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1 Introduction

The main focus of this paper is risk sharing games with quantile-based risk mea-

sures and heterogeneous beliefs, where various optimization problems naturally appear.

Quantile-based risk measures, including Value-at-Risk (VaR) and Expected Shortfall (ES)1,

are the standard risk metrics used in current banking and insurance regulation, such as

Basel II, III, Solvency II, and the Swiss Solvency Test. Risk sharing games via VaR or

ES are studied in the context of capital optimization; see Embrechts et al. (2017) and the

references therein2.

In the current regulatory frameworks (e.g. BCBS (2016)), internal models are exten-

sively used, naturally leading to model heterogeneity, that is, firms use different models

for the same future events. See Embrechts (2017) for a recent discussion on the use of

internal models in banking and insurance. Heterogeneous beliefs are typically represented

by a collection of probability measures to reflect the divergence of agents’ viewpoints3 on

the distributions of risks. In this model landscape, the various agents may not be fully in-

formed on the internal models used by competitors and hence the search for a competitive

equilibrium becomes relevant (see Section 2 for definitions). For a discussion on hetero-

geneous beliefs in finance, see e.g. Xiong (2013) and the references therein. Technically,

quantile-based risk sharing games with heterogeneous beliefs are essentially different from

these with homogeneous beliefs or these based on expected utilities. For instance, the risk

sharing problem is straightforward for ES agents if all agents use the same probability mea-

sure as in Embrechts et al. (2017), but highly non-trivial in the setting of heterogeneous

beliefs. Moreover, an expected utility is linear with respect to the underlying probability

measure, whereas quantile-based risk measures are not.

In this paper, we concentrate mainly on the mathematical results and provide only

brief discussions on their economic relevance. Our main contributions are summarized

1ES is also called CVaR, AVaR or TVaR in various contexts. In particular, CVaR is common in the
optimization literature, e.g. Pflug (2000) and Rockafellar and Uryasev (2000, 2002). In this paper, we stick
to the term ES following the risk management literature, e.g. McNeil et al. (2015) and Embrechts et al.
(2017).

2Amongst others, Barrieu and El Karoui (2005), Acciaio and Svindland (2009), Jouini et al. (2008),
Dana and Le Van (2010), Rüschendorf (2013) and Anthropelos and Kardaras (2017) studied risk sharing
games with convex risk measures and expected utilities, different from the setting of quantile-based risk
measures in this paper.

3Following the tradition in game theory, we refer to a participant in the risk sharing games, such as
an investor or a firm, as an agent.
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as follows. Explicit formulas of Pareto-optimal allocations and competitive equilibria

are obtained for ES agents, and the Fundamental Theorems of Welfare Economics (see

e.g. Starr (2011)) are established. For the case of VaR agents and that of mixed VaR,

ES and RVaR (see Section 6 for a definition) agents, Pareto-optimal allocations share a

similar form as in the case of ES agents, but competitive equilibria do not exist. In all

cases, we find a Pareto-optimal allocation (X∗1 , . . . , X
∗
n) of the general (but not unique)

form

X∗i = (X − x∗)IA∗i +
x∗

n
, i = 1, . . . , n, (1.1)

where X is the total risk to share, (A∗1, . . . , A
∗
n) is a partition of the sample space, and

x∗ is a constant. Nevertheless, the determination of (x∗, A∗1, . . . , A
∗
n) for ES agents is

computationally very different from that for VaR agents. As an interesting consequence

of our main results, we obtain a multiple-measure version of the optimization formula of

ES of Rockafellar and Uryasev (2000, 2002) and Pflug (2000). Thanks to the convexity

of ES, results in Barrieu and El Karoui (2005) on convex risk measures become helpful

in deriving the Pareto-optimal allocations for ES agents; in the case of VaR, which is

not convex, optimization problems become more involved. Furthermore, the dependence

structure of the Pareto-optimal allocation in (1.1) can be described as mutual exclusivity

(see Puccetti and Wang (2015)); this is in sharp contrast to comonotonicity in the classic

setting of risk sharing with expected utilities or convex risk measures (see Rüschendorf

(2013)).

2 Preliminaries

2.1 Risk sharing games

Let (Ω,F) be a measurable space and P be the set of all probability measures on

(Ω,F). Let X be the set of bounded random variables on (Ω,F). Given a random variable

X ∈ X , we define the set of allocations of X as

An(X) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = X

}
. (2.1)

There are n agents in the risk sharing game. For i = 1, . . . , n, agent i is equipped with

a risk measure ρi : X → R, which is the agent’s objective to minimize. The risk mea-
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sures ρ1, . . . , ρn used in this paper shall later be specified as VaR and ES under different

probability measures.

We consider two classic notions of risk sharing: Pareto optimality and competitive

equilibria. First, a Pareto-optimal allocation is one that cannot be strictly improved.

Definition 2.1 (Pareto-optimal allocations). Fix the risk measures ρ1, . . . , ρn and the

total risk X ∈ X . An allocation (X1, . . . , Xn) ∈ An(X) is Pareto-optimal if for any

allocation (Y1, . . . , Yn) ∈ An(X), ρi(Yi) 6 ρi(Xi) for all i = 1, . . . , n implies ρi(Yi) = ρi(Xi)

for all i = 1, . . . , n.

Next we formulate competitive equilibria for a one-period exchange market in the

classic sense of Arrow-Debreu as in Föllmer and Schied (2016) and Embrechts et al. (2017).

To reach a competitive equilibrium, agents in the market minimize their own risk measures

by trading with each other. Assume that agent i has an initial risk (random loss/wealth)

ξi ∈ X for i = 1, . . . , n. Let X =
∑n

i=1 ξi be the total risk. A probability measure Q ∈ P

represents the pricing rule (risk-neutral probability measure) for the microeconomic market

among the agents, that is, by taking a risk Y in this market, one receives a (discounted)

monetary payment of EQ[Y ].

For each i = 1, . . . , n, agent i may trade the initial risk ξi for a new position Xi ∈ X ,

and this under the budget constraint EQ[Xi] > EQ[ξi]. In general, the budget constraint

will be binding (equality is attained) as the admissible set X is rich enough. In this setting,

each agent’s target is

to minimize ρi(Xi) over Xi ∈ X

subject to EQ[Xi] > EQ[ξi],
i = 1, . . . , n. (2.2)

To reach an equilibrium, the market clearing equation

n∑
i=1

X∗i = X =

n∑
i=1

ξi

needs to be satisfied, where X∗i solves (2.2), i = 1, . . . , n.

Definition 2.2 (Competitive equilibria). Fix the risk measures ρ1, . . . , ρn, the initial risks

ξ1, . . . , ξn ∈ X and the total risk X =
∑n

i=1 ξi. A pair (Q, (X∗1 , . . . , X
∗
n)) ∈ P × An(X) is
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a competitive equilibrium if

X∗i ∈ arg min
Xi∈X

{
ρi(Xi) : EQ[Xi] > EQ[ξi]

}
, i = 1, . . . , n. (2.3)

The probability measure Q in a competitive equilibrium is called an equilibrium price, and

the allocation (X∗1 , . . . , X
∗
n) in a competitive equilibrium is called an equilibrium allocation.

It is well known that, through the classic Fundamental Theorems of Welfare Eco-

nomics (e.g. Starr (2011)), Pareto-optimal allocations and equilibrium allocations are

closely related. This relationship will become clear in our setting through the main results

of the paper.

2.2 VaR, ES, and agents with heterogeneous beliefs

The key feature of this paper is belief heterogeneity among agents. The heterogeneity

of probability measures means that the agents hold possibly different beliefs (models)

about the future of the market. Following the setup of homogeneous beliefs in Embrechts

et al. (2017), we mainly consider two popular risk measures, the Value-at-Risk (VaR) and

the Expected Shortfall (ES), both widely used in modern banking and insurance regulation.

