = D < ∞, then

inf
x∈M

∣∣B(x, r)
∣∣≥ rd |M|(2D)−d , 0 < r ≤ D. (2.5)

(b) μ({x}) > 0 for some x ∈ M if and only if {x} = B(x, r) for some r > 0.

Proof We first prove (a). Note that if diamM = D < ∞, then M = B(x,D) for any
x ∈ M and hence |M| = |B(x,D)| < ∞.

In the other direction, let |M| < ∞. Assume on the contrary that diamM = ∞.
Then inductively one can construct a sequence of points {x0, x1, . . . } ⊂ M such that
if dj := ρ(x0, xj ), then 1 ≤ d1 < d2 < · · · and dj+1 > 3dj , j ≥ 0. One checks easily

that B(xj ,
dj

2 ) ∩ B(xk,
dk

2 ) = ∅ if j �= k. On the other hand, using (1.1),

0 <
∣∣B(x0,1)

∣∣≤ ∣∣B(xj ,2dj )
∣∣≤ 4d

∣∣B(xj , dj /2)
∣∣.

Therefore, we have a sequence of disjoint balls {B(xj ,
dj

2 )}j≥1 in M such that

|B(xj ,
dj

2 )| ≥ 4−d |B(x0,1)| > 0 and hence |M| = ∞. This is a contradiction that
proves the claim.

Estimate (2.5) is immediate from (2.1).
To prove (b), we first note that if {x} = B(x, r) for some r > 0, then (1.1) implies

μ({x}) > 0. For the other implication, let μ({x}) > 0 and assume that {x} �= B(x, r)

for all r > 0. Then we use this to construct inductively a sequence {x1, x2, . . . } ⊂ M

such that if dj := ρ(x, xj ), then d1 > d2 > · · · > 0 and dj+1 <
dj

3 , j ≥ 1. Clearly, the

latter inequality yields B(xj ,
dj

2 ) ∩ B(xk,
dk

2 ) = ∅ if j �= k. On the other hand by our
assumption, (1.1), and the fact that x ∈ B(xj ,2dj ) we infer

0 < μ
({x})≤ ∣∣B(xj ,2dj )

∣∣≤ 4d
∣∣B(xj , dj /2)

∣∣.

Now, as above we conclude that |M| = ∞ which is a contradiction. �

We next show that the reverse doubling condition (1.2) is not quite restrictive.

Proposition 2.2 If M is connected, then the reverse doubling condition holds, i.e.
there exists β > 0 such that

∣∣B(x,2r)
∣∣≥ 2β

∣∣B(x, r)
∣∣ for x ∈ M and 0 < r < diamM

3 .
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Proof Suppose 0 < r < diamM
3 . Then there exists y ∈ M such that d(x, y) = 3r/2,

for otherwise B(x,3r/2) = B(x,3r/2) �= M is simultaneously open and close,
which contradicts the connectedness of M . Evidently, B(x, r) ∩ B(y, r/2) = ∅ and
B(y, r/2) ⊂ B(x,2r), which yields |B(x,2r)| ≥ |B(y, r/2)|+|B(x, r)|. On the other
hand B(x, r) ⊂ B(y,5r/2) which along with (2.1) implies |B(x, r)| ≤ 10dB(y, r/2)

and hence |B(x,2r)| ≥ (10−d + 1)|B(x, r)| = 2β |B(x, r)|. �

2.2 Useful Notation and Estimates

The localization of various operator kernels in what follows will be governed by
symmetric functions of the form

Dδ,σ (x, y) := (∣∣B(x, δ)
∣∣∣∣B(y, δ)

∣∣)−1/2
(

1 + ρ(x, y)

δ

)−σ

, x, y ∈ M. (2.6)

Here δ, σ > 0 are parameters that will be specified in every particular case.
We next give several simple properties of Dδ,σ (x, y) which will be instrumental

in various proofs in the sequel. Note first that (2.1)–(2.2) readily yield

Dδ,σ (x, y) ≤ 2d/2
∣∣B(x, δ)

∣∣−1
(

1 + ρ(x, y)

δ

)σ−d/2

, (2.7)

Dλδ,σ (x, y) ≤ (2/λ)dDδ,σ (x, y), 0 < λ < 1, (2.8)

Dλδ,σ (x, y) ≤ λσ Dδ,σ (x, y), λ > 1. (2.9)

Furthermore, for 0 < p < ∞ and σ > d(1/2 + 1/p)

∥∥Dδ,σ (x, ·)∥∥
p

=
(∫

M

[
Dδ,σ (x, y)

]p
dμ(y)

)1/p

≤ c(p)
∣∣B(x, δ)

∣∣1/p−1
, (2.10)

where c(p) = ( 2dp/2

2−d−2−(σ−d/2)p )1/p is decreasing as a function of p, and

∫

M

Dδ,σ (x,u)Dδ,σ (u, y)dμ(u) ≤ cDδ,σ (x, y) if σ > 2d, (2.11)

with c = 2σ+d+1

2−d−2d−σ .

The above two estimates follow readily by the following lemma which will be
needed as well.

Lemma 2.3 (a) If σ > d , then for δ > 0
∫

M

(
1 + δ−1ρ(x, y)

)−σ
dμ(y) ≤ c1

∣∣B(x, δ)
∣∣, x ∈ M

(
c1 = (2−d − 2−σ

)−1)
.

(2.12)
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(b) If σ > d , then for x, y ∈ M and δ > 0

∫

M

1

(1 + δ−1ρ(x,u))σ (1 + δ−1ρ(y,u))σ
dμ(u)

≤ 2σ c1
|B(x, δ)| + |B(y, δ)|
(1 + δ−1ρ(x, y))σ

≤ 2σ
(
2d + 1

)
c1

|B(x, δ)|
(1 + δ−1ρ(x, y))σ−d

. (2.13)

(c) If σ > 2d , then for x, y ∈ M and δ > 0

∫

M

1

|B(u, δ)|(1 + δ−1ρ(x,u))σ (1 + δ−1ρ(y,u))σ
dμ(y)

≤ c2

(1 + δ−1ρ(x, y))σ
, (2.14)

with c2 = 2σ+d+1

2−d−2d−σ .

Proof Denote briefly E0 := {y ∈ M : ρ(x, y) < δ} = B(x, δ) and

Ej := {y ∈ M : 2j−1δ ≤ ρ(x, y) < 2j δ
}

= B
(
x,2j δ

) \ B
(
x,2j−1δ

)
, j ≥ 1.

Then using (1.1) we get

∫

M

(
1 + δ−1ρ(x, y)

)−σ
dμ(y)

=
∑

j≥0

∫

Ej

(
1 + δ−1ρ(x, y)

)−σ
dμ(y)

≤ ∣∣B(x, δ)
∣∣+ (2d − 1

)∑

j≥0

|B(x,2j δ)|
(1 + 2j )σ

≤ ∣∣B(x, δ)
∣∣
(

1 + (2d − 1
)∑

j≥0

2jd

(1 + 2j )σ

)
≤ |B(x, δ)|

2−d − 2−σ
,

which gives (2.12).
For the proof of (2.13), we note that the triangle inequality implies

1 + δ−1ρ(x, y)

(1 + δ−1ρ(x,u))(1 + δ−1ρ(y,u))
≤ 1

1 + δ−1ρ(x,u)
+ 1

1 + δ−1ρ(y,u)
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and hence

(1 + δ−1ρ(x, y))σ

(1 + δ−1ρ(x,u))σ (1 + δ−1ρ(y,u))σ

≤ 2σ

(1 + δ−1ρ(x,u))σ
+ 2σ

(1 + δ−1ρ(y,u))σ
. (2.15)

We now integrate and use (2.12) to obtain (2.13).
For the proof of (2.14), we use the above inequality and (2.2) to obtain

(1 + δ−1ρ(x, y))σ

|B(u, δ)|(1 + δ−1ρ(x,u))σ (1 + δ−1ρ(y,u))σ

≤ 2σ+d

|B(x, δ)|(1 + δ−1ρ(x,u))σ−d
+ 2σ+d

|B(y, δ)|(1 + δ−1ρ(y,u))σ−d
(2.16)

and integrating and applying again (2.12) we arrive at (2.14). �

2.3 Maximal δ-Nets

For the construction of decomposition systems (frames) we shall need maximal δ-nets
on M .

Definition 2.4 We say that X ⊂ M is a δ-net on M (δ > 0) if ρ(ξ, η) ≥ δ for all
ξ, η ∈ X , and X ⊂ M is a maximal δ-net on M if X is a δ-net on M that cannot
be enlarged, i.e. there does not exist x ∈ M such that ρ(x, ξ) ≥ δ for all ξ ∈ X and
x �∈ X .

We collect some simple properties of maximal δ-nets in the following proposition.

Proposition 2.5 Suppose (M,ρ,μ) is a metric measure space obeying the doubling
condition (1.1) and let δ > 0.

(a) A maximal δ-net on M always exists.
(b) If X is a maximal δ-net on M , then

M =
⋃

ξ∈X
B(ξ, δ) and B(ξ, δ/2) ∩ B(η, δ/2) = ∅ if ξ �= η, ξ, η ∈ X . (2.17)

(c) Let X be a maximal δ-net on M . Then X is countable or finite and there exists
a disjoint partition {Aξ }ξ∈X of M consisting of measurable sets such that

B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ X . (2.18)

Proof For (a) observe that a maximal δ-net is a maximal set in the collection of all
δ-net on M with respect to the natural ordering of sets (by inclusion) and hence by
Zorn’s lemma a maximal δ-net on M exists.

Part (b) is immediate from the definition of maximal δ-nets.
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To prove (c) we first fix y ∈ M and observe that for any n > δ, n ∈ N, by (2.1)–
(2.2) it follows that |B(y,n)| ≤ c(n, δ)|B(ξ, δ/2)| for ξ ∈ X ∩B(y,n), where c(n, δ)

is a constant depending on n and δ. On the other hand, by (2.17)

∑

ξ∈X ∩B(y,n)

∣∣B(ξ, δ/2)
∣∣≤ ∣∣B(y,2n)

∣∣≤ 2d
∣∣B(y,n)

∣∣.

Therefore, #(X ∩ B(y,n)) ≤ 2dc(n, δ) < ∞, which readily implies that X is count-
able or finite.

Let us order the elements of X in a sequence: X = {ξ1, ξ2, . . . }. We now define
the sets Aξ of the claimed cover of M inductively. We set

Aξ1 := B(ξ1, δ) \
⋃

η∈X ,η �=ξ1

B(η, δ/2)

and if Aξ1,Aξ2 , . . . ,Aξj−1 have already been defined, we set

Aξj
:= B(ξj , δ)

∖[ ⋃

ν≤j−1

Aξν

⋃

η∈X ,η �=ξj

B(η, δ/2)

]
.

It is easy to see that the sets Aξ1,Aξ2 , . . . have the claimed properties. �

Discrete versions of estimates (2.11) and (2.12) will be needed. Suppose X is
a maximal δ-net on M and {Aξ }ξ∈X is a companion disjoint partition of M as in
Proposition 2.5. Then

∑

ξ∈X
|Aξ |
(
1 + δ−1ρ(x, ξ)

)−d−1 ≤ 22d+2
∣∣B(x, δ)

∣∣ (2.19)

and
∑

ξ∈X

(
1 + δ−1ρ(x, ξ)

)−2d−1 ≤ 23d+2. (2.20)

Furthermore, for any δ� ≥ δ

∑

ξ∈X

|Aξ |
|B(ξ, δ�)|

(
1 + δ�

−1ρ(x, ξ)
)−2d−1 ≤ 23d+2, (2.21)

and if σ ≥ 2d + 1
∑

ξ∈X
|Aξ |Dδ�,σ (x, ξ)Dδ�,σ (y, ξ) ≤ 2σ+3d+3Dδ�,σ (x, y). (2.22)

Also, for σ ≥ 2d + 1
∑

ξ∈X

(
1 + δ−1ρ(x, ξ)

)−σ (
1 + δ−1ρ(y, ξ)

)−σ ≤ 2σ+2d+3(1 + δ−1ρ(x, y)
)−σ

. (2.23)
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We next prove (2.21). The proofs of (2.19) and (2.20) are similar. Observe first
that by (2.2) |B(x, δ�)| ≤ 2d(1 + δ�

−1ρ(x, ξ))d |B(ξ, δ�)|. On the other hand, for u ∈
Aξ ⊂ B(ξ, δ)

1 + δ�
−1ρ(x,u) ≤ 1 + δ�

−1ρ(x, ξ) + δ�
−1ρ(ξ,u) ≤ 2

(
1 + δ�

−1ρ(x, ξ)
)
.

Therefore,

|Aξ |
|B(ξ, δ�)|

(
1 + δ�

−1ρ(x, ξ)
)−2d−1

≤ 2d |Aξ |
|B(x, δ�)|

(
1 + δ�

−1ρ(x, ξ)
)−d−1

≤ 22d+1

|B(x, δ�)|
∫

Aξ

(
1 + δ�

−1ρ(x,u)
)−d−1

dμ(u).

This leads to

∑

ξ∈Xj

|Aξ |
|B(ξ, δ�)|

(
1 + δ�

−1ρ(x, ξ)
)−2d−1

≤ 22d+1

|B(x, δ�)|
∫

M

(
1 + δ�

−1ρ(x,u)
)−d−1

dμ(u) ≤ 23d+2,

where for the last inequality we used (2.12). Thus (2.21) is established.
For the proof of (2.22), we observe that using (2.15)

|Aξ |Dδ�,σ (x, ξ)Dδ�,σ (y, ξ)

= Dδ�,σ (x, y)
|Aξ |(1 + δ�

−1ρ(x, y))σ

|B(ξ, δ)|(1 + δ�
−1ρ(x, ξ))σ (1 + δ�

−1ρ(y, ξ))σ

≤ Dδ�,σ (x, y)

[
2σ |Aξ |

|B(ξ, δ�)|(1 + δ�
−1ρ(x, ξ))σ

+ 2σ |Aξ |
|B(ξ, δ�)|(1 + δ�

−1ρ(y, ξ))σ

]
.

Now, summing up and applying (2.21) we arrive at (2.22).
Estimate (2.23) follows in a similar manner from (2.15) and (2.20).

2.4 Integral Operators

We shall mainly deal with integral (kernel) operators.
The kernels of many operators will be controlled by the quantities Dδ,σ (x, y),

introduced in (2.6). Our first order of business is to establish a Young-type inequality
for such operators.

Proposition 2.6 Let H be an integral operator with kernel H(x,y), i.e.

Hf (x) =
∫

M

H(x,y)f (y)dμ(y), and let
∣∣H(x,y)

∣∣≤ c′Dδ,σ (x, y)
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for some 0 < δ ≤ 1 and σ ≥ 2d + 1. If 1 ≤ p ≤ q ≤ ∞, then

‖Hf ‖q ≤ cδ
d( 1

q
− 1

p
)‖f ‖p, f ∈ L

p, (2.24)

where c = c′̂cd(1/r−1)22d+1 with ĉ being the constant from (2.4).

This result is immediate from the following well-known lemma.

Lemma 2.7 Suppose 1
p

− 1
q

= 1 − 1
r
, 1 ≤ p,q, r ≤ ∞, and let H(x,y) be a measur-

able kernel, verifying the conditions

∥∥H(·, y)
∥∥

r
≤ K and

∥∥H(x, ·)∥∥
r
≤ K. (2.25)

If Hf (x) = ∫
M

H(x,y)f (y)dμ(y), then

‖Hf ‖q ≤ K‖f ‖p for f ∈ L
p.

For the proof, see e.g. [19, Theorem 6.36].

Proof of Proposition 2.6 Pick 1 ≤ r ≤ ∞ so that 1/p − 1/q = 1 − 1/r . By (2.10)
and (2.4) we obtain

∥∥H(·, y)
∥∥

r
≤ c′c(r)

∣∣B(y, δ)
∣∣1/r−1 ≤ c′c(1)( ĉ δ)d(1/r−1)

and a similar estimate holds for ‖H(x, ·)‖r . These estimates and the above lemma
imply (2.24). �

We shall frequently use the following well-known result ([16], Theorem 6, p. 503).

Proposition 2.8 An operator T : L
1 → L

∞ is bounded if and only if T is an integral
operator with kernel K ∈ L∞(M × M), i.e.

Tf (x) =
∫

M

K(x,y)f (y)dμ(y) a.e. on M,

and if this is the case ‖T ‖1→∞ = ‖K‖L∞ . Moreover, the boundedness of T can be
expressed in the bilinear form |〈Tf,g〉| ≤ c‖f ‖L1‖g‖L1 , ∀f,g ∈ L

1.

We next use this to derive a useful result for products of integral and non-integral
operators.

Proposition 2.9 In the general setting of a doubling metric measure space (M,ρ,μ),
let U,V : L

2 → L
2 be integral operators and suppose that for some 0 < δ ≤ 1 and

σ ≥ d + 1 we have

∣∣U(x,y)
∣∣≤ c1Dδ,σ (x, y) and

∣∣V (x, y)
∣∣≤ c2Dδ,σ (x, y). (2.26)
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Let R : L
2 → L

2 be a bounded operator, not necessarily an integral operator. Then
URV is an integral operator with the following upper bound on its kernel

∣∣URV (x, y)
∣∣≤ ∥∥U(x, ·)∥∥2‖R‖2→2

∥∥V (·, y)
∥∥

2 ≤ c‖R‖2→2√|B(x, δ)||B(y, δ)| (2.27)

with c := c1c222d+1.

Proof By Proposition 2.6 we get

‖URV ‖1→∞ ≤ ‖U‖2→∞‖R‖2→2‖V ‖1→2 ≤ cδ−d‖R‖2→2

and, therefore, URV is a kernel operator. Formally, we have

(URV )f =
∫

M

U(x,u)(RV )f (u)dμ(u)

=
∫

M

U(x,u)

∫

M

R
[
V (·, y)

]
(u)f (y)dμ(y)dμ(u)

=
∫

M

(∫

M

U(x,u)R
[
V (·, y)

]
(u)dμ(u)

)
f (y)dμ(y) (2.28)

and hence the kernel of URV is given by

H(x,y) =
∫

M

U(x,u)R
[
V (·, y)

]
(u)dμ(u) = 〈U(x, ·),R[V (·, y)

]〉
. (2.29)

This along with (2.26) and (2.10) leads to

∣∣H(x,y)
∣∣≤ ∥∥U(x, ·)∥∥2

∥∥R
[
V (·, y)

]∥∥
2 ≤ c1c2[c(2)]2‖R‖2→2

|B(x, δ)|1/2|B(y, δ)|1/2
,

which confirms (2.27), taking into account that [c(2)]2 ≤ 22d+1 by (2.10) if σ ≥
d + 1.

It remains to justify the manipulations in (2.28). Observe first that in order to
prove (2.29) it suffices to establish identities (2.28) for all f ∈ L

2 such that suppf ⊂
B(a,R) an arbitrary ball on M . To this end we shall need Bochner’s integral. In par-
ticular, we shall use the following results (e.g. [62], pp. 131–133): Suppose B is a sep-
arable Banach space and F : (M,μ,Σ) �→ B is measurable in the following sense:
∀� ∈ B∗, x �→ �(F (x)) is measurable. Then Bochner’s integral

∫ (B)

M
F(x)dμ(x) is

well defined and takes its value in B if and only if
∫

M

∥∥F(x)
∥∥

B
dμ(x) < ∞.

Furthermore, if
∫ (B)

M
F(x)dμ(x) exists, then �(

∫ (B)

M
F(x)dμ(x)) = ∫

M
�(F (x))dμ(x)

for any � ∈ B∗. Also, if T : B → B is a bounded linear operator, then

T

(∫ (B)

M

F(x)dμ(x)

)
=
∫ (B)

M

T
(
F(x)
)
dμ(x). (2.30)
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We shall utilize Bochner’s integral in our setting with B = L
2.

Suppose f ∈ L
2 and suppf ⊂ B(a,R), a ∈ M , R > 0. Then using (2.26), (2.10),

and (2.2) we obtain
∫

M

∥∥V (·, y)f (y)
∥∥

2dμ(y) ≤ c

∫

B(a,R)

∣∣f (y)
∣∣∣∣B(y, δ)

∣∣−1/2
dμ(y)

≤ c‖f ‖2

(∫

B(a,R)

∣∣B(y, δ)
∣∣−1

dμ(y)

)1/2

≤ c‖f ‖2√|B(a, δ)|
(∫

B(a,R)

(
1 + δ−1ρ(y, a)

)d
dμ(y)

)1/2

< ∞. (2.31)

Therefore,
∫ (B)

M
V (·, y)f (y)dμ(y) exists and for any g ∈ L

2

〈∫ (B)

M

V (·, y)f (y)dμ(y), g

〉
=
∫

M

(∫

M

g(x)V (x, y)dμ(x)

)
f (y)dμ(y)

=
∫

M

g(x)

(∫

M

V (x, y)f (y)dμ(y)

)
dμ(x))

= 〈Vf,g〉.
Here the shift of the order of integration is justified by Fubini’s theorem and the fact
that
∫

M

∫

M

∣∣V (x, y)
∣∣∣∣f (y)

∣∣∣∣g(x)
∣∣dμ(x)dμ(y)

≤ ‖g‖2

∥∥∥∥

∫

M

∣∣V (·, y)
∣∣∣∣f (y)

∣∣dμ(y)

∥∥∥∥
2
≤ ‖g‖2

∫

M

∥∥V (·, y)f (y)
∥∥

2dμ(y) < ∞,

where we used (2.31). Therefore, Vf = ∫ (B)

M
V (·, y)f (y)dμ(y). We now use (2.30)

to obtain

RVf = R

[∫ (B)

M

V (·, y)f (y)dμ(y)

]
=
∫ (B)

M

R
[
V (·, y)

]
f (y)dμ(y),

which implies

(URV )f (x) =
∫

M

U(x,u)(RV )f (u)dμ(u)

=
〈∫ (B)

M

R
[
V (·, y)

]
f (y)dμ(y),U(x, ·)

〉

=
∫

M

(∫

M

U(x,u)R
[
V (·, y)

]
(u)dμ(u)

)
f (y)dμ(y).