For a random loss X ∈ X and a given level α ∈ [0, 1), its VaR under a probability measure

Q ∈ P is defined as

VaRQ
α (X) = inf{x ∈ R : Q(X > x) 6 α}. (2.4)

Note that VaRQ
α (X) is the left end-point of the interval of (1−α)-quantiles of X under Q.

For X ∈ X , the Expected Shortfall (ES) at level α ∈ (0, 1) under the probability measure

Q ∈ P is defined as

ESQα (X) =
1

α

∫ α

0
VaRQ

u (X)du. (2.5)

A well-known optimization property linking VaR and ES is established in Rockafellar and

Uryasev (2000) and Pflug (2000), namely,

ESQα (X) = min

{
1

α
EQ[(X − x)+] + x : x ∈ R

}
, (2.6)

and

VaRQ
α (X) ∈ arg min

{
1

α
EQ[(X − x)+] + x : x ∈ R

}
. (2.7)
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In this paper, we will generalize the above result in a multiple-measure game-theoretic

framework.

For i = 1, . . . , n, let agent i be equipped with a probability measure Qi ∈ P repre-

senting her belief about the future randomness. This agent’s objective is to minimize a

VaR or an ES, and she shall be referred to as a VaR agent or an ES agent, respectively.

We will also consider RVaR agents as in Embrechts et al. (2017); see Section 6.

To study risk sharing games for risk measures, define the inf-convolution of risk

measures (see Rüschendorf (2013)) as

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}
, X ∈ X . (2.8)

It is well-known that for monetary risk measures (Artzner et al. (1999)) including VaR and

ES, Pareto optimality is equivalent to optimality with respect to the sum (see Proposition

1 of Embrechts et al. (2017)). More precisely, (X1, . . . , Xn) is a Pareto-optimal allocation

of X if and only if
n∑
i=1

ρ(Xi) =
n
�
i=1

ρi(X). (2.9)

Therefore, the following two optimization problems are of crucial importance in our study

of risk sharing games, namely,

n
�
i=1

VaRQi
αi

(X) = inf

{
n∑
i=1

VaRQi
αi

(Xi) : (X1, . . . , Xn) ∈ An(X)

}
, (2.10)

and

�ni=1ESQi
αi

(X) = inf

{
n∑
i=1

ESQi
αi

(Xi) : (X1, . . . , Xn) ∈ An(X)

}
, (2.11)

where αi ∈ (0, 1), i = 1, . . . , n.

Notation. Throughout the paper, we use IA to represent the indicator function of

the event A ∈ F , and let πn(A) be the set of n-partitions of (A,F|A). For real numbers

x1, . . . , xn, write
∧n
i=1 xi = min{x1, . . . , xn} and

∨n
i=1 xi = max{x1, . . . , xn}.
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3 Pareto-optimal allocations for ES agents

In this section, we investigate Pareto-optimal allocations for ES agents. Throughout

this section, α1, . . . , αn ∈ (0, 1), Q1, . . . , Qn ∈ P, and the risk measure of agent i is ESQi
αi

,

i = 1, . . . , n. We first give the sufficient and necessary condition for the existence of a

Pareto-optimal allocation. In the proposition below, sup(∅) is set to −∞ by convention.

Proposition 3.1. For X ∈ X , the following hold.

(i) �ni=1 ESQi
αi

(X) = sup{EQ[X] : Q ∈ Q}, where

Q =

{
Q ∈ P :

dQ

dQi
6

1

αi
, i = 1, . . . , n

}
. (3.1)

(ii) A Pareto-optimal allocation of X exists if and only if

n∑
i=1

1

αi
Qi(Ai) > 1 for all (A1, . . . , An) ∈ πn(Ω). (3.2)

Proof. Note that each ESQi
αi

is a convex risk measure. The part (i) follows immediately

from Barrieu and El Karoui (2005). Moreover, the “if” part of (ii) follows from Theorem

11.3 of Rüschendorf (2013). It suffices to show the “only if” part of (ii). Note that a

Pareto-optimal allocation of X exists only if Q is non-empty. We assert that this is in

turn equivalent to (3.2). Indeed, for any A ∈ F , define

Q′(A) = min

{
n∑
i=1

Qi(A ∩Ai)
αi

: (A1, . . . , An) ∈ πn(Ω)

}
.

It can be verified that Q′ satisfies monotonicity and σ-additivity with Q′(∅) = 0, that is,

Q′ is a measure on (Ω,F). On the other hand, for a probability measure Q, Q 6 Q′ if

and only if Q ∈ Q. To see this, first note that if Q 6 Q′, then for A ∈ F , letting Ai = A

yields Q(A) 6 Q′(A) 6 Qi(A)/αi, i = 1, . . . , n. This implies dQ
dQi
6 1

αi
and thus, Q ∈ Q.

On the other hand, Q ∈ Q implies

Q(A) 6
Qi(A)

αi
for any A ∈ F , i = 1, . . . , n,
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and hence, for any (A1, . . . , An) ∈ πn(Ω),

Q(A) =

n∑
i=1

Q(A ∩Ai) 6
n∑
i=1

Qi(A ∩Ai)
αi

for any A ∈ F ,

so that Q 6 Q′. That is, Q 6 Q′ if and only if Q ∈ Q. Hence, Q is non-empty if and only

if Q′(Ω) > 1, that is, (3.2) holds.

Remark 3.1. From Proposition 3.1 (ii), the existence of a Pareto-optimal allocation only

depends on (α1, . . . , αn) and (Q1, . . . , Qn), but not on the total risk X.

Next we explicitly describe Pareto-optimal allocations for the ES agents. First

we translate the inf-convolution of ES into another optimization problem. For given

Q1, . . . , Qn ∈ P, we let Q be a measure dominating Q1, . . . , Qn, and

Bj =

{
1

αj

dQj
dQ

=
n∧
i=1

1

αi

dQi
dQ

}
\

(
j−1⋃
k=1

Bk

)
, j = 1, . . . , n. (3.3)

We shall fix B = (B1, . . . , Bn) as in (3.3) throughout the rest of Sections 3-4. Apparently,

the choice of Q is irrelevant in the definition of B1, . . . , Bn, and one can safely choose

Q = 1
n

∑n
i=1Qi. Roughly speaking, Bj is the set of points on which dQj/αj is the smallest

among dQi/αi, i = 1, . . . , n, and we only count once if there is a tie for the minimum.

From the definition of B1, . . . , Bn, it is straightforward to verify

min

{
n∑
i=1

1

αi
Qi(Ai) : (A1, . . . , An) ∈ πn(Ω)

}
=

n∑
i=1

1

αi
Qi(Bi),

and therefore by Proposition 3.1 (ii), a Pareto-optimal allocation exists if and only if∑n
i=1

1
αi
Qi(Bi) > 1.

Proposition 3.2. Assume Q in (3.1) is non-empty. Then for X ∈ X ,

n
�
i=1

ESQi
αi

(X)

= min

{
n∑
i=1

1

αi
EQi [(X − x)+IAi ] + x : (A1, . . . , An) ∈ πn(Ω), x ∈ R

}

= min

{
n∑
i=1

1

αi
EQi [(X − x)+IBi ] + x : x ∈ R

}
.
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Proof. FixX ∈ X . AsQ is non-empty, or equivalently (3.2) holds, we have�ni=1ESQi
αi

(X) >

−∞. Define

V (X) = inf

{
n∑
i=1

1

αi
EQi [(X − x)+IAi ] + x : (A1, . . . , An) ∈ πn(Ω), x ∈ R

}
. (3.4)

We first show

V (X) >
n
�
i=1

ESQi
αi

(X). (3.5)

For any (A1, . . . , An) ∈ πn(Ω) and x ∈ R, let Xi = (X − x)IAi + x
n , i = 1, . . . , n. Clearly,

X1 + · · ·+Xn = X. Moreover, for i = 1, . . . , n,

ESQi
αi

(Xi) = ESQi
αi

((X − x)IAi) +
x

n

6 ESQi
αi

((X − x)+IAi) +
x

n
6

1

αi
EQi [(X − x)+IAi ] +

x

n
.

Therefore, for all x ∈ R and (A1, . . . , An) ∈ πn(Ω), there exists (X1, . . . , Xn) ∈ An(X)

such that
n∑
i=1

ESQi
αi

(Xi) 6
n∑
i=1

1

αi
EQi [(X − x)+IAi ] + x.

It follows that

�ni=1ESQi
i (X) 6 V (X).

Thus (3.5) holds.

Next we need to show �ni=1ESQi
i (X) > V (X). For A := (A1, . . . , An) ∈ πn(Ω), write

vA(x) =

n∑
i=1

1

αi
EQi [(X − x)+IAi ] + x, x ∈ R. (3.6)

Clearly, vA is differentiable, and

v′A(x) = −
n∑
i=1

1

αi
Qi(X > x,Ai) + 1.

Therefore, v′A is an increasing function of x, with v′A(∞) = 1 and

v′A(−∞) = 1−
n∑
i=1

1

αi
Qi(Ai) 6 0
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as a result of the condition (3.2). Let x∗A = inf{x ∈ R : v′A(x) > 0}. Obviously x∗A

minimizes vA. Moreover, noting that Qi(X > x,Ai) is right-continuous in x for i =

1, . . . , n, v′A is a right-continuous function. Therefore, v′A(x∗A) > 0, and equivalently,

n∑
i=1

1

αi
Qi(X > x∗A, Ai) 6 1. (3.7)

Next, let

Q∗A(C) =
n∑
i=1

1

αi
Qi(C ∩Ai ∩ {X > x∗A}), C ∈ F .

Let us verify

1. Q∗A is σ-additive, because it is the sum of n measures.

2. Q∗A(Ω) 6 1 by (3.7).

Now we make some adjustment to Q∗A so that Q∗A(Ω) = 1. Note that by a symmetric

argument,

n∑
i=1

1

αi
Qi(X > x

∗
A, Ai) > 1. (3.8)

Therefore, if Q∗A(Ω) 6 1, we can replace Q∗A by Q∗∗A , which is a linear combination of Q∗A

and Q′A, defined as

Q′A(C) =

n∑
i=1

1

αi
Qi(C ∩Ai ∩ {X > x∗A}), C ∈ F ,

so that Q∗∗A (Ω) = 1. In the following we safely assume Q∗A(Ω) = 1 (otherwise we just

replace it by Q∗∗A ), that is, Q∗A is a probability measure.

We can verify

EQ
∗
A [X] =

n∑
i=1

1

αi
EQi [XI{X>x∗A}IAi ]

=
n∑
i=1

1

αi
EQi [(X − x∗A + x∗A)I{X>x∗A}IAi ]

=
n∑
i=1

1

αi
EQi [(X − x∗A)+IAi ] + x∗AQ

∗
A(Ω) = vA(x∗A). (3.9)
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Therefore,

V (X) 6 EQ
∗
A [X] for all (A1, . . . , An) ∈ πn(Ω). (3.10)

Let Bj , j = 1, . . . , n be defined as in (3.3). Clearly B = (B1, . . . , Bn) ∈ πn(Ω). It follows

that, for C ∈ F ,

Q∗B(C) =
n∑
i=1

1

αi
Qi(C ∩Bi ∩ {X > x∗B})

6
n∑
i=1

1

αj
Qj(C ∩Bi) 6

1

αj
Qj(C), j = 1, . . . , n.

As a consequence, we have Q∗B ∈ Q. It follows that

EQ
∗
B [X] 6 sup

Q∈Q
EQ[X] =

n
�
i=1

ESQi
αi

(X).

Together with (3.5) and (3.10), we have

V (X) 6 EQ
∗
B [X] 6

n
�
i=1

ESQi
αi

(X) 6 V (X). (3.11)

This completes the proof.

With the help of Proposition 3.2, we are ready to present an explicit form of Pareto-

optimal allocations for the ES agents. Define

x∗B = inf

{
x ∈ R :

n∑
i=1

1

αi
Qi(X > x,Bi) 6 1

}
, (3.12)

and

y∗B = inf

{
x ∈ R :

n∑
i=1

1

αi
Qi(X > x,Bi) < 1

}
. (3.13)

The quantities x∗B and y∗B will be used repeatedly later in the paper. Note that, if Q1 =

· · · = Qn = Q, then by definition of (B1, . . . , Bn),

x∗B = inf

{
x ∈ R :

1

α
Q(X > x) 6 1

}
= VaRQ

α (X),

where α =
∨n
i=1 αi. Thus, x∗B can be seen as a generalized left-quantile (VaR) of X in the
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multi-measure framework, whereas y∗B is a generalized right-quantile of X. By definition,

Qi(x
∗
B < X < y∗B, Bi) = 0 for i = 1, . . . , n. Similarly to the left/right-quantiles, x∗B and

y∗B are often identical for practical settings.

Theorem 3.3. Assume Q in (3.1) is non-empty. A Pareto-optimal allocation (X∗1 , . . . , X
∗
n)

of X ∈ X is given by

X∗i = (X − x∗)IBi +
x∗

n
, i = 1, . . . , n, (3.14)

for x∗ ∈ [x∗B, y
∗
B], where (B1, . . . , Bn), x∗B and y∗B are in (3.3), (3.12) and (3.13).

Proof. For i = 1, . . . , n, using (2.6) with x = x∗

n , we have

ESQi
αi

(X∗i ) 6
1

αi
EQi [(X − x∗)+IBi ] +

x∗

n
.

By taking a derivative of vB defined by (3.6) with Ai replaced by Bi, i = 1, . . . , n, we

have, for x∗ ∈ [x∗B, y
∗
B],

n∑
i=1

1

αi
EQi [(X − x∗)+IBi ] + x∗ = min

{
n∑
i=1

1

αi
EQi [(X − x)+IBi ] + x : x ∈ R

}
.

Therefore, by Proposition 3.2, we have
∑n

i=1 ESQi
αi

(X∗i ) 6 �ni=1 ESQi
αi

(X). This implies the

Pareto optimality of (X∗1 , . . . , X
∗
n).

The economic interpretation of the Pareto-optimal allocation in (3.14) is very simple.

For each i = 1, . . . , n, agent i takes the risk (X − x∗)IBi plus a constant (side-payment).

Looking at the definition of Bi, it is clear that agent i thinks the event Bi is the least

likely to happen, compared to other agents’ beliefs on the same event. The rest of the risk,

which is more likely to happen according to agent i (relative to other agents), is taken by

others. This intuitively implies, quoting Chen et al. (2012), “When agents disagree about

disaster risk, they will insure each other against the types of disasters they fear most”.

We make some technical observations about Theorem 3.3.

(i) A constant shift (side-payment) amongX∗1 , . . . , X
∗
n defined in (3.14) does not compro-

mise the optimality; hence, (X∗1 +c1, . . . , X
∗
n+cn) is also a Pareto-optimal allocation,

where c1, . . . , cn are constants and
∑n

i=1 ci = 0. Later we shall see in Proposition 3.5
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that, under an extra condition, the Pareto-optimal allocation is unique on the set

{X > y∗B} up to constant shifts.

(ii) The dependence structure of the Pareto-optimal allocation (X∗1 , . . . , X
∗
n) in (3.14)

is worth noting. On the set {X > x∗}, X∗1 , . . . , X∗n are mutually exclusive, a form

of extremal negative dependence (see Puccetti and Wang (2015)). This is in sharp

contrast to the case of homogeneous beliefs, where a Pareto-optimal allocation for

strictly convex functionals is always comonotonic (see Rüschendorf (2013)), a form

of extremal positive dependence.