Consequently, H(x,y) is given by (2.29) and the proof is complete. �
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3 Functional Calculus

The aim of this section is to develop the functional calculus of operators of the form
f (

√
L) associated with smooth and non-smooth functions f . The calculus of smooth

operators is in the spirit of [17, 45] and will be needed in most part of this article,
including the construction of frames and the Littlewood-Paley theory, while the non-
smooth calculus will be needed for estimation of the kernels of the spectral projectors
and lower bound estimates.

3.1 Smooth Functional Calculus

We shall be operating in the setting described in Sect. 1.1. More precisely, we assume
that (M,ρ,μ) is a metric measure space obeying conditions (1.1)–(1.3) and L is an
essentially self-adjoint positive operator on L

2 such that the semi-group e−tL, t > 0,
has a kernel pt(x, y) verifying (1.4)–(1.8).

Theorem 3.1 Let g : R → C be a measurable function such that for some σ > 2d

‖g‖∗ :=
∫

R

∣∣̂g(ξ)
∣∣(1 + |ξ |)σ dξ < ∞, where ĝ(ξ) :=

∫

R

g(x)e−ixξ dx (3.1)

is the Fourier transform of g. Then g(δ2L)e−δ2L, 0 < δ ≤ 1, is an integral operator
with kernel g(δ2L)e−δ2L(x, y) satisfying

∣∣g
(
δ2L
)
e−δ2L(x, y)

∣∣≤ cσ ‖g‖�Dδ,σ (x, y), ∀x, y ∈ M, (3.2)

and

∣∣g
(
δ2L
)
e−δ2L(x, y) − g

(
δ2L
)
e−δ2L

(
x, y′)∣∣≤ cσ ‖g‖�

(
ρ(y, y′)

δ

)α

Dδ,σ (x, y),

(3.3)
for all x, y, y′ ∈ M , if ρ(y, y′) ≤ δ. Here α > 0 is the constant from (1.6), Dδ,σ (x, y)

is defined in (2.6), and cσ > 0 is a constant depending only on σ and the structural
constants from (1.5)–(1.6). Moreover,

∫

M

g
(
δ2L
)
e−δ2L(x, y)dμ(y) = g(0) ∀x ∈ M. (3.4)

Proof To prove (3.2) we first show that g(δ2L)e−δ2L is a kernel operator. From (3.1)
it follows that ‖ĝ‖1 < ∞ which implies g(x) = 1

2π

∫
R

ĝ(ξ)eixξ dx and hence ‖g‖∞ ≤
1

2π
‖ĝ‖1. Then by the spectral theorem

∥∥g
(
δ2L
)
e−δ2L

∥∥
2→2 = ∥∥g(δ2·)e−δ2·∥∥∞ ≤ (2π)−1‖ĝ ‖1.

Therefore, invoking Proposition 2.8, in order to show that g(δ2L)e−δ2L is a kernel
operator it suffices to prove that

∣∣〈g
(
δ2L
)
e−δ2Lϕ,ψ

〉∣∣≤ c‖ϕ‖1‖ψ‖1, ∀ϕ,ψ ∈ L
1 ∩ L

2.
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Let Eλ, λ ≥ 0, be the spectral resolution associated with the operator L, then L =∫∞
0 λdEλ. Writing the spectral decomposition of g(δ2L)e−δ2L and using the Fourier

inversion identity, we obtain for ϕ,ψ ∈ L
1 ∩ L

2

〈
g
(
δ2L
)
e−δ2Lϕ,ψ

〉=
∫ ∞

0
g
(
δ2λ
)
e−δ2λd〈Eλϕ,ψ〉

=
∫ ∞

0

1

2π

(∫

R

ĝ(ξ)eiδ2λξ dξ

)
e−δ2λd〈Eλϕ,ψ〉

= 1

2π

∫

R

ĝ(ξ)

(∫ ∞

0
e−δ2λ(1−iξ)d〈Eλϕ,ψ〉

)
dξ

= 1

2π

∫

R

ĝ(ξ)
〈
e−δ2(1−iξ)Lϕ,ψ

〉
dξ.

The above shift of the order of integration is justified by Fubini’s theorem and the
fact that for any h ∈ L

2

∫

R

∫ ∞

0

∣∣̂g(ξ)
∣∣∣∣e−δ2λ(1−iξ)

∣∣d‖Eλh‖2
2dξ

=
∫

R

∣∣̂g(ξ)
∣∣dξ

∫ ∞

0
e−δ2λd‖Eλh‖2

2 ≤ ‖ĝ ‖1‖h‖2
2.

To go further, we use that e−δ2(1−iξ)L is an integral operator with kernel pz(x, y),
z = δ2(1 − iξ), and ‖pz‖∞ ≤ c to obtain for ϕ,ψ ∈ L

1 ∩ L
2

〈
g
(
δ2L
)
e−δ2Lϕ,ψ

〉

= 1

2π

∫

R

ĝ(ξ)

(∫

M

∫

M

pδ2(1−iξ)(x, y)φ(x)ψ(y)dμ(x)dμ(y)

)
dξ

=
∫

M

∫

M

[
1

2π

∫

R

ĝ(ξ)pδ2(1−iξ)(x, y)dξ

]
φ(x)ψ(y)dμ(x)dμ(y). (3.5)

To justify the above shift of order of integration we again use Fubini’s theorem and
the fact that

∫

R

∫

M

∫

M

∣∣̂g(ξ)
∣∣∣∣pδ2(1−iξ)(x, y)

∣∣∣∣φ(x)
∣∣∣∣ψ(y)

∣∣dμ(x)dμ(y)dξ

≤ c‖ĝ ‖1‖ϕ‖1‖ψ‖1 < ∞.

This also implies |〈g(δ2L)e−δ2Lϕ,ψ〉| ≤ c‖ĝ ‖1‖ϕ‖1‖ψ‖1 for all ϕ,ψ ∈ L
1 ∩ L

2.
Therefore, g(δ2L)e−δ2L is a kernel operator and by (3.5)

g
(
δ2L
)
e−δ2L(x, y) = 1

2π

∫

R

ĝ(u)pδ2(1−iu)(x, y)du. (3.6)
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From this and (1.5) we infer

∣∣g
(
δ2L
)
e−δ2L(x, y)

∣∣≤ c′(∣∣B(x, δ)
∣∣∣∣B(y, δ)

∣∣)−1/2
∫

R

∣∣̂g(u)
∣∣ exp

{
− cρ2(x, y)

δ2(1 + u2)

}
du.

(3.7)
Assume ρ(x, y)/δ ≥ 1. Clearly, supx≥0 xβe−x = (

β
e
)β for β > 0. Using this with

β = σ/2 we obtain

exp

{
− cρ2(x, y)

δ2(1 + u2)

}

≤ exp

{
−
(

1 + ρ2(x, y)

δ2

)
c

2(1 + u2)

}

≤ c′
(

1 + ρ2(x, y)

δ2

)−σ/2(
1 + u2)σ/2 ≤ c′′

(
1 + ρ(x, y)

δ

)−σ (
1 + |u|)σ .

Therefore,

∣∣g
(
δ2L
)
e−δ2L(x, y)

∣∣≤ c(1 + ρ(x,y)
δ

)−σ

(|B(x, δ)||B(y, δ)|)1/2

∫

R

∣∣̂g(u)
∣∣(1 + |u|)σ du

= c

∫

R

∣∣̂g(u)
∣∣(1 + |u|)σ duDσ,δ(x, y),

which confirms (3.2).
If ρ(x, y)/δ < 1, then by (3.7)

∣∣g
(
δ2L
)
e−δ2L(x, y)

∣∣≤ c′(∣∣B(x, δ)
∣∣∣∣B(y, δ)

∣∣)−1/2
∫

R

∣∣̂g(u)
∣∣du

≤ c

∫

R

∣∣̂g(u)
∣∣(1 + |u|)σ duDσ,δ(x, y).

This completes the proof of (3.2).

We now take on (3.3). As g(δ2L)e−δ2L = g(δ2L)e− 1
2 δ2Le− 1

2 δ2L, the kernels of
these operators are related by

g
(
δ2L
)
e−δ2L(x, y) =

∫

M

g
(
δ2L
)
e− 1

2 δ2L(x,u)e− 1
2 δ2L(u, y)dμ(u),

which implies

∣∣g
(
δ2L
)
e−δ2L(x, y) − g

(
δ2L
)
e−δ2L

(
x, y′)∣∣

≤
∫

M

∣∣g
(
δ2L
)
e− 1

2 δ2L(x,u)
∣∣∣∣pδ2/2(u, y) − pδ2/2

(
u,y′)∣∣dμ(u).

We use (3.2) with δ replaced by δ/
√

2 and g(λ) by g(2λ) to estimate the first
term under the integral and (1.6) for the second term, taking into account that
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exp{− cρ2(x,y)

δ2 } ≤ cσ (1 + ρ(x,y)
δ

)−σ . Thus we get

∣∣g
(
δ2L
)
e−δ2L(x, y) − g

(
δ2L
)
e−δ2L

(
x, y′)∣∣

≤ c‖g‖�

(
ρ(y, y′)

δ

)α ∫

M

Dδ,σ (x,u)Dδ,σ (u, y)dμ(u)

≤ c‖g‖�

(
ρ(y, y′)

δ

)α

Dδ,σ (x, y).

Here for the latter estimate we used (2.11) and that σ > 2d .
It remains to prove (3.4). By (1.8), i.e.

∫
M

pδ2−iu(x, y)dy ≡ 1, and (3.6) we get

∫

M

g
(
δ2L
)
e−δ2L(x, y)dy = 1

2π

∫

R

ĝ(u)

∫

M

pδ2−iu(x, y)dμ(y)du

= 1

2π

∫

R

ĝ(u)du = g(0).

Here the justification of the shift of order of integration is by straightforward appli-
cation of Fubini’s theorem. �

Some remarks are in order. Condition (3.1) is apparently a smoothness condition
on g. By Cauchy-Schwartz it follows that

∫

R

∣∣̂g(ξ)
∣∣(1 + |ξ |2)σ/2

dξ ≤ c

(∫

R

∣∣̂g(ξ)
∣∣2(1 + |ξ |2)σ+1

dξ

)1/2

= c‖g‖Hσ+1

and hence (3.1) holds if ‖g‖Hσ+1 < ∞. However, it will be more convenient to us
to replace (3.1) by a condition in terms of derivatives of g that is easier to verify.
From ξkĝ(ξ) = (−i)kĝ(k)(ξ) we get |ξ |k |̂g(ξ)| ≤ ‖g(k)‖L1 . Also, |̂g(ξ)| ≤ ‖g‖L1 .
Pick k ≥ σ > 2d . Then using the above we obtain

(
1 + |ξ |)k+2∣∣̂g(ξ)

∣∣≤ 2k+1(∣∣̂g(ξ)
∣∣+ |ξ |k+2

∣∣̂g(ξ)
∣∣)≤ 2k+1(‖g‖L1 + ∥∥g(k+2)

∥∥
L1

)

that implies

‖g‖∗ :=
∫

R

∣∣̂g(ξ)
∣∣(1 + |ξ |)kdξ

=
∫

R

∣∣̂g(ξ)
∣∣(1 + |ξ |)k+2(1 + |ξ |)−2

dξ

≤ c
(‖g‖L1 + ∥∥g(k+2)

∥∥
L1

)
.

Thus we arrive at the following
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Remark 3.2 For the norm ‖g‖∗ from condition (3.1) we have ‖g‖∗ ≤ c‖g‖Hσ+1 and
‖g‖∗ ≤ c(‖g‖L1 + ‖g(k+2)‖L1) if k ≥ σ > 2d .

Corollary 3.3 For any m ∈ N and σ > 0 there exists a constant cσ,m > 0 such that

the kernel of the operator Lme−δ2L, 0 < δ ≤ 1, satisfies

∣∣Lme−δ2L(x, y)
∣∣≤ cσ,mδ−2mDδ,σ (x, y) and (3.8)

∣∣Lme−δ2L(x, y) − Lme−δ2L
(
x, y′)∣∣≤ cσ,mδ−2m

(
ρ(y, y′)

δ

)α

Dδ,σ (x, y), (3.9)

if ρ(y, y′) ≤ δ.

Proof Set g(λ) := λmθ(λ)e−λ for λ ≥ 0, where θ ∈ C∞(R), supp θ ⊂ [−1,∞), and
θ(λ) = 1 for λ ≥ 0. Since L ≥ 0, we can write

Lme−δ2L = 2mδ−2mg
(
δ2∗L
)
e−δ2∗L with δ∗ := 2−1/2δ

and the corollary follows by Theorem 3.1 and (2.8). �

We next use Theorem 3.1 and Remark 3.2 to obtain some important kernel local-
ization results. Our main interest is in operators of the form f (δ

√
L).

Theorem 3.4 Let f ∈ C2k+4(R+), k > 2d , suppf ⊂ [0,R] for some R ≥ 1, and

f (2ν+1)(0) = 0 for ν = 0, . . . , k+1. Then f (δ
√

L), 0 < δ ≤ 1, is an integral operator
with kernel f (δ

√
L)(x, y) satisfying
∣∣f (δ

√
L)(x, y)

∣∣≤ ckDδ,k(x, y) and (3.10)
∣∣f (δ

√
L)(x, y) − f (δ

√
L)
(
x, y′)∣∣

≤ c′
k

(
ρ(y, y′)

δ

)α

Dδ,k(x, y) if ρ
(
y, y′)≤ δ, (3.11)

where ck = ck(f ) = c̃kR
2k+d+4(‖f ‖L∞ +‖f (2k+4)‖L∞ +maxν≤2k+4 |f (ν)(0)|) with

c̃k > 0 a constant depending only on k, d , and the constants in (1.5)–(1.6), and c′
k =

ckR
α ; as before α > 0 is the constant from (1.6). Furthermore,

∫

M

f (δ
√

L)(x, y)dμ(y) = f (0) ∀x ∈ M. (3.12)

Proof We first observe that it suffices to only prove the theorem when R = 1, then in
the general case it follows by rescaling. Indeed, assume that f satisfies the hypotheses
of the theorem and set h(λ) := f (Rλ), λ ∈ R+. Then h verifies the assumptions with
R = 1 and if the theorem holds for R = 1 we obtain, using (2.8),

∣∣f (δ
√

L)(x, y)
∣∣ = ∣∣h(δR−1

√
L
)
(x, y)

∣∣

≤ ck(h)Dδ/R,k(x, y) ≤ (2R)dck(h)Dδ,k(x, y) (3.13)
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and similarly

∣∣f (δ
√

L)(x, y) − f (δ
√

L)
(
x, y′)∣∣

≤ (2R)d+αc′
k(h)

(
ρ(y, y′)

δ

)α

Dδ,k(x, y) if ρ
(
y, y′)≤ δ

R
.

For δ
R

< ρ(y, y′) ≤ δ, the last estimate follows by (3.13). It remains to observe that

ck(h) = c̃k

(
‖f ‖L∞ + R2k+4

∥
∥f (2k+4)

∥
∥

L∞ + max
ν≤2k+4

Rν
∣
∣f (ν)(0)

∣
∣
)

≤ c̃R2k+4
(
‖f ‖L∞ + ∥∥f (2k+4)

∥∥
L∞ + max

ν≤2k+4

∣∣f (ν)(0)
∣∣
)

and hence the theorem holds in general.
We now prove the theorem in the case when R = 1. Choose θ ∈ C∞(R) so that

θ is even, supp θ ⊂ [−1,1], θ(λ) = 1 for λ ∈ [−1/2,1/2], and 0 ≤ θ ≤ 1. Denote

Pk(λ) :=∑k+2
j=0

f (2j)(0)
(2j)! λ2j and let f1(λ), g0(λ), and g1(λ) be defined for λ ∈ R+

from

f (λ) = θ(λ)Pk(λ) + f1(λ), θ(λ)Pk(λ) = g0
(
λ2)e−λ2

, f1(λ) = g1
(
λ2)e−λ2

.

Thus g0(λ) = Pk(
√|λ|)θ(

√|λ|)eλ for λ ∈ R+, and we use this to define g0(λ) for
λ < 0. Clearly, g0 ∈ C∞(R), suppg0 ⊂ [−1,1] and

‖g0‖L1 + ∥∥g(k+2)
0

∥∥
L1 ≤ c(k) sup

ν≤2k+4

∣∣f (ν)(0)
∣∣.

Therefore, by Theorem 3.1 the kernel of the operator θ(δ
√

L)Pk(δ
√

L) satisfies the
desired inequalities (3.10)–(3.11) with R = 1.

On the other hand, g1(λ) = f1(
√|λ|)eλ for λ ∈ R+ and we use this to define

g1(λ) for λ < 0. Observe that f1(δ
√

L) = g1(δ
2L)e−δ2L and suppg1 ⊂ [−1,1]. Fur-

thermore, f1 ∈ C2k+4(R+), f
(ν)
1 (0) = 0, ν = 0, . . . ,2k + 4, and

∥∥f (j)

1

∥∥
L∞ ≤ ∥∥f (j)

∥∥
L∞ + c max

ν≤2k+4

∣∣f (ν)(0)
∣∣, 0 ≤ j ≤ 2k + 4. (3.14)

We next show that g1 ∈ Ck+2(R) and estimate the derivatives of g1. We have for
1 ≤ m ≤ k + 2 and λ > 0

g
(m)
1 (λ) =

m∑

ν=0

(
m

ν

)
eλ

(
d

dλ

)ν[
f1(

√
λ)
]

and a little calculus shows that for ν ≥ 1 and λ > 0

(
d

dλ

)ν[
f1(

√
λ)
]=

ν∑

j=1

cjλ
−ν+j/2f

(j)

1 (
√

λ), where |cj | ≤ ν!.

Author's personal copy



J Fourier Anal Appl

On the other hand, by Taylor’s theorem |f (j)

1 (
√

λ)| ≤ |λ|(2m−j)/2‖f (2m)
1 ‖L∞ and

hence
∣∣∣∣

(
d

dλ

)ν[
f1(
√|λ|)]

∣∣∣∣≤ c|λ|m−ν
∥∥f (2m)

1

∥∥∞, 1 ≤ ν ≤ m.

Exactly in the same way we obtain the same estimate for λ < 0. Denote briefly
h(λ) := f1(

√|λ|). Observe that since f1 ∈ C2k+4(R+) we have h(k+2)(λ) = o(1)

as λ → 0. This and the above inequalities yield h(ν)(0) = 0, ν = 0, . . . , k + 2, and
hence h ∈ Ck+2(R), which implies g1 ∈ Ck+2(R). From the above we also obtain

∣∣g(m)
1 (λ)

∣∣≤ c

m∑

ν=0

eλ|λ|m−ν
∥∥f (2m)

1

∥∥
L∞ ≤ c(m + 1)

∥∥f (2m)
1

∥∥
L∞, λ ∈ R.

This in turn (with m = k + 2) implies ‖g(k+2)
1 ‖L1 ≤ c(k + 3)‖f (2k+4)

1 ‖L∞ and, ev-
idently, ‖g1‖L1 ≤ e‖f1‖L∞ . We now apply Theorem 3.1 to conclude that f1(δ

√
L)

is an integral operator with kernel f1(δ
√

L)(x, y) satisfying (3.10)–(3.11), where, in
view of Remark 3.2 and (3.14), the constants ck , c′

k are of the claimed form.
Putting the above together we conclude that f (δ

√
L) is an integral operator with

kernel f (δ
√

L)(x, y) satisfying (3.10)–(3.11) with R = 1.
Identity (3.12) follows by (3.4). �

Corollary 3.5 Let f : R+ → C be as in the hypothesis of Theorem 3.4. Then for any
m ∈ N and 0 < δ ≤ 1 the operator Lmf (δ

√
L) is an integral operator with kernel

Lmf (δ
√

L)(x, y) such that
∣∣Lmf (δ

√
L)(x, y)

∣∣≤ ck,mδ−2mDδ,k(x, y) and (3.15)
∣∣Lmf (δ

√
L)(x, y) − Lmf (δ

√
L)
(
x, y′)∣∣

≤ c′
k,mδ−2m

(
ρ(y, y′)

δ

)α

Dδ,k(x, y) (3.16)

whenever ρ(y, y′) ≤ δ. Here the constants ck,m, c′
k,m are as the constants ck , c′

k in

Theorem 3.4 with R2k+d+4 replaced by R2k+d+4+2m and c̃k depending on m as well.