(iii) As an immediate consequence of Theorem 3.3,

n
�
i=1

ESQi
αi

(X) =

n∑
i=1

1

αi
EQi [(X − x∗B)+IBi ] + x∗B. (3.15)

We can easily see that in the case of n = 1, Proposition 3.2 gives, for any α ∈ (0, 1),

Q ∈ P and X ∈ X ,

ESQα (X) = min

{
1

α
EQ[(X − x)+] + x : x ∈ R

}
, (3.16)

and Theorem 3.3 (setting n = 1) implies that the above minimum is achieved by x∗ =

VaRQ
α (X), a celebrated result (see (2.6) and (2.7)) established by Rockafellar and Uryasev

(2000). In other words, Theorem 3.3 can be regarded as a generalization of the result of

Rockafellar and Uryasev (2000) in a multiple-measure framework. Using (3.16), we obtain

the following corollary of Theorem 3.3, giving a solution to an optimization problem similar

to (2.6) and (2.7).

Corollary 3.4. The optimization problem

to minimize

n∑
i=1

1

αi
EQi [(Xi − xi)+] +

n∑
i=1

xi

over x1, . . . , xn ∈ R, (X1, . . . , Xn) ∈ An(X)

admits a solution (x∗1, . . . , x
∗
n, X

∗
1 , . . . , X

∗
n) where x∗1 = · · · = x∗n = x∗B/n, and x∗B and

X∗1 , . . . , X
∗
n are given in Theorem 3.3.
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Remark 3.2. If Q1 = · · · = Qn = P, Proposition 3.2 reduces to the classic result

n
�
i=1

ESP
αi

(X) = min

{
1∨n

i=1 αi
EP[(X − x)+] + x : x ∈ R

}
= ESP∨n

i=1 αi
(X).

In this case, according to Theorem 3.3, the Pareto-optimal allocation is one where all

the risk is taken by one agent with the largest αi value, and the other agents make side-

payments to this agent. This is a special case of Theorem 2 of Embrechts et al. (2017).

Next we study the uniqueness of the form of Pareto-optimal allocations. Since an ES

only depends on the tail part of a risk, it is natural that uniqueness can only be established

on the set {X > y∗B}. Moreover, it is straightforward to verify that the allocation can be

very flexible on the set {dQi/dQ = 0} for each i = 1, . . . , n, where Q = 1
n

∑n
i=1Qi. Hence,

we focus our discussion on the case in which Q1, . . . , Qn are equivalent.

The following proposition characterizes the form of Pareto-optimal allocations, which

requires an intuitive condition

the sets

{
1

αj

dQj
dQ

=
n∧
i=1

1

αi

dQi
dQ

}
, j = 1, . . . , n, are disjoint, (3.17)

so that the sets on which 1
αi

dQi

dQ is the smallest, i = 1, . . . , n, are distinguishable.

Proposition 3.5. Suppose that Q1, . . . , Qn are equivalent to Q ∈ P and (3.17) holds. Any

Pareto-optimal allocation (X∗1 , . . . , X
∗
n) of X ∈ X satisfies, for some constants c1, . . . , cn

with
∑n

i=1 ci = y∗B,

(X∗i − ci)+ = (X − y∗B)+IBi Q-a.s., i = 1, . . . , n,

where y∗B is defined in (3.13).

Proof. Assume Q in (3.1) is non-empty so that a Pareto-optimal allocation exists; oth-

erwise there is nothing to show. Let (X∗1 , . . . , X
∗
n) be a Pareto-optimal allocation and

yi = VaRQi
αi

(X∗i ), i = 1, . . . , n. Fix i = 1, . . . , n. We assert that X∗i > yi implies X∗j > yj

for any j 6= i, Qi-almost surely. To see this, assume that there exist i and j such that

Qi(X
∗
i > yi, X

∗
j < yj) > 0. Then there exists δ > 0 such that Qi(X

∗
i > yi, X

∗
j <

yj−δ) > 0. Let A = {X∗i > yi, X
∗
j < yj−δ}. It follows that ESQi

αi
(X∗i −δIA) < ESQi

αi
(X∗i )

whereas ES
Qj
αj (X∗j + δIA) = ES

Qj
αj (X∗j ) since VaRQi

αi
(X∗i ) = yi and VaR

Qj
αj (X∗j ) = yj . This

14



contradicts the Pareto optimality of (X∗1 , . . . , X
∗
n). Hence, we have

Qi(X
∗
i > yi, X

∗
j < yj) = 0 for all i, j = 1, . . . , n.

Since Q1, . . . , Qn are equivalent, it follows that

n∑
i=1

(X∗i − yi)+ =

(
n∑
i=1

X∗i −
n∑
i=1

yi

)
+

=

(
X −

n∑
i=1

yi

)
+

Q-a.s. (3.18)

Define Zi = 1
αi

dQi

dQ , i = 1, . . . , n. By (3.16), the minimization problem in (2.11) is

equivalent to

to minimize
∑n

i=1 EQ[Zi(Xi −VaRQi
αi

(Xi))+] +
∑n

i=1 VaRQi
αi

(Xi)

over (X1, . . . , Xn) ∈ An(X).
(3.19)

From (2.6) and (3.18), we know that an optimizer (X∗1 , . . . , X
∗
n) of (3.19) satisfies

∑n
i=1(X

∗
i −

yi)+ = (X −
∑n

i=1 yi)+ Q-almost surely, where yi = VaRQi
αi

(X∗i ), i = 1, . . . , n. Consider

the optimization problem

to minimize
∑n

i=1 EQ[ZiWi] + y

over (W1, . . . ,Wn) ∈ An((X − y)+), y ∈ R

subject to Wi > 0, i = 1, . . . , n.

(3.20)

Note that the constraints in (3.19) are replaced by weaker constraints, and we allow to

choose y ∈ R in (3.20) which is fixed as y =
∑n

i=1 VaRQi
αi

(Xi) in (3.19). From there, it is

clear that the minimum value of (3.20) is no larger than that of (3.19). We shall later see

that (3.19) and (3.20) are indeed equivalent. Recall Bj = {Zj =
∧n
i=1 Zi}, j = 1, . . . , n,

and B1, . . . , Bn are disjoint. For fixed y ∈ R, writing W = (X − y)+, the optimization

problem

to minimize
∑n

i=1 EQ[ZiWi] + y

over (W1, . . . ,Wn) ∈ An(W )

subject to Wi > 0, i = 1, . . . , n

(3.21)
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admits a unique optimizer via point-wise optimization,

W ∗i = W IBi , i = 1, . . . , n.

Next, we consider the second-step optimization of (3.20),

to minimize
∑n

i=1
1
αi
EQi [(X − y)+IBi ] + y over y ∈ R. (3.22)

By taking a derivative with respect to y, the set of optimizers of the problem (3.22)

is the interval [x∗B, y
∗
B]. Let y∗ ∈ [x∗B, y

∗
B]. For x1, . . . , xn ∈ R with

∑n
i=1 xi = y∗,

define X∗i = (X − y∗)IBi + xi, i = 1, . . . , n. We can verify (X∗1 , . . . , X
∗
n) ∈ An(X) and

(X∗i − xi)+ = W ∗i , i = 1, . . . , n. Thus, optimization problems (3.19) and (3.20) have

the same minimum objective values, and an optimizer (X∗1 , . . . , X
∗
n) of (3.19) necessarily

satisfies (X∗i − xi)+ = W IBi = (X − y∗)+IBi for some x1, . . . , xn ∈ R with
∑n

i=1 xi = y∗.