Proof Let h(λ) := λ2mf (λ). Then h(δ
√

L) = δ2mLmf (δ
√

L) and observe that
h(2ν+1)(0) = 0 for ν = 0, . . . , k + 1. Consequently, the corollary follows by Theo-
rem 3.4 applied to h. �

Corollary 3.6 Let f : R+ → C be as in the hypothesis of Theorem 3.4. Then there
exists a constant c > 0 such that for any 0 < δ ≤ 1

∥∥f (δ
√

L)φ
∥∥

q
≤ cδ1/p−1/q‖φ‖p, ∀φ ∈ L

p, 1 ≤ p ≤ q ≤ ∞,

and
∣
∣f (δ

√
L)φ(x) − f (δ

√
L)φ(y)

∣
∣≤ c‖φ‖∞

(
ρ(x, y)

δ

)α

, ∀x, y ∈ M, ∀φ ∈ L
∞.

This corollary is an immediate consequence of Theorem 3.4 and Proposition 2.6.
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3.2 Non-smooth Functional Calculus

We need to establish some properties of operators of the form f (
√

L) and their ker-
nels in the case of non-smooth compactly supported functions f . These are kernel
operators with not necessarily well localized kernels.

Theorem 3.7 Let f be a bounded measurable function on R+ with suppf ⊂ [0, τ ]
for some τ ≥ 1. Then f (

√
L) is an integral operator with kernel f (

√
L)(x, y) satis-

fying

∣∣f
(√

L
)
(x, y)

∣∣≤ c‖f ‖∞√|B(x, τ−1)||B(y, τ−1)| , x, y ∈ M, (3.17)

and for x, y, y′ ∈ M

∣∣f (
√

L)(x, y) − f (
√

L)
(
x, y′)∣∣≤ c[τρ(y, y′)]α‖f ‖∞√∣∣B

(
x, τ−1

)∣∣∣∣B
(
y, τ−1

)∣∣
if ρ
(
y, y′)≤ τ−1.

(3.18)
Furthermore, if 1 ≤ p ≤ 2 ≤ q ≤ ∞,

∥∥f (
√

L)
∥∥

p→q
≤ cτd(1/p−1/q)‖f ‖∞, (3.19)

∥∥f (
√

L)(·, x)
∥∥2

2 = |f |2(√L)(x, x) ≤ c
∣∣B
(
x, τ−1)∣∣−1‖f ‖2∞, and (3.20)

∥∥|f |2(√L)
∥∥

1→∞ = sup
x∈M

|f |2(√L)(x, x). (3.21)

Above the constants depend only on d and the constants in (1.5) and (1.6); the con-
stant in (3.19) depends in addition on p,q .

Proof Pick a function θ ∈ C∞(R+) so that supp θ ⊂ [0,2], θ(x) = 1 for x ∈ [0,1],
and 0 ≤ θ ≤ 1. Then by Theorem 3.4

∣∣θ
(
τ−1

√
L
)
(x, y)

∣∣≤ cσ Dτ−1,σ (x, y) for any σ > 0. (3.22)

Choose σ > 3d/2. We have

f (
√

L) =
∫ ∞

0
f (

√
λ)dEλ

=
∫ ∞

0
θ
(
τ−1

√
λ
)
f (

√
λ)θ
(
τ−1

√
λ
)
dEλ

= θ
(
τ−1

√
L
)
f (

√
L)θ
(
τ−1

√
L
)
. (3.23)

Now, (3.17) follows by Proposition 2.9, using the above, (3.22), and the fact that
‖f (

√
L)‖2→2 ≤ ‖f ‖∞.
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From (3.22)–(3.23) and Proposition 2.9 we also obtain for 1 ≤ p ≤ 2 ≤ q ≤ ∞
∥∥f (

√
L)
∥∥

p→q
≤ ∥∥θ(τ−1

√
L
)∥∥

p→2

∥∥f (
√

L)
∥∥

2→2

∥∥θ
(
τ−1

√
L
)∥∥

2→q

≤ c‖f ‖∞τ−d(1/q−1/p),

which confirms (3.19).
For the proof of (3.18), we first observe that

f (
√

L) =
∫ ∞

0
f (

√
λ)eτ−2(

√
λ)2

e−τ−2λdEλ

=
∫ ∞

0
g(

√
λ)e−τ−2λdEλ = g(

√
L)e−τ−2L,

where g(u) := f (u)eτ−2u2
, ‖g‖∞ ≤ e‖f ‖∞, and hence

f (
√

L)(x, y) − f (
√

L)
(
x, y′)

=
∫

M

g(
√

L)(x,u)
[
e−τ−2L(u, y) − e−τ−2L

(
u,y′)]dμ(u).

We now use (3.17), applied to g(
√

L), and (1.6) to obtain

∣∣f (
√

L)(x, y) − f (
√

L)
(
x, y′)∣∣

≤ c
(
τρ
(
y, y′))α‖g‖∞

×
∫

M

1
√

|B(x, τ−1)||B(u, τ−1
)|

e−(τρ(u,y))2

√|B(u, τ−1)||B(y, τ−1)|dμ(u)

≤ c(τρ(y, y′))α‖f ‖∞√|B(x, τ−1)||B(y, τ−1)|
∫

M

e−(τρ(u,y))2

|B(u, τ−1)|dμ(u).

Moreover, using (2.2) we have

∫

M

e−(τρ(u,y))2

|B(u, τ−1)|dμ(u) ≤ 2d

|B(y, τ−1)|
∫

M

(
1+τρ(u, y)

)d
e−(τρ(u,y))2

dμ(u) ≤ c < ∞,

where for the latter inequality we used (2.12). This completes the proof of (3.18).
We now turn to the proof of (3.20). We have

∥∥f (
√

L)(·, y)
∥∥2

2 =
∫

M

∣∣f (
√

L)(x, y)
∣∣2dy

=
∫

M

f (
√

L)(x, y)f (
√

L)(x, y)dμ(y)
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=
∫

M

f (
√

L)(x, y)f (
√

L)(y, x)dμ(y) = |f |2(√L)(x, x)

≤ c
∣∣B
(
x, τ−1)∣∣−1‖f ‖2∞,

which proves (3.20). Here for the latter estimate we used (3.17).
Finally, using the above we have

|f |2(√L)(x, y) =
∫

M

f (
√

L)(x,u)f (
√

L)(y,u)dμ(u)

≤
(∫

M

∣∣f (
√

L)(x,u)
∣∣2dμ(u)

)1/2(∫

M

∣∣f (
√

L)(y,u)
∣∣2dμ(u)

)1/2

= (|f |2(√L)(x, x)
)1/2(|f |2(√L)(y, y)

)1/2

and hence ‖|f |2(√L)‖1→∞ = supx,y ||f |2(√L)(x, y)| = supx |f |2(√L)(x, x),
which confirms (3.21). �

3.3 Approximation of the Identity and Littlewood-Paley Decomposition

We first give a convenient approximation of the identity in L
p statement.

Proposition 3.8 Let ϕ ∈ C∞(R+), suppϕ ⊂ [0,R], R > 0, ϕ(0) = 1, and
ϕ(2ν+1)(0) = 0 for ν = 0,1, . . . . Then for any f ∈ L

p , 1 ≤ p ≤ ∞, (L∞ := UCB)

one has

f = lim
δ→0

ϕ(δ
√

L)f in L
p.

Proof By Theorem 3.4 it follows that ϕ(δ
√

L) is an integral operator with kernel
ϕ(δ

√
L)(x, y) satisfying for any k > 2d

∣∣ϕ(δ
√

L)(x, y)
∣∣≤ ckDδ,k(x, y) ≤ c

∣∣B(x, δ)
∣∣−1(1 + δ−1ρ(x, y)

)−k+d/2
, (3.24)

where for the last inequality we used (2.2). Now, just as in the proof of (2.12) we
obtain for k > 3d/2 and r > 0

∫

M\B(x,r)

∣∣ϕ(δ
√

L)(x, y)
∣∣dμ(y) ≤ c(δ/r)k−3d/2 → 0 as δ → 0.

Indeed, suppose 2�−1δ ≤ r < 2�δ and denote Ej := B(x,2j δ) \ B(x,2j−1δ). Then
using (3.24) and (2.1) we get

∫

M\B(x,r)

∣∣ϕ(δ
√

L)(x, y)
∣∣dμ(y)

≤ c
∣∣B(x, δ)

∣∣−1∑

j≥�

∫

Ej

(
1 + δ−1ρ(x, y)

)−k+d/2
dμ(y)
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≤ c
∣∣B(x, δ)

∣∣−1∑

j≥�

|B(x,2j δ)|
(1 + 2j )k−d/2

≤ c2−�(k−3d/2) ≤ c(δ/r)k−3d/2.

On the other hand, from (3.12) and ϕ(0) = 1 we have
∫
M

ϕ(δ
√

L)(x, y)dμ(y) = 1.
Using the above and the fact that the vector lattice set of all boundedly supported
uniformly continuous functions on M is dense in L

p (by the Stone-Daniell theorem)
one proves as usual the claimed convergence. �

We next give precise meaning to what we call Littlewood-Paley decomposition of
L

p-functions in this article.

Corollary 3.9 Let ϕ0, ϕ ∈ C∞(R+), suppϕ0 ⊂ [0, b] and suppϕ ⊂ [b−1, b] for some
b > 1, ϕ(0) = 1, ϕ(2ν+1)(0) = 0 for ν ≥ 0, and ϕ0(λ) +∑j≥1 ϕ(b−j λ) = 1 for
λ ∈ R+. Then for any f ∈ L

p , 1 ≤ p ≤ ∞, (L∞ := UCB)

f = ϕ0(
√

L) +
∑

j≥1

ϕ
(
b−j

√
L
)
f in L

p. (3.25)

Proof Let θ(λ) := ϕ0(λ) + ϕ(b−1λ) and observe that
∑j

k=0 ϕk(λ) = θ(b−j λ) for
j ≥ 1. Then the result follows by Proposition 3.8. �

3.4 Spectral Spaces

We adhere to the setting of this article, described in the introduction. As before Eλ,
λ ≥ 0, is the spectral resolution associated with the self-adjoint positive operator L

on L
2 := L2(M,μ). As elsewhere we shall be dealing with operators of the form

f (
√

L). We denote by Fλ, λ ≥ 0, the spectral resolution associated with
√

L, that is,
Fλ = Eλ2 . Then f (

√
L) = ∫∞

0 f (λ)dFλ and the spectral projectors are defined by
Eλ = 1[0,λ](L) := ∫∞

0 1[0,λ](u)dEu and

Fλ = 1[0,λ](
√

L) :=
∫ ∞

0
1[0,λ](u)dFu =

∫ ∞

0
1[0,λ](

√
u)dEu. (3.26)

We next list some properties of Fλ which follow readily from Theorem 3.7:
The operator Fλ is a kernel operator whose kernel Fλ(x, y) is a real symmetric non-
negative function on M × M . Also,

Fλ(x, y) ≤ c
∣∣B
(
x,λ−1)∣∣−1/2∣∣B

(
y,λ−1)∣∣−1/2 (3.27)

and Fλ(x, y) is in Lip α for some α > 0, see (3.18). The mapping property of Fλ on
L

p spaces is given by

‖Fλf ‖q ≤ cλd(1/p−1/q)‖f ‖p, 1 ≤ p ≤ 2 ≤ q ≤ ∞. (3.28)
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We define the spectral spaces Σ
p
λ for 1 ≤ p ≤ 2 by

Σ
p
λ = {f ∈ L

p : Fλf = f
}
.

Notice that Fλ is not necessarily a continuous operator on L
p if p > 2 and, therefore,

Σ
p
λ cannot be defined as above for 2 < p ≤ ∞. Instead, we shall use the following

characterization of Σ
p
λ : A function f ∈ Σ

p
λ for 1 ≤ p ≤ 2 if and only if θ(

√
L)f = f

for all θ ∈ C∞
0 (R+) such that θ ≡ 1 on [0, λ]. This characterization follows by the

fact that Σ
p
λ ⊂ Σ2

λ for 1 ≤ p ≤ 2 and the boundedness of the operator θ(
√

L) with θ

as above.

Definition 3.10 For 1 ≤ p ≤ ∞ we define

Σ
p
λ := {f ∈ L

p : θ(
√

L)f = f for all θ ∈ C∞
0 (R+), θ ≡ 1 on [0, λ]}.

Furthermore, for any compact K ⊂ [0,∞) we define

Σ
p
K := {f ∈ L

p : θ(
√

L)f = f for all θ ∈ C∞
0 (R+), θ ≡ 1 on K

}
.

Proposition 3.11 For any λ ≥ 1 and 1 ≤ p ≤ ∞
Σ

p
λ =
⋂

ε>0

Σ
p
λ+ε. (3.29)

Proof Suppose f ∈⋂ε>0 Σ
p
λ+ε and let θ ∈ C∞

0 (R+), supp θ ⊂ [0,R], and θ ≡ 1 on

[0, λ]. By Definition 3.10 f = θ(r−1
√

L)f for each r > 1 and hence
∥∥f − θ(

√
L)f
∥∥

p
= ∥∥θ(r−1

√
L
)
f − θ(

√
L)f
∥∥

p
, r > 1. (3.30)

Assuming that 1 < r ≤ 2, Theorem 3.4 implies
∣
∣θ
(
r−1

√
L
)
(x, y) − θ(

√
L)(x, y)

∣
∣≤ CrD1,k(x, y),

where Cr = ckR
2k+d+4(‖θ(r−1·) − θ(·)‖∞ + ‖(d/dλ)2k+4[θ(r−1·) − θ(·)]‖∞). We

now choose k ≥ 2d + 1 and apply Proposition 2.6 to obtain
∥∥θ
(
r−1

√
L
)− θ(

√
L)
∥∥

p→p
≤ cCr . (3.31)

Clearly, for any ν ≥ 0 we have limr→1 ‖(d/dλ)ν[θ(r−1·) − θ(·)]‖∞ = 0 and, there-
fore, limr→1 Cr = 0. This along with (3.30)–(3.31) yields ‖f − θ(

√
L)f ‖p = 0,

which completes the proof. �

With the next claim we establish a Nikolski’s type inequality that relates different
L

p-norms on spectral spaces.

Proposition 3.12 If 1 ≤ p ≤ q ≤ ∞, then Σ
p
λ ⊂ Σ

q
λ , Σ

q
λ ∩ L

p = Σ
p
λ , and there

exists a constant c > 0 such that

‖g‖q ≤ cλd(1/p−1/q)‖g‖p, g ∈ Σ
p
λ , λ ≥ 1. (3.32)
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Furthermore, for any g ∈ Σ∞
λ , λ ≥ 1,

∣
∣g(x) − g(y)

∣
∣≤ c
(
λρ(x, y)

)α‖g‖∞, x, y ∈ M, (3.33)

with α > 0 the constant from (1.6).

Proof Let g ∈ Σ
p
λ , λ ≥ 1, and set δ := λ−1. Choose θ ∈ C∞

0 (R+) so that θ ≡ 1 on
[0,1]. Then g = θ(δ

√
L)g and (3.32)–(3.33) follow readily by Corollary 3.6. �

3.5 Linear Approximation from Spectral Spaces

The purpose of this subsection is to give a short account of linear approximation
from Σ

p
t in L

p , 1 ≤ p ≤ ∞. Let Et (f )p denote the best approximation of f ∈ L
p

(L∞ := UCB) from Σ
p
t , that is,

Et (f )p := inf
g∈Σ

p
t

‖f − g‖p. (3.34)

Our goal is to characterize the approximation space As
pq , s > 0, 0 < q ≤ ∞, de-

fined as the set of all functions f ∈ L
p such that

‖f ‖As
pq

:= ‖f ‖p +
(∑

j≥0

(
2sj E2j (f )p

)q
)1/q

< ∞ if q < ∞, and (3.35)

‖f ‖As
p∞ := ‖f ‖p + sup

j≥0
2sj E2j (f )p < ∞ if q = ∞. (3.36)

Due to the monotonicity of Et (f )p we have

‖f ‖As
pq

∼ ‖f ‖p +
(∫ ∞

1

(
t s Et (f )p

)q
dt/t

)1/q

,

when q < ∞, and

‖f ‖As
p∞ := ‖f ‖p + sup

t≥1
t s Et (f )p < ∞ if q = ∞.

To characterize As
pq we shall use the well-known machinery of Bernstein and

Jackson estimates and interpolation. In Sect. 6.1 it will be shown that As
pq can be

identified as a certain Besov space.

3.5.1 Bernstein and Jackson Estimates. Characterization of Spectral Spaces

We begin by proving a Bernstein estimate.

Theorem 3.13 Let 1 ≤ p ≤ ∞ and m ∈ N. Then there exists a constant c� =
c�(m) > 0, independent of p, such that for any g ∈ Σ

p
λ , λ ≥ 1,

∥∥Lmg
∥∥

p
≤ c�λ2m‖g‖p. (3.37)
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Proof As in the proof of Proposition 3.12, pick θ ∈ C∞
0 (R+) so that θ ≡ 1 on [0,1].

Then for any g ∈ Σ
p
λ we have g = θ(δ

√
L)g with δ := λ−1 and, therefore, Lmg =

Lmθ(δ
√

L)g. Then (3.37) follows by applying Corollary 3.5 and Proposition 2.6. �

Observe that from spectral theory it readily follows that when p = 2 the Bernstein
estimate (3.37) holds with constant c� = 1.

Our next aim is to show that the spectral spaces Σ
p
λ can be characterized by means

of Bernstein estimates, in the spirit of the previous theorem, but with a constant
(cν below) independent of m.

Theorem 3.14 Let 1 ≤ p ≤ ∞ and λ > 0. Then the following assertions are equiva-
lent:

(a) f ∈ Σ
p
λ .

(b) f ∈⋂m∈N
D(Lm) and for any ν > λ there exists a constant cν > 0 such that

∥∥Lmf
∥∥

p
≤ cνν

2m‖f ‖p, ∀m ≥ 1.

(c)

z ∈ C �→ e−zLf =
∑

k≥0

(−z)k

k! Lkf

is an entire function of exponential type λ2.

Proof Clearly, (b) ⇐⇒ (c) using the Paley-Wiener theorem.
To prove that (a) =⇒ (b) we shall show that the constant c� in (3.37) can be

specified as follows: For any 0 < ε < 1 there exists a constant c(ε, d) > 0 such that

c� = c(ε, d)m4d+8(1 + ε)2m. (3.38)

Indeed, let θ ∈ C∞
0 (R) be so that θ ≡ 1 on [−1,1], supp θ ⊂ [−1 − ε,1 + ε], and

also 0 ≤ θ ≤ 1. With δ := λ−1 we have f = θ(δ
√

L)f for any f ∈ Σ
p
λ and we

shall estimate ‖Lmθ(δ
√

L)f ‖p . Denote briefly h(u) := u2mθ(u). Then h(δ
√

L) =
δ2mLmθ(δ

√
L). To go further, set k := �2d� + 2, hence 2d + 1 < k ≤ 2d + 2. It is

readily seen that

‖h‖∞ ≤ (1 + ε)2m and
∥∥h(2k+4)

∥∥∞ ≤ c1(ε, d)m4d+8(1 + ε)2m.

Now, by Theorem 3.4 we infer

∣∣Lmθ(δ
√

L)(x, y)
∣∣= δ−2m

∣∣h(δ
√

L)(x, y)
∣∣≤ c2(ε, d)m4d+8(1 + ε)2mλ2mDδ,k(x, y)

and applying Proposition 2.6 (k > 2d + 1) we arrive at

∥∥Lmf
∥∥

p
= ∥∥Lmθ(δ

√
L)f
∥∥

p
≤ c(ε, d)m4d+8(1 + ε)2mλ2m‖f ‖p for f ∈ Σ

p
λ ,

which confirms (3.38).
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Given ν > λ, choose 0 < ε < 1 so that (1 + ε)2λ ≤ ν. Then from above and the
obvious fact that supm≥1 m4d+8(1 + ε)−2m ≤ c′(ε, d) we get

∥∥Lmf
∥∥

p
≤ c(ε, d)m4d+8(1 + ε)−2mν2m‖f ‖p ≤ c′′(ε, d)ν2m‖f ‖p ∀f ∈ Σ

p
λ .

Thus (a) =⇒ (b).
Now, to prove that (b) =⇒ (a), suppose (b) holds for some function f ∈ L

p and
let θ ∈ C∞

0 (R+), θ ≡ 1 on [0, λ], as in Definition 3.10. Assume supp θ ⊂ [0,R]. Let
ε > 0. We shall show that ‖f − θ(

√
L)f ‖p < ε, which implies f ∈ Σ

p
λ . Indeed, for

0 < δ < r < 1 we have
∥∥f − θ(

√
L)f
∥∥

p
≤ ∥∥f − θ(δ

√
L)f
∥∥

p
+ ∥∥θ(δ

√
L)f − θ(r

√
L)f
∥∥

p

+ ∥∥θ(r
√

L)f − θ(
√

L)f
∥∥

p
.

By Proposition 3.8, ‖f − θ(δ
√

L)f ‖p → 0 as δ → 0 and hence there exists δ > 0
such that ‖f − θ(δ

√
L)f ‖p < ε/2. Clearly, ‖θ(r

√
L)f − θ(

√
L)f ‖p → 0 as r → 1

and hence there exists r < 1 such that ‖θ(r
√

L)f − θ(
√

L)f ‖p < ε/2.
It remains to show that ‖θ(δ

√
L)f − θ(r

√
L)f ‖p = 0. Let λ < ν < λ/r and de-

note briefly h(u) := [θ(δu)−θ(ru)]u−2m. Note that supph ⊂ [λ/r,R/δ]. Then using
our assumption we have

∥∥θ(δ
√

L)f − θ(r
√

L)f
∥∥

p
= ∥∥h(

√
L)Lmf

∥∥
p

≤ ∥∥h(
√

L)
∥∥

p→p

∥∥Lmf
∥∥

p

≤ cν

∥∥h(
√

L)
∥∥

p→p
ν2m‖f ‖p, ∀m ≥ 1.

As above, set k := �2d� + 2, then 2d + 1 < k ≤ 2d + 2. Now, applying Theorem 3.4
and Proposition 2.6 it follows that

∥
∥h(

√
L)
∥
∥

p→p
≤ c(R/δ)2k+d+4[‖h‖∞ + ∥∥h(2k+4)

∥
∥∞
]

≤ c′m2k+4(λ/r)−2m

and hence
∥∥θ(δ

√
L)f − θ(r

√
L)f
∥∥

p
≤ cm4d+8(rν/λ)2m‖f ‖p.

Here the constant c depends on δ, r,R,d,λ, ν, but is independent of m. Since 0 <

rν/λ < 1 by letting m → ∞ we obtain ‖θ(δ
√

L)f − θ(r
√

L)f ‖p = 0. Therefore,
(b) =⇒ (a). �

We now establish a Jackson estimate for approximation from Σ
p
t .

Theorem 3.15 Let 1 ≤ p ≤ ∞. Then for any m ∈ N there exists a constant cm > 0
such that for any t ≥ 1

Et (f )p ≤ cmt−2m
∥∥Lmf

∥∥
p

for f ∈ D
(
Lm
)∩ L

p. (3.39)
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Proof Let θ ∈ C∞(R), θ(u) = 1 for u ∈ [0,1], 0 ≤ θ ≤ 1, and supp θ ⊂ [0,2]. Set
ϕ(u) := θ(u/2) − θ(u). Then 1 − θ(u) =∑j≥0 ϕ(2−j u), u ∈ R+. Given t > 0, set

δ := 2/t . Assume f ∈ D(Lm) ∩ L
p . Clearly, θ(δ

√
L)f ∈ Σ

p
t and hence

Et (f )p ≤ ∥∥f − θ(δ
√

L)f
∥
∥

p
≤
∑

j≥0

∥
∥ϕ
(
2−j δ

√
L
)
f
∥
∥

p
.

Denote briefly h(u) := ϕ(u)u−2m. Then ϕ(2−j δ
√

L)L−m = (2−j δ)2mh(2−j δ
√

L)

and, therefore,
∥∥ϕ
(
2−j δ

√
L
)
f
∥∥

p
≤ ∥∥ϕ(2−j δ

√
L
)
L−mLmf

∥∥
p

≤ (2−j δ
)2m∥∥h

(
2−j δ

√
L
)∥∥

p→p

∥∥Lmf
∥∥

p
.

By Theorem 3.4 and Proposition 2.6 it follows that ‖h(2−j δ
√

L)‖p→p ≤ c(d,m) and
hence

Et (f )p ≤ ct−2m
∥∥Lmf

∥∥
p

∑

j≥0

2−2mj ≤ c′t−2m
∥∥Lmf

∥∥
p
,

which gives (3.39). �

3.5.2 Characterization of Approximation Spaces

Once the Bernstein and Jackson estimates are established, the approximation
spaces As

pq , defined in (3.35)–(3.36), can be characterized by interpolation. In the
following we shall denote by (X0,X1)θ,q the real interpolation space between the
normed spaces X0, X1, see e.g. [3, 4].

Theorem 3.16 Let s > 0, 1 ≤ p ≤ ∞ and 0 < q ≤ ∞. Then for any r > s

As
pq = (Lp,D(

√
L)r
)
θ,q

, s = θr. (3.40)

Proof A classical argument (e.g. [15]) using the Jackson and Bernstein estimates
from (3.39) and (3.37) implies the following characterization of the spaces As

pq :
If 2m > s, then

As
pq = (Lp,D

(
Lm
))

θ,q
= (Lp,D(

√
L)2m
)
θ,q

, s = 2θm. (3.41)

Thus (3.40) holds for r = 2m. On the other hand, −√
L is the infinitesimal generator

of the subordinate semigroup Qtf = ∫∞
0

te−t2/4s

2s
√

πs
e−sLf dμ(s) on L

p , and by a well-
known result (e.g. [4]) if 1 ≤ r < k, then

(
L

p,D(
√

L)k
)
θ,1 ⊂ D(

√
L)r ⊂ (Lp,D(

√
L)k
)
θ,∞, θ = r/k.

Therefore, if 1 ≤ r < 2m and θ0 = r
2m

, then

Ar
p1 = (Lp,D(

√
L)2m
)
θ0,1

⊂ D(
√

L)r ⊂ (Lp,D(
√

L)2m
)
θ0,∞ = Ar

p∞
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This along with (3.41) implies
(
L

p,
(
L

p,D(
√

L)2m
)
θ0,1

)
θ,q

⊂ (Lp,D(
√

L)r
)
θ,q

⊂ (Lp,
(
L

p,D(
√

L)2m
)
θ0,∞
)
θ,q

and by the reiteration theorem (e.g. [3]) this leads to
(
L

p,D(
√

L)r
)
θ,q

= (Lp,D(
√

L)2m
)
θθ0,q

= As
pq, s = 2θθ0m = θr.

The proof is complete. �

Remark 3.17 From the above, As
pq = (Lp,D(Lm))θ,q , s = 2θm, 0 < s < 2m, but

then as is well-known (e.g. [4])

‖f ‖As
pq

∼ ‖f ‖p +
(∫ 1

0

(
t−s/2

∥∥(e−tL − Id
)m

f
∥∥

p

)q dt

t

)1/q

with the usual modification for q = ∞. Moreover, since e−tL is a holomorphic semi-
group, we also have

‖f ‖As
pq

∼ ‖f ‖p +
(∫ 1

0

(
t−s/2
∥∥(tL)me−tLf

∥∥
p

)q dt

t

)1/q

with the usual modification for q = ∞.

3.6 Kernel Norms

Here we derive bounds on the L
p-norms of the kernels of operators of the form

θ(δ
√

L), which will be important for the development of frames.

Theorem 3.18 Let θ ∈ C∞(R+), θ ≥ 0, supp θ ⊂ [0,R] for some R > 1, and
θ(2ν+1)(0) = 0, ν = 0,1, . . . . Suppose that either

(i) θ(u) ≥ 1 for u ∈ [0,1], or
(ii) θ(u) ≥ 1 for u ∈ [1, b], where b > 1 is a sufficiently large constant.
Then for 0 < p ≤ ∞, 0 < δ ≤ min{1, diamM

3 }, and x ∈ M we have

c1
∣∣B(ξ, δ)

∣∣1/p−1 ≤ ∥∥θ(δ
√

L)(x, ·)∥∥
p

≤ c2
∣∣B(x, δ)

∣∣1/p−1
, (3.42)

where c1 > 0 depends only on p and the parameters of the space, and c2 > 0 depends
on p and the smoothness and the support of θ similarly as in Theorem 3.4.

Proof By Theorem 3.4 we have |θ(δ
√

L)(x, y)| ≤ cσ Dδ,σ (x, y) for any σ > 0. Pick
σ > d(1/2 + 1/p). Then the upper bound estimate in (3.42) follows readily by esti-
mate (2.10).

It is not hard to see that to prove the lower bound estimate in (2.10) it suffices to
have it for p = 2 and p = ∞ and use the already established upper bound. However,
clearly
∥∥θ(δ

√
L)(x, ·)∥∥2

2 = θ2(δ
√

L)(x, x) and
∥∥θ(δ

√
L)(x, ·)∥∥∞ ≥ θ(δ

√
L)(x, x),

and it boils down to establishing lower bounds on θ2(δ
√

L)(x, x) and θ(δ
√

L)(x, x).
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Further, let f,g ∈ L
∞(R+) be bounded, suppf,g ⊂ [0,R], and 0 ≤ g ≤ f . Then

f = g + h for some h ≥ 0, and hence f (
√

L)(x, x) = g(
√

L)(x, x) + h(
√

L)(x, x).
On the other hand, by (3.20) f (

√
L)(x, x) = ∫

M
|√f (

√
L)(x, y)|2dμ(y) ≥ 0, and

we have similar representations of g(
√

L)(x, x) and h(
√

L)(x, x). Therefore,

0 ≤ g ≤ f =⇒ 0 ≤ g(
√

L)(x, x) ≤ f (
√

L)(x, x). (3.43)

This allows to compare the kernels of different operators and we naturally come to
the next lemma which is interesting in its own right.

Lemma 3.19 (a) There exist constants c3, c4 > 0 such that for any τ ≥ 1

c3
∣∣B
(
x, τ−1)∣∣−1 ≤ 1[0,τ ](

√
L)(x, x) ≤ c4

∣∣B
(
x, τ−1)∣∣−1

. (3.44)

(b) There exists b > 1 such that if τ ≥ 1 and τ−1 ≤ diamM
3 , then

c5
∣∣B
(
x, τ−1)∣∣−1 ≤ 1[τ,bτ ](

√
L)(x, x) ≤ c6

∣∣B
(
x, τ−1)∣∣−1

, (3.45)

where c5, c6 > 0 depend only on the parameters of the space.

Proof We first show that

pt (x, y) = lim
τ→∞1[0,τ ](

√
L)pt (x, y), t > 0. (3.46)

Indeed, we have

1[0,τ ](
√

L)e−tL + 1(τ,∞)(
√

L)e−tL = e−tL,

and since 1[0,τ ](
√

L)e−tL is a kernel operator (Theorem 3.7), then 1(τ,∞)(
√

L)e−tL

is also a kernel operator and

1[0,τ ](
√

L)pt (x, y) + 1(τ,∞)(
√

L)pt (x, y) = e−tL(x, y). (3.47)

On the other hand,

1(τ,∞)(
√

L)e−tL = e− t
4 L
[
1(τ,∞)(

√
L)e− t

2 L
]
e− t

4 L,

and by spectral theory ‖1(τ,∞)(
√

L)e− t
2 L‖2→2 = e− t

2 τ 2
. Therefore, applying Propo-

sition 2.9 we arrive at

1(τ,∞)(
√

L)pt (x, y) ≤ c
e− t

2 τ 2

√|B(x,
√

t/2)||B(y,
√

t/2)| → 0 as τ → ∞.

This and (3.47) imply (3.46).
We also need these bounds on the heat kernel:

c′∣∣B(x,
√

t)
∣∣−1 ≤ pt (x, x) ≤ c|B(x,

√
t)|−1, 0 < t ≤ 1. (3.48)
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The upper bound is immediate from (1.4). For the lower bound we have for � > 1,
using (1.7),

pt (x, x) =
∫

M

[
pt/2(x, y)

]2
dμ(y) ≥

∫

B(x,2�
√

t)

[
pt/2(x, y)

]2
dμ(y)

≥ 1

|B(x,2�
√

t
)|
[∫

B(x,2�
√

t)

pt/2(x, y)dμ(y)

]2

≥ 2−�d

|B(x,
√

t)|
[

1 −
∫

M\B(x,2�
√

t)

pt/2(x, y)dμ(y)

]2

.

However, by (1.4) pt/2(x, y) ≤ cσ D√
t,σ (x, y) for any σ > 0, and hence, just as in

the proof of Proposition 3.8,

∫

M\B(x,2�
√

t)

e−t/2L(x, y)dμ(y) ≤ c2−� ≤ 1

2

for a sufficiently large � (the constant c is independent of �). This completes the proof
of the lower bound estimate in (3.48).

We now turn to the proof of (3.44). Since 1[0,τ ](u) ≤ ee−τ−2u2
we obtain, using

(3.43) and (3.48)

1[0,τ ](
√

L)(x, x) ≤ ee−τ−2(
√

L)2
(x, x) ≤ c

∣∣B
(
x, τ−1)∣∣−1

,

which gives the right-hand side estimate in (3.44).
For the proof of the left-hand side estimate in (3.44), we first note that for any

t > 0

e−tu2 = 1[0,τ ](u)e−tu2 +
∑

k≥0

1(2kτ,2k+1τ ](u)e−tu2

≤ 1[0,τ ](u) +
∑

k≥0

1[0,2k+1τ ](u)e−t22kτ 2
.

From this, (3.43), (3.46), (3.48), and the right-hand side estimate in (3.44) we obtain

c′∣∣B(x,
√

t)
∣∣−1 ≤ pt(x, x)

≤ 1[0,τ ](
√

L)(x, x) +
∑

k≥1

1[0,2k+1τ ](
√

L)(x, x)e−t22kτ 2

≤ 1[0,τ ](
√

L)(x, x) + c4

∑

k≥1

e−t22kτ 2 ∣∣B
(
x,2−k−1τ−1)∣∣−1

≤ 1[0,τ ](
√

L)(x, x) + c4
∣∣B
(
x, τ−1)∣∣−1∑

k≥1

e−t22kτ 2
2(k+1)d .
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Here for the latter inequality we used (2.1). Given τ ≥ 1 and r ∈ N we choose t so
that τ

√
t = 2r . Then from above

c′2−rd

|B(x, τ−1)| ≤ c′

|B(x,
√

t)| ≤ 1[0,τ ](
√

L)(x, x) + c42d2−rd

|B(x, τ−1)|
∑

k≥0

e−22k22r

2(k+r)d

≤ 1[0,τ ](
√

L)(x, x) + c42d2−rd

|B(x, τ−1)|
∑

k≥r

e−22k

2kd .

Hence,

2−rd

|B(x, τ−1)|
(

c′ − c42d
∑

k≥r

e−22k

2kd

)
≤ 1[0,τ ](

√
L)(x, x).

Taking r ∈ N sufficiently large, this implies the left-hand side estimate in (3.44).
We now take on (3.45). The right-hand side estimate follows from the right-hand

side estimate in (3.44). Using (3.44) and the reverse doubling condition (1.2) with
τ−1 ≤ diamM

3 , we obtain for l ∈ N

1[τ,2l τ ](
√

L)(x, x) = 1[0,2l τ ](
√

L)(x, x) − 1[0,τ ](
√

L)(x, x)

≥ c3

|B(x,2−lτ−1)| − c4

|B(x, τ−1)| ≥ c32lβ − c4

|B(x, τ−1)| ,

which leads to (3.45) with b = 2l for sufficiently large l. �

Completion of the proof of Theorem 3.18 We now focus on the left-hand side es-
timate in (3.42). Suppose θ obeys condition (ii) from the hypothesis of the theo-
rem, i.e. θ(u) ≥ 1 on [1, b], where b > 1 is the same as in Lemma 3.19(b) (the
proof in the other case is the same). Then by (3.43) and Lemma 3.19 we have for
0 < δ ≤ min{1, diamM

3 }
∥∥θ(δ

√
L)(x, ·)∥∥∞ ≥ θ(δ

√
L)(x, x) ≥ 1[1,b](δ

√
L)(x, x)

= 1[δ−1,δ−1b](
√

L)(x, x) ≥ c5
∣∣B(x, δ)

∣∣−1
.

On the other hand

∥∥θ(δ
√

L)(x, ·)∥∥2
2 = θ2(δ

√
L)(x, x) ≥ c5

∣∣B(x, δ)
∣∣−1

,

where for the last estimate we proceeded as above. Thus so far we have

∥∥θ(δ
√

L)(x, ·)∥∥
p

≤ c2
∣∣B(x, δ)

∣∣1/p−1
, 0 < p ≤ ∞,

∥∥θ(δ
√

L)(x, ·)∥∥∞ ≥ c5
∣∣B(x, δ)

∣∣−1 and
∥∥θ(δ

√
L)(x, ·)∥∥2

2 ≥ c5
∣∣B(x, δ)

∣∣−1
.

(3.49)
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Now, for 0 < p < ∞ the left-hand side estimate in (3.42) follows from the estimates
in (3.49) in a standard manner. Indeed, set f := θ(δ

√
L)(x, ·). If 0 < p < 2, then

using (3.49) we get

c5
∣
∣B(x, δ)

∣
∣−1 ≤ ‖f ‖2

2 ≤ ‖f ‖p
p‖f ‖2−p∞ ≤ c‖f ‖p

p

∣
∣B(x, δ)

∣
∣−2+p

,

which implies ‖f ‖p ≥ c′|B(x, δ)|1/p−1. If 2 < p < ∞, we use (3.49) and Hölder’s
inequality to obtain

c5
∣∣B(x, δ)

∣∣−1 ≤ ‖f ‖2
2 ≤ ‖f ‖p‖f ‖p′ ≤ c‖f ‖p

p

∣∣B(x, δ)
∣∣1/p′−1 (

1/p + 1/p′ = 1
)
.

This leads again to ‖f ‖p ≥ c′|B(x, δ)|1/p−1. �

3.7 Finite Dimensional Spectral Spaces

It is easy to see that in the case when μ(M) < ∞ the spectrum of L is discrete and the
respective eigenspaces are finitely dimensional. This and some other related simple
facts are collected in the following statement, where we adhere to the notation from
the previous subsections.

Proposition 3.20 The following claims are equivalent:
(a) diamM < ∞.
(b) μ(M) < ∞.
(c) There exists δ > 0 such that

∫
M

μ(B(x, δ))−1dμ(x) < ∞ and hence we have∫
M

μ(B(x, r))−1dμ(x) < ∞ for all r > 0.
(d) The spectrum of the operator L is discrete and of the form 0 ≤ λ1 < λ2 < · · · ,

L
2 =
∑⊕

j

Hλj
, where Hλj

= Ker(L − λj Id), and dim(Hλj
) < ∞.

(e) There exists t > 0 such that

∥
∥e−tL

∥
∥2

HS
=
∫

M

∫

M

∣
∣pt(x, y)

∣
∣2dμ(x)dμ(y) =

∫

M

p2t (x, x)dμ(x) < ∞,

and hence this is true for all t > 0.
(f) There exists λ ≥ 1 (and hence ∀λ ≥ 1) Σ∞

λ = Σ1
λ (= Σ

p
λ for all 1 ≤ p ≤ ∞).

Furthermore, if one of the above holds, then for λ ≥ 1

dim(Σλ) ∼
∫

M

μ
(
B
(
x,λ−1))−1

dμ(x) and dim(Σ√
λ) ∼ ‖e−λL‖2

HS, (3.50)

where Σλ =∑⊕√
λj ≤λ

Hλj
. In addition,

pt(x, y) =
∑

j≥1

e−λj PHj
(x, y), PHj

(x, y) =
dim(Hj )∑

l=1

el
j (x)el

j (y), (3.51)

Author's personal copy



J Fourier Anal Appl

where {el
j : l = 1, . . . ,dim(Hj )} is an orthonormal basis for Hj , Lel

j = λje
l
j .

The convergence is uniform and pt (x, y) is a positive definite kernel.

Proof As already shown in Proposition 2.1, (a) and (b) are equivalent. Note that, since
in our setting closed balls are compact, (a) or (b) is also equivalent to the compactness
of M .

Clearly (b) implies (f) as Σ1
λ ⊂ Σ∞

λ ⊂ L
∞ ⊂ L

1 and Σ∞
λ ∩ L

1 = Σ1
λ .

To show that (f) implies (b), assume Σ∞
λ = Σ1

λ . Then if θ ∈ C∞
0 (R+), θ ≡ 1 in

the neighborhood of 0 and supp θ ⊂ [0, λ] we have θ(
√

L)f ∈ Σ∞
λ = Σ1

λ ∀f ∈ L
∞.

Hence 1 = θ(
√

L)(1) ∈ L
1, which implies μ(M) < ∞.

Assume that (a)–(b) hold and fix x0 ∈ M . Then using (2.1)–(2.2) we get

∣∣B(x0,1)
∣∣ ≤ 2d

(
1 + ρ(x0, x)

)d ∣∣B(x,1)
∣∣

≤ (4/δ)d
(
1 + ρ(x0, x)

)d ∣∣B(x, δ)
∣
∣, 0 < δ ≤ 1,

which readily implies

∫

M

∣∣B(x, δ)
∣∣−1

dμ(x) ≤ (4/δ)d
∣∣B(x0,1)

∣∣(1 + D)|M| < ∞.