In summary, for any Pareto-optimal allocation (X∗1 , . . . , X
∗
n), there exist (x1, . . . , xn) ∈

R and y∗ ∈ [x∗B, y
∗
B] satisfying

∑n
i=1 xi = y∗, such that for i = 1, . . . , n,

(X∗i − xi)+ = (X − y∗)+IBi .

Finally, noting that {X > y∗} = {X > y∗B} Q-almost surely and y∗B > y∗, by letting

ci = xi − y∗ + y∗B, we have

(X∗i − ci)+ = (X − y∗B)+IBi , i = 1, . . . , n.

This completes the proof.

4 Competitive equilibria for ES agents

In this section, we study competitive equilibria as in Definition 2.2 for ES agents.

Similarly to Section 3, throughout this section, α1, . . . , αn ∈ (0, 1), Q1, . . . , Qn ∈ P, and

the risk measure of agent i is ESQi
αi

, i = 1, . . . , n. Each agent’s objective is

to minimize ESQi
αi

(Xi) over Xi ∈ X

subject to EQ[Xi] > EQ[ξi]
i = 1, . . . , n, (4.1)
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where (ξ1, . . . , ξn) ∈ An(X) is the vector of initial risks.

With the Pareto optimality problem solved explicitly in Section 3, we establish in

this section that for ES agents, a Pareto-optimal allocation is equivalent to an equilibrium

allocation. Thus, the two Fundamental Theorems of Welfare Economics (FTWE) hold

for ES agents4. As in the proof of Proposition 3.2, throughout this section we define the

probability measure Q∗B via

Q∗B(C) =
n∑
i=1

1

αi
Qi(C ∩Bi ∩ {X > x∗B}), C ∈ F , (4.2)

where B = (B1, . . . , Bn) and x∗B are defined by (3.3) and (3.12). We can verify that Q∗B

does not depend on the order of Q1, . . . , Qn, although the choice of B in (3.3) does. Later

we shall see that the probability measure Q∗B turns out to be the unique equilibrium price

for the ES agents. We first present the FTWE for ES agents.

Theorem 4.1. An allocation of X ∈ X is Pareto-optimal if and only if it is an equilibrium

allocation for some initial risks (ξ1, . . . ξn) ∈ An(X).

Proof. First, an equilibrium allocation is necessarily Pareto-optimal, as the so-called non-

satiation condition (see Starr (2011)) holds for the ES agents. For the reader who is

not familiar with the FTWE, we provide a self-contained simple proof. Suppose that

(Q, (X∗1 , . . . , X
∗
n)) is a competitive equilibrium, and (X∗1 , . . . , X

∗
n) is not Pareto-optimal.

Then, there exists (Y1, . . . , Yn) ∈ An(X) such that ESQi
αi

(Yi) 6 ESQi
αi

(X∗i ) for all i =

1, . . . , n and there exists j ∈ {1, . . . , n} such that ES
Qj
αj (Yj) < ES

Qj
αj (X∗j ). If EQ[Yj ] >

EQ[ξj ], then X∗j is not optimal for (4.1) since it is strictly dominated by Yj , and thus a

contradiction. If EQ[Yj ] < EQ[ξj ], then there exists k ∈ {1, . . . , n} such that EQ[Yk] >

EQ[ξk]. Similarly, X∗k is not optimal for (4.1) since it is strictly dominated by Yk−EQ[Yk]+

EQ[ξk], and thus a contradiction.

Next we show that a Pareto-optimal allocation is necessarily an equilibrium alloca-

tion. Let (X∗1 , . . . , X
∗
n) be a Pareto-optimal allocation. For i = 1, . . . , n, consider the

individual optimization problem in (4.1) with the initial risks ξi = X∗i and the pricing

4Roughly speaking, the first FTWE states that, under some conditions, an equilibrium allocation is
Pareto-optimal, and the second FTWE states that, under some conditions, a Pareto-optimal allocation is
an equilibrium allocation.
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measure Q∗B, namely

min
Xi∈X

ESQi
αi

(Xi) subject to EQ
∗
B [Xi] > EQ

∗
B [X∗i ]. (4.3)

Note that for any Xi ∈ X with EQ∗B [Xi] > EQ∗B [X∗i ], we have

ESQi
αi

(Xi) = sup
Q∈P, dQ/dQi61/αi

EQ[Xi] > EQ
∗
B [Xi] > EQ

∗
B [X∗i ],

where the first inequality follows from Q∗B ∈ Q with Q defined in (3.1). Therefore, the

minimum value of the objective in the optimization problem (4.3) is at least EQ∗B [X∗i ].

As a consequence, ESQi
αi

(X∗i ) > EQ∗B [X∗i ]. Noting that (X∗1 , . . . , X
∗
n) is a Pareto-optimal

allocation, from (3.11) we have

n∑
i=1

ESQi
αi

(X∗i ) = �ni=1ESQi
αi

(X) = EQ
∗
B [X]. (4.4)

Combined with the fact that ESQi
αi

(X∗i ) > EQ∗B [X∗i ], we have

ESQi
αi

(X∗i ) = EQ
∗
B [X∗i ], i = 1, . . . , n.

That is, X∗i is an optimizer of the optimization problem (4.3). By definition, (Q∗B, (X
∗
1 , . . . , X

∗
n))

is a competitive equilibrium.

Remark 4.1. From Proposition 3.1 and Theorem 4.1, Pareto-optimal allocations and e-

quilibria may exist for ES agents even if their beliefs are not equivalent. This is in sharp

contrast to the classic setting of expected utility agents, where generally no Pareto-optimal

allocations or equilibria exist if beliefs are not equivalent.

In the proof of Theorem 4.1, we have already seen that Q∗B is an equilibrium price for

the ES agents. The next theorem verifies that Q∗B is indeed the unique equilibrium price.

Theorem 4.2. For a given X ∈ X , the equilibrium price is uniquely given by Q∗B.

Proof. Let (Q, (X∗1 , . . . , X
∗
n)) be a competitive equilibrium. We show the uniqueness of

the equilibrium price in two steps.

(i) Assume for the purpose of contradiction that there exists A ∈ F with A ⊂ {X >

x∗B} such that Q(A) > Q∗B(A). Since Q∗B(A) =
∑n

i=1
1
αi
Qi(A ∩ Bi), we know that
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Q(A ∩Bj) > 1
αj
Qj(A ∩Bj) for some j ∈ {1, . . . , n}. For a positive constant m, take

Yj = X∗j +mIA∩Bj −mQ(A ∩Bj). Obviously, EQ[Yj ] = EQ[X∗i ]. We can verify that

ES
Qj
αj (Yj) = ES

Qj
αj (X∗j +mIA∩Bj −mQ(A ∩Bj))

= ES
Qj
αj (X∗j +m(IA∩Bj ))−mQ(A ∩Bj)

6 ES
Qj
αj (X∗j ) +mES

Qj
αj (IA∩Bj )−mQ(A ∩Bj)

6 ES
Qj
αj (X∗j ) +m

1

αj
Qj(A ∩Bj)−mQ(A ∩Bj) < ES

Qj
αj (X∗j ),

where the first inequality is due to the subadditivity of ES (see e.g. Embrechts and

Wang (2015)). This contradicts the fact that (Q, (X∗1 , . . . , X
∗
n)) is a competitive

equilibrium, since Yj strictly dominates X∗j in the individual optimization (4.1).

Therefore, we conclude that Q(A) 6 Q∗B(A) for all A ∈ F with A ⊂ {X > x∗B}.

(ii) By Theorem 4.1, (X∗1 , . . . , X
∗
n) is Pareto-optimal, and hence (4.4) holds. Since

(Q, (X∗1 , . . . , X
∗
n)) is a competitive equilibrium, for i = 1, . . . , n, we have ESQi

αi
(X∗i ) 6

EQ[X∗i ], otherwise X∗i would have been strictly dominated by Yi = EQ[X∗i ]. By (4.4),

we have

EQ
∗
B [X] =

n∑
i=1

ESQi
αi

(X∗i ) 6
n∑
i=1

EQ[X∗i ] = EQ[X]. (4.5)

From part (i), we know that Q is dominated by Q∗B on {X > x∗B}. Assume Q(X 6

x∗B) > 0. It follows that

∫
{X>x∗B}

Xd(Q∗B −Q) > x∗B(Q∗B(X > x∗B)−Q(X > x∗B))

= x∗BQ(X 6 x∗B).