Thus (a)–(b) imply (c).
For the other direction, assume that (c) holds and let Xδ be a maximal δ-net on M

with a companion disjoint partition {Aξ }ξ∈Xδ
of M as in Proposition 2.5. Then we

use (2.1)–(2.2) again to obtain

#Xδ ≤ 2d
∑

ξ∈Xδ

|Aξ |
|B(ξ, δ)| ≤ 8d

∑

ξ∈Xδ

∫

Aξ

1

|B(x, δ)|dμ(x) = 8d

∫

M

∣∣B(x, δ)
∣∣−1

dμ(x).

Hence #Xδ < ∞, which readily implies diam(M) < ∞. So, (c) implies (a).
Since

∫
M

pt(x, y)2dμ(y) = pt(x, x), the equivalence of (c) and (e) is immediate
from (1.4).

It remains to show that (c) and (d) are equivalent. Suppose (c) holds true. Since
E2

λ = Eλ, we have

∫

M

∣∣Eλ(x, y)
∣∣2dμ(y) =

∫

M

Eλ(x, y)Eλ(y, x)dμ(y) = E2
λ(x, x) = Eλ(x, x) (3.52)

and hence, using Lemma 3.19,

∫

M

∫

M

∣∣Eλ(x, y)
∣∣2dμ(x)dμ(y) =

∫

M

Eλ(x, x)dx =
∫

M

1[0,
√

λ](
√

L)(x, x)dμ(x)

≤ c

∫

M

∣∣B
(
x,λ−1/2)∣∣−1

dμ(x) < ∞, λ ≥ 1.
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Therefore, Eλ (λ ≥ 1) is a Hilbert-Schmidt operator on L
2 and hence its spectrum is

discrete. Suppose {ej }j∈J is an orthonormal family, verifying Eλej = ej , and put

H(x,y) =
∑

j∈J

ej (x)ej (y).

Evidently, H 2 = H and as in (3.52)
∫
M

|H(x,y)|2dμ(y)=H(x,x)=∑j∈J |ej (x)|2.
On the other hand EλH = HEλ = H and hence

H(x,x) =
∫

M

Eλ(x, y)H(y, x)dμ(y)

≤
(∫

M

∣∣Eλ(x, y)
∣∣2dμ(y)

)1/2(∫

M

∣∣H(y,x)
∣∣2dμ(y)

)1/2

≤√Eλ(x, x)
√

H(x,x).

Consequently, H(x,x) ≤ Eλ(x, x). Thus

#J =
∫

M

∑

j∈J

∣∣ej (x)
∣∣2dμ(x) =

∫

M

H(x,x)dx ≤
∫

M

Eλ(x, x)dx

=
∫

M

1[0,
√

λ](
√

L)(x, x)dx ≤ c

∫

M

∣∣B
(
x,λ−1/2)∣∣dμ(x) < ∞.

Therefore, dim(Σ√
λ) ≤ c

∫
M

|B(x,λ−1/2)|dμ(x) < ∞, which shows that (c) im-
plies (d).

Finally, assume that (d) holds true. Let {ej }j∈J be an orthonormal basis of Σλ,
λ ≥ 1. Then Eλ(x, y) = ∑j∈J ej (x)ej (y), where #J = dim(Σλ). Now, using
Lemma 3.19 we infer

c3

∫

M

∣
∣B
(
x,λ−1/2)∣∣dμ(x) ≤

∫

M

1[0,
√

λ](
√

L)(x, x)dx

=
∫

M

Eλ(x, x)dμ(x) = dim(Σ√
λ) < ∞.

Thus (d) implies (c).
The estimates in (3.50) follow from above. The last assertion of the theorem is

Mercer’s theorem (see [18]). �

4 Sampling Theorem and Cubature Formula

Basic tools for constructing decomposition systems (frames) for various spaces will
be a sampling theorem for Σ

p
λ and a cubature formula for Σ1

λ . In turn these re-
sults will rely on the nearly exponential localization of operator kernels induced by
smooth cut-off functions ϕ (Theorem 3.4): If ϕ ∈ C∞(R+), suppϕ ⊂ [0, b], b > 1,

Author's personal copy



J Fourier Anal Appl

0 ≤ ϕ ≤ 1, and ϕ = 1 on [0,1], then there exists a constant α > 0 such that for any
δ > 0 and x, y, x′ ∈ M

∣∣ϕ(δ
√

L)(x, y)
∣∣≤ K(σ)Dδ,σ (x, y) and (4.1)

∣∣ϕ(δ
√

L)(x, y) − ϕ(δ
√

L)
(
x′, y
)∣∣≤ K(σ)

(
ρ(x, x′)

δ

)α

Dδ,σ (x, y), ρ
(
x, x′)≤ δ.

(4.2)

Here K(σ) > 1 depends on ϕ, σ and the other parameters, but is independent of
x, y, x′ and δ.

The main ingredient in our constructions will be the following Marcinkiewicz-
Zygmund inequality for Σ1

λ , where maximal δ-nets (see Sect. 2.3) will be utilized.

Proposition 4.1 Given λ ≥ 1, let Xδ be a maximal δ-net on M with δ := γ
λ

, where
0 < γ ≤ 1. Suppose {Aξ }ξ∈Xδ

is a companion disjoint partition of M consisting of
measurable sets such that B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ Xδ . Then for any f ∈ Σ

p
λ ,

1 ≤ p < ∞,

∑

ξ∈Xδ

∫

Aξ

∣
∣f (x) − f (ξ)

∣
∣pdx ≤ [K(σ∗)γ αc�]p‖f ‖p

p, (4.3)

and for any f ∈ Σ∞
λ

sup
ξ∈Xδ

sup
x∈Aξ

∣∣f (x) − f (ξ)
∣∣≤ K(σ∗)γ αc�‖f ‖∞, (4.4)

where K(σ∗) is the constant from (4.1)–(4.2) with σ∗ := 2d + 1 and c� = 22d+1.

Proof Suppose ϕ is a cut-off function as in (4.1)–(4.2). Then we have f =∫
M

ϕ(λ−1
√

L)(·, y)f (y)dy for f ∈ Σ
p
λ , 1 ≤ p ≤ ∞, and using (4.2) with δ = λ−1

we obtain for 1 ≤ p < ∞
∑

ξ∈Xδ

∫

Aξ

∣∣f (x) − f (ξ)
∣∣pdx

=
∑

ξ∈Xδ

∫

Aξ

∣∣∣∣

∫

M

[
ϕ
(
λ−1

√
L
)
(x, y) − ϕ

(
λ−1

√
L
)
(ξ, y)

]
f (y)dy

∣∣∣∣

p

dx

≤ K(σ∗)p
∑

ξ∈Xdd

∫

Aξ

(∫

M

(
λρ(x, ξ)

)α
Dδ,σ∗(x, y)

∣∣f (y)
∣∣dy

)p

dx

≤ K(σ∗)pγ αp

∫

M

(∫

M

Dδ,σ∗(x, y)
∣
∣f (y)

∣
∣dy

)p

dx ≤ [K(σ∗)γ αc�]p‖f ‖p
p,

where for the last inequality we used Proposition 2.6. The proof of (4.4) is similar. �
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4.1 The Sampling Theorem

The following sampling theorem will play an important role in the sequel.

Theorem 4.2 Let 0 < γ < 1 and

K(σ∗)γ αc� ≤ 1

2
, (4.5)

where K(σ∗) is the constant from (4.2) with σ∗ := 2d + 1 and c� = 22d+1. For
a given λ ≥ 1 let Xδ be a maximal δ-net on M with δ := γ

λ
and suppose {Aξ }ξ∈Xδ

is a companion disjoint partition of M consisting of measurable sets such that
B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ Xδ . Then for any f ∈ Σ

p
λ , 1 ≤ p < ∞,

1

2
‖f ‖p ≤

(∑

ξ∈Xδ

|Aξ |
∣∣f (ξ)

∣∣p
)1/p

≤ 2‖f ‖p (4.6)

and for f ∈ Σ∞
λ

1

2
‖f ‖∞ ≤ sup

ξ∈Xδ

∣∣f (ξ)
∣∣≤ ‖f ‖∞. (4.7)

Furthermore, if 0 < γ < 1 is selected so that

K(σ∗)γ αc� ≤ ε

3
, (4.8)

(instead of (4.5)) for a given 0 < ε < 1, then for any f ∈ Σ
p
λ , 1 ≤ p ≤ 2,

(1 − ε)‖f ‖p
p ≤
∑

ξ∈Xδ

|Aξ |
∣∣f (ξ)

∣∣p ≤ (1 + ε)‖f ‖p
p. (4.9)

Proof We first prove (4.9). It is easy to see that

1

(1 + δ)p−1
|a|p ≤ 1

δp−1
|a − b|p + |b|p if 0 < δ < 1, a, b ∈ C and 1 ≤ p. (4.10)

which implies :

(1 − δ)|a|p ≤ 1

δp−1
|a − b|p + |b|p if 0 < δ < 1, a, b ∈ C and 1 ≤ p ≤ 2. (4.11)

This inequality with δ := ε/3 implies

(1 − ε/3)

∫

Aξ

∣∣f (x)
∣∣pdx ≤ 1

(ε/3)p−1

∫

Aξ

∣∣f (x) − f (ξ)
∣∣pdx + |Aξ |

∣∣f (ξ)
∣∣p,

(4.12)

(1 − ε/3)|Aξ |
∣∣f (ξ)

∣∣p ≤ 1

(ε/3)p−1

∫

Aξ

∣∣f (x) − f (ξ)
∣∣pdx +

∫

Aξ

∣∣f (x)
∣∣pdx.

(4.13)
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Summing up estimates (4.12) over ξ ∈ Xδ , we get

(1 − ε/3)‖f ‖p
p ≤ 1

(ε/3)p−1

∑

ξ∈Xδ

∫

Aξ

∣∣f (x) − f (ξ)
∣∣pdx +

∑

ξ∈Xδ

|Aξ |
∣∣f (ξ)

∣∣p

≤ 1

(ε/3)p−1

[
K(σ∗)γ αc�]p‖f ‖p

p +
∑

ξ∈Xδ

|Aξ |
∣∣f (ξ)

∣∣p

≤ ε

3
‖f ‖p

p +
∑

ξ∈Xδ

|Aξ |
∣∣f (ξ)

∣∣p,

which implies the left-hand side estimate in (4.9). Here for the second estimate we
used (4.3).

Similarly, we sum up estimates (4.13) and use again (4.3) to obtain

(1 − ε/3)
∑

ξ∈Xδ

|Aξ |
∣
∣f (ξ)

∣
∣p ≤ 1

(ε/3)p−1

∑

ξ∈Xδ

∫

Aξ

∣
∣f (x) − f (ξ)

∣
∣pdx + ‖f ‖p

p

≤ 1

εp−1

[
K(σ∗)γ αc�]p‖f ‖p

p + ‖f ‖p
p ≤ (1 + ε/3)‖f ‖p

p,

which readily yields the right-hand side estimate in (4.9).
To establish (4.6) note that (using (4.10)) 1

2p−1 |a|p ≤ |a − b|p + |b|p for a, b ∈ C

and 1 ≤ p < ∞, which leads to

1

2p−1

∫

Aξ

∣∣f (x)
∣∣pdx ≤

∫

Aξ

∣∣f (x) − f (ξ)
∣∣pdx + |Aξ |

∣∣f (ξ)
∣∣p,

1

2p−1
|Aξ |
∣∣f (ξ)

∣∣p ≤
∫

Aξ

∣∣f (x) − f (ξ)
∣∣pdx +

∫

Aξ

∣∣f (x)
∣∣pdx.

Then one proceeds exactly as above and obtains (4.6). The proof of (4.7) is simpler
and will be omitted. �

Remark 4.3 Observe that under the assumptions of Theorem 4.2 one has, using (1.1)
and (2.1),

(4/γ )−d
∣∣B
(
ξ,λ−1)∣∣ ≤ 2−d

∣∣B
(
ξ, γ λ−1)∣∣≤ |Aξ |

≤ ∣∣B(ξ, γ λ−1)∣∣≤ ∣∣B(ξ,λ−1)∣∣, ξ ∈ Xδ.

Then estimates (4.6) imply that for f ∈ Σ
p
λ , 1 ≤ p < ∞,

1

2
(γ /4)d/p

(
∑

ξ∈Xδ

∣
∣B
(
ξ,λ−1

)∣∣
∣
∣f (ξ)

∣
∣p
)1/p

≤ ‖f ‖p ≤ 2

(
∑

ξ∈Xδ

∣
∣B
(
ξ,λ−1

)∣∣
∣
∣f (ξ)

∣
∣p
)1/p

.

(4.14)
Also, note that estimates (4.9) are immediate for p = ∞ with the usual modification
and hold when 2 < p < ∞ with some modification of the constant in (4.8) (γ depends
on p). We do not elaborate on this since we shall only need (4.9) for p = 2.
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4.2 Cubature Formula for Σ1
λ

In this subsection we utilize the Marcinkiewicz-Zygmund inequality from Proposi-
tion 4.1 for the construction of a cubature formula on Σ1

λ .

Theorem 4.4 Let 0 < γ < 1 and

K(σ∗)γ αc� = 1

4
. (4.15)

Let λ ≥ 1 and suppose Xδ is a maximal δ-net on M with δ := γ λ−1. Then there exist
positive constants (weights) {wλ

ξ }ξ∈Xδ
such that

∫

M

f (x)dμ(x) =
∑

ξ∈Xδ

wλ
ξ f (ξ), f ∈ Σ1

λ, (4.16)

and

2

3

∣∣B(ξ, δ/2)
∣∣≤ wλ

ξ ≤ 2
∣∣B(ξ, δ)

∣∣, ξ ∈ Xδ. (4.17)

We shall derive this theorem from Proposition 4.1 and a version of the Hahn-
Banach theorem for ordered linear spaces. We next give a theorem of Bauer of this
sort (adapted to the case of linear normed spaces) that best serves our purposes and
refer the reader to [1] for its proof.

Theorem 4.5 (Bauer) Suppose E is a linear normed space, F ⊂ E is a subspace
of E, and C is a convex cone in E, which determines an order on E (f ≤ g if g −f ∈
C). Set V := {f ∈ E : ‖f ‖ ≤ 1}. Let Λ : F → R be a linear functional on F . Then Λ

can be extended to a linear functional Λ̃ on E which is (i) positive, i.e. Λ̃(f ) ≥ 0 if
f ∈ C, and (ii) |Λ̃(f )| ≤ ‖f ‖ for f ∈ E, if and only if

Λ(f ) ≥ −1 for all f ∈ F ∩ (V + C). (4.18)

A simple rescaling shows that the theorem holds if the condition in (ii) above is re-
placed by Λ̃(f ) ≤ c�‖f ‖ and the condition in (4.18) by Λ(f ) ≥ −c�, where c� > 0
is a constant.

We next show how the Marcinkiewicz-Zygmund inequality implies the existence
of a quadrature rule in a general setting and then apply the result to our particular
case.

Proposition 4.6 Suppose (X,μ) is a measure space and let H be a space of μ-
integrable functions defined everywhere on X. Suppose {Ai}i∈I is a finite or count-
able disjoint partition of X, i.e. X =⋃i∈I Ai and Ai ∩ Aj = ∅ if i �= j , consisting of
measurable subsets of X of finite measure (0 < μ(Ai) < ∞). Let ξi ∈ Ai , i ∈ I . Also,
assume that there exists a constant α < 1

2 such that

∑

i∈I

∫

Ai

∣∣f (x) − f (ξi)
∣∣dμ(x) ≤ α

∫

X

∣∣f (x)
∣∣dμ(x), f ∈ H. (4.19)
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Then there exist positive constants {γi}i∈I such that

∫

X

f (x)dμ(x) =
∑

i∈I

γif (ξi) for f ∈ H, (4.20)

and

1 − 2α

1 − α
μ(Ai) ≤ γi ≤ 1 + 2α

1 − α
μ(Ai), i ∈ I. (4.21)

Proof Consider the discrete positive measure dν :=∑i∈I μ(Ai)δξi
on X, supported

on the set X := {ξi : i ∈ I }, and let L
1(ν) be the respective (weighted discrete)

L1-space. By (4.19) we obtain for f ∈ H
∣∣∣∣

∫

X

f dμ −
∫

X

f dν

∣∣∣∣≤ α

∫

X

|f |dμ,

and

(1 − α)‖f ‖L1(μ) ≤ ‖f ‖L1(ν) ≤ (1 + α)‖f ‖L1(μ). (4.22)

Hence
∫

X

f dμ −
∫

X

f dν ≥ −α

∫

X

|f |dμ ≥ − α

1 − α

∫

X

|f |dν,

which readily implies

∫

X

f dμ − 1 − 2α

1 − α

∫

X

f dν ≥ − α

1 − α

∫

X

(|f | − f
)
dν. (4.23)

On the other hand, (4.22) yields that the operator J : f ∈ H �→ {f (ξi)}i∈I ∈ L
1(ν) is

continuous and, moreover, if J (H) = H̃ ⊂ L
1(ν), then the operator

J−1 : g ∈ H̃ �→
∫

X

J−1(g)dμ

is well-defined and continuous, and by (4.23)

∫

X

J−1(g)dμ − 1 − 2α

1 − α

∫

X

gdν ≥ − 2α

1 − α

∫

X

(|g| − g
)
dν. (4.24)

Let the linear functional Λ : H̃ �→ R be defined by

Λ : g ∈ H̃ �→ Λ(g) :=
∫

X

J−1(g)dμ − 1 − 2α

1 − α

∫

X

gdν. (4.25)

We next apply Theorem 4.5 with E = L
1(ν), F = H̃,

C = {f ∈ L
1(ν) : f (ξ) ≥ 0, ξ ∈ X

}
, V = {f ∈ L

1(ν) : ‖f ‖L1(ν) ≤ 1
}
,
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and the linear functional Λ from (4.25). Evidently, in this case, f ∈ F ∩ (V + C)

if and only if f ∈ H̃ and f can be represented in the form f = g + h, where
‖g‖L1(ν) ≤ 1 and h ≥ 0. Then by (4.24) it follows that

Λ(f ) = Λ(g + h) ≥ − 2α

1 − α

∫

X

(|g + h| − g − h
)
dν

≥ − 2α

1 − α

∫

X

(|g| − g
)
dν ≥ − 4α

1 − α

∫

X

|g|dν ≥ − 4α

1 − α
=: −c�.

Applying now Theorem 4.5 we conclude that there exists a positive continuous ex-

tension Λ̃ of Λ to L
1(ν) such that ‖Λ̃‖ ≤ c� = 4α

1−α
. However, as is well-known

(see e.g. [16]) (L1(ν))∗ = L
∞(ν). Therefore, there exists a sequence β ∈ L

∞(ν),
β = {βi}i∈I , such that ‖β‖∞ = supi∈I βi ≤ 4α

1−α
and

Λ̃(f ) =
∑

i∈I

f (ξi)βiμ(Ai), f ∈ L
1(ν).

Since Λ̃ is positive, we have βi ≥ 0, i ∈ I . Consequently, for any f ∈ H

Λ(f ) =
∫

X

f dμ − 1 − 2α

1 − α

∑

i

μ(Ai)f (ξi) =
∑

i

βiμ(Ai)f (ξi),

where 0 ≤ βi ≤ 2α
1−α

, which leads to
∫
X

f (x)dμ(x) =∑i∈I γif (ξi) for f ∈ H,
where

1 − 2α

1 − α
μ(Ai) ≤ γi ≤ 1 − 2α

1 − α
μ(Ai) + 4α

1 − α
μ(Ai) = 1 + 2α

1 − α
μ(Ai).

The proof is complete. �

Proof of Theorem 4.4 Let Xδ be a maximal δ-net on M with δ = γ
λ

. Then by Propo-
sition 4.1 we have

∑

ξ∈Xδ

∫

Aξ

∣∣f (x) − f (ξ)
∣∣dμ(x) ≤ K(σ∗)γ αc�‖f ‖L1 .

If γ > 0 and K(σ∗)γ αc� ≤ 1
4 , then Theorem 4.4 follows at once from Proposi-

tion 4.6. �

5 Construction of Frames

An important part of our development in this article is the construction of well-
localized decomposition systems for spaces of functions or distributions in the gen-
eral setting of this article. The goal will be to construct a pair of dual frames, where
the elements of both frames are band limited and have nearly exponential space lo-
calization.
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5.1 A Natural (Littlewood-Paley Type) Frame for L
2

We begin with the construction of a well-localized frame based on the kernels of
spectral operators considered in Sect. 3.1.

Let Φ ∈ C∞(R+), Φ(u) = 1 for u ∈ [0,1], 0 ≤ Φ ≤ 1, and suppΦ ⊂ [0, b], where
b > 1 is the constant from Theorem 3.18. Set Ψ (u) := Φ(u) − Φ(bu) and note that
0 ≤ Ψ ≤ 1 and suppΨ ⊂ [b−1, b]. We shall also assume that Φ is selected so that
Ψ (u) ≥ c > 0 for u ∈ [b−3/4, b3/4]. We set

Ψ0(u) := Φ(u) and Ψj (u) := Ψ
(
b−j u

)
, j ≥ 1. (5.1)

Clearly, Ψj ∈ C∞(R+), 0 ≤ Ψj ≤ 1, suppΨ0 ⊂ [0, b], suppΨj ⊂ [bj−1, bj+1],
j ≥ 1, and

∑
j≥0 Ψj (u) = 1 for u ∈ R+. By Corollary 3.9 we have the following

Littlewood-Paley decomposition

f =
∑

j≥0

Ψj (
√

L)f for f ∈ L
p, 1 ≤ p ≤ ∞ (

L
∞ := UCB

)
. (5.2)

From above it follows that

1

2
≤
∑

j≥0

Ψ 2
j (u) ≤ 1, u ∈ R+, (5.3)

and since ‖Ψj (
√

L)f ‖2
2 = 〈Ψj (

√
L)f,Ψj (

√
L)f 〉 = 〈Ψ 2

j (
√

L)f,f 〉, we get

∑

j≥0

∥∥Ψj (
√

L)f
∥∥2

2 =
∫ ∞

0

∑

j≥0

Ψ 2
j (u)d〈Fuf,f 〉,

and using (5.3) we arrive at

1

2
‖f ‖2

2 ≤
∑

j≥0

∥∥Ψj (
√

L)f
∥∥2

2 ≤ ‖f ‖2
2, f ∈ L

2. (5.4)

Here we introduce a constant 0 < ε < 1 that is sufficiently small and will be spec-
ified later on in (5.16). Choose 0 < γ < 1 so that

K(σ∗)γ αc� = ε/3, (5.5)

where K(σ∗) is the constant from (4.1)–(4.2) with σ∗ := 2d +1, and c� := 22d+1. For
any j ≥ 0 let Xj ⊂ M be a maximal δj -net on M (see Proposition 2.5) with δj :=
γ b−j−2 and suppose {Aj

ξ }ξ∈Xj
is a companion disjoint partition of M consisting of

measurable sets such that B(ξ, δj /2) ⊂ A
j
ξ ⊂ B(ξ, δj ), ξ ∈ Xj , as in Proposition 2.5.

By Theorem 4.2 we have

(1 − ε)‖f ‖2
2 ≤
∑

ξ∈Xj

∣∣Aj
ξ

∣∣∣∣f (ξ)
∣∣2 ≤ (1 + ε)‖f ‖2

2 for f ∈ Σ2
bj+2 . (5.6)
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By the definition of Ψj it follows that Ψj (
√

L)f ∈ Σ2
bj+1 for f ∈ L

2, and hence (5.4)
and (5.6) imply

1

4
‖f ‖2

2 ≤
∑

j≥0

∑

ξ∈Xj

∣∣Aj
ξ

∣∣∣∣Ψj (
√

L)f (ξ)
∣∣2 ≤ 2‖f ‖2

2, f ∈ L2. (5.7)

Note that

Ψj (
√

L)f (ξ) =
∫

M

f (u)Ψj (
√

L)(ξ,u)dμ(u)

=
∫

M

f (u)Ψj (
√

L)(u, ξ)dμ(u) = 〈f,Ψj (
√

L)(·, ξ)
〉
.

Consider the system {ψjξ } defined by

ψjξ (x) := ∣∣Aj
ξ

∣∣1/2
Ψj (

√
L)(x, ξ), ξ ∈ Xj , j ≥ 0. (5.8)

From the above observation and (5.7) it follows that {ψjξ : ξ ∈ Xj , j ≥ 0} is a frame
for L

2.
We next record the main properties of this system.

Proposition 5.1 (a) Localization: For any σ > 0 there exist a constant cσ > 0 such
that for any ξ ∈ Xj , j ≥ 0, we have

∣∣ψjξ (x)
∣∣≤ cσ

∣∣B
(
ξ, b−j

)∣∣−1/2(1 + bjρ(x, ξ)
)−σ (5.9)

and if ρ(x, y) ≤ b−j

∣∣ψjξ (x) − ψjξ (y)
∣∣≤ cσ

∣∣B
(
ξ, b−j

)∣∣−1/2(
bjρ(x, y)

)α(1 + bjρ(x, ξ)
)−σ

, α > 0.

(5.10)
(b) Norms:

‖ψjξ‖p ∼ ∣∣B(ξ, b−j
)∣∣

1
p

− 1
2 , 0 < p ≤ ∞. (5.11)

The constants involved in the previous equivalence depend of p.
(c) Spectral localization: ψ0ξ ∈ Σ

p
b if ξ ∈ X0 and ψjξ ∈ Σ

p

[bj−1,bj+1] if ξ ∈ Xj ,
j ≥ 1, 0 < p ≤ ∞.

(d) The system {ψjξ } is a frame for L
2, namely,

4−1‖f ‖2
2 ≤
∑

j≥0

∑

ξ∈Xj

∣∣〈f,ψjξ 〉
∣∣2 ≤ 2‖f ‖2

2, ∀f ∈ L
2. (5.12)

Proof Estimates (5.9) and (5.10) follow by Theorem 3.4; (5.11) follows by The-
orem 3.18. The spectral localization is obvious by the definition. Estimates (5.12)
follow by (5.7). �
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5.2 Dual Frame

Our next (nontrivial) step is to construct a dual frame {ψ̃jξ } to {ψjξ } with elements
of similar space and spectral localization. We begin this construction by introducing
two new cut-off functions by “stretching” Ψ0 and Ψ1 from Sect. 5.1:

Γ0(u) := Φ
(
b−1u

)
and

Γ1(u) := Φ
(
b−2u

)− Φ(bu) = Γ0
(
b−1u

)− Γ0
(
b2u
)
.

(5.13)

Note that suppΓ0 ⊂ [0, b2], Γ0(u) = 1 for u ∈ [0, b], suppΓ1 ⊂ [b−1, b3], Γ1(u) = 1
for u ∈ [1, b2], and 0 ≤ Γ0,Γ1 ≤ 1. Therefore,

Γ0(u)Ψ0(u) = Ψ0(u), Γ1(u)Ψ1(u) = Ψ1(u). (5.14)

We shall also use the cut-off function Θ(u) := Φ(b−3u). Note that suppΘ ⊂ [0, b4],
Θ(u) = 1 for u ∈ [0, b3], and Θ ≥ 0. Hence, Θ(u)Γj (u) = Γj (u), j = 0,1.

Parameter σ The dual frame under construction will depend on a parameter σ >

2d + 1 that can be selected as large as we wish. It will govern the localization prop-
erties of the dual frame elements.

With σ > 2d + 1 already selected we next record the localization properties of
the operators generated by the above selected functions. Let f = Γ0 or f = Γ1 or
f = Θ . Then by Corollary 3.5 there exists a constant cσ > 1 such that for δ > 0 and
0 ≤ m ≤ σ we have

∣∣Lmf (δ
√

L)(x, y)
∣∣≤ cσ δ−2mDδ,2σ (x, y). (5.15)

We now select the constant 0 < ε < 1 so that

1

2ε
= c3

σ 28σ+9d+10. (5.16)

Recall that the constant γ , which depends on ε, was defined in (5.5) so that
K(σ∗)γ αc� = ε/3.

The next lemma will be instrumental in the construction of the dual frame.

Lemma 5.2 Given λ ≥ 1, let Xδ be a maximal δ-net on M with δ := γ λ−1b−3 and
suppose {Aξ }ξ∈Xδ

is a companion disjoint partition of M consisting of measurable
sets such that B(ξ, δ/2) ⊂ Aξ ⊂ B(ξ, δ), ξ ∈ Xδ , just as in Proposition 2.5. Set
κξ := 1

1+ε
|Aξ | ∼ |B(ξ, δ)|. Let Γ = Γ0 or Γ = Γ1. Then there exists an operator

Tλ : L
2 → L

2 of the form Tλ = Id+Sλ such that
(a)

‖f ‖2 ≤ ‖Tλf ‖2 ≤ 1

1 − 2ε
‖f ‖2 ∀f ∈ L

2.

(b) LmSλ with 0 ≤ m ≤ σ is an integral operator with kernel LmSλ(x, y) verifying
∣∣LmSλ(x, y)

∣∣≤ cλ2mDλ−1,σ (x, y), x, y ∈ M.
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(c) Sλ(L
2) ⊂ Σ2

λb2 if Γ = Γ0 and Sλ(L
2) ⊂ Σ2

[λb−1,λb3] if Γ = Γ1.

(d) For any f ∈ L
2 such that Γ (λ−1

√
L)f = f we have

f (x) =
∑

ξ∈Xδ

κξ f (ξ)Tλ

[
Γλ(·, ξ)

]
(x), x ∈ M, (5.17)

where Γλ(·, ·) is the kernel of the operator Γλ := Γ (λ−1
√

L).

Proof By Theorem 4.2 we have

(1 − ε)‖f ‖2
2 ≤
∑

ξ∈Xδ

|Aξ |
∣∣f (ξ)

∣∣2 ≤ (1 + ε)‖f ‖2
2 for f ∈ Σ2

λb3 ,

and setting κξ := 1
1+ε

|Aξ | we get

(1 − 2ε)‖f ‖2
2 ≤
∑

ξ∈Xδ

κξ

∣∣f (ξ)
∣∣2 ≤ ‖f ‖2

2 for f ∈ Σ2
λb3 . (5.18)

Denote briefly Θλ := Θ(λ−1
√

L) and let Θλ(·, ·) be the kernel of this operator. Con-
sider now the positive self-adjoint operator Uλ with kernel

Uλ(x, y) =
∑

ξ∈Xδ

κξΘλ(x, ξ)Θλ(ξ, y).

By (5.15) |Θλ(x, y)| ≤ cσ Dλ−1,2σ (x, y) for x, y ∈ M . Therefore, taking into account
that δ = γ λ−1b−3 < λ−1 and 2σ > 2d + 1 we can apply (2.22) to obtain

∣∣Uλ(x, y)
∣∣≤ cσ c�Dλ−1,2σ (x, y), c� := 22σ+3d+3. (5.19)

Also, if f ∈ Σ2
λb3 , then 〈Uλf,f 〉 =∑ξ∈Xδ

κξ |f (ξ)|2 and hence, using (5.18),

(1 − 2ε)‖f ‖2
2 ≤ 〈Uλf,f 〉 ≤ ‖f ‖2

2 for f ∈ Σ2
λb3 . (5.20)

Denote briefly Γλ := Γ (λ−1
√

L) and let Γλ(·, ·) be the kernel of this operator (recall
that Γ = Γ0 or Γ = Γ1). We define yet another self-adjoint kernel operator by

Rλ := Γλ(Id−Uλ)Γλ = Γ 2
λ − ΓλUλΓλ.

Set Vλ := ΓλUλΓλ and denote by Vλ(·, ·) its kernel. Since Θ(u)Γ (u) = Γ (u), we
have

Vλ(x, y) =
∑

ξ∈Xδ

κξ

∫

M

∫

M

Γλ(x,u)Θλ(u, ξ)Θλ(ξ, v)Γλ(v, y)dudv

=
∑

ξ∈Xδ

κξΓλ(x, ξ)Γλ(ξ, y).
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Now, by (5.15), (2.11), and (5.19) it follows that for 0 ≤ m ≤ σ

∣∣LmRλ(x, y)
∣∣≤ c2

σ c�λ
2mDλ−1,2σ (x, y) + c3

σ c�c
2
�λ

2mDλ−1,2σ (x, y)

≤ 2c3
σ c�c

2
�λ

2mDλ−1,2σ (x, y).

Here c� := 22σ+2d+2 and as above c� := 22σ+3d+3. To simplify our notation we set
Cσ := 2c3

σ c�c
2
� = c3

σ 26σ+7d+8. Thus we have

∣
∣LmRλ(x, y)

∣
∣≤ Cσ λ2mDλ−1,2σ (x, y), 0 ≤ m ≤ σ. (5.21)

By the definition of Rλ we have

〈Rλf,f 〉 = ‖Γλf ‖2
2 − 〈UλΓλf,Γλf 〉 for f ∈ L

2.

Since Γλ(L
2) ⊂ Σ2

λb3 , then ΘλΓλf = Γλf , and by (5.20)

(1 − 2ε)‖Γλf ‖2
2 ≤ 〈UλΓλf,Γλf 〉 ≤ ‖Γλf ‖2

2, f ∈ L
2.

Therefore,

0 ≤ 〈Rλf,f 〉 ≤ 2ε‖Γλf ‖2
2 ≤ 2ε‖f ‖2

2, f ∈ L
2,

where for the last inequality we used that ‖Γ ‖∞ ≤ 1. Consequently,

‖Rλ‖2→2 ≤ 2ε < 1 and (1 − 2ε)‖f ‖2 ≤ ∥∥(Id−Rλ)f
∥∥

2 ≤ ‖f ‖2, f ∈ L
2.

We now define Tλ := (Id−Rλ)
−1 = Id+∑k≥1 Rk

λ =: Id+Sλ. Clearly

‖f ‖2 ≤ ‖Tλf ‖2 ≤ 1

1 − 2ε
‖f ‖2 ∀f ∈ L

2. (5.22)

If Γλf = f , then

f = Tλ(f − Rλf ) = Tλ(f − Γλf + Vλf ) = TλVλf.

On the other hand, if Γλf = f , then (Vλf )(x) =∑ξ∈Xδ
κξ f (ξ)Γλ(x, ξ) and hence

f (x) =
∑

ξ∈Xδ

κξ f (ξ)Tλ

[
Γλ(·, ξ)

]
(x). (5.23)

Note that by construction

Sλ : L
2 �→ Σ2

λb3 if Γ = Γ0 and Sλ : L
2 �→ Σ2

[λb−1,λb3] if Γ = Γ1. (5.24)

It remains to establish the space localization of the kernel LmSλ(x, y) of the oper-
ator LmSλ. Our method borrows from [37]. Consider first the case m = 0. Denoting
by Rk

λ(x, y) the kernel of Rk
λ, we have

∣∣Sλ(x, y)
∣∣≤
∑

k≥1

∣∣Rk
λ(x, y)

∣∣.
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But since Rk
λ = ΘλR

k
λΘλ we get by (5.15) with f = Θ and the fact that

‖Rλ‖2→2 ≤ 2ε, applying Proposition 2.9,

∣∣Rk
λ(x, y)

∣∣≤ cdc2
σ ‖Rλ‖k

2→2√|B(x,λ−1)||B(y,λ−1)| ≤ (2ε)kcdc2
σ√|B(x,λ−1)||B(y,λ−1)| , (5.25)

where cd := 24d+4. On the other hand, applying repeatedly estimate (2.11) k times
using (5.21) with m = 0 we obtain

∣∣Rk
λ(x, y)

∣∣≤ Ck
σ ck−1

� Dλ−1,2σ (x, y), c� = 22σ+2d+2. (5.26)

Therefore, for any K ∈ N

∣∣Sλ(x, y)
∣∣≤

K∑

k=1

Ck
σ ck−1

� Dλ−1,2σ (x, y) +
∑

k>K

(2ε)kcdc2
σ√|B(x,λ−1)||B(y,λ−1)|

≤ Cσ√|B(x,λ−1)||B(y,λ−1)|

×
{

1
(
1 + λρ(x, y)

)2σ

K∑

k=1

(c�Cσ )k−1 + (2ε)K+1

1 − 2ε

}

≤ Cσ√|B(x,λ−1)||B(y,λ−1)|
{

1
(
1 + λρ(x, y)

)2σ

(c�Cσ )K

c�Cσ − 1
+ (2ε)K+1

1 − 2ε

}

≤ 2Cσ√|B(x,λ−1)||B(y,λ−1)|
{

(c�Cσ )K−1

(1 + λρ(x, y))2σ
+ (2ε)K+1

}
.

Choose K ≥ 1 so that ( 1
2ε

)K−1 ≤ (1 + λρ(x, y))σ < ( 1
2ε

)K and note that 1
2ε

= c�Cσ

by (5.16). Then from above we get

∣∣Sλ(x, y)
∣∣≤ 4Cσ√|B(x,λ−1)||B(y,λ−1)|

1
(
1 + λρ(x, y)

)σ = 4Cσ Dλ−1,σ (x, y).

(5.27)
Let 1 ≤ m ≤ σ . Since LmRk

λ = LmΘλR
k
λΘλ, with slight modification of the argu-

ment above, (5.15) implies that (5.25) holds for the kernel LmRk(·, ·) with an addi-
tional factor λ2m to the right. On the other hand (5.21) implies that estimate (5.26)
also holds for LmRk(·, ·) with an additional factor λ2m to the right. Then proceeding
exactly as above it follows that estimate (5.27) holds for LmS(·, ·) with an additional
factor λ2m to the right. This completes the proof of the lemma. �

Armed with this lemma we can now complete the construction of the dual frame.
We shall utilize the functions and operators introduced in Sect. 5.1 and above.

Denote briefly Γλ0 := Γ0(
√

L) and Γλj
:= Γ1(b

−j+1
√

L) for j ≥ 1, λj := b−j+1.
Observe that since Γ0(u) = 1 for u ∈ [0, b] and Γ1(u) = 1 for u ∈ [1, b2], then
Γλ0(Σ

2
b ) = Σ2

b and Γλj
(Σ2

[bj−1,bj+1]) = Σ2
[bj−1,bj+1], j ≥ 1. On the other hand, it
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is readily seen that Ψ0(·, y) ∈ Σ2
b and Ψj (·, y) ∈ Σ2

[bj−1,bj+1] if j ≥ 1. Therefore, we

can apply Lemma 5.2 with Xj and {Aj
ξ }ξ∈Xj

from Sect. 5.1, and λ = λj = bj−1 to
obtain

Ψj (
√

L)(x, y) =
∑

ξ∈Xj

κξΨj (ξ, y)Tλj

[
Γλj

(·, ξ)
]
(x), κξ = (1 + ε)−1

∣∣Aj
ξ

∣∣. (5.28)

By (5.8) we have ψjξ (x) = |Aj
ξ |1/2Ψj (ξ, x) and we now set

ψ̃jξ (x) := cε

∣∣Aj
ξ

∣∣1/2
Tλj

[
Γλj

(·, ξ)
]
(x), ξ ∈ Xj , cε := (1 + ε)−1. (5.29)

Thus {ψ̃jξ : ξ ∈ Xj , j ≥ 0} is the desired dual frame. Observe immediately that (5.28)
takes the form

Ψj (
√

L)(x, y) =
∑

ξ∈Xj

ψjξ (y)ψ̃jξ (x). (5.30)

We next record the main properties of the dual frame {ψ̃jξ }.

Theorem 5.3 (a) Representation: For any f ∈ L
p , 1 ≤ p ≤ ∞, we have

f =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ 〉ψjξ =
∑

j≥0

∑

ξ∈Xj

〈f,ψjξ 〉ψ̃jξ in L
p. (5.31)

(b) Frame: The system {ψ̃jξ } as well as {ψjξ } is a frame for L
2, namely, there

exists a constant c > 0 such that

c−1‖f ‖2
2 ≤
∑

j≥0

∑

ξ∈Xj

∣∣〈f, ψ̃jξ 〉
∣∣2 ≤ c‖f ‖2

2, ∀f ∈ L
2. (5.32)

(c) Space localization: For any ξ ∈ Xj , j ≥ 0, and 0 ≤ m ≤ σ

∣∣Lmψ̃jξ (x)
∣∣≤ cσ b2jm

∣∣B
(
ξ, b−j

)∣∣−1/2(1 + bjρ(x, ξ)
)−σ

, (5.33)

and if ρ(x, y) ≤ b−j

∣
∣ψ̃jξ (x) − ψ̃jξ (y)

∣
∣≤ cσ

∣
∣B
(
ξ, b−j

)∣∣−1/2(
bjρ(x, y)

)α(1 + bjρ(x, ξ)
)−σ

. (5.34)

Here σ > 2d + 1 is the parameter of the dual frame selected in the beginning of
Sect. 5.2.

(d) Spectral localization: ψ̃0ξ ∈ Σ
p
b if ξ ∈ X0 and ψ̃jξ ∈ Σ

p

[bj−2,bj+2] if ξ ∈ Xj ,
j ≥ 1, d/σ < p ≤ ∞.

(e) Norms:

‖ψ̃jξ‖p ∼ ∣∣B(ξ, b−j
)∣∣

1
p

− 1
2 for d/σ < p ≤ ∞. (5.35)
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Proof By the definition of ψ̃jξ in (5.29) and Lemma 5.2 we have

ψ̃jξ (x) := cε

∣∣Aj
ξ

∣∣1/2
Tλj

[
Γλj

(·, ξ)
]
(x) = cε

∣∣Aj
ξ

∣∣1/2[
Γλj

(x, ξ) + Sλj

[
Γλj

(·, ξ)
]
(x)
]
.