Therefore,

EQ
∗
B [X]− EQ[X] =

∫
{X>x∗B}

Xd(Q∗B −Q) +

∫
{X6x∗B}

Xd(Q∗B −Q)

> x∗BQ(X 6 x∗B)−
∫
{X6x∗B}

XdQ

> x∗BQ(X 6 x∗B)− x∗BQ(X 6 x∗B) = 0,

contradicting (4.5). From there, we conclude that Q(X 6 x∗B) = 0.
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Combining (i) and (ii), we have Q(A) 6 Q∗B(A) for all A ∈ F . Since both Q and Q∗B are

probability measures, we conclude that Q = Q∗B.

As a consequence of Theorems 4.1 and 4.2, we have the following corollary charac-

terizing all equilibria for given initial risks.

Corollary 4.3. For any choice of initial risks (ξ1, . . . ξn) ∈ An(X), a competitive equi-

librium is necessarily and sufficiently given by (Q∗B, (X
∗
1 , . . . , X

∗
n)), where (X∗1 , . . . , X

∗
n) ∈

An(X) is a Pareto-optimal allocation such that EQ∗B [X∗i ] = EQ∗B [ξi], i = 1, . . . , n.

Recalling Theorem 3.3, an explicit form of Pareto-optimal allocations is given by

X∗i = (X − x∗)IBi + ci, i = 1, . . . , n, (4.6)

for any x∗ ∈ [x∗B, y
∗
B], where

∑n
i=1 ci = x∗, B = (B1, . . . , Bn), x∗B and y∗B are defined by

(3.3), (3.12) and (3.13).

Corollary 4.4. Assume Q in (3.1) is non-empty. Then (Q∗B, (X
∗
1 , . . . , X

∗
n)) given in (4.2)

and (4.6) is a competitive equilibrium.

5 Risk sharing games for VaR agents

In this section, we investigate risk-sharing games for VaR agents. Throughout this

section, α1, . . . , αn ∈ (0, 1), Q1, . . . , Qn ∈ P, and the risk measure of agent i is VaRQi
αi

,

i = 1, . . . , n. The main difference between VaR and ES is the non-convexity of VaR, and

hence the classic approach based on convex analysis cannot be used.

We introduce a few key quantities in our analysis for VaR agents. For X ∈ X and

x ∈ [−∞,∞), define the set

Γ(x) = {(Q1(X > x,A1), . . . , Qn(X > x,An)) : (A1, . . . , An) ∈ πn(Ω)}+ Rn+, (5.1)

where R+ = [0,∞). Note that for fixed A ∈ F and i = 1, . . . , n, Qi(X > x,A) is

right-continuous and decreasing in x, with Qi(X > ∞, A) = 0. Therefore, for each

(α1, . . . , αn) ∈ (0, 1)n, there exists a smallest number x∗ ∈ [−∞,∞) such that (α1, . . . , αn) ∈

Γ(x∗). That is,

x∗ = min {x ∈ [−∞,∞) : (α1, . . . , αn) ∈ Γ(x)} .
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It follows that there exists (A∗1, . . . , A
∗
n) ∈ πn(Ω) such that

(α1, . . . , αn) > (Q1(X > x∗, A∗1), . . . , Qn(X > x∗, A∗n)). (5.2)

One can verify that for X ∈ X , x∗ > −∞ if and only if

n∨
i=1

Qi(Ai)

αi
> 1 for all (A1, . . . , An) ∈ πn(Ω). (5.3)

To show this, note that x∗ > −∞ if and only if there exists x ∈ R such that for all

(A1, . . . , An) ∈ πn(Ω), Qi(X > x,Ai) > αi for some i = 1, . . . , n. This is in turn equivalent

to (5.3).

Now we present the Pareto-optimal allocations for VaR agents.

Theorem 5.1. For X ∈ X , the following hold.

(i) We have

n
�
i=1

VaRQi
αi

(X) = min {x ∈ [−∞,∞) : (α1, . . . , αn) ∈ Γ(x)} = x∗,

where Γ is given by (5.1).

(ii) If (5.3) holds, that is, x∗ > −∞, a Pareto-optimal allocation (X∗1 , . . . , X
∗
n) of X is

given by

X∗i = (X − x∗)IA∗i +
x∗

n
, i = 1, . . . , n,

where (A∗1, . . . , A
∗
n) satisfies (5.2).

Proof. (i) First we show �ni=1 VaRQi
αi

(X) > x∗. For (X1, . . . , Xn) ∈ An(X), let Di =

{Xi > VaRQi
αi

(Xi)}, i = 1, . . . , n. Clearly, Qi(Di) 6 αi. Let Ci = Di ∪ (
⋃n
j=1Dj)

c

for i = 1, . . . , n. We have
⋃n
i=1Ci = Ω, and hence there exists (A1, . . . , An) ∈ πn(Ω)

such that Ai ⊂ Ci. Write x =
∑n

i=1 VaRQi
αi

(Xi). We have

{X > x} =

{
n∑
i=1

Xi >

n∑
i=1

VaRQi
αi

(Xi)

}
⊂

n⋃
i=1

Di.

Therefore, for i = 1, . . . , n,

Qi(X > x,Ai) 6 Qi(X > x,Ci) = Qi(X > x,Di) 6 Qi(Di) 6 αi.
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This shows (α1, . . . , αn) ∈ Γ(x). As a consequence,

x∗ = min {x ∈ [−∞,∞) : (α1, . . . , αn) ∈ Γ(x)} 6 x =

n∑
i=1

VaRQi
αi

(Xi).

From there we obtain �ni=1 VaRQi
αi

(X) > x∗.

Next we show �ni=1 VaRQi
αi

(X) 6 x∗. Take any x ∈ R such that (α1, . . . , αn) ∈ Γ(x).

By definition, there exists (A1, . . . , An) ∈ πn(Ω) such that

Qi((X − x)IAi > 0) = Qi(X > x,Ai) 6 αi, i = 1, . . . , n. (5.4)

Note that (5.4) implies VaRQi
αi

((X − x)IAi) 6 0 for i = 1, . . . , n. Let

Xi = (X − x)IAi +
x

n
, i = 1, . . . , n. (5.5)

We have (X1, . . . , Xn) ∈ An(X) and

n∑
i=1

VaRQi
αi

(Xi) =
n∑
i=1

VaRQi
αi

((X − x)IAi) + x 6 x.

This shows�ni=1 VaRQi
αi

(X) 6 x for all real numbers x > x∗. Therefore, �ni=1 VaRQi
αi

(X) 6

x∗. In summary, we have �ni=1 VaRQi
αi

(X) = x∗.

(ii) Suppose x∗ > −∞. Similarly to (5.4) and (5.5), from the definition of x∗ and A∗i ,

we have

n∑
i=1

VaRQi
αi

(X∗i ) =
n∑
i=1

VaRQi
αi

((X − x∗)IA∗i ) + x∗ 6 x∗.

Together with (i), we conclude that (X∗1 , . . . , X
∗
n) is a Pareto-optimal allocation of

X.