Then estimate (5.33) follows from the localization of LmΓλj
(·, ·) given by (5.15),

Lemma 5.2(b), and (2.11). Estimate (5.34) follows by the fact Γλj
(·, ·) is Lip α, given

by Theorem 3.4, and the localization of Sλj
(·, ·), given in Lemma 5.2(b), exactly as

in the proof of Theorem 3.1.
To establish representation (5.31) we note that (5.30), (5.33), and (2.22) readily

imply
∑

ξ∈Xj
|ψjξ (y)||ψ̃jξ (x)| ≤ cDb−j ,σ−d(x, y). Then (5.31) follows by (5.2) and

(5.30).
The estimate

‖ψ̃jξ‖p ≤ c
∣∣B
(
ξ, b−j

)∣∣
1
p

− 1
2 for d/σ < p ≤ ∞ (5.36)

follows by (5.33) and (2.12). On the other hand, Lemma 5.2(a) and Theorem 3.18
yield

‖ψ̃jξ‖2 ≥ c
∣∣B
(
ξ, b−j

)∣∣∥∥Γλj
(·, ξ)
∥∥

2 ≥ c′ > 0.

From this and (5.36) one easily derives ‖ψ̃jξ‖p ≥ c|B(ξ, b−j )| 1
p

− 1
2 for 0 < p ≤ ∞

(see the proof of Theorem 3.18).
For the proof of (5.32) we shall employ the following lemma which will be instru-

mental in the development of Besov spaces later on as well.

Lemma 5.4 (a) For any f ∈ L
p , 1 ≤ p ≤ ∞,

(∑

ξ∈Xj

∥
∥〈f, ψ̃jξ 〉ψjξ

∥
∥p

p

)1/p

≤ c‖f ‖p, ∀j ≥ 0. (5.37)

(b) For any sequence of complex numbers {aξ }ξ∈Xj
, j ≥ 0, and 1 ≤ p ≤ ∞,

∥∥∥∥
∑

ξ∈Xj

aξψjξ

∥∥∥∥
p

≤ c

(∑

ξ∈Xj

‖aξψjξ‖p
p

)1/p

. (5.38)

Above each of the �p-norms is replaced by the sup-norm when p = ∞. Also (a)

and (b) hold with the roles of {ψjξ } and {ψ̃jξ } interchanged. The constant c > 0 is
independent of f , {aξ }, and j .

Proof We shall need the following simple inequalities

∑

ξ∈Xj

∣∣ψ̃jξ (x)
∣∣‖ψjξ‖1 ≤ c and

∑

ξ∈Xj

∣∣ψjξ (x)
∣∣‖ψjξ‖1 ≤ c, x ∈ M, (5.39)
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where the roles of {ψjξ } and {ψ̃jξ } can be switched. Using (5.33) with m = 0 and
(5.11) we obtain

∑

ξ∈Xj

∣∣ψ̃jξ (x)
∣∣‖ψjξ‖1 ≤ c

∑

ξ∈Xj

(
1 + bjρ(x, ξ)

)−σ ≤ c < ∞,

where for the last inequality we used (2.20) and the fact that σ ≥ 2d + 1. This gives
the left-hand side inequality in (5.39). The proof of the other inequality is the same.

Estimate (5.37) is immediate from (5.39) when p = 1. In the case p = ∞ (5.37)
follows readily by the inequality ‖ψ̃jξ‖1‖ψjξ‖∞ ≤ c < ∞ which is a consequence
of (5.11) and (5.35).

To prove (5.37) in the case 1 < p < ∞ we just apply Hölder’s inequality (1/p +
1/p′ = 1) and obtain

∥∥〈f, ψ̃jξ 〉ψjξ

∥∥p
p

≤
(∫

M

∣∣f (x)
∣∣∣∣ψ̃jξ (x)

∣∣dμ(x)

)p

‖ψjξ‖p
p

=
(∫

M

∣∣f (x)
∣∣∣∣ψ̃jξ (x)

∣∣1/p∣∣ψ̃jξ (x)
∣∣1/p′

dμ(x)

)p

‖ψjξ‖p
p

≤
∫

M

∣∣f (x)
∣∣p∣∣ψ̃jξ (x)

∣∣dμ(x)‖ψ̃jξ‖p−1
1 ‖ψjξ‖p

p.

This coupled with the obvious inequality

‖ψ̃jξ‖p−1
1 ‖ψjξ‖p

p ≤ (‖ψ̃jξ‖1‖ψjξ‖∞
)p−1‖ψjξ‖1 ≤ c‖ψjξ‖1,

using ‖ψ̃jξ‖1‖ψjξ‖∞ ≤ c < ∞ as above, leads to

∑

ξ∈Xj

∥
∥〈f, ψ̃jξ 〉ψjξ

∥
∥p

p
≤ c

∫

M

∣
∣f (x)

∣
∣p
∑

ξ∈Xj

∣
∣ψ̃jξ (x)

∣
∣‖ψjξ‖1dμ(x) ≤ c‖f ‖p

p.

Here we used (5.39). This confirms the validity of (5.37).
We now turn to the proof of (5.38). This inequality is obvious when p = 1. In

the case p = ∞ inequality (5.38) follow easily from the right-hand side inequality in
(5.39) and the fact that ‖ψjξ‖1‖ψjξ‖∞ ≤ c < ∞, see (5.11).

To prove (5.38) in the case 1 < p < ∞ we apply the discrete Hölder inequality
and the right-hand side inequality in (5.39) to obtain

∣∣∣∣
∑

ξ∈Xj

aξψjξ (x)

∣∣∣∣

p

≤
[∑

ξ∈Xj

|aξ |‖ψjξ‖−1
1

(∣∣ψjξ (x)
∣∣‖ψjξ‖1

)1/p(∣∣ψjξ (x)
∣∣‖ψjξ‖1

)1/p′
]p

≤
∑

ξ∈Xj

|aξ |p‖ψjξ‖−p

1

∣∣ψjξ (x)
∣∣‖ψjξ‖1

(∑

ξ∈Xj

∣∣ψjξ (x)
∣∣‖ψjξ‖1

)p−1

≤ c
∑

ξ∈Xj

|aξ |p‖ψξ‖1−p

1

∣∣ψjξ (x)
∣∣.
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Integrating both sides we get
∥∥∥∥
∑

ξ∈Xj

aξψjξ

∥∥∥∥

p

p

≤ c
∑

ξ∈Xj

|aξ |p‖ψjξ‖2−p

1 ≤ c
∑

ξ∈Xj

|aξ |p‖ψjξ‖p
p.

Here we used that ‖ψjξ‖2−p

1 ∼ ‖ψjξ‖p
p , which follows by (5.11). The proof of

Lemma 5.4 is complete. �

We are now in a position to complete the proof of Theorem 5.3. From (5.4) apply-
ing (5.38) we get

‖f ‖2
2 ≤ 2

∑

j≥0

∥∥Ψj (
√

L)f
∥∥2

2 ≤ 2
∑

j≥0

∥∥∥∥
∑

ξ∈Xj

〈f, ψ̃jξ 〉ψjξ

∥∥∥∥

2

2
≤ c
∑

j≥0

∑

ξ∈Xj

∣∣〈f, ψ̃jξ 〉
∣∣2,

which confirms the left-hand side inequality in (5.32). For the other direction, we
first note that since suppΨj ⊂ [bj−1, bj+1] and ψ̃jξ ∈ Σ[bj−2,bj+2] we have by (5.2)

〈f, ψ̃jξ 〉 =∑j+2
ν=j−2〈Ψν(

√
L)f, ψ̃jξ 〉 (here Ψν := 0 if ν < 0) and hence

∑

ξ∈Xj

|〈f, ψ̃jξ 〉|2 ≤ 5
j+2∑

ν=j−2

∑

ξ∈Xj

∣
∣〈Ψν(

√
L)f, ψ̃jξ

〉∣∣2 ≤ c

j+2∑

ν=j−2

∥
∥Ψν(

√
L)f
∥
∥2

2.

Here we used (5.37). Summing up the above inequalities and using (5.4) we obtain
the right-hand side inequality in (5.32). This completes the proof of Theorem 5.3. �

5.3 Frames in the Case when {Σ2
λ} Possess the Polynomial Property

The construction of frames with the desired excellent space and spectral localization
is simple and elegant in the case when the spectral spaces Σ2

λ have the polynomial
property in the sense of the following

Definition 5.5 Let {Fλ,λ ≥ 0} be the spectral resolution associated with the opera-
tor

√
L; then

√
L = ∫∞

0 λdFλ. We say that the associated spectral spaces

Σ2
λ = {f ∈ L

2 : Fλf = f
}

have the polynomial property if there exists a constant κ > 1 such that

Σ2
λ · Σ2

λ ⊂ Σ1
κλ, i.e. f,g ∈ Σ2

λ =⇒ fg ∈ Σ1
κλ. (5.40)

The construction begins with two pairs of cut-off functions Ψ0,Ψ, Ψ̃0, Ψ̃ ∈
C∞(R+) with the following properties:

suppΨ0, Ψ̃0 ⊂ [0, b], suppΨ, Ψ̃ ⊂ [b−1, b
]
, 0 ≤ Ψ0,Ψ, Ψ̃0, Ψ̃ ≤ 1,

Ψ0(u), Ψ̃0(u) ≥ c > 0, u ∈ [0, b3/4], Ψ (u), Ψ̃ (u) ≥ c > 0, u ∈ [b−3/4, b3/4],
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Ψ0(u) = 1 and Ψ̃0(u) = 1, u ∈ [0,1], and

Ψ0(u)Ψ̃0(u) +
∑

j≥1

Ψ
(
b−j u

)
Ψ̃
(
b−j u

)= 1, u ∈ R+.

As in Sect. 5.1, here b > 1 is the constant from Theorem 3.18. The construction of
functions with these properties is quite simple and well-known and will be omitted.
It is worth pointing out that given Ψ0,Ψ , then Ψ̃0, Ψ̃ can be easily constructed with
the above properties (see e.g. [23], Lemma 6.9).

Denote Ψj (u) := Ψ (b−j u) and Ψ̃j (u) := Ψ̃ (b−j u). Then from above we have

∑

j≥0

Ψj (u)Ψ̃j (u) = 1, u ∈ R+. (5.41)

This and Proposition 3.8 imply the following Calderón type decomposition

f =
∑

j≥0

Ψj (
√

L)Ψ̃j (
√

L)f, f ∈ L
p, 1 ≤ p ≤ ∞. (5.42)

The key idea is that the polynomial property (5.40) of the spectral spaces can be
used to discretize the above expansion and as a result to obtain the desired frames.
Indeed, observe first that suppΨ0, Ψ̃0 ⊂ [0, b] and suppΨj , Ψ̃j ⊂ [bj−1, bj+1],
j ≥ 1. From this and above it follows that Ψj (

√
L), Ψ̃j (

√
L) are kernel operator

whose kernels have nearly exponential localization and Ψj (
√

L)(x, ·) ∈ Σbj+1 and
Ψ̃j (

√
L)(·, y) ∈ Σbj+1 . We now invoke the cubature formula from Theorem 4.4. With

0 < γ < 1 the constant from (4.15) and κ > 1 from (5.40), we select a maximal δ-net,
say Xj , on M with δ := γ κ−1b−j−1 ∼ b−j . Theorem 4.4 provides a cubature formula
of the form

∫

M

f (x)dμ(x) =
∑

ξ∈Xj

wjξf (ξ) for f ∈ Σ1
κbj+1 ,

where 2
3 |B(ξ, δ/2)| ≤ wjξ ≤ 2|B(ξ, δ)|. Since Ψj (

√
L)(x, ·)Ψ̃j (

√
L)(·, y) ∈ Σ1

κbj+1

due to (5.40), we get

Ψj (
√

L)Ψ̃j (
√

L)(x, y) =
∫

M

Ψj (
√

L)(x,u)Ψ̃j (
√

L)(u, y)dμ(u)

=
∑

ξ∈Xj

wjξΨj (
√

L)(x, ξ)Ψ̃j (
√

L)(ξ, y). (5.43)

We now define the frame elements by

ψjξ (x) := √
wjξΨj (

√
L)(x, ξ), ψ̃jξ (x) := √

wjξ Ψ̃j (
√

L)(x, ξ), ξ ∈ Xj , j ≥ 0.

(5.44)
We next present the main properties of the system {ψjξ }, {ψ̃jξ }.
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Proposition 5.6 (a) Frame property: For any f ∈ L
p , 1 ≤ p ≤ ∞, (L∞ := UCB) we

have

f =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ 〉ψjξ =
∑

j≥0

∑

ξ∈Xj

〈f,ψjξ 〉ψ̃jξ in L
p (5.45)

and

‖f ‖2
2 =
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ 〉〈f,ψjξ 〉 ∀f ∈ L
2. (5.46)

(b) Space localization: For any σ > 0 there exists a constant cσ > 0 such that for
any ξ ∈ Xj , j ≥ 0,

∣
∣ψjξ (x)

∣
∣,
∣
∣ψ̃jξ (x)

∣
∣≤ cσ

∣
∣B
(
ξ, b−j

)∣∣−1/2(1 + bjρ(x, ξ)
)−σ

, (5.47)

and if ρ(x, y) ≤ b−j

∣∣ψjξ (x) − ψjξ (y)
∣∣≤ cσ

∣∣B
(
ξ, b−j

)∣∣−1/2(
bjρ(x, y)

)α(1 + bjρ(x, ξ)
)−σ

. (5.48)

Here α > 0 is the global parameter from (1.6) and the same inequality hold for ψ̃jξ

in place of ψjξ .
(c) Spectral localization: ψ0ξ , ψ̃0ξ ∈ Σ

p
b if ξ ∈ X0 and ψjξ , ψ̃jξ ∈ Σ

p

[bj−1,bj+1] if
ξ ∈ Xj , j ≥ 1, 0 < p ≤ ∞.

(d) Norms:

‖ψjξ‖p ∼ ‖ψ̃jξ‖p ∼ ∣∣B(ξ, b−j
)∣∣

1
p

− 1
2 , 0 < p ≤ ∞. (5.49)

Proof Identities (5.45) follow immediately from (5.42) and (5.43). For the proof of
(5.46), denote SNf =∑N

j=0
∑

ξ∈Xj
〈f, ψ̃jξ 〉ψjξ and observe that

‖f ‖2
2 = lim

N→∞〈f,SNf 〉 = lim
N→∞

N∑

j=0

∑

ξ∈Xj

〈f, ψ̃jξ 〉〈f,ψjξ 〉

=
∑

j≥0

∑

ξ∈Xj

〈f, ψ̃jξ 〉〈f,ψjξ 〉.

The localization and Lipschitz property of the frame elements given in (5.47) and
(5.48) follow by Theorem 3.4. The claimed spectral localization is obvious. The norm
bounds in (5.49) follow by Theorem 3.18. �

An interesting special case of the above construction occurs when we choose Ψ0 =
Ψ̃0 and Ψ = Ψ̃ . Then ψjξ = ψ̃jξ and {ψjξ } is a tight frame for L

2, i.e.

‖f ‖2
2 =
∑

j≥0

∑

ξ∈Xj

∣∣〈f,ψjξ 〉
∣∣2, ∀f ∈ L

2.
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Remark The polynomial property (5.40) of the spectral spaces apparently is valid
when the spectral functions are polynomials. This simple fact has been utilized for
construction of frames on the sphere [42], on the interval with Jacobi weights [47],
on the ball [48], and in the context of Hermite [49] and Laguerre [34] expansions.

6 Besov Spaces

We shall follow the general idea of using spectral decompositions, e.g. [46, 59, 60],
to introduce (inhomogeneous) Besov spaces in the general set-up of this paper. As
explained in the introduction, we shall only consider Besov spaces Bs

pq with s > 0
and 1 ≤ p ≤ ∞. The Besov spaces Bs

pq with full range of indices are treated in the
follow-up paper [33]. For another approach to Besov spaces under heat kernel esti-
mates, but a polynomial upper bound on the volume instead of the volume doubling
condition, see [7].

To introduce Besov spaces we assume that there are given two (Littlewood-Paley)
functions ϕ0, ϕ ∈ C∞(R+) such that

suppϕ0 ⊂ [0,2], ϕ
(ν)
0 (0) = 0 for ν ≥ 1,

∣∣ϕ0(λ)
∣∣≥ c > 0 for λ ∈ [0,23/4],

(6.1)

suppϕ ⊂ [1/2,2], ∣∣ϕ(λ)
∣∣≥ c > 0 for λ ∈ [2−3/4,23/4]. (6.2)

Then |ϕ0(λ)| +∑j≥1 |ϕ(2−j λ)| ≥ c > 0 for λ ∈ [0,∞). Set ϕj (λ) := ϕ(2−j λ) for
j ≥ 1.

Definition 6.1 Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. The Besov space Bs
pq =

Bs
pq(L) is defined as the set of all f ∈ L

p such that

‖f ‖Bs
pq

:=
(∑

j≥0

(
2sj
∥
∥ϕj (

√
L)f (·)∥∥

Lp

)q
)1/q

< ∞. (6.3)

Here the �q -norm is replaced by the sup-norm if q = ∞.

Note that by Proposition 6.2 below it follows that the definition of the Besov
spaces Bs

pq is independent of the specific selection of ϕ0, ϕ satisfying (6.1)–(6.2).
Also, Bs

pq are (quasi-)Banach spaces, which are continuously embedded in L
p as

will be seen below.

6.1 Characterization of Besov Spaces via Linear Approximation from {Σp
t }

Here we show that the Besov spaces Bs
pq with s > 0 and p ≥ 1 are in fact the ap-

proximation spaces of linear approximation from Σ
p
t , t ≥ 1. As in Sect. 3.5, we let

Et (f )p denote the best approximation of f ∈ L
p from Σ

p
t and As

pq will denote the
associated approximation spaces, defined in (3.35)–(3.36).
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Proposition 6.2 Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. Then f ∈ Bs
pq if and only if

f ∈ As
pq . Moreover,

‖f ‖Bs
pq

∼ ‖f ‖As
pq

:= ‖f ‖p +
(∑

j≥0

(
2sj E2j (f )p

)q
)1/q

. (6.4)

Proof Let ϕj be as in the definition of the Besov spaces with the additional property:∑
j≥0 ϕj (λ) = 1 for λ ∈ [0,∞) (see Sect. 3.3). Suppose f ∈ L

p . Then by Corol-

lary 3.9 we have f =∑j≥0 ϕj (
√

L)f and since ϕj (
√

L)f ∈ Σ
p

[2j−1,2j+1] we obtain

E2m(f )p ≤
∑

j≥m

∥
∥ϕj (

√
L)f
∥
∥

p

and the standard Hardy inequality

∑

m≥0

(
2sm
∑

j≥m

bj

)q

≤ c
∑

m≥0

(
2smbm

)q
, bj ≥ 0, s > 0, 0 < q ≤ ∞, (6.5)

leads to the estimate ‖f ‖As
pq

≤ c‖f ‖Bs
pq

.

For the estimate in the other direction, we note that for any g ∈ Σ
p

2j−1 we have

ϕj (
√

L)f = ϕj (
√

L)(f − g) and hence

∥∥ϕj (
√

L)f
∥∥

p
= ∥∥ϕj (

√
L)(f − g)

∥∥
p

≤ c‖f − g‖p,

where we used the boundedness of the operator ϕj (
√

L) on L
p . This implies

‖ϕj (
√

L)f ‖p ≤ cE2j−1(f )p , j ≥ 1, and obviously ‖ϕ0(
√

L)f ‖p ≤ c‖f ‖p . We use
these estimates in the definition of Bs

pq to obtain ‖f ‖Bs
pq

≤ c‖f ‖As
pq

. �

We next record the heat kernel characterization of Besov spaces. Denote

‖f ‖Bs
pq(H) := ‖f ‖p +

(∫ 1

0

(
t−s/2

∥
∥(tL)me−tLf

∥
∥

p

)q dt

t

)1/q

(6.6)

with the usual modification for q = ∞.

Corollary 6.3 For admissible indices s,p, q a function f ∈ Bs
pq if and only if

‖f ‖Bs
pq(H) < ∞ and if f ∈ Bs

pq , then ‖f ‖Bs
pq

∼ ‖f ‖Bs
pq(H).

This corollary follows readily by Proposition 6.2 taking into account Remark 3.17.

6.2 Comparison of Lipschitz Spaces and Bs∞∞

The Lipschitz space Lipγ , γ > 0, is defined as the set of all f ∈ L
∞ such that

‖f ‖Lipγ := ‖f ‖∞ + sup
x �=y

|f (x) − f (y)|
ργ (x, y)

< ∞. (6.7)

Author's personal copy



J Fourier Anal Appl

We would like to record next the fact that in the setting of this article the spaces
Lip s and Bs∞∞ coincide provided 0 < s < α, where α is the structural constant from
(1.6).

Proposition 6.4 The following continuous embeddings hold: (a) For any s > 0

Lip s ⊂ Bs∞∞.

(b) For any 0 < s < α

Bs∞∞ ⊂ Lip s.

Proof (a) Let f ∈ Lip s and choose θ ∈ C∞[0,∞) so that θ ≥ 0, θ ≡ 1 on [0,1]
supp θ ⊂ [0,2]. Then using Theorem 3.4 and (2.10) we obtain for t ≥ 1 and k >

s + 3d/2

∣∣θ
(
t−1

√
L
)
f (x) − f (x)

∣∣=
∣∣∣∣

∫

M

θ
(
t−1

√
L
)
(x, y)

[
f (y) − f (x)

]
dμ(y)

∣∣∣∣

≤ c‖f ‖Lip s

∫

M

Dt−1,k(x, y)ρs(x, y)dμ(y)

≤ ct−s‖f ‖Lip s

∫

M

Dt−1,k−s(x, y)dμ(y) ≤ ct−s‖f ‖Lip s .

On the other hand θ(t−1
√

L)f ∈ Σ∞
2t and hence E2t (f )∞ ≤ ‖θ(t−1

√
L)f − f ‖∞.

From this and above we infer E2t (f )∞ ≤ ct−s‖f ‖Lip s , which implies (a).
(b) Let ϕ0 := θ with θ the function from above. Set ϕ(λ) := θ(λ) − θ(2λ)

and ϕj (λ) := ϕ(2−j λ). Then
∑

j≥0 ϕj (λ) = 1 for λ ≥ 0, suppϕ0 ⊂ [0,2] and

suppϕj ⊂ [2j−1,2j+1], j ≥ 1. Now, assuming that f ∈ Bs∞∞ we apparently have

ϕ0(
√

L)f ∈ Σ∞
2 , ϕj (

√
L)f ∈ Σ∞

2j+1 , and by the Littlewood-Paley decomposition

(Corollary 3.9) f = ∑j≥0 ϕj (
√

L)f . Evidently, Bs∞∞ can be defined using the

above constructed functions {ϕj } and hence ‖ϕj (
√

L)f ‖∞ ≤ c2−js‖f ‖Bs∞∞ , j ≥ 0.
Therefore, using (3.33) we have for 0 < s < α and any J ≥ 1

∣∣f (x) − f (y)
∣∣≤
∑

j≥0

∣∣ϕj (
√

L)f (x) − ϕj (
√

L)f (y)
∣∣

≤ c

J∑

j=0

∥∥ϕj (
√

L)f
∥∥∞
(
2j ρ(x, z)

)α + 2
∑

j>J

∥∥ϕj (
√

L)f
∥∥∞

≤ c‖f ‖Bs∞∞

(
J∑

j=0

2−js
(
2j ρ(x, z)

)α +
∑

j>J

2−js

)

≤ c‖f ‖Bs∞∞
(
2J (α−s)ρ(x, z)α + 2−J s

)
.

Assuming that 0 < ρ(x, y) ≤ 1 we choose J ≥ 1 so that 2−J ∼ ρ(x, y) and the above
yields |f (x) − f (y)| ≤ c‖f ‖Bs∞∞ρ(x, y)s . If ρ(x, y) > 1 this estimate is immediate
from ‖f ‖∞ ≤ c‖f ‖Bs∞∞ , which follows trivially using the decomposition of f from
above. This completes the proof of (b). �
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6.3 Frame Decomposition of Besov Spaces

Our aim here is to show that the Besov spaces introduced by Definition 6.1 can be
characterized in terms of respective sequence norms of the frame coefficients of func-
tions, using the frames constructed in Sect. 5. We shall utilize the pair of dual frames
{ψjξ }, {ψ̃jξ } constructed in Sects. 5.1–5.2 or in Sect. 5.3. To make the idea of frame
decomposition of Bs

pq more transparent we first introduce the sequence B-spaces
bs
pq .

Definition 6.5 For s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞ the sequence space bs
pq is

defined as the space of all complex-valued sequences a := {ajξ : j ≥ 0, ξ ∈ X } such
that

‖a‖bs
pq

:=
(∑

j≥0

bjsq

[∑

ξ∈Xj

(∣∣B
(
ξ, b−j

)∣∣1/p−1/2|ajξ |
)p
]q/p)1/q

< ∞. (6.8)

Here b > 1 is the constant from Sect. 5, and the �p or �q norm is replaces by the
sup-norm if p = ∞ or q = ∞.

In our further analysis we shall use the “analysis” and “synthesis” operators de-
fined by

Sψ̃ : f → {〈f, ψ̃jξ 〉
}

and Tψ : {ajξ } →
∑

j≥0

∑

ξ∈Xj

ajξψjξ . (6.9)

Theorem 6.6 Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. Then the operators Sψ̃ :
Bs

pq → bs
pq and Tψ : bs

pq → Bs
pq are bounded and TψSψ̃ = Id on Bs

pq . Consequently,
f ∈ Bs

pq if and only if {〈f, ψ̃jξ 〉} ∈ bs
pq . Moreover, if f ∈ Bs

pq , then

‖f ‖Bs
pq

∼ ∥∥{〈f, ψ̃jξ 〉
}∥∥

bs
pq

∼
(∑

j≥0

bjsq

[∑

ξ∈Xj

∥∥〈f, ψ̃jξ 〉ψjξ

∥∥p
p

]q/p)1/q

(6.10)

with the usual modification when p = ∞ or q = ∞. Above the roles of {ψjξ } and
{ψ̃jξ } can be interchanged.

Proof Let Ψj ∈ C∞
0 , j ≥ 0, be the functions from the definition of the frames in

Sect. 5.1. Recall that suppΨ0 ⊂ [0, b] and suppΨj ⊂ [bj−1, bj+1], j ≥ 1. Also,∑
j≥0 Ψj (u) = 1, u ∈ R+, and hence f =∑j≥0 Ψj (

√
L)f for f ∈ L

p . It is easy
to see that Proposition 6.2 implies (with the obvious modification when q = ∞)

‖f ‖Bs
pq

∼ ‖f ‖As
pq

∼ ‖f ‖p +
(∑

j≥0

(
bjs Ebj (f )p

)q
)1/q

∼
(∑

j≥0

(
bjs
∥∥Ψj (

√
L)f
∥∥

p

)q
)1/q

. (6.11)
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Here the second equivalence follows by the monotonicity of Et (f )p and the last
equivalence follows exactly as in the proof of Proposition 6.2.

Let f ∈ Bs
pq and assume q < ∞ (the case q = ∞ is easier). By (5.11) and (6.8) it

follows that

‖SΨ̃ f ‖bs
pq

= ∥∥{〈f, ψ̃jξ 〉
}∥∥

bs
pq

∼
(∑

j≥0

bjsq

[∑

ξ∈Xj

∥∥〈f, ψ̃jξ 〉ψjξ

∥∥p
p

]q/p)1/q

. (6.12)

Using that f =∑j≥0 Ψj (
√

L)f , Ψj (
√

L)(·, y) ∈ Σ2
[bj−1,bj+1], and ψ̃jξ ∈ Σ2

[bj−2,bj+2]
we obtain

〈f, ψ̃jξ 〉ψjξ =
j+2∑

ν=j−2

〈
Ψν(

√
L)f, ψ̃jξ

〉
ψjξ , ξ ∈ Xj ,

where Ψν(
√

L) := 0 if ν < 0. This readily implies

∑

ξ∈Xj

∥∥〈f, ψ̃jξ 〉ψjξ

∥∥p
p

≤ c

j+2∑

ν=j−2

∥∥〈Ψν(
√

L)f, ψ̃jξ

〉
ψjξ

∥∥p
p

≤ c

j+2∑

ν=j−2

∥∥Ψν(
√

L)f
∥∥p

p
.

Here for the last inequality we used Lemma 5.4(a). We insert the above in (6.12) and
use (6.11) to obtain ‖SΨ̃ f ‖bs

pq
≤ c‖f ‖Bs

pq
. Hence the operator Sψ̃ : Bs

pq → bs
pq is

bounded.
To prove the boundedness of Tψ : bs

pq → Bs
pq , we assume that a = {ajξ } ∈ bs

pq

and denote briefly f = Tψa = ∑j≥0
∑

ξ∈Xj
ajξψjξ . Assume q < ∞ (the case

q = ∞ is easier). Using (5.38), Hölder’s inequality if q > 1, and (5.11) we obtain

‖f ‖p ≤ c
∑

j≥0

(∑

ξ∈Xj

‖ajξψjξ‖p
p

)1/p

≤ c

(∑

j≥0

[
bsj
∑

ξ∈Xj

‖ajξψjξ‖p
p

]q/p)1/q

≤ c‖a‖bs
pq

. (6.13)

Therefore, Tψa is well-defined. Further, since ψjξ ∈ Σ
p

bj+1 and applying again (5.38)
we get

Ebj (f )p ≤
∥∥∥∥
∑

m≥j

∑

ξ∈Xm

amξψmξ

∥∥∥∥
p

≤ c
∑

m≥j

(∑

ξ∈Xm

‖amξψmξ‖p
p

)1/p

.

This and the Hardy inequality (6.5) give (
∑

j≥0(b
js Ebj (f )p)q)1/q ≤ c‖a‖bs

pq
. In

turn, this and (6.11) yield ‖f ‖Bs
pq

≤ c‖a‖bs
pq

. Thus the operator Tψ : bs
pq → Bs

pq

is also bounded.
The identity TψSψ̃ = Id on Bs

pq follows by (5.31). �
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6.4 Embedding of Besov Spaces

Finally we show that the Besov spaces Bs
pq embed “correctly”.

Proposition 6.7 Let 1 ≤ p ≤ p1 < ∞, 0 < q ≤ q1 ≤ ∞, 0 < s1 ≤ s < ∞. Then we
have the continuous embedding

Bs
pq ⊂ Bs1

p1q1
if s/d − 1/p = s1/d − 1/p1. (6.14)

Proof This assertion follows easily by Proposition 3.12. Indeed, let {ϕj }j≥0 be the
functions from the definition of Besov spaces (Definition 6.1). Given f ∈ Bs

pq we

evidently have ϕj (
√

L)f ∈ Σ
p

2j+1 and using (3.32)

∥∥ϕj (
√

L)f (·)∥∥
p1

≤ c2jd(1/p1−1/p)
∥∥ϕj (

√
L)f (·)∥∥

p
,

which readily implies ‖f ‖
B

s1
p1q1

≤ c‖f ‖Bs
pq

. �

Compare the above result with [12], where embeddings between Besov spaces
defined via the heat semigroup are proved under an assumption of polynomial decay
of the heat kernel.

7 Heat Kernel on [−1,1] Induced by the Jacobi Operator

We consider the case when M = [−1,1], dμ(x) = wα,β(x)dx, where

wα,β(x) = w(x) = (1 − x)α(1 + x)β, α,β > −1,

and

Lf (x) = −[w(x)a(x)f ′(x)]′
w(x)

, a(x) = (1 − x2), D(L) = C2[−1,1].

Integrating by parts we get E (f, g) = 〈Lf,g〉 = ∫ 1
−1 a(x)f ′(x)g′(x)w(x)dx. Clearly,

the domain D(E ) of the closure E of E is given by the set of weakly differentiable
functions f on ] − 1,1[ such that

‖f ‖2
E =
∫ 1

−1

∣∣f (x)
∣∣2w(x)dx +

∫ 1

−1
a(x)
∣∣f ′(x)

∣∣2w(x)dx < ∞.

Note that D(L) ⊃ P the space of all polynomials, and L(Pk) ⊂ Pk , k ≥ 0, with Pk

being the space of all polynomials of degree k. As is well known [58] the (normal-
ized) Jacobi polynomials Pk , k = 0,1, . . . , are eigenfunctions of L, i.e. LPk = λkPk

with λk = k(k + α + β + 1). By the density of polynomials in L2([−1,1],μ) it fol-
lows that

e−tL(f ) =
∑

k≥0

e−λkt 〈f,Pk〉Pk, t > 0.
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We next show that e−tL is submarkovian. Let Φε ∈ C∞(R) and 0 ≤ Φ ′
ε ≤ 1. Then

for any f ∈ C2[−1,1] we have (Φε(f ))′ = Φ ′
ε(f )f ′ ∈ C2[−1,1] and

E
(
Φε(f ),Φε(f )

)=
∫ 1

−1
a(x)
∣
∣(Φε(f )

)′∣∣2w(x)dx

≤
∫ 1

−1
a(x)
∣∣f ′(x)

∣∣2w(x)dx = E (f,f ).

Hence e−tL is submarkovian (see Sect. 1.2).
Moreover, this Dirichlet space is evidently strongly local and regular and also

Γ (f,g)(u) = a(u)f ′(u)g′(u).
We now compute the intrinsic metric. We have for x, y ∈ [−1,1], x < y,

ρ(x, y) = sup
{
u(x) − u(y) : u ∈ C2[−1,1], a(t)

∣∣u′(t)
∣∣2 ≤ 1

}

= sup

{∫ y

x

u′(t)dt : u ∈ C2[−1,1], a(t)
∣∣u′(t)

∣∣2 ≤ 1

}

=
∫ y

x

dt√
a(t)

dt = | arccosx − arccosy|.

Evidently, the topology generated by this metric is the usual topology on [−1,1], and
[−1,1] is complete.

It remains to verify the doubling property of the measure and the scale-invariant
Poincaré inequality.

7.1 Doubling Property of the Measure

The doubling property of the measure dμ(x) = wα,β(x)dx follows readily by the
following estimates on |B(x, r)|: For any x ∈ [−1,1] and 0 < r ≤ π

c1
∣∣B(x, r)

∣∣≤ r
(
1 − x + r2)α+1/2(1 + x + r2)β+1/2 ≤ c2

∣∣B(x, r)
∣∣, (7.1)

where c1, c2 > 0 are constants depending only on α and β .
To prove these estimates, assume that x = cos θ , 0 ≤ θ ≤ π . Then evidently

|B(x, r)| = ∫ cos[0∨(θ−r)]
cos[π∧(θ+r)] wα,β(u)du, where a ∨ b := max{a, b} and a ∧ b :=

min{a, b} as usual. Assume 0 ≤ x ≤ 1 and 0 < r ≤ π/4. The following chain of
similarities with constants depending only on α,β is quite obvious:

∣∣B(x, r)
∣∣∼
∫ cos[0∨(θ−r)]

cos(θ+r)

(1 − u)αdu ∼
∫ θ+r

0∨(θ−r)

(1 − cosϕ)α sinϕdϕ

∼
∫ θ+r

0∨(θ−r)

ϕ2α+1dϕ ∼ r(θ + r)2α+1 ∼ r(sin θ + r)2α+1

∼ r
(√

1 − x2 + r
)2α+1 ∼ r

(
1 − x + r2)α+1/2

,

which implies (7.1). The case when −1 ≤ x < 0 and 0 < r ≤ π/4 is similar and in
the case π/4 < r ≤ π we obviously have |B(x, r)| ∼ 1, which again leads to (7.1).
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7.2 Poincaré Inequality

As was explained in Sect. 1.2 a critical ingredient in establishing Gaussian bounds
for the heat kernel is the scale-invariant Poincaré inequality, which we establish next.

Theorem 7.1 For any f ∈ D(E ) and an interval I = [a, b] ⊂ [−1,1]
∫

I

∣∣f (x) − fI

∣∣2w(x)dx ≤ c
(
diamρ(I )

)2
∫

I

∣∣f ′(x)
∣∣2(1 − x2)w(x)dx (7.2)

where diamρ(I ) = arccosa − arccosb, fI = 1
w(I)

∫
I
f (x)w(x)dx with w(I) =∫

I
w(x)dx, and c > 0 is a constant depending only on α,β .

Proof Denote briefly w[c, d] := ∫ d

c
w(u)du. We have for I = [a, b] ⊂ [−1,1] and

x ∈ I

f (x) − fI = 1

w(I)

∫

I

(
f (x) − f (y)

)
w(y)dy = 1

w(I)

∫

I

∫ x

y

f ′(u)duw(y)dy

=
∫

I

f ′(u)K(x,u)du,

where K(x,u) := 1
w(I)

{w[a,u]1[a,x] − w[u,b]1[x,b]}. It is easy to see that

∫

I

∣∣K(x,u)
∣∣du = 1

w(I)

∫

I

|x − y|w(y)dy ≤ 1

2
(b − a) and

∫

I

∣∣K(x,u)
∣∣w(x)dx = 2w[a,u]w[u,b]

w(I)
.

Using the above we obtain

∫

I

∣∣f (x) − fI

∣∣2w(x)dx =
∫

I

∣∣∣∣

∫

I

f ′(u)K(x,u)du

∣∣∣∣

2

y(x)dx

≤
∫

I

(∫

I

∣∣f ′(u)
∣∣2∣∣K(x,u)

∣∣du

∫

I

∣∣K(x, v)
∣∣dv

)
w(x)dx

≤ 1

2
(b − a)

∫

I

∣∣f ′(u)
∣∣2
(∫

I

∣∣K(x,u)
∣∣w(x)dx)

)
du

= (b − a)

∫

I

∣∣f ′(u)
∣∣2 w[a,u]w[u,b]

w(I)
du.

Therefore, the theorem will be proved if we show that

(b − a)
w[a,u]w[u,b]

w(I)
≤ cw(u)

(
1 − u2)

(∫ b

a

dz√
1 − z2

)2

(7.3)

for some constant c > 0 depending only on α,β .
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Suppose [a, b] ⊂ [−1/2,1]. Then it is readily seen that

w(u)
(
1 − u2)

(∫ b

a

dz√
1 − z2

)2

≥ 2−β(1 − u)α+1(
√

1 − a − √
1 − b)2. (7.4)

On the other hand, since w(x) ≤ 2|β|(1 − x)α , we have

w[a,u]w[u,b]
w(I)

≤ 23|β|

α + 1

[(1 − a)α+1 − (1 − u)α+1][(1 − u)α+1 − (1 − b)α+1]
(1 − a)α+1 − (1 − b)α+1

.

We need the following inequality whose proof is straightforward: If γ > 0 and 0 ≤
A ≤ X ≤ B , then

(Xγ − Aγ )(Bγ − Xγ )

Bγ − Aγ
≤ (γ ∨ 1)Xγ

√
B − √

A√
B + √

A
. (7.5)

Applying this inequality we get

(b − a)
w[a,u]w[u,b]

w(I)
≤ 23|β|

(
1

α + 1
∨ 1

)
(1 − u)α+1(b − a)

√
1 − a − √

1 − b√
1 − a + √

1 − b

= 23|β|
(

1

α + 1
+ 1

)
(1 − u)α+1(

√
1 − a − √

1 − b)2.

This coupled with (7.4) gives (7.3). The proof of (7.3) in the case when I = [a, b] ⊂
[−1,1/2] is the same.

Let now −1 ≤ a < −1/2 < 1/2 < b ≤ 1. Suppose u ∈ [0, b] (the case when u ∈
[a,0) is similar). Then evidently w[a,u] ∼ 1, w(I) ∼ 1,

∫ b

a
dz√
1−z2

∼ 1 and (7.3)

follows by

w[u,b] ≤ 2|β|
∫ 1

u

(1−y)αdy ≤ 2|β|

α + 1
(1−u)α+1 and w(u)

(
1−u2)∼ (1−u)α+1.

The proof of the theorem is complete. �

7.3 Gaussian Bounds on the Heat Kernel Associated with the Jacobi Operator

As a consequence of the Poincaré inequality and the doubling property of the mea-
sure, established above, we obtain (Sect. 1.2) Gaussian bounds for the heat kernel
pt (x, y) associated with the Jacobi operator:

Theorem 7.2 For any x, y ∈ [−1,1] and 0 < t ≤ 1,

c′
1 exp{− c1ρ

2(x,y)
t

}
√

|B(x,
√

t)||B(y,
√

t)
≤ pt(x, y) ≤ c′

2 exp{− c2ρ
2(x,y)
t

}
√

|B(x,
√

t)||B(y,
√

t)|
. (7.6)

Here |B(x,
√

t)| ∼ √
t(1 − x + t)α+1/2(1 + x + t)β+1/2, ρ(x, y) = | arccosx −

arccosy| or ρ(x, y) = |θ − φ| if x = cos θ and y = cosφ, 0 ≤ θ,φ ≤ π , and
c1, c2, c

′
1, c

′
2 > 0 are constants depending only on α and β .
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Furthermore,

pt(x, y) =
∑

k≥0

e−λktPk(x)Pk(y), λk = k(k + α + β + 1), (7.7)

where the series converges uniformly.

The above results and Theorem 3.4 yield the nearly exponential localization of
kernels as in the following

Corollary 7.3 Let f ∈ C∞
0 (R+) and f (2ν+1)(0) = 0, ν ≥ 0 and consider the kernel

Λδ(x, y) =∑k≥0 f (δ
√

λk)Pk(x)Pk(y), 0 < δ ≤ 1. Then for any σ > 0 there exists a
constant cσ > 0 such that

∣∣Λδ(x, y)
∣∣≤ cσ

(∣∣B(x, δ)
∣∣∣∣B(x, δ)

∣∣)−1/2
(

1 + ρ(x, y)

δ

)−σ

, (7.8)

where |B(·, δ)| and ρ(x, y) are as above.

This result is more complete than the similar estimate (2.14) in [47] (see also
[29, 30]) which is proved under the restriction α,β > −1/2.
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