As an immediate consequence of Theorem 5.1 (ii), a Pareto-optimal allocation exists

if and only if (5.3) holds. Similarly to the case of ES agents, the existence of a Pareto-

optimal allocation only depends on (α1, . . . , αn) and (Q1, . . . , Qn), but not on the total

risk X.
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The Pareto-optimal allocation for VaR agents in Theorem 5.1,

XVaR
i = (X − x∗)IA∗i +

x∗

n
, i = 1, . . . , n,

and that for ES agents in Theorem 3.3,

XES
i = (X − y∗)IBi +

y∗

n
, i = 1, . . . , n,

share amazing similarity in their forms. Nevertheless, we should clarify that the calculation

of (A∗1, . . . , A
∗
n, x
∗) and (B∗1 , . . . , B

∗
n, y
∗) above are completely different, and these two risk

sharing problems have essentially distinct features. We remark two significant differences.

First, the optimization problem for VaR agents is a non-convex one, whereas that for ES

agents is convex. Second, (B∗1 , . . . , B
∗
n, y
∗) has explicit forms, but (A∗1, . . . , A

∗
n, x
∗) does

not; an efficient way to compute (A∗1, . . . , A
∗
n, x
∗) seems unavailable at the moment.

Remark 5.1. If Q1 = · · · = Qn = P, we have

n
�
i=1

VaRP
αi

(X)

= inf {x ∈ R | P(Axi ) = αi, A
x
i = Ai ∩ {X > x}, (A1, . . . , An) ∈ πn(Ω)}

= inf {x ∈ R | P(X > x) = α1 + · · ·+ αn} = VaRP∑n
i=1 αi

(X).

This is a special case of Theorem 2 of Embrechts et al. (2017).

Next, we observe that a competitive equilibrium for VaR agents does not exist. In

this setting, each agent’s objective is

to minimize VaRQi
αi

(Xi) over Xi ∈ X

subject to EQ[Xi] > EQ[ξi],
i = 1, . . . , n, (5.6)

Proposition 5.2. For any choice of initial risks, a competitive equilibrium for the VaR

agents does not exist.

Proof. First note that there is a correspondence between the optimizer of (5.6) and that

of the following optimization problem

to minimize Vi(Yi) = VaRQi
αi

(Yi)− EQ[Yi] over Yi ∈ X , i = 1, . . . , n, (5.7)
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by choosing Xi = Yi − EQ[Yi] + EQ[ξi]. Note that for any probability measure Q, one can

easily find a random variable Xi such that VaRQi
αi

(Yi) < EQ[Yi]. Then by the positive

homogeneity of Vi, we have that the infimum of the objective function is −∞, and hence

(5.6) admits no optimizer.

A possible alternative setting to study competitive equilibria for VaR agents is to

restrict the set of admissible positions for each agent and to slightly relax the definition

of pricing measures; see Embrechts et al. (2017) for the case allowing only 0 6 Xi 6 X.

In the latter paper, for VaR agents with homogeneous beliefs, the equilibrium price Q

is shown to be a zero measure instead of a probability measure, and this is beyond the

framework of this paper.

6 Risk sharing games for mixed VaR and ES agents

In this section, we consider the risk sharing problem in which some agents are VaR

agents and the others are ES agents. The result naturally generalizes to RVaR agents,

which shall be defined later. Define the index sets I = {1, . . . ,m} and J = {m+1, . . . , n},

0 6 m < n. Without loss of generality, assume that for i ∈ I and j ∈ J , the objective of

agent i is VaRQi
αi

and that of agent j is ES
Qj

βj
, where αi, βj ∈ (0, 1) and Qi, Qj ∈ P. Note

that here we allow I to be empty but J is assumed non-empty, i.e. there is at least one

ES agent. For notional simplicity, in this section we write, for X ∈ X ,

V (X) = inf

∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) : (X1, . . . , Xn) ∈ An(X)

 . (6.1)

We first verify that V (X) > −∞ if and only if

n∨
i=1

Qi(Ai)

αi
> 1 for all (A1, . . . , Am) ∈ πm(Ω), (6.2)

and ∑
j∈J

Qj(Bj)

βj
> 1 for all (B1, . . . , Bn) ∈ πn(Ω) with Qi(Bi) 6 αi, i ∈ I. (6.3)

To see this, first note that (6.2) is a necessary condition for V (X) > −∞ by (5.3). Hence,

we only need to show that when (6.2) holds, V (X) > −∞ if and only if (6.3) holds. To
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show the necessity, assume (6.3) does not hold. There exists (B1, . . . , Bn) ∈ πn(Ω) with

Qi(Bi) 6 αi, i ∈ I, such that
∑

j∈J Qj(Bj)/βj < 1. Define

Xi = (X + x)IBi −
x

n
, i = 1, . . . , n,

where x > 0. Then

∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) 6

∑
j∈J

ES
Qj

βj
((X + x)IBj )− x

=
∑
j∈J

1

βj
EQj [XIBj ] +

∑
j∈J

Qj(Bj)

βj
x− x.

Letting x→∞, we have that the right hand side of the above equation converges to −∞,

and hence, V (X) = −∞. The sufficiency is implied by the following theorem.

Theorem 6.1. Assume that (6.2) and (6.3) hold. Then for X ∈ X ,

V (X) = min

∑
j∈J

1

βj
EQj [(X − x)+IBj ] + x

∣∣∣∣∣∣ (B1, . . . , Bn) ∈ πn(Ω)

Qi(Bi) 6 αi, i ∈ I, x ∈ R

 . (6.4)

Proof. Note that X is bounded and both sides of (6.4) are translation invariant5. Without

loss of generality, we assume X > 0. Denote by R(X) the right hand side of (6.4); we will

show V (X) = R(X). For any (B1, . . . , Bn) ∈ πn(Ω) such that Qi(Bi) 6 αi for i ∈ I, take

Xi = XIBi , i = 1, . . . , n. Then, VaRQi
αi

(Xi) = 0, i ∈ I, and for j ∈ J ,

ES
Qj

βj
(Xj) = min

{
1

βj
EQj [(XIBj − x)+] + x : x ∈ R

}
= min

{
1

βj
EQj [(XIBj − x)+] + x : x ∈ R+

}
= min

{
1

βj
EQj [(X − x)+IBj ] + x : x ∈ R

}
.

Therefore, for all (B1, . . . , Bn) ∈ πn(Ω) such that Qi(Bi) 6 αi, i ∈ I, we have

V (X) 6
∑
j∈J

min

{
1

βj
EQj [(X − x)+IBj ] + x : x ∈ R

}
5Following the risk management literature, a functional f : X → R is called translation invariant if

f(X + c) = f(X) + c for all X ∈ X and c ∈ R.
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6 min

∑
j∈J

1

βj
EQj [(X − x)+IBj ] + x : x ∈ R

 .

Hence, V (X) 6 R(X). To show V (X) > R(X), we need to prove that for any (X1, . . . , Xn) ∈

An(X), there exists (B1, . . . , Bn) ∈ πn(Ω) with Qi(Bi) 6 αi, i ∈ I such that

∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) > min

x∈R

∑
j∈J

1

βj
EQj [(X − x)+IBj ] + x

 . (6.5)

Because of translation invariance of VaR and ES, without loss of generality, assume

VaRQi
αi

(Xi) = 0, i ∈ I. As Qi({Xi > 0}) 6 αi, i ∈ I, there exists a set B1 ∈ F such

that {X1 > 0} ⊂ B1 and Q1(B1) 6 α1. Similarly, for i ∈ I, let Bi be a set such that

{Xi > 0} \ ∪i−1k=1Bk ⊂ Bi and Qi(Bi) 6 αi. Let B = ∪i∈IBi,

X∗i = XiIB + d IBi , i ∈ I, and X∗j = (Xj − d/(n−m))IB +XjIBc , j ∈ J,

where d > 0 is large enough such that

ess-sup(Xj − d/(n−m))IB < min{XjIBc}, j ∈ J.

Clearly, X∗j 6 Xj for j ∈ J , and VaRQi
αi

(X∗i ) = VaRQi
αi

(Xi) = 0. By (6.3), we have

Qj(B
c) > βj , implying ES

Qj

βj
(X∗j ) = ES

Qj

βj
(XjIBc). Also note that ∪i∈I{Xi > 0} ⊂ B,

implying
∑

j∈J XjIBc =
(
X −

∑
i∈I Xi

)
IBc > XIBc . Using the above facts, we have

∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) >

∑
i∈I

VaRQi
αi

(X∗i ) +
∑
j∈J

ES
Qj

βj
(X∗j )

=
∑
j∈J

ES
Qj

βj
(XjIBc)

> �
j∈J

ES
Qj

βj

∑
j∈J

XjIBc

 > �
j∈J

ES
Qj

βj
(XIBc).

By Proposition 3.2, we have

�
j∈J

ES
Qj

βj
(XIBc)
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= min

∑
j∈J

1

βj
EQj [(XICj − x)+] + x : x ∈ R, (Cj)j∈J ∈ πn−m(Bc)


> R(X).

Thus, V (X) > R(X), and this completes the proof.

If I = ∅, Theorem 6.1 reduces to Proposition 3.2. The case of J = ∅ (see Theorem

5.1) is not included in Theorem 6.1 since the expression in (6.4) involves a sum of expec-

tations over J . By Theorem 6.1, there exist x∗ ∈ R and (B1, . . . , Bn) ∈ πn(Ω) such that

Qi(Bi) 6 αi, i ∈ I, and

V (X) =
∑
j∈J

1

βj
EQj [(X − x∗)+IBj ] + x∗.

A Pareto-optimal allocation (X∗1 , . . . , X
∗
n) of X is given by

X∗i = (X − x∗)IBi +
x∗

n
, i = 1, . . . , n. (6.6)

Nevertheless, analytical formulas of the above x∗ ∈ R and (B1, . . . , Bn) ∈ πn(Ω) are not

available. A necessary condition for (B1, . . . , Bn) ∈ πn(Ω) above is

Bj ⊂

{
1

αj

dQj
dQ

=
∧
i∈J

1

αi

dQi
dQ

}
, j ∈ J,

but to determine (B1, . . . , Bn) seems a very complicated task, even computationally.

Remark 6.1. When there are mixed VaR and ES agents, as the VaR agents do not care

about the the risk above a certain quantile, an intuitive idea to find the Pareto-optimal

allocation is to first allocate risks for the VaR agents as in Theorem 5.1, and then allocate

risks for the ES agents as in Theorem 3.3. Such a technical treatment turns out to give

an optimal allocation in the setting of homogeneous beliefs in Embrechts et al. (2017).

Unfortunately, it does not necessarily lead to a Pareto-optimal allocation in our setting

of heterogeneous beliefs, and hence yields a sharp contrast to the case of homogeneous

beliefs treated in Embrechts et al. (2017).

Finally, we present the result for a more general class of risk measures, the Range-

Value-at-Risk (RVaR), as studied in Embrechts et al. (2017). Recall that for X ∈ X and
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Q ∈ P, the RVaR at level (α, β) ∈ [0, 1]2, α+ β 6 1 is defined as

RVaRQ
α,β(X) =

 1
β

∫ α+β
α VaRQ

γ (X)dγ if β > 0,

VaRQ
α (X) if β = 0.

Clearly, the RVaR family includes both VaR and ES as special cases. For more details

on RVaR, see Embrechts et al. (2017). To study risk sharing problems for RVaR agents,

the key observation is that RVaR is the inf-convolution of VaR and ES, namely,

RVaRQ
α,β = VaRQ

α � ESQβ ;

see Theorem 2 of Embrechts et al. (2017). With this result, we can use Theorem 6.1 to

calculate the inf-convolution of RVaR and identify its corresponding Pareto-optimal allo-

cations, by decomposing each RVaR agent into two “imaginary” VaR and ES agents. To

guarantee the existence of a Pareto-optimal allocation, or equivalently�ni=1 RVaRQi

αi, βi
(X) >

−∞, we require

n∨
i=1

Qi(Ai)

αi
> 1 for all (A1, . . . , An) ∈ πn(Ω), (6.7)

and

n∑
i=1

Qi(B2i)

βi
> 1

for all (B11, B21, . . . , B1n, B2n) ∈ π2n(Ω)

with Qi(B1i) 6 αi, i = 1, . . . , n.
(6.8)

Then the following corollary follows directly from Theorem 6.1.

Corollary 6.2. Let X ∈ X and αi, βi ∈ (0, 1), i = 1, . . . , n. Assume that (6.7) and (6.8)

hold. Then

n
�
i=1

RVaRQi

αi, βi
(X)

= min


n∑
i=1

1

βi
EQi [(X − x)+IB2i ] + x

∣∣∣∣∣∣ (B11, B21, . . . , B1n, B2n) ∈ π2n(Ω)

Qi(B1i) 6 αi, i = 1, . . . , n, x ∈ R

 .

We conclude this section by observing that, similarly to the case of VaR agents, a

competitive equilibrium does not exist for mixed VaR and ES agents or RVaR agents,
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unless all agents are ES agents.

7 Conclusion

By solving various optimization problems, we obtain in explicit forms Pareto-optimal

allocations and competitive equilibria for quantile-based risk measures with belief hetero-

geneity. For ES agents, we show that Pareto-optimal allocations and equilibrium alloca-

tions are equivalent, and the equilibrium price is uniquely determined. In the case of VaR

agents, Pareto-optimal allocations are obtained, but competitive equilibria do not exist.

Our results and economic interpretations differ significantly from those of Embrechts et

al. (2017) where belief homogeneity is assumed. In view of the prominent usage of in-

ternal models for various financial institutions, belief heterogeneity seems to be a more

reasonable assumption for studying risk sharing games in the context of regulatory capital

calculation and its practical implications.

Acknowledgements

We thank Michel Baes (ETH Zurich) for various helpful discussions. P. Embrechts

would like to thank the Swiss Finance Institute for financial support. Part of this paper was

written while he was Hung Hing Ying Distinguished Visiting Professor at the Department

of Statistics and Actuarial Science of the University of Hong Kong. H. Liu thanks the

University of Science and Technology of China for supporting her visit in Fall 2017. T. Mao

was supported by the NNSF of China (Nos. 71671176, 11371340). R. Wang acknowledges

support from the Natural Sciences and Engineering Research Council of Canada (RGPIN-

435844-2013).

References

Acciaio, B. and Svindland, G. (2009). Optimal risk sharing with different reference probabilities.

Insurance: Mathematics and Economics, 44(3), 426–433.

Anthropelos, M. and Kardaras, C. (2017). Equilibrium in risk-sharing games. Finance and Stochas-

tics, 21(3), 815–865.

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Mathemat-

ical Finance, 9(3), 203–228.

29



BCBS (2016). Standards. Minimum capital requirements for Market Risk. January 2016. Basel

Committee on Banking Supervision. Basel: Bank for International Settlements.

Barrieu, P. and El Karoui, N. (2005). Inf-convolution of risk measures and optimal risk transfer.

Finance and Stochastics, 9(2), 269–298.

Chen, H., Joslin, S. and Tran, N.-K. (2012). Rare disasters and risk sharing with heterogeneous

beliefs. Review of Financial Studies, 25(7), 2189–2224.

Dana, R-A. and Le Van, C. (2010). Overlapping sets of priors and the existence of efficient alloca-

tions and equilibria for risk measures. Mathematical Finance, 20(3), 327–339.

Embrechts, P. (2017). A Darwinian view on internal models. Journal of Risk, 20(1), 1–21.

Embrechts, P., Liu, H. and Wang, R. (2017). Quantile-based risk sharing. Operations Research,

forthcoming.

Embrechts, P. and Wang, R. (2015). Seven proofs for the subadditivity of Expected Shortfall.

Dependence Modeling, 3, 126–140.
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